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R. Čiegis,
Vilnius Gediminas Technical University
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Abstract

The performance of oil filters used in the automotive industry can
be significantly improved, especially when computer simulation is an
essential component of the design process. In this paper, we consider
parallel numerical algorithms for solving mathematical models describ-
ing the process of filtration, filtering out solid particles from liquid oil.
The Navier-Stokes-Brinkmann system of equations is used to describe
the laminar flow of incompressible isothermal oil. The space discretiza-
tion in the complicated filter geometry is based on the finite-volume
method. Special care is taken for an accurate approximation of velocity
and pressure on the interface between the fluid and the porous media.
The time discretization used here is a proper modification of the frac-
tional time step discretization (cf. Chorin scheme) of the Navier-Stokes
equations, where the Brinkmann term is considered at both, prediction
and correction substeps.

A data decomposition method is used to develop a parallel algo-
rithm, where the domain is distributed among processors by using a
structured reference grid. The MPI library is used to implement the
data communication part of the algorithm. A theoretical model is
proposed for the estimation of the complexity of the given parallel al-
gorithm and a scalability analysis is done on the basis of this model.
Results of computational experiments are presented, and the accuracy
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and efficiency of the parallel algorithm is tested on real industrial ge-
ometries.

1 Introduction

The numerical solution of nonlinear PDEs, such as porous media models or
Navier-Stokes equations, require very large computational efforts. A signif-
icant step in reducing the CPU time and/or increasing the accuracy of the
simulations is the usage of parallel computers and clusters of workstations.
The power of modern personal computers is increasing constantly, but not
enough to fulfill all scientific and engineering computational demands. In
such cases, parallel computing may be the answer. Parallel computing not
only gives access to increasing computational resources but it also becomes
economically feasible. This is mainly because clusters of workstations can
be used as local dedicated computational nodes or as a parallel computer,
according to momental needs of a department. A good review on the state
of the art in numerical solution of PDEs on parallel computers is given in [7].
This book surveys the major topics that are essential to high-performance
simulation on parallel computers, including programming models, load bal-
ancing, mesh generation, efficient numerical solvers, and scientific software.

Filtering out solid particles from liquid oil is very essential for auto-
motive engines (as well as for many other applications). An oil filter can
be described shortly as a filter box (which could be of complicated shape)
with inlet/s for dirty oil and outlet/s for filtrated oil. The inlet/s and out-
let/s are separated by a filtering medium, which is usually a single layer
or a multilayer porous media. Optimal shape design for the filter housing,
achieving optimal pressure drop - flow rate ratio, etc., require detailed knowl-
edge about the flow field through the filter. Accurate information about the
velocity and pressure distributions can be obtained from a 3-D computer
simulation of the fully coupled flow: flow in the area between the inlet/s
and the filtering medium, flow within filtering medium, and flow between
the filtering medium and the outlet/s. A general purpose commercial CFD
software might be inefficient and/or inaccurate in computing such particu-
lar flows. An efficient numerical algorithm for such problems is developed.
The algorithm is further implemented to meet the needs of an existing man-
ufacturing oil filter company, namely IBS Filtran. Intensive collaboration
with the company achieved success with the release of a specialized soft-
ware, namely SuFiS (Suction Filter Simulation). The single grid version of
the algorithm is shortly presented in [19, 20] (for some details, see [27]).
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The top and bottom pans of a typical filter housing are shown in Fig.1,
and a sketch of a cross-section of a filter assembly is shown in Fig.2. Several
challenging problems have to be solved to support the design of oil filters:
detailed simulation of coupled flows through filters; modeling and simulation
of capturing of dirt particles by the filtering media; interaction of the flow
and the deformable filtering medium; optimal shape design and so on. Here
we discuss the first of these problems, i.e. the coupled flow simulations.
More precisely, we discuss the development of efficient numerical algorithms
and software for the simulation of 3-D flow through oil filters. We also pay
special attention to the usage of correct parameters and to the validation of
the software. Note that some details concerning modelling and simulation
of capturing of the particles by the filtering medium, as well as of related
filtration processes, can be found in [16].

Figure 1: Top pan (left) and bottom pan (right) of a filter housing;
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f

Figure 2: A schematic drawing of a vertical cross-section of the filter

This paper aims to discuss parallelization of the existing industrial se-
quential code SuFiS, which is extensively used for the simulation of fluid
flows in industrial filters. The domain or data parallelization paradigm is
used to build a parallel algorithm [25]. The MPI library is used to implement
the data communication among processors.

