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Dynamics of Curved Viscous Fibers

with Surface Tension

Nicole Marheineke∗ Raimund Wegener†
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Abstract. In this paper we extend the slender body theory for the dynamics of a curved inertial
viscous Newtonian fiber [23] by the inclusion of surface tension in the systematic asymptotic frame-
work and the deduction of boundary conditions for the free fiber end, as it occurs in rotational
spinning processes of glass fibers. The fiber flow is described by a three-dimensional free boundary
value problem in terms of instationary incompressible Navier-Stokes equations under the neglect of
temperature dependence. From standard regular expansion techniques in powers of the slenderness
parameter we derive asymptotically leading-order balance laws for mass and momentum combin-
ing the inner viscous transport with unrestricted motion and shape of the fiber center-line which
becomes important in the practical application. For the numerical investigation of the effects due
to surface tension, viscosity, gravity and rotation on the fiber behavior we apply a finite volume
method with implicit flux discretization.

Keywords. Slender body theory, curved viscous fibers with surface tension, free boundary value
problem
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1 Introduction

This paper deals with the systematic derivation and numerical investigation of the following
asymptotic one-dimensional model for the spinning of a slender curved inertial viscous Newto-
nian fiber with surface tension. The model determines the dynamics of the fiber center-line γ, the
cross-sectional area A, the intrinsic scalar-valued velocity u and the momentum associated vector-
valued velocity v as well as the temporal evolution of the fiber length L for arc-length parameter
s ∈ [0, L(t)) and time t:

∂tA+ ∂s(uA) = 0

∂t(Av) + ∂s (uAv) = ∂s

(

(
3

Re
A∂su+

√
π

2We
) ∂sγ

)

+A f

v = u ∂sγ + ∂tγ

with gravitational and rotational body forces

f =
1

Fr2
eg − 2

Rb
(eω × v) − 1

Rb2 (eω × (eω × γ))
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and the boundary conditions

dL(t)

dt
= u(L(t), t), L(0) = 0 (A∂su)(L(t), t) =

√
π

6

Re

We

√
A(L(t), t)

A(0, t) = 1, u(0, t) = 1, γ(0, t) = γ0, ∂sγ(0, t) = τ 0

at the free fiber end and the nozzle respectively as well as the arc-length parameterization

‖∂sγ‖ = 1.

Non-dimensionalized with the fluid density, the coefficient of surface tension, the gravitational
acceleration, the angular velocity due to the rotation as well as the mean velocity at the nozzle, a
typical fiber length and the nozzle area, the model is stated in terms of the dimensionless Reynolds
Re, Weber We, Froude Fr and Rossby numbers Rb. The balance laws for mass (cross-section) and
momentum are characterized by the two velocities u and v that are related according to the stated
coupling condition: the momentum associated velocity v is generated by the geometrical motion
of the fiber ∂tγ and the intrinsic velocity u that describes the temporal change of the arc-length
parameter corresponding to a material point and hence the inner viscous transport. In particular,
the balance laws combine the inner viscous transport with the unrestricted motion and shape of
the center-line. The form of the model is certainly physically intuitive, but requires the systematic
derivation, in particular of the boundary condition at the free end that exclusively depends on
the ratio of viscous forces and surface tension. We use the term ”unrestricted motion” since we
presuppose a highly instationary, curved center-line where Rκ ≤ 1 with radius R and curvature κ
is allowed. This feature is of great importance for the simulation of rotational spinning processes
with highly viscous fluids, see experiments by Wong et.al. [35] and Fig 1.

The understanding of the dynamics of curved viscous inertial fibers with surface tension under
gravitation and rotation is generally of interest to research, development and production in the
context of glass fiber drawing, tapering and polymer/glass fiber spinning [25]. Our application
comes in particular from the glass wool production, cf. Fig 1. In rotational spinning processes, hot
molten glass is pressed by centrifugal forces through the perforating walls of a rapidly rotating drum
to form thousands of thin curved liquid fibers. These break up into filaments due to the growth
of surface tension driven instabilities. These filaments cool and solidify while falling down on a
conveyor belt. The theoretical, numerical and experimental investigations of such type of processes
cover a wide variety of interesting subjects, i.e. fiber spinning [25, 6, 34], break up behavior and
drop forming [11, 24, 35, 31, 32, 19], dynamics and crystallization of non-Newtonian (viscoelastic)
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Figure 1: Glass wool production: plant, sketch, simulated fiber motion
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flows [14, 13, 1], analysis of instabilities [21, 26, 29, 16, 28, 17, 37, 15], study of effects due to
viscosity, surface tension, rotation and gravitation [9, 4, 31, 6, 34], about which a huge amount
of literature can be found. In this paper, we focus on the rigorous systematic derivation of the
stated one-dimensional model by extending [23] with surface tension and deducing asymptotically
appropriate boundary condition for the free end.

For uniaxial flows, such one-dimensional models are well-known in literature and already applied
for the theoretical and numerical stability analysis of glass fiber drawing processes, where the
boundary condition at the fiber ending is prescribed by the given pulling velocity, e.g. [3, 15,
16, 17, 37]. They have been heuristically derived with and without surface tension from the cross-
sectional averaging of the balance laws under certain geometry and profile assumptions, see [12, 26]
and references in [8]. Entov et.al. [12] who has incorporated also aerodynamic forces assumes for
example a nearly straight center-line, i.e. Rκ� 1, Rλ� 1 with radius R, curvature κ and torsion
λ, circular cross-sections and a given profile-stress distribution. The first systematic derivation
approach that forms the basis for several subsequent studies about asymptotic model reductions
in this field stems from Dewynne et.al. [8]. This work uses regular asymptotic expansions for
the simplification of stationary Stokes flow with instationary free surface, fixed boundaries and
without surface tension. Its assumption of a nearly straight center-line has been extended to a
curved dynamic center-line in [20]. In addition, an asymptotic fiber model for instationary Navier-
Stokes flow with dynamic but nearly straight and at the boundaries given center-line has been
deduced in [7] excluding and respectively in [4] including surface tension. The restriction on nearly
straight fibers enables the asymptotic analysis in Cartesian coordinates. Numerical investigations
of straight Stokes and Navier-Stokes flows without surface tension can be found e.g. in the context
of honey dripping under gravity [31, 32]. For curved, coiled flows as they occur in our application,
quite heuristic approaches under averaging and stationary assumptions have been stated in [34, 5, 6]
and [27]. The works of Decent et.al. [5, 6] deal particularly with the numerical simulation of inviscid
and respectively viscous liquid jets from a rotating orifice. A linear stability analysis of spiraling
inviscid liquid jets has been developed in [34]. These works presuppose a stationary center-line as
well as circular cross-sections and constant velocity profiles in leading order. The curved center-
line is handled by a covariant coordinate transformation. For the coiling of viscous jets without
surface tension, Ribe [27] proposes an asymptotic analysis that is based on the cross-sectional
averaged linear and angular momentum equations together with the assumption of a stationary
and moderate curved center-line, i.e. Rκ� 1. The uniaxial approaches as well as curved stationary
approach by Decent and Wallwork are generalized by Panda’s curved, instationary model [23].
Based on the previously derived methodologies, Panda et.al. [23] states a systematic derivation of
an asymptotic model for the fiber dynamics without any restrictions on the center-line shape and
motion (i.e. Rκ ≤ 1), cross-sections, profile quantities nor on the inner viscous transport. To handle
the non-linearity and the curved geometry, the formulation of the Navier-Stokes equations in scaled
curvilinear coordinates and the splitting of the velocities in the transporting intrinsic u and the
transported momentum associated v are used. However, the neglect of surface tension, We → ∞,
results in a boundary layer in the cross-sections at the free fiber end, i.e. A(L(t), t) = A(0, 0),
that is physically unreasonable. Surface tension is a destablishing mechanism to the flow since its
driven instabilities lead to fiber breaking and drop forming, e.g. [11, 24, 35, 30], and to a complex
dynamic at the nozzle [5, 34]. Thus, the demand on this paper is the extension of Panda’s model
by including surface tension and deducing asymptotically appropriate boundary conditions for the
free fiber end. So far only heuristic conditions have been suggested e.g. in [11]. The numerical
analysis of our final asymptotic model shows a realistic fiber behavior due the effects of viscosity,
gravity, rotation and surface tension that coincides with the experiments by Wong et.al. [35].

