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Chapter 1

Introduction

Among thousands of reasons for motivating so much of accomplished and on-going re-

search and studies in logistics, transportation and telecommunications, we can point to:

1) the globalization, 2) increase in the number of highly competitive service providers,

3) emerge of new economic powers and new markets, 4) crowded transportation net-

works, 5) daily increase in the origin-destination services in terms of passengers, com-

modities and so on, 6) continuous increase in the mass of multi-media data transfer

in telecommunication and IT industries, 7) population growth, 8) energy concerns and

global warming, 9) environmental pollution and, 10) safety and security policies.

Operations Research (OR) plays a key role and offers very efficient tools for such

studies. Mathematical models capable of describing such systems, simulations tools

to analyze and predict behavior by what-if scenarios etc. are among those offered by

OR. The research in such areas often center on the study of network structures and

architectures. Several configurations have already been proposed and many promising

issues are explored. Among all problems arising in this growing body, Hub Location

Problems (HLP) have received a lot of attention in the last two decades. This new

topology showed itself to be superior in terms of system performance, reliability and

applicability, which results.

1.1 Hub Location Problems

The idea of hub-and-spoke networks initiated from Goldman [35] in 1969, which was

followed by O’Kelly [62, 63] in 1986 incepted the primitive study of hub-and-spoke

networks on a plane. O’Kelly was also the one who proposed the first mathematical

formulation of hub-and-spoke networks as a quadratic integer programming model in

1987 [64]. Since that time, many researchers have been working on different classes

of problems in HLPs; both in theoretical aspects and different applications. Also,

many contributions are devoted to them. This amount of attention is mainly due to

the necessity and implication of modern infrastructures for both transportation and

telecommunication systems [12]. Among this amount of work on HLPs, public trans-

port applications have received least amount of attention while we believe deserve much

more.

The term modern reflects the functionality of these configurations that does not
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follow the traditional network service modes. In traditional service networks, every

demand point expecting to meet its demand from an origin, is served by that origin

through a direct interaction. Contrarily, in such modern systems, some of the nodes

in the network are selected to build up an intermediate structure. Subsequently, de-

mands of many destinations are served by origins via this intermediate structure. This

structure (the so called hub-level network) is in charge of handling the routing of flow.

It exploits the economy of scale arising from its special functionality that motivates

making use of this new topology (the impact of this scale economy is drawn by a dis-

count factor applied to any transportation cost inside the hub-level network). These

new models and structures are studied in the context of Hub Location Problems. The

location of hub facilities is fundamental to the design of a hub-and-spoke network be-

cause, it affects the total transportation cost of the system, the throughput level at

central facilities and hence, the service time and congestion [64].

Figure 1.1: A typical Hub Location Problem network

The hub location problems are usually NP-hard problems [45]. A typical HLP net-

work is depicted in Figure 1.1. The rectangles stand for hub nodes and the bold face

circles for spoke nodes. The hub nodes together with the edges connecting them is

called the hub-level and the rest, spoke-level network. In any origin-destination path

there exists at least one hub element (hub node or edge). Rather than directly con-

necting any pair of locations, all the paths are handled by the hub-level network.

As an example of application of such networks in telecommunication we have the

following: A call request is sent from i (a spoke node) to its related local call center k to

make a connection to j; the call center (hub node) that receives plenty of such requests

per second, checks whether it is authorized to fulfill the request (i.e. the destination is

assigned to it) or it has to be handled by another call center; if yes, it establishes this

connection together with all other calls which address j, else delivers this request to-

gether with all others which should be handled by l to it; l establishes a connection to j.
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Although, there exists a lot of work on HLPs related to telecommunication and

transportation, however, the especial attributes of other applications and also classical

assumptions of HLPs are not always suitable for the public transport and are not ad-

equately depicting the facts and features of this application. Subsequently, regarding

the behavior and characteristic of public transport systems, HLPs deserve an exclusive

part in such studies.

Public transportation is a very solicitous/challenging problem in many developed

and developing countries. In developed countries, sample issues can be for example the

effect of incompetence of transportation systems on the energy policies and concerns,

quality of life or performance of other systems and services. This shows itself in form

of degraded service-level. In the developing countries, it is important to improve and

bring up the systems that somehow are affected by the inefficiency in the performance

of public transport systems. This includes the customer service systems, energy poli-

cies and systems which contribute as indicators of development in such countries.

We propose a mathematical model for the application of such a structure in public

transport planning [34].

1.2 Multi-Period Planning

In reality, decisions are often not made just for a single period. Usually, when a project

concerns some construction activities and significant investments, there exists a plan-

ning horizon with several periods for which decisions are made. That is, the initial

configuration of the network might change due to many factors (for instance the ex-

pected changes in the mass of transportation, re-shaped spatial distribution of the flows

and many other economic issues). In each period of the planing horizon, the config-

uration of the previous period is updated and evolved until the end of the planning

horizon is met. The planning horizon length may differs, however in terms of public

transport, we expect it to be a long term (e.g. 10 years, 30 years etc.).

Briefly speaking, in a multi period planning approach, the transport network evolves

throughout the planning horizon. Decisions about how the network should evolve are

not made just in an improvident and myopic way. This is usually a function of changes

in the patterns of distribution of flow density, emerging technologies, financial issues

etc.

While modeling for a planning horizon, many other aspects of real-life can also be

taken into account. For example, benefiting from the full performance of a hub facility
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in a period t, is only possible in the subsequent periods (t+1, t+2, . . . ) if we invest on

maintenance operations thus overcoming the depreciation of facilities. Of course, when

a hub facility no longer acts as a hub-level element, it incurs additional costs to trans-

form it to a spoke element. This concerns both hub nodes and hub edges. Concerning

the hub nodes, it may amount to the cost of re-training or firing of employees, ceasing

costs etc. In the hub edge level, it concerns the removal of elements of fast-lines which

need to be paid for maintenance and holding costs as well as a non-ignorable removal

cost to shut down and uninstall (e.g. special navigation systems, particular type of

vehicles, special service centers etc.).

1.3 Solution Procedures

Our models here are proposed for real-life applications. Such mathematical models of

the problems usually lead to very large and hard-to-solve problems, in many cases to

NP-hard problems. This is the indispensable feature of many real life applications.

The combinatorial aspect of problems in network design, transportation and logistics

are important issue that usually makes real-life size problems in these areas very hard

to solve.

Usually, depending on how difficult a class of problems is, for a given machine

specification, existing standard solvers are only capable of solving instances with very

limited size. The more precisely the model tries to approximate the reality, the smaller

the size of instances which can be solved to optimality using existing standard solvers.

By exploiting the special structure of models and problems, it may be possible to solve

larger instances of the problems and/or even reduce the computational time.

Some decomposition procedures exploiting the special structure of the problems

already exist. They try to decompose and separately solve smaller and easier-to-solve

parts of the problems to achieve the original optimal solutions. Among these ap-

proaches, Lagrangian relaxation, column generation and Benders decomposition are

shown to be useful and applicable for many problems, especially combinatorial opti-

mization problems. We use some of them as far as they can help to efficiently solve

instances of our problems.

In many real-life applications, it may suffice to retrieve very good solutions in a

very short amount of time. In many cases, the mathematical model itself might not

be precisely depicting the reality and thus be a rough approximation of real-life prob-

lem. Another issue is the existence of approximated data which additionally imposes

some imprecision. In these cases, it may not be really necessary to insist on solv-
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ing the problem to optimality since this may take days or months of computations

(which is quite normal in most of real-life applications with combinatorial nature).

Often, an expected-to-be-good-enough solution can be found in significantly smaller

amount of time (like some seconds or minutes). The dramatic increase in the size of

the search space, non-stationary nature of the environment and the necessity for real-

time responses motivated many researchers into solving combinatorial problems using

heuristic techniques.

1.4 Overview

This dissertation aims to propose new mathematical models for hub location problems

in public transport in which the economy of scale is exploited from consolidation of

flow. Both, single and multi-period scenarios are taken into account. In addition to

that, efficient solution methods are proposed to solve instances of such problems.

The second chapter introduces the Hub Location Problems and their characteristics

along with a literature review with respect to the special attributes presented by each

variant in this class of problems.

The third chapter presents a new (base) model for hub location problems applied

on public transport. This model is a mixed integer problem and is applied on the

Civil Aeronautics Board (CAB) [64] and Australian Post (AP) [27] datasets from OR-

Library 1. The new model generalizes the classical hub location model by relaxing

certain assumptions. The quality of our model is compared against the existing HLP

models for this application. In addition to the base model, some other variants of

the base model in which more realistic aspects of the application are drawn are also

proposed.

The fourth chapter proves the integrality property of a chosen sub-problem for a

Lagrangian relaxation proposed to solve instances of the model.

In the fifth chapter, a strengthening of the formulation by means of some valid

inequalities and preprocessing is carried out. The computational results report the

strength of the final formulation.

1www.people.brunel.ac.uk/˜mastjjb/jeb/info.html. The CAB instances are based on the airline
passenger interaction between 25 cities in U.S. in 1970. This dataset is a part of a 100-city data set
related to the 100 larger places in U.S. urban system and amounted for 51% of the total flow observed
in U.S. . The AP is based on a postal delivery information between 200 postal districts in Sydney.
Also, the flow matrix of AP is not symmetrical.
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In the sixth chapter, an exact algorithm is proposed to solve instances of the prob-

lem. Also, different modifications of the standard Benders decomposition are proposed.

As we will see in the seventh chapter, a heuristic method is developed to solve large

instances of the problem which can not solved by exact methods. This heuristic method

is a kind of greedy neighborhood search equipped with some improvement procedures

(diversification and intensification local searches). The quality of the heuristic method

against the standard solver is also examined.

In the eighth chapter, the first multi-period HLP model and its variants for public

transport planning are proposed. These models generalize the single period model of

chapter 2.

The ninth chapter deals with the extension of the neighborhood search for the

multi-period model. The quality of the heuristic solution is studied here.

Finally, in the tenth chapter, this work is concluded and some avenues for further

development in future work are suggested.



Chapter 2

Hub Location Problems

In this chapter, after introducing the hub location problems and their properties, we

review the literature in a classified manner.

2.1 Problem Description

The classical problem is stated as follows: Let G be a complete graph G = (V,E)

where V = {v1, v2 . . . , vn} is the set of all vertices. The elements of V are assumed to

represent origins and destinations and at the same time are potential points for estab-

lishing hubs. The flow between node i and node j is wij and the distance from node

i to node j is dij, where the distance satisfies the triangle inequality. The aim is to

designate some of these vertices as hubs and minimize the total flow cost in network.

Each origin-destination path consists of three components: collection from origin to the

first hub, transfer between the first hub and last hub and distribution from the last hub

to the destinations. Paths containing only one hub node are also allowed. The parame-

ters α, χ and δ are discount factors related to each of the three components, respectively.

In these networks, some of the nodes are selected to act as so called hub nodes.

Any non-hub node is known as a spoke node. Consequently, a hub-level network is

formed by connecting pairs of hub nodes by a hub edge. Eventually, each spoke node

will be allocated to these hub nodes by spoke edge links. The network composed of the

spoke nodes and spoke edges in different areas called spoke-level, tributary or access

networks, by different authors.

A hub node can simultaneously have three different functionalities (see Figure 2.1),

namely:

i). Consolidation (concentration) of flows that receives, in order to have a larger flow

and letting economy of scale to be exploited;

ii). Switching (transfer) which allow the flows to be re-directed at the node;

iii). Distribution (decomposition) of large flows into smaller ones.

A hub node receives flows from many origins and consolidates (accumulates) them.

This consolidated flow splits up into several groups of accumulated flows (concentrated

pieces) according to their final destinations. Each of these groups contains flows of

many destinations and will be sent through hub edge(s). This happens at all hub
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Figure 2.1: A typical Hub Location Problem network

nodes in the network. Each piece of flow at its last visited hub node along the path in

the hub-level network joins to other pieces coming from different hub nodes in a similar

way. This concentrated flow should be again decomposed to meet the demand of the

current hub node and also spoke nodes assigned to.

Thus, hubs are intermediate points along the paths followed by origin-destinations

[12]. Of course, the situation in which a hub node is itself an origin or destination is

also allowed.

Figure 2.1 sheds more light on the topology of such structures. The rectangles

stand for hub nodes and the bold face circles for spoke origin/destination points. When

compared with a classical transportation network with the same number of nodes (like

in Figure 2.2), the number of connections is much smaller. In the latter case, very

small and sometimes ignorable amount of flow may exist on some links, where this is

less likely to happen in the network in Figure 2.1.

Figure 2.2: A Classical Transportation Network.

Although, a fully interconnected structure like in Figure 2.2 rarely exists in the

reality, however, it can be used to clarify the idea of HLP networks.
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2.1.1 Examples of Real-Life Applications

Two other well-know applications of HLPs are telecommunications and cargo systems.

Telecommunications

A simple and clear example can be the call centers which connect us from our house to

another houses. In Figure 2.1, consider a person at location i wanting to make a call

to the house in location j. In order to make this call, in practice, such procedure takes

place: we dial a number from i and our request is delivered to the call-center at k. This

call center determines whether this call should be delivered to a destination which is al-

located to itself or to a destination which is allocated to another hub node, say l. In the

first case, it switches directly to the destination and in the latter, it delivers this request

to the operator at the call-center l. Now, l delivers the call to the destination, namely j.

The flow is the packets of multimedia data and the flow cost is the cost of keeping

this connection active for a certain time interval.

Cargo and Transportation

As an example, a real hub network of a transportation company in North America is

depicted in Figure 2.3. In this figure, the bold faced rectangles stand for hub nodes and

the edges connecting them are hub edges. This hub network is used to transport the

shipments of an express shipment company. Rather than existing direct connections

between pairs of spoke cities like A and B, shipments is carried to the first hub, traverse

the hub edges and will finally be delivered to the hub node where the customer(s) are

assigned to.

In Figure 2.4, flows of origin A is delivered to the hub node of Omaha city and

transported by the company vehicles through hub edges and customer B eventually

receives his shipment from the hub node in Memphis city. Obviously, fewer links are

used in this network in comparison to traditional networks and many direct links are

omitted.

Here, in Figure 2.4, the hub-level network is not a complete graph and the number

of hub edges in a path can be more than one.

For urban transportation systems, we have an analogy as depicted in Table 2.1

between elements of a public transport network and HLP networks.

Figure 2.5 depicts such an urban transport network for the metropolis of Munich in

Germany. Usually, in a metropolitan transport network, the distance between origins
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Figure 2.3: Hub-level network of an express shipment company in North America.

Figure 2.4: Shipment from A to B in the hub-and-spoke network of a transportation
company in North America.

and destinations are quite considerable. The inefficiency of the transportation network

can have significant effects on the service level of many other service sectors.

As one can see in Figure 2.6, the city center and its nearby areas, main street boule-
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Table 2.1: Hub-and-Spokes vs. urban traffic.

Urban Traffic Hub-and-Spoke

Buses and taxis Spoke edge vehicles

Subways, Metro and fast-lines Hub edge facilities

Subways and Metro stations Hub nodes

Bus and taxi stations Spoke node

Figure 2.5: Public Transport Network of Munich, Germany.

vards and highways which are the most demanding regions (regarding the density of

flow) in each city are the locations where deserve to receive fast-lines.

In the other words, fast-lines are the links connecting centers of districts to each

other and to the city center. The spoke-levels are buses which are internal to the

districts.

2.2 Traits of Hub-and-Spoke Networks

Like any other structure, hub-and-spoke networks have some advantages and also dis-

advantages. In this section we briefly note some of them.

2.2.1 Advantages

Some major advantages of these structures are listed here:
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Figure 2.6: Public Transport Network of Munich, Germany (Hub-and-spoke).

1. Economies of Scale: The reduction of cost per unit of flow of commodity or

passenger caused by the consolidation of flows on larger connections, trucks or

aircrafts (increase in service). The more increase in service, the more reduction

there is in service cost of additional demands.

2. Economies of Scope: The situation in which the cost of performing multiple jobs

simultaneously (shared transshipment facilities), is more efficient than performing

each job separately. Here, hubs are susceptible to perform three roles.

3. Locational Issues :

(a) Central geographic position

(b) High demand in area

(c) Distance to a hub of a competitive company

(d) Cultural/Economic importance

(e) Weather conditions

(f) Infrastructure

4. Multiplier Effect: The effect arising when a small change in investment on estab-

lishing hub facilities makes a non-proportionate change in the aggregated demand.

In another point of view, the construction project employs worker and indirectly,

it will stimulate employment in laundries, restaurants and service industries in

the vicinity of facility.
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5. Economies of Density: This condition arise when the cost of service is reduced

due to the increase in the demand density rather than the distributed demand

and lower density.

2.2.2 Disadvantages

Some disadvantages of such structures can be as follows:

1. Longer travel times and higher costs of some routes,

2. Capacity overload,

3. Higher risk of accident (congestion phenomena) and,

4. Missing connecting facilities due to the unforeseen delay (interrupt) at some parts

of the network.

2.3 Variants

Some of the most important variants of HLPs are as follows:

• p-Hub Median Problem (pHMP): Given the number of hubs ,p , the objec-

tive is to locate them and minimize the transportation cost;

• Hub Location Problem (HLP): The objective is to minimize the total costs.

The total cost is the cost of establishing hub facilities (nodes and/or edges) plus

transportation costs;

• p-Hub Center Problem (pHCP): Given the number of hubs, p, the objective

is to minimize the maximum cost for each origin-destination pair, on each single

link or for movements between a hub and origin/destination;

• Hub Covering Problem (HCP): The objective is to minimize the total trans-

portation cost. Transportation costs should not exceed a certain threshold (on

origin-destination pairs, each link or between hub and origin/destination);

• Hub Arc Location Problem (HALP): Given the number of hub arcs, q, the

objective is to locate hub arcs and minimize the total transportation cost. The

hub network is not necessarily a complete graph. Moreover, there is no necessity

to have discount on all the hub edges. The location of hub nodes are identified

from the location of hub arcs.

This dissertation will be based on the Hub Location Problem (HLP), i.e. the second

variant.
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2.3.1 Single vs. Multiple Allocation

A Hub Location Problem, in general, includes two simultaneous problems: locating

hub nodes and allocating spoke nodes to hubs.

With respect to the allocation schemes, HLPs can be categorized into two classes. The

first class, in which a single hub node should receive (and deliver) the whole flow of an

origin (or destination) node (hub or spoke) assigned to, is known as Single Allocation

(SA). In the second class, the activities of a spoke node can be processed by more than

one hub node. The latter is called Multiple Allocation (MA).

(a) (b)

(a) Single allcoation (b) Multiple allcoation

Figure 2.7: Assignment schemes in HLPs

In Figure 2.7, (a) depicts a single allocation scheme and (b) a multiple allocation

configuration.

2.3.2 Capacities

Different types of capacities are also considered for different variants. For instance,

• Capacity on the amount of flow arriving to the hub nodes from non-hub nodes,

• Capacity on the all through traffic and,

• Capacity on the hub arcs.

However, in general capacity is considered on hub nodes or hub edges.

Some of the variants, like Uncapacitated Single Allocation p-Hub Median Problem

(USApHMP) has received most attention from the works on HLPs.
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2.4 Applications

As mentioned previously, two of the most important and well-known areas of applica-

tion of hub location problems are telecommunication and transportation. So far, many

contributions have been devoted to them and many researchers have been focusing on

them.

In telecommunication, flows to be sent are digital data which are supposed to be

delivered from origins to destinations. Such applications include video conferences,

telephone networks, distributed processing and so on. Hub nodes are multiplexors,

gates, switches etc. The hub edges are considered as different types of physical media,

like optic fibre, coaxial cable etc. [12]. With progressive advances, new technologies

result in new types of hub nodes and edges.

In transportation applications, like public transport, air passenger, air freight, ex-

press shipment (over night delivery), large trucking system, postal delivery and rapid

transit, the demands are physical flows in form of passengers or goods to be transferred

between origins and destinations. Also, different transportation vehicles can be con-

sidered for hub level facilities like, buses, trucks, trains, taxis, planes, fast-lanes etc.

The hub facilities in postal delivery applications are post offices where the items for

different destinations are collected, sorted into several groups and distributed. The

hub edges can be seen as the planes or trains transferring shipments between districts

corresponding to hub nodes. In public transport, the hubs are regional airports, cen-

tral railway stations or bus terminals. People from corresponding regions (geographical

zones containing the nodes assigned to a given hub node) are transferred there to use

the inter-hub facilities working on the hub edges. The hub edges are widebody aircrafts

flying longer distances or take more people or special type of trains and/or buses with

special functionalities. In freight transportation, hubs are the break-bulk terminals

where the smaller trucks unload (load) their shipments onto (from) larger vehicles or

any other transportation facilities operating on the hub edges.

In this dissertation, we concentrate on the application in public transport planning

and propose HLP models customized for this application.

2.5 State of the Art

Hakimi in 1964 [37], showed that in order to find the optimal location of a single

switching center that minimizes the total wire length in a communication network, one

can limit oneself to finding the vertex median of the corresponding graph. In other

words, he generalized the Goldstein’s vertex optimality of a tree to vertex optimality
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of a weighted graph (the absolute median of a graph is always at a vertex of graph).

In 1965 [38], he showed that optimal locations of switching center(s) in a graph of

communication network are at p-median of the corresponding weighted graph. In gen-

eral he emphasized on the node optimality of one-median and p-median problems in a

weighted graph.

HLPs originally initiate from the idea of Goldman [35] in 1969. In his work he

proved that Hakimi’s argument holds even for more general cases. He proposed two

formulations. In the first model he assumed that materials are sent from origins to

destinations and pass through a processing as well as a collect-and-dispatch center.

The unit transportation cost of a source-center may be different from unit transporta-

tion cost of the processed material or in other words center-destination. In the second

formulation, he assumed that flows can be processed in more than one center and

transportation costs of origin-center, center-center and center-destination may be to-

taly different. Therefore, the problem is to find p centers and assign the flows to the

center(s), aiming to result in a minimum of transportation cost. This is essentially the

p-hub median problem [12] though he used the term center instead.

For the first time O’Kelly [62, 63] paved the way for the future study of hub location

problems. These works dealt with one and two hub systems in the plane. However, in

this work, we concentrate on the discrete hub location problem. The first work in this

area is again due to O’Kelly in 1987 [64], where he proposed the first mathematical

formulation (a quadratic model) for hub location problems. He presented the formula-

tion for Single Allocation p-Hub Median Problem (SApHMP) which is also known as

Uncapacitated Single Allocation p-Hub Median Problem (USApHMP).

There are some reviews devoted to HLPs on a discrete network. Among these re-

views, we refer readers to the latest two reviews [12] and [4] where one can also find

more details about other works and reviews.

As mentioned earlier, most of the works on HLPs are devoted to the p-hub median

problems. Therefore, we briefly go along by citing the works accomplished on hub

location problem and p-hub median problem. Although, there are other variants of

HLPs, but we just restrict ourself to these variants and the works close to the subject

of our work.

2.5.1 Formulations

In this section we review the work on the formulation approaches while distinguishing

between specific attribute(s) each one possesses (single and multiple allocation schemes
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etc.).

Nomenclature

Throughout this dissertation, unless mentioned otherwise, we refer to the variants of

the HLPs by the following: Each problem is referred as a XYZ, where X indicates

the capacity policies (Capacitated (C) or Uncapacitated (U)), Y for allocation mode

(Single Allocation (SA) or Multiple Allocation (MA)) and Z for problem type like:

• p-Hub Median Problem (pHMP).

• Hub Covering Problem (HCP).

• p-Hub Center Problem (pHCP).

For example, an Uncapacitated Single Allocation p-Hub Median Problem is referred as

USApHMP, and whenever there is no capacity or both assignment schemes are con-

sidered, we may omit the indicators and use SApHMP or UpHMP (pHMP).

Single Allocation

In the formulation context as mentioned earlier, the first formulation is proposed by

O’Kelly [64] for SApHMP applied to airline passenger transport. The model is a

quadratic model and includes n2 binary variables and 2n+ 1 linear constraints. In this

model no intrahub cost is assumed. He also explained why the objective function is

not guaranteed to be convex.

However, the first linear integer programming for pHMP was proposed by Campbell

[9] in 1994. That is a formulation with a total number of n4 + n2 + n variables where

n2 + n variables are binary. The number of linear constraints is 4n4 + 2n2 + 1. Again,

in 1996 [10], he presented another integer formulations for SApHMP.

Skorin-Kapov et al. in 1996 [78], presented an MIP formulation for the USApHMP.

The model was very tight and uses 2n3 +n2 +n linear constraints and n4 +n2 variables

where n2 are binary. In most cases (96% of instances) the LP solution was optimal

for CAB instances and for the rest it generated lower bounds less than 0.1% below

the optimal. They proved the optimality of best known solutions of their earlier tabu

search. Where the optimal solution was not integer, they set a few variables to binary

values based on the best-known solutions. They extended the range of optimally solved

problems.
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In 1996 [27], Ernst and Krishnamorthy presented a new LP formulation for SApHMP,

which requires fewer variables and constraints than those in literature. They affirmed

that even if their model is not tighter than that of Skorin-Kapov in 1994 (which was a

working paper and published in 1996 [78]), it yields optimal solutions in a significantly

less computational time and is less memory intensive. This model has 2n2 + n + 1

linear constraints and n3 + n2 variables where n2 are binary.

O’Kelly et al. in 1996 [66], tried to use other existing formulations and improved

the linearization scheme for both single and multiple allocations. They derived new

formulations with (n4 − 3n3 + 5n2 − n)/2 variables and (2n3 − n2 − n + 2)/2 linear

constraints for the multiple allocation and (n4−3n3 + 7n2−3n)/2 variables and n3 + 1

linear constraints for the single allocation problem. These new formulations allowed

them to do more extensive computation and solve even larger instances than those

have been solved in literature until that time.

In 2001, Ebery [24] presented a new MIP for USApHMP. This formulation uses

fewer variables than those previously presented in the literature. This is also the first

mixed integer linear program for single allocation hub location problems requiring only

O(n2) variable and O(n2) constraints. He showed that the model is more effective both

in terms of computational time and memory usage. Moreover, lager instances could be

solve.

Other work can be found in Sohn and Park in 1998 [80] on USApHMP. They

studied the case when the unit flow cost is symmetric and proportional to the distance

and improved the formulation of [66].

Although, the formulation proposed by Ebery in 2001 is the best known model

among single allocation models. However, with respect to the computational time the

model of Ernst and Krishnamorthy [27] keeps to be the best ([4]).

Multiple Allocation

The first model for multiple allocation problem is due to the work of Campbell in 1992

[8]. He formulated MApHMP as a linear integer program. It employs n4 + n binary

variables. The total number of (linear) constraints is 2n4 + n2 + 1. In 1994 [9], he

showed that in the absence of capacity constraints, the total flow from each origin to

each destination is routed via the least cost hub pair. Therefore, it is not necessary for

any of the n4 flow variables to be binary in MApHMP. He proposed formulations for

UpHMP and UHLP. Again, in 1996 [10], he presented other integer formulations for

MApHMP.
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In 1996, Skorin-Kapov et al. [78] presented a new MIP for UMApHMP. This model

uses totally n4 +n variables where only n variables are binary and includes 2n3 +n2 +1

linear constraints. The model reported a tight LP bound. The LP solution of most of

the CAB instances were integer and generated lower bounds less than 1% below the

optimal value of MApHMP.

In 1998 [28], a new model for UMApHMP was proposed by Ernst and Krishn-

moorthy based on the idea of their earlier work on the single allocation problem. It

uses 2n3 + n2 + n variables n of which are binary and 4n2 + n + 1 linear constraints.

They also showed that their model is superior to the LP-based model of [78] and allows

solving larger size instances.

Sohn and Park in 1998 [80] proposed a model for UMApHMP.

In 2004, Boland et al. [7] exploited the characteristic of optimal solutions in the

model of [28]. They proposed some preprocessing and improved the lower bound.

In 1999, Sasaki et al. [76] introduced a special case of MApHMP by considering

only one hub in each route. This problem is known as the 1-stop problem.

Fixed Cost, Threshold and Capacities

The answer to question of optimal number of hubs for a given set of interactions be-

tween a number of fixed nodes redounded to incorporating new aspects in the problem.

In order to make the number of hubs an endogenous part of the problem, one can either

make the operating cost of hubs explicit or consider an amount of available budget for.

For the first time, O’Kelly in 1992 [65] proposed the incorporation of fixed costs

as hub setup cost in the objective function. In this model the number of hubs rather

than being fixed beforehand is a decision variable. The model is the quadratic integer

model of O’Kelly [64] where fixed cost terms are incorporated.

In 1994, Campbell [9] also suggested making use of a threshold as the minimum

flow needed to allow service on a spoke link. He incorporated fixed costs for spoke

edges in pHMP.

In 1998, Abdinnour-Helm and Venkataramanan [3], proposed a new quadratic inte-

ger formulation for the UHLP based on the idea of multi-commodity flows in networks.

