
FACHBEREICH MATHEMATIK

FUNKTIONALANALYSIS
UND GEOMATHEMATIK

SCHRIFTEN ZUR

W. Freeden, M. Gutting

On the Completeness and Closure of

Vector and Tensor Spherical Harmonics

 

Bericht 37 – März 2008



RESEARCH ARTICLE

On the Completeness and Closure of Vector and Tensor Spherical

Harmonics

Dedicated to the memory of our teacher Claus Müller who died on February 6th, 2008.

W. Freedena∗ and M. Guttinga

aGeomathematics Group, University of Kaiserslautern, P.O. Box 3049, D-67653
Kaiserslautern, Germany

(February 21st, 2008)

An intrinsically on the 2-sphere formulated proof of the closure and completeness of spheri-
cal harmonics is given in vectorial and tensorial framework. The considerations are essentially
based on vector and tensor approximation in terms of zonal vector and tensor Bernstein
kernels, respectively.

Keywords: Scalar/vectorial/tensorial spherical harmonics, Bernstein kernel, closure,
completeness.

AMS Subject Classification: 30F15, 33C55, 35P10, 42C10, 42C30, 43A90

1. Introduction

Spherical harmonics are the analogues of trigonometric functions for Fourier
expansion theory on the sphere. They have been introduced in the 1780s to study
gravitational theory (cf. [13, 14]). Early publications on the theory of spherical
harmonics in their meaning as multipoles can be found, e.g., in [12]. Today the
use of spherical harmonics in mathematics, geo- and astrophysics, geodesy and
-engineering, etc is a well-established technique, particularly for representing
scalar potentials. For example, reference models for the Earth’s gravitational or
magnetic potential are widely known by tables of coefficients of the spherical
harmonic Fourier expansion of their potentials. Moreover, in the second half of
the last century a physically motivated approach to the decomposition of vector
and tensor fields has been discovered which is based on a spherical variant of the
Helmholtz theorem (see, e.g., [1, 2, 17]). Following this concept the tangential part
of a spherical vector field is split up into a curl-free and a divergence-free field
by use of two differential operators, viz. the surface gradient and the surface curl
gradient. Of course, an analogous splitting is valid in tensor theory (cf. [2, 8]).
In subsequent publications the vector spherical harmonics are usually written
in local coordinate expressions that make mathematical formulations lengthy.
In addition, when using local coordinates within a global spherical concept,
differential geometry informs us that there is no representation of vector and
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tensor spherical harmonics free of singularities (at the poles). In consequence, the
mathematical arrangement involving vector and tensor spherical harmonics has
led to an inadequately complex literature. Even more, the concept of zonal kernel
functions in a unifying scalar, vector, and tensor framework has not been worked
out suitably: addition theorems connecting spherical harmonics and Legendre
polynomials have not been generalized in canonical coordinate-free sense to the
vector and tensor context. Based on the work due to C. Müller (cf. [18, 19]) and
the theses [6, 9, 20], the monograph [8] develops vector and tensor counterparts of
the Legendre polynomials and explains their specific role in constructive approxi-
mation by use of zonal vector and/or tensor kernels. All material is intrinsically
formulated on the sphere. Only the closure and completeness of vector and tensor
spherical harmonics are taken from restrictions of properties for homogeneous
harmonic vector and tensor polynomials in Euclidean spaces.

In this paper we prove the closure and completeness of vector and tensor spher-
ical harmonics intrinsically on the sphere. For that purpose we use vectorial and
tensorial variants of the scalar zonal Bernstein kernels (as presented, e.g., in [5]). Al-
though the approximation of functions by using Bernstein polynomials is one of the
classical research topics and their theory is a rich one (see, e.g., [3, 4, 10, 11, 15, 21]
and many others), their application within vector and tensor theory of spherical
harmonics seems to be unknown. Indeed, the vector and tensor zonal Bernstein
kernel approximations can be shown to guarantee the closure property in the space
of continuous spherical normal as well as tangential vector and tensor fields, re-
spectively. In consequence, they also assure closure and completeness in the Hilbert
space of (Lebesgue-)square-integrable vector and tensor fields, respectively. Essen-
tial tools are the theory of Green’s function with respect to (iterated) Beltrami
operators (see [7]) and the Helmholtz decomposition theorems as presented in [8].
The layout of this paper is as follows: First the spherical Bernstein kernel is in-
troduced. A short approach to spherical Bernstein approximation is presented in
scalar theory (in Section 2). Then we consider the vectorial case for which Green’s
function with respect to the Beltrami operator is introduced and used in the spher-
ical variant of the Helmholtz decomposition theorem. Its approximation by means
of the Bernstein kernel yields the closure and completeness of the vector spherical
harmonics (in Section 3). In the final part the tensorial version of the Helmholtz
decomposition theorem requires Green’s function with respect to iterated opera-
tors. We present an elementary representation of the occuring Green’s function
which allows us to establish the closure and completeness properties of the tensor
spherical harmonics by approximations in terms of the Bernstein kernel (in Section
4). All three parts – scalar, vectorial as well as tensorial – utilize the spherical
Bernstein kernel and its properties as essential tools. The three proofs for the clo-
sure and completeness are incorporated in a unified concept. Finally it should be
noted that, throughout this paper, the nomenclature is based on that used in the
monograph [8] on constructive approximation on the sphere.

2. Closure of Scalar Spherical Harmonics

The point of departure is the so-called spherical Bernstein kernel of degree n

(ξ, η) 7→ Bn(ξ · η) =
n + 1
4π

(
1 + ξ · η

2

)n

; ξ, η ∈ Ω, (1)

where Ω denotes the unit sphere in R3.



On the Completeness and Closure of Vector and Tensor Spherical Harmonics 3

Remark 1 : The name Bernstein is motivated by the fact that the kernel (see

Fig. 1) is proportional to the Bernstein polynomial Bν
n(t) =

(
n
ν

)
tν(1−t)n−ν scaled

to the interval [−1, 1] with ν = n (t is the polar distance between ξ and η, i.e.,
t = ξ · η).

Figure 1. Illustration of the kernel Bn(cos(ϑ)), ϑ ∈ [−π, π] for the degrees n = 10 (dotted line), n = 20
(dashed line), n = 40 (solid line)

First we mention some important properties of the Bernstein kernel whose proof
results directly from considerations given in [5].

Lemma 2.1: The spherical Bernstein kernel t 7→ Bn(t) = n+1
4π

(
1+t
2

)n
, t ∈ [−1, 1],

satisfies the following properties:

(i) For all t ∈ [−1, 1)

lim
n→∞

Bn(t) = 0. (2)

For all t ∈ [−1, 1] and for all n ∈ N0

Bn(t) ≥ 0. (3)

(ii) For k = 0, . . . , n the Legendre coefficient of degree k of the Bernstein kernel
of degree n is given by

B∧
n (k) = 2π

∫ +1

−1
Bn(t)Pk(t) dt =

n!
(n− k!)

(n + 1)!
(n + k + 1)!

=

(
n
k

)
(

n + k + 1
k

) , (4)

where Pk denotes the Legendre polynomial of degree k. In particular, the Legen-
dre coefficient of degree 0 corresponds to

B∧
n (0) = 2π

1∫
−1

Bn(t)dt = 1. (5)

The Legendre series representation of the Bernstein kernel of degree n with the
Legendre coefficients from (4) reads as follows

Bn(t) =
n∑

k=0

2k + 1
4π

n!
(n− k!)

