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Wild bootstrap tests for comparing signals and images

Jürgen Franke and Siana Halim
Department of Mathematics, University of Kaiserslautern,

and Models and Algorithms in Image Processing group, Fraunhofer ITWM
P.O.Box 3049, 67653 Kaiserslautern, Germany

In this expository article, we give an introduction into the basics of bootstrap tests in gen-
eral. We discuss the residual-based and the wild bootstrap for regression models suitable for
applications in signal and image analysis. As an illustration of the general idea, we consider a
particular test for detecting differences between two noisy signals or images which also works
for noise with variable variance. The test statistic is essentially the integrated squared differ-
ence between the signals after denoising them by local smoothing. Determining its quantile,
which marks the boundary between accepting and rejecting the hypothesis of equal signals, is
hardly possible by standard asymptotic methods whereas the bootstrap works well. Applied
to the rows and columns of images, the resulting algorithm not only allows for the detection
of defects but also for the characterization of their location and shape in surface inspection
problems.

AMS 2000 subject classifications. Primary: 62G09, 62P30 secondary: 62G08, 62M40.

Key words and phrases: wild bootstrap test, texture classification, textile quality control, defect
detection, kernel estimate, nonparametric regression

1 Introduction

Bootstrap techniques are general tools for approximating the distribution of statistics of in-
terest. They replace and, for small or moderate sample sizes, frequently improve the classic
asymptotic analysis. Typical applications are tests for comparing two random signals or two
noisy images with each other. In the following, we present a new bootstrap test motivated
by a problem from surface inspection in industrial quality control where detecting and also
classifying defects plays a major role. Automatic inspection systems [17] are replacing hu-
man inspectors more and more frequently, but there are still enough situations where image
analysis algorithms have difficulties to beat the scrutiny of the human eye.

We consider the problem of defect detection in woven textures. For that purpose, various
methods have been proposed, e.g. MRF models [5], Independent Component Analysis [22]
or exploiting regularity and local orientation [4]. We are, however, not only interested in
detecting defects, but also want to get information on the location and shape of the defect
areas. Therefore, we treat defect detection as a hypothesis testing problem with the hy-
pothesis representing the absence of defects. As a test case, the following practical problem
is considered: the quality of woven fabrics is monitored during production to maintain the
quality standards required by customers. Up to fifty different kinds of defects are known to
be present, and an automated system of several cameras and corresponding data-processing
hard- and software has to detect and classify defects. The algorithms currently available are
not completely satisfactory as, e.g., several tuning parameters have to be chosen in a heuristic
fashion during implementation of the system [6]).

Woven textiles have a kind of semiregular and additionally noisy surface structure which
is hard to reproduce by simple parametric models. Therefore, we adopt a nonparametric
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view. In a first step, we smooth the surface under consideration locally, and, then, compare
the resulting denoised image with another one derived from a similar specimen or from a
different part of the same specimen which is already known to be free of defects. We con-
struct an appropriate test where the significance bound is calculated approximately by the
wild bootstrap. We prefer to use this resampling method to the more common residual-based
bootstrap as it is simple to implement and works well in a heteroscedastic situation, i.e. the
variance of the noise is not constant over the image which is a common feature of surface
inspection problems, partly due to the effect of illumination [6].

2 Testing with the bootstrap

In the language of statistics, the signal detection or surface inspection problem is formulated
as a decision problem. Given data combined to a N -dimensional random vector Y , we have to
decide between a hypothesis H0, e.g. ”no defect present on a surface”, and the corresponding
alternative H1. Typically, a test is performed by calculating some function T (Y ) of the data
and comparing it with some bound cα, chosen as the (1 − α)-quantile of the distribution of
T (Y ) under the hypothesis H0. If T (Y ) ≤ cα, we decide for H0, otherwise for H1. α is the
prescribed probability of an error of the first kind, i.e. under H0 we have pr(T (Y ) > cα) = α.
Constructing the test boils down to the problem of determining cα. However, for many ap-
pealing test statistics T (Y ), their distributions under H0 are not known. The classical escape
from this dilemma is provided by asymptotics, i.e. an approximation of the unknown distri-
bution is derived which holds for sample size N → ∞. In simple situations, where the data
Y consist of independent random variables with a common distribution known up to a few
parameters, this classical approach usually works well. In signal and image analysis, however
the structure of the data is frequently too complicated. An asymptotic approximation can
be still derived usually, but it frequently is not tractable, depending on unknown quantities
itself, and, even more important, it provides reasonable approximations only for sample sizes
N which are much larger than in the intended practical applications.