In 1998, Sohn and Park [80] proposed improved MIP formulations for UMApHMP
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and USApHMP where fixed cost for hub edges is considered.

Nickel et al. [61] in 2001 proposed a model for HLPs. They assumed fixed costs

not only for hubs, but also fixed costs for hub edges and spoke edges.

When the number of hubs is not in a priori fixed, in addition to multiple and single

allocation variants, some capacity policies can also be considered. The first models

dealing with the single/multiple uncapacitated/capacitated hub location problems be-

long to Campbell in 1994 [9].

In 1994, Aykin [6] proposed a hub location model with fixed cost and capacity on

the hubs. This model uses n4 + n binary variables and 2n2 + 2n+ 1 linear constraints.

In 1999, Ernst and Krishnamoorthy [30] presented two formulations for CSAHLP.

The second and better one uses fewer variables and constraints than those existing in

literature until that time. This was the first time that the capacitated variants of the

problem is solved in literature.

In 2000, Ebery et al. [25], presented a new MIP formulation and its modification

for CMAHLP. This model has 2n3 + n2 + n variable where n are binary and includes

2n2 + 2n linear constraints. Although, this new formulation contains fewer variables

and constraints in its time, it was weaker. However, they could solve larger problems

and in less amount of computational time.

Boland et al. [7] suggested making use of preprocessing and cutting for MAHLP.

They used flow cover constraints for the capacitated case in order to improve the com-

putational time. They identified some properties of the problem and exploited for

applying preprocessing.

Labbé et al. in 2005 [53] proposed a Quadratic Capacitated Hub Location Problem

with Single Allocation (QHL) (QHL). They presented two relaxation of this model,

Linear Capacitated Hub Location Problem with Single Allocation (LHL) with capacity

on nodes (on the amount of traffic passing through) and Uncapacitated Hub Location

Problem with Single Allocation (UHL) (UHL).

In the same year, Yaman [84] proposed a model for telecommunications with mod-

ular capacity. This model is known as Uncapacitated Hub Location Problem with Mod-

ular Arc Capacities (HLM) and the capacity restricts the amount of traffic transiting

through the hub. Furthermore, fixed cost, both for hubs and hub edges, were consid-

ered.
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Again, Yaman and Carello [85] in 2005 proposed a different idea in their new model.

In this new model the cost of using an edge is not linear, rather, is stepwise. The capac-

ity of a hub restricts the amount of traffic transiting through the hub rather than the

incoming traffic. The problem considered is again the Single Assignment Hub Location

Problem with Modular Link Capacities (HLMC).

Maŕın in 2005 [56], proposed a new capacitated model for MAHLP in which the

capacity is considered as an upper bound on the total flow coming directly from the

origins. Furthermore, it is assumed that the flow between a given origin–destination

pair can be spilt into several routes. He proposed a tight integer linear programming

formulation for the problem along with some useful properties of the optimal solutions

to speed up the resolution. He could solve instances of medium size very efficiently and

outperformed others given in the literature.

In 2007, Wagner [83] improved the formulation of [81] (the so called Cluster Hub

location Problem (CHLP)). This new model has less variable while LP relaxation is

tight. Moreover, larger problem instances can be solved.

A capacitated version of the 1− stop problem is also studied in [75].

2.5.2 Polyhedral Studies

Hamacher et al. [40] identified the dimension and derived some classes of facets for the

HLP polyhedron. They proposed a general lifting rule to lift facets from Uncapacitated

Facility Location Problem (UFLP) to the UMAHLP. In their strong formulation, all

the constraints were facet defining.

In [52], Labbé and Yaman studied the USAHLP to find facet-defining inequalities

that can be separated in polynomial time. They proposed two formulations based on

the multi-commodity flow variables. Two projection schemes for the flow variables of

these two models were presented and extreme rays of the projection cone for the single

commodity case were identified.

In addition to that, in 2005, Labbé et al. [53] studied the polyhedral properties of

SAHLP. They introduced variants of QHL and some facet-defining and valid inequal-

ities. This includes facet-defining inequalities involving only assignment variables and

valid inequalities involving both assignment and traffic variables. Other valid inequal-

ities and separation algorithms were also presented.

Yaman [84] in 2005, presented some valid inequalities, some results that give the

optimal lifting coefficients of some variables as well as families of facet defining inequal-
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ities.

Maŕın [57] exploited the knowledge of the polyhedron of set-packing problem for

UHLP and presented some facet-defining valid inequalities when the cost structure

satisfies the triangle inequality. He called the problem as Uncapacitated Euclidean Hub

Location Problem (UEHLP) (UEHLP).

In 2006, Maŕın et al. [58], presented a new tight integer formulation for UMAHLP

by studying the polyhedron of the problem. This model allows one or two visits to hubs.

In this generalized model, the cost does not need to satisfy the triangle inequality. He

used the intersection graphs to create clique inequalities that proved to be better. So

far, this model is the best-known model.

2.5.3 Others

In 2005, Campbell et al. [13] proposed a new model which they called Hub Arc Loca-

tion Problem. Rather than locating discrete hub facilities, this model locates hub arcs,

which have reduced unit flow costs.

There are other works which deal with the different cost structures, study and anal-

ysis of impacts of the scale economy and so on (see [67, 41] .

In 2007, Costa et al. [21] proposed an interactive bi-criteria approach for the

CSAHLP. Instead of using capacity constraints to limit the amount of flow that can be

received by the hubs, they introduce a second objective function to the model (besides

the traditional cost minimizing function) that tries to minimize the time to process the

flow entering the hubs. Two bi-criteria single allocation hub location problems were

presented. The first one minimizes the total service time and the second one minimizes

the maximum service time on the hubs. They also discarded the capacity constraints

and analyzed the impact of these limits on different non-dominated solutions.

2.5.4 Applications

Applications of HLPs in transportation and telecommunications were reported in many

work. Hall in 1989 [39], examined the application of hub-and-spoke networks for con-

figuration of an overnight package air network. The specific impact of time-frame

restriction on the configuration of a transportation network with emphasis on the air

transportation over a large region with multiple time zones was studied.

O’Kelly and Lao [68] in 1991, presented a linear programming approach to solve the
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mode choice problem in a hub-and-spoke network. Their network structure includes

two hub nodes: A master hub (Dayton, Ohio) that is connected to all the nodes and

a minihub (Los Angeles, California) performing as a regional sorting center. The LP

formulation decides which hub to be served by truck rather than air and afterwards the

cities that should be connected to the minihub will be determined. All the activities

are constrained by the delivery schedule determined by the time zone.

In 2005, Raccunica and Wagner [72] applied HLPs on the freight rail network. This

model allows for non-linear and concave cost functions on different segments. They ex-

ploited the available knowledge on the polyhedral of HLPs and proposed a linearization

procedure along with two efficient variable-reduction heuristics for its resolution. They

provided an analysis of the model on a full-scale dataset of the Alpine region in Europe.

In 2007, Jeong et al. [44], studied the European freight rail way system. They

proposed a mathematical model for their case study.

Iyer and Latriff [42] in 1990, considered centralized and decentralized strategies and

used hub nodes in a network of service within a guaranteed time.

In 1983, Powell and Sheffi [71] studied less-than-truckload (LTL) motor carrier.

Freights are consolidated in end-of-line terminals and sent to breakbulk terminals.

The freights are consolidated by unloading, sorting and reloading. Although their aim

was to propose a heuristic algorithm to solve this problem, they also presented an IP

formulation in order to represent the complexity and implication of designing heuristics

instead.

LTLs were again studied in 2007 on a case study in Brazil [23]. For further details

one may refer to [11].

In 1996, Jaillet et al. [43] applied HLPs for capacitated airline networks. They

presented three linear integer programming models corresponding to three different

service policies. They applied their work on data of up to 39 cities in U.S. .

Kuby and Gray [51] applied it on package delivery in U.S and in 2006 Cetiner et

al. [18] on a case study of Turkish postal delivery system.

For telecommunication applications we refer to the work of Klinswicz [49] in 1998

and Carello et al. [17]. Another work in 2005 [85], was due to Yaman and Carello.

For a review of models and methods in freight transportation one may refer to [22].
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Aversa in 2005 [5] proposed an MIP model for locating a hub port in the East coast

of South America.

Cordeau et al. [20] in 1998 surveyed the studies on rail transportation problems.

The review mainly concentrates on routing and scheduling problems.

In 2001, Nickel et al. [61] proposed new mathematical models for application of

HLPs in urban public transport network. As mentioned earlier, in one of their models

(Generalized Public Transport (GPT)), they considered fixed cost for hub nodes, hub

edges and also spoke edges. They relaxed some classical assumptions of HLPs and

their models are customized for public transport planning. Their first model (PT)

has 2n4 + n2 + n variables, where n2 + n are binary and the second one, GPT, has

2n4 + 2n2 + n variables where 2n2 + n are binary. Both models use linear constraints

of O(n4). They used CAB dataset for their work.

2.5.5 Solution Methods

It is already proven in literature that pHMP is NP-hard, even if the location of hubs

are known (see [45]). That is, the allocation part of the problem still remains NP-hard

(in fact it is equal to quadratic assignment problem (QAP) ). Therefore, as the problem

size increases, some difficulties to solve instances of the problem raises. One expect a

lot of studies especially on the heuristic strategies aiming to solve instances of HLPs

to high quality solutions. Available solution methods in literature are divided into two

category: Exact and heuristics.

Exact Methods

Aykin in 1994 [6], proposed a branch-and-bound algorithm for CSApHMP.

In 1996 Ernst and Krishnamoorthy [27], presented a branch-and-bound algorithm

for SApHMP where they used the solution of their simulated annealing as upper

bound. Another variant of branch-and-bound can be found in [48].

In 1998, Abdinnour-Helm and Venkataramanan [3] applied a sophisticated ap-

proach. The bounds are obtained by employing the underlying network structure of

the problem.

In 1999, Ernst and Krishnamoorthy [30], proposed an LP based branch-and-bound

algorithm for CSAHLP. The upper bound is achieved from a heuristic.
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In 2000, Ebery et al. [25] developed a branch-and-bound for CMAHLP. They used

upper bounds from a shortest-path based heuristic and a lower bound from a dual

ascent based on a disaggregated model formulation.

In 1998, Ernst and Krishnamoorthy [29] presented a shortest-path based branch-

and-bound for both USApHMP and UMApHMP. However, the algorithm performs

better for the case of multiple allocation.

Mayer and Wagner in 2002 [59], proposed a branch-and-bound algorithm for UMAHLP.

The so called HubLocator algorithm could solve the instances up to size 40.

In 1999, Sasaki et al. [76] presented a branch-and-bound method for the 1-stop

problem. In 2003, Sasaki and Fukushima [75] proposed a branch-and-bound based on

the lagrangian relaxation bounding strategy.

In 2005, Maŕın [56] used commercial branch-and-bound code for solving CMAHLP.

The lower bound was achieved from the LP relaxation and the upper bound from a

heuristic which acts on the solution of the LP.

Branch-and-cut is also applied to variants of problems. One can refer to [53] for

QHL and also [85] for a similar model. They applied the knowledge about the polyhe-

dral studies in both work.

Aykin in 1994 [6], used a Lagrangian relaxation for the routing sub-problem of

a CSApHMP after the hub locations were fixed by branch-and-bound or a greedy-

interchange heuristic.

In 1998, Pirkul and Schilling [70] presented a Lagrangian relaxation equipped with

a subgradient and a cut constraint. They also proposed a measure of quality to evalu-

ate their solutions quality. The model is based on the tight LP of Skorin-Kapov et al.

[78] for SAHLP.

Elhedi and Hu [26] in 2005 proposed a Lagrangian heuristic for the problem of

hub-and-spoke network design with congestion at hubs. They assumed a convex cost

function that increases exponentially as more flows are assigned to hubs. First they

linearized this non-linear term and then Lagrangian heuristic is applied.

Maŕın [57] in 2005 took the advantage of his tight model which benefits from the

applied knowledge of the polyhedron of the problem and used the Lagrangian relax-

ation technique to achieved a very efficient relax-and-cut algorithm for UEMAHLP.
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In the dual approaches we refer to [48] for a dual ascent and dual adjustment algo-

rithm. Together with an upper bound construction algorithm, it offers a stand-alone

algorithm. However, they also incorporated them into a branch-and-bound algorithm.

Sung and Jin in 2001 [81], considered a hub network design problem and presented a

model under non-restrictive network policy allowing spoke-to-spoke edges. The model

is then solved by a coupling of dual ascent and dual adjustment.

Mayer and Wagner [59] in 2002, employed a dual ascent inside the HubLocator.

In 2007, Cénovas et al. [16], presented a heuristic method based on dual-ascent

for the UMAHLP which appeared in [58]. They could solve the instances up to 120

nodes and at reasonably fast speed. This heuristic is embedded in a branch-and-bound

framework and prepares a good lower bound for hub nodes of branching tree.

Wagner [83] in 2007 proposed a dual-based solution method for Cluster Hub Loca-

tion Problem that outperforms the heuristic proposed by Sung and Jin (in 2001 [81])

. This not only provided optimal solutions, but also needed less computational time.

In 1998, Ernst et al [28] proposed an enumeration algorithm by explicitly enumer-

ating all possible p hubs from among n nodes for UMApHMP.

In 2002, Klincewicz [50] proposed an optimal enumeration approach for FLOWLOC

model of O’Kelly and Bryan [67] that treats the economies of scale by means of

piecewise-linear concave cost functions on the interhub arcs.

Campbell et al. in 2003 [15], proposed an enumeration-based parallel solution

method for solving hub arc location problem. Although this paper was published in

2003, it essentially appeared after the two other papers of Campbell et al. [13, 14] which

were published in 2005. In these works, they introduced the hub-arc location problems.

Campbell et al. in 2005 [14], proposed two novel enumeration-based approaches to

finding solutions to hub arc location problems.

In 1998 [80], Sohn and Park proposed a shortest-path based algorithm for MApHMP.

Study of lower bound is also reported by O’Kelly et al. [69]. They improved lower

bounds of related LP of quadratic model of O’Kelly [65] and presented new lower

bounds for HLP in presence of triangle inequality.

Pirkul and Schilling in 1998 [70], prepared tightest bounds of any heuristic to that
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date by using cut constraints in the subgradient optimization.

Benders decomposition approaches for UMAHLP for the formulation in [40] is con-

sidered by R.S. de Camargo et al. in [74]. They decomposed the problem following the

Benders scheme and solve the sub-problem for each origin and destination by inspec-

tion.

In [73], Rodriguez-Martin and Salazar-Gonzalez presented an MIP model and pro-

posed solution method is a Double Benders Decomposition.

Heuristic Methods

There are much work has also been done on the development and design of heuristics

and meta-heuristics. We only cite some of the most well-known and effective ones in

literature.

Perhaps, Ernst and Krishnamoorthy in 1996 [27], have been one of the firsts to

develop a Simulated Annealing (SA) algorithm for the p-hub median problem.

In 1999, Ernst and Krishnamoorthy [30] developed an SA for CSAHLP. They used

the solutions as the upper bound in a branch-and-bound.

In 2001, Abdinnour-Helm [2] presented an SA for pHMP of O’Kelly [64]. Results

have been compared against the tabu search of Skorin-Kapov [77], MAXFLOW and

ALLFLOW. They showed that in general, tabu search and simulated annealing outper-

form the two others.

In 1998 [3], Abdinnour-Helm and Venkataramanan proposed the first Genetic Al-

gorithm (GA) for UHLP.

In 2005, Topcuoglu et al. [82] proposed a robust GA that could solve all the CAB

instances to optimality. For AP instances, solutions are obtained in a fraction of best

run times reported in literature ([1]). For larger instances it considerably surpasses its

predecessors with respect to both quality and computational time.

In 2007, seemingly not aware of [82], Cunha et al. proposed another GA [23]. They

embedded a fast and simplified mechanism to allow non-improving solutions to be ac-

cepted with a given probability.

Several Tabu Search (TS) algorithms were also proposed in literature. In [47] the
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first TS was proposed for SApHMP. In 1994, Skorin-Kapov and Skorin-Kapov [77]

developed another TS based on 1-exchange for the same problem. They showed that

their so called TABUHUB outperforms both HEUR1 and HEUR2 of O’Kelly [64].

Klincewicz in 2002 [50], presented a heuristic based on the TS for FLOWLOC model.

In 2004, Carello et al. [17] developed a TS for application of HLPs in telecommu-

nications.

Yaman and Carello [85], proposed a TS for the HLMC with new cost structure

and capacity policies. They used TS for the location part and another local search for

the assignment problem.

Greedy Randomized Adaptive Search Procedure (GRASP) was also proposed for

USApHMP in [47], and in [50] for the model given in [67].

A hybrid of genetic algorithm and tabu search is proposed by Abdinnour-Helm [1]

for USAHLP. They showed that this hybrid had better performance than pure GA. The

results stated that GA component is useful to diversify the search and TS to localize it.

Other hybrid algorithm in literature is due to Chen [19] in 2007 for USAHLP. He

presented two approaches in order to find upper bound on the number of hubs and

proposed a Simulated Annealing (SA) equipped with a tabu list and an improvement

method. Proposed heuristic is capable of obtaining optimal solutions for all small-

scaled problems very efficiently. This algorithm outperformed that of [82].

Smith et al. [79] took the advantage of the quadratic model of O’Kelly [64] to be

mapped on a Hopfield neural network. A Hopfield network is used to find the local

optimum of a energy function, which can be translated to the local minimum of the

optimization problem.

There are also some other heuristics proposed which may not be classified into the

well-known categories.

Powell and Sheffi in 1983 [71], proposed a local improvement procedure which starts

with a reasonable initial solution and then test a large number of small changes in so-

lution looking for improvements.

O’Kelly in 1987 [64], presented two greedy and interchange heuristics (Heur1 and

Heur2). In both of them a complete enumeration of different patterns is considered. In

Heur1, each node is allocated to the nearest hub but in the Heur2, which results in a
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tighter bound, allocation to first or second hub node is taken into account.

In 1991, Klincewicz [46] developed some heuristics for SApHMP. He developed

exchange and clustering heuristics. The exchange heuristics, for a given incumbent set

of nodes, examines the existence of other promising candidate(s) in single and double

exchange manner (1-exchange and 2-exchange). The clustering heuristic, first clusters

the nodes into p groups and then based on a special measurement, finds a hub node

for each one to serve the cluster. In the assignment part of the problem, in addition

to the distance-based measurement of O’Kelly [64] that tries to minimize the costs

on the spoke edges, he proposed other approaces. A common traffic criterion aiming

to minimize the cost on the hub edges and a multi-criteria assignment procedure to

compromise between these two sorts of assignments based on a weighted sum of two

measurements. A drawback of such approach is due to the parameters of weight used in

the weighted sum. Computational results showed than the double exchange heuristic

has been considerably better that others.

In 1992, O’Kelly [65] proposed a heuristic that addressed the optimal number and

location problem. This gives an upper bound on the solution. A lower bound is then

developed by underestimating the quadratic contribution to the objective and finally

attempts to improve the selection by systematic adjustment of the assignments.

Campbell [10] in 1996, proposed two heuristics ALLFLO and MAXFLO for single

and multiple problems, respectively. The multiple assignment problem is easier due

to the degrees of freedom. From a solution of multiple assignment problem which is

a lower bound on the optimal solution of single assignment, a solution to the single

assignment is developed. The ground idea is a greedy-interchange heuristic.

In 1996, Jalliet et al. [43] proposed a mathematical programming based heuristic

using valid inequalities and local improvements.

In 1998, Ernst et al. [28] proposed a heuristic based on the shortest-path. For a

given set of hub nodes, the allocation part of the problem can be solved very efficiently

by all-pairs shortest-path algorithm. They used a modified Floyd-Warshall algorithm

to find the shortest paths.

In 1999, Sasaki et al. [76] proposed a greedy heuristic for the 1-stop problem.

In 1999, Ernst and Krishnamoorthy [30] proposed a random descend algorithm for

CSAHLP.

In 2000, Ebery et al. [25] developed a shortest-path based heuristic for CMAHLP.
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In 2004, Carello et al. [17] developed two more heuristics namely, random multi-

start and iterated local search for CSAHLP.



Chapter 3

Mathematical Formulations

In this chapter, we propose a new mathematical model of HLPs applied to public

transport. The computational results substantiate the superiority of this model to the

existing models for the application and use it as a basis to derive other applicable

variant models.

3.1 Classical Assumptions

In classical HLP models, four main assumptions were always considered:

Ass. a) The hub-level network is a complete graph.

Ass. b) Using inter-hub connections has a lower price per unit than using spoke con-

nections. That is, it benefits from a discount factor α, (0 < α < 1).

Ass. c) Direct connections between the spoke nodes are not allowed.

Ass. d) Costs are proportional to the distance or in other words, the triangle inequality

holds.

These assumptions have always been considered in the literature in the initial work

on HLPs. However, thereafter some authors suggested to relax some of them with

pertinence of the applications.

Theorem 3.1.1 (Path Length). If all the four assumptions hold, any origin-destination

path contains no more than one hub edge (or two hub nodes).

Proof. From Ass. (a) and Ass. (d) it follows that transportation in the hub-level is

always directly accomplished. Together with Ass. (c), every flow is routed via either 1

or 2 hub nodes. Hence the proof is completed.

Some of the prototypical works dealing with relaxation of classical assumptions are

noted in the following.

In 2001 [61], Nickel et al. proposed two models for urban public transport where

they relaxed some of these assumptions. In general, they relaxed Ass. (a), Ass. (c)
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and Ass. (d).

After that in 2005, Campbell et al. [13, 14] introduced the Hub Arc Location Prob-

lem that in general relaxed Ass. (a) and Ass. (b). Their cost structure satisfies the

triangle inequality and there is no direct connection between the spoke nodes. How-

ever, it is not necessary to have discount on all of the hub arcs. In addition to these

work, Maŕın in [56, 58] relaxed Ass. (d).

There already exist other work that modify (relax) some of these assumptions, how-

ever, the mentioned ones are from among the most well-known ones in literature.

3.2 Mathematical Models

In this section we review some of the initial formulations proposed for HLPs and con-

sequently, focus on the models designed for public transport planning.

3.2.1 Primary Models

In initial models for HLPs, it is usually assumed that there are three different cost

factors corresponding to each of the spoke-hub, hub-hub and hub-spoke edge compo-

nents. The parameters χ, α and δ are discount factors corresponding to each of these

three components, respectively. Therefore, in a general form and according to Theorem

3.1.1, for a given pair of origin-destination (i and j ) the cost of traveling from node i

to node j via hub nodes k, l amounts to,

χdik + αdkl + δdlj,

where dpq is the traveling cost between nodes p and q, α < χ, α < δ and 0 < α < 1 is

considered as a discount factor.

As mentioned earlier, the first formulation in this area is an IP formulation pro-

posed by O’Kelly [64] for USApHPM which uses a quadratic term in the objective

function follows.

(SApHMP)

Min
∑
i

∑
j

Wij[
∑
k

XikCik +
∑
k,m

XikXjmαCkm +
∑
m

XjmCjm] (3.1)

s.t. (n− p+ 1)Xkk −
∑
i

Xik ≥ 0, ∀k, (3.2)
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∑
k∈N

Xik = 1, ∀i, (3.3)

Xik ≤ Xkk, ∀i, k, (3.4)

Xik ∈ {0, 1}, ∀i, k, (3.5)

where Xik = 1, if node i is assigned to hub node k, 0 otherwise. Moreover, Xkk = 1,

if node k is designated to act as a hub node, 0 otherwise. The objective function (3.1)

measures the total flow cost of origins to the first hubs, first hubs to the second ones

and second ones to the destinations, respectively.

The constraints (3.2) ensure that exactly p hub nodes should be selected. The con-

straints (3.3) indicate that each node, is either a hub node or assigned to exactly one

hub node. In constraints (3.4) it is stated that a node can only be assigned to a hub

node or itself, if it is a hub node. Here, intrahub flow, namely flow from a hub to itself

does exist.

The first linear formulation is due to Campbell [8] in 1994. This model follows:

(UMAHLP)

Min
∑
i∈N

∑
k∈N

∑
l∈N

∑
j∈N

WijCijklXijkl +
∑
k

FkYk (3.6)

s.t.
∑
k∈N

∑
l∈N

Xijkl = 1, ∀i, j, (3.7)

Xijkl ≤ Yk, ∀i, j, k, l, (3.8)

Xijkl ≤ Yl, ∀i, j, k, l, (3.9)

Yk ∈ {0, 1}, ∀k, (3.10)

Xijkl ≥ 0, ∀i, j, k, l, (3.11)

where Yk = 1 if node k acts as a hub, 0 otherwise andXijkl is the fraction of flow from

i to j traversing the hub edge k − l. The objective function (3.6) is to minimize total

cost composed of the flow transition costs and the hub establishment costs. Moreover,

no constraints on the number of hubs to be established exists. Constraint (3.7) ensures

that the whole flow originated at i and destined to j, will be eventually received by j

and no part of the flow can be lost (flow conservation). In (3.8) and (3.9) it is ensured

that the flow of i to j is allowed to be transferred through the nodes k and/or l, only

if they are hub nodes.

The model includes n4 real variables, n integer and has 2n4 +n2 constraints. In this

model Campbell assumed that Cijkl = dik + αdkl + dlj, (χ = δ = 1) and the triangle

inequality holds.
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Many other models are proposed in literature. However, these two models are be-

tween the most effective, initiative and fundamental models which paved the way for

further studies in the area of HLPs.

All the four classical assumptions are valid for these formulations.

3.2.2 Available HLP Models for Public Transport

The first models for public transport applications, to the best of our knowledge, are

due to Nickel et al. in 2001 [61]. They proposed two models that will be explained

prior to presenting our new models.

In general, in application like public transport networks, the hub-level graph is not

necessarily a complete graph (see Figure (2.4)). The triangle inequality might not hold

in the cost structure or the fixed cost for establishing a direct hub edge can be higher

than the cost for non-direct transportation. Therefore Ass. (a) and Ass. (d) can be re-

laxed. In order to achieve a more realistic model, Ass (c) can be relaxed, too. Because,

often there exist direct connections between some spoke nodes which can be used in a

cheaper way than routing via hub nodes.

In the absence of the triangle inequality (Ass. (d)), at least in the hub-level net-

work, if an undirected path (sequence of hub edges) is preferred to a direct hub arc

connection, then no flow uses this direct hub edge as a part of the path it traverses to

reach the destination. Even, the flow between two end-points of this direct connection

does not traverse the direct edge. Therefore, necessity for relaxation of Ass. (a) in

situations that setup costs are incorporated into the model is again confirmed.

In the following, the first model (PT) relaxes Ass. (a) and Ass. (d). Later (in

GPT) they showed that Ass. (c) also can be relaxed.

Pubic Transport (PT)(Nickel et al. 2001)

A set E = {{i, j} ∈ V 2 : i ≤ j} is defined to be the set of all edges that can be estab-

lished in the overall hub-level and spoke-level networks. Although definition of such

a set can be omitted by a subtle modification of fixed setup costs, it avoids from the

existence of a large number of constraints (even before the preprocessing phase of MIP

solver) if they are not really necessary. It should be noted that, in situations that the

network is directed, the term (i ≤ j) should be removed from the definition of E . The

variable Xijkl is defined to be the fraction of flow from i to j which traverse hub edge

{k, l} and variable Sijkl is defined to be the fraction of flow from i to j which traverse
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the spoke edge {k, l}. The binary variable Ykl is defined to be 1 if the edge {k, l} is es-

tablished as hub edge, 0 otherwise and Hk = 1 if node k receives a hub and 0, otherwise.

(PT)

Min
∑
i∈N

∑
j∈N

Wij[
∑
{k,l}∈E

αdkl(Xijkl +Xijkl) +
∑
k∈N

dikSijkl

+
∑

l∈N :l 6=i

dljSijlj] +
∑
{k,l}∈E

IklYk,l +
∑
k∈N

FkHk (3.12)

s.t.
∑
l∈N

(Xijkl + Sijkl −Xijlk − Sijlk) = (3.13)
+1, ∀i, j, k ∈ V : k = i, i 6= j,

−1, ∀i, j, k ∈ V : k = j, i 6= j,

0, ∀i, j, k ∈ V : k 6= i, k 6= j,∑
l∈N

(Xiiil + Siiil) = 1, ∀i, (3.14)∑
l∈N

(Xiili + Siili) = 1, ∀i, (3.15)

Xijkl ≤ Ykl, ∀i, j, {k, l} ∈ E , (3.16)

Xijlk ≤ Ykl, ∀i, j, {k, l} ∈ E , (3.17)

Sijik ≤ Hk, ∀i, j, k, l : k 6= j, (3.18)

Sijkj ≤ Hk, ∀i, j, k, l : k 6= i, (3.19)

Sijij ≤ Hi +Hj, ∀i, j, (3.20)

Sijkl = 0, ∀i, j, k, l : k 6= i, l 6= j, (3.21)

Ykl ≤ Hk, ∀{k, l} ∈ E , (3.22)

Ykl ≤ Hl, ∀{k, l} ∈ E , (3.23)

Sijkl, Xijkl ≥ 0, ∀i, j, k, l, (3.24)

Ykl, Hk ∈ {0, 1}, ∀k, l. (3.25)

The objective function (3.12) reflects the total cost. This cost amounts to the trans-

portation costs plus the hub edges and hub nodes setup costs. The constraints (3.13)

are the flow conservation at the origins, destinations and intermediate nodes, respec-

tively. Constraints (3.14) and (3.15) are needed only if the intrahub flows or the flows

from i to i (intra-flow) exist at the hubs. For example, in applications of postal deliv-

ery, the packages received by the post office of districts are sorted at hubs and some

of them might be sent back to the another destination in the same district (remain

in the same region) and no other districts. However, this is usually not the case in

public transport unless switching between different platforms or stations in the same

terminal requires considerable amount of resources (cost or time). Constraints (3.16)
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and (3.17) ensure that the flow of Xijkl should be passed through the hub edge {k, l}
and analogously for Xijlk. The spoke edges should start or end with a hub node, which

is stated in (3.18) and (3.19). Constraints (3.20) ensure that, direct connections should

also be passed through at least one hub. Spoke edges are only allowed for the first and

last parts of any path, which is stated in (3.21). Finally, constraints (3.22) and (3.23)

ensure that end-points of a hub edge are hub nodes.

