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Abstract: As a first approximation the Earth is a sphere; as a second approximation it may be considered an ellipsoid of
revolution. The deviations of the actual Earth’s gravity field from the ellipsoidal ’normal’ field are so small that they can
be understood to be linear. The splitting of the Earth’s gravity field into a ’normal’ and a remaining small ’disturbing’ field
considerably simplifies the problem of its determination.

Under the assumption of an ellipsoidal Earth model high observational accuracy is achievable only if the deviation
(deflection of the vertical) of the physical plumb line, to which measurements refer, from the ellipsoidal normal is not
ignored. Hence, the determination of the disturbing potential from known deflections of the vertical is a central problem
of physical geodesy.

In this paper we propose a new, well-promising method for modelling the disturbing potential locally from the deflec-
tions of the vertical. Essential tools are integral formulae on the sphere based on Green’s function of the Beltrami operator.
The determination of the disturbing potential from deflections of the vertical is formulated as a multiscale procedure in-
volving scale-dependent regularized versions of the surface gradient of the Green function. The modelling process is based
on a multiscale framework by use of locally supported surface-curl-free vector wavelets.

1 Physical Background

The purpose in this introductory chapter is to present the fundamentals of gravity field determination, including the relations
between the deflections of the vertical and the Earth’s disturbing potential. Our intend is to explain the astrogeodetic
method of determining both the disturbing potential and the geoidal undulation from deflections of the vertical, avoiding
long derivations. Recently, an ellipsoidal reflected approach to gravity field modelling is given by E.W. Grafarend et al.
(2006) in physical geodesy (see also references therein). In our approach however we restrict ourselves to the classical
spherical approach. For more details the reader is referred to any textbook on classical physical geodesy (e.g., Grafarent et
al.(2001,2006), Groten (1979), Heiskanen and Moritz (1967), Torge (1991)).

The gravity potentialW of the Earth is the sum of thegravitational potentialV and thecentrifugal potentialΦ, i.e.,
W = V +Φ. In an Earth’s fixed coordinate system the centrifugal potentialΦ is explicitly known. Hence, the determination
of equipotential surfaces of the potentialW is strongly related to the knowledge of the potentialV . Thegravity vectorg
given byg(x) = ∇xW (x), where the pointx ∈ R3 is located outside and on a sphere around the origin with Earth’s mean
radiusR, is normal to the equipotential surface passing through the same point (for the definition of the mean Earth’s radius
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R see, e.g., Groten (1979), Hofmann-Wellenhof and Moritz (2005), Torge (1991)). Thus, equipotential surfaces intuitively
express the notion of tangential surfaces, as they are normal to the plumb lines given by the direction of the gravity vector.

Equipotential surfaces of the gravity potential allow in general no simple representation. This is the reason why a
reference surface, usually an ellipsoid of revolution, is chosen for the (approximate) construction of the geoid. As a matter
of fact, the deviations of the gravity field of the Earth from the normal field of such an ellipsoid are small by typically
five orders of magnitude. The remaining parts of the gravity field are gathered in a so-called disturbing gravity field,∇T ,
corresponding to the disturbing potentialT .

The aim of physical geodesy can, therefore, be seen as the determination of equipotential surfaces of the Earth’s
gravity field or, equivalently, the determination of the gravity potentialW normally (via a linearisation process) involving
the disturbing potentialT . Knowing the gravity potential, all equipotential surfaces – including the geoid – are given by
an equation of the formW (x) = const. By introducingU as the normal gravity potential corresponding to the ellipsoidal
field andT as the disturbing potential (in the usual Pizetti-Somigliana concept (cf. Pizzetti (1910) )) we are led to a
decomposition of the gravity potential in the formW = U + T where the zero- and first–order moments ofT in terms of
spherical harmonics vanish (for details see, e.g., Heiskanen and Moritz (1967)).

A point x on the geoid can be projected onto a pointy on the reference ellipsoid by means of the ellipsoidal normal.
Thegravity anomaly vectoris defined as the difference between the gravity vectorg(x) and the normal gravity vectorγ(y),
γ = ∇U , i.e., g(x) − γ(y). It is also possible to difference the vectorsg andγ at the same pointx to get thegravity
disturbance vectorg(x)− γ(x) (see Fig. 1).

geoid

W=const

reference

ellipsoid

y

x

g(x)

((y)

Fig. 1 Illustration of the definition of the gravity anomaly vectorg(x)− γ(y)

There are known several basic mathematical relations between the quantities just mentioned. We only illustrate
heuristically the relation of the deflections of the vertical to the surface gradient of the disturbing potential (in spherical
approximation). We start by observing that the gravity disturbance vector at the pointx can be written as

g(x)− γ(x) = ∇x(W (x)− U(x)) = ∇xT (x).

Expanding the potentialU atx according to Taylor’s theorem and truncating the series at the linear term we get (see Fig. 1)

U(x) .= U(y) +
∂U

∂ν′
(y)N(x).

Here,ν′(y) is the ellipsoidal normal aty, i.e.,ν′(y) = −γ(y)/|γ(y)|. The geoid undulationN(x), as indicated in Fig. 1, is
the distance betweenx andy, i.e., between the geoid and the reference ellipsoid. Using

|γ(y)| = −ν′(y) · γ(y) = −ν′(y) · ∇yU(y) = −∂U

∂ν′
(y)

we arrive at the identity

N(x) =
T (x)− (W (x)− U(y))

|γ(y)| .
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LettingU(y) = W (x) = const = W0 (see, e.g. Torge (1991), Eq. (5.38)) we obtain Brun’s formula (cf. Bruns (1878))

N(x) =
T (x)
|γ(y)| . (1.1)

The last formula (1.1) relates the physical quantityT to the geometric quantityN .

Lettingν(x) = −g(x)/|g(x)| we find

g(x) = ∇xW (x) = −|g(x)|ν(x). (1.2)

Furthermore, we have

γ(x) = ∇xU(x) = −|γ(x)|ν′(x).

Now, thedeflection of the verticalΘ(x) at the pointx is defined to be the angular (i.e., tangential) difference between the
directionsν(x) andν′(x), i.e., the plumb line and the ellipsoidal normal through the same point:

Θ(x) = ν(x)− ν′(x)− ((ν(x)− ν′(x)) · ν′(x)) ν′(x). (1.3)

Clearly, because of its definition (1.3),Θ(x) is orthogonal toν′(x):

Θ(x) · ν′(x) = 0.