The three-dimensional free boundary value problem (BVP) for the spinning of a slender curved
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inertial viscous fiber is characterized by the slenderness parameter ε, i.e. ratio between nozzle
diameter and typical fiber length, that is carried into the problem by the inflow and the dynamic
boundary conditions due to the definition of the Weber number. Applying the transformation
theory of [23] and formulating the free BVP in scaled curvilinear coordinates with respect to the
fiber center-line and the slenderness parameter in Sec 2, we embed the BVP into a fiber family
whose inflow conditions are independent of ε. Their asymptotic analysis in Sec 3 follows the spirit of
[8] by using the standard expansion techniques in powers of the slenderness parameter for the model
reduction. Thereby we determine the in general unknown relation between the cross-sectional areas
and their boundaries by the assumption of radial cross-sections. Comparing the volume averaged
three- and one-dimensional balance laws results finally in the appropriate boundary conditions for
the free fiber end. The systematically derived one-dimensional fiber model can be understood as
generalization of the existing models to the unrestricted dynamic description of a curved viscous
fiber with surface tension. The effects of viscosity, gravity, rotation and surface tension on the fiber
dynamics are numerically investigated in Sec 4 by applying a finite volume method on a staggered
grid with an implicit upwind flux discretization. We particularly examine the unrestricted dynamic
fiber description that is important for the practical application.

2 Three-dimensional Model

Consider a single slender curved viscous inertial fiber. Neglecting temperature dependence, the fiber
medium is modeled as incompressible Newtonian fluid with surface tension and the fiber spinning
as three-dimensional free BVP via incompressible Navier-Stokes equations with free surface and
inflow boundary conditions.

2.1 Free Boundary Value Problem

The system of equations is non-dimensionalized by help of the given constant fluid density ρ, the
mean velocity at the nozzle V and a fiber length ` that is typical in the rotational spinning process.
The process is initialized with an empty flow domain at time zero, note that time t ∈ R

+ in the
paper. Let the flow domain at t be denoted by Ω?(t) ⊂ R

3 and its boundary by ∂Ω?(t) = Γ?fr(t)∪Γ?in
with Γ?fr(t)∩Γ?in = ∅ where Γ?fr(t) and Γ?in prescribe the time-dependent free surface and the time-
independent planar inflow boundary (nozzle), respectively. The small ratio between the nozzle
diameter and the fiber length is identified as slenderness parameter ε. Due to the scaling with the
taken typical velocity V , the dimensionless inflow velocity profile vin at the nozzle satisfies

|Γ?in|1/2 = ε� 1, (1)
∫

Γ?

in

vin · τ 0 dA =

∫

Γ?

in

dA = ε2 (2)

where |Γ?in| =
∫

Γ?

in

dA is the measure of the cross-sectional area of the nozzle Γ?in and τ 0 its inner

normal vector. The process is characterized by the dimensionless Reynolds Re = `ρV/µ and Weber
numbers We = (ε`/2)ρV 2/σ with dynamic viscosity µ and coefficient of surface tension σ. The
chosen length ε`/2 in the Weber number can be understood as the typical radius of curvature of
the free surface.

Then, the model for the free BVP reads

Balance laws, r ∈ Ω?(t)
∇r · v(r, t) = 0

∂tv(r, t) + ∇r · (v ⊗ v)(r, t) = ∇r ·TT (r, t) + f(r, t)
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Constitutive law

T = −p I +
1

Re
(∇rv + (∇rv)T )

Kinematic and dynamic boundary conditions, r ∈ Γ?fr(t)

(v · n?)(r, t) = w?(r, t), (T · n?)(r, t) = − ε

We
(Hn?)(r, t)

Inflow boundary condition, r ∈ Γ?in
v(r, t) = vin(r)

Initial condition
Ω?(0) = ∅

The unknowns of the BVP are the field variables for velocity v and pressure p as well as the
geometry of the flow domain that is determined by the unit outer normal vectors n? and the scalar
speed w? of the free surface Γ?fr(t). The jump in the normal stresses at Γ?fr(t) is incorporated in the
definition of the stress tensor T by choosing p as hydrodynamic pressure being relative with regard
to the constant atmospheric one. Then, the inhomogeneous dynamic boundary condition for T
where the mean curvature H is deduced from the geometry include the effects of surface tension
in the model. The appropriate choice of body forces f completes the model, e.g. gravitational and
rotational forces are considered.

2.2 Coordinate Transformations

Following the systematic asymptotic concept of [23] for the model reduction, the free BVP is
transformed into general coordinates being specified as scaled curvilinear. These coordinates can
be understood as generalization of cylindrical ones along an arbitrary curve with which the fiber
center-line is associated. The scaling leads to inflow conditions independent of the slenderness
parameter. Hence, after briefly stating the basic theory of the coordinate transformation [23], the
free BVP in scaled curvilinear coordinates is embedded into a family of self-similar problems with
fixed inflow domain and fixed inflow velocity.

Definition 1 (Time-dependent General Coordinate Transformation) A function r̆ defined

by r̆(·, t) : Ω(t) ⊂ R
3 7→ Ω?(t) ⊂ R

3 for t ∈ R
+ is called time-dependent general coordinate trans-

formation if r̆ ∈ C2 and if its restrictions r̆(·, t) are bijective.

The function r̆ maps chosen time-dependent coordinates x onto a spatial point r, whereas x̆ maps
any point onto its coordinates. Consequently, scalar, vector and tensor fields can be defined in
spatial points or general coordinates, i.e. f̃(x, t) = f(r̆(x, t), t) and f(r, t) = f̃(x̆(r, t), t). In the
following we suppress the distinction by tilde to keep the terminology simple. Related to a given
r̆ the following characteristic quantities are introduced:

• Inverse mapping r̆(x̆(r, t), t) = r and x̆(r̆(x, t), t) = x

• Coordinate transformation matrix F(x, t) = ∇xr̆(x, t)

• Functional determinant J(x, t) = det(F(x, t))

• Inverse matrix G(x, t) = F−1(x, t) = ∇rx̆(r̆(x, t), t)

• Coordinate velocity q(x, t) = ∂tr̆(x, t)

Definition 2 (Transformation of Observables) For the observables of the free BVP the fol-

lowing transformed fields in general coordinates are introduced
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• Stress tensor S(x, t) = J(x, t)T(x, t) ·G(x, t)

• Intrinsic velocity u(x, t) = (v(x, t) − q(x, t)) · G(x, t)

• Normal vectors n(x, t) =
F · n?

