Explanation-based Similarity:
A Unifying Approach for Integrating Domain
Knowledge into Case-based Reasoning for
Diagnosis and Planning Tasks

Ralph Bergmann, Gerd Pews, Wolfgang Wilke

University of Kaiserslautern
Dept. of Computer Science
P.O. Box 3049
67653 Kaiserslautern, Germany
E-Mail: {bergmann,pews,wilke}@informatik.uni-kl.de

Abstract. Case-based problem solving can be significantly improved
by applying domain knowledge (in opposition to problem solving knowl-
edge), which can be acquired with reasonable effort, to derive expla-
nations of the correctness of a case. Such explanations, constructed on
several levels of abstraction, can be employed as the basis for similarity
assessment as well as for adaptation by solution refinement. The general
approach for explanation-based similarity can be applied to different real
world problem solving tasks such as diagnosis and planning in technical
areas. This paper presents the general idea as well as the two specific,
completely implemented realizations for a diagnosis and a planning task.

1 Introduction and Motivation

The underlying principle of case-based reasoning is the idea to remember solu-
tions to already known problems for their reuse during novel problem solving.
The case which is most similar to the current problem is retrieved from a case
base and its solution is modified to become a solution to the current problem
[Kolodner, 1993; Althoff et al., 1992]. One of the aspired benefits of case-based
reasoning is to reduce the need to acquire and explicitly represent general knowl-
edge of the problem domain and thereby to overcome the knowledge acquisition
bottleneck [Feigenbaum and McCorduck, 1983]. To avoid the acquisition of ex-
plicit domain knowledge, the similarity between two cases is mostly assessed by a
numeric computation of selected surface features of the problem description. All
knowledge about problem similarity is implicitly encoded into a formula which
defines a similarity measure. Besides this, less attention was paid on case adap-
tation since this requires a large amount of knowledge, too. We want to argue
that knowledge which can be acquired with reasonable effort should be used for
similarity assessments as well as for solution adaptation. Such additional knowl-
edge is required for planning as well as for diagnosis tasks, in order to achieve
more powerful and domain-tailored case-based problem solvers.

From the current experience in knowledge acquisition for “traditional” knowl-
edge based systems, we can at least distinguish two different types of knowledge
[Newell, 1982]: Domain knowledge and problem solving knowledge [Wielinga et
al., 1992]. Problem solving knowledge describes the process of problem solving
in terms of steps (i.e. basic inferences or subtasks as in KADS) that should to
be executed to (efficiently) derive a solution.

On the other hand, domain knowledge consists of descriptions of the “el-
ements” that are available to construct a problem solution, together with the
knowledge about the interaction of these elements within the solution to a prob-
lem. Consequently, domain knowledge is sufficient to determine whether a pro-
posed solution really solves a given problem. Moreover, it is much easier to ac-
quire than problem solving knowledge, especially in technical domains. In these
domains, systems (e.g. machines) are constructed by human engineers based on
a well known functioning and interaction of all components the whole system
consists of. Blueprints are generally used to document such a design product and
are consequently an appropriate information source for knowledge acquisition.

In the following we want to assume that domain knowledge which is sufficient
to derive an explanation of a case can be acquired and formalized. On several
levels of abstraction, such an explanation can show the correctness of a solution
to a problem. Based on this explanatory information, the similarity between two
cases can be assessed and the adaptation process can be focused on the relevant
portions of the solution.

In the rest of this paper we will describe the approach in more detail and
show its application to diagnosis of faults in technical machines and to produc-
tion planning in mechanical engineering. The next section demonstrates how
explanations can be built and represented, and how similarity can be assessed.
In section 3, the approach to solution adaptation by refinement is demonstrated
and results are presented. The final sections discuss related work and summarize
the characteristics of the proposed approach.