In such a situation, bootstrap tests may be applied. We move from the real world of our data
Y to the bootstrap world of a pseudo data vector or resample Y ∗ which may be artificially
generated from the original data and which has a similar random structure as Y itself. Then,
we consider the test statistic T (Y ∗) calculated from the bootstrap data Y ∗, and determine the
(1-α)-quantile c∗α of its distribution: pr∗(T (Y ∗) > c∗α) = α, where pr∗ denotes the conditional
probability given the data Y. Then, c∗α is used as an approximation for the unknown bound
cα, and the bootstrap test decides for the hypothesis H0 if T (Y ) ≤ c∗α, and for H1 else.

In many cases, the bootstrap will work, i.e. the distribution of T (Y ∗) given the data Y
provides a valid approximation for the distribution of T (Y ) for large enough N , and, as a
consequence, c∗α ≈ cα. However, this has to be proven, as there are several counter exam-
ples [8, 19] where intuitively appealing bootstrap methods do not work without some specific
modifications. The applicability of the bootstrap depends on the way how the bootstrap data
Y ∗ are generated as well as on the particular test statistic T (Y ) considered. On the other
hand, it frequently can be proven by theoretical arguments and illustrated by simulations
that the bootstrap provides a much better approximation to the quantities of interest, in our
case cα, than the usual asymptotic approximations.

Except for some rare simple cases, c∗α cannot be calculated analytically. In the bootstrap
world, however, we know in principle everything about the distribution of Y ∗ and, then, of
T (Y ∗), as we can artificially generate independent realizations of those random variables.
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Therefore, we can calculate quantities of interest numerically by Monte Carlo simulation.
For the (1 − α)-quantile c∗α, the numerical algorithm is the following:

1. (a) Generate a realization Y ∗(b) of the bootstrap data

(b) Calculate T ∗
b = T (Y ∗(b)).

Repeat for b = 1, . . . , B; keep T ∗
1 , . . . , T ∗

B in storage.

2. Order T ∗
1 , . . . , T ∗

B w.r.t. size to get T ∗
(1) ≤ . . . ≤ T ∗

(B).

3. Set c∗α,B = T ∗
([1−α)B]), where [x] denotes the largest integer ≤ x.

If B is chosen large enough, c∗α,B will get arbitrarily close to c∗α. Therefore, in the following we
do no longer distinguish between the numerical approximation c∗α,B and c∗α itself, and we use
the latter notation for both of them. For evaluating quantiles, a larger number B of resam-
ples is needed than in other applications of the bootstrap, as they are essentially determined
by only a small fraction of the largest or smallest values of T ∗

1 , . . . , T ∗
B . For α = 0.05, e.g.,

B = 1000 usually suffices, for α = 0.01, even B = 5000 or 10000 are needed.

3 Generating bootstrap data in regression models

The critical point in applying the bootstrap is the generation of the pseudo data Y ∗. If
Y = (Y1, . . . , YN ) is just a sequence of independent, identically distributed (i.i.d.) real-valued
observation Yi, i = 1, . . . , N, then we may draw Y ∗

1 , . . . , Y ∗
N independently from the sample

distribution of Y1, . . . , YN , i.e. we set Y ∗
i = YL(i), i = 1, . . . , N, where L(1), . . . , L(N) are

independent random numbers with pr(L(i) = k) = 1
N , i, k = 1, . . . , N.

In signal or image analysis, we usually have to deal with data which are not identically
distributed and/or not independent. Here, we discuss only the first case and make some
remarks concerning dependent data at the end. Let us consider a deterministic signal with
additive white noise: Yi = mi + εi, i = 1, . . . , N, where ε1, . . . , εN are i.i.d. with mean 0
and finite variance σ2. We assume that mi changes more slowly with time i than the random
errors εi such that we can rewrite the data generating model as

Yi = m(xi) + εi , i = 1, . . . , N, (1)

where m(x) is a reasonably smooth function on the unit interval [0, 1] and xi = i
N denotes

rescaled time.

