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Abstract — A numerical upscaling approach, NU, for solving multiscale elliptic
problems is discussed. The main components of this NU are: i) local solve of auxil-
iary problems in grid blocks and formal upscaling of the obtained results to build a
coarse scale equation; ii) global solve of the upscaled coarse scale equation; and iii)
reconstruction of a fine scale solution by solving local block problems on a dual coarse
grid. By its structure NU is similar to other methods for solving multiscale elliptic
problems, such as the multiscale finite element method, the multiscale mixed finite
element method, the numerical subgrid upscaling method, heterogeneous multiscale
method, and the multiscale finite volume method. The difference with those methods
is in the way the coarse scale equation is build and solved, and in the way the fine scale
solution is reconstructed. Essential components of the presented here NU approach are
the formal homogenization in the coarse blocks and the usage of so called multipoint
flux approximation method, MPFA. Unlike the usual usage as MPFA as a discretiza-
tion method for single scale elliptic problems with tensor discontinuous coefficients, we
consider its usage as a part of a numerical upscaling approach. The main aim of this
paper is to compare NU with the MsFEM. In particular, it is shown that the resonance
effect, which limits the application of the Multiscale FEM, does not appear, or it is
significantly relaxed, when the presented here numerical upscaling approach is applied.
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1. Introduction

The problems of subsurface flow simulation are too complicated to be solved analytically.
Furthermore, discretizations which resolve all the heterogeneities of the porous media are
computationally expensive due to the required memory and computational time. Thus, nu-
merical approaches are applied to solve flow problems in practice. The situation becomes
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even more complicated when the porous media have heterogeneities on several length scales.
Essential success was achieved during the last decades in studies of problems with clearly sep-
arated fine and coarse scales: periodic microstructures and statistically homogeneous porous
media [2, 23]. In case the fine and the coarse scales can be decoupled, solving a multiscale
problem reduces to one way two-stage procedure: i) solve fine scale cell-problem and use its
solution to upscale the effective properties of the multiscale media; ii) solve upscaled coarse
scale equation with the calculated effective coefficients. Separation of scales is however not
always possible. Although not rigorously justified in general, the procedure of local homog-
enization (upscaling) is widely used for solving multiscale problems with unseparable scales.
In such cases, the computational domain is subdivided into blocks, and effective properties
for each block are calculated similar to the periodic or statistically homogenous case. These
effective block properties are used then in solving coarse scale problem.

There exists a number of techniques for solving multiscale elliptic problems, which avoid
any global solve on the fine scale. The therminology in this area is still not well estab-
lished, but often the methods are subdivided into two groups, namely, multiscale meth-
ods [8, 10, 11, 15, 20] and numerical upscaling approaches [4, 7, 22]. The methods from the
latter group consider an analytical form of the coarse scale equations, and provide them with
effective (called also homogenized, or averaged) coefficients, while in multiscale methods the
coarse scale equations are formed numerically, usually in FE manner, using multiscale basis
functions.

Among multiscale methods recently used for solving elliptic problems with oscilatory
coefficients, are multiscale finite element method [8, 11, 15], multiscale mixed finite element
method [12], multiscale finite volume method [10] and heterogeneous multiscale method [15,
20]. All these methods are based on two-level (fine-coarse scale) algorithms, the main idea of
which is to derive coarse scale equations taking into account fine scale heterogeneities. For
problems with scale separation multiscale methods save computational resources in com-
parison to solving all fine scale equations while for problems without scale separation the
complexity of the solution by a multiscale method is almost the same as the complexity of
solving fine scale discretization. A thorough description of the most of the known multiscale
methods, namely, of the multiscale finite element method, the multiscale mixed finite element
method, the numerical subgrid upscaling method, and the multiscale finite volume method,
can be found in [12], where also a detailed comparison of these methods is presented.

