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Summary. During the recent years, multiobjective evolutionary algorithms have

matured as a flexible optimization tool which can be used in various areas of real-

life applications. Practical experiences showed that typically the algorithms need an

essential adaptation to the specific problem for a successful application.

Considering these requirements, we discuss various issues of the design and appli-

cation of multiobjective evolutionary algorithms to real-life optimization problems.

In particular, questions on problem-specific data structures and evolutionary oper-

ators and the determination of method parameters are treated. As a major issue,

the handling of infeasible intermediate solutions is pointed out. Three application

examples in the areas of constrained global optimization (electronic circuit design),

semi-infinite programming (design centering problems), and discrete optimization

(project scheduling) are discussed.

Keywords: multiobjective evolutionary algorithms, discrete optimization,

continuous optimization, electronic circuit design, semi-infinite programming,

scheduling

1 Introduction

Usually, we consider an optimization (minimization) problem defined by
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mina∈Af(a)

where the objective function f is defined by

f : Rn → Rq, q ≥ 1

In the case q > 2, we talk about multiobjective optimization (minimiza-

tion) while q = 1 corresponds to a usual (scalar) optimization (minimization)

problem. Maximization problems can be defined in a similar way. We assume

that the set of feasible solutions A is defined by restrictions as follows:

A = {a ∈ Rn : gj(a) ≤ 0, j ∈ {1, ..., m}}.
Each restriction function gj is defined as

gj : Rn → R.

In Evolutionary Algorithms (EAs) we are dealing with populations of “en-

tities” which correspond to solutions. Let us assume for simplicity that parent

and offspring solutions are given as follows:

M t = {at
1, ..., a

t
μ} ⊆ A,

N t = {at
1, ..., a

t
λ} ⊆ A,

M t is the parent population in generation t which is assumed to consist

of μ entities. N t is the offspring population in generation t which is assumed

to consist of λ entities. Here, it is assumed that both parent and offspring

entitities correspond to feasible solutions.

In actual implementations of EAs, entities are representations of solutions

but possibly include other data additionally. With respect to the actual usage

in computers, Genetic Algorithms (GA), for instance, use fixed-size bit strings

for encoding the entities (see, e.g., [Ho75]). In Evolution Strategies (ES) fixed

numbers of floating-point variables are used (see, e.g., [Sch81, Sch95]). In Ge-

netic Programming (GP) the entities are programs of variable size (typically
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in LISP). The term Evolutionary Algorithm is used as a general expression

for describing any kind of algorithm simulating natural evolution and using

arbitrary (problem-specific) data structures (see also [Mi98, BFM97]).

The general algorithmic framework of EAs is usually similar to the following

pseudo code. Note that the sequence of the steps 3–8 (also denoted as genetic

operators), in particular mutation and recombination, may be different in other

variants of evolutionary algorithms. Furthermore, there is no clear distinction

between offspring and the parents of the next generation in some variants of

evolutionary algorithms (such as standard genetic algorithms).

1. Initialize starting population M0.

2. Initialize control parameters; t:=0.

3. Copy and mutate N t from M t.

4. Recombine N t.

5. Evaluate fitness of N t and M t.

6. Select M t+1 from N t ∪ M t.

7. If stopping criterion fulfilled then stop.

8. t := t + 1; goto 3.

Thus, an EA basically consists of a generational loop producing offspring

solutions from parent solutions using some variation principles and selecting

new parent solutions according to their fitness.

2 Specific Requirements in Evolutionary Multiobjective

Optimization

From the viewpoint of traditional evolutionary algorithms, the vector-valued

nature of the objective function requires some special attention. Since the

objective function is usually evaluated only for the fitness calculation in the

selection step of an EA, only this step requires some adaptation when several

objectives are to be considered. We will come back to these modifications

below.



4 Thomas Hanne

From the viewpoint of traditional Multiple Criteria Decision Making (or

Analysis) (MCDM/MCDA), the particularities of evolutionary multiobjective

optimization require a more comprehensive discussion (see, e.g., [Ha01a] for

further references). The main question here is not, how the algorithm works in

details but what the result of the algorithm should be. In the huge research field

of MCDM, most of the considered methods aim at selecting a “compromise

solution” from the set of feasible ones. Usually, this solution should be efficient

(Pareto-optimal or nondominated) or fulfill some other axioms of rationality.

Multiobjective Evolutionary Algorithms (MOEAs) on the other hand try

to calculate a good approximation and representation of the efficient set, typ-

ically for hard-to-solve combinatorial or nonlinear optimization problems. For

some multiobjective optimization problems such as multiobjective linear opti-

mization or some kinds of discrete optimization problems, effective algorithms

for calculation the complete and accurate efficient set are well-known in the

MCDM community.

Since usually decision makers do not care much about an approximation

of the efficient set (or other complex solution sets) but want to select a single

solution at the end, a typical scenario for applying MOEAs together with

traditional approaches would be as follows: A traditional MCDM method such

as a reference point approach, a utility function-based method, an outranking

approach, etc. is applied after using the MOEA (a posteriori approach). For

a comprehensive survey on MOEAs, we refer to the recent monographs by

Coello Coello et al. [CFL02] and Deb [De01].

2.1 Multiobjective Selection

There are various possibilities for considering multiple objectives in the se-

lection step: A straightforward idea, intuitively used long before MCDM was

invented, is to aggregate the several objective values to a single one. This pro-

ceeding is also known as scalarization and the simplest way of doing so is by

building a (possibly weighted) sum. Frequently, the scalarization leads to prob-
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lems with representing nonconvex efficient sets (see, e.g., [FF95]). Therefore,

the idea came up that the Pareto order only should be used for selection.

For instance, in the dominance level or rank approach, all solutions from

a population set, which are nondominated within that set, are assigned the

value 0 (and treated equally for the selection). For the remaining solutions,

the nondominated ones are assigned the value 1 and so on. The dominance

grade approach works similar. In that approach each alternative is assigned

for fitness evaluation the number of solutions, which dominate it. Thus, also

here all solution being efficient with respect to the current population are

assigned the value 0. In Fig. 1, an example of the dominance grade evaluation

is illustrated.

Fig. 1. Dominance grades of some solutions in the biobjective case.

