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Abstract

We are concerned with modeling and simulation of the pressing
section of a paper machine. We state a two-dimensional model of
a press nip which takes into account elasticity and flow phenomena.
Nonlinear filtration laws are incorporated into the flow model. We
present a numerical solution algorithm and a numerical investigation
of the model with special focus on inertia effects.

Keywords. paper machine, computational fluid dynamics, porous media

1 Introduction

The paper machine is a huge piece of equipment reaching width and height of
12 meters and length of up to 250 meters, respectively. Typically, it consists
of four main parts: the headbox, the sheet forming section, the pressing
section and the drying section (see Figure 1).

Headbox

Forming Section Pressing Section Drying Section

Figure 1: Paper machine
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The headbox provides the fiber suspension having approximately 99 percent
fluid content. From the headbox the suspension enters the sheet forming
section at high speeds of up to 2000 m/min. On a woven structure called
forming fabric dewatering starts by natural filtration. Additional suction
boxes may support the dewatering process, such that the fluid content is
decreased to about 80 percent at the entrance of the pressing section. By
means of dewatering felts the paper layer is transported through several
press nips. A press nip in its simplest form consists of two rolls which com-
press the paper-felt sandwich (see Figure 2).
Since the felt is a porous structure providing void space, the fluid is squeezed
out from the paper and enters the felt. Thereby, the fluid content is de-
creased to approximately 50 percent when the paper reaches the drying
section. Here, further dewatering is accomplished by evaporation. Steam-
heated cylinders over which the paper layer is transported reduce the fluid
content to 5 percent. In the end, the paper is stored on huge rolls ready for
further processing like coating or cutting.

Paper

Felt

Figure 2: Roll press nip

In the abstract of [8], a summary of the current state of research in the
paper making industry is given. It is stated, that in the paper making
industry process optimization has almost always taken place by tests and
measurements. Nevertheless, this trial and error approach has led to the
situation that no drastic improvements can be expected in the future. But,
due to the huge amount of paper being typically produced in a paper mill,
even small improvements can save a lot of money and energy. To achieve
progress nowadays, more detailed understanding of the dewatering processes
is needed. Besides further development of experimental methods and run-
ning expensive measurement series on test paper machines, mathematical
modeling and computer simulation can be the tools to support R & D in
the paper making industry. One intrinsic property of modeling and simula-
tion is that these methods are not limited to existing paper machines and
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clothings, but they can also be used as tools to predict the behavior of com-
pletely new designs. On the other hand, modeling and simulation will not
replace measurements. They are still needed as a link to reality to provide
ways for validation of the models and to give hints to empirical laws where
modeling from first principles is too complicated.
We completely agree with this assessment except for the statement that no
drastic improvements could be achieved. Looking at dewatering felts, we
observe that the manufacturing process does not operate at the length scale
of micrometers, but merely at millimeters. Typically, a felt consists of a
woven structure called base weave. It is made of yarns which may reach
diameters of 0.2 mm to 2.0 mm. A needling process attaches several layers
of fine fibers to the base weave. The diameters of the fine fibers are between
10 µm and 80 µm. The needling process creates a very irregular structure
which is by no means fluid dynamically or elastically optimized. Being able
to manufacture at the micro scale yields great potential for future improve-
ments and, as already mentioned above, computer simulation can play a
keyrole in predicting the optimum material properties.
In this report, we focus on the simulation of press nips in the pressing sec-
tion. Since mechanical drying is considered to be ten times cheaper than
thermal drying, a lot of energy and money can be saved by improved de-
watering felts and optimum press profiles. Moreover, better drying rates
insure higher quality of the final product, since its elastic strength is in-
creased. Another advantage is the fact that the paper machine may operate
at higher speeds still delivering the needed heating capacity in the drying
section. Hence, there is an increase in productivity of the paper machine.
In the next section, we consider the pressing section of a paper machine and
establish a mathematical model describing the elastic and fluid dynamical
behavior of the paper-felt sandwich when passing a press nib. In contrast
to [8] and [14], the model is two-dimensional as it neglects only the cross
direction of the paper machine. The paper and felt layers are considered
to be porous media. Due to high pressure gradients in the nip the fluid
velocities reach high levels where Darcy’s law is not applicable anymore.
Therefore, the model allows for the use of nonlinear filtration laws extend-
ing existing models like in [7]. In Section 3, we describe the solution algo-
rithms of the model equations and the discretization. Section 4 is devoted
to model parameters, since they turn out to be a crucial part of the simu-
lations. For example, we use the methods developed in [11] and compute
nonlinear macroscopic filtration laws. Therefore, we extend the methods to
a three-dimensional felt structure which is generated by GeoDict, a virtual
structure generator developed at Fraunhofer ITWM, Kaiserslautern. The
three-dimensional flow field is then computed by ParPac which is a parallel
lattice Boltzmann solver also developed at Fraunhofer ITWM. We close this
report by a presentation of numerical results.
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2 Model of a press nip

As mentioned in the previous section, the pressing section of a paper machine
consists of several press nips. Nowadays, there exist two different types of
press nips. In Figure 2 a sketch of a roll press nip is drawn. Figure 3 shows
a modern shoe press nip. Its advantage is the enhanced press zone due to a
concave-convex combination of the opposing press profiles.