2 Explanation-based Similarity for Diagnosis and
Planning

The core idea of our approach is to use domain knowledge — which can be ac-
quired rather easy — to set the similarity assessment and the adaptation on a
more profound basis founded on an ezplanation of a case. Such an explanation
does not describe how a solution is derived (this would require problem solving
knowledge) but that a solutions solves the given problem, i.e. a proof of the
correctness of the solution. It is really important to keep this distinction in mind
since it makes our approach different from derivational analogy [Carbonell, 1986;
Veloso and Carbonell, 1993]. On the other hand, the domain knowledge we em-
ploy for explaining a case is stronger than just causal relations like in other ap-
proaches [Barletta and Mark, 1988; Koton, 1988]. Moreover, explanations based
on strong domain knowledge can be easily derived automatically and do not

need to be constructed by case-based methods as for example in [Kass and
Leake, 1988].

The similarity of two cases can be judged according to the similarity of their
explanations. For this purpose, the relevant domain knowledge must be modeled
on several levels of abstraction. This modeling also must allow to switch between
those different levels by transforming representational terms from one level to
another. An explanation on a lower level of abstraction is more detailed and
consequently composed of a larger number of specific rules and facts than an
explanation on a higher level of abstraction. Therefore, the explanations of two
cases can differ very much on a lower level of abstraction but may be identical
on a higher level. This observation leads us to a rating of the similarity of two
explanations: The lower the level of abstraction on which two explanations are
identical, the higher is the assessment of their similarity.

2.1 Representation of Explanations and Similarity Assessment

Single-level Explanations. In diagnosis as well as in planning, an explanation
on an isolated level of abstraction can be represented in a graph structure (see
Fig. 1) with two different kinds of labeled nodes: rule-nodes and fact-nodes.
Each rule used in an explanation is represented by a rule-node, labeled with
the name of the rule. Fact-nodes represent case specific facts in an explanation
which are either given (e.g. from a problem description) or which are derived by
a rule. Fact-nodes and rule-nodes are linked by directed edges. Incoming edges
into a rule-node (starting at a fact-node) reflect the premises of the rule and
outgoing edges, leading to fact-nodes, stand for their conclusions. The problem
whose solution is explained, is usually represented by a set of initial fact-nodes
together with a set of final fact-nodes. Initial fact-nodes are the starting point of
the explanation graph and are not derived by other rules. The final fact-nodes are
the end points of the graph and are not further used as a premise in a rule-node.
The solution being explained is always directly linked to the rules that are used
in the explanation. So, case explanations can be easily constructed by starting at
the initial fact-nodes and applying the rules that are indicated by the solution. If
the final fact-nodes of the problem can be reached, the solution is called correct
and the respective explanation is found. Note, that this explanation is a proof
of the correctness of the solution.

Identity of Explanations. Two single-level explanations are called identical,
if the graphs are identical except for the labeling of the fact-nodes which can vary.
Corresponding rule-nodes must be labeled with the same rule name. However,
the instantiations of the rules are not part of the labeling of the rule-nodes and
can consequently be different in identical explanations.

Multi-level Explanations. As already introduced, explanations are constructed
on several levels of abstraction. On two consecutive levels, the explanation graphs
are linked by two different kinds of abstraction mappings. The fact abstraction

Level n+1:

[factad Y
facta > ruleg1 > factaz
fact) rule \T/

abstraction | abstraction | I

Level n: ~ L | - =~

< N o - L Ve AN

-

initial facts final facts

Fig. 1. Multi-level explanation structure

relates several level-n fact-nodes to a single fact-node on level n+1. The required
knowledge about the different possibilities of fact abstractions is assumed to be
part of the available domain knowledge. The second kind of abstraction (called
rule abstraction) occurs when a subgraph containing several rule- and fact-nodes
is mapped onto a single, more abstract rule-node on the next higher level. Usu-
ally, many different abstractions, focusing on different aspects of a case, can be
indicated by the domain knowledge.

Similarity of Explanations. The similarity between two complete multi-level
explanations can now be determined according to the level of abstraction on
which single-level explanations are identical. The higher the level of abstraction
on which the respective explanations are identical, the lower is the similarity
rating.