Both approaches show a low discrimination among alternatives (i.e. many

alternatives are efficient with respect to a particular population) when the

MOEA reaches a mature state (see, e.g., [Ha01c]). This is, however, a problem,

which can hardly be avoided since usually in continuous multiobjective opti-

mization problems and also in many discrete ones, the set of Pareto-optimal

solutions is large (or even infinite).
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3 On the Motivation of Using Evolutionary Algorithms

A first question before implementing or using evolutionary algorithms for a

given multiobjective optimization problem is to ask why this class of meth-

ods should be applied and not one of the many other available or proposed

methods. As mentioned above, for some classes of problems there are efficient

algorithms available which calculate the exact solution (i.e. not just some ap-

proximation) within a usually acceptable amount of time. On the other hand,

there are many other methods available today which may be used for calcu-

lating approximate solutions, for instance methods from the field called meta-

heuristics. In general, it is not possible to say which method may be best

for given unstudied optimization problem, especially for “non-standard” opti-

mization problems, which are frequent in real-life applications. Considering the

fact that in daily life, there is not enough time to comprehensively analyze the

effectiveness (time consumption, exactness of solutions, etc.) of a method, the

question of method choice remains ad-hoc up to a certain degree (see [Ha01a])

for a deeper treatment of this issue).

Therefore let us just discuss a few characteristics of evolutionary algo-

rithms, which let them appear to be attractive for being used for multiobjec-

tive optimization problems. Of course, these features may not be valid for any

kind of optimization problem while, on the other hand, also other methods

remain competitive.

3.1 Robustness

Robustness is usually considered as the most important reason for using evo-

lutionary algorithms. There are two interpretations of robustness: On the one

hand, it means that for a large class of problems rather good solutions are cal-

culated. On the other hand, it is assumed that the obtained solutions are rather

stable with respect to minor modifications (or perturbations) of the problem.

This aspect concerns also the sensitivity of the problem, i.e. the question which

kind of perturbations of the problem lead to what changes of the solution set.



Applying Multiobjective Evolutionary Algorithms in Industrial Projects 7

One of the reference studies with respect to the robustness of evolutionary

algorithms (evolution strategies in that case) is the computational comparison

by Schwefel [Sch81], which showed that Evolution Strategies performed best

from a set of nonlinear optimization methods using a diverse sample of test

problems.

3.2 Speed

Usually, evolutionary algorithms are not considered to be particularly fast. For

some classes of problems with established specific optimization procedures, this

is certainly true. On the other hand, evolution strategies showed an average

performance with respect to quadratic optimization problems (see [Sch81]) in

a comparison with more specialized methods, in particular nonlinear optimiza-

tion methods which take advantage of using first and/or second derivatives of

the objective function. This result should put into perspective the opinion that

evolutionary algorithms should only be used where information on derivatives

etc. is not available.

3.3 Ease of Use

Compared with many other optimization methods, EAs are rather easy to

implement and to use. There is not much knowledge required about the han-

dling of derivative information, optimality conditions, or numerical issues. It is

possible to start implementation with a rough prototype (see below) that does

not apply sophisticated mutation, recombination, or selection routines. On the

other hand, refinement of the algorithm may be challenging and time consum-

ing. The degree of re-use may be smaller than in the case of some traditional

optimization methods.
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4 Applying Evolutionary Algorithms to Real-life

Problems

4.1 The Application-Specific Development Process for EAs

The implementation and application of evolutionary algorithms to a given opti-

mization problem can be considered as a regular software development process.

This type of process can be described by the so-called waterfall model. This

model assumes various stages of the process through which the product, the

algorithm, streams towards its application. Usually these stages are as follows:

requirements analysis, design, implementation, validation (software tests, code

inspections, etc.), operation & maintenance (see Fig. 2). It is essential that each

step allows to return to an ealier step for improvement rework.

Fig. 2. Waterfall model of a software development process.

Applied to evolutionary algorithms, the development process is typically

similar to the following:

Phase I (prototype development)

• Find an appropriate representation (data structures) of solutions
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• Implement objective function(s) and deal with infeasibility (see below)

• Implement the handling of a population

• Implement simple variation operator(s)

• Implement selection

Phase II (refinement)

• Refine evolutionary operators

• Implement problem-specific adaptations

• Experiment with parameter(s)

• Use specialized subroutines

In the following, three specific questions on the application-specific devel-

opment and operation of EAs are discussed, the choice of parameter values, the

refinement of evolutionary operators, and the handling of infeasible solutions.

4.2 Parameters Settings

One of the most prominent questions in using EAs for a specific problem

is the following one: How should the parameter values of the algorithm as,

for instance, the population size, the mutation rates, or the recombination

probability be set? If nothing is known about good parameter values (i.e.

values leading better solutions or reaching them in less time), one may start

using typical values for parameters. Suggestions for parameter values can be

found in the literature, for instance:

• Mutation probability (GA): 0.001 - 0.01

• Mutation step sizes initialized with step sizes (sigma values) being 10% of

the starting point

• Mutation step sizes vary by 10% on average per generation (see, e.g.,

[Ha01b])

• Probability of recombination: 0.25 - 0.9

• Number of parents: 10-200

• Number of offspring: 10-200
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Frequently, such default parameters do not lead to the desired success: Ei-

ther the obtained solutions are not good enough or the algorithms take too

much time. In that case, experimenting with the parameter values in a trial

and error fashion might be a simple but effective way for improving the perfor-

mance. Systematic experiments may be another way for finding better param-

eter values. Last but not least let us mention that the problem of determining

parameter values may be defined as an optimization problem itself (meta op-

timization problem) that may be solved, for instance, by another evolutionary

algorithm (meta EA). This idea is explained in more details in [Ha01a].

4.3 Advanced Evolutionary Operators

There are various reasons why more advanced evolutionary operators should

be used. On the one hand, such operators may make the evolution process

more realistic, more similar to the natural evolution. On the other hand, and

this aspect is more relevant for optimization application, the solution process

may be improved. In particular, the process may be sped up and/or the qual-

ity of solutions (e.g. diversity) may be improved. A frequent goal is to allow

for a better adaptation to particularities of a problem. In the next subsection,

we discuss a specific reason for problem-specific adaptations of evolutionary

operators. Further below, in Section 5, some examples of adaptations are dis-

cussed.

4.4 The Problem of Infeasibility

During the “data variation steps”, mutation and recombination, it may occur

that generated offspring solutions are not feasible, i.e. either the data does not

correspond to variable values with respect to a given encoding or the variable

values do not belong to the feasible set A.