Numerical upscaling algorithms also consist in two-stage procedure. First, fine scale cell-
problems are solved and their solutions are used to upscale the effective properties of the
multiscale media. Then coarse scale equations with upscaled (tensor) coefficients are solved.
Permeability [4, 10, 22] and direct transmissibility [4, 7] upscaling should be distinguished.
In the case of direct transmissibility upscaling, local flow problems are solved around the
interface between coarse grid cells, the flux through the face is computed and the transmis-
sibility is assigned as the ratio of the flux to the mean of the pressure drop. Permeability
upscaling consists in solving local flow problems in each coarse grid block or some extended
local subdomain (coarse grid block with overlapping) and using coarse scale Darcy’s law for
calculating effective tensor which will be constant in each coarse block. The advantage of
the permeability upscaling is that it is conservative and it can be easily parallelized.

The discussed here numerical upscaling is based on combination of local solves in coarse
blocks in order to calculate effective coefficients for the coarse scale equations, and on MPFA
for discretizing obtained coarse scale equations with discontinuous tensor coefficients. It
should be mentioned that this approach differs from MsFEM, MsMFEM, subgrid upscaling,
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HMM and MsFVM in the way in which the coarse scale equations are formed and solved. The
described here upscaling approach is very close to the one implemented in the software used
by some of the oil companies, see, e.g., [14]. Note that effective (upscaled) tensor can be a full
tensor, even if the fine grid permeability field is described by diagonal (orthotropic) tensor.
For accurate solving of elliptic problems with discontinuous tensor coefficient the multipoint
flux approximation (MPFA) approach is widely used recently [1, 6, 13, 19, 21]. Theoretical
analysis of the method is done only for the case of continuous tensor coefficients [6, 13, 21].
In [9], under certain smoothness assumptions, we show first order approximation for the
fluxes in the case of discontinuous tensor coefficients, and show that in the case of constant
tensor coefficients MPFA is O(h2) perturbation of the scheme from [17].

The target of this paper is to compare a numerical upscaling approach with the multiscale
FEM, MsFEM. A short discussion on the both approaches can be found in [8], but it concerns
only the number of the block solves needed for the both methods, as well as the memory
requirements. Only numerical results obtained with MsFEM were shown there. The authors
did not found in the literature a direct comparison of the performance of the both methods,
and this article aims at filling this gap. A partial motivation for our study was also the article
[15], where an example which can not be solved by MsFEM and heterogeneous multiscale
method was shown. Furthermore, another target of the paper is to numerically study the
role of the boundary conditions for the cell problems. We compare so called linear, oscilatory,
and Neumann boundary conditions for the cell problems.

The paper is organized as follows. Next section is devoted to describing an accurate finite
volume discretization for elliptic equations with discontinuous tensor coefficients. Assuming
that the flux is piecewise constant in each control volume, we derive interpolating polynomials
which satisfy the interface conditions and use them to approximate the solution of the
problem. The discretization is derived in the same way as the schemes from [1, 5]. The
derivation is based on the finite volume approach (method of balance, [17]) and multipoint
flux approximation approach [1]. Writhing the derivation of MPFA in the specific form, we
have shown in [9] that the components of the continuous flux are approximated with first
order in the midpoints of the edges by the components of the discrete flux.

Third section of the paper treats multiscale problems. Two-level permeability upscaling
is discussed here. Different formulae and local flow formulations for calculating effective
properties of highly heterogeneous porous media are considered. An algorithm for recon-
structing the coarse grid solution into the fine scale is proposed. It should be noted that this
reconstruction is done on a dual coarse grid, while the multiscale FEM uses for recosntruction
the multiscale basis functions from the primaty grid.

