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Abstract: As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of
revolution. The deviations of the actual Earth’s gravity field from the ellipsoidal 'normal’ field are so small that they can
be understood to be linear. The splitting of the Earth’s gravity field into a 'normal’ and a remaining small 'disturbing’ field
considerably simplifies the problem of its determination.

Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation
(deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not
ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem
of physical geodesy.

In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflec-
tions of the vertical. Essential tools are integral formulae on the sphere based on Green’s function of the Beltrami operator.
The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure in-
volving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based
on a multiscale framework by use of locally supported surface-curl-free vector wavelets.

1 Physical Background

The purpose in this introductory chapter is to present the fundamentals of gravity field determination, including the relations
between the deflections of the vertical and the Earth’s disturbing potential. Our intend is to explain the astrogeodetic
method of determining both the disturbing potential and the geoidal undulation from deflections of the vertical, avoiding
long derivations. Recently, an ellipsoidal reflected approach to gravity field modelling is given by E.W. Grafarend et al.
(2006) in physical geodesy (see also references therein). In our approach however we restrict ourselves to the classice
spherical approach. For more details the reader is referred to any textbook on classical physical geodesy (e.g., Grafarent e
al.(2001,2006), Groten (1979), Heiskanen and Moritz (1967), Torge (1991)).

The gravity potentiali? of the Earth is the sum of thgravitational potentiall’ and thecentrifugal potentiakd, i.e.,
W = V+®. In an Earth’s fixed coordinate system the centrifugal potegtialexplicitly known. Hence, the determination
of equipotential surfaces of the potenti&l is strongly related to the knowledge of the potential The gravity vectorg
given byg(z) = V,W (x), where the point € R? is located outside and on a sphere around the origin with Earth’s mean
radiusR, is normal to the equipotential surface passing through the same point (for the definition of the mean Earth’s radius
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2 T. Fehlinger et al.: Local Modelling of Geopotential

R see, e.g., Groten (1979), Hofmann-Wellenhof and Moritz (2005), Torge (1991)). Thus, equipotential surfaces intuitively
express the notion of tangential surfaces, as they are normal to the plumb lines given by the direction of the gravity vector.

Equipotential surfaces of the gravity potential allow in general no simple representation. This is the reason why a
reference surface, usually an ellipsoid of revolution, is chosen for the (approximate) construction of the geoid. As a matter
of fact, the deviations of the gravity field of the Earth from the normal field of such an ellipsoid are small by typically
five orders of magnitude. The remaining parts of the gravity field are gathered in a so-called disturbing gravi¥field,
corresponding to the disturbing potential

The aim of physical geodesy can, therefore, be seen as the determination of equipotential surfaces of the Earth’s
gravity field or, equivalently, the determination of the gravity poteriiahormally (via a linearisation process) involving
the disturbing potential’. Knowing the gravity potential, all equipotential surfaces — including the geoid — are given by
an equation of the formil’ (z) = const. By introducingU as the normal gravity potential corresponding to the ellipsoidal
field andT" as the disturbing potential (in the usual Pizetti-Somigliana concept (cf. Pizzetti (1910) )) we are led to a
decomposition of the gravity potential in the fofii = U + T where the zero- and first—order momentgoh terms of
spherical harmonics vanish (for details see, e.g., Heiskanen and Moritz (1967)).

A point z on the geoid can be projected onto a pajrdn the reference ellipsoid by means of the ellipsoidal nhormal.
Thegravity anomaly vectois defined as the difference between the gravity vegiol and the normal gravity vecton(y),
v = VU, i.e. g(x) — v(y). Itis also possible to difference the vectgraind~ at the same point to get thegravity
disturbance vectog(x) — v(z) (see Fig. 1).

X geoid
W=const
g(x)
/ZA\ reference
ellipsoid
Vy(y)

Fig. 1 lllustration of the definition of the gravity anomaly vecigiz) — v(y)

There are known several basic mathematical relations between the quantities just mentioned. We only illustrate
heuristically the relation of the deflections of the vertical to the surface gradient of the disturbing potential (in spherical
approximation). We start by observing that the gravity disturbance vector at theypzantbe written as

9(x) = (x) = Vo(W(z) = U(z)) = Vo T'(2).
Expanding the potentidl atx according to Taylor's theorem and truncating the series at the linear term we get (see Fig. 1)

oU
o'

U(z) =U(y) + 5 (y)N ().

Here,/(y) is the ellipsoidal normal af, i.e.,v’(y) = —v(y)/|v(y)|. The geoid undulatioV (x), as indicated in Fig. 1, is
the distance betweenandy, i.e., between the geoid and the reference ellipsoid. Using

)l =—v'(y) - v(y) = - (y) - V,U(y) = —%(y)




LettingU (y) = W (x) = const = W, (see, e.g. Torge (1991), Eq. (5.38)) we obtain Brun’s formula (cf. Bruns (1878))
T(x)
Eok
The last formula (1.1) relates the physical quantitio the geometric quantityy.
Lettingv(z) = —g(x)/|g(x)| we find
9(x) = Vo W(z) = —[g(z)[v(z). (1.2)

Furthermore, we have

V(z) = VoU(z) = —|y() V' ().