Here, it makes no sense to consider the sample distribution of Y1, . . . , YN , as these data
do not have a common distribution; their means m1, . . . ,mN differ. For regression models
like (1), we resample from the residuals ε1, . . . , εN instead. As they are not observable di-
rectly, we first need an initial approximation m̂0

i = m̂0(xi), i = 1, . . . , N, of the signal which
provides a first approximation ε̂i = Yi − m̂0

i , i = 1, . . . , N, for the noise variables. Before
generating the bootstrap data by random sampling, we have to make one further modifica-
tion. The true noise distribution has mean 0, whereas the sample distribution of ε̂1, . . . , ε̂N

usual does not. This may lead to a severe distortion in applying the bootstrap [1], and,
therefore, we center the empirical residuals around 0 and set ε̂0

i = ε̂i − 1
N

∑N
j=1 ε̂j . Then, we

generate the noise ε∗1, . . . , ε∗N in the bootstrap world by randomly drawing from ε̂0
1, . . . , ε̂

0
N .

Finally, we get the bootstrap data Y ∗
i by adding the noise to the initial signal approxima-

tion: Y ∗
i = m̃i + ε∗i , i = 1, . . . , N , where m̃i = m̃(xi), i = 1, . . . , N, is another preliminary

approximation of the signal. We could choose m̂0
i = m̃i, but it is sometimes convenient to

3



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4

5

6

7

Figure 1: The noisy reference signal (blue) and the noisy disturbed signal (red), the latter
shifted by +4 to avoid overlap

have a bit more freedom. For the performance of the bootstrap, the choice of m̃i is critical
as can be seen from the short glimpse at theory in the appendix.

Sometimes, the assumption that the noise variables are identically distributed is not justified,
e.g. the average absolute size of errors may be larger if the unknown signal is large. Such an
effect may be due to inherent physical reasons, as in the example from image analysis below,
or it may be due to an unknown dependence of the observations Yi not only on the signal mi

but also on some hidden variables. In this case, drawing bootstrap residuals from the sample
distribution of ε1, . . . , εN or of its approximations ε̂0

1, . . . , ε̂
0
N again makes no sense. Instead,

for each i = 1, . . . , N, we generate the bootstrap residual ε∗i based on the information on only
one approximate observation, i.e. of ε̂i. This seems to be a wild idea but it works in theory
and in practice. The details of this so-called wild bootstrap [18, 19, 20, 23] are the following.
We again start from the noise approximations ε̂i = Yi − m̂0

i , i = 1, . . . , N . Then, for each i,
we artificially generate a random variable ε∗i satisfying

E∗ε∗i = 0, E∗(ε∗i )
2 = (ε̂i)2, E∗(ε∗i )

3 = (ε̂i)3 (2)

which mimicks the random behaviour of εi as far as we can get it from only one approximate
observation ε̂i. E∗ denotes the expectation conditional on the original data and, therefore, ε̂i,
to be given. A popular choice for ε∗i is a random variable which assumes only two different
values ai, bi with probabilities γ and 1 − γ each. ai, bi, γ are uniquely determined by the
constraints (2), and we get

ai =
1 −√

5
2

ε̂i , bi =
1 +

√
5

2
ε̂i , γ =

5 +
√

5
10

.

Alternatively, we could choose ε∗i = { 1√
2
Vi + 1

2 (V 2
i − 1)} ε̂i, i = 1, . . . , N, where V1, . . . , VN

are i.i.d. standard normal variables. Other constructions are possible [18]. Once we have
ε∗1, . . . , ε∗N , we proceed as above and get the bootstrap data as Y ∗

i = m̃i + ε∗i , i = 1, . . . , N.
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4 Comparison of two noisy signals

As a first step towards the surface inspection algorithm, we consider the one-dimensional
counterpart where we compare two noisy signals of the form (1)

Yi = mI(xi) + εi, Ỹi = mII(xi) + ε̃i, xi =
i

n
, i = 0, ..., n. (3)

The noise variables εi, ε̃i, i = 0, . . . , n, are independent with mean zero and finite variances
var(εi) = var(ε̃i) = σ2(xi). mI is a reference signal, and we want to know if the second signal
coincides with the first one up to the contribution of noise, i.e. we want to test the hypothesis
H0 : mI = mII .