In fourth section, we present the results from the performed numerical experiments. First,
we consider a single scale problem and study numerically the convergence of the MPFA
discretization for the pressure and for the fluxes in the case of anisotropic discontinuous
tensor coefficient. Next, we validate the permeability upscaling procedure comparing it
with known analytical results and with other numerical approaches for calculating effective
coefficients. Finally, we present results from upscaling two typical multiscale problems with
continuous highly oscillating coefficients. Note, that although in this case the porous medium
is isotropic at the fine scale and the coefficient is continuous there, we have to deal with
anisotropic problem with discontinuous tensor coefficients at the coarse scale. The first
example is from the recent article [15], where authors show that multiscale finite element
method (MsFEM) and heterogeneous multiscale method (HMM) do not converge for this
example. The second example is from [8], where stagnation for MsFEM is reported. In
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fact, avoiding this stagnation is the reason for the authors in [8] to consider the so called
oversamoling approach. We show that the numerical upscaling approach is more successful
in solving these problems even without oversampling. Concluding remarks are presented in
the end of the paper.

2. Continuous problem and finite volume discretization

In this section, we describe single scale mathematical model and the discretization approach.
The approximation properties of the derived numerical scheme are studied as well.

2.1. Statement of the problem

In this paper, we consider steady state incompressible single phase flow in highly heteroge-
neous anisotropic porous media. Such flow is described by the equation for the unknown
pressure p:

−∇ · (K∇p) = f, in Ω, (1)

subject to the following boundary conditions

p = gD, on ΓD, K∇p · n = gN , on ΓN , ∂Ω = ΓD ∪ ΓN . (2)

This problem could be reformulated in a mixed form as a system of the equation ∇ · v = f
expressing mass conservation and the Darcy’s law v = −K∇p. Here the domain Ω is a
parallelepiped with boundaries parallel to the coordinate planes, the set ΓD is non-empty
and has positive surface measure, the permeability tensor is full, symmetric, and uniformly
positive definite in Ω:

K =

(

k11 k12

k21 k22

)

> 0, k12 = k21.

The entries of the permeability tensor K may have jump discontinuities along certain in-
terfaces that are parallel to the coordinate planes and along these interfaces the following
conditions are satisfied

[p] = 0, [K∇p · n] = 0.

Here [u] = u(xξ +0)−u(xξ −0) on the interface xξ, and n stands for the normal unit vector.

2.2. Finite volume discretization

The domain Ω is partitioned into blocks Ωij so that the discontinuities of the permeability
tensor K are aligned with cell boundaries. The centers of the cells Ωij are denoted by
(xi, yj) and the cell vertexes are the points (xi ±

1

2
hx, yj ±

1

2
hy). The mesh that will be used

to approximate the pressure will include all cell centers (xi, yj). This mesh will be called
primary mesh ωh = {(xi, yj) : Ωij}. Similarly we shall use also the mesh of all cell vertexes,
called often dual mesh. The velocities will be calculated at the points (xi ±

1

2
hx, yj) and

(xi, yj ±
1

2
hy).

The continuity equation (∇ · v = f) is integrated over control volume Ωij and making
use of the divergence theorem, we obtain

∫

Ωij

∇ · vdx =

∫

Ωij

fdx ⇒

∫

∂Ωij

v · nds =

∫

Ωij

fdx. (3)
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Replacing the velocity v in (3) by certain approximation involving p, and by using the
Darcy’s relation v = −K∇p we get a conservative method [17]. In this approximation we
assume that the unknowns are the values of the pressure at the cell centers and then use
these values to recover the velocity v. According to the multipoint flux approximation (see,
e.g., [5, 19]) this is done in the following manner. First we split each control volume

Ωij =

(

xi −
1

2
hx, xi +

1

2
hx

)

×

(

yj −
1

2
hy, yj +

1

2
hy

)

into 4 subvolumes ΩI
ij = (xi −

1

2
hx, xi)× (yj, yj + 1

2
hy), ΩII

ij = (xi −
1

2
hx, xi)× (yj, yj −

1

2
hy),

ΩIII
ij = (xi, xi + 1

2
hx) × (yj, yj + 1

2
hy), ΩIV

ij = (xi + 1

2
hx, xi) × (yj, yj −

1

2
hy). See Figure 1 for

details.
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Figure 1. Control volumes: inner and boundary cells