The paper is organized as follows. In Section 2, we first formulate the
problem. The following two subsections describe the fractional time step
discretization, and the Finite Volume (FV) discretization method used for
solving the flow problem, respectively. A parallel algorithm is described
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in Section 3, which is based on the parallel domain (data) decomposition
method. The systems of linear equations are solved by a parallel version of
the preconditioned BiConjugate Gradient Stabilized algorithm. A theoret-
ical model, which estimates the complexity of the parallel SuFiS algorithm
is proposed. The results of computational experiments corresponding to
the SP5 computer and a cluster of workstations are presented and the ef-
ficiency of some popular parallel preconditioners is investigated. During
computations, the diagonal and the incomplete LU (ILU) factorization pre-
conditioners are considered. A parallel version of ILU is obtained by doing
the factorization of a local part of the matrix at each processor. It is well
known that such strategy reduces the convergence rate of the iterative algo-
rithm, however, the parallelism of the obtained preconditioner is the same
as the one obtained for the diagonal one. In Section 4, the computational
results of experiments are presented, where some industrial filters are sim-
ulated and flows in such filters are investigated. Some final conclusions are
given in Section 5.

2 Governing equations and space and time dis-
cretization

2.1 Governing equations

The Brinkmann model (see, e.g. [6, 24]) describing the flow in porous me-
dia, Ωp, and the Navier-Stokes equations (see, e.g. [13]) describing the flow
in the pure fluid region, Ωf , together with the interface conditions for the
continuity of the velocity and the continuity of the normal component of
the stress tensor, are reformulated such that a single system of partial dif-
ferential equations governs the flow in the pure liquid and in the porous
media. This is done using the fictitious regions method manner. Note that
the fictitious region method allows the use of one system of equations in
order to treat the fluid, porous and solid regions simultaneously (see, e.g.
[1, 30, 31]). The coefficients of the equations vary in a way such that the
single system is reduced to the Navier-Stokes equations in the liquid zone,
and to the Brinkmann–like model in the porous media. This approach is
relevant when the interface conditions between the plain (fluid) and porous
media are chosen to be the continuity of the velocity and the continuity of
the normal component of the stress tensor. For a theoretical justification
of this approach, for the case of Stokes flow, see [1, 30] and the references
therein.
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The Navier-Stokes-Brinkmann system of equations describing laminar,
incompressible and isothermal flow in the whole domain reads:

∂ρ~u

∂t
−∇ ·

(
µ̃∇~u

)
+ (ρ~u,∇)~u︸ ︷︷ ︸

Navier-Stokes

+

Darcy law︷ ︸︸ ︷
µ̃K̃

−1
~u +∇p = ~̃f︸ ︷︷ ︸,

∇ · ~u = 0.

(1)

In this case, the tilde-quantities are defined as follows:

µ̃ =

{
µ in Ωf ,

µeff in Ωp,
~̃f =

{
~fNS in Ωf ,

~fB in Ωp,
K̃−1 =

{
0 in Ωf ,

K−1 in Ωp.

Here ~u and p stand for the velocity vector and the pressure, respectively,
and ρ, µ,K denote the density, the viscosity, and the permeability tensor of
the porous medium, respectively.

No slip boundary conditions are prescribed on the solid wall, prescribed
flow rate (i.e., prescribed velocity) are the boundary conditions at the inflow,
and soft boundary conditions are prescribed at the outflow.

2.2 Time Discretization

The choice of the time discretization influences the accuracy of the numerical
solution and the stability of the algorithm (e.g., the restrictions on the time
step). In this paper, we are interested in the steady state solution only, when
the steady state solution is a limit of the unsteady one for t →∞. Thus sta-
bility and fast convergence are the criteria influencing the choice of the time
discretization here. Studies of the unsteady regimes will be the subject of
another paper. Before the time discretizations are presented, some notations
are introduced. The operators corresponding to the discretized convective
and diffusive terms in the momentum equations are denoted by C(~u)~u and
D~u, respectively. The particular form of these operators depend on the
space discretization, and will be discussed below. Further, the discretiza-
tion of the gradient is denoted by G, and GT denotes the discretization of
the divergence operator. Finally, B~u denoted the operator corresponding to
Darcy term, namely µK̃−1~u, in the momentum equations. In some cases,
the same notation is used for the continuous and discrete functions, when
this does not cause misunderstanding. Below, the superscript n is used
to denote the values at the old time level, and n+1 or NO superscript to
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denote the values at the new time level. Notation τ stands for the time
step, τ = tn+1− tn. With these notations, the following fractional time step
discretization scheme can be written:(

ρ~un+ 1
2 − ρ~un

)
+ τ (C(~un)−D + B) ~un+ 1

2 =τ G pn,(
ρ ~un+1 − ρ~un+ 1

2

)
+ τ

(
B~un+1 −B~un+ 1

2

)
=τ

(
G pn+1 −G pn

)
, (2)

GT ρ ~un+1=0.