Later on, the Yi’s and Ỹi’s will be corresponding rows or columns of two images representing
woven textiles. Those surfaces show particular semiregular patterns which are hard to model
in a parametric way. Therefore, we do not assume a specific parametric form for mI ,mII , but
they may be arbitrary functions required only to have a certain degree of smoothness. Then,
(3) is a setup which has been studied extensively in nonparametric regression analysis [7, 12].
As the xi’s are equidistant, we may estimate mI ,mII by Priestley-Chao kernel estimates
m̂I , m̂II [21] which are local weighted averages of the data and closely related to kernel
spectrum estimates:

m̂I(x, h) =
1

n + 1

n∑
i=0

Kh(x − xi)Yi, m̂II(x, h) =
1

n + 1

n∑
i=0

Kh(x − xi)Ỹi,

where Kh(.) = h−1K(./h) denotes a rescaled kernel function. K typically is a probability
density symmetric around 0; Figure 2 shows two popular choices. The scaling parame-
ter, the bandwidth h > 0, controls the smoothness of the function estimates. For sake of
simplicity, we consider here only the case where the order h is given by cn−1/5 for some
constant c > 0 which is the optimal rate for minimizing the integrated mean-squared error∫

E
(
m̂I(x, h) − mI(x)

)2
dx for n → ∞ [12].

Several tests for the equality of functions based on kernel estimates have been studied, in
particular for testing if a certain parametric model adequately describes the data. There, the
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nonparametric kernel fit is compared with a parametric function estimate based on the same
sample [11, 14]. We adapt this approach to comparing two nonparametric kernel estimates
based on two different samples. To perform the test, we look at some distance between the
function estimates m̂I(x, h) and m̂II(x, h), and we reject the hypothesis mI = mII if this
distance is too large. We use the standardized integrated squared difference between the two
estimates

Tn = n
√

h

∫ (
m̂II(x, h) − m̂I(x, h)

)2
dx ≈

√
h

n∑
i=0

(
m̂II(xi, h) − m̂I(xi, h)

)2
. (4)

The difference between the representation of Tn as an integral or as a sum is of order 1/n
and, therefore, negligible [10]. The test rejects the hypothesis mI = mII on a given level α if
Tn > cα. We now use the wild bootstrap to get an approximation c∗α of cα.

As a first step of the bootstrap, we estimate the residuals by

ε̂i = Yi − m̂I(xi, h), ˆ̃εi = Ỹi − m̂II(xi, h), i = 0, . . . , n.

Then, as described in the previous section, we use these two independent sets of sample
residuals to generate two sets of wild bootstrap residuals ε∗i , ε̃

∗
i , i = 0, . . . , n. To calculate c∗α

numerically, we have to determine the distribution of our test statistic in the bootstrap world
assuming that the hypothesis is satisfied. For that purpose, we consider two resamples for
the case where the two signals coincide, i.e. we set

Y ∗
i = m̂I(xi, g) + ε∗i , Ỹ ∗

i = m̂I(xi, g) + ε̃∗i , i = 0, . . . , n. (5)

As an initial approximation of the common signal, we use a Priestley-Chao kernel estimate
based on the reference data, but allowing for a different bandwidth g. Using the resamples,
we calculate kernel estimates in the bootstrap world

m̂∗
I(x, h) =

1
n + 1

n∑
i=0

Kh(x − xi)Y ∗
i , m̂∗

II(x, h) =
1

n + 1

n∑
i=0

Kh(x − xi)Ỹ ∗
i .

Mark that, e.g., m̂∗
I(x, h) estimates m̂I(x, g) as, in the bootstrap world, (5) is the coun-

terpart of our original model (3) for the case where H0 ist satisfied. For the bootstrap to
work, we need that the estimation error m̂I(x, h) − mI(x) in the world of real data and
m̂∗

I(x, h)− m̂I(x, g) in the bootstrap world of artificially generated data show practically the
same stochastic behaviour, at least for large sample sizes n. Therefore, we have necessarily to
choose g � h or, more precisely, h, g → 0, h

g → 0 for n → ∞, i.e. m̂I(x, g) is an oversmooth
estimate of mI(x). Otherwise, the bias E m̂I(x, h)−mI(x) would not be correctly reproduced
in the bootstrap world [8].

Finally, the bootstrap test statistic can be constructed as follows. Analogously to (4) we
define

T ∗
n = nh1/2

∫ (
m̂∗

I(x, h) − m̂∗
II(x, h)

)2
dx. (6)

We can repeatedly generate realizations of T ∗
n to get a Monte Carlo approximation c∗α,B of

the quantile c∗α as described above.

