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Abstract

In the article the application of kernel functions – the so-called »kernel trick« –
in the context of Fisher’s approach to linear discriminant analysis is described for
data sets subdivided into two groups and having real attributes. The relevant
facts about functional Hilbert spaces and kernel functions including their proofs
are presented. The approximative algorithm published in [Mik3] to compute a
discriminant function given the data and a kernel function is briefly reviewed.
As an illustration of the technique an artificial data set is analysed using the
algorithm just mentioned.

Keywords: discriminant analysis, functional Hilbert space, kernel function,
reproducing kernel.
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Introduction

A fundamental problem in data mining consists of separating two disjoint, finite
subsets X−1 and X+1 of the euclidean space R

m through a hypersurface
S ⊂ R

m. More precisely and in analytic terms this amounts to choosing a
function

dθ∗ : R
m → R

within a given parametrized family

F = {dθ : R
m → R | θ ∈ Θ}, Θ ⊆ R

p,

of functionals, such that

Xk ⊆ Sk, k ∈ {−1,+1}, (1)

where Sk := {x ∈ R
m | sign (dθ∗(x)) = k} are the half-spaces defined by

S := d−1
θ∗ (0). Of course depending on F such a function dθ∗ needs not exist.

One therefore replaces the requirement (1) by the weaker

maximize obj (X−1 ∩ S−1,X+1 ∩ S+1), (2)

where obj is an objective function like for example the »total hitrate«

obj (X−1 ∩ S−1,X+1 ∩ S+1) :=
|X−1 ∩ S−1| + |X+1 ∩ S+1)|

|X−1| + |X+1|
.

In [Fis] Fisher showed that within the family

F = {d(a,c)(x) := 〈x, a〉 + c | a ∈ R
m, c ∈ R} (3)

there exists a function d(a∗,c∗) that maximizes the objective function

obj (a, c) :=
||p(x−1) − p(x+1)||

2

s2
−1 + s2

+1

, (4)

where p(xi) and s2
i are the mean values and variances of the sets X−1 and X+1

after orthogonal projection to a line perpendicular to the hyperplane d−1
(a,c)(0).

The optimal parameters (a∗, c∗) can be determined analytically and are unique if
the set X := X−1 ∪ X+1 is in a »sufficiently general« position.
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Discriminant Analysis

Only some years ago it was realized that the particular form of Fisher’s objective
function (4) allows to apply the so-called »kernel trick« to obtain a non-linear
version of Fisher’s discriminant function d(a∗,c∗): instead of (3) one considers
families of the form

F = {
∑

y∈X

ayK(x, y) + c | ay, c ∈ R},

where K : R
m × R

m → R is a so-called kernel function. The particular
properties of K allow to construct a Hilbert space H consisting of functions
h : X → R such that H is generated by the elements of Z := {K(·, y) | y ∈ X}.
Solving the optimization problem (2) using Fisher’s objective function (4) in the
space H and for the data set Z = Z−1 ∪ Z+1, where Zk := {K(·, y) | y ∈ Xk},
yields a in general nonlinear discriminant function

d∗(x) =
∑

y∈X

a∗yK(x, y) + c∗.

In the present article a concise and (hopefully) rigorous presentation of this
whole process is provided, taking an analytic point of view.

1 Discriminant Analysis

In this section a brief review of the general problem of discriminant analysis is
given, followed by a summary of relevant facts about Fisher’s linear discriminant
function.

1.1 The problem

Let Ω be a set that is decomposed into g ≥ 2 pairwise disjoint subsets Ωi, in the
sequel called groups:

Ω = Ω1 ∪ . . . ∪ Ωg. (5)

This decomposition yields the label map

ℓ : Ω → {1, . . . , g}, (ω ∈ Ωk) 7→ k, (6)

that assigns to an object ω ∈ Ω its group label.
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The problem

Every object ω ∈ Ω comes equipped with a finite set of attributes x(ω). To
keep the overview focussed on the facts relevant for the present article it is
assumed that these attributes are real numbers, thus giving the attribute map

Ω → A ⊆ R
m, ω 7→ x(ω). (7)

Based on the known attributes and group labels of a set of samples Λ ⊂ Ω
randomly drawn from Ω in discriminant analysis one seeks to determine an
estimate

ℓ̂ : Ω → {1, . . . , g} (8)

of the unknown label function ℓ. Since by assumption the estimated label ℓ̂(ω)

depends on x(ω) only, determining ℓ̂ amounts to determine a decision
function

δ : A → {1, . . . , g} (9)

such that ℓ̂(ω) = δ(x(ω)).

A typical example is the medical diagnosis of a specific disease based on a blood
test say. Here the set Ω consists of a population of human beings, the attributes
x(ω) are the values of the parameters measured during the blood test and the
label ℓ(ω) encodes whether the human ω is suffering of the considered disease

(ℓ(ω) = 1 say) or not (ℓ(ω) = 2). The estimated label ℓ̂(ω) represents the
diagnosis based on the blood test. It can be correct or false. Note that in this
situation the map ω 7→ x(ω) needs not be injective, so that the diagnostic
performance is limited already by the choice of the particular parameters
measured during the blood test.

From now on only the case g = 2 is considered. Problems with g > 2 can be
treated by successively splitting off one group after the other. Using the
algorithm presented in Section 3 this can be done effectively.

For reasons that will become clear in the next paragraph it is assumed that the
group labels for the two groups are −1 and +1. Moreover a decision function is
allowed to take the value 0 with the meaning that for an object ω ∈ Ω with the
property δ(x(ω)) = 0 the actual group label ℓ(ω) cannot be estimated using the
decision function δ.

An intuitive geometric way to determine a (modified) decision function

δ : A → {−1, 0, 1} (10)

is to fix a hypersurface S ⊂ R
m such that most of the samples in the set

X−1 := {x(ω) | ω ∈ Λ ∩ Ω−1} »lie on one side of S«, while most of the samples
in the set X+1 := {x(ω) | ω ∈ Λ ∩ Ω+1} »lie on the other side«. This approach
can be made more precise in the following way: a function d : R

m → R yields a
hypersurface through

S := d−1(0)
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Discriminant Analysis

provided it for example satisfies the prerequisites of the Implicit Function
Theorem. The decision function associated to that hypersurface in the sense
vaguely described above is then given by

δ : A → {−1, 0, 1}, x 7→ sign (d(x)), (11)

where sign denotes the function that maps a real number to its sign. The
function d is called a discriminant function for the grouping X−1 ∪ X+1.