roll

shoe

paper

felt

Figure 3: Shoe press

Typically, the press zone of a roll press nip reaches lengths between 40 mm
and 70 mm, whereas a shoe press may reach up to 300 mm. In contrast,
the felt thickness is usually less then 4 mm and the paper thickness may
go down to 100 micrometers. The paper-felt sandwich is squeezed between
the press profiles. Thereby, the fluid from the fibrous paper layer enters the
porous felt structure, hence dewatering takes place. Two essential phenom-
ena characterizing the dewatering process are elasticity and fluid dynamics.
Our model of a press nip is quiet similar to the model developed in [14].
Nevertheless, it is extended to two dimensions and nonlinear filtration laws
are incorporated. The derivation of the model is not entirely based on first
principles and mathematically rigorous considerations. In addition to the
derivations in [11], i.e. the flow equations in a periodic porous medium in
case of high velocities and full saturation, phenomenological and empirical
laws are used. The reason is twofold. To the best of the author’s knowl-
edge, there does not exist a rigorous mathematical derivation of effective
two-phase flow equations in porous media. In case of elasticity, a computer
model on the fiber level is very complicated since contact problems includ-
ing friction have to be considered. Even if a computer model were available,
determining its input parameters is not easy.
As indicated in Figure 2 and Figure 3, let’s assume that the felt passes the
press nip from the left to the right. This direction is called machine di-

rection (MD) and will be referred to as x direction in this chapter. The y
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direction is aligned to the axes of the rolls and is called cross direction (CD).
The z direction is called transversal direction (TD). Since the length of the
cylindric roll is up to 12 m and, therefore, much larger than the press zone
in MD and the paper-felt sandwich in ZD, the cross direction is neglected.

2.1 Elasticity model

To describe the elastic behavior of the felt, we follow a phenomenological
approach. Due to the highly demanding process conditions, the felt is by
construction very stiff in machine direction. Therefore, we consider defor-
mation only in transversal direction. Guided by measurements, we assume
that the felt behaves viscoelastically which is, indeed, a widely accepted
assumption (see [14] and references therein). Motivated by [9], the paper
layer is modeled quite similar to the felt layers. In contrast to the felt, the
paper layer does not recover completely after the press nip. This is due to
plastic deformation. It keeps a permanent compression which adds a new
parameter to the model. The ordinary differential equations which describe
the deformation in transversal direction when passing through the nip read:

τ(t) = E1(ε1(t)) + Λ1
d

dt
E1(ε1(t)) − K · τmax(t), (1)

τ(t) = Ei(εi(t)) + Λi
d

dt
Ei(εi(t)), i = 2, . . . , n.

The preceding equations are a system of Kelvin-Voigt laws for n layers. The

strain is denoted by εi(t) =
li(t)−l0,i

l0,i
, where l0,i is the undeformed thickness

of layer i and li(t) is the deformed thickness at time t. The stress measured
in [Pa] is denoted by τ . Note, that τ is independent of the layers and just
a function of t. Moreover, the functions Ei relating the elastic part of the
stress and the strains εi might be nonlinear. Λi (in [s]) are viscoelastic time
constants which determine the speed of relaxation. In (1), the first equation
describes the paper layer. Therefore, we observe the additional term, which
introduces a permanent deformation. This term depends linearly by the
constant K on the maximum stress to which the paper has been exposed.
The maximum stress is given by

τmax(t0) := maxt≤t0 τ(t).

By using the relation x = c ∗ t, where c = ‖vs‖, and assuming negligible
rigid body motion of the layers in transversal direction, we can eliminate
the time variable and get

τ(x) = E1(ε1(x)) + Λ1c
d

dx
E1(ε1(x)) − K · τmax(x), (2)

τ(x) = Ei(εi(x)) + Λic
d

dx
Ei(εi(x)), i = 2, . . . , n.
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Clearly, we have

τmax(x0) := maxx≤x0
τ(x). (3)

As indicated by Figure 4, the two press profiles are positioned by using
dmin which is the minimum distance between the profiles. dmin is an input
parameter of the problem. Due to the viscoelastic behavior of the porous
layers, the overall thickness of the paper-felt sandwich will never exceed its
initial undeformed thickness l0. Therefore, the function

f(x) := min(l0,distance of press profiles at position x) (4)

is well-defined and, in addition to (2), (3), the following relation holds true

n
∑

i=1

εi(x)l0,i = l0 − f(x). (5)

The deformation process can be subdivided into three phases (see Figure 4):� Phase 0 (xi ≤ x ≤ xr): no deformation; vertical position is specified
by input parameter zi;� Phase 1 (xr ≤ x ≤ xl): viscoelastic deformation ruled by (2),. . . , (5),
xl is computed by the condition τ(xl) = 0;� Phase 2 (xl ≤ x ≤ xo): as Phase 1, but τ is equal to zero; vertical
position given by zo (z coordinate of lower press profile at xl).
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Figure 4: Terminology
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We want to point out that there is no coupling of elasticity and fluid dy-
namics. For instance, we neglect the influence of the fluid pressure on the
felt deformation. Furthermore, we assume that the deformation results in
a temporary rearrangement of fibers rather than in a compression of fibers.
Therefore, the solid phase is assumed to be incompressible. Incompressibil-
ity allows for a simple computation of the porosity, once the strain is known.
Let Φ0,i and Φi be the initial and deformed porosity of layer i, respectively.
Incompressibility of the solid phase means

(1 − Φ0,i)l0,i = (1 − Φi(x))li(x).