‖F · n?‖ (x, t)

• Surface speed w(x, t) =
(w? − q · n?)

‖F · n?‖ (x, t)

The transformations in Def 2 keep the physical and geometrical properties of the observables and
enable the formulation of the free BVP in general coordinates in terms of balance laws where the
functional determinant J represents the density. The relation of the two introduced velocities, u and
v is expressed in the coupling condition: the intrinsic velocity u describes the convection/transport
of the unknowns in the balance laws, whereas the momentum associated velocity v represents the
transported quantity. The derivation of the BVP is sketched in [23] for homogeneous dynamic
boundary conditions. The stated inhomogeneous dynamic boundary conditions result directly
from Def 2. Thereby, H prescribes the mean curvature of the spatial geometry Ω?(t) at points that
are addressed by the general coordinates.

Balance laws, x ∈ Ω(t)
∂tJ(x, t) + ∇x · (Ju)(x, t) = 0

∂t(Jv)(x, t) + ∇x · (u⊗ Jv)(x, t) = ∇x · ST (x, t) + (Jf)(x, t)

Coupling condition
u = (v − q) · G

Constitutive law

S = J

(

−p I +
1

Re

(

(G · ∇v) + (G · ∇v)T
)

)

·G

Kinematic and dynamic boundary conditions, x ∈ Γfr(t)

(u · n)(x, t) = w(x, t), (S · n)(x, t) = − ε

We
(JHG · n)(x, t)

Inflow boundary condition, x ∈ Γin
v(x, t) = vin(x)

Initial condition
Ω(0) = ∅

To specify the general coordinates as scaled curvilinear ones, a three-dimensional time-dependent
curve γ(s, t) in the domain Ω(t) ⊂ R

3 is introduced that is parameterized with respect to the arc-
length s ∈ R

+
0 . Assuming sufficient regularity of γ, curvature κ = ‖∂ssγ‖, κ 6= 0 and torsion

λ = ∂sγ · (∂ssγ × ∂sssγ)/κ2 are well-defined. Define a orthonormal basis corresponding to γ by

τ = ∂sγ, η1 = cos(φ)η − sin(φ)b, η2 = sin(φ)η + cos(φ)b

with the tangent τ , normal η = ∂ssγ/κ and binormal vectors b = τ ×η as well as the torsion angle
φ(s, t) =

∫ s
0 λ(σ, t) dσ, [2]. Based on the Serret-Frenet formulae their relations are formulated as

∂sτ = (∂αh)ηα, ∂sηα = −(∂αh)τ with h(x, t) = x1κ cos(φ) + x2κ sin(φ), α = 1, 2.

Note that we apply the generalized Einstein summation convention in this paper. Latin indices
have values out of the set {1, 2, 3}, Greek indices out of {1, 2}.
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Definition 3 (Scaled Curvilinear Coordinate Transformation) For a given arc-length pa-

rameterized and smooth curve γ and a fixed parameter ε ∈ R
+ the special choice of a time-dependent

general coordinate transformation

r̆(x, t) = γ(s, t) + ε x1η1(s, t) + ε x2η2(s, t) with s = x3

is called scaled curvilinear coordinate transformation, if r̆(·, t) is bijective for t ∈ R
+.

Using the canonical basis ei, i = 1, 2, 3 in R
3, the characteristic quantities of a scaled curvilinear

coordinate transformation read

• Coordinate transformation matrix F = ei ⊗ fi, f1 = εη1, f2 = εη2, f3 = (1 − εh) τ

• Functional determinant J = ε2(1 − εh)

• Inverse matrix G = gi ⊗ ei, g1 =
1

ε
η1, g2 =

1

ε
η2, g3 =

1

(1 − εh)
τ

• Coordinate velocity q = ∂tγ + ε xα∂tηα

This yields the representation of the Newtonian stress tensor S in scaled curvilinear coordinates,
[23, 22], where ui := u · ei, i = 1, 2, 3

S = −p
(

ε(1 − εh) (ηα ⊗ eα) + ε2 (τ ⊗ e3)

)

+
1

Re

(

ε(1 − εh) (∂αuβ + ∂βuα) (ηα ⊗ eβ) + (ε(1 − εh)∂αu3 +
ε3

(1 − εh)
∂suα) (ηα ⊗ e3)

+ (ε2∂suα + (1 − εh)2∂αu3) (τ ⊗ eα) + (2 ε2∂su3 +
2ε3

(1 − εh)
h (∂αuα + ∂su3)) (τ ⊗ e3)

)

2.3 Fiber Family in Scaled Curvilinear Coordinates

Applying the scaled curvilinear coordinate transformation on our fiber problem, its representative
quantities, i.e. the curve γ and the scaling factor ε, are specified by the center-line of the fiber
and the slenderness parameter in Eq (1). This choice has some crucial consequences for the logical
structure of our problem. Since the dynamics of the center-line depends on the solution of the
free BVP, the coordinate transformation becomes part of the problem. Therefore, we impose the
following assumption of [23] concerning the fiber domain and its cross-sections.

Assumption 4 (Fiber Geometry) Let Ω?(t) be the flow domain of the fiber spinning process

and ε the slenderness parameter of Eq (1). Moreover, let γ(·, t) : [0, L(t)) 7→ Ω?(t) for t ∈ R
+ be a

time-dependent arc-length parameterized curve. Then, assume

• A scaled curvilinear coordinate transformation r̆(·, t) : Ω(t) 7→ Ω?(t) for t ∈ R
+ exists with

respect to ε and γ.

• Ω(t) is given by the fiber length L(t) and the smooth, 2π-periodic radius function R(·, t) :
[0, 2π) × [0, L(t)) 7→ R

+ in such a way that

Ω(t) = {x = (x1, x2, s) ∈ R
3 | (x1, x2) ∈ A(s, t), s ∈ [0, L(t))}

with cross-sections

A(s, t) = {(x1, x2) ∈ R
2 |x1 = % cos(ψ), x2 = % sin(ψ), % ∈ [0, R(ψ, s, t)], ψ ∈ [0, 2π)}.
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• The curve γ satisfies the center-line condition, i.e.
∫

A(s,t)

x1 dx1dx2 =

∫

A(s,t)

x2 dx1dx2 = 0.