A special feature of PT is that, it allows spoke edges to be established between

pairs of hub nodes.

Generalized Pubic Transport (GPT)(Nickel et al. 2001)

This model is an extension to the previous model because it also permits making use

of direct edges between two non-hub (spoke) nodes, in contrast with the necessity of

using paths containing at least one hub node in between. This model additionally con-

siders the cost incurred by establishing the spoke edges. It decides on establishing two

types of edges with the goal of minimizing the total cost. In addition to the previously

existing variables, Zkl for all {k, l} ∈ E are introduced. Zkl = 1 if the edge {k, l} is

chosen to be a spoke edge and 0, otherwise. A new parameter Jkl, stands for the cost

incurred by establishing an undirected spoke edge between the nodes k and l. Usually,

in real life problem this cost is considerably less than a hub edge setup cost. Another

new variable Cijk is defined to be 1, if the type of edge changes along the path from

i to j at node k and 0, otherwise. Eventually, parameter q is introduced to be the

maximum allowed number of such switches along any path.

(GPT)

Min
∑
i∈N

∑
j∈N

Wij[
∑
{k,l∈E}

dkl(α(Xijkl +Xijkl) + Sijkl + Sijlk)]

+
∑
{k,l}∈E

IklYk,l +
∑
{k,l}∈E

JklZk,l +
∑
k∈N

FkHk (3.26)

s.t. (3.13), (3.14), (3.15), (3.16), (3.17), (3.22), (3.23)

Cijl ≥
∑
k∈N

(Xijkl −Xijlk), ∀i, j, l : l 6= i, j, (3.27)

Cijl ≥
∑
k∈N

(Xijlk −Xijkl), ∀i, j, l : l 6= i, j, (3.28)∑
l∈N

Cijl ≤ q, ∀i, j, (3.29)

Sijkl ≤ Zkl, ∀i, j {k, l} ∈ E , (3.30)

Sijlk ≤ Zkl, ∀i, j {k, l} ∈ E , (3.31)

Sijkl, Xijkl ≥ 0, ∀i, j, k, l, (3.32)
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Ykl, Zkl, Hk ∈ {0, 1}, ∀{k, l} ∈ E , (3.33)

Cijl ∈ {0, 1}, ∀i, j, l. (3.34)

By removing the constraints (3.27), (3.28) and (3.29), we might have origin-destination

paths with more than three links along in an optimal solution. Using these constraints

and the parameter q ∈ N∪{0}, we can control the number of switchings in every path.

The constraints (3.27) and (3.28) detects whether a switching takes place or not. By

employing the variables Cijk, the constraint (3.29) limits the number of switchings by a

maximum of q. However, if the number of switches does not matter, these constraints

can be simply dropped from the model without any harm. The constraints (3.30) and

(3.31) ensure that the flow of Sijkl is only sent through a spoke edge {k, l}.

2n4 real variables and at most n3 +n2 integer variables are used in this model when

the edges are undirected. In the case of undirected network, the set E contains at most
n(n−1)

2
edges (if there is no flow from i to itself). In a directed network, the cardinality

of E (with the same assumption) is at most n2 − n.

The model also has special properties. For example, in an undirected network it

can happen that in the optimal solution, we have one spoke edge and also one hub

edge between two hub nodes but in different directions, simultaneously.

Moreover, if q = 0, then between two hubs at the same time and in the same

direction both types of edges may exist. Since, a flow originated at a spoke node

wants to stay on the spoke edge and flow started from a hub node does not change

its edge type along the path to destination, if selects the first edge among the hub edges.

3.2.3 New Model for Public Transport Application

A new mathematical model is proposed to act as a basis for our further models for this

application. This model which we refer to by Hub Location Problem for Public

Transport (HLPPT) as is depicted in the following is an MIP model [32, 34].

The following are the attributes we considered for our model:

Attr. a) Connected hub-level network rather than a complete one.

Attr. b) The cost structure neither necessarily satisfies the triangle inequality nor any

other special structure.

Attr. c) To ensure some levels of reliability, there exist the possibility of allowing

multiple connections between the spoke nodes and the hub-level network.
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While a connected hub-level network is assumed in HLPPT, in [61], they did not

introduce any alternative assumption for the relaxation of Ass. (a).

Moreover, in [61], the existence of a spoke edge between hub nodes are allowed,

which can be a threat for connectivity of hub-level network.

Attr. c can guarantee that if an unpredicted failure happens in a (or more) trans-

portation link(s), an alternative one always exists.

In this model, there is no constraint on the number of links in any origin-destination

path.

In HLPs, with the assumptions of Ass. a - Ass. d, once the hub nodes are known,

the remaining problem in the multiple allocation is to find the cheapest routes (al-

though in single assignment scheme it is again NP-hard problem, we are not dealing

with the single assignment in our new model).

In HLPPT, the problem is first to locate the hub-nodes, second to choose the con-

necting hub edges so that it results in a connected hub-level graph and then in the third

step routing the flows. In the second step, neither the number of hub edges is known a

priori nor the way they should be connected to make an optimal connected graph. In

fact, the second step can be considered as the problem of assigning an unknown and

finite number of edges to pairs of hub nodes so that it results in a connected graph.

Table 3.1 sheds some light on this fact.

While in both SAHLP and MAHLP hub edges are identified as soon as the hub

Table 3.1: HLPPT vs MAHLP and SAHLP

HLPPT MAHLP SAHLP

Locating hubs
√ √ √

Selecting hub edges
√

a × ×
Allocation Polynomial Polynomial NP-hardb

a in special case reduces to QAP.
b QAP.

nodes are located, in HLPPT, locating the hub edges is another problem.

Therefore, in terms of difficulty of the problem, one can say that HLPPT is more

difficult than MAHLP. When compared to SAHLP, this problem is not easier, if not

more complicated. Because, if the number of hub nodes are known (say q) by some
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way, the allocation of n − q spoke nodes to q hub nodes is not more difficult than

allocation of unknown and finite number of hub edges to pairs of hub nodes so that it

makes a connected sub-graph. In a special case this problem will be reduced to QAP

and therefore is also NP-hard.

The variables in this model are defined as follows: xijkl = 1 if the optimal path

from i to j traverses the hub edge k− l and 0, otherwise. Also, aijk = 1 if the optimal

path from i to j traverses the spoke edge i− k while i is not hub and 0, otherwise and

bijk = 1 if the optimal path from i to j traverses the spoke edge k − j while j is not

hub and 0, otherwise. In addition, eij = 1 if the optimal path from i to j traverses i−j
and either i or j is a hub and 0, otherwise. For the hub-level variables, ykl = 1, k < l,

if the hub edge k − l is established, 0 otherwise and hk = 1 if k is used as a hub node,

0 otherwise.

The transportation cost for a given flow with origin i and destination j is the sum

of, (i) the cost of sending the flow from i to the first hub node, (ii) the cost of traversing

one or more hub edges discounted by the factor α (0 < α < 1) and (iii) the cost of

transition on the last spoke edge. The proposed mathematical formulation follows:

(HLPPT)

Min
∑
i

∑
j 6=i

∑
k

∑
l 6=k

αWijCklxijkl +
∑
i

∑
j 6=i

∑
k 6=i,j

WijCikaijk +∑
i

∑
j 6=i

∑
k 6=i,j

WijCkjbijk +
∑
i

∑
j 6=i

WijCijeij +∑
k

Fkhk +
∑
k

∑
l>k

Iklykl (3.35)

s.t.
∑
l 6=i

xijil +
∑
l 6=i,j

aijl + eij = 1, ∀i, j 6= i, (3.36)∑
l 6=j

xijlj +
∑
l 6=i,j

bijl + eij = 1, ∀i, j 6= i, (3.37)∑
l 6=k,i

xijkl + bijk =
∑
l 6=k,j

xijlk + aijk, ∀i, j 6= i, k 6= i, j, (3.38)

ykl ≤ hk, ykl ≤ hl, ∀k, l > k, (3.39)

xijkl + xijlk ≤ ykl, ∀i, j 6= i, k, l > k, (3.40)∑
l 6=k

xkjkl ≤ hk, ∀j, k 6= j, (3.41)∑
k 6=l

xilkl ≤ hl, ∀i, l 6= i, (3.42)

eij ≤ 2− (hi + hj), ∀i, j 6= i, (3.43)
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aijk ≤ 1− hi, ∀i, j 6= i, k 6= i, j, (3.44)

bijl ≤ 1− hj, ∀i, j 6= i, l 6= i, j, (3.45)

aijk +
∑
l 6=j,k

xijlk ≤ hk, ∀i, j 6= i, k 6= i, j, (3.46)

bijk +
∑
l 6=k,i

xijkl ≤ hk, ∀i, j 6= i, k 6= i, j, (3.47)

eij + 2xijij +
∑
l 6=j,i

xijil +
∑
l 6=i,j

xijlj ≤ hi + hj, ∀i, j 6= i, (3.48)

xijkl, ykl, hk, aijk, bijk, eij ∈ {0, 1}. (3.49)

The objective (3.35) is the total cost of transportation plus hub nodes and edges setup

costs. The constraints (3.36)-(3.38) are the flow conservation constraints. In (3.39), it

is ensured that both end-points of a hub edge are hub nodes. The constraints (3.40)

ensure that a flow in its path to destination if passes through more than one hub in the

hub-level network, it traverses hub edge(s) connecting these nodes. In (3.41) ( (3.42) )

it is ensured that only a flow with origin (destination ) of hub type is allowed to select

a hub edge to depart from origin (arrive to the destination). Constraints (3.43)-(3.45)

check the end-points of spoke edges. Any flow from i to j, if enters to (depart from)

a node other than i and j, that node should be a hub node. This is ensured by (3.46)

((3.47)). Selection of edges on the path between origin and destination i and j depends

on the status of i and j whether both, none or just one of them is a node. This is

checked by (3.48). In an uncapacitated environment, as also mentioned in ([9]), only

hub node and hub edge variables need to be considered as binary variables (even in

the case of our model, only hub edge variables need to be binary values. However,

the computational experiences suggest to keep the integrality of hub node variables as

well). Therefore, the constraints 3.49 can be replaced by,

xijkl, aijk, bijk, eij ∈ (0, 1), hk, ykl ∈ {0, 1}. (3.50)

From now on, whenever we talk about HLPPT we are referring to the model of (3.35)-

(3.48) together with the constraint (3.50).

3.2.4 HLPPT vs. PT

In our new model, we emphasize on the real willingness of passengers who use public

transport services. Some personal communication with passengers revealed that, for

example, passengers who arrived to the hub-level network do not like to change their

vehicle (train) type inside this network. That is, if they enter a hub node they prefer

to use the fast-line as long as they did not reach to the last hub node where their des-

tination is assigned to (assume an urban public transport network where people have
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to frequently change the vehicle type from ground to the underground and vice versa,

just in a city-wide distance. Besides the inconveniences, it increases the likehood of

missing a connection ).

Although the existing models could be modified to include this new feature, HLPPT

also possesses other properties.

Theorem 3.2.1. In presence of the triangle inequality, the hub level network is a tree.

Proof. The model always reports a connected hub-level. This can be deduced from the

constraints of HLPPT.

In a multiple allocation which we considered here for HLPPT, each origin sends

its flow through the shortest-path to the destination. Moreover, shortest path between

a pair of origin-destination traverses the shortest path between any pair of hub nodes

along this path. In addition to that, there exists only one unique shortest path between

pairs of origin-destination. The latter, is due to the minimizing objective function.

Therefore, there is no more than one path between any pairs of origin-destination in

the hub-level network. The hub-level network is a tree.

It is well-known that the problem is an NP-Hard problem which even small size

instances of that cannot be solved to optimality in a reasonable amount of time. Our

new HLPPT model, as we will show later, paves the way for preparing a good basis

for decomposition algorithms as well as (meta-)heuristics which may enable us to solve

larger size instances to both optimality or high quality solutions.

To have a comparison between our new model and existing PT model, some mod-

ification to the PT model should be taken into account. By adding new constraints

and avoiding spoke edge connections between the hub nodes, the following comparable

model is achieved.

(Comparable PT (CPT))

Min
∑
i

∑
j 6=i

∑
k

∑
l 6=k

Wijdkl(αXijkl + Sijkl) +∑
k,l>k

IklYk,l +
∑
k∈N

FkHk (3.51)

s.t. (3.13), (3.16), (3.17), (3.18), (3.19), (3.20), (3.21), (3.52)

(3.22), (3.23), (3.24), (3.25), (3.53)

Sijkl + Sijlk ≤ 2−Hk −Hl, ∀i, j, k, l > k. (3.54)
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Table 3.2: Comparison between HLPPT and CPT

number of constraints Number of variables

binary continuous

CPT 6n4 + 3n3 + 2n2 n(n−1)
2

+ n 2n4

HLPPT n4 + 5n3 + 7n2 n(n−1)
2

+ n n4 + 2n3 + n2

As one can see in Table 3.2, in our new model HLPPT, the number of constraints

is much smaller than that of CPT. Roughly speaking, it contains almost less than 1
6

of

constraints in CPT. With respect to the number of variables, although they both use

the same number of binary variables, the number of continuous variables in HLPPT

is considerably less than in CPT.

Due to the complexity and memory usage of MIP solution methods like branch-

and-bound algorithm and also hardware restrictions, it is very helpful to have a more

compact and of course tighter model.

3.2.5 Computational Comparison

In this section, we are going to solve instances of AP and CAB data set using both

CPT and HLPPT models. We compare root node gaps(r.n.g), cpu time usage(c.t.u)

and problem size that can be solved by each one. Here, we set Ikl = 500Ckl and

Fi = 5000 for AP instances and Ikl = 200Ckl and Fi = 2000 for CABs.

Table 3.3: Comparison between HLPPT and
CPT on CAB instances

CPT HLPPT

r.n.g(%) c.t.u r.n.g(%) c.t.u

CAB 5 27.08 0.50 opt 0.03

CAB 10 36.30 19.81 opt 0.42

CAB 15 64.35 461.63 opt 2.27

CAB 20 59.95 4596.49 opt 9.09

CAB 25 77.38 � opt 28.23
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Table 3.4: Comparison between HLPPT and CPT on
AP instances

CPT HLPPT

r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.1 opt 0.03

AP 10.4 39.74 26.58 38.99 8.81

AP 15.6 39.87 1055.46 67.75 318.24

AP 20.8 39.89 12564.14 42.75 3683.07

AP 25.10 51.15 > 1 da 44.55 56839.31

AP 30.12 N.A.b N.A. 43.27c N.A.
a N.A., Not able to solve the instance.
b The root note relaxation was solved.
c d: day.

As it is depicted in the Table 3.3, there is a considerable difference between the

root node gaps of HLPPT and CPT on CAB instances. In fact, HLPPT can be

used to solve all the instances of CAB dataset just in the root node to integral optimal

solution. That is the LP relaxation bounds coincide with the MIP optimal value. It is

also clear that HLPPT overtakes the other one in terms of computation time which

is a fraction of CPT. In Table 3.4, again, the superiority of HLPPT to CPT with

respect to the computational time is substantiated. For n = 30, CPT cannot even load

the model in the memory where it takes more than 1.4 GB of memory and CPLEX 9.1

can not handle it. In Contrary, HLPPT can load, perform the primary computation

and not only emphasize the feasibility of problem but also the root relaxation is solved

successfully and gap is reported. However, CPLEX 9.1 failed when proceeded.

In general, HLPPT proves to be superior to the CPT. With respect to the com-

putational effort and the cpu time usage, obviously HLPPT outperforms CPT when

CPLEX 9.1 is used to solve both instances of AP and CAB. Especially, in the case of

CAB instances, HLPPT can be used to solve even more than 500 times faster for some

instances in comparison with CPT.

All the reported instances, are solved on a AMD Opteron (tm) Processor 250, 2.4

GHz and 1 GB of RAM.
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3.3 Extensions to the Base Model of HLPPT

In Subsection (3.2.3), a basis model namely HLPPT is proposed. Now, we are going

to introduce other extensions. For example, other assumptions like Ass. (c) is going

to be relaxed to let direct connections between spoke nodes. In our application, oc-

currences of such situations are very likely. Some other aspects like incorporation of

additional costs for unforeseen delays are also important issues. Special configuration

of hub-level network is also important in some other applications. Moreover, decisions

made by the planners are not usually made for a single period, rather a time horizon is

behind most of the decisions. These are among the motivations to propose new models.

3.3.1 HLPPT Under Non-Restrictive Network Policy

In HLPPT, a flow emanated from one node and destined to another one must be

passed through at least one hub node. It is also possible that flow between two spoke

nodes transits via spoke edges or in other words, there may be direct connections

between spoke nodes (if it provides a better total cost). A new model, we call it Non-

Restrictive HLPPT (NRHLPPT), which treats this variant can be expressed

follows.

Mathematical Model

The new model would be as it follows:

(NRHLPPT)

Min
∑
i

∑
j 6=i

∑
k

∑
l 6=k

αWijCklxijkl +
∑
i

∑
j 6=i

∑
k 6=i,j

WijCikaijk +∑
i

∑
j 6=i

∑
k 6=i,j

WijCkjbijk +
∑
i

∑
j 6=i

WijCij(eij + sij) +∑
k

Fkhk +
∑
k

∑
l>k

Iklykl +
∑
k

∑
l>k

Jklzkl

s.t.
∑
l 6=i

xijil +
∑
l 6=i,j

aijl + eij + sij = 1, ∀i, j 6= i,∑
l 6=j

xijlj +
∑
l 6=i,j

bijl + eij + sij = 1, ∀i, j 6= i,∑
l 6=k,i

xijkl + bijk =
∑
l 6=k,j

xijlk + aijk, ∀i, j 6= i, k 6= i, j,

(3.39), (3.40), (3.41), (3.42), (3.43),
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(3.44), (3.45), (3.46), (3.47), (3.48),

skl ≤ zkl, skl ≤ zlk, ∀k, l > k,

xijkl, aijk, bijk, eij, sij, zij ∈ (0, 1), hk, ykl ∈ {0, 1}.

In addition to the existing variables and parameters of HLPPT, new parameters

Jkl and new variables zkl and sij are incorporated. Usually in real-life, the direct spoke

edges are available and are not subjected to a setup cost, therefore a maintenance cost

is charged for keeping the existing edge operative and recovering the depreciations.

The parameter Jkl for all k, l > k is the amount that is charged to keep this type of

edges in a ready-to-service status. Variables zkl for all k, l > k are introduced to take

1, if the spoke-to-spoke edge k− l is selected to be used as a direct connection between

two spoke nodes, 0 otherwise. The variable sij is introduced to take 1 if the optimal

path from i to j traverses spoke-to-spoke edge i−j while none of i and j are hub nodes

and 0, otherwise. Although the variables sij are defined to take binary values but with

the similar argument mentioned earlier, they can also be relaxed.

3.3.2 HLPPT with Delay Considerations (DHLPPT)

Delay time or connecting time are usually non-ignorable aspects of every transporta-

tion system. The delay time addresses the amount of time between getting down from

a transportation vehicle and waiting for the next possibility to get on. This connecting

time implicitly imposes some costs.

These costs can also have other interpretations. For example, if the passengers from

origin i to destination j lose their connecting train at station k due to an unanticipated

delay and the statistics of such occurrences already exist, this cost can be interpreted

as the average cost of missing for the passengers of origin i to destination j at hub

node k.

Mathematical Model

To extend our existing base model to incorporate delay costs, we consider the delay

to appear where the type of edge changes. That is, when passengers change the spoke

edge and wait to get on the fast-line vehicles or they get down from a fast-line and take

the spoke edge type facilities to reach destinations. Clearly, that is the most important

place where any unforseen delay in the hub-level network imposes the amount of time

the passenger has to wait.



46 3 Mathematical Formulations

A new variable δijk = 1, if the path from i to j which traverses the spoke edge

i − k or k − j does not traverse via a single hub node in the path from i to j and 0,

otherwise. The parameter Cdel
ijk is the cost per person of the corresponding delay.

(DHLPPT)

Min
∑
i

∑
j 6=i

∑
k

∑
l 6=k

αWijCklxijkl +
∑
i

∑
j 6=i

∑
k 6=i,j

WijCikaijk +∑
i

∑
j 6=i

∑
k 6=i,j

WijCkjbijk +
∑
i

∑
j 6=i

WijCijeij +∑
k

Fkhk +
∑
k

∑
l>k

Iklykl +
∑
i

∑
j 6=i

∑
k 6=i,j

Cdel
ijkδijk

s.t. (3.36), (3.37), (3.38), (3.39),

(3.40), (3.41), (3.42), (3.43),

(3.44), (3.45), (3.46), (3.47), (3.48),

δijk ≥ aijk − bijk, ∀i, j 6= i, k 6= i, j,

δijk ≥ bijk − aijk, ∀i, j 6= i, k 6= i, j,

xijkl, aijk, bijk, eij ∈ (0, 1), hk, ykl, δijk ∈ {0, 1}.

Now, the transportation cost between i and j is measured by the transportation from

i to the first hub node; plus the delay cost if the origin is a spoke node and destination

is not a spoke node allocated to the first hub node; plus the transportation cost on the

hub-level network; plus the delay time for catching the first possibility to travel to the

destination if the destination is a spoke node and origin is not a spoke node allocated

to the last hub node.

3.4 Additional HLP Models Derived from HLPPT

We use this opportunity to introduce other variants. Although they might not be

directly used in the public transport applications, the flexibility of our formulation

lead to the emergent of such variants. These variants, as for some of them reported in

literature are useful in IT and telecommunication applications.

3.4.1 Tree-Shaped HLPPT (TSHLPPT)

Often, due to some reasons, where deficiency of resources, political and geographical

issues are some of them it is required to have just a single path between each pair of

origin-destination.

In presence of the triangle inequality as a result of Theorem 3.2.4, the hub-level
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network is a tree. However, if the triangle inequality does not hold, due to the connec-

tivity of hub-level network, in order to have a tree-shaped one, we only need to refer

to the property of tree graphs.

Proposition 3.4.1. For a given graph G(V,E), the following statements are equivalent:

i). G is a tree,

ii). Any two vertices of G are connected by a unique path,

iii). G is connected and |E| = |V | − 1,

iv). G is connected and has no cycle.

Therefore we have to add the following constraint.

∑
k,l>k

ykl =
∑
k

hk − 1. (3.55)

Mathematical Model

TSHLPPT model would be as it follows:

(TSHLPPT)

Min
∑
i

∑
j 6=i

∑
k

∑
l 6=k

αWijCklxijkl +
∑
i

∑
j 6=i

∑
k 6=i,j

WijCikaijk +∑
i

∑
j 6=i

∑
k 6=i,j

WijCkjbijk +
∑
i

∑
j 6=i

WijCijeij +∑
k

Fkhk +
∑
k

∑
l>k

Iklykl

s.t. (3.36), (3.37), (3.38), (3.39)

(3.40), (3.41), (3.42), (3.43)

(3.44), (3.45), (3.46), (3.47),

(3.48), (3.50),∑
k,l>k

ykl =
∑
k

hk − 1.
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3.4.2 Polygonal HLPPT (PHLPPT)

A polygonal HLPPT or PHLPPT, is an HLPPT where its hub-level network is a

polygon (triangle, rectangle, pentagon, etc.).

Proposition 3.4.2. In each polygonal graph G(V,E), deg(V ) = 2.

Mathematical Model

THLPPT is depicted in the sequel:

(PHLPPT)

Min
∑
i

∑
j 6=i

∑
k

∑
l 6=k

αWijCklxijkl +
∑
i

∑
j 6=i

∑
k 6=i,j

WijCikaijk +∑
i

∑
j 6=i

∑
k 6=i,j

WijCkjbijk +
∑
i

∑
j 6=i

WijCijeij +∑
k

Fkhk +
∑
k

∑
l>k

Iklykl

s.t. (3.36), (3.37), (3.38), (3.39)

(3.40), (3.41), (3.42), (3.43)

(3.44), (3.45), (3.46), (3.47),

(3.48), (3.50)∑
l 6=k

(ykl + ylk) = 2hk, ∀k,∑
k

hk = q.

where q is the number of corners in the polygon.

3.5 Multi-Period Hub Location Model for Public

Transport

So far, we dealt with single period planning. That means, there was no transition from

one period t to another consecutive one, t+1 and all the activities have been supposed

to be carried out at a given time. Very often, decisions in such construction projects

which are resource-demanding and long-lasting are not made for a single period. In

other words, more detailed study of such systems can be accomplished by defining the

project on a planning horizon with several periods. Here, we aim to model the prob-

lem to consist of planning for T periods (T ≥ 2). In this section we pave the way of
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proposing, to the best of our knowledge, the first multi-period HLP model for public

transport planning.

Mathematical Model

Some assumptions should be considered for this model. These assumption are:

Ass. i) If one node is selected to be a hub in a period t ∈ {1, .., T}, it will be

performing as hub node until the end of planning horizon.

Ass. ii) If there has been a hub edge established in the network in any period, it will

always be available as a hub edge.

We call the preliminary model proposed for this scenario by Pre-MPHLPPT:

(Pre-MPHLPPT)

Min
∑
t∈T

[
∑
i

∑
j 6=i

∑
k

∑
l 6=k

αtW t
ijC

t
klx

t
ijkl +

∑
i

∑
j 6=i

∑
k 6=i,j

W t
ijC

t
ika

t
ijk +∑

i

∑
j 6=i

∑
k 6=i,j

W t
ijC

t
kjb

t
ijk +

∑
i

∑
j 6=i

W t
ijC

t
ije

t
ij +∑

k

F t
kh

t
k +

∑
k

∑
l>k

I tkly
t
kl]

s.t.
∑
l 6=i

xtijil +
∑
l 6=i,j

atijl + etij = 1, ∀i, j 6= i,∑
l 6=j

xtijlj +
∑
l 6=i,j

btijl + etij = 1, ∀i, j 6= i,∑
l 6=k,i

xtijkl + btijk −
∑
l 6=k,j

xtijlk − atijk = 0, ∀i, j 6= i, k 6= i, j,

ytkl ≤
t∑

t′=1

ht
′

k , ∀k, l > k, t ∈ T,

ytkl ≤
t∑

t′=1

ht
′

l , ∀k, l > k, t ∈ T,

xtijkl + xtijlk ≤
t∑

t′=1

yt
′

kl, ∀i, j 6= i, k, l > k, t ∈ T,

∑
l 6=k

xtkjkl ≤
t∑

t′=1

ht
′

k , ∀j, k 6= j, t ∈ T,

∑
k 6=l

xtilkl ≤
t∑

t′=1

ht
′

l , ∀i, l 6= i, t ∈ T,
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etij ≤ 2−
t∑

t′=1

(ht
′

i + ht
′

j ) ∀i, j 6= i, t ∈ T,

atijk ≤ 1−
t∑

t′=1

ht
′

i , ∀i, j 6= i, k 6= i, j, t ∈ T,

btijl ≤ 1−
t∑

t′=1

ht
′

j , ∀i, j 6= i, l 6= i, j, t ∈ T,

atijk +
∑
l 6=j,k

xtijlk −
t∑

t′=1

ht
′

k ≤ 0, ∀i, j 6= i, k 6= i, j, t ∈ T,

btijk +
∑
l 6=k,i

xtijkl −
t∑

t′=1

ht
′

k ≤ 0, ∀i, j 6= i, k 6= i, j, t ∈ T,

etij + 2xtijij +
∑
l 6=j,i

(xtijil + xtijlj) ≤
t∑

t′=1

(ht
′

i + ht
′

j ), ∀i, j 6= i, t ∈ T,

t∑
t′=1

ht
′

k ≤ 1, ∀k, t ∈ T, (3.56)

t∑
t′=1

yt
′

kl ≤ 1, ∀k, l > k, t ∈ T, (3.57)

xtijkl, a
t
ijk, b

t
ijk, e

t
ij ∈ (0, 1), ytkl, h

t
k ∈ {0, 1}.