Similarity Between a Complete Case and a Problem. The definition of
explanation-based similarity presented so far requires complete explanations for
both cases to be compared. For the similarity assessment within a case-based
reasoning process, a complete case from the case-base has to be compared with
the current problem description. So, no explanation for the problem is available
before the problem is solved. To enable explanation-based similarity assessment
nevertheless, the single-level explanations of the case in the case base are at-
tempted to be mapped to the current problem description. This mapping can
be achieved in two different ways. Starting at the initial facts of the problem
description, all relevant rules can be re-applied in the same structure as the ex-
planation in the explained case indicates. If all rules of the original explanation
can be applied and if also the final facts from the problem description can be
reached, then the mapping is successful at this abstraction level. Alternatively,

a whole single-level explanation structure can be compiled — as in more tradi-
tional explanation-based learning [Mitchell et al., 1986] — into a set of sufficient
conditions over the initial and final facts. This compiled generalization can then
be instantiated for the current problem at hand. More details on this topic can
be found in [Bergmann, 1992].

The procedure for similarity assessment between a complete case and a prob-
lem starts by the attempt to map the explanations at the highest level of ab-
straction. If the mapping is successful, the process proceeds with the next, more
concrete level. The lowest level at which the explanations can still be mapped,
indicates the degree of similarity between the case and the current problem.

2.2 An Example from Technical Diagnosis: The MOCAS-System

This general idea will now be applied to the diagnosis of technical systems.
MoCAS (Model-based Case Adaptation System) [Pews and Wess, 1993] is an
already existing, fully implemented realization of this approach for diagnosis of
a CNC-machine which consists of 110 components and 356 attributes.

The goal of diagnostic problem solving is to identify a faulty component
(called diagnosis) of a system that shows some unintended behavior. The (par-
tially unintended) system behavior is usually described by a set of symptoms. A
complete case consists of a collection of known symptoms (the problem descrip-
tion) together with a diagnosis (solution) that is sufficient to explain all of the
observed symptoms. However, the diagnosis is usually not determined by the
observed symptoms in a case.

In order to explain the diagnosis, domain knowledge about the correct func-
tioning of the system components and their interaction within the system is
required. Moreover, complex components (called compound components) may
also be composed out of several sub-components (parts) which interact in a cer-
tain way to achieve the overall functioning. For reasons of simplicity, we want
to assume, that each component has a specified interface in which input- and
output ports can be clearly distinguished.

Modeling Diagnostic Domain Knowledge. Rules can be used to model the
general behavior of components. The precondition of a rule describes certain con-
ditions on the input-ports while the consequences specify the respective compo-
nents reaction by assigning values to some output-ports. Moreover, the hier-
archical part-of decomposition of the compound components lead to a natural
description of the system behavior on multiple levels of abstraction. So, a behav-
ior can be explained on a high level of abstraction by just using the rules that
describe a compound component. On the next more detailed level, the same be-
havior can be explained by the behavior and interaction of the sub-components
the compound component consists of.

Another way of abstracting components is provided by a hierarchical a-kind-
of structure, all kinds of components are organized in. An abstraction of motor as
well as of a 1ight bulb might be an electrical machine (see Fig. 2). Different

Component hierarchy

*‘ Behavior description of components

Electrical ,|Electrical Machine: supply = on -> operate = yes

Machine supply = off -> operate = no
Light Bulb Li ght bul b: vol tage f hi gh -> enmi ssi on f I'i ght
voltage = low -> enmi ssion = dark

M otor .| Mtor: current = high -> rotation = fast
current = low -> rotation = stationary

Fig. 2. Domain knowledge for technical diagnosis

rules are associated with the motor and the light bulb to describe their specific
behavior. But these different behaviors can also be abstracted towards a general
rule, valid for all electrical machines.

Example Cases. A simple example from a technical domain is shown in Fig. 3.
A generator G1 supplies a light bulb L1 via a wire and a relay (see case 1). In this
case we want to assume that wire18 is broken (diagnosis). As a consequence,
the lamp stays dark even if the generator supplies voltage and the relay is closed.
These symptoms are assumed to be observed. A different case (case 2) appears
in a situation, in which a motor M1 instead of the light bulb is considered. We
want to assume that wire65 is broken which causes the motor to stand still.