A strategy to choose a discriminant function is to consider a sufficiently general
family

F := {dθ : R
m → R | θ ∈ Θ}, Θ ⊆ R

p, (12)

of functionals possessing the necessary properties to define hypersurfaces via
S := d−1

θ (0) and to choose a parameter θ∗ optimal with respect to some
objective function obj derived from the known restriction ℓ|Λ of the label map.

1.2 Fisher’s linear discriminant function

Let Λ be a finite set of samples drawn from the population Ω = Ω−1 ∪ Ω+1

grouped into two groups with labels −1 and +1. The attribute map then yields

x(Λ) =: X = X−1 ∪ X+1 ⊂ R
m, Xk := x(Λ ∩ Ωk), k ∈ {−1,+1}. (13)

From now on and throughout the whole article it is assumed that the attribute
map is injective. Thus (13) is a subdivision of X into two disjoint groups.

Among the various ways to choose an affine discriminant function

d(x) = f(x) + c, f ∈ Hom (Rm, R), c ∈ R, (14)

to separate the two groups in (13) R. A. Fisher’s approach is known to be robust
and has the advantage of leading to an analytic solution: for a one-dimensional
sub-vector space L ⊆ R

m consider the orthogonal projection pL : R
m → L and

define the Fisher discriminant of X−1 ∪ X+1 with respect to L as:

F(L) :=
||pL(x−1) − pL(x+1)||

2

s2
−1 + s2

+1

, (15)

where the

xk :=
1

|Xk|

∑

x∈Xk

x

are the group centroids and

s2
k :=

∑

x∈Xk

||pL(x) − pL(xk)||
2, (16)

4



Fisher’s linear discriminant

function

up to a factor are the variances of the sets pL(Xk). Fisher proposes to consider
the discriminant function

d∗(x) = pL∗(x) + c∗, (17)

where L∗ is a solution of the optimization problem

max(F(L) | L ⊆ R
m a one-dimensional sub-vector space) (18)

and

c∗ := −
1

2
(pL∗(x−1) + pL∗(x+1)). (19)

Note that −c∗ is the mean value of the centroids of the projected groups
pL∗(Xk).

In Section 3 a non-linear variant of Fisher’s discriminant function is constructed
using the so-called »kernel trick«. This is possible because a solution L∗ of the
optimization problem (18) can be obtained from quantities, that can be
expressed solely in terms of scalar products between the elements x ∈ X. To
verify this property one has to make the reasonable assumption

∑

x∈X

Rx = R
m. (20)

The orthogonal projection pL to the one-dimensional sub-vector space L ⊆ R
m

can be expressed as pL(x) = 〈a, x〉a with some a ∈ R
m having the property

||a|| = 1. Using (20) one can write

a =
n

∑

j=1

ajxj , aj ∈ R,

where {x1, . . . , xn} = X is some numbering of the elements of X. Defining the
vectors

α := (a1, . . . , an) ∈ R
n

and
mk := (〈x1, xk〉, . . . , 〈xn, xk〉), k ∈ {−1,+1}, (21)

one gets

||pL(x−1) − pL(x+1)||
2 = 〈

n
∑

j=1
ajxj , x−1 − x+1〉

2

= (
n
∑

j=1
aj〈xj , x−1 − x+1〉)

2

= (αt(m−1 − m+1))
2

and thus the relation

||pL(x−1) − pL(x+1)||
2 = αt(m−1 − m+1)(m−1 − m+1)

tα (22)
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Discriminant Analysis

for the numerator of (15). The entries of the matrix

B := (m−1 − m+1)(m−1 − m+1)
t ∈ R

n×n (23)

are sums of products of scalar products between elements of X. The
denominator of (15) can be written in a similar way:

s2
−1 + s2

+1 =
∑

k∈{−1,+1}

∑

x∈Xk

〈a, x〉2 + 〈a, xk〉
2 − 2〈a, x〉〈a, xk〉

= (
n
∑

j=1
〈a, xj〉

2) − |X−1|〈a, x−1〉
2 − |X+1|〈a, x+1〉

2

= (
n
∑

j=1
〈a, xj〉

2) − |X−1|α
tm−1m

t
−1α − |X+1|α

tm+1m
t
+1α.

Using the matrix

K := (〈xi, xj〉)i,j∈{1,...,n} ∈ R
n×n (24)

the first summand on the right hand side can also be written as a matrix
product:

n
∑

j=1

〈a, xj〉
2 = αtKKtα.

The optimization problem (18) can now be reformulated: the solutions L∗ of
(18) correspond to the solutions α∗ = (a∗1, . . . , a

∗
n) of the optimization problem

max(
αtBα

αtWα
| α ∈ R

n \ 0) (25)

through setting pL∗(x) := 〈a∗, x〉a∗, a∗ :=
n
∑

j=1
a∗jxj. Here the matrix W is

defined as:

W := KKt − |X−1|m−1m
t
−1 − |X+1|m+1m

t
+1 ∈ R

n×n. (26)

It is well-known that (25) possesses the unique solution

α∗ := W−1(m−1 − m+1) (27)

provided that W is invertible.

The constant term c∗ can be expressed in terms of scalar products between the
elements of X and the solution α∗:

c∗ = −
1

2
(α∗)t(m−1 + m+1). (28)
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2 Hilbert spaces from kernel functions

In this section an exposition of those parts of the theory of functional Hilbert
spaces is given, that lead to the following statement sometimes called the
»kernel trick«:

every real- or complex-valued function K : X × X → K with the properties

• ∀x1, x2 ∈ X : K(x1, x2) = K(x2, x1),
• ∀n ∈ N, ∀(x1, . . . , xn) ∈ Xn : (K(xi, xj))i,j∈{1,...,n} ∈ K

n×n is positive
semi-definite,

gives rise to a Hilbert space H(K) consisting of functions h : X → K, and to a
map φ : X → H(K) such that

∀x1, x2 ∈ X : 〈φ(x1), φ(x2)〉 = K(x2, x1),

where 〈·, ·〉 denotes the scalar product of H(K).