Since the plumb lines are orthogonal to the level surfaces of the geoid and the ellipsoid, respectively, the deflections of the
vertical give briefly spoken a measure of the gradient of the level surfaces. This aspect will be described in more detail
below: From (1.2) we obtain, in conncetion with (1.3),

g(x) = ∇xW (x)
= −|g(x)| (Θ(x) + ν′(x) + ((ν(x)− ν′(x)) · ν′(x))ν′(x)) .

Altogether we get for the gravity disturbance vector

g(x)− γ(x) = ∇xT (x) (1.4)

= −|g(x)| (Θ(x) + ((ν(x)− ν′(x)) · ν′(x)) ν′(x))
− (|g(x)| − |γ(x)|) ν′(x).

The magnitude|g(x)| − |γ(x)| is called thegravity disturbance. Since the vectorν(x) − ν′(x) is (almost) orthogonal to
ν′(x), it can be neglected in (1.4). Hence, it follows that

g(x)− γ(x) = ∇xT (x) (1.5)
.= −|g(x)|Θ(x)− (|g(x)| − |γ(x)|) ν′(x).

In spherical approximation

x = Rξ, R = |x|, |ξ| = 1 (1.6)

the gradient∇xT (x) can be split into a normal part (pointing into the direction ofξ = ν′(x)) and an angular (tangential)
part (characterized by the surface gradient∇∗) (see, e.g., Freeden et al. (1998) for more details on∇∗). It follows that

∇xT (x)

=
(

∂T

∂r
(rξ)

∣∣∣∣
r=R

)
ξ +

1
R
∇∗ξT (Rξ)

=
∂T

∂ν′
(x)ν′(x) +

1
R
∇∗ξT (Rξ).

By comparison of (1.5) and (1.7) we therefore obtain

|g(x)| − |γ(x)| = − ∂T

∂ν′
(x),

i.e., the gravity disturbance, beside being the difference in magnitude of the actual and the normal gravity vector, is also the
normal component of the gravity disturbance vector.
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In addition, we are led to the angular, i.e., (tangential) differential equation

1
R
∇∗ξT (Rξ) = −|g(x)|Θ(Rξ).

Without loss of precision−|g(x)| can be replaced by−|γ(x)|. In spherical approximation (with|γ(x)| = kM/R2, see,
e.g., Heiskanen and Moritz (1966)) this gives us

∇∗ξT (Rξ) = −kM

R
Θ(Rξ), ξ ∈ Ω,

wherek is the gravitational constant andM is the constant of the mass. By virtue of the Brun’s formula we finally find

kM

R2
∇∗ξN(Rξ) = −kM

R
Θ(Rξ), ξ ∈ Ω,

i.e.,

∇∗ξN(Rξ) = −RΘ(Rξ), ξ ∈ Ω. (1.7)

In other words, the knowledge of the geoid undulations allows the determination of the deflections of the vertical by taking
the surface gradient on the unit sphere.

In physical geodesy (see e.g., Groten (1981), Hofmann-Wellenhof and Moritz (2005), Rummel (1992), Torge (1991)),
the deflection of the vertical, which is a (tangential) vector field, is usually decomposed into mutually perpendicular scalar
components. Conventionally, their representation is given in terms of Stokes function (cf. Stokes (1849))

In fact, there are various distinctions in the introduction of the deflections of the vertical (see, e.g., Featherstone and
Rüger (2000), Grafarend (2001, 2006), Jekeli (1999), Torge (1991)).

2 The Problem

In what follows we understandT (R·) andΘ(R·) as functions defined on the unit sphereΩ. In other wordsT (R·) and
∇∗T (R·) = Θ(R·) are assumed to be of classC(1)(Ω) andc(0)(Ω), respectively.
The disturbing potentialT (R·) is conventionally represented on the whole Earth’s surface, i.e. on the (unit) sphereΩ, by
a Fourier (orthogonal) expansion in terms of spherical harmonicsYn,j (see, e.g., Hofmann-Wellendorf and Moritz (2005),
Torge (1991)) thereby assuming (in accordance with the Pizetti-Somigliana concept)

(i) that the center of the reference ellipsoid coincides with the center of gravity of the Earth,

(ii) that the difference of the mass of the Earth and the mass of the ellipsoid is zero.

In other words we are confronted with the following (astrogeodetic) problem: Given the deflectionsΘ of the vertical on the
unit sphereΩ ⊂ R3. Find the disturbing potentialT (R·) : Ω → R satisfying

∇∗T (Rξ) = −kM

R
Θ(Rξ), ξ ∈ Ω

and

(i)
∫

Ω

T (Rη)Y0,1(η)dω(η) =
1√
4π

∫

Ω

T (Rη)dω(η) = 0

(ii)
∫

Ω

T (Rη)Y1,j(η)dω(η) = 0, j = 1, 2, 3.

(dω denotes the surface element). The theory of this problem was known even before the satellite era. As a matter of fact,
the series expansion ofT (R·)

T (R·) =
∞∑

n=2

∫

Ω

T (Rη)Yn,j(η)dω(η)Yn,j

leads to an orthogonal series expansion of the deflections of the verticalΘ in terms of surface curl free vector spherical
harmonics∇∗Yn,j on the whole spherical EarthΩ:

−kM

R
Θ(Rξ) =

∞∑
n=2

∫

Ω

T (Rη)Yn,j(η)dω(η)∇∗Yn,j .
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But what is lacking are data globally distributed overΩ. Hence, the classical approaches and many others attempt to give
global models ofT (R·) and ignore the local availability of the data. Even more, the vector types∇∗Yn,j of polynomial
functions are far from being suitable for local purposes, since the constituting ingredients of spherical harmonics show
certain phenomena of (global) periodicity at least when the classical basis system involving associated Legendre functions
is used. Moreover, singularities at the poles occur when polar coordinates come into play. Furthermore, boundary effects
like the Gibbs phenomenon along the local area, where the data are given, are not avoidable by use of spherical harmonics,
i.e., by use of non-spacelocalizing polynomials. In consequence it is really required in geoscientific practice to develop a
new approach to the classical (astrogeodetic) problem of determining the potentialT (R·) from deflections of the vertical
thereby using specific spacelocalizing (trial) kernel vector functions for local applications.

In this paper we are concerned with the following local (discrete) variants of the astrogeodetic method on physical
geodesy of determining the disturbing potentialT (R·) from deflectionsΘ of the vertical on a so-called normal subregion
Γ of the EarthΩ.