In that case, there are various possibilities to react. A very simple one is

to redo the variation step, i.e. to generate new solutions until enough feasible

ones are obtained. Since the probability of obtaining infeasible solutions may



Applying Multiobjective Evolutionary Algorithms in Industrial Projects 11

be high, in particular when A is defined by many restrictions, this strategy

may be costly with respect to time consumption.

Another frequent approach is that of using a repair operator. Here, the

idea is to continue with the generated infeasible solution and to map it to a

feasible one. Sometimes, there is no canonical way for doing so. In such cases,

one may think about using a punishment function. That function punishes the

generation of infeasible (or almost infeasible) solutions by deteriorating their

fitness values. The stronger the restrictions are violated by a solution, the more

the objective values are to be deteriorated. In that case, it may be possible

to force subsequently generated offspring (offspring of the infeasible offspring)

back to the feasible domain.

A more recent idea in dealing with infeasible solutions (which allow to cal-

culate the objective function) is just to keep some of them in the population

(or within a separate population of infeasible solutions) for further process-

ing. Of particular interest are those infeasible solutions which dominate the

Pareto front built by the feasible solution set from the current population. The

advantages are quite clear:

• no waste of time for repair or recalculation of solutions

• Pareto set may be approximated from “both sides”

• Possibly faster/better approximation

Fig. 3 shows (for the case of a biobjective maximization problem) an ex-

ample of how a recombination between a feasible and an infeasible solution

leads closer to the true Pareto set than a recombination between two feasi-

ble solutions. Note that, there is, however, no necessity that new solutions

located ‘between’ two other solutions also have intermediate objective values.

In [Ha06] we have analyzed theoretical properties such as convergence for a

multiobjective evolutionary algorithm based on a feasible and an infeasible

population.

However, the best general advice with respect to infeasibility might be,

that one should avoid it by using an appropriate encoding. Occasionally, more

intelligent data structures may avoid the infeasibility of solutions at all.
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Fig. 3. Recombination between feasible and infeasible solutions.

5 Three Examples from Recent Projects

In the following, we would like to discuss concisely three real-life application

examples of multiobjective evolutionary algorithms. These application exam-

ples are conducted in the context of real-life problems studied during the past

two years. Each example shows different particularities of the MOEA design,

implementation, and usage.

5.1 Design of Electronic Circuits

During a recent project we studied the problem of determining parameters for

an electronic circuit model (as given by a circuit simulation software such as

Cadence) for approximating the behavior of a real-life circuit. Depending on

the frequency of input, a real-life circuit deviates more or less from its idealistic

model described by a small number of elements. The behavior of the circuit

can be described by a complex-valued matrix y. For analyzed problems the

dimension of y was 2 × 2. For comparing the result values for the real circuit

(given as a data file) and the circuit model the deviations of the y-values

are considered separately for the real and the imaginary part of the matrix
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coefficients. The deviations are summed up over a range of frequency values.

In this way, 8 or 6 (using some symmetry in y) objective values are calculated

for a given setting of parameters.

For the considered problem it is assumed that there are feasible intervals

for each of the parameters while no other restrictions are to be observed. This

makes the feasibility check for new solutions (obtained by mutations) rather

simple. For each new component, a comparison with the lower and upper

bounds has to be performed. In case of violation, using the bounds as trun-

cation values, the new solutions are repaired. In the next step, recombination

among the offspring entities cannot lead to infeasibility.

Another main advantage of knowing the bounds is that they can be used

for scaling parameter-specific mutation rates. If not knowing such intervals it

would be hard to find mutation rates, which for instance work for intervals

between 10−3 and 10−2 for some of the parameters and between 10−11 and

10−12 for other parameters.

Another major advantage of the bounds is that they can be used for gen-

erating random starting solutions by using parameter values uniformly dis-

tributed between the lower and upper bounds. The knowledge of the feasible

parameter ranges is additionally used for an enforced convergence towards the

efficient frontier. For that reason, a modified 1/5 rule (see [Sch81]) was imple-

mented which adapts the mutation rates periodically during the run of the EA.

Usually, these modifications lead to decreases of the parameter-specific muta-

tion rates such that a rapid convergence towards locally efficient solutions is

supported.

5.2 Design Centering Problems

Another continuous multiobjective optimization problem analyzed by evolu-

tionary algorithms belongs to the class of design centering problems. The con-

sidered problems are special generalized semi-infinite optimization problems.

In contrast to “usual” nonlinear optimization problems, there is an infinite set
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of restrictions, which can be described by a finite set of restrictions on the

restrictions (see [Wi06] for further details):

A = {x ∈ Rn : gj(x, y) ≤ 0 ∀y ∈ Y (x), j = 1, ..., m}

Y (x) = {y ∈ Rk : vl(x, y) ≤ 0, l = 1, ..., s}
In our case we considered the problem of volume maximization of a gem-

stone cut for a given raw stone. Alternative objective functions on A may result

from various measures considering other criteria than the volume (e.g. shape

of the design, deviation from ideal proportions) relating to the expected price

of the gemstone. The restrictions can be interpreted as follows: A body (cut

gemstone) described by some interdependent restrictions Y should be embed-

ded in another body (the raw stone) described by measurement data, e.g. in

the form of an STL file. Fig. 4 shows an example of an optimized gemstone

design embedded in an artificially constructed container.

For treating the problem by an EA we can distinguish two types of restric-

tions: Design restrictions, which can be treated by a repair mechanism and

container restrictions, which are considered by a punishment approach. De-

sign restrictions are usually in the form of lower and upper bounds for specific

proportions (e.g. the proportion between pavilion height and girdle diameter)

of the cut gemstone. Mutations violating these proportions can be repaired by

using the bounds as cut-off values. For the container restrictions there is no

simple repair mechanism available. A punishment function approach showed

good performance in the given problem and allowed the handling of a large

number of these restrictions (depending on the resolution of measurement data,

there may be some 100000 of these restrictions).

5.3 Project Scheduling

In contrast to the two application examples discussed above, scheduling prob-

lems belong to the class of combinatorial optimization problems, i.e. significant
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Fig. 4. Gemstone design embedded in a container.

decision variables a ∈ A are discrete instead of continuous. Evolutionary al-

gorithms have been originally developed according to a strict typing of the

supported decision variables, for instance genetic algorithms for bit string en-

coding and evolution strategies for floating point numbers. Therefore, project

scheduling is a good example to demonstrate that such a focus on specific data

structures is inappropriate for many real-life problems.