We apply the bootstrap test to compare the two artificially generated noisy signals of Figure
1. Here, n = 500, and the two noiseless signals resp. the standard deviation of zero-mean
Gaussian noise are given by

mI(x) = sin(2πx), mII(x) = mI(x) + e−800(x−0.5)2 , σ(x) = 0.7 − 1.4(x − 0.5)2.
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Figure 3: The reference signal mI(x) and the second signal mII(x) with disturbance, the
latter shifted by +1, and the noise variance σ2(x)

mII differs from mI essentially by a local disturbance around x = 0.5 as can be seen from
Figure 3 showing those functions.
We have done a Monte Carlo simulation with M = 10, 000 independently generated pairs of
samples satisfying the hypothesis, resulting in M independent copies of our test statistic un-
der H0. This allows to estimate the true unknown probability density of the test statistic Tn

under H0 by a kernel density estimate [12] as well as calculating the true quantile cα = 1.155
for α = 0.95. For real data, where the data generating process is unknown, we only can get
approximations by the bootstrap or by asymptotic approximations, here based on asymptotic
normality discussed in the appendix. Figure 4 shows the true density p(t) of Tn for bandwidth
h = 0.02, its wild bootstrap approximation based on the data of Figure 1, using g = 0.03
and B = 1000 resamples, and its asymptotic normal approximation, in each case under the
hypothesis. For n = 500 the bootstrap gets quite close to the truth, whereas the asymptotic
approximation does not represent the asymmetry of p(t) well and shows a considerable bias.
The approximations of cα are c∗α = 1.243 by the bootstrap and casy

α = 2.104 by asymptotics.
Calculating the test statistic from the data of Figure 1, we get Tn = 2.5517 � c∗α, such that
the bootstrap test rejects the hypothesis well. Using the asymptotic quantile casy

α , we also
would reject H0 but not so clearly.

For comparison, Figure 5 shows the the same kind of picture as Figure 4, but for data with
a constant noise standard deviation σ(x) = 0.7 and for n = 1000. Doubling the sample
size leads to a much better performance of the asymptotic normal approximation, but the
bootstrap looks still considerably better.

5 An algorithm for defect detection and localization

We return to the surface inspection problem. We assume that we have a pair of noisy grey-
scale images Y, Ỹ of same size, the first one known to be without defect, the other one to
be tested for the presence of a defect. In practice, both will be corresponding parts of the
same textile, where the first one already has been found to be free of defects, and the second
part now is to be checked. The images are digitized on a regular grid xij = ( i

m , j
n), i =
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Figure 6: Some examples of defect detection

0, . . . , n, j = 0, . . . , n, in the unit square

Yij = mI(xij) + εij , Ỹij = mII(xij) + ε̃ij , i = 0, . . . ,m, j = 0, . . . , n. (7)

The random residuals εij , ε̃ij are independent with mean zero and finite variances var(εij) =
var(ε̃ij) = σ2(xij). They do not only represent the observational noise, but also the random
fine-scale structure in the woven textile.

To detect and to localize defects, we compare corresponding rows resp. columns of the two
images, thus reducing the two-dimensional image testing problem to (m + 1)(n + 1) one-
dimensional signal testing problems as in the previous section. The results are summarized
as binary vectors c ∈ {0, 1}n+1, r ∈ {0, 1}m+1 defined as follows.

For any k = 0, . . . , n, we model the two kth columns Yi = Yik, Ỹi = Ỹik, i = 0, . . . , n, of Y
resp. Ỹ like in (3). Then we test if mI = mII holds or not, using the wild bootstrap test of
the previous section. If the hypothesis is rejected, we set ck = 1, and ck = 0 else.

Analogously, we compare the two rows Yi = Yki, Ỹi = Ỹki, i = 0, . . . , n, and we set rk = 1 if
the hypothesis mI = mII is rejected here, and rk = 0 else. If any defect is detected at all, we
set

imin = min{i; ri = 1}, imax = max{i; ri = 1}, jmin = min{j; cj = 1}, jmax = max{j; cj = 1}.

Then the rectangle[
(imin, jmin), (imax, jmax)

]
= {(i, j); imin ≤ i ≤ imax, jmin ≤ j ≤ jmax}

is detected as the defect area of the image.