With respect to these assumptions, we have two more constraints to guaranty these

conditions. These constraints are (3.56) and (3.57). Interpretation of variables is the

same as before and of course, with an additional index t ∈ T indicating the time period

this variable belongs to.

Although, this model works fine, it has a big drawback. That is, in the optimal

solution, it establishes all the facilities in the first period. In an abstract sense, this

is quite logical to establish all the facilities in the first period and take the advantage

of economy of scale arisen from their functionalities throughout the planning horizon.

In fact, there is no optimal solution for this model which opens a hub facility in a

period 1 < t ≤ T , if the parameters are chosen realistically. This is because, it can be

established in the t = 1 and its advantages be used in the period 1 as well as other

periods. However, this is not something we expect in reality.

The occurrence of such situations is mainly due to the fact that, there are also other

issues which are missed in the model and should be taken into account in a multi-period

planning. Other types of costs, should also be incorporated into the model. In presence

of this type of cost, opening a hub facility does not only lead to benefit but also incurs
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some additional costs.

Later on in chapter 8 we will refer to the multi-period approach in detail.
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Chapter 4

Lagrangian Relaxation and Integrality Prop-

erty

In this chapter we are going to present a Lagrangian relaxation approach for HLPPT.

At first glance, this Lagrangian approach is expected to be a useful tool and the only

concern is whether it will converge at a reasonable amount of time.

Actually, after implementing and running the algorithm, interesting results were

observed. A trivial decomposition of the problem into a sub-problem and a set of du-

alized constraints turned out to leave the integrality property in the sub-problem.

In this chapter, we prove that the convex hull of feasible solutions of the sub-problem

is equal to the convex hull of its LP relaxation. In general, such a proof, which is based

on the concept of Totally Unimodularity (TU), is in the complement of NP , i.e. CNP .

4.1 Lagrangian Approach for HLPPT

A trivial decomposition of HLPPT results in a sub-problem and a bunch of compli-

cating constraints which should be dualized.

(HLPPT)

Min
∑
i

∑
j 6=i

∑
k

∑
l 6=k

αWijCklxijkl +
∑
i

∑
j 6=i

∑
k 6=i,j

WijCikaijk +∑
i

∑
j 6=i

∑
k 6=i,j

WijCkjbijk +
∑
i

∑
j 6=i

WijCijeij +∑
k

Fkhk +
∑
k

∑
l>k

Iklykl (4.1)

s.t. (3.36), (3.37), (3.38), (3.41), (3.42) (4.2)

(3.46), (3.47), (3.48), (3.50), (4.3)

ykl ≤ hk, ykl ≤ hl, ∀k, l > k, (4.4)

eij ≤ 2− (hi + hj), ∀i, j 6= i, (4.5)

aijk ≤ 1− hi, ∀i, j 6= i, k 6= i, j, (4.6)

bijl ≤ 1− hj, ∀i, j 6= i, l 6= i, j, (4.7)

xijkl + xijlk ≤ ykl, ∀i, j 6= i, k, l > k. (4.8)
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Now, a Lagrangian relaxation of the problem is developed as follows. We shall relax

all the constraints, except those which only include the hub-level variables and those

of (4.4)-(4.8) in a Lagrangian fashion. Since the right-hand sides are 0, 1 or 2 (in the

similar scale), it is not necessary to re-scale the constraints. Also, appropriate mul-

tipliers following the lagrangian algorithm, are defined. Eventually, the sub-gradient

algorithm iterations can be used to solve the problem.

Actually, after implementing the approach, we observed that even if the convergence

appears fast enough (which has not been usually the case!) the lower bound will never

be better than that of the LP relaxation. The reason is the subject of the next section.

4.2 Integrality Property

Our aim to apply Lagrangian relaxation is so that, at least for some instances, we can

find lower bounds better than those that can be found by LP relaxation (although we

should expect at least as good as the LP bounds) and of course fast enough. That

is, we solve the Lagrangian objective function on the convex hull of a subset of con-

straints and expect such a bound. This bound may later be used in a branch-and-bound

system instead of an LP bound, in measuring the quality of solution of a heuristic etc. .

Assume the problem (P ) as follows:

(P ) : min
x
{fx|Ax ≤ b, Cx ≤ d, x ∈ X} (4.9)

where X contains sign restrictions on x and integrality restrictions, i.e. X = Rn−p×Rp,

X = Rn−p
+ ×Rp

+ or X = Rn−p
+ ×{0, 1}p. Ax ≤ b are assumed complicating in the sense

that P without them would be simpler to solve (see [36]).

Definition 4.2.1. The Lagrangian relaxation of (P ) relative to the complicating con-

straints Ax ≤ b, with non negative Lagrangian multiplier λ, is the problem,

(LRλ) : min
x
{fx+ λ(Ax ≤ b)|Cx ≤ d, x ∈ X}. (4.10)

Theorem 4.2.1. The Lagrange dual (LR) is equivalent to the primal relaxation

(PR) : min
x
{fx|Ax ≤ b, x ∈ Co{x ∈ X|Cx ≤ d}}, (4.11)

in the sense that v(LR) = v(PR). Here, Co(Y ) stands for the convex hull of Y .

Corollary 4.2.1. If Co{x ∈ X|Cx ≤ d} = {x|Cx ≤ d}, then v(LP ) = v(PR) =

v(LR) ≤ v(P ).
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Definition 4.2.2. One says that (LR) has Integrality Property if Co{x ∈ X|Cx ≤
d} = {x|Cx ≤ d}.

If Corollary 4.2.1 holds, then the Lagrangian bound is equal to (cannot be better

than) the LP bound.

We claim that the polytop of the following constraints which belong to the con-

straint set of our LRλ for HLPPT possesses the integrality property.

ykl − hk ≤ 0, ∀k, l > k, (4.12)

ykl − hl ≤ 0, ∀k, l > k. (4.13)

Definition 4.2.3. An m × n integral matrix A is totally unimodular (TU) if the

determinant of each square sub-matrix of A is equal to 0, 1, or -1.

Theorem 4.2.2 (Polyhedron Integrality). If A is TU, then P (b) = {x ∈ Rn
+ : Ax ≤ b}

is integral for all b ∈ Zm for which it is not empty.

Proposition 4.2.3. If the (0, 1,−1) matrix A has no more than two nonzero entries

in each column, and if
∑

i aij = 0 if column j contains two non-zero coefficients, then

A is TU.

Proposition 4.2.4. The following statements are equivalent.

1. A is TU.

2. The transpose of A is TU.

3. (A,I) is TU.

4. A matrix obtained by a pivot operation on A is TU.

5. A matrix obtained by interchanging two rows (columns) of A is TU.

6. A matrix obtained by multiplying a row (column) of A by -1 is TU.

7. A matrix obtained by deleting a unit row (column) of A is TU.

8. A matrix obtained by duplicating columns (rows) of A is TU.

Theorem 4.2.5. The coefficient matrix of the constraint set (4.12) and (4.13) is TU.

Proof. The transpose of the coefficient matrix of constraint set (4.12) and (4.13) to-

gether with the equivalency conditions of Proposition 4.2.4 satisfies the conditions of

Proposition 4.2.3. Therefore, it is TU.
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4.3 Sub-Problem Integrality

According to our experiences, constraints (3.36), (3.37), (3.38), (3.41), (3.42), (3.46),

(3.47) and (3.48) are the most complicating constraints. Their appearance in the sub-

problem together with the computational efforts which one experiences while dealing

with the Lagrangian relaxation and the sub-gradient algorithm, does not lead to an

efficient solution method. That is, the appearance of any of these constraints in the

sub-problem makes it dramatically harder to solve even by inspection, if possible.

As mentioned earlier, the following constraints are selected to form the sub-problem.

xijkl + xijlk ≤ ykl, ∀i, j 6= i, k, l > k, (4.14)

eij ≤ 2− (hi + hj), ∀i, j 6= i, (4.15)

aijk ≤ 1− hi, ∀i, j 6= i, k 6= i, j, (4.16)

bijl ≤ 1− hj, ∀i, j 6= i, l 6= i, j, (4.17)

ykl ≤ hk, ∀k, l > k, (4.18)

ykl ≤ hl, ∀k, l > k. (4.19)

Now, we shall show that the sub-problem possesses the integrality property.

Theorem 4.3.1. The matrix of constraint set of (4.14)-(4.19) is TU. Moreover, its

polyhedron possesses the integrality property.

Proof. We are going to show that according to Proposition 4.2.4, without loss of gen-

erality, for each i, j 6= i, the matrix made by columns corresponding to a proposed

lexicographical ordering of variables is an identity matrix. Moreover, these matrices

can build up the matrix of coefficients of (4.14)-(4.19) which is going to be proven as

a TU matrix.

For a given i, j 6= i, a lexicographical ordering of variables of constraints (4.14)-(4.19)

is defined by:

xijkl︸︷︷︸
∀k,l:l 6=i,k 6=j,l

, aijm︸︷︷︸
∀m6=i,j

, bijm︸︷︷︸
∀m6=i,j

, eij ∀i, j 6= i. (4.20)

The complete matrix can be represented by,

x12kl︸︷︷︸
k 6=2,l 6=1,l 6=k

, a12m︸︷︷︸
∀m6=1,2

, b12m︸︷︷︸, e12

∀m6=1,2

, . . . , xpqkl︸︷︷︸
k 6=q,l 6=p,l 6=k

, apqm︸︷︷︸
∀m6=p,q

, bpqm︸︷︷︸, epq
∀m 6=p,q

, . . . ,
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xN N−1 kl︸ ︷︷ ︸
∀k 6=N−1,l 6=N,l 6=k

, aN N−1 m︸ ︷︷ ︸
∀m6=N−1,N

, bN N−1 m︸ ︷︷ ︸
∀m6=N−1,N

, eN N−1, ykl︸︷︷︸
∀l>k

, hk︸︷︷︸
∀k

. (4.21)

Every column of matrix built by (4.20), is a unit column where exactly a single ’1’

therein exists. Since, in none of the constraints two types of variables appears in

each row from the first column until the variable eij, only one ’1’ exists, except for

xijkl, l 6= i, k 6= j where two x variables are associated with each of the constraints.

Moreover, in each row there exist(s) one or two +1 or -1 correspond to the variables h

and y.

According to Proposition 4.2.4 by pivoting on each row of matrix we achieve a

matrix which contains 1’s in the diagonal for each of the matrices in the form of (4.20).

Since, the variables are ordered in such a form that build (4.21), we can have a matrix

of the form,

x12kl︸︷︷︸
k 6=2,l 6=1,l 6=k

, a12m︸︷︷︸
∀m6=1,2

, b12m︸︷︷︸, e12

∀m6=1,2

, . . . , xpqkl︸︷︷︸
k 6=q,l 6=p,l 6=k

, apqm︸︷︷︸
∀m6=p,q

, bpqm︸︷︷︸, epq
∀m 6=p,q

, . . . ,

xN N−1 kl︸ ︷︷ ︸
∀k 6=N−1,l 6=N,l 6=k

, aN N−1 m︸ ︷︷ ︸
∀m6=i,j

, bN N−1 m︸ ︷︷ ︸
∀m6=i,j

, eN N−1. (4.22)

Therefore, (4.22) is a matrix with the values ’1’ in its diagonal.

By adding the columns of variables h and y, one can pivot again to keep the row

unit vectors. This act does not affect the parts related to the constraints (4.18)-(4.19).

Now, we have a matrix which contains an identity matrix block in the form,(
I 0

0 HY

)
. (4.23)

Here, HY stands for the coefficients of the constraints (4.18)-(4.19).

In order to prove the totally unimodularity of (4.23), it suffices to show that any

square sub-matrix of it has the determinant of 0,-1 or +1. Choose a square sub-matrix

of (4.23), say B:

Case 1. B has all its entries only from I and therefore determinant is either 1 or 0.

Case 2. B has its entries only adopted from HY which is TU, according to the Theorem

4.2.5.

Case 3. B has entries from both I and HY . Therefore, either it has some zero rows

(columns) which determinant is 0, or there is exactly one ’1’ in rows (columns) from I

that determinant is the determinant of a square sub-matrix from HY . In any case the
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(4.23) is TU.

Moreover, since RHS of (4.14)-(4.19) is integral, therefore according to the Theorem

4.2.2 the polyhedron is integral and proof is completed.

Theorem 4.3.2. Any matrix which contains only an identity block and a TU sub-

matrix block, is a TU matrix.

Proof. Similar to the proof of the Theorem (4.3.1).

We close this chapter by having already proven that, for the suggested sub-problem,

the integrality condition holds. In addition to that, based on our computational ex-

periences; i) the dualized constraints are very complicating and, ii) adding even one

set of constraints from the dualized ones to the sub-problem is not a good idea. Even

in this case some behaviors in the computational results is observed that even if not

indicating the integrality property, displays a very poor performance.



Chapter 5

Strengthened Formulation

In this chapter we are going to examine the strength of our formulation. That is, how

would the integrality gap be, or in other words, how well the LP relaxation polytop

surrounds the MIP polytop of HLPPT. Subsequently, we will introduce several classes

of valid inequalities to yield an equally strong possible formulation. The idea of intro-

ducing these kinds of inequalities is inspired by [57]. Our inequalities are capable of

cutting off parts of the polytop of LP relaxation that do not contain the optimal solu-

tion of the MIP of HLPPT. By means of some preprocessing, we reduce the number of

variables to half and considerably decrease the number of constraints. This accelerates

the resolution and allows larger instance to be solved.

In [57], the formulation of the problem is strengthened by means of powerful valid

inequalities obtained through the study of the intersection graph of an associated set

packing problem. A generic transformation of the problem to a set packing problem is

accomplished and the intersection graphs of the new model are found.

We would like to remind that, in Table 3.3, it has been observed that HLPPT

reports the solutions for all the CAB instances to the optimality just at the root node

while it indicates existing gaps for the AP instances. Therefore, we only deal with AP

instances in this chapter.

Eventually, we will close this chapter by having already reported a very strong

formulation where its LP relaxation can solve some of the instances of our problem to

integer optimality. The rest can be solved at the root node after adding some cuts by

the solver itself. Just for one instance the branching proceeds and proves optimality of

the solution at the first node of the branch-and-bound tree. This time, larger instances

of the problem can also be solved.

5.1 Improving Valid Inequalities

In this section some of the improving valid inequalities will be suggested. We go step

by step and report the progress of improvement and the implication of introducing new

classes of valid inequalities.

(A): The integrality gap and the computational time of those problem instances which

were solved by CPLEX 9.1 on our machine are reported in the Table 5.1.
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Table 5.1: Computational Results.

HLPPT

Instance r.n.g(%) c.t.u

AP 5.2 opt 0.03

AP 10.4 38.99 8.81

AP 15.6 67.75 318.24

AP 20.8 42.75 3683.07

AP 25.10 44.55 56839.31

AP 30.12 43.27 N.A.

(B): Two constraints (5.1) and (5.2) are added. New results are depicted in Table 5.2.

The underlying idea is that, there exists at least one hub edge (and as a result at least

two hub nodes) in the optimal solution of any instance.

∑
k,l>k

ykl ≥ 1, (5.1)∑
k

hk ≥ 2. (5.2)

From now on, in each table, after the instance name column, the first two columns are

the best former results and the second two columns stand for the results after adding

the inequalities. The third two columns are the improvement achieved after adding

new constraint(s).

Table 5.2: Computational Results.

HLPPT(A) HLPPT(B) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.03 0 0

AP 10.4 38.99 8.81 26.30 12.58 12.69 -3.77

AP 15.6 67.75 318.24 29.04 514.35 38.71 -196.11

AP 20.8 42.75 3683.07 24.19 3282.89 18.56 400.18

AP 25.10 44.55 56839.31 53.81 29755.70 -9.26 27083.61
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As one can observe in Table 5.2, in general the formulation becomes stronger. Re-

garding the computational time, as the instance size grows, this new model can solve

the instances much faster. Even in the last case it succeeds to reduce the computational

time up to 52% of the former one.

(C): Another valid inequality which is found by exploiting the optimal solution of LP

problems is (5.3). It is derived from a basic property of connected graphs: the number

of hub edges is greater or equal to one less than the number of hub nodes. If the values

of h, and/or y are fractional it is observed that this constraint can be violated.

∑
k,l>k

ykl ≥
∑
k

hk − 1. (5.3)

Table 5.3: Computational Results.

HLPPT(B) HLPPT(C) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.03 0 0

AP 10.4 26.30 12.58 opt 0.75 26.30 11.83

AP 15.6 29.04 514.35 opt 14.56 29.04 499.79

AP 20.8 24.19 3282.89 14.79 570.70 9.40 2712.19

AP 25.10 53.81 29755.70 14.02 5050.35 39.79 24705.35

As it can be observed in Table 5.3, this cut drastically affects the strength of our

formulation. The root node gap as well as the computational time are significantly

reduced. Two of the other problems (in total 3 instance) are solved to optimality by

just solving them as linear programming model.

Remark. An important result is that, all the formulations derived from HLPPT(C) (as

long as some thing else is not said explicitly) help the solver to avoid branching. That

is, the solver is able to add enough cuts so that the problem can be solved just at the

root node rather than following the branching process.

(D): Assume that a hub edge is partially opened, say 0 < yij = β < 1. For a given pair

of origin-destination, the spoke part of this hub edge should not be used more than

0 < 1− β < 1 as a spoke edge. Constraints (5.4) and (5.5) are introduced.

aijk + eij ≤ 1− (yij + yji), ∀i, j 6= i, k 6= i, j, (5.4)
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bijk + eij ≤ 1− (yij + yji), ∀i, j 6= i, k 6= i, j. (5.5)

Table 5.4: Computational Results.

HLPPT(C) HLPPT(D) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.03 0 0

AP 10.4 opt 0.75 opt 0.89 0 -0.14

AP 15.6 opt 14.56 opt 15.03 0 -0.47

AP 20.8 14.79 570.70 14.69 421.52 0.10 149.18

AP 25.10 14.02 5050.35 13.75 4684.67 0.27 365.68

Table 5.4 reports that the computational times of those time consuming instances

(size 20 and 25) are considerably decreased and the integrality gap decreased as well.

(E): The following two sets of inequalities (5.6) and (5.7) showed some improvement

on the formulation strength. The idea is that, if the hub edge ykl is established, even

if the triangle inequality does not hold it must be used for the direct transportation of

flow between its end-points.

ykl − xklkl = 0, ∀k, l > k, (5.6)

ykl − xlklk = 0, ∀k, l > k. (5.7)

Table 5.5: Computational Results.

HLPPT(D) HLPPT(E) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.01 0 0.02

AP 10.4 opt 0.89 opt 0.66 0 0.23

AP 15.6 opt 15.03 opt 13.13 0 1.90

AP 20.8 14.69 421.52 14.62 393.82 0.07 37.21

AP 25.10 13.75 4684.67 13.65 5509.14 0.10 -824.47
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The integrality gap decreased and the computational times except for the last one

decreased (see Table 5.5). Although, in the last case the run-time has increased, experi-

ence shows to be worthwhile having these cuts added before admitting the coming ones.

(F): Constraints (5.8) and (5.9) are another two sets of valid inequalities that made

some improvements. If the nodes i and j are both hub nodes, then the whole flow

emanated from i and/or destined to j should be sent or received through a hub edge.

∑
l 6=i

xijil ≥ hi + hj − 1, ∀i, j 6= i, (5.8)∑
l 6=j

xijlj ≥ hi + hj − 1, ∀i, j 6= i. (5.9)

Table 5.6: Computational Results.

HLPPT(E) HLPPT(F ) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.01 opt 0.03 0 -0.02

AP 10.4 opt 0.66 opt 0.91 0 -0.25

AP 15.6 opt 13.13 opt 11.52 0 1.61

AP 20.8 14.62 393.82 14.55 404.95 0.07 -11.13

AP 25.10 13.65 5509.14 13.49 4828.40 0.16 680.74

Adding these constraints can slightly improve the strength of the formulation and

also improves the computational time of a major challenging instance of 25 (see Table

5.6 ).

(G): If
∑

k,l>k ykl > 1 in the LP relaxation optimal solution, it means that there should

be more than one hub edge in the optimal solution of the problem. Therefore, upon

this assumption, if an edge is a hub edge, or in terms of linear programming, if it is

partially hub edge then the sum over all partial hub edges connected to it should be

at least equal to it.

ykl ≤
∑
m 6=k

(ykm + ymk) +
∑
m 6=k

(yml + ylm), ∀k, l > k. (5.10)
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Table 5.7: Computational Results.

HLPPT(F ) HLPPT(G) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.03 0 0

AP 10.4 opt 0.91 opt 0.86 0 0.05

AP 15.6 opt 11.52 opt 11.25 0 0.27

AP 20.8 14.55 404.95 14.55 401.23 0 3.72

AP 25.10 13.49 4828.40 13.49 4795.38 0 33.02

As Table 5.7 reports, the computational times are decreased.

(H): If a node is a hub node, or in terms of linear programming, if it is partially hub

node, then the sum over all partial hub edges connected to it should be at least equal

to it.

hk ≤
∑
m6=k

(ykm + ymk), ∀k. (5.11)

Table 5.8: Computational Results.

HLPPT(G) HLPPT(H) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.03 0 0

AP 10.4 opt 0.86 opt 0.67 0 0.19

AP 15.6 opt 11.25 opt 9.17 0 2.08

AP 20.8 14.55 401.23 14.55 320.23 0 81

AP 25.10 13.49 4795.38 13.36 2252.90 0.13 2542.48

The computational times are considerably reduced and the formulation is slightly

tightened (see Table 5.8 ).

(I): If a node i is not a hub node, therefore as the first link in the path to its destination,

j, it must use a spoke edge to send its flow.∑
l 6=i,j

aijl + eij ≥ 1− hi, (5.12)
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∑
l 6=j,j

bijl + eij ≥ 1− hj. (5.13)

Table 5.9: Computational Results.

HLPPT(H) HLPPT(I) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.03 0 0

AP 10.4 opt 0.67 opt 0.53 0 0.25

AP 15.6 opt 9.17 opt 8.52 0 2.26

AP 20.8 14.55 320.23 14.55 584.28 0 -264.05

AP 25.10 13.36 2252.90 13.36 6033.74 0 -3780.84

Although adding these constraints increases the computational time and does not

improve the formulation, our experience shows that the existence of these constraints

are beneficial before admitting the preprocessing and size reduction which will be ex-

plained in the next section (see Table 5.9).

5.2 Preprocessing

Preprocessing is a very useful tool in order to improve the performance of many solution

methods. Most of the general purpose solvers use some kind of general preprocessing.

By exploiting the special structure of HLPPT, some trivial but useful and successful

preprocessing can improve the computational performance.

Theorem 5.2.1 (Preprocessing). In an optimal solution of HLPPT and for all i, j, k, l

we have,

eij = eji, ∀j 6= i, (5.14)

aijk = bjik, ∀j 6= i, k 6= i, j, (5.15)

xijkl = xjilk, ∀j 6= i, l 6= k, i 6= l, j 6= k. (5.16)

Proof. Since the shortest path between two points is symmetric, therefore the flow of i

to j in the optimal solution traverses the same path as j to i. Hence, all the elements

of the path are common and coincide.

5.2.1 Effect of Preprocessing on Computational Time

It has been observed that after this preprocessing, the run-time considerably decreased.

In the Table 5.10, the computational time prior to and after the preprocessing are re-
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ported.

Table 5.10: Preprocessing.

HLPPT(before) HLPPT(after) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.03 0 0

AP 10.4 opt 0.53 opt 0.31 0 0.22

AP 15.6 opt 8.52 opt 3.69 0 4.83

AP 20.8 14.55 584.28 14.55 84.38 0 499.9

AP 25.10 13.36 6033.74 13.36 1090.12 0 4943.62

So far, the resulted formulation is considerably tight and computational time is

drastically reduced after being subjected to a strengthening and preprocessing phase

as represented in Table 5.10. Here, in the case of AP 20.8, the root node cuts ends up

to a solution with the gap of 0.46%. Afterward, the optimal solution is found in the

first node of the branch and bound method in CPLEX 9.1.

5.2.2 Size Reduction by Exploiting Symmetry

Since the symmetry holds in the shortest path between pairs of origin-destination, it

is possible to only consider those constraints and variables addressing the flow of i to

j where j > i. This can halve the number of such constraints and variables. That is,

we define W ′
ij = Wij + Wji,∀j > i and remove all the constraints as well as all the

flow variables that are defined for j ≤ i. Therefore, instead of doing preprocessing as

we have done in Subsection 5.2.1, the formulation size is reduced.

The problem size of instances are quite huge. Loading and resolution of a more

compact model is considerably faster than loading a larger model and dropping the

constraints and variables by the preprocessing like in Subsection 5.2.1. Table 5.11

depicts the results of this type of preprocessing and compares it against that of the

previous Subsection.

Comparing the initial and final computational times as is depicted, Table 5.12 shows

that the improvement is absolutely considerable. For example, the instance of size 25
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Table 5.11: Preprocessing by Symmetry.

HLPPT(Full) HLPPT(Halved) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 opt 0.03 0 0

AP 10.4 opt 0.31 opt 0.09 0 0.22

AP 15.6 opt 3.69 opt 2.30 0 1.39

AP 20.8 14.55 84.38 14.55 62.02 0 22.36

AP 25.10 13.36 1090.12 13.36 900.50 0 293.62

AP 30.12 N.A.a � 17.40 5530.00 - ∞

which was solved in about 16 hours is now solved 15 minutes (63.11 times faster). Fur-

thermore, the problem of size 30 that could not be solved is solved in approximately

1.5 hours. The model is so suitable for the solver that it can be used to solve almost

all the possible instances at the root node by adding appropriate cuts. It should also

be mentioned that, again for AP 20.8, the solver proved the optimality of its solution

at the first node of the branch and bound.

Table 5.12: Final Comparison.

HLPPT(Initial) HLPPT(Final) Improvement

r.n.g(%) c.t.u r.n.g(%) c.t.u r.n.g(%) c.t.u

AP 5.2 opt 0.03 0.00 0.03 0 0

AP 10.4 38.99 8.81 0.00 0.09 38.99 8.72

AP 15.6 67.75 318.24 0.00 2.30 67.75 315.94

AP 20.8 42.75 3683.07 14.55 62.02 20.20 3640.78

AP 25.10 44.55 56839.31 13.36 900.50 31.19 56042.81

AP 30.12 43.27 N.A. 17.40 5530.00 42.09 ∞

From now on, whenever we refer to HLPPT, this last version which uses almost

half of the variables is meant.
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Chapter 6

Benders Decomposition Approach for HLPPT

Benders decomposition is a classical solution approach initially proposed for MIPs and

is widely used for combinatorial optimization problems (COPs). The underlying idea

of this approach is to decompose the problem into two smaller parts, namely a Master

Problem (MP) and a Sub-Problem (SP). The master problem contains only the inte-

ger variables of the original problem, while the sub-problem is a linear programming

problem with the continuous variables.

Since some of the constraints and variables are removed from the original problem

to obtain the MP, it is considered as a relaxation. A solution to the sub-problem can

be achieved by fixing the variables of the MP as parameters in the SP. The SP will be

in charge of solving the remaining part of the original problem and generating cut(s).

Corresponding to an optimal solution of the MP in each iteration, a single cut is gener-

ated from the SP dual solution. These cuts are added, one per iteration, to the master

problem in order to cut off parts of the feasible space which contain no optimal values

for the integer variables of the original problem and thus achieve a better approxima-

tion of the optimal solution.

The master and sub-problem are iteratively solved to optimality until no improving

cut can be generated (although some works discard the necessity of resolution of the MP

to optimality). The optimal solution of the master and sub-problem, jointly, represents

the optimal solution of original problem.

6.1 Motivation of Applying on HLPs

HLPs are NP-Hard problems for which even moderate size instances cannot be solved

to optimality in a reasonable amount of time. Furthermore, in some instances, hard-

ware restrictions are also a constraining element. One expects that the decomposition

of the problem into two smaller ones can be helpful to solve larger instances to opti-

mality or even provide a good approximation of the optimal value, while it lies within

a lower and an upper bound.

Benders decomposition algorithm, as cited earlier, was already proposed for HLPs

in [73] and [74]. However, in both papers, the models with the classical assumptions

were considered.
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The structure of HLPPT in the form of multiple allocation benefits from the fact

that once the hub-level network structure is determined and fixed, the remaining part

is just a network flow problem which looks for the all-pairs shortest paths (perhaps

with respect to some additional conditions).

A suitable model which can be tackled by Benders decomposition looks like the

following MIP,

P : Min cx+ fy (6.1)

s.t. Ax+By ≤ b, (6.2)

Dy ≤ d, (6.3)

x ≥ 0, y ∈ {0, 1}, (6.4)

or equivalently,

MP : Min fy + η(y)

s.t. Dy ≤ d,

y ∈ {0, 1},

where,

SP : η(y) = Min cx

s.t. Ax ≤ b−By,
x ≥ 0.