(1) The potential problem: Let the vector deflections of the vertical be known for a finite subset of points{η1, · · · , ηN}
on Γ. Assume, further, that the (scalar) disturbing potentialT (R·) is known for a set{η̃1, · · · , η̃N} on the boundary∂Γ
of Γ. Find an approximation ofT (R·) from the discrete data{ηi,∇∗T (Rηi)}i=1,··· ,N and{η̃i, T (Rη̃i)}i=1,··· ,Ñ on the

domainΓ = Γ ∪ ∂Γ.
(2) The epoch problem:Given two datasets for different time epochs, namely{ηi,∇∗Tt′(Rηi)}i=1,··· ,N and

{ηi,∇∗Tt′′(Rηi)}i=1,··· ,N at the same data knots{η1, · · · , ηN} ⊂ Γ. Find the ’epoch difference potential’D : Γ → Ω
with D = Tt′(R·)− Tt′′(R·).

3 Green’s Theorems on (Normal) Regions of the Sphere

Throughout this paper we need a number of differential operators on the unit sphereΩ ⊂ R3 which are listed in Table 1
(see, e.g., [7] for more details).

Table 1 Differential operators

Symbol Differential Operator
∇x Gradient atx
∆x = ∇x · ∇x Laplace operator atx
∇∗ξ Surface gradient on the unit sphereΩ at ξ
L∗ξ = ξ ∧∇∗ξ Surface curl gradient on the unit sphereΩ at ξ
∆∗

ξ = ∇∗ξ · ∇∗ξ = L∗ξ · L∗ξ Beltrami operator on the unit sphereΩ at ξ
∇∗ξ · Surface divergence on the unit sphereΩ at ξ
L∗ξ · Surface curl on the unit sphereΩ at ξ

It should be noted that the operators∇∗, L∗, and∆∗ will be always used in a coordinate-free representation, thereby
avoiding any kind of singularities at the poles. Moreover, following the nomenclature of [7] we denote by∇∗· the surface
divergence onΩ and byL∗· the surface curl onΩ. Clearly,∆∗ = ∇∗ · ∇∗ = L∗ · L∗. Note that the operators∇∗, L∗, ∆∗

show special features in certain situations (for more details the reader is referred to [7]). For example, letη ∈ Ω be fixed.
If G is of classC(1)[−1, 1] andG′ denotes its derivative, then we find

∇∗ξG(ξ · η) = G′(ξ · η)(η − (ξ · η)ξ), ξ ∈ Ω, (3.1)

L∗ξG(ξ · η) = G′(ξ · η)(ξ ∧ η), ξ ∈ Ω,

whereas forG ∈ C(2)[−1, 1]

∆∗
ξG(ξ · η) = (∇∗ξ · ∇∗ξ)G(ξ · η) = −2(ξ · η)G′(ξ · η) + (1− (ξ · η)2)G′′(ξ · η), ξ ∈ Ω.

As an essential tool, for our considerations, we first introduce the definition and discuss some properties of Green’s
function with respect to the Beltrami operator∆∗ (see [4]).

Definition 3.1 A functionG(∆∗; ·, ·) : (ξ, η) 7→ G(∆∗; ξ, η), ξ, η ∈ Ω with −1 ≤ ξ · η < 1, is calledGreen’s function
onΩ with respect to the operator∆∗, if it satisfies the following properties:

1. (differential equation) For every pointξ ∈ Ω, η 7→ G(∆∗; ξ, η) is twice continuously differentiable on{η ∈ Ω :
−1 ≤ ξ · η < 1}, and we have

∆∗
ηG(∆∗; ξ, η) = − 1

4π
, −1 ≤ ξ · η < 1.
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2. (characteristic singularity) For everyξ ∈ Ω, the function

η 7→ G(∆∗; ξ, η)− 1
4π

ln(1− ξ · η)

is continuously differentiable onΩ.

3. (rotational symmetry) For all orthogonal transformationst

G(∆∗; tξ, tη) = G(∆∗; ξ, η).

4. (normalization) For everyξ ∈ Ω,
∫

Ω

G(∆∗; ξ, η) dω(η) = 0.

Following [4, 5] the uniqueness of Green’s function with respect to∆∗ is guaranteed. In fact, the function

G(∆∗; ξ, η) =
1
4π

ln(1− ξ · η) +
1
4π

− 1
4π

ln 2, −1 ≤ ξ · η < 1,

is an explicit representation of Green’s function with respect to the Beltrami operator∆∗. In connection with (3.1) we
obtain

∇∗ηG(∆∗; ξ, η) = − 1
4π

(ξ − (ξ · η)η)
1− ξ · η , −1 ≤ ξ · η < 1. (3.2)

Next, we explain some geometrical assumptions imposed on subsets of the unit sphereΩ ⊂ R3 under consideration in our
work.

Definition 3.2 A region, i.e., an open and connected setΓ ⊂ Ω, is callednormal if the surface theorem of Gauss
∫

Γ

∇∗ξ · f(ξ)dω(ξ) =
∫

∂Γ

νξ · f(ξ)dσ(ξ)

is valid for all continuously differentiable vector fieldsf ∈ c(1)(Ω), where∂Γ is the boundary curve ofΓ, ν is the unit
surface field pointing normal to∂Γ andσ is the arc length along∂Γ. A normal regionΓ ⊂ Ω is calledregular, if its
boundary∂Γ has a continuously differentiable unit normal fieldν : ∂Γ → R3 pointing outward ofΓ, i.e., intoΩ\Γ.

By choosingf = F∇∗Q,F ∈ C(1)(Γ), Q ∈ C(2)(Γ) in the surface theorem of Gauss we get Green’s surface identity
for the operator∇∗, viz.