(n + 1)!
(n + k + 1)!

Pk(t). (6)
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(iii) For k ∈ N fixed,

B∧
n (k) < B∧

n+1(k), for all n ∈ N0. (7)

(iv) For k ∈ N0 fixed,

lim
n→∞

B∧
n (k) = 1. (8)

Suppose that F is continuous on Ω. For ξ ∈ Ω, we observe (5) to assure∫
Ω

Bn(ξ · η)F (η)dω(η) = F (ξ) +
∫

Ω
Bn(ξ · η) (F (η)− F (ξ)) dω(η).

Now, we split the unit sphere Ω into two parts depending on a parameter γ ∈ (0, 1)
and an arbitrary, but fixed point ξ ∈ Ω. More explicitly, Ω is divided into Ωγ =
{ξ ∈ Ω : −1 ≤ ξ · η ≤ 1− γ} and the complementary part Ω \ Ωγ . In consequence,
we split the integral into ∫

Ω
. . . =

∫
Ωγ

. . . +
∫

Ω\Ωγ

. . . .

On the one hand side we find with (2) and (3)∣∣∣∣∣
∫

Ωγ

Bn(ξ · η)F (η) dω(η)

∣∣∣∣∣ ≤ 4π ‖F‖C(0)(Ω)

∫ 1−γ

−1
Bn(t) dt

≤ 2 ‖F‖C(0)(Ω)

(
1− γ

2

)n+1
.

On the other hand side F is uniformly continuous on Ω. Thus there exists a
positive function µ : γ 7→ µ(γ) with lim γ→0

γ>0
µ(γ) = 0 such that |F (ξ)−F (η)| ≤ µ(γ)

for all η ∈ Ω with 1− γ ≤ ξ · η ≤ 1. Thus it follows by use of (3) that∣∣∣∣∣
∫

Ω\Ωγ

Bn(ξ · η)(F (η)− F (ξ))dω(η)

∣∣∣∣∣ ≤ µ(γ)
∫

Ω
Bn(ξ · η)dω(η) = µ(γ).

Summarizing our results we obtain the following estimate

sup
ξ∈Ω

∣∣∣∣∫
Ω

Bn(ξ · η)F (η)dω(η)− F (ξ)
∣∣∣∣ = sup

ξ∈Ω

∣∣∣∣∫
Ω

Bn(ξ · η)(F (η)− F (ξ))dω(η)
∣∣∣∣

≤ sup
ξ∈Ω

∣∣∣∣∣
∫

Ωγ

Bn(ξ · η)F (η)dω(η)− F (ξ)
∫

Ωγ

Bn(ξ · η)dω(η)

∣∣∣∣∣
+ sup

ξ∈Ω

∣∣∣∣∣
∫

Ω\Ωγ

Bn(ξ · η)(F (η)− F (ξ))dω(η)

∣∣∣∣∣
≤ sup

ξ∈Ω

∣∣∣∣∣
∫

Ωγ

Bn(ξ · η)F (η)dω(η)

∣∣∣∣∣+ ‖F‖C(0)(Ω)

∫
Ωγ

Bn(ξ · η)dω(η) + µ(γ)

≤ 2 ‖F‖C(0)(Ω)

(
1− γ

2

)n+1
+ 2 ‖F‖C(0)(Ω)

(
1− γ

2

)n+1
+ µ(γ).
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Taking the limit with respect to n on both sides we are left with the relation

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∫
Ω

Bn(ξ · η)F (η)dω(η)− F (ξ)
∣∣∣∣ ≤ µ(γ)

for every γ ∈ (0, 1). Observing µ(γ) → 0 as γ → 0 we therefore get the following
result.

Theorem 2.2 : For F ∈ C(0)(Ω),

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∫
Ω

Bn(ξ · η)F (η) dω(η)− F (ξ)
∣∣∣∣ = 0. (9)

In connection with the Legendre series (6) of the Bernstein kernel we find

∫
Ω

Bn(ξ · η)F (η) dω(η) =
n∑

k=0

B∧
n (k)

2k + 1
4π

∫
Ω

Pk(ξ · η)F (η) dω(η).

Hence, the addition theorem for scalar spherical harmonics (see, e.g., [8, 18, 19])

2k + 1
4π

Pk(η · ξ) =
2k+1∑
j=1

Yk,j(η)Yk,j(ξ),

enables us to establish the ‘Bernstein summability’ of a Fourier series expansion
in terms of scalar spherical harmonics.

Corollary 2.3: For F ∈ C(0)(Ω),

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣
n∑

k=0

B∧
n (k)

2k+1∑
j=1

F∧(k, j)Yk,j(ξ)− F (ξ)

∣∣∣∣∣∣ = 0,

where F∧(k, j) =
∫
Ω F (η)Yk,j(η)dω(η), k = 0, 1, ..., j = 1, ..., 2k + 1.

Corollary 2.3 enables us to prove the closure of the system of spherical harmonics
{Yk,j}k=0,1,...,j=1,...,2k+1 in the space C(0)(Ω).

Theorem 2.4 : For any given ε > 0 and each F ∈ C(0)(Ω) there exists a linear
combination

∑N
k=0

∑2k+1
j=1 dk,jYk,j such that∥∥∥∥∥∥F −

N∑
k=0

2k+1∑
j=1

dk,jYk,j

∥∥∥∥∥∥
C(0)(Ω)

≤ ε.

In fact, given F ∈ C(0)(Ω), then for any ε > 0 there exists an integer N = N(ε)
because of (2.3) such that

sup
ξ∈Ω

∣∣∣∣∣∣∣
N∑

k=0

2k+1∑
j=1

B∧
N (k)F∧(k, j)︸ ︷︷ ︸

=dk,j

Yk,j(ξ)− F (ξ)

∣∣∣∣∣∣∣ ≤ ε.
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In addition, by standard arguments, we are able to derive the closure in L2(Ω)
as well as the completeness of the scalar spherical harmonics in L2(Ω) (for more
details the reader is referred, e.g., to [8]).

3. Closure of Vector Spherical Harmonics

First some information about vector spherical harmonics should be given: We begin
with the introduction of the operators o(i) : C(1)(Ω) → c(0)(Ω) with the help of the
surface gradient ∇∗ and the surface curl gradient L∗ as follows

o
(1)
ξ F (ξ) = ξF (ξ), ξ ∈ Ω,

o
(2)
ξ F (ξ) = ∇∗ξF (ξ), ξ ∈ Ω,

o
(3)
ξ F (ξ) = L∗ξF (ξ), ξ ∈ Ω.

Obviously, o(1)F is a normal vector field, whereas o(2)F and o(3)F are tangential.
Their application to the scalar spherical harmonics defines the orthonormal vector
spherical harmonics up to a normalization factor, i.e.,

y
(1)
k,j (ξ) = o

(1)
ξ Yk,j , k = 0, 1, . . . ; j = 1, . . . , 2k + 1,

y
(i)
k,j(ξ) =

1√
k(k + 1)

o
(i)
ξ Yk,j , i = 2, 3; k = 1, 2, . . . ; j = 1, . . . , 2k + 1.