Now, thedeflection of the verticab(z) at the pointz is defined to be the angular (i.e., tangential) difference between the
directionsv(x) andv’(x), i.e., the plumb line and the ellipsoidal normal through the same point:

O(z) = v(z) = V'(z) = ((v(z) =V (2)) -V (2)) V(). (1.3)

Clearly, because of its definition (1.3)x) is orthogonal to/' (z):

N(z) = (1.1)

O(x) -V (z) =0.

Since the plumb lines are orthogonal to the level surfaces of the geoid and the ellipsoid, respectively, the deflections of the
vertical give briefly spoken a measure of the gradient of the level surfaces. This aspect will be described in more detail
below: From (1.2) we obtain, in conncetion with (1.3),

g(z) = V,W(z)
= —lg(@)[(O(z) +v'(x) + ((v(z) — V'(z)) - V' (2))V' () -
Altogether we get for the gravity disturbance vector
g(@) =~(x) = V. I(x) (1.4)
= —lg@)[(O(x) + ((v(z) - v'(x)) - V' (2)) V' (2))
(lg(@)] = Iy (@)]) v/ ().

The magnitudeg(x)| — |y(z)| is called thegravity disturbance Since the vector(z) — v/(z) is (almost) orthogonal to
V/(x), it can be neglected in (1.4). Hence, it follows that

g(x) =7(x) = V.T(z) (1.5)
= —lg(@)6(x) = (l9(=)| = Iy()]) v'(x).

In spherical approximation

the gradientV, T'(z) can be split into a normal part (pointing into the directior€cf v/(z)) and an angular (tangential)
part (characterized by the surface gradieri) (see, e.g., Freeden et al. (1998) for more detail§¥’dh It follows that

(z)
T ¢
8
By comparison of (1.5) and (1.7) we therefore obtain

) n lva<1~2£)

o) ~ (@) = ~ 5 (z),

i.e., the gravity disturbance, beside being the difference in magnitude of the actual and the normal gravity vector, is also the
normal component of the gravity disturbance vector.
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In addition, we are led to the angular, i.e., (tangential) differential equation
1
R

Without loss of precision-|g(x)| can be replaced by |y(x)|. In spherical approximation (withy(x)| = kM/R?, see,
e.g., Heiskanen and Moritz (1966)) this gives us

VT (RE) = —|g(x)|©(RE).

kM
VIT(RE) =~ O(RE), £,

wherek is the gravitational constant ardd is the constant of the mass. By virtue of the Brun’s formula we finally find

kM kM
3 VEN(RE) = ——-O(R¢), €€,

VEN(RE) = —RO(RE), €€ (1.7)

In other words, the knowledge of the geoid undulations allows the determination of the deflections of the vertical by taking
the surface gradient on the unit sphere.

In physical geodesy (see e.g., Groten (1981), Hofmann-Wellenhof and Moritz (2005), Rummel (1992), Torge (1991)),
the deflection of the vertical, which is a (tangential) vector field, is usually decomposed into mutually perpendicular scalar
components. Conventionally, their representation is given in terms of Stokes function (cf. Stokes (1849))

In fact, there are various distinctions in the introduction of the deflections of the vertical (see, e.g., Featherstone and
Ruger (2000), Grafarend (2001, 2006), Jekeli (1999), Torge (1991)).

2 The Problem

In what follows we understan@(R-) and©(R-) as functions defined on the unit sphéte In other wordsT'(R-) and
V*T(R-) = O(R-) are assumed to be of clags? () andc(? (Q2), respectively.

The disturbing potential’(R-) is conventionally represented on the whole Earth’s surface, i.e. on the (unit) $pheye
a Fourier (orthogonal) expansion in terms of spherical harmarjgs(see, e.g., Hofmann-Wellendorf and Moritz (2005),
Torge (1991)) thereby assuming (in accordance with the Pizetti-Somigliana concept)

(i) that the center of the reference ellipsoid coincides with the center of gravity of the Earth,
(ii) that the difference of the mass of the Earth and the mass of the ellipsoid is zero.

In other words we are confronted with the following (astrogeodetic) problem: Given the defle@tfribe vertical on the
unit sphere  R2. Find the disturbing potentidl(R-) : 2 — R satisfying

kM
VT(RS) = —=O(RS), €€

and

() /QTmnm,l(n)dw(n) - T(Rip)dwo(n) = 0

1
Vir Jo
(i /QT<Rn>Y1,j<n>dw(n> —0, j=123

(dw denotes the surface element). The theory of this problem was known even before the satellite era. As a matter of fact,
the series expansion @f(R-)

T(R)=Y /Q T(R) Yy (n)do(1) Y

leads to an orthogonal series expansion of the deflections of the véticaterms of surface curl free vector spherical
harmonicsvV*Y,, ; on the whole spherical Earth:

_%@(R@ = ; /Q T(Rn)Yn,;(n)dw(n)V*Y, ;.