∫

Γ

(∇∗ηF (η) · ∇∗ηQ(η) + F (η)∆∗
ηQ(η)

)
dω(η) =

∫

∂Γ

F (η)νη · ∇∗ηQ(η) dσ(η). (3.3)

Let the functionF : Γ → R be continuously differentiable andξ ∈ Γ be fixed. Applying Green’s surface identity toF and
Green’s functionG(∆∗; ξ, ·) on the region{η ∈ ∂Γ : |ξ − η| ≥ ε} we obtain for sufficiently smallε > 0

∫

|ξ−η|≥ε, η∈Γ

(∇∗ηF (η) · ∇∗ηG(∆∗; ξ, η) + F (η)∆∗
ηG(∆∗; ξ, η)

)
dω(η)

=
∫

|ξ−η|=ε, η∈Γ

F (η)νη · ∇∗ηG(∆∗; ξ, η) dσ(η) +
∫

|ξ−η|≥ε, η∈∂Γ

F (η)νη · ∇∗ηG(∆∗; ξ, η) dσ(η), (3.4)

whereσ denotes the arc length along∂Γ and {η ∈ Γ : |ξ − η| = ε}, while ν is the unit surface vector normal to
{η ∈ Γ : |ξ − η| = ε} or {η ∈ ∂Γ : |ξ − η| ≥ ε}, respectively. Using Property 1 of Definition 3.1 equation (3.4) can be
rewritten as follows

∫

|ξ−η|≥ε, η∈Γ

∇∗ηF (η) · ∇∗ηG(∆∗; ξ, η) dω(η)− 1
4π

∫

|ξ−η|≥ε, η∈Γ

F (η) dω(η)

=
∫

|ξ−η|=ε, η∈Γ

F (η)νη · ∇∗ηG(∆∗; ξ, η) dσ(η) +
∫

|ξ−η|≥ε, η∈∂Γ

F (η)νη · ∇∗ηG(∆∗; ξ, η) dσ(η). (3.5)
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Next, we concentrate on the integral

Iε(ξ) =
∫

|ξ−η|=ε, η∈Γ

F (η)νη · ∇∗ηG(∆∗; ξ, η) dσ(η).

For each pointη ∈ Γ with |ξ − η| = ε, we have

νη = − ξ − (ξ · η)η√
1− (ξ · η)2

. (3.6)

Hence, we find with (3.2)

Iε(ξ) = − 1
4π

∫

|ξ−η|=ε, η∈Γ

F (η)

√
1− (ξ · η)2

1− ξ · η dσ(η).

Lettingε → 0 we obtain, in analogy to well-known results of potential theory (see e.g. [5, 17]),

lim
ε→0

Iε(ξ) = −α(ξ)
2π

F (ξ),

whereα(ξ) is the solid angle subtended atξ ∈ Γ. This finally leads to the following integral formula.

Theorem 3.3 (Fundamental Theorem for∇∗ on Normal Regions) Let Γ be a normal region with boundary∂Γ.
Suppose thatF is a continuously differentiable function onΓ, i.e.,F ∈ C(1)(Γ). Then, for every pointξ ∈ Ω, we have

α(ξ)
2π

F (ξ) =
1
4π

∫

Γ

F (η) dω(η)−
∫

Γ

∇∗ηF (η) ·∇∗ηG(∆∗; ξ, η) dω(η)+
∫

∂Γ

F (η)νη ·∇∗ηG(∆∗; ξ, η) dσ(η).

Setting, particularly,F = 1 onΓ we immediately get from Theorem 3.3

α(ξ) =
‖Γ‖
2

+ 2π

∫

∂Γ

νη · ∇∗ηG(∆∗; ξ, η)dσ(η), ‖Γ‖ =
∫

Γ

dω. (3.7)

Clearly, in case of a regular region,α(ξ) = 2π for all ξ ∈ Γ andα(ξ) = π for all ξ ∈ ∂Γ. Furthermore, for the whole
sphereΩ we have the following result (cf. [5, 7]).

Corollary 3.4 (Fundamental Theorem for∇∗ on Ω) Suppose thatF is of classC(1)(Ω). Then, for everyξ ∈ Ω,

F (ξ) =
1
4π

∫

Ω

F (η) dω(η)−
∫

Ω

∇∗ηF (η) · ∇∗ηG(∆∗; ξ, η) dω(η).

4 Potential and Stream Functions

Let us consider a continuous spherical vector fieldf of classc(0)(Ω). For allξ ∈ Ω we callξ → fnor(ξ) = (f(ξ) · ξ)ξ the
normal fieldof f , whileξ → ftan(ξ) = f−fnor(ξ), is called thetangential fieldof f . Obviously,f(ξ) = fnor(ξ)+ftan(ξ)
andfnor(ξ) · ftan(ξ) = 0. Furthermore, forf, g ∈ c(0)(Ω) andξ ∈ Ω, f(ξ) · g(ξ) = fnor(ξ) · gnor(ξ) + ftan(ξ) · gtan(ξ).

Lemma 4.1 The tangential field off vanishes, i.e.,ftan(ξ) = 0, ξ ∈ Ω, if and only iff(ξ) · τ̂(ξ) = 0 for every unit
vectorτ̂(ξ) that is perpendicular toξ, i.e., for whichξ · τ̂(ξ) = 0, ξ ∈ Ω.

P r o o f. First, assumeftan = 0. Then for allξ ∈ Ω, we havef(ξ) · τ̂(ξ) = 0. Conversely, assume that the tangential
field is non-vanishing, i.e.,ftan(ξ) = f(ξ)− (f(ξ) · ξ)ξ 6= 0. Then it follows thatftan(ξ)|ftan(ξ)|−1 is a unit vector field
perpendicular toξ. Hence, by our hypothesis,ftan(ξ) · ftan(ξ)|ftan(ξ)|−1 = 0. This implies|ftan(ξ)| = 0 which is a
contradiction. Thus it follows thatftan(ξ) = 0, as required.

Lemma 4.2 Suppose thatf is continuous on a simply connected normal regionΓ ⊂ Ω. Moreover, let
∫

C
νξ · f(ξ) dσ(ξ) = 0

for every curveC onΓ. Thenftan(ξ) = 0 for all ξ ∈ Γ, i.e., the tangential field off vanishes for allξ ∈ Γ.
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P r o o f. Choose any pointξ0 ∈ Γ. Letνξ0 be any unit vector satisfyingνξ0 ·ξ0 = 0. Then there is a curveC onΓ passing
throughξ0 whose unit normal vector atξ0 is justνξ0 . Let Cξ0

sub be any subset ofC containingξ0. Then, in accordance with
our assumption,

∫

Cξ0
sub

νξ · f(ξ) dσ(ξ) = 0.

Hence, letting the length ofCξ0
sub tend to zero we findνξ0 · f(ξ0) = 0. Lemma 4.1 then yields

ftan(ξ0) = f(ξ0)− (f(ξ0) · ξ0)ξ0 = 0. Sinceξ0 can be any point onΓ, we haveftan(ξ) = f(ξ)− (f(ξ) · ξ)ξ = 0 for all
ξ ∈ Γ. This is the desired result.