The Helmholtz decomposition theorem for spherical vector fields tells us that a
vector field f ∈ c(1)(Ω) can be represented as

f(ξ) =
3∑

i=1

o(i)F (i)(ξ), ξ ∈ Ω,

where the scalar functions F (i) : Ω → R satisfying
∫
Ω F (i)(ξ)dω(ξ) = 0 for i = 2, 3

are uniquely determined by

F (1)(ξ) = O
(1)
ξ f(ξ),

F (i)(ξ) = −
∫

Ω
G(∆∗; ξ, η)O(i)

η f(η)dω(η), i = 2, 3.

O(i) denote the adjoint operators associated to the operators o(i), i ∈ {1, 2, 3}. The
function (ξ, η) 7→ G(∆∗; ξ, η),−1 ≤ ξ · η < 1 is the Green function with respect to
the (Laplace-)Beltrami operator ∆∗ (cf. [6, 8] for a detailed introduction)

G(∆∗; ξ, η) =
1
4π

(ln(1− ξ · η) + 1− ln(2)) .

Its bilinear (Legendre) expansion is given by

G(∆∗; ξ, η) =
1
4π

∞∑
k=1

2k + 1
−k(k + 1)

Pk(ξ · η).
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For purposes of approximation we convolve the Green function with the Bernstein
kernel

BGn(ξ · η) =
∫
Ω

G(∆∗; ξ, α)Bn(α · η)dω(α).

In terms of a Legendre series we have

BGn(ξ · η) =
n∑

k=1

2k + 1
4π

B∧
n (k)

−k(k + 1)
Pk(ξ · η).

Note that the Bernstein kernel is a polynomial and Green’s function is of class
L1[−1, 1], hence, the existence of the convolution integral as bandlimited Legendre
expansion is obvious.

Next we are interested in the Bernstein summability of Fourier expansions in
terms of vector spherical harmonics. To this end we need some preparatory material
(more precisely, Lemma 3.1 and Lemma 3.2). Essential tool of our considerations
is the Green function with respect to the Beltrami operator.

Lemma 3.1: For i ∈ {1, 2, 3} we have

lim
n→∞

‖F (i) − F (i)
n ‖C(0)(Ω) = 0.

Proof : In order to verify these limit relations we introduce the Bernstein approx-
imants of the (uniquely determined) scalar Helmholtz functions F (i) for i = 1, 2, 3
given by

F (i)
n (ξ) = −

(
BGn ∗O(i)f

)
(ξ) = −

∫
Ω

BGn(ξ, η)O(i)
η f(η)dω(η).

Clearly, the case i = 1 of Lemma 3.1 follows immediately from the scalar theory of
the previous section. Thus it remains to study i = 2, 3. It is not hard to see that

‖F (i) − F (i)
n ‖C(0)(Ω) = ‖G ∗O(i)f −BGn ∗O(i)f‖C(0)(Ω)

≤ ‖O(i)f‖C(0)(Ω)‖G−BGn‖L1[−1,1].

Since both kernels G and BGn are of class L2[−1, 1] and, for all k ∈ N0, the
Legendre coefficients of the Bernstein kernel B∧

n (k) converge to 1 for n tending to
infinity (see also (8)), we are able to deduce that

lim
n→∞

‖G(∆∗; ·)−BGn‖L2[−1,1] = 0.

This implies L1-convergence as well as ‖F (i) − F
(i)
n ‖C(0)(Ω) → 0 for i = 1, 2, 3 and

n →∞, as required. �

Considering the o(i)-derivatives we have to prove
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Lemma 3.2: For i ∈ {1, 2, 3} we have

lim
n→∞

sup
ξ∈Ω

∣∣∣o(i)
ξ F (i)(ξ)− o

(i)
ξ F (i)

n (ξ)
∣∣∣ = 0.

Proof : Clearly, we have

‖o(i)
ξ F (i)(ξ)− o

(i)
ξ F (i)

n (ξ)‖c(0)(Ω)

= sup
ξ∈Ω

∣∣∣∣∣∣−o
(i)
ξ

∫
Ω

G(∆∗; ξ, η)O(i)
η f(η)dω(η) + o

(i)
ξ

∫
Ω

BGn(ξ, η)O(i)
η f(η)dω(η)

∣∣∣∣∣∣
= sup

ξ∈Ω

∣∣∣∣∣∣
∫
Ω

o
(i)
ξ G(∆∗; ξ, η)O(i)

η f(η)dω(η)−
∫
Ω

o
(i)
ξ BGn(ξ, η)O(i)

η f(η)dω(η)

∣∣∣∣∣∣ ,
where it can be easily seen that the operator o(i) can be drawn inside the two
integrals. This leads us to following estimate

sup
ξ∈Ω

∣∣∣∣∣∣
∫
Ω

o
(i)
ξ G(∆∗; ξ, η)O(i)

η f(η)dω(η)−
∫
Ω

o
(i)
ξ BGn(ξ, η)O(i)

η f(η)dω(η)

∣∣∣∣∣∣
≤ sup

ξ∈Ω

∫
Ω

∣∣∣o(i)
ξ G(∆∗; ξ, η)− o

(i)
ξ BGn(ξ, η)

∣∣∣ ∣∣∣O(i)
η f(η)

∣∣∣ dω(η)

≤ ‖O(i)f‖C(0)(Ω)

∫
Ω

∣∣∣o(i)
ξ G(∆∗; ξ, η)− o

(i)
ξ BGn(ξ, η)

∣∣∣ dω(η).

We need to study the convergence of the last integral. In more detail, we have to
show

lim
n→∞

∫
Ω

∣∣∣o(i)
ξ G(∆∗; ξ, η)− o

(i)
ξ BGn(ξ, η)

∣∣∣ dω(η) = 0.

To this end, we notice that the vectorial Bernstein kernels o
(i)
ξ BGn(ξ · η), i = 2, 3,

admit the following (Legendre) series expansions

o
(2)
ξ BGn(ξ · η) =

n∑
k=1

2k + 1
4π

B∧
n (k)

−k(k + 1)
P ′

k(ξ · η) (η − (ξ · η)ξ) ,

o
(3)
ξ BGn(ξ · η) =

n∑
k=1

2k + 1
4π

B∧
n (k)

−k(k + 1)
P ′

k(ξ · η) (ξ ∧ η) .

Moreover, an easy calculation shows that the application of the o(i)-operators,
i = 2, 3, to the Green function with respect to the Beltrami operator leads to

o
(2)
ξ G(∆∗; ξ, η) =

−1
4π

η − (η · ξ)ξ
1− η · ξ

, o
(3)
ξ G(∆∗; ξ, η) =

−1
4π

ξ ∧ η

1− η · ξ
.



On the Completeness and Closure of Vector and Tensor Spherical Harmonics 9

Consequently, our integral can be expressed in the form∫
Ω

∣∣∣o(i)
ξ G(∆∗; ξ, η)− o

(i)
ξ BGn(ξ, η)

∣∣∣ dω(η)

=
∫
Ω

∣∣∣∣∣∣−1
4π

o
(i)
ξ (ξ · η)

1− ξ · η
− −1

4π

n∑
k=1

2k + 1
k(k + 1)

B∧
n (k)P ′

k(ξ · η)o(i)
ξ (ξ · η)

∣∣∣∣∣∣ dω(η)

=
1
4π

∫
Ω

∣∣∣o(i)
ξ (ξ · η)

∣∣∣ ∣∣∣∣∣ 1
1− ξ · η

−
n∑

k=1

2k + 1
k(k + 1)

B∧
n (k)P ′

k(ξ · η)

∣∣∣∣∣ dω(η)

=
1
2

1∫
−1

√
1− t2

∣∣∣∣∣ 1
1− t

−
n∑

k=1

2k + 1
k(k + 1)

B∧
n (k)P ′

k(t)

∣∣∣∣∣ dt.