2.1 Functional Hilbert spaces

For a set X the set Map (X, K) of all maps h : X → K into a field K becomes a
vector space over K if addition and scalar multiplication are defined pointwise.
The maps hx ∈ Map (X, K) defined by hx(x) = 1 and hx(y) = 0 for x 6= y are
linearly independent and form a basis of Map (X, K) if X is finite. Hence
Map (X, K) has finite dimension if and only if X is finite.

Every x ∈ X gives rise to the K-linear evaluation functional

ex : Map (X, K) → K, h 7→ h(x). (29)

These maps play a particular role in the sequel.

From now on let K be either the field of reals or the field of complex numbers.

A Hilbert space H over K is called functional over X if it is a sub-vector space
of Map (X, K). If H has infinite dimension, the evaluation functionals (29) may
not be continous. However from now on only functional Hilbert spaces with the
property that all evaluation functionals are continous are considered. In
particular norm convergence in H implies pointwise convergence:

( lim
k→∞

hk = h) ⇒ (∀x ∈ X : lim
k→∞

hk(x) = h(x)). (30)

The principal result of the structure theory of Hilbert spaces states that every
Hilbert space H is isomorphic to a space ℓ2(X) of square-summable maps
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Hilbert spaces from kernel

functions

X → K. In particular it follows that every Hilbert space is functional over some
set X, even with continous evaluation functionals.

Proposition 2.1 For a Hilbert space H functional over X and possessing
continous evaluation functionals there exists a unique function K : X × X → K

with the properties:

∀x ∈ X : Kx := K(·, x) ∈ H,

ex = 〈·,Kx〉. (31)

The function K is called the reproducing kernel of H. It has the following
properties:
(1) ∀x1, x2 ∈ X : K(x1, x2) = K(x2, x1),

(2) ∀n ∈ N, ∀(x1, . . . , xn) ∈ Xn : K(x1, . . . , xn) := (K(xi, xj))i,j∈{1,...,n} is
positive semi-definite, that is

∀z ∈ K
n : ztK(x1, . . . , xn)z ≥ 0.

Proof. By the Representation Theorem of Riesz for every x ∈ X there exists a
unique element Kx ∈ H such that ex = 〈·,Kx〉. Thus one can define the map K

through
K(x, y) := Ky(x). (32)

The uniqueness of K now also follows.

By definition K satisfies

K(x, y) = Ky(x) = 〈Ky,Kx〉, (33)

which implies the symmetry of K. As for positive semi-definiteness this relation
yields

ztK(x1, . . . , xn)z =
n
∑

j=1

n
∑

k=1

zjK(xj, xk)zk

= 〈
n
∑

k=1

zkKxk
,

n
∑

j=1
zjKxj

〉 ≥ 0,

where zt = (z1, . . . , zn) ∈ K
n. �

As a consequence of Proposition 2.1 for a Hilbert space H functional over X

and having continous evaluation functionals one can define a map

φ : X → H, x 7→ Kx (34)

that, having the applications in mind, unfortunately is not necessarily injective:

Lemma 2.2 The map φ is injective if and only if for every pair of distinct points
x1, x2 ∈ X there exists an h ∈ H such that h(x1) 6= h(x2).
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Kernel functions

This follows immediately from the equation ex = 〈·,Kx〉.

Utilizing the map φ one arrives at a key identity with respect to applications,
namely

∀x1, x2 ∈ X : 〈φ(x1), φ(x2)〉 = K(x2, x1). (35)

It follows directly from the definitions of K and φ.

Although the family (Kx)x∈X in general does not form a basis of H it generates
H in the topological sense:

Proposition 2.3 For a Hilbert space H functional over X and possessing
continous evaluation functionals the subspace

U :=
∑

x∈X

KKx

lies dense in H.

Proof. It suffices to prove that only the zero-function is perpendicular to every
function Kx. Indeed 〈h,Kx〉 = 0 for all x ∈ X by (31) is equivalent to h = 0. �

As a consequence of Proposition 2.3 the inclusion H ⊆ Map (X, K) can be
described using the functions u ∈ U (and thus the functions Kx) only: every
function h ∈ H can be expressed as a limit lim

k→∞
uk, uk ∈ U . The continuity of

the evaluation functionals (30) thus yields

h(x) = lim
k→∞

uk(x). (36)

This fact can be used to reduce analytic to algebraic statements.

2.2 Kernel functions

Let X be a set. Motivated by Proposition 2.1 one calls a function

K : X × X → K

with the properties 1 and 2 stated in that proposition a kernel function (on
X). Slightly abusing language property 1 is called symmetry of K while
property 2 is named positive semi-definiteness. If for all n ∈ N and for
pairwise distinct x1, . . . , xn ∈ X the matrices K(x1, . . . , xn) are positive definite,
then K is called positive definite.

The set of kernel functions on X to the field K ∈ {R, C} carries a rich algebraic
and order structure that can be utilized effectively in applications. Again the
focus in the present section is put onto the facts relevant for the applications in
discriminant analysis.

9



Hilbert spaces from kernel

functions

Theorem 2.4 The set K(X) of kernel functions on X is closed under pointwise
addition, multiplication and scalar multiplication with non-negative scalars
c ∈ R, that is it forms a (linear) cone. In particular K(X) forms a commutative
semi-ring taking pointwise addition and multiplication as compositions.

Proof. Once the closedness of K(X) under the operations mentioned in the
theorem is verified, the validity of all other ring axioms is obvious since the
operations are all defined pointwise.

Addition: for a family (x1, . . . , xn) ∈ Xn, K1,K2 ∈ K(X) and K := K1 + K2

one has
K1(x1, . . . , xn) + K2(x1, . . . , xn) = K(x1, . . . , xn).

Hence for z ∈ K
n one gets

ztK(x1, . . . , xn)z = ztK1(x1, . . . , xn)z + ztK2(x1, . . . , xn)z ≥ 0.