The surface curl gradient acts like an ordinary gradient inR3 when we integrate it along lines onΓ. In more detail,
supposeF is continuously differentiable in an open set inR3 containingΓ, andC is any curve lying onΓ, starting atξ0 and
ending atξ1. Suppose thatνξ is the unit normal vector atξ onC pointing fromξ0 to ξ1. Then

F (ξ1)− F (ξ0) =
∫

C
νξ · L∗ξF (ξ) dσ(ξ) (4.1)

(observe thatνξ · LξF (ξ) = νξ · L∗ξF (ξ), ξ ∈ Γ, see, e.g., [1, 7]). This result enables us to show the following lemma.

Lemma 4.3 Suppose thatΓ is a simply connected normal region. LetF be of classC(1)(Γ), thenL∗ξF (ξ) = 0 if and
only if F is constant.

P r o o f. If L∗ξF (ξ) = 0, then we obtain, in connection with (4.1),F (ξ1) = F (ξ0) for anyξ0, ξ1 onΓ.
Conversely, ifF is constant, the identity (4.1) shows thatf = L∗F fulfills

∫

C
νξ · f(ξ) dσ(ξ) = 0

for every curveC lying on Γ. Consequently, following Lemma 4.2,ftan(ξ) = 0 for all ξ ∈ Γ. This shows thatftan(ξ) =
f(ξ)− (f(ξ) · ξ)ξ = f(ξ) = L∗ξF (ξ) = 0 for all ξ ∈ Γ.

Next we prove the following result of spherical vector analysis (see, e.g., [1]).

Lemma 4.4 Let f ∈ c(0)(Γ) be a tangent vector field on a simply connected regionΓ, i.e., f(ξ) = ftan(ξ), ξ ∈ Γ.
Furthermore, suppose that

∫

C
νξ · f(ξ) dσ(ξ) = 0

for every closed curve onΓ. Then there is a scalar fieldP onΓ such that

f(ξ) = L∗ξP (ξ), ξ ∈ Γ.

The fieldP is continuously differentiable and is unique up to a constant.

P r o o f. Take an arbitrary, but fixedξ0 ∈ Γ. We let

P (ξ) =
∫ ξ

ξ0

νζ · f(ζ) dσ(ζ),

be the integral along any curveC that starts atξ0 ∈ Γ and ends atξ ∈ Γ. Then, for any two pointsξ0, ξ onΓ and any curve
C lying onΓ and starting atξ0 and ending atξ1,

P (ξ1)− P (ξ0) =
∫ ξ1

ξ0

νζ · f(ζ) dσ(ζ). (4.2)

Observing (4.1) we find

P (ξ1)− P (ξ0) =
∫ ξ1

ξ0

νζ · L∗ζP (ζ) dσ(ζ). (4.3)
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Combining (4.2) and (4.3) we obtain

∫ ξ1

ξ0

τζ ·
(
f(ζ)− L∗ζP (ζ)

)
dσ(ζ) = 0

for any curveC on Γ. Lemma 4.2, therefore, shows us thatf(ξ) − L∗ξP (ξ) = 0, ξ ∈ Γ. The proof thatP is continuously
differentiable onΓ is omitted. The easiest way to construct such a proof is to takeP constant on each straight line passing
throughΓ in the normal direction (see, e.g., [1]). In order to verify thatP is unique up to a constant, we observe that
L∗ξP1(ξ) = L∗ξP2(ξ), ξ ∈ Γ, impliesL∗ξ(P1 − P2)(ξ) = 0, ξ ∈ Γ, i.e., by virtue of Lemma 4.3,P1 − P2 = const.

Now we are able to verify the following important theorem.

Theorem 4.5 Let f ∈ c(1)(Γ) be a tangential field on a simply connected normal regionΓ, i.e.,f(ξ) = ftan(ξ) for all
ξ ∈ Γ. ThenL∗ξ · f(ξ) = 0, ξ ∈ Γ, if and only if there is a scalar fieldP such that

f(ξ) = ∇∗ξP (ξ), ξ ∈ Γ,

andP is unique up to an additive constant (P is calledpotential functionfor f ).
Similarly,∇∗ξ · f(ξ) = 0, ξ ∈ Γ, if and only if there is a scalar fieldS such that

f(ξ) = L∗ξS(ξ), ξ ∈ Γ,

andS is unique up to an additive constant (S is calledstream functionfor f ).

P r o o f. The conditionf = L∗P implies∇∗ · f = 0, andf = L∗S implies∇∗ · f = 0.
Conversely, assume that∇∗ξ · f(ξ) = 0, ξ ∈ Γ. Then the surface theorem of Gauss implies

∫

C
νξ · f(ξ) dσ(ξ) = 0

for every closed curveC onΓ. From Lemma 4.4 it follows that there exists a scalar fieldP such thatf = L∗P . Furthermore,
P is unique up to an additive constant.
Finally, supposeL∗ · f = 0. Then∇∗ξ · (−ξ ∧ f(ξ)) = 0, ξ ∈ Γ, hence, there is a scalar fieldS, unique up to a constant,
such thatξ ∧ f(ξ) = L∗ξS(ξ), ξ ∈ Γ. This is equivalent to−ξ ∧ (ξ ∧ f(ξ)) = (−ξ ∧L∗ξ)S(ξ), ξ ∈ Γ, or f = ∇∗S onΓ.
This proves Theorem 4.5.

From Lemma 4.3 we are immediately able to deduce the following statement.

Lemma 4.6 LetF be of classC(1)(Γ), then∇∗ξF (ξ) = 0 if and only if F is constant.

P r o o f. If ∇∗ξF (ξ) = 0, we findF =const.
Conversely, ifF is constant, then∇∗ξF (ξ) = 0 for all ξ ∈ Γ. This proves our assertion.

5 The Differential Equations of the Surface Gradient

In what follows we give two conditions for the uniqueness of a solution for the differential equation (1.7) of the surface
gradient∇∗. First, based on the results of Chapter 3 we formulate a certain integrability condition to assure uniqueness.

Theorem 5.1 Givenf = ∇∗F ∈ c(0)(Ω). Then the scalar functionF is uniquely determined by the condition:

1
4π

∫

Ω

F (η)dω(η) = C0, C0 ∈ R.

P r o o f. We suppose thatF1, F2 ∈ C(1)(Ω) are functions satisfying the condition above. Then the differenceD =
F1 − F2 satisfies∇∗D = 0 on Ω and 1

4π

∫
Ω

D(η)dω(η) = 0. Consequently, from Corollary 3.4, we obtainD(ξ) = 0 for
all ξ ∈ Ω. Therefore,F1 = F2, as required.