At this point we use a well-known recurrence relation for the Legendre polynomials
(and their derivatives) (see, e.g., [16]), namely

(t2 − 1)P ′
k(t) =

k(k + 1)
2k + 1

(Pk+1(t)− Pk−1(t)). (10)

This gives us the identity∫
Ω

∣∣∣o(i)
ξ G(∆∗; ξ, η)− o

(i)
ξ BGn(ξ, η)

∣∣∣ dω(η)

=
1
2

1∫
−1

√
1 + t

1− t

∣∣∣∣∣1− (1− t)
n∑

k=1

B∧
n (k)

Pk+1(t)− Pk−1(t)
t2 − 1

∣∣∣∣∣ dt

=
1
2

1∫
−1

√
1 + t

1− t

∣∣∣∣∣1 +
1

1 + t

n∑
k=1

B∧
n (k) (Pk+1(t)− Pk−1(t))

∣∣∣∣∣ dt . (11)

For the occurring sum it follows that

n∑
k=1

B∧
n (k) (Pk+1(t)− Pk−1(t)) =

B∧
n (n)Pn+1(t) + B∧

n (n− 1)Pn(t)−B∧
n (2)P1(t)−B∧

n (1)P0(t)

+
n−1∑
k=2

(
B∧

n (k − 1)−B∧
n (k + 1)

)
Pk(t) , (12)

where a simple calculation using (4) shows that

B∧
n (k − 1)−B∧

n (k + 1) = B∧
n+1(k)(2k + 1)

2
(n + 2)

. (13)

Together with (4) and the Legendre series (6) we plug (13) into (12) getting the
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following result

n∑
k=1

B∧
n (k) (Pk+1(t)− Pk−1(t))

= B∧
n (n)Pn+1(t) + B∧

n (n− 1)Pn(t)−B∧
n (2)P1(t)−B∧

n (1)P0(t)

+
2

n + 2

n−1∑
k=2

B∧
n+1(k)(2k + 1)Pk(t)

=
2

n + 2

n+1∑
k=0

B∧
n+1(k)(2k + 1)Pk(t)− (1 + t)

=
2

n + 2
(n + 1)

(
1 + t

2

)n+1

− (1 + t) .

With this result in mind we return to the integral (11). As a matter of fact, (11)
can be rewritten in the form

1
2

1∫
−1

√
1 + t

1− t

∣∣∣∣∣1 +
1

1 + t

n∑
k=1

B∧
n (k) (Pk+1(t)− Pk−1(t))

∣∣∣∣∣ dt

=
1
2

1∫
−1

√
1 + t

1− t

∣∣∣∣n + 1
n + 2

(
1 + t

2

)n∣∣∣∣ dt.

Clearly, the Bernstein kernel is non-negative (see (3)) such that we are left with
the integral expression

∫
Ω

∣∣∣o(i)
ξ G(∆∗; ξ, η)− o

(i)
ξ BGn(ξ, η)

∣∣∣ dω(η) =
1
2

n + 1
n + 2

1∫
−1

√
1 + t

1− t

(
1 + t

2

)n

dt

=
Γ(n + 3

2)
Γ(1

2) Γ(n + 2)
,

(which can be proven by induction). It is well-known that the value of our integral
can be estimated as follows

1√
2n + 2

<
Γ(n + 3

2)
Γ(1

2) Γ(n + 2)
<

2√
2n + 2

.

Therefore, we immediately obtain convergence of our integral for n →∞. We even
know the speed of convergence, i.e.,∫

Ω

∣∣∣o(i)
ξ G(∆∗; ξ, η)− o

(i)
ξ BGn(ξ, η)

∣∣∣ dω(η) = O(n−1/2).

�

We are now in position to establish the ‘Bernstein summability’ of Fourier series
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in terms of vector spherical harmonics.

Theorem 3.3 : For any vector field f ∈ c(1)(Ω),

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣f(ξ)−
3∑

i=1

n∑
k=0i

2k+1∑
j=1

B∧
n (k)

(
f (i)
)∧

(k, j)y(i)
k,j(ξ)

∣∣∣∣∣∣ = 0,

where we have used the abbreviation 01 = 0 and 0i = 1, i = 2, 3.

Proof : From Lemma 3.2 we know that for f ∈ c(1)(Ω)

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣f(ξ)−
3∑

i=1

o
(i)
ξ F (i)

n (ξ)

∣∣∣∣∣ = lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣
3∑

i=1

o
(i)
ξ F (i)(ξ)−

3∑
i=1

o
(i)
ξ F (i)

n (ξ)

∣∣∣∣∣
≤

3∑
i=1

lim
n→∞

sup
ξ∈Ω

∣∣∣o(i)
ξ F (i)(ξ)− o

(i)
ξ F (i)

n (ξ)
∣∣∣ = 0.

(14)

The expression o
(1)
ξ F

(1)
n (ξ) can be written in the form

o
(1)
ξ F (1)

n (ξ) = o
(1)
ξ

∫
Ω

Bn(ξ · η)O(1)
η f(η)dω(η)

=
n∑

k=0

B∧
n (k)o(1)

ξ

2k+1∑
j=1

(
O(1)f

)∧
(k, j)Yk,j(ξ)

=
n∑

k=0

2k+1∑
j=1

B∧
n (k)

(
O(1)f

)∧
(k, j)y(1)

k,j (ξ), (15)

where (
O(1)f

)∧
(k, j) =

∫
Ω

O(1)
η f(η)Yk,j(η)dω(η)

=
∫
Ω

f(η) · o(1)
η Yk,j(η)︸ ︷︷ ︸
=y

(1)
k,j(η)

dω(η) =
(
f (1)

)∧
(k, j). (16)

Furthermore, for i = 2, 3, we have

o
(i)
ξ F (i)

n (ξ) = −o
(i)
ξ

∫
Ω

BGn(ξ · η)O(i)
η f(η)dω(η)

=
n∑

k=1

B∧
n (k)

k(k + 1)
o
(i)
ξ

2k+1∑
j=1

(
O(i)f

)∧
(k, j)Yk,j(ξ)

=
n∑

k=1

2k+1∑
j=1

B∧
n (k)√

k(k + 1)

(
O(i)f

)∧
(k, j)y(i)

k,j(ξ). (17)
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Taking a look at the coefficients
(
O(i)f

)∧
(k, j) we find

(
O(i)f

)∧
(k, j) =

∫
Ω

O(i)
η f(η)Yk,j(η)dω(η) =

∫
Ω

f(η) · o(i)
η Yk,j(η)dω(η)

=
√

k(k + 1)
∫
Ω

f(η) · y(i)
k,j(η)dω(η) =

√
k(k + 1)

(
f (i)
)∧

(k, j). (18)

The identities (15) and (16) as well as (17) and (18) allow us to conclude

o
(i)
ξ F (i)

n (ξ) =
n∑

k=1

2k+1∑
j=1

B∧
n (k)

(
f (i)
)∧

(k, j)y(i)
k,j(ξ), i = 1, 2, 3.