Scalar multiplication: for a family (x1, . . . , xn) ∈ Xn, K ∈ K(X) and positive
c ∈ R one has

zt(cK(x1, . . . , xn))z = c(ztK(x1, . . . , xn)z) ≥ 0.

Multiplication: the proof is based on considering the tensor product of
bi-/sesquilinear forms. using the fact that if B := (b1, . . . , bn) is a basis of V ,
then (bi ⊗ bj | i, j ∈ {1, . . . , n}) is a basis of V ⊗ V , for bi-/sesquilinear forms
α, β on some vector space V of finite dimension one can define the tensor
product

α ⊗ β : (V ⊗ V ) × (V ⊗ V ) → K

through setting

(α ⊗ β)((v1 ⊗ v2), (w1 ⊗ w2)) := α(v1, w1) · β(v2, w2). (37)

α ⊗ β is a bi-/sesquilinear form that is symmetric (and positive semi-definite) if α

and β are symmetric (and positive semi-definite).

From now on assume that α and β are symmetric and positive semi-definite;
then (α ⊗ β)|U×U is symmetric and positive semi-definite for every sub-vector
space U ⊆ V ⊗ V . Take U to be the subspace spanned by the symmetric tensors
C := (bi ⊗ bi | i = 1, . . . n); note that C is a basis of U .

Let A = (aij)i,j∈{1,...,n} and B = (bij)i,j∈{1,...,n} be the matrices of α and β with
respect to the basis B. It is then straightforward to check that the matrix
C ∈ K

n×n of (α ⊗ β)|U×U with respect to the basis C of U looks like

C =











a11b11 a12b12 . . . a1nb1n

a21b21 a22b22 . . . a2nb2n

· · . . . ·
· · . . . ·
an1bn1 an2bn2 . . . annbnn











. (38)
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Consequently the matrix C is symmetric and positive semi-definite. To denote
the particular relationship between A, B and C one writes C = A ⊙ B. The
matrix C is frequently called the Hadamard or Schur product of A and B.
One has thus shown that the Hadamard product of symmetric, positive
semi-definite matrices is symmetric and positive semi-definite.

To prove closedness under pointwise multiplication take (x1, . . . , xn) ∈ Xn,
K1,K2 ∈ K(X) and let K := K1 · K2. By definition one then has

K(x1, . . . , xn) = K1(x1, . . . , xn) ⊙ K2(x1, . . . , xn),

hence positive semi-definiteness of K(x1, . . . , xn). The symmetry of K is
obvious. �

From the previous proof one can extract the following

Corollary 2.5 The set SPSD(n) of symmetric, positive semi-definite
n × n-matrices becomes a commutative semi-ring with 1 if one takes the
ordinary matrix addition as addition and the Hadamard product as
multiplication.

For a finite set X = {x1, . . . , xn} with n elements the map

K(X) → SPSD(n), K 7→ K(x1, . . . , xn)

is an isomorphism of semi-rings.

In the context of Corollary 2.5 note that if K(x1, . . . , xn) is positive
semi-definite, then for every permutation (xs(1), . . . , xs(n)) of the elements xk

and for every subfamily (xk1
, . . . , xkr

) the matrices K(xs(1), . . . , xs(n)),
K(xk1

, . . . , xkr
) are positive semi-definite.

Corollary 2.6 Let K be a kernel function on X and let p =
d
∑

k=0

akX
k ∈ R[X]

be a polynomial with positive coefficients, then the function

p(K) =

d
∑

k=0

akK
k

understood pointwise is a kernel function on X.

Note that K0 := 1, the function X × X → K that maps everything to 1. Taking
the standard scalar product 〈·, ·〉 for K in Corollary 2.6 yields the widely used
polynomial kernel of degree d:

K(x1, x2) := (〈x1, x2〉 + c)d, c > 0, d ∈ N. (39)

It is not difficult to replace the polynomial in Corollary 2.6 by a power series:

11
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Proposition 2.7 Let (Ki)i∈N be a sequence of kernel functions on X such that
the limit

lim
i→∞

Ki(x1, x2)

exists for all x1, x2 ∈ X. Then the pointwise limit K := lim
i→∞

Ki is a kernel

function on X.

Proof. Symmetry of K is straightforward to check. For (x1, . . . , xn) ∈ Xn and
z ∈ K

n one gets

ztK(x1, . . . , xn)z = lim
i→∞

ztKi(x1, . . . , xn)z ≥ 0,

since the entries in the matrix K(x1, . . . , xn) are the limits of the corresponding
entries in the matrices Ki(x1, . . . , xn). �

Corollary 2.8 Let f : U → R, U ⊆ K, be a function defined through a
(convergent) power series with positive coefficients:

f(u) =
∞

∑

i=0

aiu
i.

Let K be a kernel function on X such that K(x1, x2) ∈ U for all x1, x2 ∈ X.
Then the pointwise limit f(K) defined through

f(K)(x1, x2) :=
∞
∑

i=0

aiK(x1, x2)
i

is a kernel function on X.

Proof. By Proposition 2.6 the functions

Kj :=

j
∑

i=0

aiK
i

are kernel functions. By assumption f(K) = lim
j→∞

Kj , hence Proposition 2.7

yields the assertion. �

Corollary 2.8 yields the fact that Gauß’ error function is a kernel function. The
subsequent result is used in the proof but is also relevant in other contexts:

Proposition 2.9 For every K ∈ K(X) and every non-zero function f : X → K

the map
K ′ : X × X → K, (x1, x2) 7→ f(x1)K(x1, x2)f(x2)

is a kernel function on X.

12
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Proof. Symmetry is immediate to check. For (x1, . . . , xn) ⊆ Xn and z ∈ K
m

one gets

ztK ′(x1, . . . , xn)z =
n
∑

i=1

n
∑

j=1
zif(xi)K(xi, xj)f(xj)zj

= wtK(x1, . . . , xn)w ≥ 0,

where w = (z1f(x1), . . . , znf(xn)). �

Corollary 2.10 For every h ∈ R the function

K(x1, x2) := e
−

||x1−x2||
2

h2 , (40)

is a kernel function on K
m. It is called the Gauß kernel of bandwidth h.