Figure 6 shows some examples of areas of defect, marked as white rectangles, detected by
the algorithm in real textures. In all cases, the image size was 102× 96 pixels. We have used
as a bandwidth h ≈ 0.4, and as a reference bandwidth for constructing the bootstrap data
g = 2h. Using the wild bootstrap, we approximated the c∗α for level α = 0.05 by Monte Carlo
simulation based on B = 500 artificially generated samples of bootstrap data. Before apply-
ing the test, we did some preprocessing of the data, removing linear trends in the column
resp. row series data due to illumination [15].

6 Conclusion and extensions

In this contribution, we have derived tests based on the wild bootstrap which allow to check
for differences between two irregular signals observed with additive noise where the latter
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consists of independent, but not necessarily identically distributed random variables. The
signals are first denoised by kernel estimates and, then, compared by looking at the inte-
grated squared difference. The bound between accepting and rejecting the hypothesis of
equal signals are determined by the wild bootstrap and numerically calculated by Monte
Carlo simulation. The test is applied to all pairwise rows and columns of two images which
results in an algorithm which allows to detect defects and to get additionally information on
their location and shape.

The idea and theory of the test may be straightforwardly extended to the direct comparison
of two images [10]. This is computationally less expensive than doing all the row- and colum-
nwise tests, but it provides less information.

The defect areas which may detected are rectangles parallel to the coordinate axes. The
algorithm may be modified by applying the one-dimensional bootstrap test not only to rows
and columns, but also to diagonal cuts through the images. This allows for more flexibility
at the price of higher computational costs.

Whereas the choice of the kernel K has only minor influence on the performance, the choice
of bandwidth h is an important practical problem. We have chosen it based on intuition and
experience, but there are many adaptive methods like crossvalidation [12] or plug-in schemes
[2] to get h from the data. This presumably has no influence on the validity of the boot-
strap test provided that the data-adaptive and therefore random bandwidth ĥ stabilizes for
increasing sample size in the sense that the relative difference (ĥ − h)/h to a deterministic
sequence satisfying the necessary assumptions vanishes. Corresponding theoretical results
are known for related problems [19].

We have discussed only the case of deterministic signals with additive independent noise
which can be formulated as a regression model. The basic ideas of the residual-based or
wild bootstrap may be applied equally well to dependent data, e.g. to kernel spectrum
estimates [8] or kernel estimates of the autoregressive function in nonlinear autoregression
Xt = m(Xt−1, . . . ,Xt−p) + εt [9].

7 Appendix: Some theoretical considerations

The bootstrap provides a straightforward method for deriving formal tests from intuitive
ideas which are quite good even for smaller sample sizes. However, it does not work auto-
matically and, for each specific application, has to be justified by theoretical arguments or
at least by extensive simulation studies.

As an example from [19], where a seemingly straightforward bootstrap approach fails, let us
consider a regression model similar to the signal detection problem of section 4. For i.i.d.
data (Xi, Yi), i = 0, . . . , n, we have Yi = m(Xi) + εi where, given Xi, the residuals εi have
mean 0 and finite variance which may depend on Xi. We have some idea about the function
m(x), e.g. that it is a polynomial of degree 3: m(x) = mb(x) = b1 +b2x+b3x

2 +b4x
3 for some

b = (b1, . . . , b4), but we are not sure and want to test this particular modeling assumption. An
intuitive idea is estimating b by, e.g., a least-squares estimate b̂ and comparing the resulting
parametric function estimate mb̂(x) with a nonparametric function estimate m̂(x, h) like in
section 4 which does not assume a specific form of m(x). As, here, the Xi are random and,
in particular, not equidistant, we have to use the Nadaraya-Watson estimate [12] instead of
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the Priestley-Chao estimate

m̂(x, h) =
∑n

i=0 Kh(x − Xi)Yi∑n
i=0 Kh(x − Xi)

.

Intuitively, if our model assumption that m(x) is of the parametric form mb(x) holds, we
should have mb̂(x) ≈ m̂(x, h). Looking a bit closer at both estimates, we see that m̂(x, h) has
the typical bias of local smoothers whereas mb̂(x) is unbiased if the parametric model is not
misspecified. Therefore, we should not compare m̂(x, h) with mb̂(x), but with a correspond-
ingly smoothed version mb̂(x, h) which has a bias of the same order as m̂(x, h) :

mb̂(x, h) =
∑n

i=0 Kh(x − Xi)mb̂(Xi)∑n
i=0 Kh(x − Xi)

.

For comparing mb̂(x, h) with m̂(x, h) we consider the same type of distance as in (4), i.e.