But what is lacking are data globally distributed o¢erHence, the classical approaches and many others attempt to give
global models ofl'(R-) and ignore the local availability of the data. Even more, the vector tyfjds, ; of polynomial
functions are far from being suitable for local purposes, since the constituting ingredients of spherical harmonics show
certain phenomena of (global) periodicity at least when the classical basis system involving associated Legendre functions
is used. Moreover, singularities at the poles occur when polar coordinates come into play. Furthermore, boundary effects
like the Gibbs phenomenon along the local area, where the data are given, are not avoidable by use of spherical harmonics
i.e., by use of non-spacelocalizing polynomials. In consequence it is really required in geoscientific practice to develop a
new approach to the classical (astrogeodetic) problem of determining the pofgialfrom deflections of the vertical
thereby using specific spacelocalizing (trial) kernel vector functions for local applications.

In this paper we are concerned with the following local (discrete) variants of the astrogeodetic method on physical
geodesy of determining the disturbing potenfidlR-) from deflections of the vertical on a so-called normal subregion
I' of the Earth().

(1) The potential problem: Let the vector deflections of the vertical be known for a finite subset of pbints- -,y }
onT. Assume, further, that the (scalar) disturbing poterifiéR:-) is known for a se{7;,--- ,7x} on the boundaryT’
of I'. Find an approximation df'(12-) from the discrete datn;, V*T'(Rn;)}i=1,... v and{n;, T(Rn;)},_, .. 5 onthe
domainl =T U dr.

(2) The epoch problem: Given two datasets for different time epochs, namely V*T (Rn;) }i=1.... ;v and
{ni, V*Tyr (Bn;) biz1,... .~ at the same data knofsy;,--- ,nn} C I'. Find the 'epoch difference potential : T — Q
with D = Ty (R) — Tyn (R)

3 Green’s Theorems on (Normal) Regions of the Sphere

Throughout this paper we need a number of differential operators on the unit spher@? which are listed in Table 1
(see, e.g., [7] for more details).

Table 1 Differential operators

Symbol Differential Operator

Ve Gradient atr

A, =V, -V, Laplace operator at

Vi Surface gradient on the unit sphéet ¢

L =&NV§ Surface curl gradient on the unit sphélet¢
Ap=Vi-Vi=L;-L; Beltramioperator on the unit sphefeat{
Vi Surface divergence on the unit sph&rat¢
Lg- Surface curl on the unit sphefkeat £

It should be noted that the operatdvs, L*, and A* will be always used in a coordinate-free representation, thereby
avoiding any kind of singularities at the poles. Moreover, following the nomenclature of [7] we den®té liye surface
divergence off2 and byL*- the surface curl of2. Clearly,A* = V* - V* = L* . L*. Note that the operatolg*, L*, A*
show special features in certain situations (for more details the reader is referred to [7]). For exampie{ldte fixed.

If G'is of classC()[—1, 1] andG’ denotes its derivative, then we find

ViGE-n) = G'(E-nn—(E-ng), e, (3.1
LiG(E-m) = G'(EnEAn), e,

whereas folG € C(2)[—1,1]
ALG(E-n) = (VE-VOG(E-n) = =2(£-n)G' (&) + (1= (£-n)*)G"(E-n), €.

As an essential tool, for our considerations, we first introduce the definition and discuss some properties of Green’s
function with respect to the Beltrami operatat (see [4]).

Definition 3.1 A function G(A*;-,-) : (§,n) — G(A*;€,1n),&,n € Qwith —1 < £ -7 < 1, is calledGreen’s function
on Q) with respect to the operatdy*, if it satisfies the following properties:

1. (differential equation) For every poigt € €2, n — G(A*;¢,n) is twice continuously differentiable ofy) € Q :
—1<¢-n< 1}, and we have

1
4dn
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2. (characteristic singularity) For evegye (2, the function
N 1
= GA%En) — (1 =€)

is continuously differentiable of?.

3. (rotational symmetry) For all orthogonal transformations

G(A™; 1, tn) = G(A™; &, m).
4. (normalization) For every € (,
| e doto) =0,
Following [4, 5] the unigueness of Green’s function with respecitds guaranteed. In fact, the function

1 1 1

4 4w 4rw
is an explicit representation of Green’s function with respect to the Beltrami opekdtoin connection with (3.1) we
obtain

1 (€=(&-n)n)

VnG(A§f,77):_47T 1_§77 )

—1<¢ <. (3.2)

Next, we explain some geometrical assumptions imposed on subsets of the unit3uh&# under consideration in our
work.

Definition 3.2 Aregion, i.e., an open and connectedISet (2, is callednormalif the surface theorem of Gauss
[ Ve 1019 = [ ve- £(©do(e
r or

is valid for all continuously differentiable vector fielgsc ¢1)(Q), wheredT is the boundary curve df, v is the unit
surface field pointing normal t0" and o is the arc length alongI'. A normal regionl’ C  is calledregular, if its
boundarydI" has a continuously differentiable unit normal field OI' — R? pointing outward of’, i.e., intoQ\T.

By choosingf = FV*Q, F € C)(T),Q € C(T) in the surface theorem of Gauss we get Green’s surface identity
for the operatoi/*, viz.

/F (Vi) - V3Q00) + Fm)AQ) dt) = | Flnw, - 93000) do(r). (33)

Let the functionF : T — R be continuously differentiable arfde T be fixed. Applying Green’s surface identity foand
Green’s functiorG(A*; &, -) on the region{n € dT : |¢ — n| > ¢} we obtain for sufficiently smalt > 0

/s |>e,ner (VoE(m) - VaG(AT 6 m) + F(n)AG(A" €, m)) dw(n)
.