Remark 5.2 Following the Pizetti-Somigliana approach the disturbing potentialT (R·) is uniquely determined onΩ
from the deflections of the vertical by the condition

∫
Ω

T (Rη)dω(η) = 0.
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Theorem 5.3 LetΓ ⊂ Ω be a simply connected normal region. Givenf = ∇∗F ∈ c(0)(Ω). Then the scalar functionF
is uniquely determined by the condition taken at one pointξ0 ∈ Γ:

1
4π

∫

Γ

F (η)dω(η) +
∫

∂Γ

F (η)νη ·G(∆∗; ξ0, η)dσ(η) = C0, C0 ∈ R.

P r o o f. We look at the differenceD of two solutions which satisfies∇∗D = 0 in Γ. By Lemma 4.6 we findD(ξ) =
const = C for all ξ ∈ Γ. In connection with Theorem 3.3 we have

C

2π

(‖Γ‖
2

+ 2π

∫

∂Γ

νη · ∇∗ηG(∆∗; ξ0, η)dσ(η)
)

= 0.

Using (3.7) we, therefore, findC = 0, i.e.,D = 0 onΓ, as required.

Second, based on the results of Chapter 4, we are able to formulate a uniqueness condition by fixing a certain functional
value.

Theorem 5.4 Givenf = ∇∗F ∈ c(0)(Ω). Then the scalar functionF is uniquely determined by the condition taken at
one pointξ0 ∈ Ω:

F (ξ0) = C0, C0 ∈ R.

P r o o f. The constant differenceD of two functions satisfying the conditions is equal toD(ξ0) = C0−C0 = 0 = D(ξ)
for all ξ ∈ Ω.

Remark 5.5 The disturbing potentialT (R·) onΩ is uniquely determined from the deflections of the vertical, if its value
is known at one point ofΓ.

Theorem 5.6 Suppose thatΓ is a simply connected normal region. Givenf = ∇∗F ∈ c(0)(Ω). Then the scalar
functionF is uniquely determined by the condition taken at one pointξ0 ∈ Γ:

F (ξ0) = C0, C0 ∈ R.

P r o o f. D is constant onΓ with D(ξ0) = 0. HenceD(ξ0) = 0 in Γ.

6 Regularized Green’s Theorems on (Normal) Regions on the Sphere

In the following we first introduce the regularized Green function with respect to∆∗. We state its definition together with
some properties which are needed for the discussion of spherical wavelets on regular regions.

Definition 6.1 Givenρ ∈ (0, 2), the regularized Green function with respect to∆∗ is defined for allξ, η ∈ Ω by

Gρ(∆∗; ξ, η) =

{
1
4π ln(1− ξ · η) + 1

4π − 1
4π ln 2, 1− ξ · η > ρ,

1
4πρ (1− ξ · η) + 1

4π ln(ρ)− 1
4π ln 2, 1− ξ · η ≤ ρ.

The regularized Green function with respect to the Beltrami operator(ξ, η) → Gρ(∆∗; ξ, η) only depends on the inner
product ofξ andη, hence, it is a radial basis function, i.e.,Gρ(∆∗; tξ, tη) = Gρ(∆∗; ξ, η) holds true for all orthogonal
transformationst. Figure 2 gives an illustration of the regularized Green function with respect to∆∗. Note that, by
construction, this kernel function represents an approximation of the original Green’s function, i.e., it converges pointwise
to Green’s function asρ tends to0.

We immediately realize that the regularized Green function with respect to∆∗ is continuously differentiable. Applying
the surface curl gradient∇∗ to the second variable yields to the so-calledregularized Green function with respect to∇∗.
Obviously, forρ ∈ (0, 2), we obtain for allξ, η ∈ Ω

g∇
∗

ρ (ξ, η) = ∇∗ηGρ(∆∗; ξ, η) =

{
1
4π

1
1−ξ·η (ξ − (ξ · η)η), 1− ξ · η > ρ,

1
4π

1
ρ (ξ − (ξ · η)η), 1− ξ · η ≤ ρ.

(6.1)

Observing the equation|ξ − (ξ · η)η| =
√

1− (ξ · η)2 we derive for allξ, η ∈ Ω andρ ∈ (0, 2)

|g∇∗ρ (ξ, η)| =
{

1
4π

√
1+ξ·η
1−ξ·η , 1− ξ · η > ρ,

1
4π

√
1− (ξ · η)2, 1− ξ · η ≤ ρ.
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Fig. 2 The regularized Green functionϑ 7→ Gρ(∆
∗; cos ϑ) for ρ = 1 − cos(π2−j) with j = 1, 2, 3 and the original Green function

Gρ(∆
∗; ξ · η) with respect to the Beltrami operator∆∗. Note thatξ · η = cos ϑ, ϑ = ](ξ, η).

A graphical impression of the norm of the regularized Green function with respect to∇∗ and the norm of the surface curl
gradient of Green’s function with respect to∆∗ is illustrated in Figure 3. By similar arguments as known from potential
theory (see e.g. [17]) we obtain the following counterpart of the integral formula developed in Chapter 3.
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Fig. 3 The norm of the regularized Green functionϑ → |g∇∗ρ (cos(ϑ))| for ρ = 1 − cos(π2−j) with j = 1, 2, 3 and the norm of the
surface curl gradient of Green’s function with respect to∆∗.

Theorem 6.2 For F ∈ C(1)(Ω) we have

lim
ρ→0

sup
ξ∈Ω

∣∣∣∣F (ξ)− 1
4π

∫

Ω

F (η)dω(η) +
∫

Ω

g∇
∗

ρ (ξ, η) · ∇∗F (η)dω(η)
∣∣∣∣ = 0.

After deriving the regularized version of the integral theorem for∇∗ on Ω we now turn to the regularized integral
theorem for∇∗ on normal regionsΓ. For that purpose we introduce the following settings.