The assumption answers the question of the validity of the asymptotic result. This depends on
the bijectivity of the coordinate transformation and is hurt if Rκ > 1. This constraint is obviously
weaker than the assumption Rκ � 1, e.g. used in [12, 27]. The whole fiber domain in the scaled
curvilinear coordinates is completely described by the three quantities: fiber length L, center-line
γ and radius function R. As consequence, the fiber geometry has a bottom surface that might
shrink to a single point, |A(L(t), t)| = 0, due to the acting surface tension. Hence, we distinguish
between the lateral and the bottom surface of the free surface, i.e. Γfr(t) = Γlat(t) ∪ Γbot(t),
Γlat(t) ∩ Γbot(t) = ∅.

The lateral surface Γlat(t) can be parameterized by the bijective function ξ(·, t) : [0, 2π) ×
[0, L(t)) 7→ Γlat(t) ⊂ R

3

ξ(ψ, s, t) = (R(ψ, s, t) cos(ψ), R(ψ, s, t) sin(ψ), s). (3)

Then, the outer normal vector n and the surface speed w are expressed by

n(ξ, t) =
∂ψξ × ∂sξ

‖∂ψξ × ∂sξ‖
=
∂ψ(R sin(ψ))e1 − ∂ψ(R cos(ψ))e2 −R∂sRe3

√

R2 + (∂ψR)2 +R2(∂sR)2

w(ξ, t) = ∂tξ · n̂(ξ, t) =
R∂tR

√

R2 + (∂ψR)2 +R2(∂sR)2

Since ρ(ψ, s, t) = r̆(ξ(ψ, s, t), t) = γ(s, t)+ ε(R(ψ, s, t) cos(ψ)η1(s, t) +R(ψ, s, t) sin(ψ)η2(s, t)) is a
parameterization of Γ?lat(t) in spatial points for fixed time t, the mean curvatureH can be computed
as

H = −1

2

(n? · ∂ψψρ)(∂sρ · ∂sρ) − 2(n? · ∂ψsρ)(∂ψρ · ∂sρ) + (n? · ∂ssρ)(∂ψρ · ∂ψρ)

(∂ψρ · ∂ψρ)(∂sρ · ∂sρ) − (∂ψρ · ∂sρ)2

with outer normal n?(ρ, t) = (∂ψρ × ∂sρ)/‖∂ψρ × ∂sρ‖, see [10]. Hence, we have

H = − 1

2

(

(1 − εh)2(R2 + (∂ψR)2) + ε2R2(∂sR)2
)3/2

(

ε−1(1 − εh)3
(

−R2 +R∂ψψR− 2(∂ψR)2
)

+ (1 − εh)2
(

((∂ψR)3 +R2∂ψR)(sin(ψ)∂1h− cos(ψ)∂2h) + (R2 + (∂ψR)2)h

)

+ ε(1 − εh)

(

R∂ψψR(∂sR)2 +R∂ssR(∂ψR)2 − 2R∂ψsR∂ψR∂sR−R2(∂sR)2 +R3∂ssR

)

+ ε2 R∂sR

(

(2R∂ψR∂sR sin(ψ) − (∂ψR)2∂sR cos(ψ))∂1h

+ (−2R∂ψR∂sR cos(ψ) − (∂ψR)2∂sR sin(ψ))∂2h+R∂sRh+ (R2 + (∂ψR)2)∂sh

))

.

The kinematic and dynamic boundary conditions are formulated as

(u(ξ, t) − ∂tξ) · (∂ψξ × ∂sξ) = 0, (S +
ε

We
JHG)(ξ, t) · (∂ψξ × ∂sξ) = 0.
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Considering the bottom boundary Γbot(t) = A(L(t), t) × {L(t)}, we have to distinguish two
scenarios. If |A(L(t), t)| = 0, no further boundary conditions are necessary since the lateral surface
equals the free surface up to a null set. On the other hand, if |A(L(t), t)| 6= 0 holds, the bottom
surface is planar in the coordinates and has the outer normal vector e3 in accordance to Ass 4.
Due to the linearity of the coordinate transformation in (x1, x2), the bottom surface in the spatial
geometry inherits the planar shape and shows thus no mean curvature, i.e. H = 0. This leads to
the following kinematic and dynamic boundary conditions of Γbot(t)

dL(t)

dt
= u3(x, t), (S · e3)(x, t) = 0.

The initial condition L(0) = 0 that is generally equivalent to Ω(0) = ∅ of the free BVP closes
additionally the derived ordinary differential equation for the length in the second scenario.

Proceeding with the study of the inflow conditions, the inflow boundary Γ?in is considered to
be planar with center point γ0 and inner normal τ 0. In correspondence to Ass 4,

γ(0, t) = γ0, ∂sγ(0, t) = τ 0 (4)

hold. In addition, the relations for inflow velocity profile and slenderness parameter Eqs (1),(2)
can be reformulated as

|Γin| = |A|(0, t) = 1 (5)
∫

Γin

vin · τ 0 dA =

∫

A(0,t)

vin · τ 0 dx1dx2 = 1. (6)

Due to the coordinate transformation, the original boundary conditions (cf. Eqs (1),(2)) become
independent of ε in the scaled curvilinear coordinates. This ε-independence of Eqs (5),(6) is utilized
in the definition of the fiber family for the coming asymptotic analysis. The free BVP is embedded
for a fixed slenderness parameter ε = ε0 in a family of self-similar problems corresponding to
parameters ε ≤ ε0 that are characterized by a fixed inflow domain in scaled curvilinear coordinates
(Γin)ε = Γin as well as a fixed inflow velocity (vin)ε = vin.

Summarizing the full set of equations for the fiber family, the variables depending on the
slenderness parameter are marked with subscript ε. The unknowns are the field variables vε, uε, pε
and the geometry variables Lε, γε, Rε. All other occurring quantities are defined by the geometry.

Balance laws, x ∈ Ωε(t)
∂tJε(x, t) + ∇x · (Jεuε)(x, t) = 0

∂t(Jεvε)(x, t) + ∇x · (uε ⊗ Jεvε)(x, t) = ∇x · STε (x, t) + (Jεfε)(x, t)

Coupling condition
uε = (vε − qε) · Gε

Lateral surface conditions, ξε ∈ (Γlat)ε(t)

(uε(ξε, t) − ∂tξε) · (∂ψξε × ∂sξε) = 0, (Sε +
ε

We
JεHεGε)(ξε, t) · (∂ψξε × ∂sξε) = 0

and if |(Γbot)ε(t)| > 0: Bottom surface conditions, x ∈ (Γbot)ε(t)

dLε(t)

dt
= u3,ε(x, t), (Sε · e3)(x, t) = 0

9



Inflow boundary condition, x ∈ (Γin)ε vε(x, t) = vin(x)

Geometry conditions

‖∂sγε‖ = 1, γε(0, t) = γ0, ∂sγε(0, t) = τ 0,

∫

Aε(s,t)

x1 dx1 dx2 =

∫

Aε(s,t)

x2 dx1 dx2 = 0

Initial condition
Lε(0) = 0

3 Asymptotic Analysis

The derivation of the one-dimensional asymptotic fiber model from the three-dimensional free BVP
is based on the cross-sectional averaging of the balance laws. Thereby, the asymptotic expansions
in zeroth and first order yield the necessary cross-sectional profile properties of the unknowns. The
corresponding boundary conditions are deduced from the comparison of the volume averaged one-
and three-dimensional balance laws.