Proof. One first has to rewrite K in an appropriate way – the naive approach of

applying Corollary 2.8 directly does not work since the exponent − ||x1−x2||2

h2 is
no kernel function:

e
−

||x1−x2||
2

h2 = [e−
〈x1,x1〉

h2 e
−

〈x2,x2〉

h2 ](e
〈x1,x2〉

h2 )2. (41)

The factor in squared brackets on the right side of (41) is a kernel function
according to Proposition 2.9. Since the scalar product of K

m is a kernel function

Corollary 2.8 yields that e
〈x1,x2〉

h2 is a kernel function. Consequently K itself is a
kernel function due to Theorem 2.4. �

2.3 The Theorem of Aronszajn-Moore

A functional Hilbert space H having continous evaluation functionals gives rise
to a kernel function K, namely the reproducing kernel of H. From a theoretical
point of view it is natural to ask whether every kernel function K arises as the
reproducing kernel of some Hilbert space H(K). At the same time the positive
answer to this question forms the basis for many applications of kernel
functions:

Theorem 2.11 (N. Aronszajn, R. L. Moore) For every kernel function
K : X × X → K there exists a Hilbert space H functional over X and
possessing continous evaluation functionals, such that K is the reproducing
kernel of H. This Hilbert space H = H(K) is uniquely determined by K.

Proof. Let Ky := K(·, y) ∈ Map (X, K) and consider the subvector space
U ⊆ Map (X, K) generated by the family (Ky | y ∈ X). On U one can define a

13
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symmetric bi- respectively sesquilinear form through

β : U × U → K, (
∑

x∈X

axKx,
∑

y∈X

byKy) 7→
∑

x∈X

∑

y∈X

axK(y, x)by . (42)

Since the family (Ky | y ∈ X) in general need not be linearly independent it
remains to show that β is well-defined: to this end one has to verify that for
every linear combination

u :=
∑

x∈X

axKx = 0

and every function Ky, y ∈ X, the equation

∑

x∈X

axK(y, x) = 0

holds and similarly for switched roles of the two variables of β. Indeed

∑

x∈X

axK(y, x) = u(y) = 0

by assumption about u.

Claim: β is positive definite.

β is positive semi-definite since K is a kernel function. Hence the assertion
follows from the Cauchy-Schwarz inequality |β(u1, u2)|

2 ≤ β(u1, u1)β(u2, u2)
once one knows that β(u1, u2) = 0 for all u2 ∈ U implies u1 = 0. Indeed
0 = β(u1,Ky) for all y ∈ X implies u1(y) = 0 for all y ∈ X.

Let H be the completion of U with respect to the norm ||u||2 := β(u, u). It is
well-known that H is a Hilbert space taking the unique continous extension of
β to H as the scalar product.

Claim: H is a subvector space of Map (X, K).

Express h ∈ H as a limit h = lim
i→∞

ui, ui ∈ U . For every x ∈ X the

Cauchy-Schwarz inequality then yields

|ui(x) − uj(x)|2 = |β(ui − uj ,Kx)|2 ≤ β(ui − uj , ui − uj)K(x, x), (43)

hence (ui(x))i∈N is a Cauchy sequence in K. If h = lim
i→∞

vi, vi ∈ U , is a second

representation of h, then (ui − vi)i∈N is a zero-sequence. Consequently by (43)
applied to ui − vi the sequence (ui(x) − vi(x))i∈N is a zero-sequence too.
Therefore one can interpret h as a function X → K through setting

h(x) := lim
i→∞

ui(x).

14
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This interpretation leads to a linear map H → Map (X, K).

Claim: K is the reproducing kernel of H.

Indeed by definition of β for every x ∈ X one has

ex(h) = h(x) = lim
i→∞

ui(x)

= lim
i→∞

β(ui,Kx)

= β( lim
i→∞

ui,Kx)

= β(h,Kx).

Note that this also shows that ex is continous.

Finally assume that Hi, i = 1, 2, are functional Hilbert spaces both possessing
K : X × X → K as their reproducing kernel. Let Ui be the subvector space of
Hi spanned by the functions Kx = K(·, x). Note that for h ∈ Ui one has

h(x) =
r

∑

j=1
axj

K(x, xj) so that U1 = U2 as subvector spaces of Map (X, K)

holds. Similarly for the restrictions (|| · ||i)|Ui
of the norms of the Hi one deduces

||h||21 =

r
∑

j=1

r
∑

k=1

axj
K(xk, xj)axk

= ||h||22.

Consequently using the remark (36) following Proposition 2.3 one concludes
H1 = H2. �

2.4 Dimension

For a thorough analysis of the results one gets by using Kernel Fisher
discriminant functions it is necessary to have some idea about the dimension of
the Hilbert space H(K) associated to a kernel function K : X × X → K. Since
H(K) is functional over X one gets

dim H(K) ≤ |X| (44)

if X is a finite set. Moreover as a related general result one should mention:

Proposition 2.12 For a kernel function K ∈ K(X) the functions (Kx | x ∈ X)
are K-linearly independent if and only if K is positive definite.

Proof. The linear relation
n

∑

i=1

aiKxi
= 0

15
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is equivalent with

0 = 〈
n
∑

i=1
aiKxi

,
n
∑

j=1
ajKxj

〉

=
n
∑

i=1

n
∑

j=1
aiajK(xj , xi).

�

Corollary 2.13 For a positive definite kernel function K ∈ K(X) the Hilbert
space H(K) has finite dimension if and only if X is finite; then the family
(Kx | x ∈ X) forms a basis of H(K).

The proof of Proposition 2.12 yields a criterion for the injectivity of the map
φ : X → H(K) – a fundamental property in the context of discriminant
functions.

Corollary 2.14 If the kernel function K ∈ K(X) has the property

∀x1, x2 ∈ X, x1 6= x2 : K(x1, x2) is positive definite,

then H(K) separates the points of X and thus φ is injective.