Fig. 5. Person schedule for various interdependent activities leading to waiting times.
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Based on our experiences with the modeling and simulation of complex

projects such as software development processes, data structures supporting

both discrete and continuous variables have been used together with subordi-

nate procedures for scheduling, for instance based on priorities. Some of the

decision variables are continuous by nature, for instance the durations of spe-

cific activities that influence the quality of the outcome while other decision

variables are “artificially” continuous. For instance, real-valued priorities are

used to determine the sequence of equally possible activities. Other decision

variables of the problem (e.g. task assignments) are discrete.

A subordinate scheduling heuristics is used to evaluate the priority values

and to generate a concrete schedule. Some types of activities are scheduled

without using any information subject to the evolutionary algorithms but ap-

plying a simple first come-first served rule. The mixture of various scheduling

concepts led to a significant improvement of the speed of the MOEA and the

quality of obtained solutions. Three optimization criteria had been considered

in these studies: the makespan, the costs, and the quality of project results

(expected no. of defects of the software artifacts). Fig. 5 shows a Gannt chart of

different software development activities being assigned to persons. For more

details on this application see [HN05]. Another application of MOEAs to the

scheduling of construction projects is discussed in [Ha05a].

6 Conclusions

In this paper, it was our concern to emphasize that frequently the usage of stan-

dard multiobjective evolutionary algorithms is not possible or is insufficient for

solving real-life problems. The usage of problem-specific data structures and

evolutionary operators is a major issue when developing MOEAs for a specific

application.

Additional methods are often required for improving the performance of

MOEAs. In particular, the speed of the algorithm is often a problem in prac-

tice, especially when some on-line work with a decision support system is
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required. For instance, clustering methods, hybridizations with other (meta)

heuristics and optimization techniques, or databases may be used in such cases.

A main question is however: What happens after having found an approx-

imation of the Pareto set? The implementation of adequate techniques for

supporting a decision maker in selecting an efficient solution is often at least

as important as generating suitable candidate solutions (see, e.g., [TH05]). A

novel approach for combining an evolutionary generation of the efficient set

and interactive decision support is discussed in [Ha05b].
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[BFM97] Bäck, T., Fogel, D.B., Michalewicz, Z. (eds): Handbook of Evolutionary

Computation. Oxford University Press, Oxford (1997).

[CFL02] Coello Coello, C.A., Van Feldhuizen, D.A., Lamont, G.B.; Evolution-

ary Algorithms for Solving Multi-Objective Problems. Kluwer, New York

(2002).

[De01] Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley, Chichester (2001).

[FF95] Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms

in multiobjective optimization. Evolutionary Computation, 3, 1, 1–16

(1995).

[Ha01a] Hanne, T.: Intelligent Strategies for Meta Multiple Criteria Decision Mak-

ing. Kluwer, Boston (2001).

[Ha01b] Hanne, T.: Selection and mutation strategies in evolutionary algorithms

for global multiobjective optimization. Evolutionary Optimization, 3, 1,

27–40 (2001).

[Ha01c] Hanne, T.: Global multiobjective optimization with evolutionary algo-

rithms: Selection mechanisms and mutation control. In: Zitzler, E. et

al. (eds) Evolutionary Multi-Criterion Optimization, First International

Conference, EMO 2001, Zurich, Switzerland, March 2001, Proceedings.

Springer, Berlin, 197–212 (2001).

[Ha05a] Hanne, T.: On the scheduling of construction sites using single- and mul-

tiobjective evolutionary algorithms. Proceedings of MIC2005: The Sixth

Metaheuristics International Conference. Wien (2005).



18 Thomas Hanne

[Ha05b] Hanne, T.: Interactive decision support based on multiobjective evolution-

ary algorithms. Accepted for Proceedings of Operations Research 2005, In-

ternational Scientific Annual Conference, Bremen, 7.-9. September 2005.

[Ha06] Hanne, T.: A Primal-Dual Multiobjective Evolutionary Algorithm for Ap-

proximating the Efficient Set. Working paper (2006).

[HN05] Hanne, T., Nickel, S.: A multi-objective evolutionary algorithm for

scheduling and inspection planning in software development projects. Eu-

ropean Journal of Operational Research, 167, 663–678, (2005)

[Ho75] Holland, J.H.: Adaptation in natural and artificial systems. University of

Michigan Press (1975).

[Mi98] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Pro-

grams, Third revised and extended edition. Springer, Berlin (1998).

[Sch81] Schwefel, H.-P.: Numerical Optimization of Computer Models, Wiley

(1981).

[Sch95] Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley (1995).

[TH05] Trinkaus, H.L., Hanne, T.: knowCube: a Visual and Interactive Support

for Multicriteria Decision Making. Computers & Operations Research, 32,

1289–1309 (2005).

[Wi06] Winterfeld, A.: Application of Semi-Infinite Programming to Lapidary

Cutting Problems. Report of the Fraunhofer ITWM 91, Kaiserslautern

(2006).



Published reports of the 
Fraunhofer ITWM

The PDF-files of the following reports 
are available under: 
www.itwm.fraunhofer.de/de/
zentral__berichte/berichte

1.  D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for  
Compressible Flows 
(19 pages, 1998)

2.  M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application 
of Hilbert Transform and Multi-Hypothe-
sis Testing
Keywords: Hilbert transform, damage diagnosis, Kal-
man filtering, non-linear dynamics 
(23 pages, 1998)

3.  Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Multi- 
Hypothesis Algorithms: Application to  
Rotating Machinery
Keywords: Robust reliability, convex models, Kalman 
filtering, multi-hypothesis diagnosis, rotating machinery, 
crack diagnosis 
(24 pages, 1998)

4.  F.-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer 
in Glass Cooling Processes
(23 pages, 1998)

5.  A. Klar, R. Wegener

A hierarchy of models for multilane  
vehicular traffic  
Part I: Modeling
(23 pages, 1998)

Part II: Numerical and stochastic  
investigations
(17 pages, 1998)

6. A. Klar, N. Siedow

Boundary Layers and Domain Decompos-
ition for Radiative Heat Transfer and Diffu-
sion Equations: Applications to Glass Manu-
facturing Processes
(24 pages, 1998)

7.  I. Choquet

Heterogeneous catalysis modelling and  
numerical simulation in rarified gas flows 
Part I: Coverage locally at equilibrium 
(24 pages, 1998)

8.  J. Ohser, B. Steinbach, C. Lang

Efficient Texture Analysis of Binary Images
(17 pages, 1998)