This algorithm for the Navier-Stokes-Brinkmann equations can be viewed
as a modification of the well-known Chorin method for Navier-Stokes equa-
tions. The sum of the first and the second equations above gives an implicit
discretization of the momentum equations. The first equation is solved with
respect to the velocities, using the old value of the pressure gradient, thus
obtaining a prediction for the velocity. To solve the second equation with
respect to pressure correction, one takes the divergence from it and uses
the continuity equation. The result is a Poisson-type equation for the pres-
sure correction. There exists extensive mathematical literature, concerning
first and second order fractional time step discretizations, incremental and
non-incremental form of equations, stability, splitting of the boundary con-
ditions, etc. Some discussions on this topic, as well as further references,
can be found in [14, 8].

As mentioned above, the Darcy term in the Navier-Stokes-Brinkmann
equations needs special treatment. In equation (2), this term is accounted
for at both time substeps. Note that the pressure correction equation should
be carefully derived in this case. A naive application of the Chorin method
would give:

GT
(
ρ~un+1 − ρ~un+ 1

2

)
+GT τ

(
B~un+1 −B~un+ 1

2

)
=GT τ

(
G pn+1−G pn

)
.

(3)
Denoting q for the pressure correction, where q = pn+1 − pn, one can

rewrite the above equation as

GT τGq = GT
(
ρ~un+1 − ρ~un+ 1

2

)
+ GT τ

(
B~un+1 −B~un+ 1

2

)
. (4)

Furthermore, using the continuity equation GT ρun+1 = 0, and assuming
that GT Bun+1 ≈ 0, the above equation reduces to

GT τGq = −GT
(
ρ~un+ 1

2 + τB~un+ 1
2

)
. (5)
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A drawback of this pressure correction equation is that its operator does
not ”see” the porous media, and that the continuity equation is approxi-
mately satisfied in the porous media. For a constant time step, its operator
is equivalent to Poisson equation with constant coefficients.

In order to achieve a better convergence, let us consider another approach
for forming a pressure correction equation. Denote I as the identity 3 × 3
matrix. Rewriting equation (2) gives:

(
I +

τ

ρ
B

)
ρ~un+1 −

(
I +

τ

ρ
B

)
ρ~un+ 1

2 =τ
(
G pn+1 −G pn

)
. (6)

Keeping in mind that (I + τ
ρB)−1 always exists because B is positive

definite, the above equation can be transformed to(
ρ~un+1 − ρ~un+ 1

2

)
=(I +

τ

ρ
B)−1τ

(
G pn+1 −G pn

)
. (7)

Now, applying the divergence operator, GT , to this equation, and us-
ing the continuity equation, the following pressure correction equation is
obtained:

GT (I +
τ

ρ
B)−1τG q = −GT ρ~un+ 1

2 . (8)

It is easy to see that the derived pressure correction equation in the pure
fluid region, where B = 0, reduces to the standard Chorin scheme. The
same equation for pure fluids is obtained within the SIMPLEC approach
(see [13]), or within the Schur complement approach (see [32]). It is more
important to see that this equation has the form of the well-known Darcy
equation in the porous medium (note that in the porous medium I � B).
Thus, the equation describes both, the pure fluid zones and the porous zones
equally well.

After the pressure correction equation is solved, the pressure is updated,
pn+1 = pn + q, and the new velocity is calculated based on equation (7):

ρ~un+1=ρ~un+ 1
2 + (I +

τ

ρ
B)−1τGq (9)

2.3 Grid and Finite Volume Discretization in space

The geometrical information about the computational domain is usually
provided in a CAD format, for example, the stl format. A pre-processor
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based on Level Set Method (see [15]), is used in order to process the given
CAD data for attaining the assembly of a filter housing. The output of the
pre-processor is a computational domain (i.e., the internal volume of the
filter housing), along with a generated grid. An example of a computational
domain can be seen in Figure 3.