Indeed, our HLPPT fits in this structure. It is clear that HLPPT instances (and all

its variants which are proposed or will be proposed later on) have finite optimal values

for the solutions x∗ and y∗ (all the variables are bounded and positive, coefficients in

the objective function are positive and the problem is a minimization problem).

Consider the SP and its dual, namely SPD:

Primal Sub-Problem (SP)

Min cx

s.t. π : Ax ≤ b−By,
x ≥ 0.
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Sub-Problem Dual (SPD)

Max π(b−By) (6.5)

s.t. πA ≥ c, (6.6)

π ≥ 0. (6.7)

Evidently, the primal is parameterized on the right hand side by y. Assuming that

SP is finite implies that the primal is finite for at least one value of y|Dy ≤ d, y ∈ {0, 1}.
By the duality theorem of linear programming, the dual has to be feasible.

By the feasibility of the dual in LPs, we have πA ≥ c. This dual feasible region is

independent of y.

Corollary 6.1.1. SP is finite for all y : Dy ≤ d, y ∈ {0, 1}.

Assuming that SP is feasible implies that the primal is feasible for at least one

value of y|Dy ≤ d, y ∈ {0, 1}. By the duality theorem of linear programming, the dual

has to be finite.

The dual is finite if and only if,

πj(b−By) ≤ 0, j = 1, . . . , q,

where q is the number of extreme rays of the dual feasible region πA ≥ c.

These constraints should be added to the master problem in order to guarantee the

boundedness of the dual or, equivalently the feasibility of the primal.

Each time a feasible solution is found, the value fy + η(y) is an upper bound

on the optimal value of the original problem. Therefore, the optimal solution of the

master problem should be better or at least as good as the previous iteration. This

is accomplished by adding the cuts corresponding to each extreme point of the sub-

problem dual to the master problem. These cuts are all in the form of:

πi(b−By) ≤ fy + η(y), i = 1, . . . , p,

where p is the number of extreme points of the dual feasible space.
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Finally the full master problem follows:

(MP)

η(θ) : Min fy + θ

s.t. Dy ≤ d,

y ∈ {0, 1},
θ ≥ πj(b−By), j = 1, . . . , p,

0 ≥ πj(b−By), j = 1, . . . , q.

By iteratively solving the master and the sub-problem, in each iteration, k, we achieve

a lower and an upper bound as follows:

Zk
LB = fyk + θk

Zk
UB = fyk + η(yk).

The structure of HLPPT is suitable for such a Benders algorithm (as it is explained

above). One can expect this algorithm to perform as an efficient tool in order to solve

instances of HLPPT.

6.2 Benders Approach for Single Period HLP in

Public Transport

Following the Benders algorithm, the master problem would be:

(MP1)

Min
∑
k

Fkhk +
∑
k

∑
l>k

Iklykl

s.t. ykl ≤ hk, ∀k, l > k, (6.8)

ykl ≤ hl, ∀k, l > k, (6.9)∑
k,l>k

ykl ≥ 1, (6.10)

ykl, hk ∈ {0, 1}, ∀k, l 6= k. (6.11)

Having no hub node, just one hub node or, in the worst case, having two hub nodes

without any hub edge does not make sense and destroys the structure of the HLPPT.

Because the economy of scale is exploited by transportation of consolidated flows via

hub edges, at least one hub edge and as a result at least two hub nodes must exist in
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the whole hub-and-spoke network.

The constraint (6.10) is added to the master problem to ensure that there exists

at least one hub edge in any optimal solution of MP1. The sub-problem for the fixed

variables of ykl and hk as RHS parameters is also considered from the compacted model

after the preprocessing step of Subsection 5.2.2 as follows:

(SP)

Min
∑
i

∑
j>i

∑
k

∑
l 6=k

α(Wij +Wji)Cklxijkl +
∑
i

∑
j>i

∑
k 6=i,j

(Wij +Wji)Cikaijk +∑
i

∑
j>i

∑
k 6=i,j

(Wij +Wji)Ckjbijk +
∑
i

∑
j>i

(Wij +Wji)Cijeij +∑
k

Fkhk +
∑
k

∑
l>k

Iklykl (6.12)

s.t.
∑
l 6=i

xijil +
∑
l 6=i,j

aijl + eij = 1, ∀i, j > i, (6.13)∑
l 6=j

xijlj +
∑
l 6=i,j

bijl + eij = 1, ∀i, j > i, (6.14)∑
l 6=k,i

xijkl + bijk =
∑
l 6=k,j

xijlk + aijk, ∀i, j > i, k 6= i, j, (6.15)

xijkl + xijlk ≤ ykl, ∀i, j > i, k, l > k, (6.16)∑
l 6=k

xkjkl ≤ hk, ∀j, k < j, (6.17)∑
k 6=l

xilkl ≤ hl, ∀i, l > i, (6.18)

eij ≤ 2− (hi + hj), ∀i, j > i, (6.19)

aijk ≤ 1− hi, ∀i, j > i, k 6= i, j, (6.20)

bijl ≤ 1− hj, ∀i, j > i, l 6= i, j, (6.21)

aijk +
∑
l 6=j,k

xijlk ≤ hk, ∀i, j > i, k 6= i, j, (6.22)

bijk +
∑
l 6=k,i

xijkl ≤ hk, ∀i, j > i, k 6= i, j, (6.23)

eij + 2xijij +
∑
l 6=j,i

xijil +
∑
l 6=i,j

xijlj ≤ hi + hj, ∀i, j > i, (6.24)

xijkl, aijk, bijk, eij ∈ (0, 1). (6.25)

Proposition 6.2.1. The binary sub-problem, BSP , and SP are equivalent, in the
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sense that their optimal values coincide. That is, Z∗BSP = Z∗SP .

6.2.1 Master Problem

A critical drawback of the master problem is that it can easily result in a discon-

nected sub-graph at the hub-level network. This hub-level network does not work for

our model since we assumed that a flow emanated from a hub node and destined to

another hub node must be routed only through hub edges. Therfore, a disconnected

hub-level structure as a solution to this master problem is infeasible for the HLPPT.

The number of such a disconnected hub-level networks is much higher compared to

the connected ones. Therefore, the likehood of frequently observation of disconnected

hub-level networks in the MP1 is higher than those of connected ones. Moreover,

adding a cut corresponding to each of such hub-level networks to MP1 results in a

very hard-to-solve MP1 (one may even encounter tens of them between two consecu-

tive feasible configurations). This means that even in the initial iterations of Benders

algorithm before reaching good lower and upper bounds, we are faced with a very com-

plicated MP1. This master problem is populated by dozens of cuts corresponding to

each visited unbounded SPD.

We have to add more constraints to avoid the possibility of disconnectivity. By

doing that, we can only work with the feasible hub-level configurations and only the

cuts corresponding to the extreme points are added to the model rather than those of

extreme rays.

We have been trying to use either some modifications of the sub-tour elimination

constraints and cut-set constraints which have been worked for the traveling salesman

problem (TSP), or some ideas from the Steiner tree problem. However, none of these

ideas have been efficient or even applicable.

By using a dummy node ”0”, the master problem is replaced by a non-simultaneous

flow problem [54]. Here, the cost interpretation coincides with that of MP1. The flow

source is the dummy node. By doing this, we can always have a connected sub-graph

as the hub-level network.

Let G(V,E) be a connected graph, where V = {1, 2, 3, . . . , n} is the set of nodes

or vertices and E the set of edges. Let Gd = (V,A) be a directed graph deriven from

G, where A = {(i, j), (j, i)|{i, j} ∈ E}. That is, each edge e is associated with two

arcs (i, j) and (j, i) ∈ A. Two new graphs G0 = (V0, E0) and G0
d = (V0, A0) where

V0 = V ∪ {0}, E0 = E ∪ {{0, j}|j ∈ V }, A0 = A ∪ {(0, j), (j, 0)|j ∈ V } are defined.



6.2 Benders Approach for Single Period HLPPT 75

Let h = (hi)i∈V ∈ {0, 1}|V |, y = (yu)u∈E0 ∈ {0, 1}|E0| two 0 − 1 vectors, and

zkij ≥ 0, (i, j) ∈ A0, k ∈ V ′ where V ′ is a subset of V , and zkij is a real flow in the arc

(i, j) ∈ A0 having 0 as source and k as destination. E(i) is considered as the set of edges

e ∈ E such that an endpoint is i, Γ+(i) = {j|(i, j) ∈ A0} and Γ−(i) = {j|(j, i) ∈ A0},
m = |E| and n = |V | [54].

(MP)

Min
∑
k

Fkhk +
∑
k

∑
l>k

Iklykl,

s.t.
∑

j∈Γ+(0)

zk0j − hk = 0, ∀k ∈ V, (6.26)

∑
j∈Γ+(i)

zkij −
∑

j∈Γ−(i)

zkji = 0, ∀i ∈ V − {k}, k ∈ V, (6.27)

∑
j∈Γ+(k)

zkkj −
∑

j∈Γ−(k)

zkjk + hk = 0, ∀k ∈ V, (6.28)

zkij ≤ yij, ∀{i, j} ∈ E0, k ∈ V, (6.29)

zkji ≤ yij, ∀{i, j} ∈ E0, k ∈ V, (6.30)

yij ≤ hi, ∀{i, j} ∈ E, (6.31)

yij ≤ hj, ∀{i, j} ∈ E, (6.32)∑
j∈V

y0j = 1, ∀i, j = 1, . . . , n, (6.33)

zkij ≥ 0, ∀(i, j) ∈ A0, k ∈ V, (6.34)

yij ∈ {0, 1}, {i, j} ∈ E0, hk ∈ {0, 1}, k ∈ V. (6.35)

For a given k ∈ V , if the vertex hk is selected to be in the sub-graph, one unit

flow that is destined to it should be sent from the dummy node. Constraints (6.26)

ensure this fact. Constraints (6.27) guarantee that the flow conservation holds for each

vertex hi as an interior node of the flow path from the dummy node to another node

k. Constraints (6.28) state that a 1 unit of flow is the amount which is received by the

node hk and no flow sediments under any node along the flow path to this node. A flow

can exist if the corresponding edge exists and an edge can exist if its corresponding

end-points are chosen to be in the sub-graph. These are guaranteed by constraints

(6.29)-(6.30) and (6.31)-(6.32), respectively. In addition, constraints (6.33) guarantiee

that the whole 1 unit of flow emanated from the dummy node enters the sub-graph

only via one node. The interpretation of the objective function is the same as for the

MP1.

It should also be considered that the sub-graph associated with hi = 0 for all i ∈ V
is also a connected graph. Therefore, in order to have a sub-graph with at least two



76 6 Benders Decomposition for HLPPT

nodes, it suffices to add one of the following two constraints (one may add both of

(6.36) and (6.37) to achieve a stronger formulation):∑
{i,j}∈E

yij ≥ 1, (6.36)

or ∑
i∈k

hi ≥ 2. (6.37)

Theorem 6.2.2 ([54]). All vectors h and y satisfying (6.26)-(6.35) and (6.36)(or

(6.37)) are associated with connected sub-graphs of G.

6.2.2 Sub-Problem

The sub-problem dual would be:

SPD:

Max −
∑
i,j>i

(uij + vij)−
∑
i,j>i

∑
k 6=i,j

(sijk + wijk)hk −
∑
j,k>j

pjkhk

−
∑
i,l>i

qilhl −
∑
i,j>i

eij(2− hi − hj)−
∑
i,j>i

dij(hi + hj)

−
∑
i,j>i

∑
k 6=i,j

(aijk(1− hi) + bijk(1− hj))−
∑
i,j>i

∑
k,l>k

oijklykl

s.t. uij + vij + pji + qij + oijij + 2dij ≥ −α ∗ (Wij +Wji) ∗ Cij, ∀i, j > i,

vij + rijk + wijk + qij + oijkj + dij ≥ −α ∗ (Wij +Wji) ∗ Ckj, ∀i, j > i, k 6= i, j,

uij + pji + dij + sijl − rijl + oijil ≥ −α ∗ (Wij +Wji) ∗ Cil, ∀i, j > i, l 6= i, j,

rijk − rijl + sijl + wijk + oijkl ≥ −α ∗ (Wij +Wji) ∗ Ckl, ∀i, j > i, k, l 6= i, j,

uij − rijk + sijk + aijk ≥ −(Wij +Wji) ∗ Cik, ∀i, j > i, k 6= i, j,

vij + rijk + wijk + bijk ≥ −(Wij +Wji) ∗ Ckj, ∀i, j > i, k 6= i, j,

uij + vij + dij + eij ≥ −(Wij +Wji) ∗ Cij, ∀i, j > i,

dij, eij, pij, qij, aijk, bijk, sijk, wijk, oijkl ∈ R+,

uij, vij, rijk free in sign.

Consequently, the generated cut for MP looks like the following inequality:

−
∑
i,j>i

(
(uij + vij) +

∑
k 6=i,j

(sijk + wijk)hk + pjihi + qijhj +
∑
k,l>k

oijklykl
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+
∑
k 6=i,j

(aijk(1− hi) + bijk(1− hj)) + dij(hi + hj) + eij(2− hi − hj))

)
≤ η. (6.38)

6.3 Speeding Up the Convergence

The classical Benders algorithm which uses the proposed MP and SPD (cf. to the

second column of Table 6.1) is very time demanding even for solving a small instance

of size 10. In order to speed up the convergence we add constraints (5.3), (5.10) and

(5.11) which are shown to be improving inequalities for the MP. The computational

results are reported in Table 6.1 and they show the computational effort for instances

of size 5 and 10 before and after adding these constraints.

cf.

Table 6.1: Speeding up the convergence.

Instance Classical Benders Algorithm

Before (sec.) After (sec.)

AP5.2 0.50 0.28

AP10.4 738.23 41.31

Figure 6.1 visualizes the results of Table 6.1 for the instance of size 10 from the

AP dataset. It is clear that the bounds of Benders algorithm after adding the improv-

ing constraints converge much earlier than the algorithm without them. Furthermore,

the computational time for the small size instances of 10 is reduced to approximately 1
18

.

From now on, we keep these constraints always in our MP and whenever we talk

about MP we refer to this new one with the better results.

6.4 Splitting the Sub-Problem: Strength of the Cuts

Sometimes even solving this LP model of SPD is not cheap at all or is not possible as

the problem size grows, mainly due to the hardware limitation. It is our experience

that even for moderate size problems (e.g. N ' 50) the instance grows out of propor-

tions and it cannot be run on our computer.
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Figure 6.1: Speeding up the convergence.

It should be clear that SPD is composed of n(n−1)
2

independent LPs. Therefore, we

separate parts of this SPD for each i, j > i as follows:

SPDi,j>i

Max −(uij + vij)−
∑
k 6=i,j

(sijk + wijk)hk − pjihi − qijhj

−dij(hi + hj)− eij(2− hi − hj)
−
∑
k 6=i,j

(aijk(1− hi) + bijk(1− hj))−
∑
k,l>k

oijklykl

s.t. uij + vij + pji + qij + oijij + 2dij ≥ −α ∗ (Wij +Wji) ∗ Cij,
vij + rijk + wijk + qij + oijkj + dij ≥ −α ∗ (Wij +Wji) ∗ Ckj,
uij + pji + dij + sijl − rijl + oijil ≥ −α ∗ (Wij +Wji) ∗ Cil,
rijk − rijl + sijl + wijk + oijkl ≥ −α ∗ (Wij +Wji) ∗ Ckl,
uij − rijk + sijk + aijk ≥ −(Wij +Wji) ∗ Cik,
vij + rijk + wijk + bijk ≥ −(Wij +Wji) ∗ Ckj,
uij + vij + dij + eij ≥ −(Wij +Wji) ∗ Cij,
dij, eij, pij, qij, aijk, bijk, sijk, wijk, oijkl ∈ R+,

uij, vij, rijk free in sign.
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For each i, j > i, we have a simpler LP which can be solved much more efficiently

using standard LP solvers.

Each of the generated cuts of the form (6.38) is also composed of n(n−1)
2

different

independent terms. If we look at it more carefully, each of ij|j>i-th term is generated

from the corresponding SPDi,j>i. That is, this constraint is an aggregation of n(n−1)
2

parts. For a given i, j > i, we can generate the following parts of the cut from SPDij:

−

(
(uij + vij) +

∑
k 6=i,j

(sijk + wijk)hk + pjihi + qijhj +
∑
k,l>k

oijklykl (6.39)

+
∑
k 6=i,j

(aijk(1− hi) + bijk(1− hj)) + dij(hi + hj) + eij(2− hi − hj))

)
≤ ηij,

where η =
∑

ij>i ηij and ηij ≥ 0,∀i, j > i.

Briefly speaking, instead of solving one large LP problem as a sub-problem and

generating the corresponding cut, one can generate such a cut by solving n(n−1)
2

easier

parts of SPD (see Algorithm 2). Such a (sub-)cut for the ij-th part of SPD, namely

SPDij|j>i
, is in the form of (6.39).

The first splitting strategy we consider is used to generate the single cut by aggre-

gation of n(n−1)
2

sub-cuts. If we use Single Cut1 (SC1) to call the traditional Benders

algorithm, this approach will be called Single Cut2 (SC2).

The sub-problem of HLPPT, namely SP, is a network problem and well-known

due to its high degeneracy. This means that SPD has multiple optimal solutions. In

fact, it turns out that, though solving the separated parts of SPD is much easier be-

cause of the separation but the aggregated cuts are much weaker than those of SC1.

According to our observation, even for small size problems, SC1 outperforms SC2.

In the Figure 6.2, we show that for a problem instance of size n = 10, SC2 converges in

a higher number of iterations compared to SC1 (367 iterations against 30). In Figure

6.2, the lower and upper bounds of SC1 converge earlier than those of SC2. Compu-

tational results are depicted in Table 6.2 at the end of next section.
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Figure 6.2: Convergence of SC1 vs. SC2.

6.5 Strengthening the Cuts

We now aim to improve our cuts to accelerate the convergence of our approaches. The

idea originates from the technique initially proposed by Magnanti and Wong [55] for

classical Benders algorithm.

Definition 6.5.1 (Dominating Cut). Let π1 and π2 be two optimal solutions of the

dual of sub-problem which are used to generate the cuts of the form π1(b − By) ≤ θ

and π2(b−By) ≤ θ. A cut generated from the extreme point π1 dominates (is stronger

than) a cut generated from the extreme point π2, if:

π1(b−By) ≥ π2(b−By), (6.40)

for all y ∈ Y with strict inequality for at least one point.

Definition 6.5.2 (Pareto-Optimal Cut). A cut that is dominated by no other cut is

a pareto-optimal cut.

Let Y LP be the polyhedron defined by the linear relaxation of Y , and ri(Y LP ) be

the relative interior of Y LP . The following problem yields a Pareto-optimal cut for the

general problem of (6.1)-(6.4):
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Max π(b−Byo) (6.41)

s.t. uA ≤ c, (6.42)

v(y) = u(b−By), (6.43)

u ≥ 0. (6.44)

where yo ∈ ri(Y LP ) and v(y) is the optimal value of the sub-problem, when vari-

ables y are fixed to y. The objective function maximizes the strength of the cut for yo

while the constraints define the feasible space as the optimal solutions of (6.5)-(6.7).

A relative interior point of the relaxed convex hull of relaxed variables h and y,

Co((h, y)LP ) is chosen in such a way that just the constraints (6.31) and (6.32) hold

and the variables take only factional values. As a rule of thumb, we would suggest to

select the following point:

hok = 0.5, ∀k,
yokl = 0.5, ∀k, l > k.

We applied this strategy to our cuts and the results changed significantly. Let these

approaches be denoted by SC1d and SC2d for the case of using non-dominated cuts.

Firstly, we compare SC1 and SC1d in Figure 6.3.

As depicted in Figure 6.3 for a given instance of size 10, SC1d obviously outper-

forms SC1. Convergence is met much faster than before.

Figure 6.4 depicts the considerable difference between the performances of SC2

and SC2d. The convergence of SC2d is 837 times faster than SC2.

Finally, the convergence behavior of SC1d and SC2d relative to each other is de-

picted in Figure 6.5.

By comparing Figure 6.2 and Figure 6.5, it is clear that the convergence times are

significantly reduced after applying the pareto-optimal cut strategy. The difference

between the convergence times are considerable. However, for larger instances SC2d

outperforms SC1d as depicted in Table 6.2, although for n = 10, SC1d seems to

work faster than SC2d(see Figure 6.5). In the next subsection, we will report the

computational results extensively.
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Figure 6.3: Convergence of SC1 vs. SC1d.

Figure 6.4: Convergence of SC2 vs. SC2d.

6.5.1 Computational Results: Comparison Between SCs

Here, the computational results of all four algorithms are reported. As is depicted in

Table 6.2, the approaches with pareto-optimal cuts (SC1d and SC2d), in general, are
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Figure 6.5: Convergence of SC1d vs. SC2d.

superior to the other ones. From now on, whenever we used the sign ’�’ it means that

the computational time of the instance was at least two time higher than the worst

result in that row of the table and by ’>’ we mean that the it is just more than the

best result in the row. For example, in the case of AP15.6, the SC2 could not even

solve the instance in two times higer than what SC1 as the worst one does.

The superscripts in Table 6.2 indicate the number of iterations required until con-

Table 6.2: Comparison between SCs.

Instance SC1s (sec.) SC2s (sec.)

SC1 SC1d SC2 SC2d

AP5.2 0.31(8) 0.11(4) 2.72(16) 0.33(4)

AP10.4 42.42(30) 3.52(8) 6529.39(367) 6.02(8)

AP15.6 14155.78(97) 48.48(8) � 47.50(9)

AP20.8 > 1d 854.08(14) � 820.83(12)

AP25.10 � 55902.8224 � 45801.05(22)

vergence in the process of algorithm. One can say that the cuts generated from the

pareto-optimal sub-cuts are strong enough compared to the instantaneously generated
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single cuts, especially if there be a trade-off between strength of cuts, efficiency and

solvability of SPD regarding the hardware restriction. As the problem size increases

SC2d outperforms SC1d. Howwever, so far the Benders algorithm did not perform as

we expected.

6.6 Multiple Cuts vs. Single Cut

,

In the classical Benders decomposition approach, at each iteration a single cut is

added to the MP. It is well-known that the computational efficiency of the algorithm

strongly depends on the following issues: (i) the number of iterations to reach a global

convergence, (ii) the time needed to solve SP or SPD in each iteration, and (iii) the

time and computational efforts to solve the MP [74].

Having more than one cut in each iteration (if they are not dominated by each

other) can cut off more inferior parts of the feasible space not containing the optimal

solution of the MP. Therefore, it results in a better approximation of the feasible set

containing an optimal solution of the original problem. However, adding more cuts can

make the MP dramatically difficult to solve, as iterations proceeds.

Due to the special structure of our SPD, each separated part of the SPD can be

solved easier than solving the whole SPD once. Also, more than one cut (sub-cuts)

per each iteration can be generated. Moreover, this set of cuts is stronger than a single

cut as a linear combinations of them if the appropriate values of the SDP optimal

solutions are selected.

As mentioned earlier, the sub-problem is separable to n(n−1)
2

problems. Therefore,

we can have two scenarios: the first one, which we will call Multi Cut1 (MC1), ag-

gregates n − i cuts for each i into a single aggregated cut. As a result, n − 1 cuts

per iteration are obtained. The second one, Multi Cut2 (MC2), uses n(n−1)
2

cuts per

each iteration. The computational experiences reported in Table 6.3 substantiate the

superiority of MC2 to MC1.

The pareto-optimal cut strategy was again applied to MC1 and MC2.

6.6.1 Computational Results: Comparison Between MCs

Computational results of two different multi-cut approaches are reported in Table 6.3.
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Table 6.3: Comparison between MCs.

Instance MC1s(sec.) MC2s(sec.)

MC1 MC1d MC2 MC2d

AP5.2 0.34(5) 0.25(3) 0.22(4) 0.25(4)

AP10.4 9.61(11) 4.30(6) 5.47(7) 3.77(5)

AP15.6 97.30(10) 16.11(4) 21.34(5) 12.00(4)

AP20.8 933.88(11) 240.17(8) 223.05(8) 153.61(6)

AP25.10 26332.39(15) 3351.60(9) 2672.11(7) 1855.69(6)

AP30.12 � 8209.14(9) 9083.13(10) 3350.86(6)

AP35.14 � � � 120206.82(7)a

AP40.16 � � � > 6 d
a ' 33 hours.

As one can see, the pareto-optimal cut approach works much better with respect

to the computational time. Yet, MC2d is absolutely superior to MC1d with respect

to the efficiency of the resolution of the problem. The number of iterations after

which optimality is reached are considerably reduced and computational times are

significantly less. Still, within a given time limit of 48 hours, MC2d can solve larger

instances.

6.7 Numerical Results

In this section we report the results of CPLEX 9.1, the best of single cut and the best

of multiple cut Benders algorithms of our study, so far. According to the results of

Table 6.2 and Table 6.3 they are compared to the results of CPLEX 9.1 (see Table 3.4 ) .

Table 6.4 reports our computational experiences. The standard solver of CPLEX 9.1

is only able to solve problem instances for up to 30 nodes. Actually, problems of size

n ≥ 35 could not even fit in memory.

Clearly, MC2d performs absolutely better than SC2d in terms of computational

time and is better than both CPLEX 9.1 and SC2d with respect to the instance size

that can be solved within a given time limit.
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Table 6.4: Overall Comparison.

Instance CPLEX 9.1 SC2d MC2d

AP5.2 0.03 0.33(4) 0.25(4)

AP10.4 0.09 6.02(8) 3.77(5)

AP15.6 2.3 47.50(9) 12.00(4)

AP20.8 62.02 820.83(12) 153.61(6)

AP25.10 900.50 45801.05(22) 1855.69(6)

AP30.12 5530.00 � 3350.86(6)

AP35.14 N.A. � 120206.82(7)

AP40.16 N.A. � > 6 d

6.8 Accelerating Benders Approaches by Fractional

Cuts

We have shown in Chapter 5 that the model can be tightened so that even some in-

stances can be solved to integer optimality by solving them as an LP. Therefore, we

can use our Benders algorithm to solve the LP relaxation of our HLPPT, although this

problem is slightly different.

Once the LP solutions are found, first of all are useful to perform as lower bounds

to measure the quality of solutions of heuristics. Secondly, we can switch to an MIP

master problem from a sufficiently small gap at some point quite close to the optimal

solution of HLPPT.

In each iteration of Benders resolution of the LP relaxation, fractional values of

MP variables are used to generate cuts (we will call them fractional cuts) from the

solution to the SPD. These cuts are added to the relaxed MP, one per iteration. This

approach is very efficient because it limits the frequency of solving an MIP master

problem during the Benders algorithm process. For most of our instances, an MIP has

been solved only a few times (even less than 3) during the whole solution procedure.

Again, as a rule of thumb, we suggest to select the following relative interior point:

hok = 0.9, ∀k,
yokl = 0.1, ∀k, l > k.

The new master problem that we will call it Acceleration Master Problem (AMP)

is depicted in the sequel:
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(AMP)

Min
∑
k

Fkhk +
∑
k

∑
l>k

Iklykl,

s.t. (6.26), (6.27), (6.28), (6.29), (6.30)

(6.31), (6.32), (6.33), (6.34),∑
k

yk0 = 1, (6.45)∑
k,l>k

ykl ≥ 1, (6.46)∑
k

hk ≥ 2, (6.47)

yij ∈ (0, 1), {i, j} ∈ E0, hk ∈ (0, 1), k ∈ V. (6.48)

We call this approach AMC2d and computational results are depicted in Table 6.5.

Table 6.5: Computational Results.

Instance CPLEX 9.1(sec.) SC2d(sec.) MC2d(sec.) AMC2d(sec.)

AP5.2 0.03 0.33(4) 0.25(4) 0.53(6)

AP10.4 0.09 6.02(8) 3.77(5) 3.30(6)

AP15.6 2.3 47.50(9) 12.00(4) 12.19(7)

AP20.8 62.02 820.83(12) 153.61(6) 56.47(8)

AP25.10 900.50 45801.05(22) 1855.69(6) 172.89(8)

AP30.12 5530.00 � 3350.86(6) 675.09(13)

AP35.14 N.A. � 120206.82(7) 4238.14(12)

AP40.16 N.A. � > 6 d 25676.55(14)

AP45.18 N.A. � � 87130.57(15)

A trivial question that might arise here is whether it is necessary to solve the relaxed

problems to optimality. Here, we propose two approaches. The first one (which is

referred to by AMC2d in Table 6.5) solves that LP to optimality before un-relaxing

the AMP and the second one to a gap of less than 0.5% between lower and upper

bounds of Benders algorithm. The first one is be referred by OptLP and the latter by

nonOptLP. The results are reported in Table 6.6.

As depicted in Table 6.6, in general, Benders approaches are capable of solving larger
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Table 6.6: Final Comparison.

Instance CPLEX 9.1 SC2d MC2d AMC2d(sec.)