To approximate the pressure, we consider linear function on each subvolume Ωk
ij so that

the flux is constant on these subvolumes:

qk(x, y) = akx + bky + ck, (x, y) ∈ Ωk. (4)

On the boundary ΓD we require these functions to satisfy the prescribed boundary conditions
in the boundary grid nodes. The coefficients ak, bk and ck in (4) are determined by the
following conditions:
(1c) the polynomials qk interpolate the pressure values at the volume centers;
(2c) the continuity of these piecewise linear functions at the centers of the faces of the volume
Ωij ;
(3c) the continuity of the normal component of the approximate velocity v along the faces
of the volume Ωij .

Conditions (1c)–(3c) correspond to the so called O-method with surface midpoints as
continuity points, see, e.g., [1]. These conditions are applied on a cell from the dual grid,
i.e. a cell centered at a vertex point from the original grid. These cells are of three categories:
corresponding to internal vertices, to boundary vertices; and to the 4 corner points of the
domain Ω (Fig. 1).

Consider an internal vertex that is surrounded by four subcells with unknown pressure
values pN , pNE , pP , pE at the corners. To find the polynomial coefficients from (4), we use
conditions (1c)–(3c). Let the coordinate origin be in the vertex node, so for the considered
shifted control volume we have −hx/2 6 x 6 hx/2, −hy/2 6 y 6 hy/2. Using conditions
(1c)–(3c) and substituting x, y and the pressure at the cell-centers (P , E, N , NE) into
equation (4), we obtain the system

Av = w, v = (a1, b1, a3, b3)T .
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The matrix of the system is

A =









kP
11 + kE

11 kP
12 0 kE

12

kP
12 kP

22 + kN
22 kN

12 0
0 kN

12 kN
11 + kNE

11 kNE
12

kE
12 0 kNE

12 kE
22 + kNE

22









, (5)

and the right-hand side is given by

w1 = 2

(

kE
11

pE − pP

hx

+ kE
12

pNE − pE

hy

)

, w2 = 2

(

kN
21

pNE − pN

hx

+ kN
22

pN − pP

hy

)

,

w3 = 2

(

kN
11

pNE − pN

hx

+ kN
12

pN − pP

hy

)

, w4 = 2

(

kE
12

pE − pP

hx

+ kE
22

pNE − pE

hy

)

.

The coefficients ai, bi, i = 2, 4, can be expressed through ai, bi, i = 1, 3 and the pressure
values at the cell centers

a2 =
pE − pP

0.5hx

− a1, b2 =
pNE − pE

0.5hy

− b3, a4 =
pNE − pN

0.5hx

− a3, b4 =
pN − pP

0.5hy

− b1. (6)

Note, that it gives us the expressions for the velocity that is constant over each of the
4 subcells of the vertex-centered volume (Fig. 1). Consider in the same way three other
vertex-centered volumes to find the fluxes incoming and outcoming the cell-centered (control)
volume Ωij . These formulas are used to find v · n on ∂Ωij , as needed by relation (3).

For vertex that is on the boundary the situation is simpler. In the case of Neumann
boundary conditions the flux is given on the boundary, while in the case of Dirichlet boundary
conditions we just do the same procedure as for the inner control volume, but in this case
we have only one interface.

Combining this relationship for each neighboring vertex gives us a discrete pressure equa-
tion with a 9-point stencil.

Remark 2.1. In the case of diagonal permeability tensor (k12 = 0), the developed finite
volume scheme reduces to the harmonic average scheme

2kP
11k

E
11

kP
11 + kE

11

hy

hx

(

pE − pP
)

−
2kP

11k
W
11

kP
11 + kW

11

hy

hx

(

pP − pW
)

+

2kP
22k

N
22

kP
22 + kN

22

hx

hy

(

pN − pP
)

−
2kP

22k
S
22

kP
22 + kS

22

hx

hy

(

pP − pS
)

= −fP hxhy.