3.1 Cross-sectional Averaging

For the formulation of the cross-sectional averaged balance laws special integration rules are pro-
vided. Therefore, the following conventions are introduced

〈f〉A(s,t) =

∫

A(s,t)

f(x1, x2, s, t) dx1dx2, 〈f〉∂A(s,t) =

∫

∂A(s,t)

f
√

n2
1 + n2

2

dl,

where f denotes a differentiable and integrable scalar-, vector- or tensor-valued function on Ω(t),
A a cross-section and n the unit outer normal vector on the lateral surface Γlat(t).

Lemma 5 Let f be a differentiable and integrable scalar-, vector- or tensor-valued function on

Ω(t), then the following computation rules are valid

〈∂sf〉A(s,t) = ∂s〈f〉A(s,t) + 〈fn3〉∂A(s,t), 〈∂tf〉A(s,t) = ∂t〈f〉A(s,t) − 〈fw〉∂A(s,t).

Lemma 5 can be concluded from the Reynolds-Transport Theorem, [8]. The stated integration
rules can be extended on arbitrary vector m and tensor M fields possessing the same properties
as f by help of the Gauss Theorem

〈∇ ·m〉A(s,t) = ∂s〈m · e3〉A(s,t) + 〈m · n〉∂A(s,t), 〈∇ · MT 〉A(s,t) = ∂s〈M · e3〉A(s,t) + 〈M · n〉∂A(s,t)

Applying them on the three-dimensional balance laws of our family problem and incorporating the
lateral surface conditions give one-dimensional balance laws that will play the crucial role for the
closing of the asymptotic expansions in the following subsections.

Theorem 6 (Cross-sectional Averaged Balance Laws) Let a solution of the fiber family BVP

exist. Then the following cross-sectional integral relations hold

∂t〈Jε〉Aε(s,t) + ∂s〈Jε u3,ε〉Aε(s,t) = 0

∂t〈Jεvε〉Aε(s,t) + ∂s〈Jε u3,ε vε〉Aε(s,t) = ∂s〈Sε · e3〉Aε(s,t) −
ε

We
〈JεHεGε · nε〉∂Aε(s,t) + 〈Jεfε〉Aε(s,t).

Using the parameterization ξ of Γlat(t) in Eq (3), we can write the line integral explicitely as

〈JεHεGε · nε〉∂Aε(s,t) =

2π
∫

0

(

ε(1 − εhε)(∂ψ(Rε sin(ψ))η1,ε − ∂ψ(Rε cos(ψ))η2,ε) − ε2Rε∂sRε τ ε

)

Hε dψ.
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3.2 Asymptotic Expansions

The fact that the fiber domain itself depends on ε challenges the asymptotic expansion of the free
BVP equations. This difficulty is handled by extending all field quantities on the domain ∪ε<ε0Ωε(t)
and presupposing that their restrictions on Ωε(t) are solutions of the respective ε-problem.

For the underlying geometry variables, regular power series expansions in ε are set up

Lε(t) = L(0)(t) + ε L(1)(t) + O(ε2)

γε(s, t) = γ(0)(s, t) + ε γ(1)(s, t) + O(ε2)

Rε(ψ, s, t) = R(0)(ψ, s, t) + ε R(1)(ψ, s, t) + O(ε2)

with s ∈ [0,maxε<ε0 Lε(t)) and ψ ∈ [0, 2π). The field variables vε and pε are analogously expanded

vε(x, t) = v(0)(x, t) + ε v(1)(x, t) + O(ε2)

pε(x, t) = p(0)(x, t) + ε p(1)(x, t) + O(ε2)

for x ∈ ∪ε<ε0Ωε(t). Then, the coupling condition determines the expansion of u whose leading
order term is O(ε−1) due to the decomposition of Gε = gi,ε ⊗ ei

uε(x, t) = ε−1 u(−1)(x, t) + u(0)(x, t) + εu(1)(x, t) + O(ε2).

Since particularly g3,ε ∼ O(1), u
(−1)
3 = 0 holds. The body force densities are assumed to be

f (0)(s) in leading order which stands in accordance to the gravitational and rotational forces being
considered in the application. Concerning the mean curvature Hε, the expansion reads Hε =
ε−1H(−1) +H(0) + O(ε) where the dominant terms are

H(−1) =
1

2

(R(0))2 −R(0)∂ψψR
(0) + 2(∂ψR

(0))2

((R(0))2 + (∂ψR(0))2)3/2

H(0) =
1

2

1

((R(0))2 + (∂ψR(0))2)3/2
(

(−(R(0))2 − (∂ψR
(0))2)h(0) + ((∂ψR

(0))3 + (R(0))2∂ψR
(0))(cos(ψ)∂2h

(0) − sin(ψ)∂1h
(0))

+ 2R(0)R(1) −R(0)∂ψψR
(1) −R(1)∂ψψR

(0) + 4∂ψR
(0)∂ψR

(1)

− 3
R(0)R(1) + ∂ψR

(0)∂ψR
(1)

(R(0))2 + (∂ψR(0))2
((R(0))2 −R(0)∂ψψR

(0) + 2(∂ψR
(0))2)

)

Thereby, 2H(−1) represents the curvature in zeroth order of the boundary curve in polar coordi-
nates. Note that we impose no restrictions on γε in comparison to Decent and Wallwork [5, 6, 34]
who assume a stationary center-line in leading order.

It makes no sense to study the asymptotics of the sets Ωε(t), (Γlat)ε(t), (Γbot)ε(t) and Aε(s, t)
in analogon to the functions. However, the limit case ε → 0 exists and this reference geometry is
denoted by Ω0(t), (Γlat)0(t), (Γbot)0(t) and A0(s, t). The reference geometry is expected to satisfy
|(Γbot)0(t)| > 0 – even in cases where |(Γbot)ε(t)| = 0 holds –, because the scaled bottom surface
becomes planar for ε → 0. This stands in no contradiction to our asymptotic expansion of the
geometrical quantities, since we always consider open intervals for the fiber ending. As we see, the
asymptotically derived one-dimensional fiber model allows finite bottom surfaces.

Corresponding to the reference geometry, the normal vectors and the surface speed in parametric
version are given by n0(ξ

(0), t) = (∂ψξ(0) × ∂sξ
(0))/‖∂ψξ(0) × ∂sξ

(0)‖ and w0(ξ
(0), t) = ∂tξ

(0) ·

11



n0(ξ
(0), t). Then, the lateral surface conditions read

0 =u(−1)(ξ(0), t) · (∂ψξ(0) × ∂sξ
(0))

+ ε

(

(u(0)(ξ(0), t) + ξ(1) · ∇u(−1)(ξ(0), t) − ∂tξ
(0)) · (∂ψξ(0) × ∂sξ

(0)) (7)

+ u(−1)(ξ(0), t) · (∂ψξ(0) × ∂sξ
(1) + ∂ψξ(1) × ∂sξ

(0))

)

+ O(ε2)

and

0 =S(0)(ξ(0), t) · (∂ψξ(0) × ∂sξ
(0))

+ ε

(

((S(1)(ξ(0), t) +
1

We
H(−1)G(−1)(ξ(0), t)) + ξ(1) · ∇S(0)(ξ(0), t)) · (∂ψξ(0) × ∂sξ

(0)) (8)

+ S(0)(ξ(0), t) · (∂ψξ(0) × ∂sξ
(1) + ∂ψξ(1) × ∂sξ

(0))

)

+ O(ε2).

by using Taylor expansion around the reference geometry. Since Eqs (7),(8) lead to boundary
conditions in zeroth and first order for the reference geometry, the unknowns defined on ∪ε<ε0Ωε(t)
are assumed to satisfy the balance laws on Ω0(t).