Figure 3: Computational domain of a filter housing (left) and a snapshot of
the visualization tool (right)

The governing equations are discretized by the Finite Volume Method
(see [13]) on the generated Cartesian grid. Cell-centered grid with collo-
cated arrangement of the velocity and pressure is used. The Rhie-Chow
interpolation (see [12]) is used to avoid the spiral oscillations, which could
appear due to the collocated arrangement of the unknowns. Upwind, central
differencing, and deferred correction schemes can be used for the convective
term. In general, the discretization of the convective and the diffusive (vis-
cous) terms in the pure fluid region is close or identical to the one described
in [12, 13], and therefore it will not be described here (some details can
be found in our earlier papers, for example, [20, 21, 22]. Special attention
is paid to the discretizations near the interfaces between the fluid and the
porous medium. Conservativity of the discretization is achieved here by
choosing finite volume method as a discretization technique. To get an ac-
curate approximation for the velocity and for the pressure on the interface, a
special modification of the discretizations near the interface is used. First of
all, it should be noted that the pressure gradient in the momentum equation
is discretized in each cell separately. To do this, the pressure values from the
cell centers are interpolated to the cell faces. In the pure fluid region, this
is done by linear interpolation where the pressure gradient is discretized via
central differences. The more crucial part is the interpolation of pressure
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on the interface between the pure fluid and the porous regions. Problem-
dependent interpolation employed, using the operator from (8) together with
the mass conservation assumption (i.e., continuity of the normal component
of the flux across the interface). For a detailed illustration of this approach,
suppose that pL is a pressure value in a pure fluid cell located left from the
interface, and pR is a pressure value in a porous cell located right from the
interface. The pressure at the interface is assumed to be continuous, and
the value there, pe, in the case of isotropic media (i.e. scalar permeability)
is calculated from (8) as follows:

pe =
(1 + τ

ρb)−1
L pL + (1 + τ

ρb)−1
R pR

(1 + τ
ρb)−1

L + (1 + τ
ρb)−1

R

, (10)

where b is the component of B in the isotropic case.

2.4 Series of computations with different velocities and vis-
cosities

In practice, a series of computations with different velocities and different
viscosities need to be performed for a fixed geometry. Particularly, in the
case of oil filter simulations, the performance of a filter is usually evaluated
at different flow rates and different temperatures (the last results in different
viscosities and different densities). Also, recall that each single computation
is performed for incompressible nonisothermal fluid. In order to reduce the
computational efforts, a start from previous procedure is briefly discussed.
This routine takes advantage of the fact that there exists a good initial guess
for all simulated cases except for the first one. The cases to be simulated
are ordered such that the parameter

γl =
1

µlQl

is increasing. Here Q stands for the prescribed flow rate at the inlet, and l
stands for the current number of the set of input parameters. After the first
case corresponding to γl is computed, the computations corresponding to
γl+1 start with reading the l-th steady state solution, and thereby rescaling
the pressure in accordance with the formula

Gpl+1 =
γl

γl+1
Gpl. (11)
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2.5 Implementational sketch

At the end of this section we summarize the proposed discrete scheme and
numerical algorithms. In Figure 4 a short description of the sequential
SUFIS algorithm is given.

SUFIS ()
begin

(1) Define computational domain
(2) ok = true; k = 0;
(3) while ( ok ) do
(4) k := k+1; Uk = Uk−1; P k = P k−1;
(5) for (i=0; i < MaxNonLinearIter; i++) do
(6) Compute velocities from momentum equations

QjU
∗
j = F i

j − ∂xjP
k, j = 1, 2, 3;

(7) Solve equation for the pressure correction
LhPc = Ri;

(8) Correct the velocities
Uk

j = U∗
j − αu(D−1∇hPc)j , j = 1, 2, 3;

(9) Correct the pressure
P k := P k + αpPc;

end do
(10) if ( final time step ) ok = false;

end do
end SUFIS

Figure 4: Sequential SUFIS algorithm

During each iteration at steps (6) and (7) four systems of linear equations
are solved. For many problems this part of the algorithm requires till 90%
of total CPU time. We use the BiCGSTAB algorithm which solves the
unsymmetric linear system

Ax = f

by using the preconditioned BiConjugate Gradient Stabilized method [4]. A
short description of the sequential BiCGSTAB algorithm is given in Figure 5.
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BiCGSTAB (Vec x, Vec f, Matrix A, double ε)
begin