9.  J. Orlik

Homogenization for viscoelasticity of the  
integral type with aging and shrinkage
(20 pages, 1998)

10.  J. Mohring

Helmholtz Resonators with Large Aperture
(21 pages, 1998)

11.  H. W. Hamacher, A. Schöbel

On Center Cycles in Grid Graphs
(15 pages, 1998)

12.  H. W. Hamacher, K.-H. Küfer

Inverse radiation therapy planning -  
a multiple objective optimisation approach
(14 pages, 1999)

13.  C. Lang, J. Ohser, R. Hilfer

On the Analysis of Spatial Binary Images
(20 pages, 1999)

14.  M. Junk

On the Construction of Discrete Equilibrium 
Distributions for Kinetic Schemes
(24 pages, 1999)

15.  M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations
(20 pages, 1999)

16.  H. Neunzert

Mathematics as a Key to Key Technologies
(39 pages (4 PDF-Files), 1999)

17.  J. Ohser, K. Sandau

Considerations about the Estimation of the 
Size Distribution in Wicksell’s Corpuscle 
Problem
(18 pages, 1999)

18.  E. Carrizosa, H. W. Hamacher, R. Klein,  
S. Nickel

Solving nonconvex planar location prob-
lems by finite dominating sets
Keywords: Continuous Location, Polyhedral Gauges, Fi-
nite Dominating Sets, Approximation, Sandwich Algo-
rithm, Greedy Algorithm 
(19 pages, 2000)

19. A. Becker

A Review on Image Distortion Measures
Keywords: Distortion measure, human visual system 
(26 pages, 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel,  
T. Sonneborn

Polyhedral Properties of the Uncapacitated 
Multiple Allocation Hub Location Problem 
Keywords: integer programming, hub location, facility 
location, valid inequalities, facets, branch and cut 
(21 pages, 2000)

21. H. W. Hamacher, A. Schöbel

Design of Zone Tariff Systems in Public 
Transportation
(30 pages, 2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga

The Finite-Volume-Particle Method for  
Conservation Laws
(16 pages, 2001)

23. T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, 
S. Nickel

Location Software and Interface with GIS 
and Supply Chain Management
Keywords: facility location, software development, 
geographical information systems, supply chain man-
agement 
(48 pages, 2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation  
Problems: A State of Art
(44 pages, 2001)

25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson 
equation
Keywords: Poisson equation, Least squares method,  
Grid free method 
(19 pages, 2001)

26.  T. Götz, H. Rave, D. Reinel-Bitzer,  
K. Steiner, H. Tiemeier

Simulation of the fiber spinning process
Keywords: Melt spinning, fiber model, Lattice 
Boltzmann, CFD 
(19 pages, 2001)

27. A. Zemitis 

On interaction of a liquid film with an  
obstacle 
Keywords: impinging jets, liquid film, models, numeri-
cal solution, shape 
(22 pages, 2001)

28.  I. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to 
model the filling of expanding cavities by 
Bingham Fluids
Keywords: Generalized LBE, free-surface phenomena, 
interface boundary conditions, filling processes, Bing-
ham viscoplastic model, regularized models 
(22 pages, 2001)

29. H. Neunzert

»Denn nichts ist für den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann« 
Vortrag anlässlich der Verleihung des 
Akademiepreises des Landes Rheinland-
Pfalz am 21.11.2001
Keywords: Lehre, Forschung, angewandte Mathematik, 
Mehrskalenanalyse, Strömungsmechanik 
(18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations
Keywords: Incompressible Navier-Stokes equations, 
Meshfree method, Projection method, Particle scheme, 
Least squares approximation  
AMS subject classification: 76D05, 76M28 
(25 pages, 2001)

31.  R. Korn, M. Krekel

Optimal Portfolios with Fixed Consumption 
or Income Streams
 Keywords: Portfolio optimisation, stochastic control, 
HJB equation, discretisation of control problems. 
(23 pages, 2002)

32.  M. Krekel

Optimal portfolios with a loan dependent 
credit spread
 Keywords: Portfolio optimisation, stochastic control, 
HJB equation, credit spread, log utility, power utility, 
non-linear wealth dynamics 
(25 pages, 2002)

33.  J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets – on the 
choice of adjacency in homogeneous lattices  
Keywords: image analysis, Euler number, neighborhod 
relationships, cuboidal lattice 
(32 pages, 2002)



34.  I. Ginzburg, K. Steiner 

Lattice Boltzmann Model for Free-Surface 
flow and Its Application to Filling Process in 
Casting 
Keywords: Lattice Boltzmann models; free-surface 
phenomena; interface boundary conditions; filling 
processes; injection molding; volume of fluid method; 
interface boundary conditions; advection-schemes; up-
wind-schemes 
(54 pages, 2002)

35. M. Günther, A. Klar, T. Materne, R. Wegener 

Multivalued fundamental diagrams and 
stop and go waves for continuum traffic 
equations
Keywords: traffic flow, macroscopic equations, kinetic 
derivation, multivalued fundamental diagram, stop and 
go waves, phase transitions 
(25 pages, 2002)

36. S. Feldmann, P. Lang, D. Prätzel-Wolters

Parameter influence on the zeros of net-
work determinants
Keywords: Networks, Equicofactor matrix polynomials, 
Realization theory, Matrix perturbation theory 
(30 pages, 2002)

37. K. Koch, J. Ohser, K. Schladitz 

Spectral theory for random closed sets and 
estimating the covariance via frequency 
space
Keywords: Random set, Bartlett spectrum, fast Fourier 
transform, power spectrum 
(28 pages, 2002)

38. D. d’Humières, I. Ginzburg

Multi-reflection boundary conditions for  
lattice Boltzmann models
Keywords: lattice Boltzmann equation, boudary condis-
tions, bounce-back rule, Navier-Stokes equation 
(72 pages, 2002)

39. R. Korn

Elementare Finanzmathematik
Keywords: Finanzmathematik, Aktien, Optionen, Port-
folio-Optimierung, Börse, Lehrerweiterbildung, Mathe-
matikunterricht 
(98 pages, 2002)

40. J. Kallrath, M. C. Müller, S. Nickel

Batch Presorting Problems: 
Models and Complexity Results
Keywords: Complexity theory, Integer programming, 
Assigment, Logistics 
(19 pages, 2002)

41. J. Linn

On the frame-invariant description of the 
phase space of the Folgar-Tucker equation 
Key words: fiber orientation, Folgar-Tucker equation, in-
jection molding 
(5 pages, 2003)