Tn = n
√

h

∫
(m̂(x, h) − mb̂(x, h))2dx.

As the data are i.i.d., we may generate bootstrap data (X∗
i , Y ∗

i ), i = 0, . . . , n, by drawing
them independently from the sample distribution of (X0, Y0), . . . , (Xn, Yn). However, the re-
sulting test statistic T ∗

n in the bootstrap world does not provide an adequate approximation
of the distribution of Tn. E.g., asymptotically for n → ∞, the variance of T ∗

n is 3 times as
large as the variance of Tn [19], and consequently bootstrap quantiles c∗α are far from the
true quantiles cα which we need for the test. So, this naive bootstrap fails here. The wild
bootstrap, however, leads to a valid bootstrap test in this situation too [19].

We have seen that resampling techniques like the bootstrap are not guranteed to provide
valid approximations of distributional parameters like the mean-square error of estimators,
confidence intervals or significance bounds cα of test statistics. So, some theory is useful
to convince ourselves that the bootstrap does not lead to false conclusions. We illustrate
the type of arguments by studying the distributions of the test statistic Tn of (4) and its
bootstrap counterpart T ∗

n of (6). For the validity of the bootstrap approximation of cα,
those two distributions have to be close to each other only under the hypothesis mI = mII .
However, it is useful to know that the bootstrap test has not only approximately the right
level, but that it also has a similar power. Specifically, we consider local alternatives of the
form

mI(x) �= mII(x) = mI(x) + (n
√

h)−1/2∆n(x) (8)

for some sequence of functions ∆n(x) which are uniformly bounded in n and x. For ∆n(.) ≡ 0,
this inculdes the hypothesis. So, mII gets closer and closer to mI for n → ∞, i.e. the signal
detection problem becomes harder and harder. That type of asymptotics provides more in-
sight into the performance of tests, as, for a fixed distance between mI ,mII , even mediocre
tests would detect the violation of the hypothesis with probability going to 1.

Under suitable technical assumptions on the signals mI ,mII , on the kernel and on the noise,
we may show [10] as an auxiliary result that the distribution of Tn is approximately normal
with mean Bh and variance σ2

T given by

Bh = B0
h + B1

h,

B0
h =

2√
h

∫
σ2(x)dx

∫
K2(u)du,

B1
h =

∫
(Kh � ∆n(x))2dx,

σ2
T = 8

∫
σ4(x)dxK(�4)(0).
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In particular, B1
h ≥ 0 and, under the hypothesis mI = mII , B1

h = 0. � denotes the convolu-
tion of two functions, and K(�4)(x) denotes the 4-fold convolution of K with itself.

Mark that the variance of Tn converges to the finite σ2
T for n → ∞ whereas the mean di-

verges as h → 0. This does not matter for the test, as the difference B1
h between the mean

under the hypothesis mI = mII and under the alternative (8) is of order h−1 and, therefore, of
larger order than B0

h, as, e.g., for ∆n(x) ≡ δ we have B1
h = δ2

∫
K2

h(x) dx = h−1δ2
∫

K2(u) du.

We could use the asymptotic normality of Tn instead of the bootstrap to get an approx-
imation of the signifance bound cα and, then, a valid test. However, that is not directly
possible as, even under the hypothesis, Bh = B0

h and σ2
T depend on the unknown function

σ2(x) characterizing the variable noise variance. This function could be estimated by local
smoothing too and plugged into the above equations, but the accumulating approximation
errors have the effect that the normal approximation of the distribution of Tn is good enough
only for extremely large sample sizes n - compare Figures 4 and 5, where even the normal
approximation (black curve) with known mean B0

h and variance σ2
T is not performing well.

So, the bootstrap really helps if it works.

The validity of the wild bootstrap approximation of the test statistics Tn is given by the fol-
lowing result. Again, under appropriate assumptions, we can show that the so-called Mallows
distance between the distribution of Tn and the distribution of T ∗

n , the latter conditional on
the original data, converges to 0 for n → ∞ [10]. This is based on the fact that the estimation
errors m̂I(x, h)−mI(x) in the real world and m̂∗

I(x, h)−m̂I(x, g) in the bootstrap world both
converge to 0 with rate (nh)−1/2, whereas the distance between their distributions converges
to 0 faster [3, 13]. Under the hypothesis, where mI(x) = mII(x), this extends correspond-
ingly to m̂I(x, h) − m̂II(x, h) and, then, to Tn.
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