G, Wire, Relay, Ly G2 Wireg Relay, M,
R e R RO =) ¥
Case 1 Case 2

Fig. 3. Two cases froma technical diagnostic domain

Explanation-based Similarity.In an explanation-graph, a certain input- or
output-value is represented as a fact-node. The actual behavior of the device,
transforming input values into output values, will be represented as a rule-node.
The diagnosis is indicated by a rule in the explanation structure that describes an
unintended behavior (here, the rule for the broken wire)For the two example
cases, this modeling leads to explanation structures as shown iFig. 4. The

explanations of case 1 and case 2 turn out to be not identical on the lowest level
of abstraction, because different rules describe the behavior of the motor and
the bulb. But if we look at these explanation the next higher level, the behavior
of the two different components can be abstracted into a rule that reflects a
“doesn’t operate”-behavior of electric machines. So, the explanations of both
cases are identical at the second level of abstraction.

If we now consider the case-based diagnosis process involving the mapping
(as explained in section 2.1) of the level-2 explanation from case 1 to the problem
description of case 2 (generator works, relay is closed, but the bulb stays dark)
we can achieve the mapping of the faulty component (wire18) from case 1 to
the related component (wire65). In this situation we can see that a diagnosis
adaptation is completely achieved by explanation mapping. However, in general,

Level 2

|72 electrical machine .comporient - Y

R/C doesnt Coperate
"off" | operate : ’ "no"
B J

= off RS o
"on" elaygeneral .,

/A

Mrotation %
"stationary"
7

= S

Fig.4. Explanation structures for two diagnostic cases

a mapped abstract solution needs to be refined towards a concrete diagnosis if
several rules have been abstracted towards a single abstract rule. This kind of
refinement adaptation will be addressed in section 3.1.

2.3 An Example from Planning: The PARIS-System

In the following, we will describe explanation-based similarity as realized in
the PARIS-System (Plan Abstraction and Refinement in an Integrated System)
[Bergmann, 1993; Wilke, 1993]. In planning, the goal of problem solving is to
derive a sequence of actions (or operators), which, when applied, transforms a
given initial state into a desired goal state. Initial state and goal state together
constitute the description of a planning problem and the operator sequence forms
the desired solution.

Production Planning as Example Domain. To demonstrate the applica-
tion of the explanation-based similarity approach for case-based planning, we
present an example from the field of production planning in mechanical engineer-
ing adapted from the CAPLAN-System [Paulokat and Wess, 1993], a PRODIGY-
like approach [Veloso and Carbonell, 1993]. The goal is to generate a process
plan for the production of a rotationally-symmetric workpiece on a lathe. The
problem description, which may be derived from a CAD-drawing, contains the
complete specification (especially the geometry) of the desired workpiece (goal
state) together with a specification of the piece of raw material (called mold)
it has to be produced from (initial state). Figure 5 shows two examples for
rotationally-symmetric workpieces, which both have to be manufactured out of

Casel:

operator sequence:
1. chuck(#3)

__ ~ 2. raw-cut(#1)
3. groove(#2)

Case2:

operator sequence:
1. chuck(#6)

C 77 2. raw-cut(#4)
Jmmmmmmmm sy em e 3. groove(#5)

Fig.5. Two example cases from production planning of rotationally-symmetric work-
pieces

a cylindrical mold. To produce the piece in case 1, the mold needs to be chucked
on the lathe first. This chucking may only cover a certain part of the workpiece
(area #3 in case 1) so that other parts of the piece remain accessible for the
subsequent cutting operations. In the second step of the production plan, the
long cylindrical area #1 must be removed (raw-cut) from the mold. Only when
this area is completely processed, the small area #2 becomes accessible and can
be manufactured by a groove-operation. So, these three operations can only be
executed in the mentioned order.

Modeling Planning Knowledge. The domain knowledge required for plan-
ning is described by the operators that are available, together with the states
that are manipulated by them. Planning operators are usually represented in a
STRIPS-like manner [Fikes and Nilsson, 1971] with preconditions which refer
to state descriptions and effects which describe a state transition function. The
operators of a domain can be modeled on several levels of abstraction, an idea
already intensively investigated in research on hierarchical planning [Sacerdoti,
1974; Knoblock, 1990]. On the lowest level of abstraction, we require e.g. the de-
scription of the raw-cut (<Area>) operation. This operation is applicable only
if <Area> is accessible by the cutting-tool and if <Area> specifies a part of the
mold which is not already removed. As an effect of this operation, <Area> is now
removed and additionally, one or more other areas may become accessible.