Using the definition of strain yields

(1 − Φ0,i) = (1 − Φi(x))(1 + εi(x)),

and, finally,

Φi(x) =
εi(x) + Φ0,i

1 + εi(x)
. (6)

2.2 Flow model

The fibrous paper layer and the different layers of the felt, i.e. base weave
and batt fiber layers consisting of fine fibers, are modeled as porous media.
In the following, we will refer to the fluid and solid constituents of a porous
medium as fluid phase and solid phase indexed by ’f ’ and ’s’, respectively.
Since the pore space of a felt is not entirely filled by fluid, there is an
additional gaseous phase indexed by ’g’. The three phases are treated as
a mixture of overlapping continua (see [1]). This approach considers the
variables of each phase to be defined everywhere in the physical domain
which is from a macroscopic point of view a reasonable assumption.
In the framework of overlapping continua, the momentum balance equation
for the fluid phase reads

Φfρf

Df vf

D t
−∇ · tf − Φfρfbf = mf , (7)

where

Df

D t
=

∂

∂t
+ vf · ∇

denotes the material derivative. In (7), the volume fraction of the fluid phase
is denoted by Φf . ρf is the intrinsic fluid density in [ kg

m3 ]. The fluid velocity
measured in [m

s
] is abbreviated by vf . tf is the stress tensor in [Pa]. The

unit of the specific body force bf is [ N
kg

] and the term describing the rate of
momentum exchange into the fluid phase is denoted by mf and is measured
in [ N

m3 ].
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We assume negligible gravity, a Newtonian fluid, slow flow (for the moment)
and Stokes drag as model of interaction of solid and fluid phase. Then, the
stationary form of equation (7) reads

Φf (vf − vs) = −
Kf

µf
· ∇pf . (8)

µf is the dynamic viscosity in [Pa s]. Kf denotes the permeability tensor in
[m2]. The hydrodynamic pressure pf is measured in [Pa]. vs is the velocity
of the solid phase.
Equation (8) is a two-phase version of Darcy’s law in the case of a moving
porous medium. It is supplemented by the stationary mass balance equation

∇(Φfvf ) = 0. (9)

Although not made explicit, all model parameters may depend on the space
variables x and z, since the layer properties which they describe may differ.
For the gaseous phase, we apply Richards’ assumption, which states that the
air has a negligible influence on the fluid and solid phases. Mathematically,
this assumption is expressed by setting pg equal to zero, i.e. pg is set to
atmospheric pressure. Richards’ assumption is justified by the fact, that air
has a much smaller viscosity than the fluid and is very mobile. In fact, to
achieve even larger air mobilities in paper manufacturing, surface chemicals
are added. Clearly, some phenomena like fluid enclosed air bubbles are ne-
glected by this approach.
To close our flow model (8), (9), we introduce the notion of capillary pres-
sure, porosity and saturation. The capillary pressure is defined by

pc := pg − pf .

Since, pg = 0, we simply have

pc = −pf .

The ratio between void and total volume of a porous medium is called poros-
ity Φ. The saturation S indicates how much of the void volume is occupied
by the fluid phase. It is defined by

S =
Φf

Φ
.

Experimental observations show, that there exists a relation between cap-
illary pressure and saturation. In porous media theory (see [3], [5]), it is
therefore quite common to use this relation as additional constitutive model
equation. Influenced by steady state measurements using real dewatering
felts, we choose the following relation:

S(pf ) =











(

1
1−s∞

+

(

pf

a

)2)−1

+ s∞, if pf ≤ 0,

1, if pf > 0,

(10)
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where pc is already substituted by −pf . s∞ is the residual saturation as pf

tends to −∞. a ∈ R
− is an additional shape parameter which will be used

to adjust different saturations in the felt layers at a given pressure level (see
Figure 5).
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Figure 5: Retention curve: Variation of the parameter a (s∞ = 0.1)

In (8), Kf can not be assumed constant, since porosity and saturation will
vary significantly during compression and relaxation. Therefore, we assume

Kf (Φ, S) = K0
f

Φ3

1 − Φ2
Sb. (11)

The factor Φ3/(1−Φ2) originates from the Kozeny-Karman relation (see [4]).
1 ≤ b ∈ R is a shape parameter. In (11) the term Sb decreases permeability
as the saturation is less than 1. This is a reasonable assumption, since Kf is
then a relative permeability. The permeability tensor K0

f can be interpreted
as the medium’s permeability when the porosity is approximately 0.775 and
when the medium is fully saturated.
Let us assume that the porosity is given by the deformation model. The flow
model (8), . . . ,(11) is then closed. Indeed, applying the divergence operator
to (8), using the mass balance equation (9) and by simple substitutions, we
obtain one nonlinear partial differential equation for the fluid pressure pf :

− div

(

S(pf )Φvs

)

= − div

(

K0
f

µf

Φ3

1 − Φ2
S(pf )b · ∇pf

)

. (12)
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After computing pf , (8) can be employed to calculate the fluid velocities.
Now, we want to include nonlinear filtration laws in our model. The filtration
laws which are derived in [11] are only valid in the case of full saturation.
Hence, we define

Fnl
0 (∇pf ,Φ) :=

{

Fnl(∇pf ,Φ), if S = 1,

0, if S < 1.
(13)

The modified equation (8) reads

Φf (vf − vs) = −
Kf

µf
· ∇pf + Fnl

0 (∇pf ,Φ). (14)

Using (14) instead of (8) in the above consideration, we obtain the following
partial differential equation for pf :

− div

(

S(pf )Φvs

)

(15)

= − div

(

K
0

f

µf

Φ3

1−Φ2 S(pf )b · ∇pf −Fnl
0 (∇pf ,Φ)

)

.