- / Fn)vy - ViG(A*:€,1) do(n) + / Fn)vy - ViG(A":€,1) do(n), (3.4)
|€—n|=¢,ner

|€—nl>e, neor

whereo denotes the arc length alordy” and{n € T : |¢ — n| = <}, while v is the unit surface vector normal to
{neTl:|§—nl=c}or{necdl :|¢—n|> e}, respectively. Using Property 1 of Definition 3.1 equation (3.4) can be
rewritten as follows

/ Vi) V3G € det) - - | F(u) do(n)
|¢—n|>e, ner T Jlg

—n|>e,nel’

- / F(n)vy - VEG(A; £,1) do(n) + / F(n)vy - V2G(A%E,m) do(n). (35)
[§—n|=¢,neT |E—n|>e,nedl



Next, we concentrate on the integral
L= | P, - V3G(A%:E.) da(y).
[€—n|=e,ner

For each point) € T with | — 5| = ¢, we have

_ &= mm
Uy = 7\/@ (3.6)

Hence, we find with (3.2)

L) =L (Y= En”

- do(n).
AT Jje—p|=e, ner L=¢&-n

Lettinge — 0 we obtain, in analogy to well-known results of potential theory (see e.g. [5, 17]),

lim Z.(§) = - =~

wherea(¢) is the solid angle subtendedé&t T'. This finally leads to the following integral formula.

Theorem 3.3 (Fundamental Theorem forV* on Normal Regions) LetI" be a normal region with boundar§T".
Suppose thaF is a continuously differentiable function @hi.e., F € C")(T). Then, for every poirg € , we have

a(§) 1

TR = 1= [ P dotn) = [ ViF)- V3G &) dot) + | Pl V3G Em) do(n).

T

Setting, particularlyF = 1 onT we immediately get from Theorem 3.3

a© =15k v [ v wicaismaotn, rl = [ . 37)

Clearly, in case of a regular region(¢) = 2x for all ¢ € T and«(§) = « for all £ € JT'. Furthermore, for the whole
sphere we have the following result (cf. [5, 7]).

Corollary 3.4 (Fundamental Theorem for V* on ©2) Suppose thaF is of classC'") (). Then, for every € Q,
1

T ar

F(€) /Q F(n) du(n) — /Q VEF(n) - VEG(A®: £, 1) duln).

4 Potential and Stream Functions

Let us consider a continuous spherical vector figlaf classc(?) (). For all¢é € Q we callé — f,0.(€) = (f(€) - €)¢ the
normal fieldof f, while& — fi4n(€) = f— fuor(£), is called thaangential fieldof f. Obviously,f(€) = fror(€)+ fian(€)
andfnor(g) : ftan (6) =0. Furthermore, fO[f,g € C(O)(Q) andf € Q! f(g) : g(f) = fIlOF (f) * Gnor (g) + ftan(g) : gtan(g)'

Lemma 4.1 The tangential field of vanishes, i.e.f;.n (&) = 0, £ € Q, if and only if f(€) - 7(¢) = 0 for every unit
vector? (&) that is perpendicular td, i.e., for which¢ - 7(£) = 0, £ € Q.

Proof. First, assumdi., = 0. Then for all§ € Q, we havef(§) - 7(£) = 0. Conversely, assume that the tangential
field is non-vanishing, i.e fi.n (&) = £(&) — (f(€) - £)¢ # 0. Then it follows thatfi., (€)] fian(€)| 7! is @ unit vector field
perpendicular t¢. Hence, by our hypothesigian (&) - fian(€)|ftan(€)|~F = 0. This implies| fian(€)| = 0 which is a
contradiction. Thus it follows thaf;.,,(¢) = 0, as required. O

Lemma 4.2 Suppose thaf is continuous on a simply connected normal redioa 2. Moreover, let

[ ve- (€ dote) =0
C

for every curveC onT'. Thenf.,(£) = 0forall £ € T, i.e., the tangential field of vanishes for alt € T".
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Proof. Choose any poirfy € I'. Letvg, be any unit vector satisfying, - £, = 0. Then there is a curw@onI" passing

through¢, whose unit normal vector &b is justvg,. Let Cfgb be any subset af containingéy. Then, in accordance with
our assumption,

L, v s dote =0

Hence, letting the length aﬁfgb tend to zero we findy, - f(§o) = 0. Lemma 4.1 then yields

Sran(&0) = f(&) — (f(&o) - £0)&o = 0. Sinceg, can be any point oft, we havefi., (&) = f(&) — (f (&) - £)¢ = 0 for all
& € T'. This is the desired result. O

The surface curl gradient acts like an ordinary gradieriRfrwhen we integrate it along lines dh In more detail,
supposé- is continuously differentiable in an open seffid containingl’, andC is any curve lying o, starting at, and
ending at;. Suppose that; is the unit normal vector gt onC pointing fromé, to &;. Then

F(&)) - F(&) = /c ve - LEF(€) do(€) @.1)

(observe that, - L F(€) = vg - LgF(g), £ €T, see, e.q.,[1, 7]). This result enables us to show the following lemma.