(7)

3. Multiscale problem

In this section we discuss a numerical upscaling algorithm for solving problem (1), (2) in the
case of highly oscilating coefficients. The algorithm includes:
i.) decomposition of the computational domain into non-overlapping subdomains,
ii.) solving local problems in each subdomain to calculate (homogenize) effective coefficients
for this subdomain (these are so called cell problems);
iii.) solving coarse scale problem with upscaled (tensor) coefficients;
iv.) reconstruction of a fine solution from the coarse one, if needed.
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Different boundary conditions for the cell problems are considered, as well as different for-
mulae for calculating the effective coefficients from the solution of the cell problems.

Let us shortly discuss similarity and differences with MsFEM. The steps i.) and ii.)
are almost the same as in multiscale FEM. The difference in ii.) is that here we use the
solution of the cell problem in order to calculate effective coefficients for the coarse scale
equation, while in MsFEM these local solutions are used to establish a multiscale basis for
the FEM. Furthermore, the coarse equation in iii.) is build in different way by the both
methods. The used here numerical upscaling use the upscaled coeficients to write a (coarse
scale) PDE with discontinuos tensor coefficients, which is after done discretized with MPFA
and solved. In MsFEM, the coarse scale equation is not formed analytically, it is obtained
numerically within a Galerkin procedure. Finally, in step iv.), MsFEM automatically gets a
fine scale solution because multiscale basis functions are used, while presented here numerical
approach needs additional block solves on a dual coarse grid in order to recover a fine scale
solution. Note, that the usage of a dual grid allows to use more coarse information in the
local reconstruction of a fine solution.

3.1. Fine-coarse scale algorithm

Consider decomposition of the domain Ω̄ into the fine grid ωh defined in the previous section
and the coarse grid defined in the same way ωH = {(xI , yJ) : ΩIJ = nxnyΩij}, where nx, ny

is the number of fine grid blocks in a coarse one. Both grids are uniform and cell-centered,
moreover, the interfaces of each coarse block match the interfaces of the fine blocks (Fig. 2).

Figure 2. Fine and coarse grids

It was mentioned above that in a number of industrial applications it is reasonable to find
effective properties of the medium, i.e., instead of K given in every point on the fine grid,
find constant tensor K̃ in each coarse grid block. In the paper, we consider homogenization
procedure which allow the coarse scale equation to be of the same form as equation (1) but
with permeability K replaced by the coarse scale or effective permeability tensor K̃. In this
case instead of equation (1) we will have the coarse scale pressure equation

−∇ · (K̃∇p̃) = f. (8)

In paper[22] it was shown that the homogenized solution p̃ approximates the fine scale
solution p in L2 norm

‖p − p̃‖Ω 6 C1

h

H
+ C2H + C3h.

Note that K̃ depends on heterogeneities only and calculated once can be used in different
computational scenarios. Different definitions of K̃ have been proposed [4, 22]. Solutions of
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local flow problems in each coarse grid block are postprocessed in order to upscale the
permeability tensor. The main differences among various formulations are the boundary
conditions imposed on the local flow equation and the averaging processes for computing K̃.

So, the algorithm contains the following two stages: i) solving fine scale cell-problems and
using their solutions for upscaling the effective properties of the multiscale media; ii) solving
coarse scale equation with the calculated effective coefficients. In case we are interested in
fine grid solution in certain subdomains, the algorithm of reconstruction coarse scale solution
should be applied.

3.2. Effective permeability

Consider a cubic grid block V . It can be coarse grid block Ωij or some extended local
subdomain (coarse grid block with overlapping). To define K̃ in V we write the coarse scale
Darcy’s law

〈v〉V = −K̃ 〈∇p〉V , (9)

where p and v are fine scale solutions of the problem v = −K · ∇p, ∇ · v = 0 in the grid
block V with appropriate boundary conditions. Note that f = 0, since effective properties
should be independent on the source term and global boundary conditions posed on ∂Ω.
Here < . >V is the volume average over V defined by

〈.〉V =
1

V

∫

V

(.)dx.