Definition 6.3 Let Γ ⊂ Ω be a normal region of the unit sphereΩ. ForF ∈ C(1)(Γ) we let

Sρ(F )(ξ) =
∫

Γ

g∇
∗

ρ (ξ, η) · ∇∗ηF (η)dω(η)−
∫

∂Γ

g∇
∗

ρ (ξ, η) · F (η)νηdσ(η), ρ ∈ (0, 2),

as a counterpart of

S(F )(ξ) =
∫

Γ

∇∗ηG(∆∗; ξ, η) · ∇∗ηF (η)dω(η)−
∫

∂Γ

∇∗ηG(∆∗; ξ, η) · F (η)νηdσ(η).
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Clearly, it is not hard to show that

lim
ρ→0

sup
ξ∈Ω

|S(F )(ξ)− Sρ(F )(ξ)| = 0. (6.2)

Theorem 6.4 (Regularized Integral Theorem for∇∗ onΓ) LetΓ ⊂ Ω be a normal region with boundary∂Γ. Suppose
thatF is a continuously differentiable function onΓ, i.e.,F ∈ C(1)(Γ). Then

lim
ρ→0

sup
ξ∈Γ

∣∣∣∣
α(ξ)
2π

F (ξ)− 1
4π

∫

Γ

F (η)dω(η) + Sρ(F )(ξ)
∣∣∣∣ = 0,

whereα(ξ) denotes, as usually, the solid angle subtended atξ ∈ Γ.

7 Vector Spherical Wavelets on Normal Regions

We turn our attention to the introduction of vector spherical wavelets, whereΓ ⊂ Ω is supposed to be a normal region. We
choose a sequence which divides the continuous scale interval(0, 2) into discrete pieces. More explicitly,(ρj)j∈N0 denotes
a sequence of real numbers satisfyinglimj→∞ ρj = 0 and limj→0 ρj = 2. For example, we can chooseρj = 21−j or
ρj = 1−cos(π2−j), j ∈ N0. The point of departure for our considerations on normal regionsΓ is Theorem 6.4 in the form

α(ξ)
2π

F (ξ)− FΓ
mean = − lim

j→∞
Sρj (F )(ξ), FΓ

mean =
1
4π

∫

Γ

F (η)dω(η), ξ ∈ Γ. (7.1)

Note that the discrete steps in this approximation process are calledscales, i.e., the valuej takes the role of the scale
parameter, i.e., the parameter to model out more and more local features. By using discrete regularization parameters we
are naturally led to the following type of scale discretized Green wavelets.

Definition 7.1 Let {g∇∗ρj
}j∈N0 be the regularized Green function with respect to∇∗ (see (6.1)). Then the scale dis-

cretized regularized Green wavelet function with respect to∇∗ is defined by

ψρj = g∇
∗

ρj+1
− g∇

∗
ρj

= ∇∗ηGρj+1(∆
∗; ξ, η)−∇∗ηGρj (∆

∗; ξ, η), j ∈ N0. (7.2)

In fact, the difference of two consecutive scales of regularized Green functions with respect to∆∗ reads

Gρj+1(∆
∗; ξ, η)−Gρj (∆

∗; ξ, η)

=





0, 1− ξ · η > ρj ,
1
4π ln(1− ξ · η)− 1

4πρj
(1− ξ · η) + 1

4π (1− ln(ρj)), ρj > 1− ξ · η > ρj+1,(
1

4πρj+1
− 1

4πρj

)
(1− ξ · η) + 1

4π (ln(ρj+1)− ln(ρj)), 1− ξ · η ≤ ρj+1,

such that

ψρj (ξ, η) = g∇
∗

ρj+1
(ξ, η)− g∇

∗
ρj

(ξ, η) =





0, 1− ξ · η > ρj ,
1
4π

(
1
ρj
− 1

1−ξ·η
)

(ξ − (ξ · η)η), ρj > 1− ξ · η > ρj+1,

1
4π

(
1
ρj
− 1

ρj+1

)
(ξ − (ξ · η)η), 1− ξ · η ≤ ρj+1.

A graph of the norm of the scale discretized regularized Green wavelet function with respect to∇∗ for the discretization
parametersρ = 1− cos(π2−j) with j = 0, 1, 2, 3 is shown in Figure 4. Note, that the functionsψρj have a local support.
Sρj (F )(ξ), as given by Definition 6.3, is called thescale discrete regularized Green scaling function transformwith respect
to ∇∗. Let {ψρj}∈N0 be the scale discretized regularized Green function with respect to∇∗. The scale discretized
regularized Green wavelet transform with respect to∇∗ is defined by

Wρj (F )(ξ) =
∫

Γ

∇∗ηF (η) · ψρj (ξ, η)dω(η)−
∫

∂Γ

F (η)νη · ψρj (ξ, η)dσ(η).

We arrive at the following theorem, that is of basic interest for our computation.

Theorem 7.2 Let{g∇∗ρj
}j∈N0 be the regularized Green function with respect to∇∗. Then the multiscale reconstruction

of a functionF ∈ C(1)(Γ) is given by

α(ξ)
2π

F (ξ)− FΓ
mean = −

∞∑

j=0

Wρj (F )(ξ), ξ ∈ Γ,

where the equality holds in the‖ · ‖C(Γ)-sense.



13

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ϑ

scale0
scale1
scale2
scale3

Fig. 4 The norm of the regularized Green wavelet functionϑ → |Ψρj (cos(ϑ))| with respect to∇∗ for ρ = 1 − cos(π2−j) with scale
j = 0, 1, 2, 3.

By observing the definition of the scaling transformSρj
(F )(ξ), Theorem 7.2 admits the following reformulation.

Corollary 7.3 Under the assumptions of Theorem 7.2

α(ξ)
2π

F (ξ)− FΓ
mean + SρJ

(F )(ξ) = −
∞∑

j=J

Wρj (F )(ξ), ξ ∈ Γ,

for everyJ ∈ N0 in the‖ · ‖C(Γ)-sense.

These reconstruction formula will now be applied to the modelling of oceanic circulation.

8 Multiscale Modelling of the Disturbing Potential From Deflections of the Vertical

Our considerations have shown that the disturbing potentialT (R·) ∈ C(1)(Ω) can be uniquely determined onΩ from the
deflections of the verticalΘ ∈ c(0)(Ω) in terms of the integral formula.

T (Rξ) =
kM

R

∫

Ω

∇∗ηG(∆∗; ξ, η) ·Θ(Rη) dω(η), ξ ∈ Ω.

In addition,T (R·) can be approximated as follows

T (Rξ) = lim
j→∞

kM

R

∫

Ω

∇∗ηGρj (∆
∗; ξ, η) ·Θ(Rη) dω(η), ξ ∈ Ω

For numerical purposes it suffices to have an (in the sense of Weyl) equidistributed nodal set(ηi,Θ(ηi)), ηi ∈ Ω,
i = 1, · · · , N , to discretize the integral on the right hand side and to establish a multiscale approximation of the geopoten-
tial T (R·) onΩ. But - as already mentioned - what is lacking are data on the whole sphereΩ.