Lemma 4.3 Suppose thaF is a simply connected normal region. LEtbe of classC(M)(T), thenL;F(§) = 0 if and
only if F' is constant.

Proof. If LF(§) = 0, then we obtain, in connection with (4.15(£1) = F(§o) for any&p, & onT.
Conversely, ifF is constant, the identity (4.1) shows thjat= L* F fulfills

[ ve- ste aste) =0
for every curveC lying onI'. Consequently, following Lemma 4.2,.,(§) = 0 for all ¢ € I'. This shows thaf;., () =
F) = (f(&)- &= f(§) = LiF(§) = 0forall¢ e T, -

Next we prove the following result of spherical vector analysis (see, e.g., [1]).

Lemma 4.4 Let f € c¢(O)(I") be a tangent vector field on a simply connected redipne., f(£) = fuan(€),6 € T
Furthermore, suppose that

[ ve- @ dte) =0
for every closed curve on. Then there is a scalar fiel® onT" such that

f(&) =LeP(§), el
The fieldP is continuously differentiable and is unique up to a constant.
Proof. Take an arbitrary, but fixegh, € I". We let
§
P = [ w110 do(0),

be the integral along any curéethat starts af, € I" and ends af € I". Then, for any two point§y, ¢ onT" and any curve
C lying onT" and starting af, and ending af;,

&1
P(&) - P(&) = / v - £(0) do((). 4.2)

o
Observing (4.1) we find

&1
P(&)) - P(€o) = /E ve - LEP(C) do(0). @.3)



Combining (4.2) and (4.3) we obtain

&1
A re - (£(C) = LEP(Q)) dor(¢) =0

for any curveC onI'. Lemma 4.2, therefore, shows us tifét) — Ly P(£) = 0, £ € I'. The proof thatP is continuously
differentiable orl" is omitted. The easiest way to construct such a proof is to Fakenstant on each straight line passing
throughI' in the normal direction (see, e.g., [1]). In order to verify tlais unique up to a constant, we observe that
LiPi(§) = LiP>(§),§ € ', implies Lz (P — %) (§) = 0,£ €T, i.e., by virtue of Lemma 4.3P; — P = const. O

Now we are able to verify the following important theorem.

Theorem 4.5 Let f € ¢())(T") be a tangential field on a simply connected normal redipne., f(£) = fian (&) for all
§eTl.ThenL; - f(§) =0,€ €I, if and only if there is a scalar fiel@ such that

f(&) =VeP(E), €T,

and P is unique up to an additive constari s calledpotential functiorfor f).
Similarly, V¢ - f(§) = 0, £ € T, if and only if there is a scalar field such that

f(&) = LgS(€), el

and .S is unique up to an additive constarff (s calledstream functiorior f).

Proof. The conditionf = L* P impliesV* - f =0, andf = L*S impliesV* - f = 0.
Conversely, assume th&t; - f(§) = 0, £ € I'. Then the surface theorem of Gauss implies

[ ve-st€ dote) =0
C

for every closed curv€ onT". From Lemma 4.4 it follows that there exists a scalar fielsuch thatf = L* P. Furthermore,
P is unique up to an additive constant.

Finally, supposd.” - f = 0. ThenV¢ - (=§ A f(§)) = 0, € € T', hence, there is a scalar fief unique up to a constant,
suchthat A f(§) = LgS(€), € € T Thisis equivalentte-§ A (EA f(§)) = (=N LE)S(E), €T, orf=V*SonT.
This proves Theorem 4.5. O

From Lemma 4.3 we are immediately able to deduce the following statement.
Lemma 4.6 Let F' be of class”")(T), thenV F(¢) = 0 if and only if F is constant.

Proof. If ViF(£) = 0, we find ' =const.
Conversely, ifF" is constant, theV; F'(§) = 0 for all § € T'. This proves our assertion. O

5 The Differential Equations of the Surface Gradient
In what follows we give two conditions for the uniqueness of a solution for the differential equation (1.7) of the surface
gradientV*. First, based on the results of Chapter 3 we formulate a certain integrability condition to assure uniqueness.
Theorem 5.1 Givenf = V*F ¢ ¢(°)(Q). Then the scalar functioR is uniquely determined by the condition:

1
o F(n)dw(n) = Cy, CoeR.
T JQ
Proof. We suppose thaF;, F;, € C)(Q) are functions satisfying the condition above. Then the differdiice
Fy — F, satisfiesV*D = 0 onQ and L [, D(n)dw(n) = 0. Consequently, from Corollary 3.4, we obtdin¢) = 0 for
all £ € Q. Therefore Fy = F5, as required. O

Remark 5.2 Following the Pizetti-Somigliana approach the disturbing potefiti@-) is uniquely determined of2
from the deflections of the vertical by the conditinT'(Rn)dw(n) = 0.
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Theorem 5.3 LetI" C € be a simply connected normal region. Giver= V*F' € 9 (Q). Then the scalar functio”
is uniquely determined by the condition taken at one p&iret I

1
47 T

F(n)dw(n) + /ar F(nvy, - G(A™; &0, m)do(n) = Co, Co € R.