3.3 Balance Laws for Radial Cross-sections

The application of Th 6 requires knowledge about the relation between the fiber cross-sections
and their boundary curves. The evolution of the cross-sectional shape for nearly straight fibers
is governed by a quasi two-dimensional free boundary problem similar to two-dimensional Stokes
flow with a surface tension driven boundary and described by conformal mappings in Cummings
et.al. [4]. Since the shape tends to a circle under surface tension, we restrict our general con-
siderations on the intuitive case of a circular nozzle and consequently of radial cross-sections,
i.e. R(0) = R(0)(s, t), R(1) = R(1)(s, t), which stands in accordance to our center-line condition.
Then, the mean curvature reduces to

H(−1) =
1

2R(0)
, H(0) =

−R(0)h(0) −R(1)

2(R(0))2
(9)

Focusing on the family of balance laws with lateral surface conditions (lateral problem) in
Sec 2.3, we derive zeroth and first order equations in ε with closure conditions that result in the
desired one-dimensional asymptotic fiber model on the radial reference geometry. Since the form of
the zeroth and first order equations is similar, a general solution theory oriented on [8] is pre-stated.

Lemma 7 Let D ⊂ R
2 be a bounded domain with outer normal vector n on ∂D. Let T(x) ∈ R

2×2

be a regular symmetric matrix for x ∈ D. Then, T = 0 is the unique solution of the following

boundary value problem

∇ ·TT = 0, 4trT = 0 in D
T · n = 0 on ∂D

Proof: Obviously, T = 0 is a solution. Thus, the uniqueness remains to be shown. The symmetry
and the zero divergence implies the existence of the Airy-stress function α : D → R with

T =

(

∂22α −∂12α
−∂12α ∂11α

)

.
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Consequently, trT = 4α. This results in the biharmonic problem 44α = 0 whose boundary
condition ∇α = (c1, c2) = const can be concluded from T ·n = 0 on ∂D. Its general solution reads
α = c1x1 + c2x2 + c3 with constant c3. Hence, T = 0. �

Theorem 8 Let D ⊂ R
2 be a bounded domain with outer normal vector n on ∂D and let c ∈ R be

constant. Let f : D → R, Φ : D → R
2 and ϕ : D → R be sufficiently smooth.

1. The solution of the boundary value problem

∇ ·Φ = c, ∇(∇ ·Φ) + 4Φ = ∇f in D
(∇Φ + ∇ΦT ) · n = fn on ∂D

has the following form with constant parameters a, b1 and b2

Φ1(x1, x2) =
c

2
x1 − ax2 + b1, Φ2(x1, x2) =

c

2
x2 + ax1 + b2, f = c.

2. The solution of the boundary value problem

4ϕ = 0 in D, ∇ϕ · n = 0 on ∂D

is constant, i.e. ϕ(x1, x2) = c.

Proof: For the two-dimensional stress-free Stokes equations, the matrix-valued function

T =

(

2∂1Φ1 − f ∂1Φ2 + ∂2Φ1

∂1Φ2 + ∂2Φ1 2∂2Φ2 − f

)

satisfies the boundary value problem of Lem 7. Thus, T = 0 which implies ∂1Φ1 = ∂2Φ2 = f/2
and ∂1Φ2 + ∂2Φ1 = 0. Applying ∇ ·Φ = c results in f = c which leads to the stated solution. For
the Laplace equation with Neumann condition the solution form is trivial. �

Zeroth Order

Using the zeroth order stress tensor

S(0) =
1

Re

(

(∂αu
(−1)
β + ∂βu

(−1)
α )(η(0)

α ⊗ eβ) + (∂αu
(0)
3 )(τ (0) ⊗ eα)

)

and Eqs (7),(8), the balance laws with lateral surface conditions on the reference geometry read

∂αu
(−1)
α = 0,

(

∂αβu
(−1)
β + ∂ββu

(−1)
α

)

η(0)
α + (∂ααu

(0)
3 )τ (0) = 0 in Ω0(t)

(∂αu
(−1)
β + ∂βu

(−1)
α )n0,β η(0)

α + ∂αu
(0)
3 n0,α τ (0) = 0 on (Γlat)0(t)

Lemma 9 (Cross-sectional Profile Properties in Zeroth Order) Let the kinematic bound-

ary condition fulfill u(−1) · n0 = 0. Then, the solution of the stated zeroth order lateral problem

satisfies

u
(−1)
1 = −a(s, t)x2, u

(0)
3 = u

(0)
3 (s, t),

u
(−1)
2 = a(s, t)x1

13



Proof: Applying Th 8.1 for u
(−1)
1 and u

(−1)
2 yields

u
(−1)
1 = −a(s, t)x2 + b1(s, t), u

(−1)
2 = a(s, t)x1 + b2(s, t).

Note that f = c = 0 are consistently given. The satisfaction of the kinematic boundary condition
requires the vanishing of the constants b1(s, t) and b2(s, t), i.e. b1 = b2 = 0, but it is independent

of the choice of a(s, t) in case of the considered circular cross-sections. The result for u
(0)
3 follows

directly from Th 8.2. �

As consequence of the lemma the zeroth order velocity and stress satisfy

v(0) = u(−1)
α η(0)

α + u
(0)
3 τ (0) + ∂tγ

(0), S(0) = 0.

Note that for non-circular cross-sections b1 = b2 = 0 also hold by the additional help of the center-
line condition. Moreover, a(s, t) must vanish to fulfill the kinematic boundary condition. Since
any slight perturbations at the nozzle destroy the circular cross-sectional profile, a = 0 and thus
u(−1) = 0 are the only relevant solutions. The degree of freedom in the circular case is gained from
the coordinate transformation. However, the appearing singularity has no effect on our final result
due to the imposed center-line condition as we will see in the following.

First Order

With the results of zeroth order and the deduced first order stress tensor

S(1) = −p(0)(η(0)
α ⊗ eα) +

1

Re

(

(∂αu
(0)
β + ∂βu

(0)
α )(η(0)

α ⊗ eβ) + (∂αu
(1)
3 + ∂su

(−1)
α )(τ (0) ⊗ eα)

)

,

the first order lateral problem reads

∂αu
(0)
α + ∂su

(0)
3 = 0,

(

∂αβu
(0)
β + ∂ββu

(0)
α − Re ∂αp

(0)
)

η(0)
α + ∂ααu

(1)
3 τ (0) = 0 in Ω0(t)

(

(∂αu
(0)
β + ∂βu

(0)
α )n0,β + Re(−p(0) +

1

We
H(−1))n0,α

)

η(0)
α + ∂αu

(1)
3 n0,α τ (0) = 0 on (Γlat)0(t)

The validity of the boundary conditions on the radial reference geometry is concluded from Eqs (7),(8)
using u(−1) = a(s, t)(−x2e1 + x1e2) and S(0) = 0.