Consequently, we are often confronted with the problem of determining the disturbing potentialT (R·) on a certain
subdomainΓ of Ω (e.g., caps, squares or rectangles), where suitable discrete data information about the deflections of the
vertical is available. When we are interested in solving that problem numerically from discrete data our approach shows
that we have to know, in addition, the disturbing potentialT (R·) of the boundary∂Γ.

Even more, our numerical calculation based on discrete data is only unique up to a constantTΓ
mean = −T

Ω\Γ
mean (confer

the considerations given in Chapter 5):

α(ξ)
2π

T (Rξ)− TΓ
mean = − lim

j→∞

(∫

Γ

∇∗ηT (Rη) · g∇∗ρj
(ξ, η)dω(η)−

∫

∂Γ

T (Rη)νη · g∇
∗

ρj
(ξ, η)dσ(η)

)
.
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8.1 Multiscale Solution of the Potential Problem

In what follows, particular attention is paid to the numerical stability caused by the specific observation of the boundary
terms in our numerical calculation. We consider a spherical capΓ, i.e., a (special) regular region as a reference area.

The spherical cap under consideration is defined by its centerζ ∈ Ω and its radiusr > 0, more precisely we let

Γr(ζ) = {η ∈ Ω : |ζ − η| < r}.

In this case the normal unit vectorνη is explicitly given for allη ∈ ∂Γr(ζ) by (3.6). Substituting the tangential unit vector
in the equations above we obtain

α(ξ)
2π

T (Rξ)− TΓr
mean = − lim

j→∞

(∫

Γr(ζ)

∇∗ηT (Rη) · g∇∗ρj
(ξ, η) dω(η)

+
∫

∂Γr(ζ)

T (Rη)
g∇

∗
ρj

(ξ, η) · (ζ − (ζ · η)η)√
1− (ζ · η)2

dσ(η)

)
.

In more detail, the region of interest in our first example is a spherical capΓ30 where30◦ denotes the apex angle of the
cap. Furthermore, we assume that the vertical deflection measurements are not continuously given, but on an equiangular
longitude-latitude grid with a step size of0.12◦. The potentialT (R·) is prescribed at a finite set of boundary points that are
sampled with an angular distance of0.0051◦. Both data sets have been generated from the EGM96 up to degree200 (see
Lemoine et al(1998)).

Figure 5 illustrates the disturbing potential which is used to calculate the input dataset for our numerical tests below, i.e.,
the deflections of the vertical are obtained from EGM96, they are shown in Figure 5. Since we are especially interested in
boundary effects, we always plot the spherical cap together with its surrounding environment.

Fig. 5 Plot of the geopotential in [m
2

s2 ](left), which is used to calculate the input dataset, i.e., the deflections of the vertical (right) in[m
s2 ].

For the modelling of the disturbing potential EGM96 from its deflections of the vertical in the particularly interesting
area of South America we have to discretize the scale interval(0, 2). In our computations we letρj = 21−j . In Figure 6 the
wavelet decomposition for the scale 8 to 12 is illustrated graphically. At first sight the approximated disturbing potential is
close to the original potential inside the spherical cap even for a moderately small scale parameterj, whereas the potential at
a certain strip around the boundary shows essentially larger error effects. However, it should be noted, that (i) the boundary
errors and the diameter of the strip become smaller for increasing scale parameters and (ii) any kind of phenomena of
oscillation for the approximated potential outside the boundary strip can be avoided. In other words, by taking into account
additional potential values on the boundary of the domain under consideration (in our case the circle∂Γ30 of the capΓ30) a
stabilizing process can be detected within the multiscale reconstruction, where the stabilization correlates to the scale level
to be realized in the numerical computation.
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Fig. 6 Wavelet reconstruction of the geopotential in [m2

s2 ] on the spherical capΓ30 at certain scales using the scale discretized regularized
Green function.
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8.2 Multiscale Solution of the Epoch Problem

A significant application of our multiscale technique the detection of (artificial) disturbances of the potential within a local
area of geophysical interest. For the difference potentialD before and after the perturbation we have

α(ξ)
2π

D(ξ)−DΓr
mean = − lim

j→∞

∫

Γ

∇∗ηD(η) · g∇∗ρj
(ξ, η) dω(η).

The problem is to characterize certain geophysical features (like mass pole perturbations) by their (scale-dependent) space
evolution detected in the wavelet coefficients. To be more concrete, we take the dataset of deflections of the vertical from
EGM96 (up to degree 200) and disturbed the data artificially by several unit mass points in a depth of 50km up to 120km.
Figure 7 give a graphical illustration of the disturbed dataset. In detail, we positioned 6 mass points along a (linear) curve in
the Pacific Ocean at depth 50km (for the point in the North) up to a depth 100km (for the point in the South). Furthermore,
we put two irregularities by buried mass points over land (at depth 70km and 120km, respectively).

Again, the discrete scalesρj = 21−j have been chosen to get a detailed information by the wavelet spaces to prepare
out the disturbances. In Figure 8 the wavelet decomposition of the disturbed EGM96-potential is shown. The positions of
the disturbances can be easily detected in the difference plot between Figure 8 and Figure 6. The difference is illustrated in
Figure 9.

When looking at the differences caused by the eight buried mass points we are confronted with the following situation:
The height of the ”bumb” in the error plot corresponds to the depth of the mass points: the smaller the depth the larger the
maximum of the gravitational perturbation for the different scales. Figure 10 illustrates this phenomenon in dependence
of the scale. Even more, the diameter of the ”bumb”, i.e., the horizontal distance between maximal and minimal value
of the gravitational perturbation is of larger value, the deeper the point is situated. With increasing scale the diameter is
decreasing in (horizontal) size (see Figure 11). Furthermore, we notice a clear difference in the diameter for comparable
mass point perturbations on continent and ocean. In other words, there is a correlation between the gravitational effect of
the perturbations and the density distribution inside the Earth.

Altogether, the multiscale solution realized for the epoch problem involving disturbances by buried mass points offers
a palette of mathematical indicators to specify the location and to classify the depth of the gravitational perturbation. A
more careful and detailed multiscale investigation of even more complicated gravitational perturbations (e.g., inner line and
surface disturbances) based on locally supported outer wavelets is certainly a great challenge for future work.

Fig. 7 Plot of the geopotential in [m
2

s2 ] (left) and the vertical deflection in [m
s2 ] (right) of EGM96 disturbed by buried mass points.
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