Proof. We look at the differenc® of two solutions which satisfie§*D = 0 in . By Lemma 4.6 we find(§) =
const = C for all ¢ € T. In connection with Theorem 3.3 we have

C (Il

g <2 + 27 /ar Vp - an(A ’50777)(10-(77)) =0.

Using (3.7) we, therefore, find = 0, i.e.,D = 0 onT, as required. O

Second, based on the results of Chapter 4, we are able to formulate a uniqueness condition by fixing a certain functional
value.

Theorem 5.4 Givenf = V*F € ¢(°)(Q). Then the scalar functiof is uniquely determined by the condition taken at
one point, €

F(&) =Co, CoeR.

Proof. The constant differencB of two functions satisfying the conditions is equall¥§éy) = Co —Cy = 0 = D(§)
forall ¢ € Q. O

Remark 5.5 The disturbing potentidl’(R-) on 2 is uniquely determined from the deflections of the vertical, if its value
is known at one point of .

Theorem 5.6 Suppose thaf" is a simply connected normal region. Givgn= V*F € ¢(°)(Q). Then the scalar
function I is uniquely determined by the condition taken at one pgint T':

F()=Co, Co€eR.
Proof. D is constant oi’ with D(&,) = 0. HenceD(&,) = 0in T. O

6 Regularized Green’s Theorems on (Normal) Regions on the Sphere

In the following we first introduce the regularized Green function with respeft'toWe state its definition together with
some properties which are needed for the discussion of spherical wavelets on regular regions.

Definition 6.1 Givenp € (0, 2), the regularized Green function with respectXb is defined for alk, € Q by

ﬁln(l—{m)—i—ﬁ—ﬁlnl 1—-¢-n>p,

Gp(A™ ¢ n) =
’ mp(I=&m)+ () — -2, 1-&-n<p.

The regularized Green function with respect to the Beltrami ope(dtoy) — G,(A*;§,n) only depends on the inner
product of¢ andr, hence, it is a radial basis function, i.€,(A*;t¢, tn) = G,(A*;&,n) holds true for all orthogonal
transformationg. Figure 2 gives an illustration of the regularized Green function with respedt*to Note that, by
construction, this kernel function represents an approximation of the original Green'’s function, i.e., it converges pointwise
to Green’s function ap tends ta0.

We immediately realize that the regularized Green function with respekt is continuously differentiable. Applying
the surface curl gradient* to the second variable yields to the so-caltedularized Green function with respect ¥o'.
Obviously, forp € (0,2), we obtain for alls, n € Q

: ! (5_(577)77)7 1_6'77>p7

v* * * 4w 1—¢-
g, (&) = VGo(A%5€,m) = o (6.1)
$ r (&= (E-n)n), 1-¢-n<p.
Observing the equatiod — (£ - n)n| = /1 — (£ - n)? we derive for allé, n € Q andp € (0, 2)
. 1 1+§'77’ 1—¢&-n>p,
95 <§,n>|={4; e S
mV1I=(Em?  1-&n<p
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original | |
—j=1
— 2
— =3

. . . . . .
-3 -2 -1 0 1 2 3

Fig. 2 The regularized Green functiah+— G,(A*;cos¥) for p = 1 — cos(7277) with j = 1,2, 3 and the original Green function
G,(A™; ¢ - n) with respect to the Beltrami operatdy™. Note thatf - n = cos ¢, 9 = L(€,n).

A graphical impression of the norm of the regularized Green function with resp&t smd the norm of the surface curl
gradient of Green’s function with respect A5" is illustrated in Figure 3. By similar arguments as known from potential
theory (see e.g. [17]) we obtain the following counterpart of the integral formula developed in Chapter 3.

1 T
original
0.9F — =1
— =2
0.8f ——j=8
0.7
0.6
0.5F
0.4F
0.3F
0.2
0.1fF
0
-3 -2 -1 0 1 2 3

Fig. 3 The norm of the regularized Green functién— |gpv* (cos(9))] for p = 1 — cos(m279) with j = 1,2,3 and the norm of the
surface curl gradient of Green'’s function with respeci\th

Theorem 6.2 For F € C)(Q) we have

lim sup
p=0¢eq

1 « N
F©) - 3= [ Fondeto) + [ 9" (€ T Flndutn)| =0.
T Ja Q
After deriving the regularized version of the integral theorem¥oron Q2 we now turn to the regularized integral

theorem forVV* on normal region§'. For that purpose we introduce the following settings.
Definition 6.3 LetT' C Q be a normal region of the unit sphe®e For F € C(1)(T') we let

8,(F)(€) = / oY (Em) - V3 F()deo(n) — /a g€ Fvdo(). pe (0.2),

as a counterpart of

S(F)(€) = / VIG(A5E,m) - Vi F(n)dw(n) — /8 V3G Em) - Flnjyda(n)
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Clearly, it is not hard to show that

lim sup S(F)(€) — S,(F)(€)] = 0. (62)

p=0¢eq

Theorem 6.4 (Regularized Integral Theorem forV* onT) LetF C 2 be a normal region with bounda@i". Suppose
that F' is a continuously differentiable function @hi.e., F € C(1)(T). Then

hm sup
Ueer

1
-3 [ Fodom + 5,(P)©)| -
wherea(¢) denotes, as usually, the solid angle subtendedat”.