Lemma 10 (Cross-sectional Profile Properties in First Order) Let the kinematic bound-

ary condition fulfill u(0) · n0 = w0. Then, the solution of the first order lateral problem satisfies

u
(0)
1 = −1

2
∂su

(0)
3 (s, t)x1 − d(s, t)x2 p(0) = − 1

Re
∂su

(0)
3 (s, t) +

1

We
H(−1)

u
(0)
2 = −1

2
∂su

(0)
3 (s, t)x2 + d(s, t)x1 u

(1)
3 = u

(1)
3 (s, t).

with H(−1) = 1/(2R(0)).

Proof: Since H (−1) is constant for circular cross-sections, Th 8 can be applied. The strategy of
proof is analogous to the one for the zeroth order problem. �

Apart from the vanishing of the additive constants in the proof of u
(0)
1 and u

(0)
2 , the satisfaction of

the kinematic boundary condition in Lem 10 leads also to the – cross-sectional averaged – continuity
equation for the asymptotic fiber model stated in Eq (10). This result is not so surprising since we
impose a restriction on the shape of the boundary by presupposing the cross-sections to be circular.
It just confirms the consistency of our assumption and the asymptotic analysis. The determination
of the twist parameter d(s, t), cf. [7], is not necessary, since it decouples from our final model.
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Closure

Considering the cross-sectional averaged balance laws of Th 6, only the axial effect of the second
order stress tensor is of interest, since consistently S(0) · e3 = S(1) · e3 = 0. Using the results of
zeroth and first order it particularly reads

S(2) · e3 = −p(0)τ (0) +
1

Re

(

2(∂su
(0)
3 − u(−1)

α ∂αh)τ
(0) + ∂su

(−1)
α η(0)

α

)

and hence

〈S(2) · e3〉A0 =

(

−p(0) +
2

Re
∂su

(0)
3

)

τ (0)|A0| =

(

3

Re
∂su

(0)
3 |A0| −

√
π

2We

√

|A0|
)

τ (0)

by applying the center-line condition and the assumption of circular cross-sections. With Eq (9), the
line integral over the boundary vanishes consistently in zeroth order. In first order it is explicitely
given by

(〈JHG · n〉∂Aε
)(1) = −π ∂s(R(0)τ (0)) = −√

π ∂s(
√

|A0| τ (0))

Thus, the averaged balance laws in their leading order result in the following asymptotic fiber
model

∂t|A0| + ∂s(u
(0)
3 |A0|) = 0 (10)

∂t(〈v(0)〉A0) + ∂s(u
(0)
3 〈v(0)〉A0) = ∂s

((

3

Re
∂su

(0)
3 |A0| +

√
π

2We

√

|A0|
)

τ (0)

)

+ f (0)|A0|. (11)

with the respective coupling and geometry conditions

〈v(0)〉A0 = (u
(0)
3 (s, t)τ (0)(s, t) + ∂tγ

(0)(s, t)) |A0|
‖∂sγ(0)‖ = 1.

Only the cross-sectional averaged velocity – not the exact profile – is of interest in the momentum
equation. Its exclusive dependence on the tangential intrinsic velocity and the dynamics of the
center-line is deduced from the center-line condition.

3.4 Initial and Boundary Conditions for Radial Cross-sections

Closing the one-dimensional fiber model, Eqs (10),(11), requires the derivation of appropriate initial
and boundary conditions in leading order.

Since Ω(0) = ∅ holds, L(0)(0) = 0 describes the initial condition. The inflow boundary condi-
tions are accordingly to Eqs (4),(5)

γ(0)(0, t) = γ0, ∂sγ
(0)(0, t) = τ 0, |A0|(0, t) = 1

and additionally

u
(0)
3 (0, t) = 1

which results from 〈vin〉A0(0,t) = 〈v(0)〉A0(0,t) = u
(0)
3 (0, t)τ 0 with Eq (6). The boundary conditions

at the free fiber end are concluded from the comparison of the volume averaged one- and three-
dimensional balance laws in leading order. After plugging in the boundary conditions the volume
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averaged three-dimensional equations read

d

dt

Lε(t)
∫

0

〈Jε〉Aε(s,t) ds− 〈Jεuε · e3〉Aε(0,t) = 0

d

dt

Lε(t)
∫

0

〈Jεvε〉Aε(s,t) ds− 〈Jεvεuε · e3〉Aε(0,t) = −〈Sε · e3〉Aε(0,t)

− ε

We

Lε(t)
∫

0

〈JεHεGε · nε〉∂Aε(s,t) ds+

Lε(t)
∫

0

〈Jεfε〉Aε(s,t) ds.

Thereby, the integral over the bottom surface is zero since either |A(L(t), t)| = 0 or H = 0.
Thus, the integral over the free fiber surface reduces to the integral over the lateral surface, and

additionally
∫

(Γlat)ε(t)
f dA =

∫ Lε(t)
0 〈f〉∂Aε

ds holds for any integrable function f . Consequently, we
obtain in leading order

dL(0)(t)

dt
|A0|(L(0)(t), t) +

L(0)(t)
∫

0

∂t|A0|ds− (u
(0)
3 |A0|)(0, t) = 0

d

dt

L(0)(t)
∫

0

〈v(0)〉A0(s,t) ds− u
(0)
3 (0, t)〈v(0)〉A0(0,t) = −

(

(
3

Re
∂su

(0)
3 |A0| −

√
π

2We

√

|A0|) τ (0)

)

(0, t)

+

√
π

We

√

|A0| τ (0)

∣

∣

∣

∣

∣

L(0)(t)

s=0

+

L(0)(t)
∫

0

f (0)|A0|ds.

Integrating the one-dimensional fiber equations, Eqs (10),(11), over L(0)(t) leads to a similar set of
equations. Their difference to the volume averaged three-dimensional balance laws are the desired
kinematic and dynamic boundary conditions, i.e.

dL(0)(t)

dt
= u

(0)
3 (L(0)(t), t), (|A0|∂su(0)

3 )(L(0)(t), t) =

√
π

6

Re

We

√

|A0|(L(0)(t), t).

Setting u = u
(0)
3 , v = 〈v(0)〉A0/|A0|, A = |A0| and dropping the superscript at the variables and

the body forces of leading order, we obtain the one-dimensional model equations stated in Sec 1.

4 Numerical Results and Discussion

The asymptotic one-dimensional model describes the spinning of a slender curved inertial viscous
Newtonian fiber with surface tension. It determines the dynamics of the fiber center-line γ, the
cross-sectional area A, the intrinsic velocity u and the momentum associated velocity v as well as
the temporal evolution of the fiber length L. The balance laws for mass and momentum combine
the unrestricted motion and shape of the fiber center-line with the inner viscous transport and
surface tension. Hence, they cover most of the previously derived models for nearly straight and
curved stationary fibers as we will comment on in the following.