On a higher level of abstraction, an abstract operator such as cut (<Range>)
is assumed which has the abstract ability to remove all material on a larger range
(e.g. the entire “right side”) of the workpiece in one step.

Explanation-based Similarity. For case 1 from Fig. 5, the corresponding 2-
level explanation structure is depicted in Fig. 6. Each rule-node in this structure
reflects one operation of the solution plan. The fact-nodes represent the states
of the workpiece during the execution of the plan. The explanation at the ab-
stract level is composed of two, more abstract rules, each representing an abstract
operation. In this explanation, fact abstraction and rule abstraction occur simul-
taneously. The fact abstraction specifies, for example, that mold(#1) together
with mold(#2) can be abstracted towards mold(right). The rule abstraction,
on the other hand, aggregates the raw-cut and the groove operation and relates
it to the more abstract cut operation.

If we now want to assess the similarity between case 1 and a second problem
as given in case 2, we can see that the explanation given in figure 6 can be
completely mapped for the new problem even at the lowest level of abstraction.

Now, consider a third problem in which two grooves (instead of one groove)
have to be manufactured on the same side of the workpiece. It turns out that
the explanation at the abstract level can be mapped, while the concrete-level
explanation cannot be mapped. So, case 1 is more similar to the second problem
than to the third problem.

~————

[T TN (T T T T T T T T e e \

‘) (-
D
] \
mold(#l) - - —-—-—-—-— - - — +| mold(#1) removed(#1)+ — f — — — — — — + removed(#1)
‘ 7
mold#2) - - - - - - - — — mold#2) - - - - - - - - - — mold(#2) removed(#2)
[| [ronewaa

- _/ «---—__ _

Fig. 6. Explanation structure for case 1

3 Case Adaptation by Refinement

The result of the explanation-based similarity assessment process is not only
an assessment of the similarity, but also an adapted solution at some (possibly
high) level of abstraction. The goal of the subsequent adaptation is to refine this
abstract solutions towards a full solution to the original problem at the required
level of detail. This refinement can be achieved by standard hierarchical search
based methods, which can employ exactly the same knowledge that was already
utilized during similarity assessment. In general, search-based methods are not
suitable for solving complex problems on their own. But the abstract solution
that is already available, imposes strong constraints on the search space, so that
only small sub-problems (the refinement of a single abstract step) have to be
solved. The computational cost for the search strictly depends on the number
of abstraction levels which have to be bridged and consequently on the degree
of similarity between the current problem and the case in the case base. If the
similarity is too low, the search space which has to be traversed can even become
so large, that no solution can be found in reasonable time. But such a situation
can be seen as a strong indication that a new case has to be added to the case
base. We can see that the explanation-based similarity assessment estimates
adaptation costs.

3.1 Refinement Adaptation in Diagnosis

In case-based diagnosis, the refinement of a diagnosis means specializing a known
fault in a compound component to a fault in its sub-components. This only re-
quires a limited search (i.e. by model-based diagnosis techniques [Boblin and

Kashyap, 1992]) in the space of the sub-components the faulty compound com-
ponent consists of. As an example, we recall Fig. 3 and consider a new, third
case which differs from case 1 in that, instead of the wire, a more complex
compound component (e.g. in infrared-sender and -receiver) is involved. An ex-
planation mapping at an appropriate level of abstraction will now come up with
the mapping of the broken wire to this compound component.

3.2 Refinement Adaptation in Planning

In case-based planning, refinement adaptation means specializing each operator
of the abstract solution plan to a sequence of concrete operators. Since this
planning task is performed in a limited search space it is assumed to be tractable
if the similarity is high enough.

The refinement process for planning tasks is usually more complex than for
diagnosis problems. This is because, in planning, all abstract solution steps need
to be consistently refined as a whole (see [Bergmann, 1993]), while in diagnosis,
only one step of the abstract solution (namely the component which shows un-
intended behavior) needs to be specialized. For this reason, we have empirically
investigated the computational complexity of the refinement process in planning.