It is a nonlinear elliptic partial differential equation if vs is sufficiently small.
It has to be supplemented by suitable Dirichlet and Neumann boundary
conditions. The different parts of the boundary are shown in Figure 4 in
the case of a roll press nip. Nevertheless, the terminology also applies to
shoe presses. It is assumed, that Ω1 is the paper layer. Provided that
Γi is sufficiently far away from the center of the nip, it is reasonable to
prescribe the saturation S0,i of each porous layer there. Using (10), one
gets Dirichlet conditions for the pressure which are uniquely defined if the
prescribed saturations are less than 1. This is always the case in real life.
Moreover, we assume the system of layers to be in equilibrium, i.e. there is no
fluid exchange between layers. Therefore, the Dirichlet conditions are even
constant. Again, if Γo is sufficiently far away from the center of the nip, it is
natural to assume the normal component of the relative velocity vf − vs to
be zero. By the aid of (14) one obtains a homogeneous Neumann boundary
condition for pf . Vanishing normal components of the fluid velocity are
applied to all of the remaining parts of the boundary. Since the normal
component of the solid velocity is zero on these parts, we have again a
homogeneous Neumann boundary condition. On the parts of the boundary
where the paper-felt sandwich is in contact to the press profiles, i.e. Γi,c,
Γb,c, this condition is correct since roll and shoe profiles are impervious. On
Γt,i, Γb,i, Γt,o and Γb,o the situation may be different depending on process
conditions. Observations show that fluid may escape through the top and
bottom surface of the felt. In the simulations presented below, there is a
very low pressure near these boundaries and, therefore, it is save to apply
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homogeneous Neumann conditions. As shown in Figure 3, the paper and
the felt are separated before and after the nip. We account for this fact by
the introduction of Γsep,i and Γsep,o.

2.3 Remark on roll surfaces and belts

Besides paper and felt layers, there appear other types of layers in the press
nip. We additionally find grooved roll surfaces, roll surfaces with wholes
and grooved shoe press belts. These layers provide void space for the fluid,
thereby decreasing the hydrodynamic pressure. The length scale of the void
space structure is much coarser than the micro structure of the felt and pa-
per fibers. Nevertheless, we model them as porous media. Their porosity is
given by the ratio of void and solid space. Their permeability is set orders of
magnitude higher than the respective permeabilities of felt and paper layers.
The reason behind is the fact, that very small flow resistivity is to be ex-
pected due to the coarse structure. Additionally, similar to the paper layer,
we introduce separating boundaries, which are determined automatically by
the computed values for xr and xl.

3 Numerical solution algorithms

In this section, we present the algorithmic structure and numerical methods
to solve the model equations which are derived above. The flow chart in
Figure 6 shows the sequence of basic solution steps.

3.1 Elasticity solver

First, the press geometry is created. For that purpose, the profiles are fixed
in machine direction by suitable input parameters. The lower press profile is
additionally fixed in transversal direction. Then, by using dmin, the position
of the upper press can be computed.
Now, we enter Phase 0 of the deformation simulation. zi fixes the vertical
position of the layers (see Figure 4). Starting at xi, the x position is in-
cremented, thereby monitoring the function f defined in (4). The first x
position where f is smaller than l0 determines xr and Phase 0 is finished.
During the computation of xr, there may be a collision of the porous layers
and the press profiles. In that case, the horizontal fixation is done by align-
ing the layers to the collision press profile.
In Phase 1, the deformation is computed according to the model equations
(2), . . . , (5). To simplify the exposition, a linear elasticity law is chosen, i.e.
Ei(εi) = Ai · εi. The method can be extended with minor changes to laws
of type Ei(εi) = Ai · ε

r
i , r ≥ 1. Equation (5) allows to express ε1 in terms of
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εi, i = 2, . . . , n:

ε1(x) =
1

l0,1
(l0 − f(x) −

n
∑

i=2

εi(x)l0,i). (16)

Plugging (16) in the first equation of (2), yields a system in εi, i = 2, . . . , n
and τ . τ is eliminated by subtracting the second equation in (2) from all
others. Hence we have the following system of ordinary differential equations
in εi, i = 2, . . . , n:

A · ε′ = B · ε + c(x), (17)

where A and B are n− 1-quadratic matrices with constant entries and c(x)
is a n−1-vector depending on x. ε = (ε2, . . . , εn)T . More precisely, we have:

A =

















Λ2cA2 + Λ1cA1
l0,2

l0,1
Λ1cA1

l0,3

l0,1
Λ1cA1

l0,4

l0,1
. . . Λ1cA1

l0,n

l0,1

−Λ2cA2 Λ3cA3 0 . . . 0
−Λ2cA2 0 Λ4cA4 . . . 0

... · · ·
...

−Λ2cA2 0 0 . . . ΛncAn

















,

B =

















−A2 − A1
l0,2

l0,1
−A1

l0,3

l0,1
−A1

l0,4

l0,1
. . . −A1

l0,n

l0,1

A2 −A3 0 . . . 0
A2 0 −A4 . . . 0
... · · ·

...
A2 0 0 . . . −An

















and

c(x) =











A1

l0,1
(l0 − f(x)) − Λ1cA1

l0,1
f ′(x) − Kτmax(x)

0
...
0











.

The matrix A is invertible, due to the fact that all parameters Ai, Λi, l0,i

and c are strictly positive. Therefore, we can write (17) in canonical form

ε′ = A−1B · ε + A−1c(x). (18)

This system is solved by the classical fourth-order Runge-Kutta method.
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Figure 6: Flow chart of simulation steps
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Initial conditions are given by

ε(xl) = 0.

ε1 and τ are computed using (16) and (2). By identifying the first zero of
the function τ , we get the point xr.

Remark 1 To solve the equations of Phase 1, f has to be differentiable.
This is no further restriction of our model. Smoothness is a technical re-
quirement to reduce wear and guarantee paper quality and can be supposed
to be given.

The system of equations describing the second phase reads:

E1(ε1) + Λ1c
d

dx
E1(ε1) − Kτmax = 0, (19)

Ei(εi) + Λic
d

dx
Ei(εi) = 0, i = 2, . . . , n.