Proof. By the argument used in the proof of Proposition 2.12 the functions
Kx1

, Kx2
for x1 6= x2 are linearly independent hence Kx1

6= Kx2
. �

For a polynomial kernel the functions (Kx | x ∈ X) can be linearly dependent as
the case of degree one shows. Moreover the dimension of H(K) depends on X

and on the degree of the kernel. For »large« X one gets:

Proposition 2.15 For a polynomial kernel K(x1, x2) := (〈x1, x2〉 + c)d the
following properties are valid:
(1) if X contains a non-empty open set of K

m, then the map
φ : X → H(K), x 7→ Kx is injective,

(2) dim H(K) ≤
(

m+d
d

)

with equality for X = K
m.

Proof. 1.: Assume that Kx1
= Kx2

on X for some x1, x2 ∈ X. Then

(

〈x, x1〉 + c

〈x, x2〉 + c

)d

= 1,

for all x ∈ X at which the rational function on the left-hand side is defined;
denote that set by U . Since X contains a non-empty open set and
{x ∈ K

m | 〈x, x2〉 + c = 0} is a hyperplane in K
m, the set U contains a

16
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non-empty open set of K
m. On U the rational function

f(x) :=
〈x, x1〉 + c

〈x, x2〉 + c

attains only finitely many values, namely a subset of the d-th roots of unity.
Consequently f is constant, that is 〈x, x1〉 + c = a(〈x, x2〉 + c), which implies
a = 1 and thus x1 = x2 as asserted.

2.: The Hilbert space H(K) is a subvector space of the vector space P (X, d) of
polynomial functions on X in m variables and of degree d. The restriction yields
a surjective linear map P (d) → P (X, d), where P (d) denotes the vector space
of polynomial functions on K

m in m variables and of degree d. Therefore the

well-known formula dim P (d) =
(

m+d
d

)

completes the proof. �

Gauß kernels behave much nicer than polynomial kernels:

Lemma 2.16 For pairwise distinct numbers x1, . . . , xn ∈ C the functions

e−||x−xk||
2

, k = 1, . . . , n,

are linearly independent over C.

Proof. Take a linear relation

n
∑

k=1

ake
−||x−xk||

2

= 0, ak ∈ C,

between functions as stated in the lemma and rewrite it in the form

0 =

n
∑

k=1

(ake
−||xk||

2

)e−||x||2e2Re 〈x,xk〉 =

n
∑

k=1

bke
−||x||2e2Re 〈x,xk〉,

where bk := ake
−||xk||

2

; then:

n
∑

k=1

bke
2Re 〈x,xk〉 = 0

and since this equation holds for all x ∈ R
m one gets the homogenous system

n
∑

k=1

bke
2Re 〈jx,xk〉 = 0, j = 0, . . . , n − 1, (45)
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for fixed x ∈ R
m. Next choose x ∈ R

m such that the values Re 〈x, xk〉,
k = 1, . . . , n, are pairwise distinct. Then the coefficient matrix

A :=

















1 1 . . . 1

e2Re 〈x,x1〉 e2Re 〈x,x2〉 . . . e2Re 〈x,xn〉

e2Re 〈2x,x1〉 e2Re 〈2x,x2Re 〉 . . . e2Re 〈2x,xn〉

· · . . . ·
· · . . . ·

e2Re 〈(n−1)x,x1〉 e2Re 〈(n−1)x,x2〉 . . . e2Re 〈(n−1)x,xn〉

















of (45) is a Vandermonde matrix. By the choice of the values Re 〈x, xk〉 and the
injectivity of the real exponential function A is invertible. Consequently the
system (45) only has the trivial solution b1 = . . . = bn = 0, which implies
a1 = . . . = an = 0 thus completing the proof. �

Lemma 2.16 combined with Proposition 2.12 yields:

Proposition 2.17 The Gauß kernel K : X × X → K on some set X ⊆ K
m is

positive definite. Consequently the Hilbert space H(K) has finite dimension if
and only if X is finite; then the equation

dim H(K) = |X|

holds.
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3 Kernel Fisher discriminant functions

Building on the theoretical basis layed in Section 2 in the present section explicit
formulae for kernel Fisher discriminant functions are derived. Next an algorithm
to estimate the parameters in these formulae using classified data is described.
Finally an example is presented.

3.1 Explicit formulae

Let X = X−1 ∪ X+1 ⊂ R
m be a finite set (of attributes) divided into two disjoint

groups. Fix a kernel function

K : R
m × R

m → R

and consider the functional Hilbert space H(K|X×X) along with the associated
map

X
φ
→ H(K|X×X)

defined in (34). Throughout the whole section it is assumed that φ is injective;
consequently φ(X−1) ∩ φ(X+1) = ∅.

The Hilbert space H(K|X×X) has finite dimension (44). Consequently Fisher’s
approach as formulated in Subsection 1.2 can be used to separate the sets
φ(X−1) and φ(X+1) using a hyperplane: note first that due to Proposition 2.3
the family (φ(x) | x ∈ X) generates the space H(K|X×X). Choosing a
numbering X = {x1, . . . , xn} a Fisher discriminant function

d : H(K|X×X) → R, h 7→ 〈a∗, h〉 + c∗, (46)

can thus be defined by taking a solution α∗ = (a∗1, . . . , a
∗
n) ∈ R

n of the
optimization problem (25) replacing the elements xi by the elements φ(xi). In
that way one arrives at

a∗ =

n
∑

j=1

a∗jφ(xj)

and

c∗ = −
1

2
(α∗)t(m−1 + m+1),

where

mk =
1

|Xk|

∑

x∈Xk

(〈φ(x1), φ(x)〉, . . . , 〈φ(xn), φ(x)〉) ∈ R
n
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for k ∈ {−1,+1} – see (19) and (21). The matrices B and W in the current
setting of the optimization problem (25) are defined through

B = (m−1 − m+1)(m−1 − m+1)
t

and
W := KKt − |X−1|m−1m

t
−1 − |X+1|m+1m

t
+1

where
K := (〈φxi, φxj〉)i,j∈{1,...,n} ∈ R

n×n, (47)

see (23), (26) and (24). At that point the essence of the kernel method becomes
clearly visible: the solutions α∗ of the optimization problem (25) for the
grouping φ(X) = φ(X−1) ∪ φ(X+1) are determined by quantities – namely the
matrices B and W – that themselves depend on scalar products of the form
〈φ(x), φ(x′)〉, x, x′ ∈ X only. Hence due to the key identity
〈φ(x), φ(x′)〉 = K(x′, x) (35) these solutions can be computed working in the
original sample space R

m instead of H(K|X×X). Note that the matrix K

defined in (47) is indeed »equal« (in an obvious sense) to the kernel function
K : X × X → R.