In connection with (14) we therefore obtain

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣f(ξ)−
3∑

i=1

o
(i)
ξ F (i)

n (ξ)

∣∣∣∣∣
= lim

n→∞
sup
ξ∈Ω

∣∣∣∣∣∣f(ξ)−
3∑

i=1

n∑
k=0i

2k+1∑
j=1

B∧
n (k)

(
f (i)
)∧

(k, j)y(i)
k,j(ξ)

∣∣∣∣∣∣ = 0. (19)

provided that f ∈ c(1)(Ω). This is the desired result. �

A well-known density argument enables us to verify the closure of the vector
spherical harmonics

{
y

(i)
k,j

}
i,k,j

in the space c(0)(Ω).

Theorem 3.4 : For any given ε > 0 and each f ∈ c(0)(Ω) there exists a linear
combination

∑3
i=1

∑N
k=0i

∑2k+1
j=1 d

(i)
k,jy

(i)
k,j , such that

∥∥∥∥∥∥f −
3∑

i=1

N∑
k=0i

2k+1∑
j=1

d
(i)
k,jy

(i)
k,j

∥∥∥∥∥∥
c(0)(Ω)

≤ ε.

Indeed, if we take any g ∈ c(0)(Ω) and any ε > 0, we find a field f ∈ c(1)(Ω) such
that sup

ξ∈Ω
|g(ξ)− f(ξ)| < ε

2 . Due to Theorem 3.3 there also exists an N ∈ N with

sup
ξ∈Ω

∣∣∣∣∣∣f(ξ)−
3∑

i=1

N∑
k=0i

2k+1∑
j=1

B∧
n (k)

(
f (i)
)∧

(k, j)y(i)
k,j(ξ)

∣∣∣∣∣∣ < ε

2
.

Combining both inequalities we obtain

sup
ξ∈Ω

∣∣∣∣∣∣∣∣∣g(ξ)−
3∑

i=1

N∑
k=0i

2k+1∑
j=1

B∧
n (k)

(
f (i)
)∧

(k, j)︸ ︷︷ ︸
d
(i)
k,j

y
(i)
k,j(ξ)

∣∣∣∣∣∣∣∣∣ < ε.
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By standard arguments this immediately gives us the closure in c(0)(Ω) with
respect to ‖ · ‖l2(Ω) as well as in l2(Ω) which in turn leads to completeness of the

system
{

y
(i)
k,j

}
i,k,j

in l2(Ω) (see, e.g., [8]).

4. Closure of Tensor Spherical Harmonics

First we list some preliminaries on tensor spherical harmonics: The operators o(i,k) :
C(2)(Ω) → c(0)(Ω) are defined as follows (again using the surface gradient ∇∗ and
the surface curl gradient L∗)

o(1,1)
ξ F (ξ) = ξ ⊗ ξF (ξ),

o(1,2)
ξ F (ξ) = ξ ⊗∇∗ξF (ξ),

o(1,3)
ξ F (ξ) = ξ ⊗ L∗ξF (ξ),

o(2,1)
ξ F (ξ) = ∇∗ξF (ξ)⊗ ξ,

o(3,1)
ξ F (ξ) = L∗ξF (ξ)⊗ ξ,

o(2,2)
ξ F (ξ) = itan(ξ)F (ξ),

o(2,3)
ξ F (ξ) =

(
∇∗ξ ⊗∇∗ξ − L∗ξ ⊗ L∗ξ

)
F (ξ) + 2∇∗ξF (ξ)⊗ ξ,

o(3,2)
ξ F (ξ) =

(
∇∗ξ ⊗ L∗ξ + L∗ξ ⊗∇∗ξ

)
F (ξ) + 2L∗ξF (ξ)⊗ ξ,

o(3,3)
ξ F (ξ) = jtan(ξ)F (ξ).

(for more details see [8]). Note that the surface identity tensor field is defined by
itan(ξ) = i − ξ ⊗ ξ (where i is the identity tensor) and the surface rotation tensor

field by jtan(ξ) =
3∑

i=1
(ξ ∧ εi) ⊗ εi (ε1, ε2, ε3 denote the Cartesian unit vectors in

R
3). For notational convenience we introduce the abbreviation

0i,k =

0 for (i, k) = (1, 1), (2, 2), (3, 3);
1 for (i, k) = (1, 2), (1, 3), (2, 1), (3, 1);
2 for (i, k) = (2, 3), (3, 2).

The application of the operators o(i,k) to the scalar spherical harmonics defines the
tensor spherical harmonics

y(i,k)
m,j (ξ) =

1√
µ

(i,k)
m

o(i,k)
ξ Ym,j(ξ),

where the normalization factor µ
(i,k)
m (to establish orthonormality) is given by

µ(i,k)
m =


1 if (i, k) = (1, 1);
2 if (i, k) = (2, 2), (3, 3);

m(m + 1) if (i, k) = (1, 2), (1, 3), (2, 1), (3, 1);
2(m− 1)m(m + 1)(m + 2) if (i, k) = (2, 3), (3, 2).
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The tensorial Helmholtz decomposition theorem (see [2] for the (geo)physical back-
ground and [8] for the mathematical details) allows the decomposition of any given
tensorial field f of class c(2)(Ω). In more detail, there exist the unique scalar func-
tions F (i,k) ∈ C(2)(Ω), (i, k) ∈ {(1, 1), (1, 2), . . . , (3, 3)} with

∫
Ω F (i,k)(ξ)dω(ξ) = 0

for (i, k) = (1, 2), (1, 3), (2, 1), (3, 1), (2, 3), (3, 2) and
∫
Ω F (i,k)(ξ)Y1,ldω(ξ) = 0 for

all l = 1, 2, 3 and for (i, k) = (2, 3), (3, 2) such that

f =
3∑

i,k=1

o(i,k)F (i,k).

These functions are determined by

F (1,1)(ξ) = O
(1,1)
ξ f(ξ)

F (2,2)(ξ) =
1
2
O

(2,2)
ξ f(ξ)

F (3,3)(ξ) =
1
2
O

(3,3)
ξ f(ξ)

F (1,2)(ξ) = −
(
G(∆∗; ·, ·) ∗O(1,2)f

)
(ξ)

F (1,3)(ξ) = −
(
G(∆∗; ·, ·) ∗O(1,3)f

)
(ξ)

F (2,1)(ξ) = −
(
G(∆∗; ·, ·) ∗O(2,1)f

)
(ξ)

F (3,1)(ξ) = −
(
G(∆∗; ·, ·) ∗O(3,1)f

)
(ξ)

F (2,3)(ξ) =
1
2

(
G(∆∗(∆∗ + 2); ·, ·) ∗O(2,3)f

)
(ξ)

F (3,2)(ξ) =
1
2

(
G(∆∗(∆∗ + 2); ·, ·) ∗O(3,2)f

)
(ξ).

O(i,k) denote the adjoint operators associated to the operators o(i,k) (see [8] for
a detailed description), and (ξ, η) 7→ G(∆∗(∆∗ + 2); ξ, η), −1 ≤ ξ · η ≤ 1, is the
Green function with respect to the operator ∆∗(∆∗ + 2). For more details about
the general concept of Green’s functions on the sphere with respect to iterated
Beltrami operators the reader is referred to [7, 8].

Since the elementary representation of the Green function with respect to the
operator ∆∗(∆∗+2) seems to be unknown, we first deal with the following lemma.

Lemma 4.1: For t ∈ [−1, 1],

G(∆∗(∆∗ + 2); t) =
1
8π

(1− t) ln(1− t) +
1
4π

(
1
12

+
ln(2)

2

)
t +

1
4π

(
1
4
− ln(2)

2

)
.