(1) Compute the precondinioner D;
(2) normf = ‖f‖;
(3) if (normf < ε) normf = 1;
(4) r = f −Ax;
(5) r̃ = r; ok = true; i = 0;
(6) while ( ok ) do
(7) i++; ρ1 = (r̃, r);
(8) if (i == 1) then
(9) p = r;

else
(10) β = (ρ1α)/(ρ2ω);
(11) p = r + β (p− ωv);

end if
(12) Dp̂ = p;
(13) v = Ap̂;
(14) α = ρ1/(r̃, v);
(15) s = r − αv;
(16) if ( ‖s‖ / normf < ε ) then
(17) x+ = αp̂;
(18) ok = false;

else
(19) Dŝ = s;
(20) t = Aŝ;
(21) ω = (t, s)/(t, t);
(22) x+ = αp̂ + ωŝ; r = s− ωt;
(23) ρ2 = ρ1;
(24) if ( ‖r‖ / normf < ε ) ok = false;

end if
end do

end BiCGSTAB

Figure 5: Serial BiCGSTAB algorithm
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3 Parallel Algorithm

In this section, the main details of the developed parallel algorithm are
described. A theoretical model estimating the complexity of the parallel
SuFiS algorithm is also proposed.

As stated above, the solver for the linear system of equations typically
requires up to 70 to 90 percents of total computation time. Thus there is
a possibility to parallelize only the linear system solver by using one of the
well-known parallel software packages such as PETSc [3]. Alternatively, in
many cases, the main goal of parallel computations is not only to increase
the size of simulated problems but also to solve them faster. Therefore, the
distribution of the discretization part of the algorithm to scale the problem
size according to the increased number of processors becomes a crucial point
to consider. Also, when only the linear solver is parallelized, computing the
discretization is done only on the master processor using the sequential code
while the linear systems of equations are solved in parallel. The drawback
of this practice becomes apparent when the additional costs, pertaining to
the distribution of the matrix and right-hand side vector among processors
and assembling the solution on the master processor, are considered.

3.1 Domain Decomposition

The Navier-Stokes-Brinkmann system of equations (1) is solved in a compli-
cated 3D region. A discrete grid is described as a general non-structured set
of finite-volumes. The discretization of the PDEs and assembling of the co-
efficients of the linear equations is done by using a general technique, which
is standard for solvers of flows in porous media and Navier-Stokes equations
[5, 26]. The goal of the domain (data) decomposition method is to define a
suitable mapping of all finite-volumes V to the set of p processors

V = V1 ∪ V2 ∪ . . . ∪ Vp,

where Vj defines the elements mapped to j-th processor. The load balancing
problem should be solved during the implementation of this step. First, it is
aimed that each processor has about the same number of elements, since this
number would define the computational complexity for all parts of the SuFiS
algorithm. Due to the stencil of discretization, the computational domains
of processors can overlap. The information belonging to the overlapped
regions should be exchanged among processors. For distributed memory
computers, MPI library is used to send explicit messages between processors,
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contributing to the additional costs of the parallel algorithm. Thus, a second
goal of defining the optimal data mapping is to minimize the overlapping
regions.

The p-way graph partitioning problem is NP -complete, i.e. no polyno-
mial time algorithm is likely to be found to solve this problem. Therefore
heuristic algorithms are developed to find a good solution in a reasonable
time. The multilevel partitioning method is one of the most efficient par-
titioning methods having a linear time complexity. State of the art imple-
mentation of a family of multilevel partitioning methods for partitioning
unstructured graphs and hypergraphs is available as a METIS software li-
brary [23].

A simpler domain decomposition algorithm has been applied for this
particular case. It takes into account that the orthogonal 3D structured grid
is used as a reference grid for definition of computational grid. Therefore a
standard 3D decomposition of processors p1 × p2 × p3 can be used. Such a
strategy simplifies the implementation of data exchange algorithms, since it
is very easy to define the neighbours of each processor and the overlapping
elements.

Load balancing. In order to solve the load balancing problem for a given
number of processors, all combinations of 3D processors topologies are gener-
ated. The topology with the best load balancing and minimizing the number
overlapping elements is found.

In a series of computational experiments, the quality of the obtained
partitionings were tested and compared with the partitionings computed
by METIS. In Table 1, the values of load disbalance parameter dp and the
number of overlapping elements wp (or edges cutting the partitioned subsets
of elements in the case of METIS partitioning) are presented for METIS and
orthogonal 3D partitionings. The grid was generated for a real industrial
application, the graph of this grid had 596094 nodes and 1507732 edges, the
auxiliary structured grid had 5428000 nodes.

It was seen that the simple grid partitioning algorithm gives mappings
with good load balancing and the number of overlapped elements is also close
to the number of similar elements in partitionings generated by METIS.