42. T. Hanne, S. Nickel 

A Multi-Objective Evolutionary Algorithm 
for Scheduling and Inspection Planning in 
Software Development Projects 
Key words: multiple objective programming, project 
management and scheduling, software development, 
evolutionary algorithms, efficient set 
(29 pages, 2003)

43. T. Bortfeld , K.-H. Küfer, M. Monz,  
A. Scherrer, C. Thieke, H. Trinkaus

Intensity-Modulated Radiotherapy - A Large 
Scale Multi-Criteria Programming Problem 
Keywords: multiple criteria optimization, representa-
tive systems of Pareto solutions, adaptive triangulation, 
clustering and disaggregation techniques, visualization 
of Pareto solutions, medical physics, external beam ra-
diotherapy planning, intensity modulated radiotherapy 
(31 pages, 2003)

44. T. Halfmann, T. Wichmann

Overview of Symbolic Methods in Industrial 
Analog Circuit Design 
Keywords: CAD, automated analog circuit design, sym-
bolic analysis, computer algebra, behavioral modeling, 
system simulation, circuit sizing, macro modeling, dif-
ferential-algebraic equations, index 
(17 pages, 2003)

45. S. E. Mikhailov, J. Orlik

Asymptotic Homogenisation in Strength 
and Fatigue Durability Analysis of  
Composites
Keywords: multiscale structures, asymptotic homogeni-
zation, strength, fatigue, singularity, non-local condi-
tions 
(14 pages, 2003)

46. P. Domínguez-Marín, P. Hansen,  
N. Mladenovi ́c , S. Nickel

Heuristic Procedures for Solving the  
Discrete Ordered Median Problem
Keywords: genetic algorithms, variable neighborhood 
search, discrete facility location 
(31 pages, 2003)

47. N. Boland, P. Domínguez-Marín, S. Nickel,  
J. Puerto

Exact Procedures for Solving the Discrete 
Ordered Median Problem
Keywords: discrete location, Integer programming 
(41 pages, 2003)

48. S. Feldmann, P. Lang

Padé-like reduction of stable discrete linear 
systems preserving their stability 
Keywords: Discrete linear systems, model reduction, 
stability, Hankel matrix, Stein equation 
(16 pages, 2003)

49. J. Kallrath, S. Nickel

A Polynomial Case of the Batch Presorting 
Problem 
Keywords: batch presorting problem, online optimiza-
tion, competetive analysis, polynomial algorithms, lo-
gistics 
(17 pages, 2003)

50. T. Hanne, H. L. Trinkaus

knowCube for MCDM –  
Visual and Interactive Support for  
Multicriteria Decision Making
Key words: Multicriteria decision making, knowledge 
management, decision support systems, visual interfac-
es, interactive navigation, real-life applications. 
(26 pages, 2003)

51. O. Iliev, V. Laptev

On Numerical Simulation of Flow Through 
Oil Filters
Keywords: oil filters, coupled flow in plain and porous 
media, Navier-Stokes, Brinkman, numerical simulation 
(8 pages, 2003)

52. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva

On a Multigrid Adaptive Refinement Solver 
for Saturated Non-Newtonian Flow in  
Porous Media
Keywords: Nonlinear multigrid, adaptive refinement, 
non-Newtonian flow in porous media 
(17 pages, 2003)

53. S. Kruse

On the Pricing of Forward Starting Options 
under Stochastic Volatility
 Keywords: Option pricing, forward starting options, 
Heston model, stochastic volatility, cliquet options 
(11 pages, 2003)

54. O. Iliev, D. Stoyanov

Multigrid – adaptive local refinement solver 
for incompressible flows
Keywords: Navier-Stokes equations, incompressible 
flow, projection-type splitting, SIMPLE, multigrid meth-
ods, adaptive local refinement, lid-driven flow in a cav-
ity  
(37 pages, 2003)

55. V. Starikovicius 

The multiphase flow and heat transfer in 
porous media 
Keywords: Two-phase flow in porous media, various 
formulations, global pressure, multiphase mixture mod-
el, numerical simulation 
(30 pages, 2003)

56. P. Lang, A. Sarishvili, A. Wirsen

Blocked neural networks for knowledge  
extraction in the software development 
process
Keywords: Blocked Neural Networks, Nonlinear Regres-
sion, Knowledge Extraction, Code Inspection 
(21 pages, 2003)

57. H. Knaf, P. Lang, S. Zeiser 

Diagnosis aiding in Regulation 
Thermography using Fuzzy Logic 
Keywords: fuzzy logic,knowledge representation, ex-
pert system 
(22 pages, 2003)

58. M. T. Melo, S. Nickel, F. Saldanha da Gama

Largescale models for dynamic multi-
commodity capacitated facility location 
Keywords: supply chain management, strategic  
planning, dynamic location, modeling 
(40 pages, 2003)

59. J. Orlik 

Homogenization for contact problems with 
periodically rough surfaces
Keywords: asymptotic homogenization, contact 
 problems 
(28 pages, 2004)

60. A. Scherrer, K.-H. Küfer, M. Monz, F. Alonso,  
T. Bortfeld

IMRT planning on adaptive volume struc-
tures – a significant advance of computa-
tional complexity
Keywords: Intensity-modulated radiation therapy 
(IMRT), inverse treatment planning, adaptive volume 
structures, hierarchical clustering, local refinement, 
adaptive clustering, convex programming, mesh gen-
eration, multi-grid methods 
(24 pages, 2004)



61. D. Kehrwald

Parallel lattice Boltzmann simulation  
of complex flows
Keywords: Lattice Boltzmann methods, parallel com-
puting, microstructure simulation, virtual material de-
sign, pseudo-plastic fluids, liquid composite moulding 
(12 pages, 2004)

62. O. Iliev, J. Linn, M. Moog, D. Niedziela,  
V. Starikovicius

On the Performance of Certain Iterative 
Solvers for Coupled Systems Arising in  
Discretization of Non-Newtonian Flow 
Equations
Keywords: Performance of iterative solvers, Precondi-
tioners, Non-Newtonian flow 
(17 pages, 2004)

63. R. Ciegis, O. Iliev, S. Rief, K. Steiner 

On Modelling and Simulation of Different 
Regimes for Liquid Polymer Moulding 
Keywords: Liquid Polymer Moulding, Modelling, Simu-
lation, Infiltration, Front Propagation, non-Newtonian 
flow in porous media  
(43 pages, 2004)