Proof : We use the bilinear expansion of t 7→ G(∆∗(∆∗ + 2); t), t ∈ [−1, 1] (with
t = ξ · η) given by

G(∆∗(∆∗ + 2); t) =
1
4π

∞∑
k=2

2k + 1
k(k + 1)(k − 1)(k + 2)

Pk(t).

For simplicity we introduce the abbreviation G(∆∗(∆∗+2); t) = 1
4πG(t). With this
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simplified notation we have

G(t) =
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

Pk(t).

Considering the derivatives of G we obtain in a first step with (10)

G′(t) =
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

P ′
k(t)

=
1

t2 − 1

∞∑
k=2

1
(k − 1)(k + 2)

(Pk+1(t)− Pk−1(t)) .

By index shifts we are able to conclude that

G′(t) =
1

t2 − 1

( ∞∑
k=3

2(2k + 1)
(k − 2)k(k + 1)(k + 3)

Pk(t)−
1
4
P1(t)−

1
10

P2(t)

)
.

We derive this expression once again:

G′′(t) =
−2t

(t2 − 1)2

( ∞∑
k=3

2(2k + 1)
(k − 2)k(k + 1)(k + 3)

Pk(t)−
1
4
t− 1

10
P2(t)

)

+
1

t2 − 1

( ∞∑
k=3

2(2k + 1)
(k − 2)k(k + 1)(k + 3)

P ′
k(t)−

1
4
− 3

10
t

)
.

The second sum can be transformed by use of the recurrence relation (10)

∞∑
k=3

2(2k + 1)
(k − 2)k(k + 1)(k + 3)

P ′
k(t) =

1
t2 − 1

∞∑
k=3

2
(k − 2)(k + 3)

(Pk+1(t)− Pk−1(t))

=
1

t2 − 1

( ∞∑
k=4

4(2k + 1)
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t)−
1
3
P2(t)−

1
7
P3(t)

)
.

This provides us with the following representation of the second derivative of G

G′′(t) =
1

(t2 − 1)2

( ∞∑
k=3

−4(2k + 1)
(k − 2)k(k + 1)(k + 3)

tPk(t) +
1
2
t2 +

1
5
tP2(t)

)

+
1

(t2 − 1)2

( ∞∑
k=4

4(2k + 1)
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t)−
1
3
P2(t)−

1
7
P3(t)

− 1
4
(t2 − 1)− 3

10
t(t2 − 1)

)
.

In the first sum the three-term-recurrence of the Legendre polynomials (see, e.g.,



16 W. Freeden and M. Gutting

[16]) is applied, i.e., (2k + 1)tPk(t) = (k + 1)Pk+1(t) + kPk−1(t), which yields

∞∑
k=3

2k + 1
(k − 2)k(k + 1)(k + 3)

tPk(t)

=
∞∑

k=3

1
(k − 2)k(k + 3)

Pk+1(t) +
∞∑

k=3

1
(k − 2)(k + 1)(k + 3)

Pk−1(t)

=
∞∑

k=4

2k + 1
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t) +
1
24

P2(t) +
1
70

P3(t).

Summarizing we have the second derivative given by

G′′(t) =
1

(t2 − 1)2

(
− 4

∞∑
k=4

2k + 1
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t)−
1
6
P2(t)−

2
35

P3(t)

+
1
2
t2 +

1
5
tP2(t) + 4

∞∑
k=4

(2k + 1)
(k − 3)(k − 1)(k + 2)(k + 4)

Pk(t)

− 1
3
P2(t)−

1
7
P3(t)−

1
4
(t2 − 1)− 3

10
t(t2 − 1)

)

=
1

(t2 − 1)2

(
−1

2
(t− 1)(t + 1)2

)
=

1
2

1
1− t

.

Now an elementary representation of G can be recovered by integration. Of course,
this requires certain values to determine the constants of integration. We use initial
conditions at t = −1 (see, e.g., [16])

G(−1) =
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

Pk(−1)

=
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

(−1)k =
1
6
,

G′(−1) =
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

P ′
k(−1)

=
∞∑

k=2

2k + 1
(k − 1)k(k + 1)(k + 2)

k(k + 1)
2

(−1)k+1

=
∞∑

k=2

2k + 1
2(k − 1)(k + 2)

(−1)k+1 = − 5
12

.

Ordinary integration gives us

G′(t) =

t∫
−1

1
2

1
1− s

ds = −1
2

ln(1− t) +
1
2

ln(2),

which does not yet fit the demanded value at t = −1. This is the reason why we
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choose

G′(t) = −1
2

ln(1− t) +
1
2

ln(2)− 5
12

for the second integration which results in

G(t) =

t∫
−1

−1
2

ln(1− s) +
1
2

ln(2)− 5
12

ds

=
1
2
(1− t) ln(1− t)− 1

2
+

1
2
t +

ln(2)
2

t− 5
12

t− 1
2

ln(2) + 1− 5
12

.

Once again a constant needs to be added, i.e.,

G(t) =
1
2
(1− t) ln(1− t)− 1

2
+

1
2
t +

ln(2)
2

t− 5
12

t− 1
2

ln(2) + 1− 5
12

+
1
6
.

This yields the required result of Lemma 4.1. �

Next we introduce the ‘Bernstein convolutions’ to the nine Helmholtz functions.
More explicitly,

F (1,1)
n (ξ) =

(
Bn ∗O(1,1)f

)
(ξ)

F (2,2)
n (ξ) =

1
2

(
Bn ∗O(2,2)f

)
(ξ)

F (3,3)
n (ξ) =

1
2

(
Bn ∗O(3,3)f

)
(ξ)

F (1,2)
n (ξ) = −

(
BGn ∗O(1,2)f

)
(ξ)

F (1,3)
n (ξ) = −

(
BGn ∗O(1,3)f

)
(ξ)

F (2,1)
n (ξ) = −

(
BGn ∗O(2,1)f

)
(ξ)

F (3,1)
n (ξ) = −

(
BGn ∗O(3,1)f

)
(ξ)

F (2,3)
n (ξ) =

(
BG(2)

n ∗O(2,3)f
)

(ξ)

F (3,2)
n (ξ) =

(
BG(2)

n ∗O(3,2)f
)

(ξ),

where

BG(2)
n (ξ, η) =

1
2

∫
Ω

G(∆∗(∆∗ + 2); ξ, α)Bn(α · η)dω(α)

=
n∑

k=2

2k + 1
4π

B∧
n (k)

2(k − 1)k(k + 1)(k + 2)
Pk(ξ · η).

Our interest now is the ‘Bernstein summability’ of Fourier expansions in terms of
tensor spherical harmonics. Again we need some preparatory results (viz., Lemma
4.2 and Lemma 4.3).
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Lemma 4.2: For i, k ∈ {1, 2, 3} we have

lim
n→∞

sup
ξ∈Ω

∣∣∣F (i,k)(ξ)− F (i,k)
n (ξ)

∣∣∣ = 0.

Proof : Since both kernels G(∆∗(∆∗ + 2); ·) and BG
(2)
n (·) are in L2[−1, 1] and the

Legendre coefficients of the Bernstein kernel B∧
n (k) converge to 1 as n → ∞ (see

(8)) for all k ∈ N0, we obtain

lim
n→∞

‖1
2
G(∆∗(∆∗ + 2); ·)−BG(2)

n ‖L2[−1,1] = 0

The last limit also holds true in L1-metric. Consequently we are able to deduce
that ‖F (i,k) − F

(i,k)
n ‖C(0)(Ω) −→ 0 for i, k ∈ {1, 2, 3} as n −→∞. �

Including the tensorial operators and considering their corresponding differences
we are led to the following result.