Now the costs of data initialization are estimated. The master proces-
sor reads the information on the grid from a file and broadcasts it to the
other processors. The complexity of the global broadcast operation depends
strongly on the architecture of the parallel computer, see [10, 17, 18]. The
cost of broadcasting n items of data between p processors is estimated by
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Table 1: Experimental investigation of the quality of partitioning algorithms

p dp,Metis 2wp,Metis d3D w3D

2 1.0 6090 1.05 5874
4 1.0 12164 1.19 16884
8 1.0 24162 1.21 34450
12 1.0 32836 1.22 60270

B(n, p) = R(p)(αb + βbn), (12)

where R(p) depends on the algorithm used to implement the broadcast
operation and the architecture of the computer. For the simplest algorithm,
R(p) = p. Taking into account the time O(n) required to read data from
the file and assuming that αb � βbn, a bound on costs of grid initialization
is found

Wp,init = (c0 + βbp)n. (13)

Note that this part of computations does not depend on the number of
nonlinear iterations and the number of time steps. Therefore, the initial-
ization costs can be neglected for problems where a long transition time is
simulated.

3.2 Parallel Discretization

The sequential algorithm is decomposed into local computations supple-
mented with corresponding communication operations. The matrixes and
right-hand side vectors are assembled element by element. This can be done
locally by each processor, if all ghost values of the vectors belonging to over-
lapping regions are exchanged among processors. The data communication
is implemented by an odd - even type algorithm and can be done in parallel
between different pairs of processors. Thus, we can estimate the costs of
data exchange operation as

Wexch = αe + βem,

where m is the number of items sent between two processors, α is the message
startup time and β is the time required to send one element of data.
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The time required to calculate all coefficients of the discrete problem is
given by

Wp,coeff = c1dp
n

p
,

where dp is a load disbalance parameter.

3.3 Parallel BiCGSTAB algorithm

The sequential BiCGSTAB algorithm is modified in a way such that its
convergence properties are not changed during the parallelization process.
The only exception is due to implementation of the preconditioner D. If
D is a diagonal part of the matrix, i.e. for Jacobi smoothing a parallel
realization of the preconditioner is exactly the same as for sequential one.
In the case of ILU preconditioner, parallelization can reduce the convergence
rate of the parallel BiCGSTAB algorithm. These questions will be addressed
in the following section. Here, it is assumed that the number of iterations
required to solve the systems of linear equations (6), (7) (see sequential
SuFiS algorithm) are the same for the sequential and parallel versions of the
BiCGSTAB algorithm.

Four different operations of the BiCGSTAB algorithm require different
data communications between processors:

1. Vector saxpy operations (see steps (11), (15) and (22)) can be com-
puted in parallel, when parameters α, β, ω are given. No communi-
cation between processors is needed, since all required data is locally
available on each processor. The complexity of all vector saxpy oper-
ations calculated during one iteration is

Wp,saxpy = c2 dp
n

p
.

2. Implementation of the matrix – vector multiplication at steps (4), (13)
and (20) requires additional information when boundary nodes of the
local part of the vector x are updated (note, that these nodes are inner
nodes in the global grid). Such information is obtained by exchanging
data with neighbour processors in the specified topology of proces-
sors. The amount of data depends on the grid stencil, which is used to
discretize the PDE model, i.e. on the overlap of local subgrids. The
communication step can be done in parallel. After exchange of the
ghost elements the multiplication Ax is performed locally on each pro-
cessor. Taking into account that matrixes are sparse, the complexity
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of two matrix-vector multiplications during one iteration is estimated
by

Wp,mv = c3 dp
n

p
+ 2(αe + βem).

3. The computation of inner products of two vectors at steps (2), (7),
(14), (21) and (24) require a global communication of all processors:
first all processors compute inner products of local parts of vectors
and then these local products are summed up. Different algorithms
can be used to implement the global reduction step. In MPI, there
exists a special function MPI ALLREDUCE, which computes a sum and
distributes it to all processors. It is assumed that MPI library is
optimized for each type of super–computer, taking into account specific
details of the computer network. The complexity of computation of
all inner products and norms during one iteration is estimated as

Wp,dot = c4 dp
n

p
+ 5R(p)(αr + βr).

For a simple implementation of MPI ALLREDUCE function, when all pro-
cessors send their local values to the master processor, which accumu-
lates results and broadcasts the sum to all processors, R(p) = cp.

4. The computation of the preconditioner D is done locally by each pro-
cessor without any communication operation, the complexity of this
step is given by

Wp,D = c5 dp
n

p
.

The solution of linear systems Dx = b also requires only local compu-
tations. Thus the complexity of steps (12), (19) is given by

Wp,D−1 = c6 dp
n

p
.