7 Vector Spherical Wavelets on Normal Regions

We turn our attention to the introduction of vector spherical wavelets, wihere? is supposed to be a normal region. We
choose a sequence which divides the continuous scale inferglinto discrete pieces. More explicitlgp; ) jen, denotes
a sequence of real numbers satisfylig; ... p; = 0 andlim;_p; = 2. For example, we can chooge = 2'~7 or

= 1—cos(m277), j € Ny. The point of departure for our considerations on normal redivissTheorem 6.4 in the form

%?F(S) Fpean = = i S, (F)(©), Frean = 7 | F(nyd(n), ¢eT. (7.1)

Note that the discrete steps in this approximation process are caiies i.e., the valuej takes the role of the scale
parameter, i.e., the parameter to model out more and more local features. By using discrete regularization parameters wi
are naturally led to the following type of scale discretized Green wavelets.

Definition 7.1 Let {gpvj*}jeNU be the regularized Green function with respecito (see (6.1)). Then the scale dis-
cretized regularized Green wavelet function with respe&t tas defined by

Yoy = Gy =0, = Vil (A%6m) = ViGy (A%56,m), j € No. (7.2)
In fact, the difference of two consecutive scales of regularized Green functions with respeatdads
Gﬂj+1 (A* 57 ) P7 (A* f, )

D R SN S RO W S S St
= T p;
(477/)1j+1 47rpj>( —&n)+ 4ﬂ(ln(pj+1)_ln(l)j))a 1-&-n <pjs,
such that
0, 1—=¢&m > pj,
bp,(Em) =gy, (&n) — gy (&) = ﬁ(é—lfg.,,)(f—(é-n)n), pi> 1—&-m > iy,
ﬁ(p%—,)jﬂl)(ﬁ—(f-n)n)? 1-&-n <pjnr

A graph of the norm of the scale discretized regularized Green wavelet function with resfécfdothe discretization
parameterg = 1 — cos(7277) with j = 0,1, 2, 3 is shown in Figure 4. Note, that the functiops, have a local support.
S,, (F)(&), as given by Definition 6.3, is called tiseale discrete regularized Green scaling function transfaith respect
to V*. Let {¢,,}en, be the scale discretized regularized Green function with respeGt'to The scale discretized
regularized Green wavelet transform with respecttois defined by

W, (F)(€) = / V(1) - b, (€, n)dw(n) — /@ Ewwy -t (€ ().

We arrive at the following theorem, that is of basic interest for our computation.
Theorem 7.2 Let {gZ* }jen, be the regularized Green function with respecitd. Then the multiscale reconstruction
of a functionF € O (T') is given by

%F(&) mean - Z WPJ 7 § € F’

j=0

where the equality holds in tHe- ) -sense.



13

0.7

T
scale0
scalel
scale2 |
scale3

0.6
||

0.5

0.4

0.3f

0.2

0.1}

Fig. 4 The norm of the regularized Green wavelet functibr- |, (cos(19))| with respect tov* for p = 1 — cos(72~7) with scale
j=0,1,2,3.

By observing the definition of the scaling transfofiy) (F) (&), Theorem 7.2 admits the following reformulation.
Corollary 7.3 Under the assumptions of Theorem 7.2

o(€)
o

(€) = Frnean + S5, (F)(€) = - Z Wy, (F)(), €€,

j=J

for everyJ € Ny inthe|| - || ) -sense.

These reconstruction formula will now be applied to the modelling of oceanic circulation.

8 Multiscale Modelling of the Disturbing Potential From Deflections of the Vertical

Our considerations have shown that the disturbing potefiti&) € C(*)(Q2) can be uniquely determined éhfrom the
deflections of the vertica ¢ ¢(*)() in terms of the integral formula.

kM . .
7R = S5 [ GG O(Rn) dota), €<,
In addition,T'(R-) can be approximated as follows

kM
T(RE) = lim 5 [ V36, (A%€n) - O(Rn) dutn), € < 0
Q

J—0

For numerical purposes it suffices to have an (in the sense of Weyl) equidistributed nofial 6¢€t),)), n; € Q,
i=1,---, N, todiscretize the integral on the right hand side and to establish a multiscale approximation of the geopoten-
tial T(R-) on (2. But - as already mentioned - what is lacking are data on the whole sfihere

Consequently, we are often confronted with the problem of determining the disturbing pofe(itial on a certain
subdomair of 2 (e.g., caps, squares or rectangles), where suitable discrete data information about the deflections of the
vertical is available. When we are interested in solving that problem numerically from discrete data our approach shows
that we have to know, in addition, the disturbing poterifiaR-) of the boundaryT".