(sec.) (sec.) (sec.) OptLP nonOptLP

AP5.2 0.03 0.33(4) 0.25(4) 0.53(6) 0.52(6)

AP10.4 0.09 6.02(8) 3.77(5) 3.30(6) 4.23(6)

AP15.6 2.3 47.50(9) 12.00(4) 12.19(7) 13.09(6)

AP20.8 62.02 820.83(12) 153.61(6) 56.47(8) 40.34(7)

AP25.10 900.50 45801.05(22) 1855.69(6) 172.89(8) 134.19(7)

AP30.12 5530.00 � 3350.86(6) 675.09(13) 534.56(8)

AP35.14 N.A. � 120206.82(7) 4238.14(12) 2771.99(8)

AP40.16 N.A. � > 6 d 25676.55(14) 14181.73(8)

AP45.18 N.A. � � 87130.57(15) 99483.25(10)

AP50.20 N.A. � � 566360.33(14) 528663.42(10)a

a ' 146.85 hrs (approximately 6 days).

instances while CPLEX 9.1 fails. Yet, multiple cut approaches (MC2d and AMC2ds)

and especially the accelerated multiple cut schemes, AMC2ds, are capable of solving

much larger instances. With respect to the computational time, obviously MC2d and

AMC2ds are superior. For some instances like AP30.12, AMC2d, in the second vari-

ant, solves the instance more than 10 times faster than CPLEX 9.1.

Among the multiple cut approaches, with respect to the problem instance size

which is solved, AMC2ds outperform MC2d. While it takes more than 6 days to solve

AP40.16 with MC2d, the larger instance of AP50.20 can be solved by AMC2d (the

second variant) in such an amount of time (approximately 146 hrs). However, the ab-

solute superiority of AMC2ds to other methods both in terms of computational time

and the instance size that can be solved is obvious in Table 6.6. Between AMC2ds,

as Table 6.6 shows, the second variant (namely, nonOptLP) is superior, as the instance

size grows. For some instances, its computational time is even half of the one of OptLP.

Similar conslusion and results are also obtained from extensive expriments with

many randomly generated instances.

6.9 Algorithms

The implementation of all the proposed Benders algorithms are presented here.
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6.9.1 Classical Single Cut Benders Algorithm (SC1)

The algorithm SC1 is the classical Benders algorithm which uses only one cut per

iteration. This cut is generated as a result of solving one complete SPD.

Algorithm 1: SC1

Input: Problem instance
Output: Optimal solution of the original problem
Set UB = +∞, LB = 0;
while LB 6= UB do

Solve MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
Solve SPD;
Add corresponding cut to the MP ;
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

Set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
stop. The optimal solution of original problem is obtained;

The algorithm SC1 equipped with the pareto-optimal cut strategy is depicted below.

Algorithm 2: SC1d

Input: Problem instance
Output: Optimal solution of the original problem
Set UB = +∞, LB = 0;
while LB 6= UB do

Solve MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
Solve SPD;
Find the pareto-optimal cut according to (6.41)-(6.44);
Add corresponding cut to the MP ;
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

Set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
stop. The optimal solution of original problem is obtained;
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6.9.2 Modified Classical Single Cut Benders Algorithm (SC2)

Although in this algorithm a single cut is added in each iteration, this cut is an aggre-

gation of sub-cuts achieved from n(n−1)
2

separated parts of the problem (see Algorithm

3).

Algorithm 3: SC2

Input: Problem instance
Output: Optimal solution of the original problem
Set UB = +∞, LB = 0;
while LB 6= UB do

Solve MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
foreach i, j > i do

Solve SPDij;
Add ij-th part of the single cut;

end
Add aggregated corresponding cut to the MP ;
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

Set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
stop. The optimal solution of original problem is obtained;

SC2 equipped with the pareto-optimal cut is depicted in Algorithm 4.

6.9.3 Multi-Cut Benders Algorithm (MC1)

In MC1, n(n−1)
2

LPs are solved. For a given i, sub-cuts of all jj>i-th sub-SPDs are

aggregated. As a result n − 1 cuts are added to MP at each iteration (see Algorithm

5).

MC1 equipped with the pareto-optimal cut strategy is depicted in Algorithm 6.

6.9.4 Modified Multi-Cut Benders Algorithm (MC2)

In MC2, at each iteration, n(n−1)
2

such cuts are added to MP (see Algorithm 7).

MC2 equipped with the pareto-optimal cut strategy is depicted in Algorithm 8.
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Algorithm 4: SC2d

Input: Problem instance
Output: Optimal solution of the original problem
Set UB = +∞, LB = 0;
while LB 6= UB do

Solve MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
foreach i, j > i do

Solve SPDij;
Find the pareto-optimal cut according to (6.41)-(6.44);
Add ij-th part of the single cut;

end
Add aggregated corresponding cut to the MP ;
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

Set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
stop. The optimal solution of original problem is obtained;

Algorithm 5: MC1

Input: Problem instance
Output: Optimal solution of the original problem
Set UB = +∞, LB = 0;
while LB 6= UB do

Solve MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
foreach i do

foreach j > i do
Solve SPDij;
Add j-th part of i-th cut;

end
Add corresponding cut (i-th) to the MP ;

end
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

Set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
stop. The optimal solution of original problem is obtained;
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Algorithm 6: MC1d

Input: Problem instance
Output: Optimal solution of the original problem
Set UB = +∞, LB = 0;
while LB 6= UB do

Solve MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
foreach i do

foreach j > i do
Solve SPDij;
Find the pareto-optimal cut according to (6.41)-(6.44);
Add j-th part of i-th cut;

end
Add corresponding cut(i-th) to the MP ;

end
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

Set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
stop. The optimal solution of original problem is obtained;

Algorithm 7: MC2

Input: Problem instance
Output: Optimal solution of the original problem
Set UB = +∞, LB = 0;
while LB 6= UB do

Solve MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
foreach i, j > i do

Solve SPDij;
Add corresponding cut to the MP ;

end
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

Set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
stop. The optimal solution of original problem is obtained;
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Algorithm 8: MC2d

Input: Problem instance
Output: Optimal solution of the original problem
Set UB = +∞, LB = 0;
while LB 6= UB do

Solve MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
foreach i, j > i do

Solve SPDij;
Find the pareto-optimal cut according to (6.41)-(6.44);
Add corresponding cut to the MP ;

end
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

Set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
stop. The optimal solution of original problem is obtained;

6.9.5 Accelerated Multi-Cut Benders Algorithm (AMC2d)

The algorithm AMC2d that reduces the frequency of the MIP master resolution is

given by Algorithm 9.
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Algorithm 9: AMC2d

Input: Problem instance
Output: Optimal solution of the original problem
1:Set UB = +∞, LB = 0;
while LB 6= UB do

Solve a relaxed MP to optimality;
Set LB = z∗MP and update hk and ykl in a new dual problem;
foreach i, j > i do

Solve SPDij;
Find the pareto-optimal cut according to (6.41)-(6.44);
Add corresponding cut to the MP ;

end
if z∗SP +

∑
k Fkhk +

∑
k

∑
l>k Iklykl < UB then

set UB = z∗SP +
∑

k Fkhk +
∑

k

∑
l>k Iklykl;

end

end
if MP is an LP then

Un-relax the MP;
go to 1;

end
stop. The optimal solution of original problem is obtained;



Chapter 7

Heuristic Solution Methods for HLPPT

In the preceding chapter we explained that some restrictions prevent us from solving

even moderate size instances of HLPPT in a reasonable amount of time. In fact,

our limitation is not only the time, but hardware restrictions are an obstacle as well.

A possibility is sacrificing the optimality in favor of finding a good solution for each

problem instance. Moreover, these solutions need to be a good approximations of the

optimum and also need to be achieved in a reasonable amount of time.

7.1 Heuristic Algorithms

A heuristic is an algorithm designed and developed to achieve one or both of following

goals:

i) finding a pretty good solution,

ii) in a reasonable amount of time.

Of course, there is no proof the solutions could not get arbitrarily bad; or it usually

runs reasonably quickly, however there is no argument that this will always be the case.

7.1.1 Metaheuristic Algorithm

A metaheuristic is a heuristic method for solving a very general class of computational

problems by combining user-given-black-box procedures that are usually again heuris-

tics. Where no problem-specific algorithm or heuristic for a problem exists or when it

exists and it is not practically implementable, a metaheuristic can be applied. Combi-

natorial Optimization Problems (COPs) are among those type of problems. Some of

the most well-known metaheuristics are:

• Random search,

• Local search,

• Greedy algorithms and hill climbing,

• Best-first search,

• Genetic algorithms,
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• Simulated annealing,

• Tabu search,

• Ant colony optimization, and,

• Greedy randomized adaptive search procedure (GRASP).

In the case of HLPPT, one looks for a metaheuristic algorithm capable of finding

good solutions for as many instances as possible in a reasonable amount of time.

What we expect from our metaheuristic is that:

• it is capable of finding optimal solutions for almost all (or at least most) of the

problem instances with known optimal solutions,

• if it failed to find the optimal solution, the reported gap should be quite small.

It is assumed that such a metaheuristic that can satisfy these conditions is trustable.

In other words, we speculate that the solutions found by this algorithm for all other

problem instances where their optima are not known, are close enough to optimality.

7.2 Greedy Algorithms

A greedy algorithm is a metaheuristic algorithm for solving a problem by finding a local

optimum in each stage of algorithm, hoping to find the global optimum, eventually.

7.2.1 Strategy and Elements

In a more detailed form, a set of candidates which a solution is created out of that is

subjected to a selection function in order to choose the best of candidates. A feasibility

function checks whether the selected candidate can contribute to the current solution.

Moreover, the quality of this partial solution is evaluated by means of an objective

function.

7.2.2 Greedy Choice Priority

The choice of a candidate that contributes to the current partial solution can be ac-

complished through a prioritization process. The prioritization can either be applied

at the very beginning of algorithm and remain the same until the end of the process

or it can be updated dynamically during the stages of the algorithm.
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7.2.3 Well-Known Greedy Algorithms

The greedy algorithms belong to an important class of algorithms in computer sci-

ence and metaheuristic optimization methods. Examples of these algorithms which

are proven to be able to find the global optimum and are much faster than other

optimization methods are:

• Kruskal ’s algorithm and Prim’s algorithm for finding minimum spanning trees,

• Dijkstra’s algorithm for finding single-source shortest paths and,

• the algorithm for finding optimum Huffman trees.

7.3 Greedy Algorithm for HLPPT

As mentioned earlier, our problem can also be restated as a problem of finding a con-

nected hub-level network followed by a minimum flow cost problem. Obviously, the

second part is a function of the first part. This means, how the flow should be trans-

ferred is induced by the hub-level network configuration. Therefore, without loss of

generality we concentrate on the search for the best (or as good as possible) hub-level

network. Since we have seen that the well-known greedy algorithms (see Subsection

7.2.3) already performed extremely good on some of the graph problems, we are moti-

vated to employ a greedy approach for the case of HLPPT.

Now, we translate our problem onto the necessary components of a greedy algo-

rithm:

• set of all edges as the set of candidates,

• ∆ = fnew − f cur as the selection function,

• a functionality for checking the connectivity, to act as a feasibility function,

• and the objective function of HLPPT (to count the total cost: the hub-level

network setup cost plus the flow cost) as the objective function.

Therefore, these four fundamental components of a greedy algorithm are already

introduced for our problem.

Before closing this section, it may be worth to remind how we evaluate the ob-

jective function. We use Dijkstra’s single-source shortest path algorithm which itself

is a greedy algorithm to find the shortest paths and evaluate the flow transfer cost

(this algorithm is efficiently implemented in the LEDA1 library). Finally, the objective

1Algorithmic Solutions Software GmbH
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function is evaluated (as mentioned earlier).

7.3.1 Strategy

In this section a basic version of our heuristic is described. For each iteration of the

external loop (while improvement proceeds), the best edge from among all edges is

chosen. Then the search moves to that neighbor and restarts from there (the best

move is a move with most negative ∆f). As long as such a move exists the algorithm

proceeds.

Definition 7.3.1 (Hamming Distance). The Hamming distance between two strings

of equal length is the number of positions for which the corresponding symbols are

different. In other words, it counts the number of substitutions required to change one

into the other.

Definition 7.3.2 (Edge Vector). An edge vector a, is an array of n(n−1)
2

binary values,

where ai = 1 if the edge corresponding to i receives a hub edge and 0, otherwise.

Example 7.3.1. Let a = (1, 1, 0, 1, 1) and b = (1, 0, 0, 1, 0). The Hamming distance of

a and b, dH(a, b) =
∑

i(|ai − bi|) = 2.

Taking a closer look at our greedy algorithm, one can see that it is actually a Hill

Climbing algorithm on the neighborhood induced by the Hamming metric on the set of

edge vectors. This algorithm iteratively looks for the best neighbor with a distance of 1.

In this algorithm we merge the feasibility function and the objective function and

let the function Eval to return ∞ if the resulted trial point is infeasible and the ob-

jective function value in any other case. That is, in order to improve the performance

of algorithm, our concern would not be to move from feasible solution to other feasible

ones and examining them to find the best. Instead, it is the objective function that

controls whether it is feasible or not, and thus returns the corresponding value.

Note. By flattening out a 2D edge array (like y) and taking into account the undi-

rectedness of the hub-level graph, the hub edge (k, l)(i.e. ykl) corresponds to the

(k × n − k × (k − 1)/2 + l − k − 1)-th entry of a the linear edge vector for its imple-

mentation in C++. From now on, we will always refer to this 1D vector as the edge

vector.

Although, the size of this neighborhood is n×(n−1)
2

, but not all of them can result

in a connected hub-level network.
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Theorem 7.3.1 (Cardinality of Feasible Neighbors Set). The number of feasible neigh-

bors, NrNhbrs, in the neighborhood (induced by Hamming metric) of a given hub struc-

ture is NrNhbrs ≤ n(n−1)
2
− (n−NrH)(n−NrH−1)

2
, where n is the number of locations and

NrH is the number of hubs in the current solution.

Proof. For a given hub-level configuration (solid edges in Figure 7.1), none of the edges

in the complete graph of spoke-level network can be added to the hub-level network

and result in a connected hub-level graph. One can observe in the Figure 7.1 that

changing the status of none of the dotted edges in the complete spoke-level network

can result in a new connected hub-level network.

Figure 7.1: Theorem 7.3.1

These dotted edges will remain spoke in any neighbor with distance of one from

this configuration. Because, either a spoke node changes to a hub node and a new hub

edge will be established between the new hub node and current hub-level network or

this change happens inside the hub-level network. Thus, in both case nothing is to

be done with the edges between the spokes. Therefore (n−NrH)(n−NrH−1)
2

choices are

canceled from among our choices, which completes the proof.

Obviously, n(n−1)
2
− (n−NrH)(n−NrH−1)

2
is not a tight upper bound because it might

happen that the change is the removal of a hub edge and the edge to be removed (like

5-7 or 7-8) is chosen in such a way that its cancelation results in a hub-level graph with

two components. Another case may happen if the change is the installation of a hub

edge and both end-points are selected within the current hub-level network (like 5-8).
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The greedy algorithm is depicted in Algorithm 10.

Algorithm 10: A simple greedy algorithm for HLPPT

Input: HLPPT instance
Output: x∗

x:=Create initial solution();
min := Eval(x);
last min :=∞;
repeated min := 0;
while (repeated min = 0) do

f := Eval(x);
if f ≤ min then

min := f ;
x∗ := x;

end
foreach i = 1 to nrLocations ∗ (nrLocations− 1)/2 do

∆f := 0;
x′ := x;
x′i := 1− x′i;
if is not feasible(x′) then

∆f :=∞;
else

∆f := Eval(x′)−min;
end
if ∆f < 0 then

x∗ := x′ ;
min := Eval(x′);

end

end
if min = last min then

repeated min := repeated min + 1;
end
last min := min;
x = x∗;

end
stop.

7.3.2 Initial Solution

As we can see in Algorithm 10, an initial solution is generated by our algorithm to work

as a starting point. Our experiments have revealed that starting with a random initial

solution is not the best idea. Actually, this is the nature of COPs that have many local

optima working as whirlpools to capture the search into one of them. Therefore, it is

worthwhile to have more prudent strategies for creating an initial solution.
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From our experiences in instances of HLPPT, we observed that:

• the number of hubs in the optimal solution is an unknown function of the discount

factor. That is, the number of hubs has a direct relationship with the discount

considered for using hub edges; The higher the discount, the higher the tendency

to have more hub edges and subsequently hub nodes,

• it is more likely for the most center oriented and busiest (in terms of the total

flow arriving to and departing from) locations to receive hub (according to our

experience, there was at least one hub node in a set composed of the (n × 0.2)

most central nodes in union with the (n× 0.2) busiest nodes)

For example, if α = 0.5, we select max(n × 0.2, 2) number of the most central

nodes and max{n× 0.2, 2} number of busiest locations as initial hubs. Preferably, the

hub level network should be a complete graph of these selected locations. This initial

solution is passed to the main procedure of algorithm.

7.3.3 Complexity and Neighborhood Size

In this subsection we discuss the complexity of the algorithms and the size of the neigh-

borhood.

Since the hub-level network is an undirected graph, we have n×(n−1)
2

possible hub

edges. Two configurations are assumed to be neighbors if their Hamming distance

is equal to 1. As a result the cardinality of the set of neighbors of a given feasible

configuration is in general n×(n−1)
2

, i.e. O(n2). As we have seen in Theorem 7.3.1, the

actual size is strictly less than this, except if removing or adding any hub edge does

not harm the connectivity. Therefore, the size of the neighborhood in the worst case

is n(n−1)
2

, that is O(n2).

Complexity of Algorithm

At each iteration of the external loop, the internal loop looks for the best feasible

move from among a maximum of n×(n−1)
2

moves. Therefore, in each iteration, at most

one move can take place. The overall iterations of the external loop is not known in

anticipation. However, from our experience, it is much less than neighborhood size.

Therefore we cannot say that the complexity is O(n2), as we cannot say it is O(n),

either. On the other hand, for each feasible neighbor (a feasible neighbor is a neighbor

with a connected hub-level graph) and for each pair of origin-destination i − j(j>i)

Dijkstra’s shortest path algorithm is applied. We use j > i because the shortest paths

are symmetric. The complexity of each Dijkstra’s algorithm is O(|E| + |V |log|V |),
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where |E| ≤ q + p(n − p) ≤ n×(n−1)
2

and |V | = n, where q is the number of hub

edges and p is the number of hub nodes in the feasible neighbor. This complexity

should be considered for n − 1 nodes and as a result is of O(|V |(|E| + |V |log|V |)) ≤
O((n− 1)(n×(n−1)

2
) + n log n) = O(n3).

7.3.4 Computational Results

Benders algorithm successfully found the optimal solution of HLPPT instances in a

smaller amount of time compared to CPLEX 9.1, and it could also solve larger size

instances within a specific time limit. Table 7.1 reports the computational time for

Benders algorithm and that of our greedy heuristic.

As Table 7.1 shows, insofar as the optimal solution for HLPPT instances (i.e. sizes

of 5. . . 50) are known, our heuristic except for one case either reached to the optimal

solutions or for a few cases to gaps of less than 0.01%.

Table 7.1: Comparison between the greedy algorithm and
AMC2d.

Instance AMC2d (sec.) Greedy Algorithm (sec.) Gap (%)

AP5.2 0.52 0.00 0opt
AP10.4 4.23 0.01 0opt
AP15.6 13.09 0.08 0opt
AP20.8 40.34 0.44 0opt
AP25.10 134.19 1.33 0opt
AP30.12 534.56 4.64 0opt
AP35.14 2771.99 7.91 0.01

AP40.16 14181.73 20.72 0.01

AP45.18 99483.25 31.89 0.01

AP50.20 528663.42 135.99 2.67

Furthermore, the heuristic could find them in a fraction of the CPU time that

Benders algorithm would require.
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7.4 Improvement by Local Neighborhood Search

Due to the metaheuristic nature of the method and the myopic characteristics of greedy

algorithms, the possibility always exists that the search process gets stuck in a local

optimum. This happens for example in the case of the problems of AP35.14 until

AP50.20 for which the optimal results are known. This always makes it worth to em-

ploy a prudent diversification or intensification of the search, while hoping to reach to

a new and better solution.

In order to obtain better solutions given their existence, we compare and explore

the existing facts and evidences for both the available optimal solution and best so-

lution of the greedy algorithm. Based on that, we develop some strategies capable of

obtaining better solutions.

Our first observations out of visualizing and comparing the optimal solution with

that of a greedy heuristic for many problem instances including AP, CAB and also

random instances, revealed that the output of the greedy algorithm (Algorithm 10),

almost always has exactly the same number of hubs which appear in the optimal solu-

tions.

The second observation states that the spatial layout of the hub-level network in

the best solution of the basic greedy heuristic has only a very slight deviation from

that of the optimal solution. In other words, the Hamming distance of the opti-

mal hub vector and that of the greedy algorithm output is quite small (as a rule of

thumb it is less than the number of common hubs between them dH(Hopt, Hgreedy) <∑n
i=1(1− |hopti − h

greedy
i |).

The third observation points out the fact that spoke nodes having the highest flow

transition and at the same time are closer to the current hubs, are more susceptible

to be replaced by one in the current solution and thus lead to a better solution (after

becoming subjected to a re-started neighborhood search).

Therefore, we will define more neighborhood structures in order to virtually speak-

ing ”clashing” to each other. Hopefully this can detect new crevices and narrows con-

taining better solutions than the previously faded crevices as a result of these clashes

and establishes a back-and-forth process. In this way, we expect achieving an even

better solution or perhaps a global optimum.
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7.4.1 Neighborhood Search I

As it is reported in Table 7.1, for the case of AP35.14 we did not reach optimality.

Although, the gap was quite small, it still exists. In order to study the ways to escape

from the local optimum, the optimal hub-level network is visualized in the LOLA Graph2

software.

Definition 7.4.1 (Neighborhood I). For a given hub-level structure and for a given

hub node, i, the new structure resulted by replacing the given hub with a non-hub node

having p-th (p = 1 . . . 3) highest value of
∑

j 6=k Wkj∑
j 6=k Ckj

, k 6= i and switching the assignment

of all the incoming and outgoing edges of i to this p-th closest non-hub is called the

p-th level neighbor of the given hub node with respect to the Neighborhood I for the

given hub-level structure.

This neighborhood was used in order to investigate more possibilities that may lead

to better solutions. Figure 7.2 depicts the best known hub-level structure of our greedy

algorithm.

Figure 7.2: Best known solution of main neighborhood (AP35.14)

Figure 7.3 displays the result of searching in cooperation with the structure of new

neighborhood (i.e. Neighborhood I). In fact, Figure 7.3 depicts the optimal solution.

The process continues in the following way: when no improvement is observed in

the results of our greedy algorithm (Algorithm 10) there is a spoke node as the best of

2www.mathematik.uni-kl.de\ ∼lola
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p-th level best spoke nodes corresponding to any of the hubs that can be replaced by it

(resulted configuration may have degraded objective function value but is a locally best

choice which imitates the diversification process; if the new trial point is worse, maybe

it is standing on a previously non-explored peak which can topple into a deeper narrow

if become subjected to a search with respect to the original neighborhood). By moving

to this neighbor regarding the idea of neighborhood I and clashing this new structure

to the original neighborhood structure (by delivering this new trial point to the greedy

search) we may have a new better hub-level structure. That is, the greedy search may

remove some components in favor of other ones. The same occurrence appears here,

when the hub node #10 was replaced by #16.

This new structure was delivered to the greedy algorithm and it restarts with this

new solution as the initial solution hoping to find a better one. Ultimately, it found

a new structure which coincides with the optimal hub-level structure. In this case we

just set p = 1.

Figure 7.3: Optimal solution found after search on the Neighborhood I (AP35.14)

This strategy with p = 1, is successfully applied on problems which their best known

solution has not been optimal, like AP35.14 until AP50.20. All reached the optimality.

In fact, what happened here was more or less avoiding freezing in the local search

solution. That is, sometimes due to the greediness of the algorithm, a component

appears (enters) in the hub-level structure with respect to the local optimality and

in an improvident way. But, then it plays the role of an obstacle to reach the global

optimum. This phenomena is called freeze phenomena and this new neighborhood



106 7 Heuristic Method for HLPPT

structure is responsible to discover better solutions insofar as it is possible. We denote

this algorithm by greedy+ algorithm.

So far, even without considering the search on a second neighborhood structure,

the greedy algorithm both in terms of run-time and the expected solution quality in

this amount of time performs very well. Since HLPPT instances are not solved to

optimality for larger size problems, the optimal solution is not available for reference

purposes. Therefore, we again define another strategy to reduce the risk of prema-

ture convergence of our greedy+ algorithm even more. Hence, we propose another

neighborhood structure and call it Neighborhood II.

7.4.2 Neighborhood Search II

Alternatively, there can be another neighborhood structure to be used in the case that

the Neighborhood I gets stuck in a local optimum, or even when we were not able to

find a better solution than that of the basic greedy algorithm.

Definition 7.4.2 (Neighborhood II). For a given hub-level structure and for a given

hub node i, the new structure which results by replacing the given hub with the p-th

(p = 1 . . . 3) closest non-hub node to i and switching the assignment of all the incoming

and outgoing edges of the given hub to this p-th closest non-hub is called the p-th level

neighbor of i with respect to the Neighborhood II for the existing hub-level structure.

In some cases, this neighborhood is dominated by Neighborhood I.

Our observations revealed that in the case of AP problems, the first neighborhood

suffices to find optimal solutions. However, the second neighborhood could improve

the solutions of some instances which have been solved by greedy+ and their optimal

solutions are unknown.

In the case of the AP instances, these two neighborhoods dominate all other neigh-

borhoods that we implemented with respect to the quality of solution and also com-

putational time. Many different and some times pretty complicated neighborhood

structures have been tried without any improvement.

We denote the greedy+ equipped with Neighborhood II as greedy∗.

7.4.3 Neighborhood Size and Complexity

Both types of neighborhood structures (I and II) have similar size. Moreover, the

procedures applied for employing this neighborhood structures to the result of search

on the original neighborhood are exactly the same. In this subsection we shed more

light on details and size of such neighborhoods and procedures.
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For a given network configuration and a non-empty set of spoke nodes resulted by

partitioning the nodes into two sets of hub nodes and spoke nodes, there exists a single

spoke node (if a tie exists an arbitrary selection clears it) corresponding to each of hub

nodes as p-th level neighbor. Therefore, the size of each p-th level neighborhood is

n− 1, if the spoke node set is a singleton. That is, when there is a single spoke node,

that is the p-th level neighbor to each of the hub nodes. In an extreme case, there

exist n
2

distinct nodes as the neighbors of the remaining n− n
2

nodes, where n is even

(n+1
2

or n−1
2

hub nodes for an odd n and n− n+1
2

and n− n−1
2
− 1, p-th level neighbors,

respectively). For each hub node, the p-th neighbor should be selected from among n
2

(n−1
2

or n+1
2

) spoke nodes. Each of the neighbors is evaluated by Dijkstra’s algorithm

and subjected to a neighborhood search based on the main neighborhood structure.

The complexity of each step has been explained before.

7.4.4 Quality of Solutions

Here, we examine the quality of our heuristic by comparing its best-known solutions

with those of the LP relaxation of HLPPT (these LP solutions are achieved from

Algorithm 9). In Table 7.2, the second column reports the run-time of heuristic and

the third one the run-time of Algorithm 9 to solve LP relaxation. The gap between the

solution of greedy∗ and the LP relaxation is measured by UB−LB
LB

× 100 and is depicted

in the column titled by GapLP (%). The gap between the optimal solution of AMC2d

and that of our heuristic is depicted in the last column (Gapopt (%)).

Table 7.2: Final Comparison.

Instance greedy∗ (sec.) HLPPTLP GapLP (%) Gapopt (%)

AP5.2 0.03 0.41 0 0opt
AP10.4 0.14 2.44 0 0opt
AP15.6 0.27 11.50 0 0opt
AP20.8 0.95 32.98 0.1 0opt
AP25.10 2.53 96.16 1.8 0opt
AP30.12 7.13 451.06 1.4 0opt
AP35.14 18.39 1024.25 3.9 0opt
AP40.16 34.66 2475.16 3.9 0opt
AP45.18 70.22 4098.70 4.8 0opt
AP50.20 176.13 6188.42 5.9 0opt
AP55.22 264.05 12070.44 6.9 -

AP60.24 565.91 28774.47 7.7 -

AP65.26 663.86 54109.12 12.0 -
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Table 7.3: greedy∗ Algorithm run-time report

Instance T. Cpu(s) Instance T. Cpu(s)

AP5.2 0.03 AP55.22 264.05

AP10.4 0.14 AP60.24 565.91

AP15.6 0.27 AP65.26 663.86

AP20.8 0.95 AP70.28 1407.46

AP25.10 2.53 AP75.30 1785.86

AP30.12 7.13 AP80.32 3142.24

AP35.14 18.39 AP85.34 4274.56

AP40.16 34.66 AP90.36 6934.25

AP45.18 70.22 AP95.38 8601.04

AP50.20 176.13 AP100.40 15370.72

We can conclude that our heuristic is extremely efficient. Moreover, the LP relax-

ation is a good approximation of optimal solution of HLPPT. For example, in the

case of AP 50.20, our heuristic found the optimal solution in 176.13 seconds while

an LP solution with gap of 5.9% is achieved in 6188.42 seconds (35.13 times higher

computational time).