After summing up all the estimates, the theoretical model of the com-
plexity of the parallel SUFIS algorithm is achieved

Wp = (c0 + βbp)n + K
(
(c1 + c5)dp

n

p
+ c7(αe + βem(p))

)
(14)

+ N
(
(c2 + c6 + cdot)dp

n

p
+ c8R(p)(αr + βr) + c9(αe + βem(p))

)
,

where K is the number of steps in the outer loop of SuFiS algorithm, and
N is a total number of BiCGSTAB iterations. Note that the initialization
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costs (i.e. the first term of the total costs) do not depend on the number
of time steps K and they can be neglected in the case when K is a large
number.

4 Results of Computational Experiments

The accuracy of the theoretical complexity model developed above was
tested experimentally. Computations were performed on IBM SP5 com-
puter at CINECA, Bologna and on Virgo cluster of computers at ITWM,
Kaiserslautern. Results of simulations are presented in Figure 6.

Figure 6: Results of simulations: velocity (arrows) and pressure (colour) in
a cross–section of the filter

The same industrial application, as in the example of grid partitioning,
is used to test the prediction accuracy of the theoretical model.

In the following tables, experimental times and theoretical predictions
of CPU time

Tinit = (c0 + βbp)n, T1 = K(c1 + c5)dp
n

p
, T2 = N(c2 + c6)dp

n

p
,

Texch = (Kc7 + Nc8)(αe + βem), Tdot = c4dp
n

p
+ c8R(p)(αr + βr).

are presented. For each number of processors, the first line gives experimen-
tal values of CPU and the second lines present theoretical predictions. In
Table 2, the results of computations are presented for the Virgo cluster of
computers.
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Table 2: Experimental results and theoretical predictions of CPU times for
Virgo cluster

p Tinit T1 T2 Tdot Texch Ttotal Sp Ep

1 1.66 106 834 117.3 0.0 1059 1 1

2 3.24 54.5 435 63.0 4.7 560.5 1.89 0.95
3.24 55.7 438 63.4 4.7 565.0

4 4.23 31.0 252.5 36.1 6.6 330.7 3.20 0.80
4.80 31.5 248 37.0 6.1 327.7

8 5.12 15.6 126.2 20.7 7.3 175.0 6.05 0.76
6.50 16.0 126.1 21.0 6.4 176.0

12 7.39 10.7 84.9 15.3 5.1 123.3 8.59 0.71
9.21 10.8 84.8 15.8 7.3 126.0

The presented results show that theoretical complexity model gives ac-
curate predictions of different parts of SuFiS algorithm. The efficiency of the
parallel algorithm is also good. We note that cluster Virgo uses a Myrinet
communication network, therefore communication costs do not reduce seri-
ously the efficiency of the algorithm for a given number of processors.

Results of calculations done on SP5 computer are presented in Table 3.
It can be seen that the theoretical complexity model overestimates the

CPU time. The accuracy of the model can be increased if the well-known fact
that efficiency of vector operations increases is taken into account. Also, a
superlinear speedup of the parallel algorithm is obtained for larger numbers
of processors due to the better cache memory utilization in SP5 processors.
A simple test was implemented, where matrix operations A := A + B, C :=
C −D were performed many times. The dimension of matrices were taken
to be 4 · 106. The following results were obtained:

T1 = 35.3, T2 = 15.3, T4 = 7.18, T8 = 2.83, T16 = 1.29.

Data distributon using METIS library

In previous computations, a 3D data decomposition among processors was
used. Since the geometry of a computational region is quite complicated,
such a decomposition leads to an imbalance of the work-load between proces-
sors (up to 1.20 times). Additionally, a general grid distribution algorithm
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Table 3: Experimental results and theoretical predictions of CPU times for
SP5

p Tinit T1 T2 Tdot Texch Ttotal Sp Ep

1 1.83 82.1 735 70.3 0.0 889 1 1

2 3.12 44.1 381 35.7 0.58 464 1.92 0.96
3.12 43.1 386 37.1 0.58 470

4 3.58 23.3 203 19.1 3.20 252 3.52 0.88
5.16 24.4 218.7 21.4 1.2 271

8 4.54 11.8 93.2 10.2 3.06 122.7 7.25 0.91
6.66 12.4 111 11.6 1.9 143.6

12 6.65 8.4 63.0 6.61 3.1 87.8 10.1 0.84
8.78 8.2 73.8 8.1 2.7 101.5

was implemented, which was based on graph distribution algorithms im-
plemented in METIS library [23]. In Table 4, the results of computations
are presented and the two strategies of data distribution are compared. The
computations were performed on Virgo cluster of computers, but in this case
a Gigabit Ethernet network is used. The code was compiled with the full
optimization option O3 in order to make a ration between computation and
communication speeds more challenging. In order to get more realistic esti-
mates of the speed-up and the efficiency coefficients, the initialization time
Tinit was excluded from the computation time Tp , since this time could be
neglected for real simulations. During the computational experiments, the
solution was computed only for six time steps.