The values of εi(xr) are used as initial conditions. Equations (19) are similar
to previous set of equations of Phase 1 besides the fact that τ is zero. The
solution of this system is given analytically by

E1(ε1(x)) = C1 · e
−x−xr

Λ1c + C2,

Ei(εi(x)) = Ei(εi(xr)) · e
−x−xr

Λic , i = 2, . . . , n,

where C1 = E1(ε1(xr)) − Kτmax(xr) and C2 = Kτmax(xr). Now, we can

calculate the input data needed by the flow solver. The porosity of each layer
is computed by formula (6). The deformed grid which the flow solver needs
is constructed from a regular mesh whose nodes are displaced (see Figure
7). More precisely, we store the z coordinates of points on Γb,i ∪ Γb,c ∪ Γb,o

during the elasticity computation. Since the step size of the Runge-Kutta
method is much finer than the required mesh for the flow solver, we have
precise information on the z coordinates of the flow mesh points on this
boundary. Using the computed strains which are constant on each layer,
the displacement of the flow mesh is immediately obtained. To obtain the
solid velocities, we consider three points P1, P2 and P3 as shown in Figure
7. Since the deformed mesh is still equidistant in machine direction, the x
component of the solid velocity is set to machine speed. Hence, the time
and the vertical distance to move from point P1 to P3 is known. We use this
information to compute the solid velocity at P2.
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Figure 7: Regular and deformed mesh

3.2 Flow solver

The design of the algorithm to solve the flow problem (15) is guided by
several observations. Since the flow problem is nonlinear, a suitable lin-
earization has to be developed. The linearization induces some kind of
iteration, whose convergence is strongly dependent on the initial choice of
the solution. Remembering the boundary conditions for the pressure pf , we
immediately see, that pf is equal to the constant Dirichlet boundary value
on Γi, if the solid velocity is equal to zero. On the other hand, if the solid
velocity increases, the pressure will rise, too. Therefore, as shown in Fig-
ure 6, a outer loop is implemented which increases the solid velocity. More
precisely, starting from the known constant pressure solution, the solid ve-
locity is scaled by a factor less than one and sufficiently small such that the
nonlinear flow iteration steps (inner loop) converge. The scaling factor of
the solid velocity is then increased and the inner loop is processed again.
The iteration stops, when the desired final solid velocity is reached or other
stopping criteria apply.

Let’s have a closer look at the inner loop. We define

S′ :=
∂S(pf )

∂pf
.
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Then, the truncated Taylor series of the retention function reads

S(pj+1
f ) ≈ S(pj

f ) + S′(pj
f )(pj+1

f − pj
f ), (20)

where j ∈ N is used as iteration index and pj+1
f and pj

f can be thought of
two consecutive solutions of an iteration process. Plugging (20) into (15)
and by further iterative linearization, we obtain

− div

((

S(pj
f ) + S′(pj

f )(pj+1
f − pj

f )

)

Φvs

)

− divFnl
0 (∇pj

f ,Φ) (21)

= − div

(

K
0

f

µf

Φ3

1−Φ2 S(pj
f )b · ∇pj+1

f

)

.

Reordering in terms of pj
f and pj+1

f yields

− div

((

S(pj
f ) − S′(pj

f )pj
f

)

Φvs

)

− divFnl
0 (∇pj

f ,Φ) (22)

= − div

(

K
0

f

µf

Φ3

1−Φ2 S(pj
f )b · ∇pj+1

f − S′(pj
f )pj+1

f Φvs

)

.

Remark 2 The linearization of (15) is motivated by Newton-type meth-
ods. Numerical experiments show that the expansion (20) is quite important
to guaranty fast convergence.

In view of a finite element discretization of (22), a variational formulation
is derived. Due to the Dirichlet boundary conditions on Γi, we define a
subspace of H1(Ω) by

V := {v ∈ H1(Ω) | v = 0 on Γi},

where the domain Ω is the union of all deformed layers Ω1, . . . , Ωn (see
Figure 4). The pressure can be decomposed into

pj
f = p̂j

f + p0, p̂j
f ∈ V and p0 ∈ H1(Ω), (23)

where the function p0 (as extension of a constant function on Γi into H1(Ω))
represents the Dirichlet conditions on Γi.
Now, let w ∈ V be a test function. Multiplying (22) by w, using (23),

16



integrating over Ω and applying Green’s formula , yields

∫

Ω

((

S(pj
f ) − S′(pj

f )pj
f

)

Φvs + Fnl
0 (∇pj

f ,Φ)

)

· ∇w dx (24)

−

∫

∂Ω
ν(x) ·

((

S(pj
f ) − S′(pj

f )pj
f

)

Φvs + Fnl
0 (∇pj

f ,Φ)

)

w dΓ(x)

−

∫

Ω

(

K0
f

µf

Φ3

1 − Φ2
S(pj

f )b · ∇p0 − S′(pj
f )p0Φvs

)

· ∇w dx

+

∫

∂Ω
ν(x) ·

(

K0
f

µf

Φ3

1 − Φ2
S(pj

f )b · ∇p0 − S′(pj
f )p0Φvs

)

w dΓ(x)

=

∫

Ω

(

K0
f

µf

Φ3

1 − Φ2
S(pj

f )b · ∇p̂j+1
f − S′(pj

f )p̂j+1
f Φvs

)

· ∇w dx

−

∫

∂Ω
ν(x) ·

(

K0
f

µf

Φ3

1 − Φ2
S(pj

f )b · ∇p̂j+1
f − S′(pj

f )p̂j+1
f Φvs

)

w dΓ(x).