The discriminant function to separate the groups X−1 and X+1 is given by
d ◦ φ : X → R, which can be expressed explicitely using α∗, the kernel function
K and the data X: for x ∈ X we get

(d ◦ φ)(x) = 〈
n

∑

j=1

a∗jφ(xj), φ(x)〉 + c∗

=

n
∑

j=1

a∗jK(x, xj) + c∗. (48)

New samples x ∈ R
m are classified by plugging in x into (48) and using the

decision function sign (d(φ(x))). Formally this is possible because the kernel
function K is defined on the whole of R

m. Conceptually this procedure can be
justified in the usual way: if the data set X sufficiently faithfully represents the
distributions underlying the groups Ω−1 and Ω+1, then a discriminant function
derived from these data is supposed to generalize well.

3.2 Computation

The computation of the kernel Fisher discriminant function (48) from the given
data and a kernel function requires to handle the in general huge kernel matrix
K (47) as well as the derived matrices B and W . One therefore has to carefully
choose among the existing methods for solving the optimization problem (25) in
the present context. In this subsection an algorithm for the approximative
solution of (25) proposed in [Mik3] is described without going into the details or
giving proofs.
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Reformulation of the optimization problem: given a grouping
X = X−1 ∪ X+1 and a kernel function K ∈ K(Rm) in the article [Mik2] the
problem of finding a discriminant function on R

m of the form

d(x) =

n
∑

j=1

ajK(x, xj) + c (49)

is considered as a regression problem for the label function ℓ : X → {−1,+1}.
Let X = {x1, . . . , xn} be some numbering of X and define

ξ(α, c) := (d(xj) − ℓ(xj))j=1,...,n

to be the vector of deviations of the discriminant values d(xj) from the labels;
here α = (a1, . . . , an). Moreover let

y := (ℓ(xj))j=1,...,n

be the vector of labels, let K be the kernel matrix (47) and define

1 := (1, . . . , 1) ∈ R
n, 1+1 =

1

2
(y + 1), 1−1 = 1− 1+1.

Finally let P : R
n → R be a function that penalizes solutions α with »many«

non-zero coordinates with a penalty weight R ≥ 0. Then according to [Mik2]:

Proposition 3.1 For every penalty function P and constant R > 0 the
optimization problems

min(||ξ(α, c)||2 + RP (α) | α ∈ R
n, c ∈ R) (50)

Kα + c1 = y + ξ (51)

〈1i, ξ〉 = 0, i ∈ {−1,+1} (52)

and

min(αtWα + RP (α) | α ∈ R
n) (53)

〈α, (m+1 − m−1)〉 = 2 (54)

have the same solutions. For the second optimization problem the constant c is
computed using the formula (28).

Note that the second optimization problem is just a reformulation of (25): the
fraction

αtBα

αtWα

does not change its value when replacing α by a multiple λα, λ 6= 0. This
substitution corresponds to multiplying the associated discriminant function by
the factor λ. We can thus assume (54) and consequently that αtBα has a fixed
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(positive) value, which in turn yields that it suffices to minimize the denominator
αtWα. In that way one arrives at the second optimization problem appearing in
Proposition 3.1. Taking into account that the matrix W can and frequently will
be singular, the penalty term RP (α) can also be understood as a form of
regularization.

A greedy algorithm ... to solve the optimization problem (50) and thus (53)
approximatively. It is proposed in the article [Mik3] and is based on the idea of
building up the discriminant function (48) stepwise by adding one suitable term
K(x, xi) at each step and stopping the process once the performance of the
discriminant function is sufficient. In this way a sparse approximate solution of
(50) can be efficiently computed. In principal, choosing the number of non-zero
coordinates of α as the penalty function P (α), sparse solutions could also be
obtained avoiding the stepwise approach but their computation is not efficient.
In the greedy algorithm presented here the penalty term RP (α) should better
be considered as a regularization.

To give an explicit description of the crucial step of adding a new term to the
discriminant function assume that an approximative solution of (50) involving
only r ≥ 1 terms has already been determined and let I = {i1, . . . , ir} be the
indices of the samples xi ∈ X such that K(x, xi) appears in this solution.
Indeed only the terms K(x, xi), i ∈ I, are of interest here. The associated
coefficients ai will be recomputed at each step.

Take ir+1 ∈ {1, . . . , n} \ I and set I ′ := I ∪ {ir+1}. The aim now is to efficiently
compute an approximative solution of (50) involving the r + 1 terms K(x, xi),
i ∈ I ′. To this end one rewrites (50), (51) and (52) in matrix form. Setting

β := (c, ai1 , . . . , air+1
) ∈ R

r+2

and

Kr+1 :=











K(x1, xi1) K(x1, xi2) . . . K(x1, xir+1
)

K(x2, xi1) K(x2, xi2) . . . K(x2, xir+1
)

· · . . . ·
· · . . . ·
K(xn, xi1) K(xn, xi2) . . . K(xn, xir+1

)











∈ R
n×(r+1)

the matrix form of the considered optimization problem is

min(βtHβ −
1

2
γtβ + n | β ∈ R

r+2) (55)

At
−1β + |X−1| = 0 (56)

At
+1β − |X+1| = 0, (57)

22



Computation

where
γ := (|X+1| − |X−1|,K

t
r+1y) ∈ R

r+2,

Ak := (|Xk|,K
t
r+11k) ∈ R

r+2, k ∈ {−1,+1},

H :=

(

n 1
tKr+1

Kt
r+11 Kt

r+1Kr+1 + R

)

∈ R
(r+2)×(r+2).