Table 4: Experimental results for 3D and METIS data distributions

p Tp,3D Sp,3D Ep,3D Tp,M Sp,M Ep,M

1 885.7 1.00 1.00 893.0 1.00 1.00
2 480.4 1.84 0.92 459.7 1.94 0.97
4 270.6 3.27 0.82 234.3 3.81 0.95
8 150.8 5.87 0.73 127.0 7.03 0.88
12 104.4 8.48 0.70 90.2 9.92 0.83
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4.1 Parallel Preconditioners

There have been many studies of the use of various ordering techniques to
overcome the trade–off between parallelism and convergence in ILU factor-
ization. Some new multicolor orderings are proposed by D’Azevedo et al.
[2], Doi and Washio [11], Monga–Made and Van der Vorst [29], Čiegis [9].
The comparison of parallel preconditioners for non-symmetric sparse linear
systems is done by Ma [28].

A simple parallel version of ILU preconditioner was implemented, with
each processor computing the required factorization by using only a local
part of the matrix A. Such a Jacobi type ILU preconditioner is fully paral-
lel, but the convergence rate of the obtained iterations is decreased, see also
[3, 9]. It is very difficult to estimate the convergence rate of the BiCGSTAB
algorithm with the Jacobi ILU preconditoner even for problems obtained
after discretization of the Laplace equation on uniform grids. The efficiency
of preconditioners also depends strongly on the given problem coefficients
and the properties of the grid. Therefore mainly experimental investiga-
tions are used in for the analysis of simplified preconditioners. In Table 5,
the performance of BiCGSTAB iterative algorithm with the Jacobi ILU pre-
conditioner is given. Here, Np is the total number of BiCGSTAB iterations
calculated in solving all systems of linear equations by using p processors,
and Sp and Ep are the speed-up and efficiency coefficients, respectively, of
the parallel SuFiS algorithm. Note that the number of iterations was exactly
the same for any number of processors in the previous experiments, i.e. the
iterative process was always stopped after computing the maximal number
of iterations. The computations were done on the ITWM cluster Virgo.

Table 5: Iteration numbers Np, CPUtime Tp, speed-up SP and efficiency Ep

coefficients for the Jacobi ILU preconditioner

p Np Tp Sp Ep

1 3304 1246 1.00 1.000
2 3741 742 1.68 0.840
4 4070 465.5 2.68 0.670
8 4137 248.6 5.01 0.627
12 4181 175.6 7.10 0.591

It can be seen that the number of iterations for the BiCGSTAB algorithm
with the Jacobi ILU preconditioner increase when compared with the global
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ILU preconditioner. Therefore, the efficiency of parallel SuFiS is decreased
(compare the new values of Ep with the values given in Table 2). However,
the quality of the Jacobi ILU preconditioner is still quite satisfactory.

The calculations of the ILU factorization and the solution of problems
Dx = f are quite costly. The efficiency of the sequential ILU preconditioner
with the Jacobi diagonal preconditioner was compared. The same problem
was solved by using N = 9849 iterations and T1 = 2315 CPU time. Thus,
the number of iterations increased 2.98 times, but the CPU time increased
by 1.85 times only.

5 Conclusions

A parallel algorithm for the solution of mathematical models describing
filtering of solid particles from liquid oil in complicated 3D geometries is de-
scribed. Governing Navier-Stokes-Brinkmann equations are discretized by
finite volume method, taking special care for accurate discretization of the
velocity and the pressure on the interface between the pure fluid regions and
the porous media region. The parallelization is based on the data decom-
position method. The data is distributed among processors by using two
approaches. In the first approach, a structured reference grid is distributed
using the optimal decomposition topology. In the second one, the general
mesh is decomposed using the Metis library. A theoretical model is pro-
posed for the estimation of complexity of the given parallel algorithm. The
theoretical and experimental results obtained are in very good agreement,
and thus it can be predicted that the proposed parallel algorithm scales well,
and it can be used efficiently for simulation of oil filters with complicated
3D geometries.
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