In (24), all boundary integrals vanish due to the specified boundary con-
ditions and due to the properties of the test function. Hence, we have the
following variational formulation:

Find p̂j+1
f ∈ V, such that (25)

∫

Ω

((

S(pj
f ) − S′(pj

f )pj
f

)

Φvs + Fnl
0 (∇pj

f ,Φ)

)

· ∇w dx

−
∫

Ω

(

K
0

f

µf

Φ3

1−Φ2 S(pj
f )b · ∇p0 − S′(pj

f )p0Φvs

)

· ∇w dx

=
∫

Ω

(

K
0

f

µf

Φ3

1−Φ2 S(pj
f )b · ∇p̂j+1

f − S′(pj
f )p̂j+1

f Φvs

)

· ∇w dx, ∀w ∈ V.

As already mentioned above, at least for moderate solid velocities, (25) is an
elliptic problem. It is solved by a finite element discretization. The pressure
is discretized by bilinear Ansatz functions on quadrilateral grids. Matrix
assembly is done on a reference element using the nine-point Gaussian in-
tegration rule. Due to the deformation, we have to handle general quadri-
laterals. Therefore, the simple coordinate transformation of the square case
has to be extended. We used a standard method for which we refer to [10],
p. 188ff. The system of linear equations is directly solved by SuperLU 3.0
(see [6]).

4 General model parameters

The aim of this section is to provide model parameters for the numerical
studies at the end of this chapter. To determine the permeability tensor
K0

f , we create a virtual felt made of three layers. Inspired by images like
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the one shown in Figure 8 and data from [13], the virtual felt has a fine
fiber batt layer on top, a base weave in the middle and, finally, another batt
layer.

Figure 8: Cross section of a dewatering felt

The upper batt layer has a length of 1 mm in the transversal direction and
its porosity is 60 %. It consists of 50 % 10 dtex and 50 % 20 dtex fibers made
from polyamid 6. The unit dtex is equivalent to 1 g / 10000 m and, hence,
the actual diameter depends on the material’s density. In case of polyamid
6 and round fibers, 10 dtex and 20 dtex correspond to 33.4 µm and 47.3 µm,
respectively. The other batt layer has a thickness of 0.5 mm, 20 dtex fibers
only, and its porosity is 65 %. The base weave has a certain arrangement of
yarns. Each yarn is 350 µm thick. We added a mixture of 50 % 10 dtex and
50 % 20 dtex fibers, which then results in an overall porosity of 45 %. The
thickness is 1.5 mm. Since the fibers are usually attached to the base weave
by a needling process, the fiber orientation is chosen to be transversally
dominated. Figures 9, 10, 11 illustrate the generated geometries. All layers
are created by GeoDict, which is a virtual structure generator developed at
Fraunhofer ITWM. The resolution is chosen to be 5 µm. The lateral cross
section of each layer is 1.8 × 1.8 mm2.
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Figure 9: Model of the upper batt fiber layer

Figure 10: Model of the base weave layer
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Figure 11: Model of the lower batt fiber layer

By the use of ParPac, which is a lattice Boltzmann solver by Fraunhofer
ITWM, we can compute the permeability tensor K0

f of the individual layers
in three dimensions. More precisely, Stokes problems are calculated quite
similar to the cell problems introduced in Chapter 2 of [11]. The only dif-
ference is, that we don’t homogenize the Stokes system, but calculate the
effective permeability, i.e. essentially a velocity-pressure-drop relation on a
sufficiently large volume element of the porous medium, i.e. of the felt. The
calculated permeabilities restricted to the x- and z-direction are shown in
Table 1. Due to the computational complexity, we can not compute non-
linear filtration laws as done in Chapter 3 of [11]. However, simulations
indicate that nonlinear effects are important. At pressure drops of 10000
Pa/mm applied to the layers, one observes flow rates being significantly
smaller than in the linear case. Motivated by these observations , we con-
struct nonlinear filtration laws, which give at least qualitatively the correct
behavior and allow to study the influence of inertia on paper dewatering.
Based on a linear interpolation of the computed data given in Table 2, we
determine Fnl

0 . For simplicity, we drop the dependence on the porosity.
Additional parameters of the elasticity and fluid dynamical model are based
on data given in [14]: For each layer, we set the residual saturation to be
s∞ = 0.1. The shape factor b in (11) is chosen to be 3.4 and the fluid
pressure at the inlet is pf |Γi

= −5000 Pa. For the dynamic viscosity we

assume µf = 6.53 ∗ 10−4 Pa s. This value corresponds to water viscosity at
40 �. The initial saturations are 0.55, 0.45 and 0.50 for upper batt, base
weave and lower batt, respectively. In [14] measurements to determine the
viscoelastic parameters of an entire felt are presented. The stress-strain re-
lation is assumed nonlinear, i.e. E(ε) = A · εr and we obtain r = 2 and
A = 40 MPa. The viscoelastic time constant λ is of size 0.4 ms. It can be
expected, that the individual layers deform differently due to their different
constituents. Therefore, we preserve the structure of the nonlinear law in
each layer, but vary the constant A as listed in Table 1. Note, that the
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Upper Batt Base Lower Batt

l0 [mm] 1.00 1.50 0.50

A [MPa] 30 70 40

r [1] 2 2 2

λ [ms] 0.4 0.4 0.4

Φ0 [1] 0.60 0.45 0.65

S0 [1] 0.55 0.45 0.50

K0
f xx

[m2] 8.77 ∗ 10−11 4.97 ∗ 10−10 1.73 ∗ 10−10

K0
f zz

[m2] 1.54 ∗ 10−10 1.12 ∗ 10−9 2.50 ∗ 10−10

K0
f xz

= K0
f zx

[m2] 1.44 ∗ 10−12 8.57 ∗ 10−12 −5.34 ∗ 10−12

Table 1: Felt parameters

Upper Batt Base Lower Batt

MD-Ratio at 1 Pa/mm [%] 100.0 100.0 100.0

MD-Ratio at 2000 Pa/mm [%] 95.0 68.0 81.0

MD-Ratio at 10000 Pa/mm [%] 72.0 40.0 51.0

CD-Ratio at 1 Pa/mm [%] 100.0 100.0 100.0

CD-Ratio at 2000 Pa/mm [%] 93.0 70.0 78.0

CD-Ratio at 10000 Pa/mm [%] 70.0 40.0 48.0

Table 2: Computed ratios of nonlinear and linear flow rates in MD and CD

overall elastic response is not preserved by this heuristic choice. However,
we are only interested to have qualitatively reasonable parameters, which
are in the range of existing felt designs.