Lemma 4.3: For i, k ∈ {1, 2, 3} we have

lim
n→∞

sup
ξ∈Ω

‖o(i,k)F (i,k) − o(i,k)F (i,k)
n ‖c(0)(Ω) = 0.

Proof : For the types (i, k) = (1, 1), (2, 2), (3, 3) we obtain the required conver-
gence of ‖o(i,k)F (i,k) − o(i,k)F

(i,k)
n ‖c(0)(Ω) as in the scalar case, and for the types

(i, k) = (1, 2), (1, 3), (2, 1), (3, 1) as in the vectorial case because of the struc-
ture of the corresponding operators o(i,k). This leaves us with the two types
(i, k) = (2, 3), (3, 2).

‖o(i,k)
ξ F (i,k)(ξ)− o(i,k)

ξ F (i,k)
n (ξ)‖c(0)(Ω)

= sup
ξ∈Ω

∣∣∣∣∣∣o(i,k)
ξ

∫
Ω

1
2
G(∆∗(∆∗ + 2); ξ, η)O(i,k)

η f(η)dω(η)

− o(i,k)
ξ

∫
Ω

BG(2)
n (ξ, η)O(i,k)

η f(η)dω(η)

∣∣∣∣∣∣
= sup

ξ∈Ω

∣∣∣∣∣∣
∫
Ω

o(i,k)
ξ

1
2
G(∆∗(∆∗ + 2); ξ, η)O(i,k)

η f(η)dω(η)

−
∫
Ω

o(i,k)
ξ BG(2)

n (ξ, η)O(i,k)
η f(η)dω(η)

∣∣∣∣∣∣ ,
where the operator o(i,k) can be put inside both integrals. By obvious manipulations
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we find

sup
ξ∈Ω

∣∣∣∣∣∣
∫
Ω

(
o(i,k)

ξ

1
2
G(∆∗(∆∗ + 2); ξ, η)− o(i,k)

ξ BG(2)
n (ξ, η)

)
O(i,k)

η f(η)dω(η)

∣∣∣∣∣∣
≤ sup

ξ∈Ω

∫
Ω

∣∣∣∣o(i,k)
ξ

1
2
G(∆∗(∆∗ + 2); ξ, η)− o(i,k)

ξ BG(2)
n (ξ, η)

∣∣∣∣ ∣∣∣O(i,k)
η f(η)

∣∣∣ dω(η)

≤ ‖O(i,k)f‖C(0)(Ω)

∫
Ω

∣∣∣∣o(i,k)
ξ

1
2
G(∆∗(∆∗ + 2); ξ, η)− o(i,k)

ξ BG(2)
n (ξ, η)

∣∣∣∣ dω(η). (20)

Therefore, we just need to prove the convergence of the last integral, i.e., the l1-
norm. Application of the tensorial operators o(2,3) and o(3,2) to the corresponding
Green’s function results in the identities

o(2,3)
ξ G(∆∗(∆∗ + 2);ξ, η) =

1
4π

G′′(ξ · η) [(η − (ξ · η) ξ)⊗ (η − (ξ · η) ξ)− (ξ ∧ η)⊗ (ξ ∧ η)] ,

o(3,2)
ξ G(∆∗(∆∗ + 2);ξ, η) =

1
4π

G′′(ξ · η) [(η − (ξ · η) ξ)⊗ (ξ ∧ η) + (ξ ∧ η)⊗ (η − (ξ · η) ξ)] .

Considering the absolute value of these two we find that∣∣∣o(2,3)
ξ G(∆∗(∆∗ + 2); ξ, η)

∣∣∣
=

1
4π

∣∣G′′(ξ · η)
∣∣ |(η − (ξ · η) ξ)⊗ (η − (ξ · η) ξ)− (ξ ∧ η)⊗ (ξ ∧ η)|

=
1
8π

1
1− ξ · η

√
2(1− (ξ · η)2) =

1
4π

1√
2
(1 + ξ · η)

and∣∣∣o(3,2)
ξ G(∆∗(∆∗ + 2); ξ, η)

∣∣∣
=

1
4π

∣∣G′′(ξ · η)
∣∣ |(η − (ξ · η) ξ)⊗ (ξ ∧ η) + (ξ ∧ η)⊗ (η − (ξ · η) ξ)|

=
1
8π

1
1− ξ · η

√
2(1− (ξ · η)2) =

1
4π

1√
2
(1 + ξ · η).

Note that for the first operator we use the relation |x ⊗ x − y ⊗ y|2 =
|x|4 + |y|4 − 2(x · y)2 with x = η − (ξ · η) ξ and y = ξ ∧ η. It should be remarked
that (η − (ξ · η) ξ) · (ξ ∧ η) = 0 and |η − (ξ · η) ξ|2 = |ξ ∧ η|2 = 1 − (ξ · η)2.
For the second operator a slightly different relation is required, i.e.,
|x⊗ y + y ⊗ x|2 = 2(x · y)2 + 2|x|2|y|2 with x = η − (ξ · η) ξ and y = ξ ∧ η.

Thus, we can conclude both that o(3,2)G(∆∗(∆∗ + 2); ·, η) is of class l2(Ω) and
o(2,3)G(∆∗(∆∗ + 2); ·, η) is of class l2(Ω) for all η ∈ Ω.
In consequence, the desired l1-convergence results from the l2-convergence of the
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two kernels (both are in l2(Ω) and B∧
n (k) tends to 1 as presented in (8)). Thus,

Lemma 4.3 is guaranteed for all types (i, k). �

Next we come to the promised ‘Bernstein summability’ of Fourier series in terms
of tensor spherical harmonics.

Theorem 4.4 : For any tensor field f ∈ c(2)(Ω),

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣f(ξ)−
3∑

i,k=1

n∑
m=0i,k

2m+1∑
j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ)

∣∣∣∣∣∣ = 0.

Proof : From Lemma 4.3 we have for any tensorial field f ∈ c(2)(Ω)

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣f(ξ)−
3∑

i,k=1

o(i,k)
ξ F (i,k)

n (ξ)

∣∣∣∣∣∣
= lim

n→∞
sup
ξ∈Ω

∣∣∣∣∣∣
3∑

i,k=1

o(i,k)
ξ F (i,k)(ξ)−

3∑
i,k=1

o(i,k)
ξ F (i,k)

n (ξ)

∣∣∣∣∣∣
≤

3∑
i,k=1

lim
n→∞

sup
ξ∈Ω

∣∣∣o(i,k)
ξ F (i,k)(ξ)− o(i,k)

ξ F (i,k)
n (ξ)

∣∣∣ = 0. (21)

Let us consider the term o(1,1)
ξ F

(1,1)
n (ξ) in more detail. A simple calculation yields

o(1,1)
ξ F (1,1)

n (ξ) = o(1,1)
ξ

∫
Ω

Bn(ξ · η)O(1,1)
η f(η)dω(η)

=
n∑

k=0

B∧
n (k)

2k + 1
4π

o(1,1)
ξ

∫
Ω

Pk(ξ · η)O(1,1)
η f(η)dω(η)