64. T. Hanne, H. Neu

Simulating Human Resources in  
Software Development Processes
Keywords: Human resource modeling, software pro-
cess, productivity, human factors, learning curve 
(14 pages, 2004)

65. O. Iliev, A. Mikelic, P. Popov

Fluid structure interaction problems in de-
formable porous media: Toward permeabil-
ity of deformable porous media
 Keywords: fluid-structure interaction, deformable po-
rous media, upscaling, linear elasticity, stokes, finite 
elements 
(28 pages, 2004)

66. F. Gaspar, O. Iliev, F. Lisbona, A. Naumovich, 
P. Vabishchevich 

On numerical solution of 1-D poroelasticity 
equations in a multilayered domain
Keywords: poroelasticity, multilayered material, finite 
volume discretization, MAC type grid 
(41 pages, 2004)

67. J. Ohser, K. Schladitz, K. Koch, M. Nöthe

Diffraction by image processing and its ap-
plication in materials science
Keywords: porous microstructure, image analysis, ran-
dom set, fast Fourier transform, power spectrum, 
Bartlett spectrum 
(13 pages, 2004)

68. H. Neunzert

Mathematics as a Technology: Challenges 
for the next 10 Years
Keywords: applied mathematics, technology, modelling, 
simulation, visualization, optimization, glass processing, 
spinning processes, fiber-fluid interaction, trubulence 
effects, topological optimization, multicriteria optimiza-
tion, Uncertainty and Risk, financial mathematics, Mal-
liavin calculus, Monte-Carlo methods, virtual material 
design, filtration, bio-informatics, system biology 
(29 pages, 2004)

69. R. Ewing, O. Iliev, R. Lazarov,  
A. Naumovich

On convergence of certain finite difference 
discretizations for 1D poroelasticity inter-
face problems 
Keywords: poroelasticity, multilayered material, finite 
volume discretizations, MAC type grid, error estimates  
(26 pages,2004)

70. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva 

On Efficient Simulation of Non-Newto-
nian Flow in Saturated Porous Media with a 
Multigrid Adaptive Refinement Solver 
Keywords: Nonlinear multigrid, adaptive renement, 
non-Newtonian in porous media 
(25 pages, 2004)

71. J. Kalcsics, S. Nickel, M. Schröder 

Towards a Unified Territory Design Ap-
proach – Applications, Algorithms and GIS 
Integration 
Keywords: territory desgin, political districting, sales 
territory alignment, optimization algorithms, Geo-
graphical Information Systems 
(40 pages, 2005)

72. K. Schladitz, S. Peters, D. Reinel-Bitzer,  
A. Wiegmann, J. Ohser 

Design of acoustic trim based on geometric 
modeling and flow simulation for non-woven 
Keywords: random system of fibers, Poisson line 
process, flow resistivity, acoustic absorption, Lattice-
Boltzmann method, non-woven 
(21 pages, 2005)

73. V. Rutka, A. Wiegmann

Explicit Jump Immersed Interface Method 
for virtual material design of the effective 
elastic moduli of composite materials 
Keywords: virtual material design, explicit jump im-
mersed interface method, effective elastic moduli, 
composite materials 
(22 pages, 2005)

74. T. Hanne

Eine Übersicht zum Scheduling von Baustellen
Keywords: Projektplanung, Scheduling, Bauplanung, 
Bauindustrie 
(32 pages, 2005)

75. J. Linn

The Folgar-Tucker Model as a Differetial 
Algebraic System for Fiber Orientation 
 Calculation 
Keywords: fiber orientation, Folgar–Tucker model, in-
variants, algebraic constraints, phase space, trace sta-
bility 
(15 pages, 2005)

76. M. Speckert, K. Dreßler, H. Mauch,  
A. Lion, G. J. Wierda

Simulation eines neuartigen Prüfsystems 
für Achserprobungen durch MKS-Model-
lierung einschließlich Regelung
 Keywords: virtual test rig, suspension testing, multi-
body simulation, modeling hexapod test rig, optimiza-
tion of test rig configuration 
(20 pages, 2005)

77. K.-H. Küfer, M. Monz, A. Scherrer, P. Süss,  
F. Alonso, A. S. A. Sultan, Th. Bortfeld,  
D. Craft, Chr. Thieke 

Multicriteria optimization in intensity mod-
ulated radiotherapy planning 
Keywords: multicriteria optimization, extreme solutions, 
real-time decision making, adaptive approximation 
schemes, clustering methods, IMRT planning, reverse 
engineering  
(51 pages, 2005)

78. S. Amstutz, H. Andrä 

A new algorithm for topology optimization 
using a level-set method
Keywords: shape optimization, topology optimization, 
topological sensitivity, level-set 
(22 pages, 2005)

79. N. Ettrich

Generation of surface elevation models for 
urban drainage simulation
Keywords: Flooding, simulation, urban elevation  
models, laser scanning 
(22 pages, 2005)

80. H. Andrä, J. Linn, I. Matei, I. Shklyar,  
K. Steiner, E. Teichmann

OPTCAST – Entwicklung adäquater Struk-
turoptimierungsverfahren für Gießereien 
Technischer Bericht (KURZFASSUNG)
Keywords: Topologieoptimierung, Level-Set-Methode, 
Gießprozesssimulation, Gießtechnische Restriktionen, 
CAE-Kette zur Strukturoptimierung 
(77 pages, 2005)

81. N. Marheineke, R. Wegener

Fiber Dynamics in Turbulent Flows  
Part I: General Modeling Framework 
Keywords: fiber-fluid interaction; Cosserat rod; turbu-
lence modeling; Kolmogorov’s energy spectrum; dou-
ble-velocity correlations; differentiable Gaussian fields 
(20 pages, 2005)  
Part II: Specific Taylor Drag  
Keywords: flexible fibers; k-e turbulence model; fi-
ber-turbulence interaction scales; air drag; random 
 Gaussian aerodynamic force; white noise; stochastic 
differential equations; ARMA process  
(18 pages, 2005)

82. C. H. Lampert, O. Wirjadi 

An Optimal Non-Orthogonal Separation of 
the Anisotropic Gaussian Convolution Filter
Keywords: Anisotropic Gaussian filter, linear filtering, ori-
entation space, nD image processing, separable filters 
(25 pages, 2005)