7.4.5 Computational Results

Table 7.3 reports the computational results for some instances of AP. When the optimal

solution is known the algorithm was able to report it.

7.4.6 Algorithm

Algorithm 11 details the greedy+ algorithm.

7.5 Heuristic for the DHLPPT

Consideration of delays which occur at each switch from one train to another one in

the first glance seems to be complicated. However, it can be handled in an easy way.

Focusing on the structure of this variant reveals that, in fact, we are faced with the

same problem as HLPPT. The delay cost incurred at the hub node, where a flow from

spoke node waits for the first possible high-speed facility (or gets off from it and waits

for the spoke-level facility) is actually due to making use of spoke edges. That is, this

cost can be added to the spoke edge flow costs, if the corresponding flow is supposed
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Algorithm 11: Improved greedy algorithm for HLPPT (greedy+)

Input: HLPPT instance
Output: x∗

x:=Create initial solution();1

min = Eval(x);2

last min :=∞;3

repeated min := 0;4

while (repeated min = 0) do5

f := Eval(x);6

if f ≤ min then7

min := f ;8

x∗ := x;9

end10

foreach i := 1 to nrLocations ∗ (nrLocations− 1)/2 do11

∆f := 0;12

x′ := x;13

x′i := 1− x′i;14

if is not feasible(x′) then15

∆f :=∞;16

else17

∆f := Eval(x′)−min;18

end19

if ∆f < 0 then20

x∗ := x′ ;21

min := Eval(x′);22

end23

24

end25

if min = last min then26

repeated min := repeated min + 1;27

if repeated min = 1 then28

x := Search Neighborhood I(x∗);29

if Eval(x) < Eval(x∗) then30

x∗ := x;31

repeated min := 0;32

goto 6;33

end34

end35

if repeated min ≥ 2 then36

return x∗;37

end38

end39

last min := min;40

x := x∗;41

end42

stop.43
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to go to destination through some hub edges.

Let i be the origin and j the destination:

• If both i and j are hubs, since all the flows between pairs of hub nodes are sent

through hub edges and no switch to any spoke edges takes place, there can not

be any delay time (see Figure 7.4).

Figure 7.4: No delay occurs in a hub-to-hub path.

• If i is a spoke node and j is a hub node, the only direct possible spoke edge

does not incur any delay cost (see Figure 7.5). In any other path containing at

least one hub-edge connection where the first hub node of this path is k 6= i, j,

switching from a spoke edge to a hub edge leads to a delay cost at the hub node

k. This cost is added to the spoke edge i − k and again results in a normal

HLPPT where delay is implicitly considered (see Figure 7.6). Analogously, this

holds when i is a hub node and j is a spoke node.

• If both, i and j are spoke nodes, either these two are connected via a single hub

node or through a hub-edge-path.

– if they are connected by a single hub node, say k, there occurs no waiting

time due to any unforseen delay anywhere in the hub-level network. There-

fore, no waiting time is imposed by the hub-level network (see Figure 7.7).
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Figure 7.5: No delay occurs in a direct connection.

Figure 7.6: Delay occurs at the switch-point hub node.

– If the path contains at least one hub edge, then there are two points where

delays occur. The first delays occur at the first hub node and the second

one at the last hub node. Therefore, the first delay cost is added to the first

spoke edge and the latter to the last one (see Figure 7.8).
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Figure 7.7: No delay cost is imposed on the transportation.

Figure 7.8: Delay occurs at the first and last hub nodes.

Algorithm

The algorithm greedy∗ with a slightly modified strategy for measuring the shortest

paths is applicable. That is, the weights of the graph should be modified and also

all the possible paths not incurring any delay must be examined. Then, the cheapest

among the possible paths is selected.



Chapter 8

A Generalized Model for Multi-Period Plan-

ning

In reality, hub location systems for public transportation encompass more aspects than

those that we have considered so far. In order to achieve a more practical model, at

least some of these aspects should be taken into account. At the same time, to avoid

uncontrollable complexities in the model, a trade-off between the reliability and com-

plexity should be drawn. However, the model is expected to be a good approximation

of the real-life problem.

In this chapter, we extend our proposed basic HLPPT model to a more general

one wherein more facts and features of the nature of the application are incorporated.

In 2006, Melo et al. [60], proposed a mathematical modeling framework for strategic

supply chain planning. This work deals with the dynamic multi-commodity capacitated

facility location problem where decisions are made for a planning horizon. They showed

that their model incorporates and generalizes all the different aspects considered by

other authors in literature.

8.1 Multi-Period Model for HLPPT (MPHLPPT)

In a multi-period HLPPT, the transport network evolves in time over the planning

horizon. Decisions about how the network should evolve are not made just in an

improvident and myopic manner, that is, the configuration of the system in each indi-

vidual period may not be optimal for that period. Instead, it sacrifices the individual

period optimality in favor of its contribution to the optimality of the whole planning

horizon (global optimality). In this model, without loss of generality we assume that

there exists an initial configuration prior to the starting period.

Exploiting the full performance of an a priori established facility at period t in the

subsequent periods (t+ 1, t+ 2, . . . ) is only possible if we invest on maintenance activ-

ities in order to overcome the depreciation of facilities. Of course, when a facility is no

longer used in the system, some additional removal costs are incured. This concerns

both hub nodes and hub edges. Regarding the hub nodes, it amounts to the costs of

re-training or discharge of employees, ceasing costs, etc. Concerning the hub edges,
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it is related to the removal of elements of fast-lines needed to be paid to maintain

(e.g. special navigation system, high-speed trains, particular type of vehicles, specific

service-support centers, etc.).

In our extended model, in addition to the existing assumptions for the single period

problem, the following assumptions are also taken into consideration:

• the transport network includes an initial configuration before the starting period,

• the status of each hub node or hub edge can change at most once. That is,

– if a facility exists in the initial configuration it may become closed after-

wards,

– if a facility become closed at a period in the planning horizon, it remains

closed until the end of planning horizon and,

– if a facility become open at a period over the planing horizon it will not be

subject to removal.

• a fixed maintenance cost incurred for using a hub node or hub edge in each period

(that means, an amount of budget is considered periodically for maintenance. The

vehicles, roads and rails, stations, buildings and many more items are subject to

inspection, control and renewal) and,

• a fixed ceasing (removal) cost is incurred in order to degrade a hub node or hub

edge to a spoke one.

All these aspects of real-life are incorporated into our new model.

8.2 Mathematical Model of MPHLPPT

New parameters and variables are introduced and the re-interpretation of the already

existing variables are reviewed to use them in our new model.

8.2.1 Parameters

In order to extend the model to a more general case, which assumes setup, maintenance

and removal costs for both hubs nodes and hub edges in each period, the following

parameters are introduced:

• HMCt
k: The maintenance cost incurred by k-th hub node at the t-th period,

• EMCt
e: The maintenance cost incurred by e-th hub edge at the t-th period,

• HCCt
k: The removal cost incurred by k-th hub at the t-th period and,
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• ECCt
e: The hub edge removal cost incurred by e-th hub edge at the t-th period,

where e ∈ E = {(k, l)|k, l = 1, . . . , n, l > k}.

8.2.2 Variables

In order to reflect the requirement of our new model, the definition of variables should

be revised. According to the assumptions of model concerning the existence of an ini-

tial configuration, two sets of facilities are imagined.

Two index sets for facilities are H, keeping track of indices of potential hub nodes

and E which analogously is defined for potential hub edges. Each set is partitioned

into two subsets. The subset composed of indices of facilities which can be opened (say

openable) at any t ∈ T during the planning horizon labeled with a superscript o, like

Ho and Eo; and the sets of those which are active in initial configuration or, in the

other words, that can be closed later on (say closable), are labeled by a superscript c,

like Hc and Ec. This partitioning implies:

Ec ∩ Eo = ∅, Ec ∪ Eo = E, (8.1)

Hc ∩Ho = ∅, Hc ∪Ho = H. (8.2)

Therefore, we revise the definition of the following variables:

For all k ∈ Ho and t ∈ T = {1 . . . T},

htk =

{
1 if hub node k is established at the begining of the time period t,

0 otherwise.

For all k ∈ Hc and t ∈ T − {T},

htk =

{
1 if hub node k is removed at the end of time period t,

0 otherwise.

For all k ∈ Hc:

hTk =

{
1 if hub node remains active until the end of the planning horizon,

0 otherwise,

where T is the length of the planning horizon. In addition, ytkls are analogously

defined for the set of edges.

Note. Each edge is represented by e ∈ E and corresponds to the edge (k, l). That

means, k is the head and l is the tail node of that edge. Moreover, due to the undirected

nature of the hub-level graph, it is always assumed that l > k.
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8.2.3 Mathematical Formulation

The generality of the model is very similar to the single period case (i.e. HLPPT).

Additionally, we have to establish links between periods and also express the single

period model in terms of the newly defined sets and variables ((8.1) and (8.2)). Since

the model becomes involved, therefore we explain the constraints and make some labels

(A, B, . . . ) step by step to reach the final model by bringing these labels together.

(A): A closable facility should either be closed before the last period or corresponding

variable takes 1 at the last period indicating that it has been open over the planning

horizon. In Contrary, an openable facility can be opened just once. The following are

the constraints taking care of these facts for both type of facilities.∑
t∈T

htk = 1, ∀k ∈ Hc, (8.3)∑
t∈T

yte = 1, ∀e ∈ Ec, (8.4)∑
t∈T

htk ≤ 1, ∀k ∈ Ho, (8.5)∑
t∈T

yte ≤ 1, ∀e ∈ Eo. (8.6)

(B): In our model we assume that there exists just a limited amount of resources

(budget, workforce, etc.) which only suffices to establish a limited number of facilities.

For instance, for given q1, q2 ∈ N, q1 hub nodes and q2 hub edges from among all the

openable ones in each time period can be established.

∑
e∈Eo

yte ≤ q1, ∀t ∈ T , (8.7)∑
k∈ho

htk ≤ q2, ∀t ∈ T . (8.8)

(C): An openable hub edge between two end-points of k and l can have its end-points

belonging to different sets of the partition.

For all t ∈ T , l > k,

• if k and l both are openable, an openable edge e can be opened if both end-point

have been opened until now.

yte ≤
t∑

t′=1

ht
′

k , ∀e ∈ Eo, k, l ∈ Ho,
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yte ≤
t∑

t′=1

ht
′

l , ∀e ∈ Eo, k, l ∈ Ho.

• if k(l) is closable and l(k) is openable, an openable edge e can be opened if the

closable endpoint is not closed yet and will not be closed afterwards; and the

openable end-point is opened until the beginning of this period.

yte ≤ 1−
T−1∑
t′=1

ht
′

k , ∀e ∈ Eo, k ∈ Hc, l ∈ Ho, (8.9)

yte ≤
t∑

t′=1

ht
′

l , ∀e ∈ Eo, k ∈ Hc, l ∈ Ho, (8.10)

yte ≤
t∑

t′=1

ht
′

k , ∀e ∈ Eo, k ∈ Ho, l ∈ Hc, (8.11)

yte ≤ 1−
T−1∑
t′=1

ht
′

l , ∀e ∈ Eo, k ∈ Ho, l ∈ Hc. (8.12)

• if k and l are closable an openable edge e can be opened if both end-points are

not closed yet and will not be closed until the end of the (T − 1)-th period.

yte ≤ 1−
T−1∑
t′=1

ht
′

k , ∀e ∈ Eo, k, l ∈ Hc, (8.13)

yte ≤ 1−
T−1∑
t′=1

ht
′

l , ∀e ∈ Eo, k, l ∈ Hc. (8.14)

• for a closable edge e ∈ Ec, where definitely both end-points are closable, e can

remain open as long as both end-points remain open.

yte ≥ ht
′

k , ∀e ∈ Ec, k, l ∈ Hc,

yte ≥ ht
′

l , ∀e ∈ Ec, k, l ∈ Hc.

(D): For a given origin i and destination j, the flow from i to j can pass through the

hub edge (k, l):

• if (k, l) is openable, it should have been opened so far,

xtijkl + xtijlk ≤
t∑

t′=1

yt
′

e , ∀i, j > i, e ∈ Eo, t ∈ T .
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• if (k, l) was closable, it should have not been closed yet.

xtijkl + xtijlk ≤ 1−
t−1∑
t′=1

yt
′

e , ∀i, j > i, e ∈ Ec, t ∈ T .

(E): For a given flow between two nodes when only one of them is a hub:

• if that hub node is openable, it should have been opened in a period since the

beginning of the planning horizon,

∑
l 6=k

xtkjkl ≤
t∑

t′=1

ht
′

k , ∀j, k ∈ Ho, k < j, t ∈ T ,

∑
k 6=l

xtilkl ≤
t∑

t′=1

ht
′

l , ∀i, l ∈ Ho, l > i, t ∈ T .

• if that hub node was closable, it should have not been closed yet.

∑
l 6=k

xtkjkl ≤ 1−
t−1∑
t′=1

ht
′

k , ∀j, k ∈ Hc, k < j, t ∈ T ,

∑
l 6=k

xtilkl ≤ 1−
t−1∑
t′=1

ht
′

l , ∀i, l ∈ Hc, l > i, t ∈ T .

(F): The following constraints correspond to those of the single period model with the

same modification as carried out in the other constraints.

For all t ∈ T ,

etij ≤
t∑

t′=1

|ht′i − ht
′

j |, ∀i, j ∈ Ho, j > i,

etij ≤ 1− |
t∑

t′=1

ht
′

i −
t−1∑
t′=1

ht
′

j |, ∀i ∈ Ho, j ∈ Hc, j > i,

etij ≤ 1− |
t∑

t′=1

ht
′−1
i −

t∑
t′=1

ht
′

j |, ∀i ∈ Hc, j ∈ Ho, j > i,

etij ≤
t−1∑
t′=1

|ht′i − ht
′

j |, ∀i, j ∈ Hc, j > i.

However, these constraints are not linear. In order to linearize them, we define more

variables namely, δ+
ij ≥ 0 and δ−ij ≥ 0.
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For all t ∈ T ,

t∑
t′=1

(ht
′

i − ht
′

j ) = δt
+

ij − δt
−

ij , ∀i, j ∈ Ho, j > i,

1−
t∑

t′=1

ht
′

i −
t−1∑
t′=1

ht
′

j = δt
+

ij − δt
−

ij , ∀i ∈ Ho, j ∈ Hc, j > i,

1−
t−1∑
t′=1

ht
′

i −
t∑

t′=1

ht
′

j = δt
+

ij − δt
−

ij , ∀i ∈ Hc, j ∈ Ho, j > i,

t−1∑
t′=1

(ht
′

i − ht
′

j ) = δt
+

ij − δt
−

ij , ∀i, j ∈ Hc, j > i,

and finally for all t ∈ T , i and j > i we add,

etij ≤ δt
+

ij + δt
−

ij ≤ 1.

(G): By definition, the variable aijk (bijk) is used to show whether there is a flow sent

from (to) a spoke origin (destination) to (from) an arbitrary destination (origin) j (i)

via a hub node k.

For all t ∈ T ,

atijk ≤ 1−
t∑

t′=1

ht
′

i , ∀i ∈ Ho, j > i, k 6= i, j,

atijk ≤
t−1∑
t′=1

ht
′

i , ∀i ∈ Hc, j > i, k 6= i, j,

btijk ≤ 1−
t∑

t′=1

ht
′

j , ∀j ∈ Ho, i < j, k 6= i, j,

btijk ≤
t−1∑
t′=1

ht
′

j , ∀j ∈ Hc, i < j, k 6= i, j.

(H): The flow emanated from a node i is received by a node j based on the status of

i and j:

For all t ∈ T ,

atijk +
∑
l 6=j,k

xtijlk ≤
t∑

t′=1

ht
′

k , ∀i, j > i, k ∈ Ho, k 6= i, j,
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atijk +
∑
l 6=j,k

xtijlk ≤ 1−
t−1∑
t′=1

ht
′

k , ∀i, j > i, k ∈ Hc, k 6= i, j,

btijk +
∑
l 6=k,i

xtijkl ≤
t∑

t′=1

ht
′

k , ∀i, j > i, k ∈ Ho, k 6= i, j,

btijk +
∑
l 6=k,i

xtijkl ≤ 1−
t∑

t′=1

ht
′−1
k , ∀i, j > i, k ∈ Hc, k 6= i, j,

etij + 2xtijij +
∑
l 6=j,i

(xtijil + xtijlj) ≤
∑t

t′=1(ht
′
i + ht

′
j ), ∀i, j ∈ Ho, j > i,∑t

t′=1 h
t′
i + (1−

∑t−1
t′=1 h

t′
j ) ∀i ∈ Ho, j ∈ Hc, j > i,

(1−
∑t−1

t′=1 h
t′
i ) +

∑t
t′=1 h

t′
j , ∀i ∈ Hc, j ∈ Ho, j > i,

2− (
∑t−1

t′=1 h
t′
i +

∑t−1
t′=1 h

t′
j ) ∀i, j ∈ Hc, j > i.

Now, we can state MPHLPPT:

(MPHLPPT)

Min
∑
t∈T

(∑
i

∑
j>i

∑
k

∑
l 6=k

αt(W t
ij +W t

ji)C
t
klx

t
ijkl +

∑
i

∑
j>i

(W t
ij +W t

ji)C
t
ije

t
ij+∑

i

∑
j>i

∑
k 6=i,j

(W t
ij +W t

ji)C
t
ika

t
ijk +

∑
i

∑
j>i

∑
k 6=i,j

(W t
ij +W t

ji)C
t
kjb

t
ijk+

∑
t∈T

∑
k∈Ho

(
F t
k +

T∑
t′=t

HMCt′

k

)
htk +

∑
t∈T

∑
k∈Hc

(
t∑

t′=1

HMCt′

k +HCCt
k

)
hk

t +

∑
t∈T

∑
e∈Eo

(
I te +

T∑
t′=t

EMCt′

k

)
yte +

∑
t∈T

∑
k∈Ec

(
t∑

t′=1

EMCt′

e + ECCt
e

)
ye
t

)
−
∑
k∈Hc

HCCt
kh

T
k −

∑
e∈Ec

ECCt
ey
T
e (8.15)

s.t.
∑
l 6=i

xtijil +
∑
l 6=i,j

atijl + etij = 1, ∀t, i, j > i,∑
l 6=j

xtijlj +
∑
l 6=i,j

btijl + etij = 1, ∀t, i, j > i,∑
l 6=k,i

xtijkl + btijk −
∑
l 6=k,j

xtijlk − atijk = 0, ∀t, i, j > i, k 6= i, j,

A, B, C, E, F, G, H,

xtijkl, a
t
ijk, b

t
ijk, e

t
ij ∈ (0, 1), ytkl, h

t
k ∈ {0, 1}.
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The objective function describes the flow cost plus the setup, maintenance and clos-

ing costs. Since, the problem is a minimization problem and positive ceasing costs are

considered, no closable facility can be closed in the last period, i.e. t = T . Therefore,

we do not add the corresponding terms to the objective function.

8.3 Graphical Demonstration

To give a clear understanding and illustrate the MPHLPPT network evolution, we

depict the evolution process, period by period and explain it in more detail. This

clarifies the ideas of some constraints of the model. We start our explanation using a

randomly generated instance with 10 nodes and a planning horizon of 3 periods.

8.3.1 Initial Configuration

A random initial configuration is generated (R10). According to the Figure 8.1 and

the definition of the partitions, we have:

Hc = {1, 4}, Ho = H \Hc, (8.16)

Ec = {(1, 4)}, Eo = E \ Ec. (8.17)

8.3.2 Configuration of First Period

In the first period, some hub edges and hub nodes are established. According to our

constraints, there cannot be more than q1 hub nodes and q2 hub edges (here, we set

q1 = q2 = 3). Therefore, in the first period we have,

h1
0 = 1, h1

5 = 1, h1
8 = 1, y1

04 = 1, y1
48 = 1 and y1

58 = 1.

Figure 8.2 depicts the result of first period. The graph composed of this combined

configuration is a connected hub-level network graph.

As an example of paths in the optimal solution we pick up 3−9. In the first period,

flow emanated from 3 and destined to 9 transits through the hub node of 5. That is,

3-9 : a1
395 = 1, b1

395 = 1. (8.18)
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Figure 8.1: Random initial configuration of our instance.

Therefore, just one hub node is used in this transportation path. Moreover, none

of the closable facilities are closed yet.

8.3.3 Configuration of Second Period

Again the evolution process result is depicted in Figure 8.3.

The same as in the previous period, at most three hub facilities can be established.

As one can see in the Figure 8.3, we have,

h2
1 = 2, h2

9 = 1, y2
15 = 1, y2

25 = 1 and y2
59.

Two hub nodes and three hub edges are added in such a way that again the extended

hub level network is connected.

3-9 : e2
39 = 1. (8.19)

The closable facilities are still operating.
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Figure 8.2: The configuration in the first period in the optimal solution

8.3.4 Configuration of Third Period

The final configuration is the result of the last period where the network is completely

evolved. The result is displayed in Fig 8.4.

In the same way as with the last two periods, newly added facilities evolve the

configuration to a new one with a connected hub level network. It results in,

h3
3 = 1, h3

7 = 1, y3
03 = 1, y3

39 = 1 and y3
78 = 1,

and therefore,

3-9 : x3
3939 = 1. (8.20)

As the optimal solution shows, the initial configuration elements were always beneficial

to keep rather than become closed. Removal of a hub facility is more likely to happen

if the planing horizon is quite large and the reduction of a hub facility to a spoke one

can have enough time to show its benefits.

Obviously, if there would be no constraints on the number of facilities to be estab-
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Figure 8.3: The configuration in the second period in the optimal solution

lished at each period and, benefits of using the facilities can dominate the cost incurred

for setup and maintenance, most of hub facilities which are going to be opened will

preferably be opened at the earlier periods. In this way, as soon as possible the econ-

omy of scale can be exploited. This tendency, is more sensible if the flow mass is

homogeneously and monotonically increasing at each period. That is in each stage

there is more motivation to establish hub-level facilities. But, if the flow in an area has

a very low density and dramatically increases in the last periods, it is less likely that

this area receives a hub facility in the earlier periods.

Figure 8.5 depicts the optimal solution of the model, where the constraint set B is

relaxed. As one can see, all the facilities are established in the first period.

8.4 Computational Results

A set of 10 initial configurations is generated for a randomly generated instance with

10 nodes (R10) so that their spatial layout are homogenously distributed and are as

scattered as possible with as few as possible of intersections.
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Figure 8.4: The configuration in the third period in the optimal solution

In Figure 8.6 the layout of the this instance is depicted. We divided the area into

four quarters and tried to choose the initial configurations as fair as possible. That is,

every node appeared at least once as a hub node in an initial configuration and also

we selected the edges from almost all the parts of the layout.

The flow and cost structures are also randomly generated. Therefore, the cost as

well as flow, in general, does not follow any structure.

The parameters of these instances are defined as follows,

Fi = 5000 ∀i,
HCCi = 1000 ∀i,
HMCi = 500 ∀i,
Iij = 200× Cij ∀i, j > i,

ECCij = 200× Cij ∀i, j > i,

EMCij = 20× Cij ∀i, j > i.

8.4.1 Constrained by Number of Facilities (CN)

The restriction on the number of facilities among the potential ones (hub nodes and

hub edges ) to be opened in each period can be drawn by the constraint set B ((8.7)-
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Figure 8.5: Optimal solution without any constraint on the number of facilities or amount
of available budget at each period

(8.8)).

Example

From our experiences, CPLEX 9.1 is not capable of solving instances larger than 10

with T = 3 in less than one week of computational effort before the variable reduction

(before using the final version of HLPPT). But afterward, although the computational

time is considerably reduced, it was not possible to solve them in a reasonable amount

of time (i.e. less than half a day for an instance of size 15 and T = 3). Therefore

we report our results for the randomly generated instance of size 10 with 10 distinctly

generated initial configurations. Computational results are reported in Table 8.1.

The computations are carried out on a Intel(R)Xeo, n(TM)CPU 2.60 GHz and 1

GB of RAM.

Table 8.1, states that the root node gaps are small enough and in average the com-

putational time is less than 2 minutes.

An interesting behavior of this problem is that, although the instances of size 10

with T = 3 (at least for our initial configurations) are mostly solved in less than 5
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Figure 8.6: Spatial layout of R10.

Table 8.1: Constraints on number of nodes (CN).

CN T1. Cpu(s) Root Node Gap(%)

{1-4} 168.27 2.21

{3-5},{5-8} 55.05 0.39

{1-6},{6-9} 93.24 2.49

{0-4},{4-8} 31.88 1.31

{1-5},{1-8} 66.31 3.47

{3-5},{5-7},{7-8} 70.36 0.45

{2-7},{0-7},{2-9} 161.86 4.68

{0-3},{3-5},{1-5} 47.11 0.62

{1-4},{1-2},{4-9} 116.53 2.10

{1-7},{3-7},{3-9} 95.44 4.56

Avg. 90.61 2.23

minutes. However, as the problem size grows from 10 to 15 the computational time

dramatically increases. This clearly indicates the high complexity of the problem.
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R15

In Figure 8.7, an optimally solved randomly generated instance of size 15, R15, is

depicted. Here we let q1 = q1 = 3. The computational time for solving this instance to

optimality using CPLEX 9.1 is 95513.47 seconds (more than 26 hours). The root node

gap is 17.34% .

Figure 8.7: CN: Solution to the R15.

8.4.2 Constrained by Budgets for Activities (CB)

It has been assumed in (8.7)-(8.8) that there are limited number of facilities that can be

established at each iteration. Rather than directly restricting the number of facilities

to be established, these constraints can be expressed in terms of amount of available

budget for the activities of project in each period which is more realistic.

It may not be only the financial aspects to prevent us. However, this can also be

due to some other factors (like resources and machines, geographical or political issues,

etc.). But, in our study only the financial issues are taken into account.

At each period, there exists a fixed amount of budget that can be invested for the

facility establishment, maintenance and ceasing. Any capital available in a period but
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not invested then is subject to an interest rate and the returned value can be used in

subsequent periods. This amount of return from the preceding period plus the fixed

amount of budget available for the current period sums up to the whole amount of

available budget for this period.

New variables and parameters are defined as follows. For all t ∈ T :

Bt : the amount of initially available budget at the beginning of period t,

ρt : unit return factor on capital not invested in period t (ρt > 1),

ηt : remaining amount of budget at the end of a period t.

The amount of budget available for example in the second period would amount to

B2 + ρ1η1.

According to the definition of these new variables, the following constraints are

added to the model.

∑
k∈Ho

(F 1
kh

1
k) +

∑
k∈Ho

(h1
k ×HMCk) +

∑
k∈hc

(HCCkh
1
k) +

∑
k∈hc

(h1
kHMCk)

+
∑
e∈Eo

(I1
e y

1
e) +

∑
e∈Eo

(y1
e × EMCe) +

∑
e∈yc

(Y CCey
1
e) +

∑
e∈yc

(y1
eYMCe)

+η1 = B1∑
k∈Ho

(F t
kh

t
k) +

∑
k∈Ho

((
t∑

t′=1

ht
′

k )×HMCk) +
∑
k∈hc

(HCCkh
t
k)

+
∑
e∈Eo

(I tey
t
e) +

∑
e∈Eo

((
t∑

t′=1

yt
′

e )× EMCe) +
∑
e∈hc

(Y CCky
t
e)

+
∑
k∈hc

((1−
t−1∑
t′=1

ht
′

k )×HMCk) +
∑
e∈Ec

((1−
t−1∑
t′=1

yt
′

e )× EMCe)

+ηt = Bt + (ρt−1ηt−1) ∀t = 2 . . . T − 1∑
k∈Ho

(F T
k h

T
k ) +

∑
k∈Ho

((
T∑
t=1

htk)×HMCk) +
∑
k∈hc

((1−
T−1∑
t′=1

ht
′

k )×HMCk)

+
∑
e∈Eo

(ITe y
T
e ) +

∑
e∈Eo

((
T∑
t′=1

yt
′

e )× EMCe) +
∑
e∈Ec

((1−
T−1∑
t′=1

yt
′

e )× EMCe)

+ηT = BT + (ρT−1ηT−1)
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Example

Again, we had a similar difficulty for solving instances of larger than 10 nodes even

with T = 3. Therefore we report our results for the same randomly generated instance

with the same initial configurations as CN, Bt = 200, 000 and ρt = 1.2 . Computational

results are reported in Table 8.2.

In average, instances can be solved in less than 3 minutes and root node gaps are

Table 8.2: Constraints on number of nodes (CB).