Experimental Setting. A case-base of 116 complete cases from the described
planning domain has been randomly generated. Then, the case-based planning
system was fed in the first run with a random selection of 10% of the cases,
and in the second run with all available cases. In both runs, the system was
prepared to store only the abstract explanations of the cases. Then, the system
was used to solve the problems described in all of the cases. Since no concrete
level explanations were available, refinement adaptation was required for each
problem solution. During problem solving, the amount of search time required for
the refinement was recorded for each problem. Additionally, the problem solving
time required by a pure search-based method was determined for comparison.

Results. The results of this experiment are depicted in Fig. 7. The average
solution time is plotted with respect to the problem complexity (solution length).
For the pure search-based methods, the diagram shows that the required solution
time increases exponentially with the problem complexity. All problems that
require a solution plan longer than 8 steps could not be solved at all. With the
presented case-based approach, the required refinement time rises much slower
when the problems become harder. Solutions with a length up to 15 operators
could be easily generated, but problems that require more than 17 operators
could not be solved anymore. We have analyzed this situation and it turned out,
that for the longer problems, one or more abstract operators need to be refined
towards a sequence of 6 or more concrete operators. Thereby, the subproblems
become so large that the exponential nature of the search space comes to the
fore. This can be seen as an indication that a finer differentiation in the modeling
of the abstraction levels is required.

Solution time [sec]

200 ! .
150 pure search <— —
CBR: 10 % cases &—
CBR: 100 % cases &—
100 -
50 -
0 | | | | |
4 6 8 10 12 14 16 18

Problem complexity [solution length]

Fig. 7. Empirical results: Planning by search vs. explanation-based similarity

Another observation from this figure is, that the number of cases which were
used to train the system does not have a big influence on the refinement time.
This is a strong indication, that the number of known cases required to achieve
a certain competence of a system can be drastically reduced by the use of the
domain knowledge within case-based reasoning.

4 Discussion

Currently, there are some other approaches which favor the integration of ad-
ditional problem solving knowledge (e.g. [Veloso and Carbonell, 1993]) or more
simple causal relationships (e.g. [Barletta and Mark, 1988; Koton, 1988; Janet-
zko et al., 1992]) into case-based problem solving, while others aim at the inte-
gration of different reasoning paradigms (e.g. [Aamodt, 1991]) but mostly in a
task-specific manner.

In the following, we want to focus the discussion on related work which also
favors the use of general knowledge and explanations for case-based reasoning.

PROTOS and CREEK. In PROTOS [Bareiss, 1989] as well as in CREEK
[Aamodt, 1991], general domain knowledge is used to construct explanations
which are the basis for similarity assessment. But both approaches focus more
on more open domains [Aamodt, 1993] in which only weak domain theories are
available. Qur approach, however, is more appropriate for domains in which
strong domain knowledge can be acquired such as in technical domains.

Derivational Analogy. In derivational analogy [Carbonell, 1986; Veloso and
Carbonell, 1993], general problem solving knowledge is used in case-based rea-
soning for planning tasks. This approach requires a strong model of the planning
process and can only learn from cases that have been solved by the system before.
Cases that come from a human expert and that are too complex to be re-solved
by PRODIGY’s planning component, cannot be used in analogical reasoning.
Explanation-based similarity, on the other hand, does not explain the problem
solving process and can, therefore, also handle cases that could not be solved
before learning.

Explanation-based Learning and Abstraction. There are also relations to
a lot of work in explanation-based learning [Mitchell et al., 1986]. Similar to
our approach, a strong domain theory is mostly assumed in explanation-based
learning. Examples are usually generalized independently, but the generaliza-
tions are very often not indexed, which may lead to the utility problem [Minton,
1990]. An additional source of power of the explanation-based similarity ap-
proach comes from its ability to abstract explanations on the basis of domain
knowledge. Thereby, descriptions are transformed into a completely new abstract
language. Other work on abstraction (e.g [Knoblock, 1990]) mostly focuses on
abstraction by dropping parts of a description that are not assumed to be rele-
vant on an abstract view.