83. H. Andrä, D. Stoyanov

Error indicators in the parallel finite ele-
ment solver for linear elasticity DDFEM 
Keywords: linear elasticity, finite element method, hier-
archical shape functions, domain decom-position, par-
allel implementation, a posteriori error estimates 
(21 pages, 2006)

84. M. Schröder, I. Solchenbach

Optimization of Transfer Quality in  
Regional Public Transit
Keywords: public transit, transfer quality, quadratic  
assignment problem 
(16 pages, 2006)

85. A. Naumovich, F. J. Gaspar 

On a multigrid solver for the three-dimen-
sional Biot poroelasticity system in multi-
layered domains 
Keywords: poroelasticity, interface problem, multigrid, 
operator-dependent prolongation 
(11 pages, 2006)

86. S. Panda, R. Wegener, N. Marheineke

Slender Body Theory for the Dynamics of 
Curved Viscous Fibers 
Keywords: curved viscous fibers; fluid dynamics; Navier-
Stokes equations; free boundary value problem; asymp-
totic expansions; slender body theory 
(14 pages, 2006)

87. E. Ivanov, H. Andrä, A. Kudryavtsev

Domain Decomposition Approach for Auto-
matic Parallel Generation of Tetrahedral Grids
Key words: Grid Generation, Unstructured Grid, Delau-
nay Triangulation, Parallel Programming, Domain De-
composition, Load Balancing 
(18 pages, 2006)



88. S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert,  
R. Wegener 

A Meshfree Method for Simulations of Inter-
actions between Fluids and Flexible Structures
Key words: Meshfree Method, FPM, Fluid Structure In-
teraction, Sheet of Paper, Dynamical Coupling 
(16 pages, 2006)

89. R. Ciegis , O. Iliev, V. Starikovicius, K. Steiner

Numerical Algorithms for Solving Problems 
of Multiphase Flows in Porous Media
Keywords: nonlinear algorithms, finite-volume method, 
software tools, porous media, flows 
(16 pages, 2006)

90. D. Niedziela, O. Iliev, A. Latz

On 3D Numerical Simulations of Viscoelastic 
Fluids
Keywords: non-Newtonian fluids, anisotropic viscosity, 
integral constitutive equation  
(18 pages, 2006)

91. A. Winterfeld

Application of general semi-infinite Pro-
gramming to Lapidary Cutting Problems
Keywords: large scale optimization, nonlinear program-
ming, general semi-infinite optimization, design center-
ing, clustering 
(26 pages, 2006)

92. J. Orlik, A. Ostrovska

Space-Time Finite Element Approximation 
and Numerical Solution of Hereditary Lin-
ear Viscoelasticity Problems
Keywords: hereditary viscoelasticity; kern approxima-
tion by interpolation; space-time finite element approx-
imation, stability and a priori estimate 
(24 pages, 2006)

93. V. Rutka, A. Wiegmann, H. Andrä

EJIIM for Calculation of effective Elastic 
Moduli in 3D Linear Elasticity
Keywords: Elliptic PDE, linear elasticity, irregular do-
main, finite differences, fast solvers, effective elas-
tic moduli 
(24 pages, 2006)

94. A. Wiegmann, A. Zemitis

EJ-HEAT: A Fast Explicit Jump Harmonic 
 Averaging Solver for the Effective Heat 
Conductivity of Composite Materials
 Keywords: Stationary heat equation, effective thermal 
conductivity, explicit jump, discontinuous coefficients, 
virtual material design, microstructure simulation, EJ-
HEAT 
(21 pages, 2006)

95. A. Naumovich

On a finite volume discretization of the 
three-dimensional Biot poroelasticity sys-
tem in multilayered domains
Keywords: Biot poroelasticity system, interface prob-
lems, finite volume discretization, finite difference 
method. 
(21 pages, 2006)

96. M. Krekel, J. Wenzel

A unified approach to Credit Default 
Swaption and Constant Maturity Credit De-
fault Swap valuation
Keywords: LIBOR market model, credit risk, Credit De-
fault Swaption, Constant Maturity Credit Default Swap-
method. 
(43 pages, 2006) 

97. A. Dreyer

Interval Methods for Analog Circiuts
Keywords: interval arithmetic, analog circuits, tolerance 
analysis, parametric linear systems, frequency response, 
symbolic analysis, CAD, computer algebra 
(36 pages, 2006)

98. N. Weigel, S. Weihe, G. Bitsch, K. Dreßler

Usage of Simulation for Design and Optimi-
zation of Testing
Keywords: Vehicle test rigs, MBS, control, hydraulics, 
testing philosophy 
(14 pages, 2006)

99. H. Lang, G. Bitsch, K. Dreßler, M. Speckert

Comparison of the solutions of the elastic 
and elastoplastic boundary value problems
Keywords: Elastic BVP, elastoplastic BVP, variational 
inequalities, rate-independency, hysteresis, linear kine-
matic hardening, stop- and play-operator 
(21 pages, 2006)

100. M. Speckert, K. Dreßler, H. Mauch

MBS Simulation of a hexapod based sus-
pension test rig
Keywords: Test rig, MBS simulation, suspension, 
hydraulics, controlling, design optimization 
(12 pages, 2006)

101. S. Azizi Sultan, K.-H. Küfer

A dynamic algorithm for beam orientations 
in multicriteria IMRT planning
Keywords: radiotherapy planning, beam orientation 
optimization, dynamic approach, evolutionary algo-
rithm, global optimization 
(14 pages, 2006)

102. T. Götz, A. Klar, N. Marheineke, R. Wegener

A Stochastic Model for the Fiber Lay-down 
Process in the Nonwoven Production
Keywords: fiber dynamics, stochastic Hamiltonian sys-
tem, stochastic averaging 
(17 pages, 2006) 

103. Ph. Süss, K.-H. Küfer

Balancing control and simplicity: a variable 
aggregation method in intensity modulated 
radiation therapy planning 
Keywords: IMRT planning, variable aggregation, clus-
tering methods  
(22 pages, 2006)

104. A. Beaudry, G. Laporte, T. Melo, S. Nickel

Dynamic transportation of patients in hos-
pitals 
Keywords: in-house hospital transportation, dial-a-ride, 
dynamic mode, tabu search  
(37 pages, 2006)

105. Th. Hanne

Applying multiobjective evolutionary algo-
rithms in industrial projects 
Keywords: multiobjective evolutionary algorithms, dis-
crete optimization, continuous optimization, electronic 
circuit design, semi-infinite programming, scheduling

(18 pages, 2006)

Status quo: Dezember 2006