Now, we discuss the parameters of the paper layer, roll surface and belt. Due
to the lack of measurements, the elastic parameters of the paper layer are
chosen to give reasonable deformation during pressing. We want to observe
a gradual deformation of the paper and its thickness should be decreased
by not more than 50 %. Due to fine cellulose fibers, which are in the range
of 10 µm, the paper permeability is set lower than the felt permeability.
Test simulations in a micro structure made of 10 µm fibers give permeabil-
ities, which are one up to two orders smaller than the felt permeabilities.
Moreover, it is well-known that the orientation of paper fibers is aligned to
the machine direction due to process conditions in the forming section. We
account for it by introducing an anisotropy of the permeability values in
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Paper Roll surface Belt

l0 [mm] 0.3 3 3

A [MPa] 40 10000 10000

r [1] 1.6 1 1

λ [ms] 0.4 0.4 0.4

K [1] 0.7 – –

Φ0 [1] 0.7 0.25 0.25

S0 [1] 0.99 0.4 | 0.6 0.4 | 0.6

K0
f xx

[m2] 1.0 ∗ 10−11 1.0 ∗ 10−8 1.0 ∗ 10−8

K0
f zz

[m2] 6.0 ∗ 10−12 1.0 ∗ 10−8 1.0 ∗ 10−8

K0
f xz

= K0
f zx

[m2] 0.0 0.0 0.0

Table 3: Parameters of paper, roll surface and belt

x- and z-direction. Again, the ratio is determined by simulations using the
micro structure made of 10 µm fibers. To account for inertia, the nonlinear
filtration law of the paper layer is chosen similarly as in the case of the
upper batt fiber layer. The dry solids content of paper is typically defined
by the ratio of fiber mass to total mass. The initial saturation and initial
porosity are chosen such that the dry solids content is 27.8 % assuming a
paper weight of 80 g/m2 . In our numerical studies, the roll surfaces and
belts possess wholes and a grooved structure, respectively. The dimension
of the wholes and grooves are in the range of millimeters. Therefore, we
chose a rather large permeability. Moreover, these layers will never be fully
saturated in our simulation, which makes the use of nonlinear filtration laws
obsolete. The elastic stiffness is relatively large compared to the fibrous
structures. Hence, small deformations can be expected and it is reasonable
to assume linear behavior. Typical values of A are in the range of 10000
MPa. The initial saturation are set to either 40 % or 60 %. All parameters
are listed in Table 3.

Two types of press configurations are considered in the following section.
The first type is a roll press nip. The rolls are 1200 mm in diameter and
positioned at x = 0 mm. The second type is a shoe press nip. The shoe is
modeled as part of a circle with radius 1000 mm being positioned at x = 0
mm. The length of the shoe is chosen to be 250 mm. The opposing roll has a
radius of 900 mm and its center is positioned at x = 3 mm. The arrangement
of the layers is as follows: On top, there is the paper layer. Then, the three
felt layers, i.e. upper batt, base weave and lower batt, follow. In case of the
roll press nip, we find the roll surface as the lowest layer. In case of the shoe
press nip, the final layer is formed by the belt.
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As indicated by Figure 3, the paper layer is separated from the felt right after
the press nip. Therefore, we introduce one paper separation point at x = 40
mm and x = 140 mm in case of the roll press nip and the shoe press nip,
respectively. At the specific point, a boundary is introduced between the
paper layer and the upper batt layer, which reaches to the right boundary
of the computational domain and suppresses any fluid flow. Analogously,
separating boundaries for the roll surface and the belt are introduced. They
are determined by xr and xl (see Figure 4).

5 Numerical results and discussion

We use the parameters of the previous section unless otherwise stated. All
numerical examples are discretized by a 1500× 500 mesh. In case of the roll
press, we simulate the nip for x ∈ [−100, 400]. The shoe press simulations
are done in the range of x ∈ [−300, 400]. We start the computations at
vs = 250 m/min and increase the solid velocity in steps of 250 m/min. At
each velocity level, we solve the nonlinear problem until the relative accuracy
of the pressure update is less than 10−4. To reach this precision, typically
five up to ten iterations are needed.