5 Conclusion

Explanation-based similarity allows an integration of general domain knowledge
into the case-based reasoning process for similarity assessment and solution adap-
tation in an integrated fashion. Similarity can be assessed on the basis of this
domain knowledge by comparing and mapping explanations on several levels of
abstraction. We have shown, that if the similarity between the new problem
and a case in the case base is high enough, refinement adaptation by search is
feasible. Furthermore, the scope for which a case can be employed is increased,
depending on the amount of domain knowledge that is entered into the system.
A knowledge engineer applying this method may decide whether to enter more
cases into the case base or whether to spend additional domain knowledge on
more elaborated levels of abstraction to achieve the same competence (see also
[Holte, 1990]). This general approach has been presented for a diagnosis and a
planning task in two real-world domains. Two fully implemented systems ac-
complish this approach: MoCAS performs a case-based diagnosis task including
the described type of solution adaptation for a CNC-machine which consists of
over 100 components. PARIS is a domain independent implementation for solv-
ing planning tasks. This system works, for example, in the presented domain of
mechanical engineering.

A cknowledgements
The authors want to thank Agnar Aamodt, Jaime Carbonell, Manuela Veloso,
the reviewers, as well as Michael M. Richter and all members of our research

group for helpful discussions and for remarks on earlier versions of this pa-
per. This research was partially funded by the Commission of the European
Communities (ESPRIT contract P6322, the INRECA project). The partners of
INRECA are AcknoSoft (prime contractor, France), tecInno (Germany), Irish
Medical Systems (Ireland) and the University of Kaiserslautern (Germany).

References

[Aamodt, 1991] Agnar Aamodt. A Knowledge-Intensive, Integrated Approach to Prob-
lem Solving and Sustained Learning. PhD thesis, University of Trondheim, 1991.
[Aamodt, 1993] A. Aamodt. Explanation-driven retrieval, reuse and learning from
cases. In M. M. Richter, S. Wess, K.D. Althoff, and F. Maurer, editors, Preprints
of the First European Workshop on Case-Based Reasoning (EWCBR-93), volume 11,

pages 279-284. University of Kaiserslautern (Germany), 1993.

[Althoff et al., 1992] K.-D. Althoff, Stefan Wess, B. Bartsch-Spérl, D. Janetzko,
F. Maurer, and A. Voss. Fallbasiertes Schliessen in Expertensystemen: Welche Rolle
spielen Fille fiir wissensbasierte Systeme? KI — Kiinstliche Intelligenz, 92(4), De-
cember 1992.

[Bareiss, 1989] Ray Bareiss. Ezemplar-Based Knowledge Acquisition: A unified Ap-
proach to Concept Representation, Classification and Learning. Academic Press,
1989.

[Barletta and Mark, 1988] R. Barletta and W. Mark. Explanation-based indexing of
cases. In J. Kolodner, editor, Proceedings of the DARPA Workshop on Case-Based
Reasoning, pages 50—-60, San Mateo, California, 1988. Morgan Kaufmann Publishers,
Inc.

[Bergmann, 1992] R. Bergmann. Knowledge acquisition by generating skeletal plans.
In F. Schmalhofer, G. Strube, and Th. Wetter, editors, Contemporary Knowledge
Engineering and Cognition, pages 125-133, Heidelberg, 1992. Springer.

[Bergmann, 1993] R. Bergmann. Integrating abstraction, explanation-based learning
from multiple examples and hierarchical clustering with a performance component
for planning. In Enric Plaza, editor, Proceedings of the ECML-93 Workshop on
Integrated Learning Architectures (ILA-93), Vienna, Austria, 1993.

[Boblin and Kashyap, 1992] S. Boblin and R. L. Kashyap. Generating fault hypothe-
ses with a functional model in machine-fault diagnosis. Applied Artificial Intelligence,
6:353-382, 1992.

[Carbonell, 1986] J. G. Carbonell. Derivational analogy: A theory of reconstructive
problem solving and expertise aquisition. In R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell, editors, Machine learning: An artificial intelligence approach, vol-
ume 2, chapter 14, pages 371-392. Morgan Kaufmann, Los Altos, CA, 1986.