The one-dimensional stresses

s = svis + ssurf =

(

3

Re
A∂su +

√
π

2We

√
A

)

∂sγ
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acting tangentially along the fiber stem from viscosity and surface tension, the first term par-
ticularly represents the Trouton viscosity [33]. Rewriting the dynamic boundary condition as
s(L(t), t) = (

√
π/We

√
A∂sγ)(L(t), t) shows that the stresses at the fiber end balance the surface

tension as in the full three-dimensional BVP. The temporal evolution of the bottom surface depends
on the ratio of viscous forces and surface tension expressed by the capillary number Ca = We/Re.
Using the conservation of mass and the boundary conditions it is particularly prescribed by the
following initial value problem

dA(L(t), t)

dt
= −(A∂su)(L(t), t) = −

√
π

6Ca

√
A(L(t), t), A(0, 0) = 1,

whose unique solution is

A(L(t), t) =

{

(1 − t/tc)
2, t ≤ tc

0, t > tc
, tc =

12√
π

Ca.

since A ≥ 0. Thus, the behavior of the bottom surface is decoupled from the acting body forces
whose specification closes the underlying free BVP. In the application of rotational spinning pro-
cesses we deal with force densities f coming from gravitation and rotation,

f =
1

Fr2
eg − 2

Rb
(eω × v) − 1

Rb2 (eω × (eω × γ)).

where g eg = g denotes the acceleration of gravity and ω eω = ω the angular velocity of the
rotating device. Thereby, the rotation axis goes through the origin. The dimensionless Froude
Fr = V/

√
g` and Rossby number Rb = V/(ω`) characterize the relation between inertial and

gravitational forces, respectively between inertial and rotational forces.
To study the effects of surface tension, viscosity, gravitation and rotation on the fiber dynamics,

we investigate the fiber behavior numerically by varying the characteristic numbers (We, Re, Fr
and Rb). Therefore, we apply a finite volume method on a staggered grid with implicit upwind
flux discretization. By adding a new cell per time step the increase of the length is realized, for
details about the implementation we refer to [22].

4.1 Uniaxial Flow under Gravitation

Considering uniaxial flow under gravitation, our model simplifies to a system for A, u and L, but
keeps the characteristics of the temporal evolution of the free fiber end:

∂tA+ ∂s(uA) = 0

∂t(Au) + ∂s
(

u2A
)

= ∂s

(

3

Re
A∂su+

√
π

2We

√
A

)

+
1

Fr2A

with the boundary conditions at the nozzle, A(0, t) = 1, u(0, t) = 1, and at the free end

dL(t)

dt
= u(L(t), t), L(0) = 0 (A∂su)(L(t), t) =

√
π

6

Re

We

√
A(L(t), t)

Here, the geometry constraint and hence the variable γ vanish. Moreover, the momentum equation
becomes scalar-valued, since the coupling condition results in v = ueg and the force densities reduce
to f = eg/Fr2. For a fixed length and a pulling velocity applied at the fiber end, the balance laws
are well-known in the context of glass fiber drawing processes, e.g. [3, 26, 25], and analyzed with
regard to stability, e.g. [16, 17, 37]. Without surface tension the system has been applied for the
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Figure 2: Top to bottom: Temporal evolution of A, u and stresses s (-), svis (-.), ssurf (:) for
uniaxial flow, Fr=0.5, Re=1, We=10
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Figure 3: Top to bottom: Temporal evolution of A, u and stresses s (-), svis (-.), ssurf (:) for
uniaxial flow, Fr=0.5, Re=1. Left: We=1. Right: We=0.25
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simulation of the extensional fall of viscous drops by using a finite element method in terms of
a Lagrangian framework [31]. On the other hand, Panda [22] has developed a numerical scheme
based on a finite volume method on a staggered grid in Eulerian coordinates that we have extended
here appropriately. In the absence of surface tension, We → ∞, our results coincide with [22, 31],
where the bottom cross-section keeps the initial value A(L(t), t) = A(0, 0) since ∂su(L(t), t) = 0.
This effect occurs separately in a boundary layer and has almost no influence on the remaining
fiber behavior, see Yarin [36] and Fig 2 for We = 10.

Figure 2 and 3 illustrate the temporal evolution of the fiber properties, i.e. cross-section A,
velocity u and stresses s, for three different scenarios where Froude and Reynolds numbers are fixed
(Fr,Re) = (0.5, 1) and the Weber number varies We ∈ {0.25, 1, 10}. The lower the Weber number,
the faster is the decrease of the bottom cross-section and the increase of the velocity. The scalar-
valued tension s is dominated by the part stemming from the surface tension ssurf =

√
πA/(2We),

whereas the viscous tension svis = 3A∂su/Re drops rapidly down to zero. When the viscous stresses
become negative due to a sign change of ∂su, the simulated model loses its validity according to
Wong et.al. [35]. The higher the Weber numbers, the longer it takes to reach this critical point.

4.2 Curved Flow under Gravitation and Rotation

Analogously, three-dimensional flow under gravitation and rotation described by the full model
can be studied numerically. For different scenarios Figures 4-6 show the temporal evolution for
cross-section A, intrinsic velocity u and the projection of the fiber center-line in the e1–e2-plane
that illustrates the curling behavior of the fiber. The simulation results we obtain for high Reynolds
number flow coincide well with the parameter studies of [35, 34, 6]: the smaller the Rossby number,
the higher the fiber curling. The curling is additionally influenced by the Weber number. Moreover,
the magnitude of the Weber number determines the rate of thinning of the fiber ending as in the
case of uniaxial flow. The time tc = 12We/(

√
πRe) when the fiber ending shrinks to a point is

observed in the simulations. In contrast to [34, 6], our model enables the numerical simulation of
the instationary fiber center-line for small Reynolds number flow, see e.g. Figures 5 and 1, which
becomes important in the application of rotational glass spinning processes.

However note that the applicability of our model is restricted to certain parameter ranges.
Physically relevant solutions for the model reduced to stationarity and We → ∞ exist only for
Re−1 < Rb2, Rb → 0, Re → ∞, [18]. Including surface tension, the question of existence becomes
even more delicate. Problems at the nozzle occur numerically for small Weber numbers. They are
probably caused by a failure of the slender body theory at the nozzle, cf. [11]. This remains to be
further investigated.

5 Conclusion

The one-dimensional model that we have asymptotically derived in this paper enables the simu-
lation of instationary, curved, highly viscous fibers with surface tension and free ending as they
occur in rotational spinning processes. The stated balance laws for mass and momentum are a
generalization of many existing approaches, since they combine the unrestricted motion of the fiber
center-line with inner transport and surface tension. The boundary condition shows the depen-
dence of the temporal evolution of the free ending on the ratio of the viscous forces and the surface
tension. The obtained numerical results are physically realistic except of the effects appearing at
the nozzle for Re−1 > Rb2 as well as for small We. These effects indicate the failure of the slender
body theory due to the expected rise of a transition region. This phenomenon of ”die swelling”
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requires further theoretical and numerical investigations. Numerical comparisons of the one- with
the full three-dimensional model are therefore in preparation.
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