5.1 Roll press nip

In this section, we present numerical results of a roll press nip. The mini-
mum distance dmin of the press profiles is automatically adjusted to match a
press force of 200 kN/m. In Figure 12, 13, the porosity is shown at vs = 750
m/min and vs = 1250 m/min, respectively. Higher machine speeds increase
viscoelastic stresses, hence the permanent deformation of the paper layer
becomes larger. Note, that the roll surface is hardly compressed in this set-
ting.
Now, we consider results related to the flow model without nonlinear fil-
tration laws. The degree of saturation is presented in Figure 14, 15 and
16. Figure 14 corresponds to vs = 750 m/min and an initial saturation of
the roll surface of 40 %. In Figure 15, the machine speed is increased to
vs = 1250 m/min. Additionally, in Figure 16, the initial saturation of the
roll surface is set to 60 %, which shows a strong effect building up a fully
saturated zone in transversal direction. All pictures show how the fluid is
transported from the paper through the felt entering the roll surface.
For the same three setting, the hydrodynamic pressure is shown in Figure
17, 18 and 19. Due to the stronger compression especially of the paper layer,
a larger amount of fluid has to be transported in shorter time and, therefore,
the pressure increases as the machine speed goes up. In Figure 19, this effect
becomes even stronger which is due to the increased fluid content of the roll
surface.
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In Figure 20, the fluid velocity is illustrated. The dewatering zone right be-
fore the center of the nip can clearly be observed. The dewatering turns into
rewetting, which is less obvious, but very important in practice. Looking
at Figure 21, a typical profile of the dry solids content of paper is plotted.
Here, the dewatering and rewetting zones are clearly observable. The final
dry solids contents of the paper layer are 41.80 %, 43.11 % and 41.47 % for
the three settings, respectively. This result is consistent with the aforemen-
tioned remarks on compression and fluid content of the overall nip.
Finally, we investigate the effect of inertia. Figure 22 corresponds to Figure
14. The saturations hardly differ. However, the underlying model included
nonlinear filtration laws. The situation changes when looking at the pres-
sures. Corresponding to Figure 17, 18 and 19, we see in Figure 23, 24 and
25 significantly increased hydrodynamic pressures.
From this observations, we draw the following conclusions: Since the satura-
tions hardly change when incorporating nonlinear filtration laws in the flow
model, the dewatering performance of the nip is hardly effected. Neverthe-
less, looking at Figure 26 and thinking of higher machine speeds, it might
be reasonable to consider hydrodynamic pressures as additional stress in the
elasticity model. This will increase dmin and influence the flow problem via
changes in porosity.
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Figure 12: Porosity: vs = 750 m/min

Figure 13: Porosity: vs = 1250 m/min
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Figure 14: Saturation: vs = 750 m/min and initial roll surface saturation
S0 = 40 %

Figure 15: Saturation: vs = 1250 m/min and initial roll surface saturation
S0 = 40 %
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Figure 16: Saturation: vs = 1250 m/min and initial roll surface saturation
S0 = 60 %

Figure 17: Pressure: vs = 750 m/min and initial roll surface saturation
S0 = 40 %
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Figure 18: Pressure: vs = 1250 m/min and initial roll surface saturation
S0 = 40 %

Figure 19: Pressure: vs = 1250 m/min and initial roll surface saturation
S0 = 60 %
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Figure 20: Velocity: vs = 750 m/min and initial roll surface saturation
S0 = 40 %

Figure 21: Typical profile of the dry solids content of paper
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Figure 22: Saturation: vs = 750 m/min, initial roll surface saturation S0 =
40 % and with inertia

Figure 23: Pressure: vs = 750 m/min, initial roll surface saturation S0 = 40
% and with inertia
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Figure 24: Pressure: vs = 1250 m/min, initial roll surface saturation S0 =
40 % and with inertia

Figure 25: Pressure: vs = 1250 m/min, initial roll surface saturation S0 =
60 % and with inertia
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Figure 26: Structural stress: vs = 750 m/min

5.2 Shoe press nip

For the sake of completeness, we present simulation results of a shoe press
nip. The behavior of the model is quite similar to the simulation results of
the previous section. The minimum distance dmin of the press profiles is
automatically adjusted to match a press force of 1100 kN/m. We consider
three variations of the machine velocity and initial saturation of the belt,
which replaced the roll surface of the roll press nip. The following sequence
of figures is ordered as in the case of the roll press nip and similar comments
hold. The final dry solids content at vs = 750 m/min and initial belt
saturation of 40 % reads 39.95 %. Increasing the machine speed to vs = 1100
m/min yields 41.46 % dry solids content. Additionally setting the initial belt
saturation to 60 % gives a dry solids content of 39.62 %.
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Figure 27: Porosity: vs = 750 m/min

Figure 28: Porosity: vs = 1250 m/min
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Figure 29: Saturation: vs = 750 m/min and initial belt saturation S0 = 40
%

Figure 30: Saturation: vs = 1250 m/min and initial belt saturation S0 = 40
%
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Figure 31: Saturation: vs = 1250 m/min and initial belt saturation S0 = 60
%

Figure 32: Pressure: vs = 750 m/min and initial belt saturation S0 = 40 %
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Figure 33: Pressure: vs = 1250 m/min and initial belt saturation S0 = 40
%

Figure 34: Pressure: vs = 1250 m/min and initial belt saturation S0 = 60
%
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Figure 35: Velocity: vs = 750 m/min and initial belt saturation S0 = 40 %

Figure 36: Typical profile of the dry solids content of paper
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Figure 37: Saturation: vs = 750 m/min, initial belt saturation S0 = 40 %
and with inertia

Figure 38: Pressure: vs = 750 m/min, initial belt saturation S0 = 40 % and
with inertia
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Figure 39: Pressure: vs = 1250 m/min, initial belt saturation S0 = 40 %
and with inertia

Figure 40: Pressure: vs = 1250 m/min, initial belt saturation S0 = 60 %
and with inertia
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Figure 41: Structural stress: vs = 750 m/min

6 Conclusions

We developed a two dimensional model of the pressing section of a paper
machine. The model accounts for the viscoelastic deformation of paper and
felt layers and contains a macroscopic flow description including nonlinear
filtration laws. Major effort went into the development of a suitable nu-
merical solution algorithm which is based on a finite element discretization.
Numerical results exhibit reasonable elastic and fluid dynamical behavior
of the model in various setups. The choice of the flow parameters of the
model was strongly influenced by computations using a three-dimensional
virtual felt. We determined permeabilities and the nonlinear flow regime.
The application of nonlinear filtration laws shows a major impact on the
hydrodynamic pressure, which increases significantly. Hence, the hydrody-
namic stress contribution being small in the Darcy regime should not be
neglected in the elastic model, when considering high machine speeds.
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