[Feigenbaum and McCorduck, 1983] E. Feigenbaum and P. McCorduck. The fifth gen-
eration. Addison Wesley, Reading MA, 1983.

[Fikes and Nilsson, 1971] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence, 2:189-208,
1971.

[Holte, 1990] R.C. Holte. Commentary to: Protos an exemplar-based learning appren-
tice. In Y. Kodratoff and R.S. Michalski, editors, Machine Learning: An Artificial
Intelligence Approach, volume 3, chapter 4, pages 128-139. Morgan Kaufmann Pub-
lishers, 1990.

[Janetzko et al., 1992] D. Janetzko, S. Wess, and E. Melis. Goal-driven similarity as-
sessment. In H.J. Ohlbach, editor, GWAI-92 16th German Workshop on Artificial
Intelligence, volume 671 of Springer Lecture Notes on Al 1992.

[Kass and Leake, 1988] Alex M. Kass and David B. Leake. Case-Based Reasoning Ap-
plied to Constructing Explanations. In Janet L. Kolodner, editor, Proceedings Case-
Based Reasoning Workshop, pages 190-208, San Mateo, California, 1988. Morgan
Kaufmann Publishers.

[Knoblock, 1990] C. A. Knoblock. Learning abstraction hierarchies for problem solv-
ing. In MIT Press, editor, Proceedings Eighth National Conference on Artificial In-
telligence, volume 2, pages 923-928, London, 1990. MIT Press.

[Kolodner, 1993] Janet L. Kolodner. Case-based reasoning. Morgan Kaufmann, 1993.

[Koton, 1988] P. Koton. Reasoning about evidence in causal explanations. In
J. Kolodner, editor, Proceedings of the DARPA Workshop on Case-Based Reason-
ing, pages 260-270, San Mateo, California, 1988. Morgan Kaufmann Publishers, Inc.

[Minton, 1990] S. Minton. Quantitativ results concerning the utility of explanation-
based learning. Artifical Intelligence, 42:363-391, 1990.

[Mitchell et al., 1986] T. M. Mitchell, R. M. Keller, and S.T. Kedar-Cabelli.
Explanation-based generalization: A unifying view. Machine Learning, 1(1):47-80,
1986.

[Newell, 1982] Allen Newell. The knowledge level. Artificial Intelligence, 18:87-127,
1982.

[Paulokat and Wess, 1993] Jiirgen Paulokat and Stefan Wess. Fallauswahl und fall-
basierte Steuerung bei der nichtlinearen hierarchischen Planung. In A. Horz, editor,
Beitr”age zum 7. Workshop Planen und Konfigurieren, number 723 in Arbeitspapiere
der GMD, pages 109-120, 1993.

[Pews and Wess, 1993] G. Pews and S. Wess. Combining model-based approaches and
case-based reasoning for similarity assessment and case adaptation in diagnositc ap-
plications. In M. M. Richter, S. Wess, K.D. Althoff, and F. Maurer, editors, Preprints
of the First European Workshop on Case-Based Reasoning (EWCBR-93), volume 11,
pages 325-328. University of Kaiserslautern, 1993.

[Sacerdoti, 1974] E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti-
ficial Intelligence, 5:115-135, 1974.

[Veloso and Carbonell, 1993] M. M. Veloso and J. G. Carbonell. Towards scaling up
machine learning: A case study with derivational analogy in PRODIGY. In Steven
Minton, editor, Machine Learning Methods for Planning, chapter 8, pages 233-272.
Morgan Kaufmann, 1993.

[Wielinga. et al., 1992] B. Wielinga, W. VandeVelde, G. Schreiber, and H. Akkermans.
Towards a unification of knowledge modelling approaches. In Proceedings of the 7th
Banff Knowledge Acquisition for Knowledge-based Systems Workshop, 1992.

[Wilke, 1993] W. Wilke. Entwurf und Implementierung eines Algorithmus zum wis-
sensintensiven Lernen von Planabstraktionen nach der PABS-Methode. Projektar-
beit, Universitat Kaiserslautern, 1993.