CB T1. Cpu(s) Root Node Gap(%)

{1-4} 801.28 25.46

{3-5},{5-8} 97.66 0.86

{1-6},{6-9} 140.99 1.87

{0-4},{4-8} 119.75 1.77

{1-5},{1-8} 170.49 5.78

{3-5},{5-7},{7-8} 71.09 2.64

{2-7},{0-7},{2-9} 349.91 2.81

{0-3},{3-5},{1-5} 75.69 1.82

{1-4},{1-2},{4-9} 119.85 5.19

{1-7},{3-7},{3-9} 89.00 1.83

Avg. 203.571 5.00

in general small.

R15

In Figure 8.8, R15 is solved for the CB case. Here, we let T = 3 and Bt = 300, 000

which is not a very tight budget capacity. To solve this instance, 47747.75 seconds

(more than 13 hours) is the required computational effort. The root node gap is

8.65%.
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Figure 8.8: CB: Solution to the R15.
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Chapter 9

A Heuristic Methods For The Multi-Period

Approach

According to the computational results reported in the preceding chapter, even solving

instances of quite small size is very time consuming. As an example, for n = 15 and a

given initial configuration sometimes more than 26 hours of computations (more than

one day) using a standard solver is needed.

Usually, in an engineering point of view, one is interested in a good or very good

approximation of optimal solution in a much smaller amount of time. Our effort in

this section focuses on the design and development of a heuristic capable of reaching as

good as possible solutions in smaller amount of computational time compared to what

CPLEX 9.1 would need to find solutions with the similar quality.

9.1 Heuristic for MPHLPPT

The main idea of our heuristic stems from Algorithm 10. However, as one expects,

the main difference would be the neighborhood structure. That is, our neighborhood

should take care of changes in the status of facilities in periods (like postponing and

antedating of the openings and closings to different periods).

9.1.1 Neighborhood Structure

The key element of our algorithm is the neighborhood structure which determines the

rules to move from one configuration to another one. We adapt the neighborhood and

adopt the idea of the greedy+ algorithm by making it suitable for MPHLPPT. Again,

the search process explores the set of edges and the original neighborhood is proposed

upon the edge attributes.

Note. We always assume that a facility is closed in a period t, if it will not be available

in the successive periods (t+ 1, t+ 2, . . . ), but it still works until the end of period t.

Definition 9.1.1 (Neighborhood Structure for MPHLPPT). For a given period t and

for the hub edge (i, j) in a given configuration, the neighborhood of this configuration

obeys the following rules:

• if hub edge i− j is a closable hub edge:
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– ”Close it from now on”: if the hub edge is active now, then this hub is

open since the beginning of planning horizon and maybe after the current

period. Thus, close it at the end of current period,

– ”Keep it open until now”: if the hub edge is closed at this time, then it

will be kept open from the beginning of the planning horizon until now and

will be closed at the end of the current period until the end of the planning

horizon,

• if the hub edge i− j is an openable hub edge:

– ”Keep it closed until now”: if the hub edge is active now then it should

be kept closed until the end of this period and starts working from the

successive period, if it exists,

– ”Open it from now on”: if the hub edge is closed at the current period

then it becomes open from now on until the end.

In our idea, the prescribed neighborhood structure is comprehensive and concise

enough to consider all possibilities of the solution space.

9.1.2 Example

In this section for a given hub-level structure we go through all the neighbors with

respect to one of the hub edges. Both types of edges namely, closable and openable are

considered.

Closable Hub Edge Facility

For the closable hub edge 1 ∈ Ec, as Table 9.1 shows, it keeps working until the end

of period 3.

Table 9.1: A given solution.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 1 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 1 1 1

4 ∈ Eo 0 0 0 1

In the sequel, we depict the neighbors with respect to this hub edge.
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t = 1

For the closable hub edge 1, since this facility is active even after the period t = 1, we

apply the rule ”close it from now on” as the following table shows. Therefore, it keeps

working until the end of period t = 1 and stops afterward (see Table 9.2).

Table 9.2: t=1.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 0 0 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 1 1 1

4 ∈ Eo 0 0 0 1

t = 2

The same rule says that ”close it from now on”. It stops working at the end of t = 2

(see Table 9.3).

Table 9.3: t=2.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 0 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 1 1 1

4 ∈ Eo 0 0 0 1

t = 3

Again the same rule, ”close it from now on”. This neighbor coincides with the solution

itself (everybody, is neighbor of himself; see Table 9.4).
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Table 9.4: t=3.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 1 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 1 1 1

4 ∈ Eo 0 0 0 1

t = 4

This time because the edge is not active now, another rule says that: ”keep it open

until now” (see Table 9.5).

Table 9.5: t=4.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 1 1

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 1 1 1

4 ∈ Eo 0 0 0 1

Openable Hub Edge Facility

The hub edge 3 ∈ Eo is an openable hub edge and as the following table shows it is

opened at the beginning of the period 2 and remains open until the end of the planning

horizon (see Table 9.6 ).

Table 9.6: A given solution.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 1 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 1 1 1

4 ∈ Eo 0 0 0 1
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Again analogously, we have the following neighbors with respect to this hub edge.

t = 1

The edge 3 is openable and closed at this period. Thus, the rule is applied and the

following table is achieved (see Table 9.7).

Table 9.7: t=1.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 1 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 1 1 1 1

4 ∈ Eo 0 0 0 1

t = 2

In t = 2 since the facility is active now, then the rule ”keep it closed until now” closes

the hub edge (see Table 9.8).

Table 9.8: t=2.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 1 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 0 1 1

4 ∈ Eo 0 0 0 1

t = 3

The facility is opened once before, so according to the rule ”keep it closed until now”,

it should be kept closed until now (see Table 9.9).
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Table 9.9: t=3.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 1 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 0 0 1

4 ∈ Eo 0 0 0 1

t = 4

Again the same rule as in t = 3 is applied, ”keep it closed until now” (see Table 9.10).

Table 9.10: t=4.

Hub edge t = 1 t = 2 t = 3 t = 4

1 ∈ Ec 1 1 1 0

2 ∈ Ec 1 0 0 0

3 ∈ Eo 0 0 0 0

4 ∈ Eo 0 0 0 1

9.2 Computational Results

It is observed that for the variants of MPHLPPT, problem instances up to size 10

can be solved to optimality in a reasonable amount of time. For the instances of size

15, almost all initial configurations that we have employed, could not reach small gap

solutions in less than half a day. In addition, our heuristic proves to be capable of

finding the optimal solution for instances of size 5 for almost any given initial configu-

ration that we have examined.

In this section we are going to solve instances of MPHLPPT for a variety of given

and distinct initial configurations by our heuristic and compare results with those of

CPLEX 9.1. Both variants of restrictions on the number of facilities to be established

(CN ) and the budget constrained are considered (CB). Table 9.11 and 9.12 report the

computational results of CN and CB, respectively.

Instances of MPHLPPT for both CN and CB , are solved by CPLEX 9.1 to solu-

tions with qualities similar to those of our heuristic.
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Table 9.11: Constraints on number of nodes (CN ).

CN CPLEX 9.1 Heuristic

Tc. Cpu(s) T1. Cpu(s) Gap(%)

{1-4} 44.78 1.11 2.3

{3-5},{5-8} 55.52 1.19 0.1

{1-6},{6-9} 93.41 0.95 2.4

{0-4},{4-8} 30.67 1.19 0.7

{1-5},{1-8} 63.99 1.02 1.6

{3-5},{5-7},{7-8} 24.42 1.30 1.1

{2-7},{0-7},{2-9} 133.88 1.19 4

{0-3},{3-5},{1-5} 18.22 1.24 1.4

{1-4},{1-2},{4-9} 114.78 1.09 1.5

{1-7},{3-7},{3-9} 88.39 1.13 3.7

Avg. 66.80 1.14 1.88

From Table 9.11, one observes that, first of all, the quality of the solutions of our

basic heuristic is quite good. Moreover, for a given solution quality, our heuristic out-

performs CPLEX 9.1 with respect to the computational time. This is also indicated

in the last row Table 9.11. The average gap is 1.88% and in average such gap can be

achieved by our heuristic around 59 times faster than CPLEX 9.1. This can be visual-

ized in the Figure 9.1.

Again, for CB, our heuristic was capable of finding good solutions much faster than

what CPLEX 9.1 needed to find solutions with such quality. The average gap is satis-

factory and our heuristic is around 62 times faster than CPLEX 9.1 as it can be seen

in Figure 9.2.

The results of Table 9.11 and 9.12 indicate that for the best-known solutions of our

heuristic with the reported gaps in the last column, CPLEX 9.1 finds solutions with the

similar gaps in much higher amount of times.

Although the reported average gaps are satisfactory, they can be improved. In the

next section we address this issue.
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Figure 9.1: CN: Heuristic vs. CPLEX 9.1

Figure 9.2: CB: Heuristic vs. CPLEX 9.1

9.3 Algorithm

The proposed basic algorithm for the multi-period problem is drawn in this section.

We would like to remind that two models have been proposed in the previous chapter:

CB and CN .

Both models share the same heuristic skeleton, except they have different feasibility
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Table 9.12: Constraints by construction budget (CB).

CB CPLEX 9.1 Heuristic

Tc. Cpu(s) T1. Cpu(s) Gap(%)

{1-4} 303.93 1.34 5.7

{3-5},{5-8} 16.91 1.48 1.4

{1-6},{6-9} 140.55 1.74 0.1

{0-4},{4-8} 23.86 1.30 2

{1-5},{1-8} 112.13 1.31 1.6

{3-5},{5-7},{7-8} 51.44 1.64 1.3

{2-7},{0-7},{2-9} 111.83 1.53 6.7

{0-3},{3-5},{1-5} 71.63 1.81 0.6

{1-4},{1-2},{4-9} 73.41 1.45 4.4

{1-7},{3-7},{3-9} 16.81 1.42 7.4

Avg. 92.25 1.48 3.02

functions . In the first one, the feasibility function is in charge of checking the connec-

tivity and bounds on the number of established facilities. In the latter case, it controls

the connectivity of the hub-level network in each period as well as the violation of

budget constraints.

9.4 Local Search

With the same arguments as for the single period planning, our observations from the

output of the greedy heuristic; and considering the fact that multi-period approach

makes the likelihood of premature convergence to a local optimum in a greedy algo-

rithm much higher than in the single period case; we develop an approach in order to

get rid of it, as much as possible.

9.4.1 Alternative Hub Edges

Out of visualizing the results, it has been observed that most of the time this local

optimality is caused by the inappropriate establishment of some facilities in periods.

That is, even though these facilities already exist in the optimal solution, they are not

starting to work in the period which appears in the solution of greedy heuristic. At the

same time, the optimal solution cannot be achieved by a single move from the current

configuration based on the neighborhood rules and no more improvement is possible
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Algorithm 12: A simple greedy algorithm for MPHLPPT

Input: instance and init conf
Output: x∗

x:= xinitcfg;1

min := Eval(x);2

last min :=∞;3

repeated min := 0;4

while (repeated min == 0) do5

f := Eval(x);6

if f ≤ min then7

min := f ;8

x∗ := x;9

end10

foreach t := 1 to nrPeriods do11

foreach i := 1 to nrLocations ∗ (nrLocations− 1)/2 do12

∆f := 0;13

x′ := x;14

if i ∈ ClosableEdges then15

switch x′ti do16

case 0: x′t
′
i := 1 ∀t′ ≤ t ;17

case 1: x′t
′
i := 0 ∀t′ ≥ t;18

end19

else20

switch x′ti do21

case 0 x′t
′
i := 1 ∀t′ ≥ t ;22

case 1 x′t
′
i := 0 ∀t′ ≤ t;23

end24

end25

if is not feasible(x′) then26

∆f :=∞;27

else28

∆f := Eval(x′)−min;29

end30

if ∆f < 0 then31

x∗ := x′ ;32

min := Eval(x′);33

end34

35

end36

37

end38

if min = last min then39

repeated min := repeated min + 1;40

end41

last min := min;42

x := x∗;43

end44

stop.45
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(because it can not be achieved by a single move).

What can be beneficial is to create trajectories in the search space to find better

solutions. This can be done by closing those hub edges which have been opened once

in any period and trying to substitute them with those that have not been opened so

far. That means, we give the chance to the spoke edges to become hub edges and then

be subject to the original neighborhood search, hoping to find better solutions. This

may help the new configuration to find such a trajectory. A slight difference is that as

soon as the first improvement is visited, the search carries on from that point rather

than waiting for the best choice.

Procedure

In Algorithm 13, the unfreezing process as explained earlier is displayed.

Algorithm 13: An improvement procedure for MPHLPPT

Input: y
Output: local opt
local opt := y;1

min :=∞;2

foreach i = 1 to nrLocations− 1, j = i + 1 to nrLocations do3

x := y;4

if hub edge i− j has been active once in a any period then5

xtij := 0 ∀t;6

foreach p = i + 1 to nrLocations do7

xtip := 1 ∀t;8

x=Neighborhood Search(x);9

if Eval(x) ≤ min then10

min := Eval(x);11

Local Opt := x;12

y := x;13

end14

end15

else16

continue for the next hub edge;17

end18

end19

return local opt.20

Improvement Results

After the column of instance names, the first two columns in Table 9.13 and Table

9.14 are the result of heuristic before including additional improvement strategy. The
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second two are those after improvement and the last one is the CPLEX 9.1 run-time

for solutions with the smaller gaps as reported by heuristic after improvement.

CN-R10

After improvement, the heuristic found the optimal solution some instances. In average,

the gap is below one percent which is halved. Figure 9.3 visualizes the results.

Table 9.13: Constraints on number of nodes (CN).

CN T1. Cpu(s) Gap(%) T ′1. Cpu(s) Gap(%) CPLEX 9.1

{1-4} 1.11 2.3 16.78 0.7 151.66

{3-5},{5-8} 1.19 0.1 11.03 0.1 55.52

{1-6},{6-9} 0.95 2.4 8.13 2.4 93.41

{0-4},{4-8} 1.19 0.7 10.95 0.7 30.67

{1-5},{1-8} 1.02 1.6 25.03 0.9 63.99

{3-5},{5-7},{7-8} 1.30 1.1 24.36 0.00 71.55

{2-7},{0-7},{2-9} 1.19 4 25.19 0opt 161.86

{0-3},{3-5},{1-5} 1.24 1.4 27.41 0opt 47.11

{1-4},{1-2},{4-9} 1.09 1.5 12.47 1.4 114.78

{1-7},{3-7},{3-9} 1.13 3.7 12.69 3.7 88.39

Avg. 1.14 1.88 17.40 0.99 87.89

R15

For the R15, our heuristic is capable of achieving a solution with gap of 2.00% in

less than 120 seconds while CPLEX 9.1 can not find a solution with gap of less than

3.07% in less than 40878.81 seconds (around 340 times later). According to our re-

sults, CPLEX 9.1 needs 95513.47 seconds (more than 26 hours) of computational effort

to solve this instance to optimality.

CB-R10

As one can see in the Table 9.14, after improvements one instance reached optimality

and most of them possessed very small gaps. The average gap reported in our tables

became smaller after improvements (almost halved). From our experience, the best-

known solution of our heuristic strongly depends on the deviation between the spatial
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Figure 9.3: CN: Heuristic vs. CPLEX 9.1 after improvement.

layout of the hub-level network in the optimal solution and initial configuration of the

instance. Figure 9.4 visualizes the results.

Table 9.14: Constraints on the amount of available budget (CB).

CB T1. Cpu(s) Gap(%) T ′1. Cpu(s) Gap(%) CPLEX 9.1

{1-4} 1.34 5.7 42.14 0opt 801.28

{3-5},{5-8} 1.48 1.4 20.17 1.4 16.91

{1-6},{6-9} 1.74 0.1 24.03 0.1 140.55

{0-4},{4-8} 1.30 2 16.42 2 23.86

{1-5},{1-8} 1.31 1.6 31.72 1.1 132.57

{3-5},{5-7},{7-8} 1.64 1.3 57.28 1.2 58.17

{2-7},{0-7},{2-9} 1.53 6.7 48.72 2.2 137.08

{0-3},{3-5},{1-5} 1.81 0.6 15.80 0.6 71.63

{1-4},{1-2},{4-9} 1.45 4.4 83.22 0.4 113.85

{1-7},{3-7},{3-9} 1.42 7.4 19.44 7.4 16.81

Avg. 1.48 3.02 35.89 1.64 151.27

R15

Again, for the R15 with the budget constraints, by means of our heuristic we could

obtain a solution with the gap of 5.8% after 1104.60 seconds while a solution with such
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Figure 9.4: CB: Heuristic vs. CPLEX 9.1 after improvement.

a gap could not be found in less than 3383.39 seconds (3.06 times faster) in CPLEX 9.1.

9.4.2 Improved Algorithm

Algorithm 14 depicts the improvement of Algorithm 12 by including additional local

search strategy.

9.5 A Larger Scale Instance

In this section we are going to solve larger instances of MPHLPPT for which no op-

timal solution is available. This gives us an imagination of the run-time of our heuristic.

A set of randomly generated instances of size 40 with T = 3, 6, 9 and 12 are solved

by our heuristic. The maintenance and ceasing costs are also considered in addition

to the setup costs. Furthermore, the interest rate is set to α = 1.2 in the budget

constrained variant and the maximum number of hub facilities that can be setup in

each period of CN is restricted to 3.

The initial configuration of our random instance of size 40 is depicted in Figure 9.5.

The run-time reported for this instance for both CN and CB are depicted in Figure

9.6
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Algorithm 14: Improved greedy algorithm for MPHLPPT

Input: instance and init conf
Output: x∗

x:= xinitcfg ;1
min := Eval(x);2
last min :=∞;3
repeated min := 0;4
while (repeated min == 0) do5

f := Eval(x);6
if f ≤ min then7

min := f ;8
x∗ = x;9

end10
foreach t = 1 to nrPeriods do11

foreach i = 1 to nrLocations ∗ (nrLocations− 1)/2 do12
∆f := 0;13
x′ := x;14
if i ∈ ClosableEdges then15

switch x′ti do16
case 0: x′t

′
i = 1 ∀t′ ≤ t ;17

case 1: x′t
′

i = 0 ∀t′ ≥ t;18
end19

else20
switch x′ti do21

case 0 x′t
′

i = 1 ∀t′ ≥ t ;22

case 1 x′t
′

i = 0 ∀t′ ≤ t;23
end24

end25
if is not feasible(x′) then26

∆f :=∞;27
else28

∆f := Eval(x′)−min;29
end30
if ∆f < 0 then31

x∗ := x′ ;32
min := Eval(x′);33

end34
35

end36
37

end38
if min = last min then39

repeated min := repeated min + 1;40
if repeated min = 2 then41

goto 61;42
end43
if repeated min = 1 then44

x= Alternate(Local Opt);45
if Eval(x) ≤ min then46

min := Eval(x);47
Local Opt := x;48
repeated min := 0;49

else50
min := last min;51

end52
goto 39;53

end54
end55
last min := min;56
x = x∗;57

end58
stop.59
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Figure 9.5: Initial configuration of N=40

Figure 9.6: Run-time in relation to the number of time periods.



Chapter 10

Summary, Conclusions and Outlook to Fu-

ture Work

In this chapter we finalize our dissertation by summarizing the work which was carried

out and lightening new possible avenues deserving more attention and study.

10.1 Summary and Conclusions

In this dissertation, we started with the single period approach and proposed a mixed

integer programming model for the application of Hub Location Problems in Public

Transport planning (HLPPT) [34].

This model worked as a basis for our extension to models reflecting more features of

real-life applications. The reported computational results in the corresponding chap-

ters substantiate the superiority of our base model to the existing ones in literature for

this application.

The problem is known to be NP-hard. Existing standard solvers have faced with

some restrictions to solve instances of even small size. For example, for n ≥ 35, the

computer ran out of memory. Therefore, the motivation of applying new solution

strategies by exploiting the special structure of the model to solve the instances more

efficiently was raised.

Among these solution strategies, we started with the Lagrangian decomposition

and showed that for the designated sub-problem the integrality property prevents us

from obtaining the desired results.

We proposed some successful variants of the classical Benders decomposition algo-

rithm transcending the standard solvers, like CPLEX 9.1, especially if equipped with

a pareto-optimal cut strategy. This superiority is not only in terms of instance sizes

which can be solved but also regarding the computational time.

By means of some classes of valid inequalities, the formulation of the problem is so

tight that the LP relaxation becomes a good approximation of MIP. Using this formu-

lation all instances that are solvable by CPLEX 9.1 are solved at the root node and in
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only one case the optimum is found at the first node of branching tree. Therefore, we

improved the performance of our Benders algorithm in such a way that it solves larger

problems much faster. Specifically, a problem instance which in the earlier versions

of our Benders algorithm is solved in more than 6 days, is now solvable (in the final

version) in less than 4 hours.

A very successful (fast and efficient) heuristic that we called greedy∗, is proposed

which is able to find the optimal solution for all of the instances for which the optimal

solutions are known and the exact algorithms are not able to tackle larger instances.

That is a greedy neighborhood search algorithm equipped with some improvement

mechanisms.

We proposed the first multi-period HLP (MPHLPPT) model for this application.

By taking into account the nature of construction projects and since we are faced with

long-lasting and finance-demanding projects, multiple phase or multi-period planning

models of the problem make more sense and are more practical and reliable. There-

fore, we proposed a model that considers an initial configuration of the transportation

network and aims to evolve the network according to the changes in the system param-

eters. This is accomplished by closing non-profitable and opening beneficial facilities

and considering certain assumptions that permits us to change the status (open/close)

of each facility at most once and incorporates the setup, maintenance and ceasing costs.

We also considered the limitation on the facility establishment activities by means of

restricting the number of facilities (CN ) that can be established in each period or lim-

iting the construction budgets (CB). In the case of CB, we also considered the fact

that any capital available in a period but not invested then is subject to an interest

rate and the returned value can be used for the construction in the successive periods.

We adapt our successful heuristic by modifying the moving rules and the improve-

ment method to be capable of handling this new model. The results were quite satis-

factory and promising. Again, for this problem, instances of even very small size (like

15 or more) could not be solved to optimality in a reasonable amount of time by means

of standard solvers.

A very important aspect of any model is its solvability. It has been shown that our

HLPPT prepares a good basis for exact decomposition and heuristics methods to be

applied on.

The Benders decomposition strategy is shown to be very promising. At the same

time, the Lagrangian algorithm is not promising in the case of our model.

The heuristics in both models, single and multi-period, are shown to be very effec-

tive and promising.
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10.2 Future Work

This work covers the application of HLPs in public transport planning. It proposes a

strong, realistic and flexible model which even can be employed in other applications

like telecommunication. Some important facts of real-life are incorporated into the

model. The model is shown to be a very suitable basis for applying decomposition

algorithms as well as heuristics.

However, there are still some open topics to work on. The first one is to incorporate

capacity and scheduling policies into the model. This can lead to models which reduce

the likehood of congestion in the system. Interaction and trade-off between the econ-

omy of scale and congestion caused by the accumulation of flows, sensitivity analysis

of system parameters (e.g. rate of economy of scale), making use of a piecewise linear

cost functions, service-level and performance analysis, incorporation of stochastic and

statistical parameters etc., are among the areas deserving more attention.

In a citywide network, different transportation facilities with different rate of scale

economy such as tramway, subways, buses, aeronautic urban transport with helicopters,

taxis, etc. can also be considered (intermodal transportation in conjunction with the

hub location problems).

Construction of new track, is very expensive and hardly possible in many cities.

The capacity of the existing network must therefore be better utilized to meet the cus-

tomer demand with an enlarged offer. This avenue deserves some studies in an HLP

framework in conjunction with multi-period planning.

In a countrywide or continental-wide context, for example in Europe, the rail trans-

portation plays a very important role in comparison with other continents. The railway

traffic in these countries has increased considerably for both passenger and freight trans-

portation during the last few years. This trend is expected to continue, especially due

to the extension of the Schengen territory. Therefore, revision of the already existing

networks to fit in the framework of HLPs can be an interesting area of study.

In addition to the existing fast-line network in the European Union, the newly

joined authorities in Schengen territory must connect their networks to this existing

fast-line network. This is again an additional source of potential problems and conflicts.

This includes cases such as the neighborhood of competing hub nodes and overlapping

servicing area for different hub nodes. Therefore, the study of such pairing strategies
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can be very useful.

Usually, in such a public system the main goal is to offer service rather than making

revenue. Therefore, the study of such systems by considering both costs and revenue

may have less priority versus other objectives. Such objectives can come from political,

economic, cultural and geographical issues that can be taken into account to make a

trade-off between them. Thus, the multi-criteria aspects of the real-life application

could also be taken into account. Such studies can also consider the inclusion of other

objectives such as customer-satisfaction or service-level issues.

More efficient solution procedures (exact and heuristic) should always be studied.

In contrast with the general purpose solvers, these approaches exploit special structure

of problems (in fact, the models without solution methods except for depicting the

complexities of problems almost have no other benefits). Very often, these problems

are modeled as MIPs and belong to the class of NP-hard problems. The solution pro-

cedures like stand-alone dual ascent which is not using any external LP solvers and at

the same time deals with lower and upper bounds are very attractive methods in these

areas. However, other decomposition approaches are highly suggested and expected to

be very successful.

Efficiency of exact solution approaches highly depends on the knowledge of polyhe-

dral structure of the problems. This avenue can lead to drastic progress in the solution

strategies. The problem dependent branch-and-bound, branch-and-cut and relax-and-

cut procedures are candidates for receiving the most benefits from such studies, even

in presence of hardware restrictions as a permanent obstacle.

Heuristic algorithms which are simultaneously dealing with both the lower and up-

per bounds deserve more attention. However, other upper bound heuristics are also

very welcome.

Due to the complexities of HLPs, very often only concise, strong and simple heuris-

tics are the best. Incorporation of any extra complexity may not lead to a very efficient

solution procedure. Our experiences in applying genetic algorithms (GA) on instances

of HLPPT revealed that, due to complexity of GAs (regarding the parameter tuning

and so on), they have not been more successful than our greedy algorithm. Our experi-

ences with a very simple and basic simulated annealing method was not very successful

either.

However, incorporating additional components like tabu lists and different cheap

intensification and diversifications can be also interesting. These heuristics use the

best encoding of the problems and work only on a very small set as representative.
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In our model, the search is only restricted to a set of hub edge arrays. The moving

rules should be introduced concisely and at the same time, very easy to implement

(regarding the complexity of data structures), because the cardinality of the feasible

space in this problem is very large.

Moreover, since solutions with small gap might not be found in a reasonable amount

of time in standard solvers, solutions of heuristics can play important roles. These

heuristics are capable of finding good upper bounds which can be used in a branch-and-

bound, to generate cuts for the standard solvers or even in other solution procedures.

This helps to accelerate the resolution by cutting off those parts of feasible space not

containing optimal solution. Such solutions may be found by heuristics in a small

fraction of the time that the solver or solution procedure might need.
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constrained by number (CN), 125, 138,

140

evolution, 113

initial configuration, 3, 114

MPHLPPT, 146

parameters, 114

planning horizon, 3

R15, 128, 130

Neighborhood

p-th level neighbor, 107

size, 101

Neighborhood structure, 103

MPHLPPT, 133

Neighborhood I, 104

Neighborhood II, 106

neighborhood size, 106

Network

access, 7

hub-and-spoke, 1, 73

hub-level, 9, 31, 97

connected, 99

hub edge, 7

hub node, 2, 7

non-restrictive policy, 26

spoke-level, 2, 99

spoke edge, 7

spoke node, 2

tributary, 7

Nomenclature, 17

NP-Hard, 53

Pareto-optimal cut, 80

Polyhedral, 21, 55, 80

polyhedron, 59

Preprocessing, 65

size reduction, 66

Public Transport (PT), 24, 34

Quadratic Capacitated Hub Location Prob-

lem, 20

Relative interior, 80

Relaxation, 69

linear relaxation, 80

Return factor, 129

Shortest path, 26, 41

Dijkstra, 97

Floyd-Warshall, 29

symetry, 65, 66

Single cut, 83

Solution methods, 24

exact methods, 24

branch-and-bound, 24, 54

branch-and-cut, 25

dual adjustment, 26

dual ascent, 26

enumeration, 26

Lagrangian relaxation, 25

lower bound, 26

relax-and-cut, 25

heuristic, 27, 54

exchange and clustering, 29

genetic algorithm, 27
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greedy, 28

greedy randomized adaptive search

procedure, 28

Hopfield neural network, 28

hybrid, 28

local improvement, 28, 29

lower bound, 29

random descend, 29

simulated annealing, 27

tabu search, 27

upper bound, 29

Spoke-to-Spoke edge, 45

Sub-Problem, 53

degeneracy, 79

dual, 76

dual multiple optimals, 79

splitting, 77, 79

Theorem, 55

cardinality of feasible neighbors set, 99

path length, 31

polyhedron integrality, 55

tree, 41

Totally Unimodularity (TU), 53, 55

Tree, 47

Triangle inequality, 7, 26, 31, 33, 41

Uncapacitated Euclidean Hub Location Prob-

lem, 22

Uncapacitated Hub Location Problem, 20

Urban traffic, 9

Valid inequalities, 29, 59