The optimization problem (55), (56) and (57) can be solved using Lagrange
multipliers thus obtaining:

β∗ = H−1(γ − λ∗
+1A+1 − λ∗

−1A−1), (58)

where the multipliers (λ∗
−1, λ

∗
+1) form a solution of the optimization problem

max(−
1

2
λtQλ + Lλ −

1

2
γtH−1γ +

n

2
| λ = (λ+1, λ−1) ∈ R), (59)

where

Q :=

(

At
+1H

−1A+1 At
+1H

−1A−1

At
−1H

−1A+1 At
−1H

−1A−1

)

∈ R
2×2,

and
L :=

(

(−|X+1| + γtH−1A+1) (|X−1| + γtH−1A−1)
)

∈ R
2.

Note that the optimization problem (59) can be solved analytically by taking the
first derivative of the quadratic function involved.

Note further that due to the particular form of the matrices H one has an
equation of the form

Hr+1 =

(

Hr v

vt s

)

, v ∈ R
r+1, s ∈ R,

relating the matrix H for r terms in the discriminant function with the matrix for
r + 1 terms. Consequently the inverse H−1 for r + 1 terms can be computed
efficiently from the inverse for r terms using the well-known
Sherman-Woodbury-formula.

The algorithm can now be formulated as follows:

(1) Start with the empty set I = ∅ of indices i ∈ {1, . . . , n} such that K(x, xi)
appears in the discriminant function.

(2) Compute the solutions β∗(i′) for all index sets I ∪ {i′}, i′ ∈ {1, . . . , n} \ I,
using the formula (58).

(3) Select an index i0 ∈ {1, . . . , n} \ I such that the objective function (55) at
the solution β∗(i0) is minimal among all of the objective function values
at the solutions β∗(i). Set I := I ∪ {i0}.
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(4) Stop if |I| exceeds a predefined maximal number of terms in the
discriminant function or if the change of the value of the objective
function (55) compared to the previous addition of a new term lies below
a predefined bound. Otherwise go to step 2.

3.3 An example

In the sequel the results of an application of the greedy algorithm described in
Subsection 3.2 to an artificial two-dimensional data set are presented with the
aim to give a visual impression of Kernel Fisher discriminant functions in a
concrete case (and not of the performance of the algorithm used).

The data set X = X−1 ∪ X+1 shown in Figure 1 consists of 1640 samples
x ∈ R

2, each of the groups X−1 and X+1 having 820 elements. It has been
created by randomly distributing points about two semi-circles using a normal
distribution with standard deviation σ = 0.8. The »center points« of the
semi-circles lie at (−0.5, 0) and (0, 0.5), both having a »radius« equal to 1.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

1.coordinate

2.
co

or
di

na
te

Figure 1 data set

First a Gauß kernel K(x1, x2) = e
−

||x1−x2||
2

h2 (40) having bandwidth h = 0.858
was used. The value of h has been estimated from the data using 5-fold cross
validation – knowing the way the data set has been created a reasonable result.
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The algorithm gives the approximate discriminant function

dGauß(x) := −0.7591 · K(x, x1) − 2.8579 · K(x, x2) − 2.4329 · K(x, x3)

−2.0455 · K(x, x4) − 1.6439 · K(x, x5) + 1.3246, (60)

with
x1 = (−0.5256, 1.0841), x2 = (−1.9011, 0.1797),
x3 = ( 0.7500, 0.2981), x4 = (−1.1620, 1.6343),
x5 = ( 0.0948, 1.5043).

Figure 2 shows various level sets d−1
Gauß

(l), l ∈ R, of the function (60); the level

curve d−1
Gauß

(0), that is the separating curve, is drawn in black colour. In addition
the level of the function values dGauß(x) is depicted through a yellow-to-orange
colour scale symbolising decreasing values of dGauß(x). The locations of the
points x1, . . . , x5 are marked as white points.
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Figure 2level curves of dGauß(x)

Using the classification rule ℓ(x) = sgn(dGauß(x)) (11) yields misclassification
rates of 3.9% in the group X−1 and 1.9% in the group X+1.

In a second run a polynomial kernel K(x1, x2) = (〈x1, x2〉 + c)3 (39) of degree 3
with constant term c = 0.75 has been used, the value of c again being estimated
using 5-fold crossvalidation. The resulting estimated discriminant function is:

dpoly(x) := −7.1287 · K(x, x1) + 0.3231 · K(x, x2) + 0.3612 · K(x, x3)

−0.5870 · K(x, x4) + 0.9951 · K(x, x5) + 2.4521, (61)
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Kernel Fisher discriminant

functions

with
x1 = (−0.0150, 0.1517), x2 = (0.0049, 0.7557),
x3 = ( 1.8009, 0.2819), x4 = (1.4297, 0.2090),
x5 = (−0.2253, 0.0755).

Figure 3 depicts the level sets of dpoly, the separating curve and the positions of
the xk using the same symbolism as in the previous example.

The classification rule ℓ(x) = sgn(dpoly(x)) this time yields a misclassification
rate of 3.9% in the group X−1 and 5.0% in the group X+1.
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Figure 3 level curves of dpoly(x)

Assuming that the functions dGauß and dpoly are good approximations to the
respective optimal discriminant function (46), their function values dGauß(x) and
dpoly(x), x ∈ X, up to a constant factor and a translation represent the
orthogonal projections of the points φ(x) to the line Rα ⊆ H(K|X×X), where α

is the vector of coefficients of dGauß respectively dpoly amended by zeros.

The left plot in Figure 4 shows a histogram of the distribution of dGauß(X−1)
plotted in blue and of dGauß(X+1) plotted in red. Bars in different colour directly
beside each other refer to one and the same bin of the histogram. The right
plot in Figure 4 shows the distribution of dpoly(X−1) and dpoly(X+1) using the
same colour code.
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Figure 4distribution of dGauß(X)(left) and dpoly(X)(right)

Figure (5) shows the results of the classical Fisher approach. The discriminant
function here is:

dF(x) := 〈(0.4951,−1.4871), x〉 (62)

with a misclassification rate of 10.5% in group X−1 and 8.9% in group X+1.
Note that one can determine Fisher’s linear discriminant function approximately
by applying Mika’s algorithm utilizing the kernel function K(x1, x2) := 〈x1, x2〉.
However here the usual approach has been choosen.
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