=
n∑

k=0

B∧
n (k)o(1,1)

ξ

2k+1∑
j=1

(
O(1,1)f

)∧
(k, j)Yk,j(ξ)

=
n∑

k=0

2k+1∑
j=1

B∧
n (k)

(
O(1,1)f

)∧
(k, j)y(1,1)

k,j (ξ). (22)

Note that

(
O(1,1)f

)∧
(k, j) =

∫
Ω

O(1,1)
η f(η)Yk,j(η)dω(η)

=
∫
Ω

f(η) · o(1,1)
η Yk,j(η)︸ ︷︷ ︸
=y

(1,1)
k,j (η)

dω(η) =
(
f (1,1)

)∧
(k, j) (23)
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such that from (22) and (23) we are able to conclude for type (1, 1) that

o(1,1)
ξ F (1,1)

n (ξ) =
n∑

k=0

2k+1∑
j=1

B∧
n (k)

(
f (1,1)

)∧
(k, j)y(1,1)

k,j (ξ). (24)

For the cases (i, k) = (2, 2), (3, 3) we have

o(i,k)
ξ F (i,k)

n (ξ) = o(i,k)
ξ

1
2

∫
Ω

Bn(ξ · η)O(i,k)
η f(η)dω(η)

=
1
2

n∑
m=0

B∧
n (m)

2m + 1
4π

o(i,k)
ξ

∫
Ω

Pm(ξ · η)O(i,k)
η f(η)dω(η)

=
1
2

n∑
m=0

B∧
n (m)o(i,k)

ξ

2m+1∑
j=1

(
O(i,k)f

)∧
(m, j)Ym,j(ξ)

=
1√
2

n∑
m=0

2m+1∑
j=1

B∧
n (m)

(
O(i,k)f

)∧
(m, j)y(i,k)

m,j (ξ). (25)

Observe that(
O(i,k)f

)∧
(m, j) =

∫
Ω

O(i,k)
η f(η)Ym,j(η)dω(η)

=
∫
Ω

f(η) · o(i,k)
η Ym,j(η)︸ ︷︷ ︸
=
√

2y
(i,k)
m,j (η)

dω(η) =
√

2
(
f (i,k)

)∧
(m, j). (26)

Combining (25) and (26) we find for (i, k) = (2, 2), (3, 3)

o(i,k)
ξ F (i,k)

n (ξ) =
n∑

m=0

2m+1∑
j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ). (27)

For (i, k) = (1, 2), (1, 3), (2, 1), (3, 1) we have

o(i,k)
ξ F (i,k)

n (ξ) = −o(i,k)
ξ

∫
Ω

BGn(ξ · η)O(i,k)
η f(η)dω(η)

=
n∑

m=1

B∧
n (m)

m(m + 1)
2m + 1

4π
o(i,k)

ξ

∫
Ω

Pm(ξ · η)O(i,k)
η f(η)dω(η)

=
n∑

m=1

B∧
n (m)

m(m + 1)
o(i,k)

ξ

2m+1∑
j=1

(
O(i,k)f

)∧
(m, j)Ym,j(ξ)

=
n∑

m=1

2m+1∑
j=1

B∧
n (m)√

m(m + 1)

(
O(i,k)f

)∧
(m, j)y(i,k)

m,j (ξ). (28)
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Again we take a look at the coefficients
(
O(i,k)f

)∧
(m, j) and find

(
O(i,k)f

)∧
(m, j) =

∫
Ω

O(i,k)
η f(η)Ym,j(η)dω(η) =

∫
Ω

f(η) · o(i,k)
η Ym,j(η)dω(η)

=
√

m(m + 1)
∫
Ω

f(η) · y(i,k)
m,j (η)dω(η) =

√
m(m + 1)

(
f (i,k)

)∧
(m, j). (29)

Putting together (28) and (29) we are able to see that, for (i, k) =
(1, 2), (1, 3), (2, 1), (3, 1),

o(i,k)
ξ F (i,k)

n (ξ) =
n∑

m=1

2m+1∑
j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ). (30)

Finally, we treat (i, k) = (2, 3), (3, 2). It is not hard to verify that

o(i,k)
ξ F (i,k)

n (ξ) = o(i,k)
ξ

∫
Ω

BG(2)
n (ξ · η)O(i,k)

η f(η)dω(η)

=
n∑

m=2

B∧
n (m)

2m(m + 1)(m(m + 1)− 2)
2m + 1

4π
o(i,k)

ξ

∫
Ω

Pm(ξ · η)O(i,k)
η f(η)dω(η)

=
n∑

m=2

B∧
n (m)

2m(m + 1)(m(m + 1)− 2)
o(i,k)

ξ

2m+1∑
j=1

(
O(i,k)f

)∧
(m, j)Ym,j(ξ)

=
n∑

m=2

2m+1∑
j=1

B∧
n (m)√

2m(m + 1)(m(m + 1)− 2)

(
O(i,k)f

)∧
(m, j)y(i,k)

m,j (ξ). (31)

This enables us to rewrite the coefficients
(
O(i,k)f

)∧
(m, j) as follows

(
O(i,k)f

)∧
(m, j) =

∫
Ω

O(i,k)
η f(η)Ym,j(η)dω(η) =

∫
Ω

f(η) · o(i,k)
η Ym,j(η)dω(η)

=
√

2m(m + 1)(m(m + 1)− 2)
∫
Ω

f(η) · y(i,k)
m,j (η)dω(η)

=
√

2m(m + 1)(m(m + 1)− 2)
(
f (i,k)

)∧
(m, j). (32)

Consequently, (31) and (32) lead to the conclusion that for (i, k) = (2, 3), (3, 2)

o(i,k)
ξ F (i,k)

n (ξ) =
n∑

m=2

2m+1∑
j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ). (33)

Altogether, the identities (24), (27), (30) and (33) in connection with (21) yield
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the desired summability of tensor spherical harmonics, i.e.,

lim
n→∞

sup
ξ∈Ω

∣∣∣∣∣∣f(ξ)−
3∑

i,k=1

o(i,k)
ξ F (i,k)

n (ξ)

∣∣∣∣∣∣
= lim

n→∞
sup
ξ∈Ω

∣∣∣∣∣∣f(ξ)−
3∑

i,k=1

n∑
m=0i,k

2m+1∑
j=1

B∧
n (m)

(
f (i,k)

)∧
(m, j)y(i,k)

m,j (ξ)

∣∣∣∣∣∣ = 0,

provided that f ∈ c(2)(Ω). �

As in the vector case, based on a density argument, the closure of the tensor
spherical harmonics

{
y(i,k)

m,j

}
i,k,m,j

in the space c(0)(Ω) becomes obvious.

Theorem 4.5 : For any given ε > 0 and each f ∈ c(0)(Ω) there exists a linear
combination

∑3
i,k=1

∑N
m=0i,k

∑2m+1
j=1 d

(i,k)
m,j y(i,k)

m,j , such that

∥∥∥∥∥∥f −
3∑

i,k=1

N∑
m=0i,k

2m+1∑
j=1

d
(i,k)
m,j y(i,k)

m,j

∥∥∥∥∥∥
c(0)(Ω)

≤ ε.

Again, standard arguments guarantee the closure in c(0)(Ω) with respect to ‖ ·
‖l2(Ω) as well as in l2(Ω) which in turn shows the completeness of the system{
y(i,k)

m,j

}
i,k,m,j

in l2(Ω) .
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