Q\I

Even more, our numerical calculation based on discrete data is only unique up to a cofistant —Tmean (confer
the considerations given in Chapter 5):

W ~ Thnn = i [ i1 g5 (€t - [

! | TR0}, o5 (€ )do(n)).
™ J—00 or
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8.1 Multiscale Solution of the Potential Problem

In what follows, particular attention is paid to the numerical stability caused by the specific observation of the boundary
terms in our numerical calculation. We consider a sphericalcae., a (special) regular region as a reference area.
The spherical cap under consideration is defined by its céntef2 and its radius- > 0, more precisely we let

L) ={neQ:[¢—n <r}
In this case the normal unit vectoy, is explicitly given for alln € oT',.(¢) by (3.6). Substituting the tangential unit vector

in the equations above we obtain

O r(rey 172, = — lim ( / o T 0 ) )

o joo
9y (&) - (¢ —(C-mn)
z do .
" /em(o f(n) 1—(¢-n)? W)

In more detail, the region of interest in our first example is a spherical’'ggpvhere30° denotes the apex angle of the

cap. Furthermore, we assume that the vertical deflection measurements are not continuously given, but on an equiangule
longitude-latitude grid with a step size @fl2°. The potentiall'(R-) is prescribed at a finite set of boundary points that are
sampled with an angular distance(®f051°. Both data sets have been generated from the EGM96 up to d&tjrésee

Lemoine et al(1998)).
Figure 5 illustrates the disturbing potential which is used to calculate the input dataset for our numerical tests below, i.e.,

the deflections of the vertical are obtained from EGM96, they are shown in Figure 5. Since we are especially interested in
boundary effects, we always plot the spherical cap together with its surrounding environment.

b

o 0T Ly TONS AR ,.\'\\-"\

f/ff;\f',r\\

Fig. 5 Plot of the geopotential in?;](left), which is used to calculate the input dataset, i.e., the deflections of the vertical (righf). in[

For the modelling of the disturbing potential EGM96 from its deflections of the vertical in the particularly interesting
area of South America we have to discretize the scale intébya). In our computations we let; = 2'~7. In Figure 6 the
wavelet decomposition for the scale 8 to 12 is illustrated graphically. At first sight the approximated disturbing potential is
close to the original potential inside the spherical cap even for a moderately small scale pajawlateeas the potential at
a certain strip around the boundary shows essentially larger error effects. However, it should be noted, that (i) the boundary
errors and the diameter of the strip become smaller for increasing scale parameters and (ii) any kind of phenomena of
oscillation for the approximated potential outside the boundary strip can be avoided. In other words, by taking into account
additional potential values on the boundary of the domain under consideration (in our case thi# giyc&the capl'sy) a
stabilizing process can be detected within the multiscale reconstruction, where the stabilization correlates to the scale leve

to be realized in the numerical computation.
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Fig. 6 Wavelet reconstruction of the geopotentialisﬁg[l on the spherical caPso at certain scales using the scale discretized regularized
Green function.
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8.2 Multiscale Solution of the Epoch Problem

A significant application of our multiscale technique the detection of (artificial) disturbances of the potential within a local
area of geophysical interest. For the difference potentibefore and after the perturbation we have

U D) - DY = 1 [ V300) - 95 (€ 1) dol).
™ j—oo Jr

The problem is to characterize certain geophysical features (like mass pole perturbations) by their (scale-dependent) spac
evolution detected in the wavelet coefficients. To be more concrete, we take the dataset of deflections of the vertical from
EGMO96 (up to degree 200) and disturbed the data artificially by several unit mass points in a depth of 50km up to 120km.
Figure 7 give a graphical illustration of the disturbed dataset. In detail, we positioned 6 mass points along a (linear) curve in
the Pacific Ocean at depth 50km (for the point in the North) up to a depth 100km (for the point in the South). Furthermore,
we put two irregularities by buried mass points over land (at depth 70km and 120km, respectively).

Again, the discrete scalgs = 2!~/ have been chosen to get a detailed information by the wavelet spaces to prepare
out the disturbances. In Figure 8 the wavelet decomposition of the disturbed EGM96-potential is shown. The positions of
the disturbances can be easily detected in the difference plot between Figure 8 and Figure 6. The difference is illustrated ir
Figure 9.

When looking at the differences caused by the eight buried mass points we are confronted with the following situation:
The height of the "bumb” in the error plot corresponds to the depth of the mass points: the smaller the depth the larger the
maximum of the gravitational perturbation for the different scales. Figure 10 illustrates this phenomenon in dependence
of the scale. Even more, the diameter of the "bumb”, i.e., the horizontal distance between maximal and minimal value
of the gravitational perturbation is of larger value, the deeper the point is situated. With increasing scale the diameter is
decreasing in (horizontal) size (see Figure 11). Furthermore, we notice a clear difference in the diameter for comparable
mass point perturbations on continent and ocean. In other words, there is a correlation between the gravitational effect of
the perturbations and the density distribution inside the Earth.

Altogether, the multiscale solution realized for the epoch problem involving disturbances by buried mass points offers
a palette of mathematical indicators to specify the location and to classify the depth of the gravitational perturbation. A
more careful and detailed multiscale investigation of even more complicated gravitational perturbations (e.g., inner line and
surface disturbances) based on locally supported outer wavelets is certainly a great challenge for future work.

S NAN e

vt bet P

N\.\\\\\’ '
ri e :

‘,‘//‘/_

VSt
,r/,,’\

Fig. 7 Plot of the geopotential infg] (left) and the vertical deflection inZg] (right) of EGM96 disturbed by buried mass points.
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