In two-dimensional case, two fine scale flow solutions which provide linearly independent
volume averages of the pressure gradients are necessary to determine K̃ from (9) in each
grid block

vi = −K · ∇pi, ∇ · vi = 0, in V, i = 1, 2. (10)

The subscript of v and ∇p designates the flow problem (1 corresponds to the flow in x-
direction, 2 corresponds to y-flow). The solutions of the local flow problems (10) with
appropriate boundary conditions are then postprocessed in order to upscale the permeability
tensor

〈vi〉V = −K̃ 〈∇pi〉V , i = 1, 2. (11)

Different local flow formulations are used in practice. The following boundary conditions
are usually posed. Periodic conditions can be formulated as

p1 = x + ε, p2 = y + ε, periodic on V. (12)

Linear pressure drop conditions are the following

p1 = x, p2 = y, on ∂V. (13)

Pressure drop no-flow conditions (linear in the direction of the gradient and zero Neumann
in normal direction) are given by

p1 = x, on Γ1, n · v1 = 0, on Γ2,

p2 = y, on Γ2, n · v2 = 0, on Γ1,
(14)

where Γi are the faces of ∂V normal to the unit vector in the ith direction.
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Oscillatory boundary conditions are defined in the following way

p1 = x, on Γ1, p1 = P (x), on Γ2,

p2 = y, on Γ2, p2 = P (y), on Γ1.
(15)

To build the interpolation operator P the following algorithm is used. We solve one-
dimensional problems on the edges perpendicular to the boundary Γi in order to develop
problem dependent interpolation of the values x, y ∈ Γi ∩ Γj , i 6= j, in the corners of the
considered grid block

∂

∂x

(

k11

∂p1

∂x

)

= 0, in Γ2, p1(0) = 0, p1(1) = 1, (16)

∂

∂y

(

k22

∂p2

∂y

)

= 0, in Γ1, p2(0) = 0, p2(1) = 1. (17)

We discretize problems (16), (17) by the harmonic average scheme (7) with 3-point stencil
and solve the discrete problem directly using Thomas algorithm. The solutions of the one-
dimensional problems (16), (17) provide fine grid pressure values pi on the boundary of the
local subdomain V .

Note that the upscaled permeability tensor K̃ computed via equations (11) can be non-
symmetric. Various procedures are applied to enforce symmetry. The simplest approach is
to use the mean value of the cross terms (k̃12 + k̃21)/2. The second disadvantage of the above
mentioned approach is that it doesn’t guarantee the positive definiteness of the upscaled
tensor K̃.

In the paper [22] it was shown that for periodic and linear boundary conditions (12), (13)
formula (11) can be simplified as

K̃ei = 〈vi〉V , (18)

where ei is the unit vector in the ith direction. So, one local flow problem gives us components
k̃11, k̃12 of the upscaled permeability tensor and in the case of isotropic media (k11 = k22)
there is no need to solve two local flow problems. Another nice property of the boundary
conditions (12) and (13) is that they lead to symmetric and positive definite K̃. In this case,
we have another way to compute homogenized permeability tensor

ei · K̃ej = 〈∇pi · K∇pj〉V , (19)

From formula (19) it is easy to see that in this case K̃ is symmetric and positive definite.

3.3. Reconstruction of the solution

Since we deal with discontinuous and strongly varying by several orders of magnitude coef-
ficients in the domain of interest, the problem dependent prolongation operator has to be
used [18] to reconstruct the solution from the coarse grid.

Suppose that the coarse scale pressure values p̃ = p̃I,J are known in the nodes (xI , yJ) of
the coarse grid ωH , and these values have to be interpolated to the fine grid ωh. Consider
four neighbouring coarse grid nodes (xI , yJ), (xI+1, yJ), (xI , yJ+1), (xI+1, yJ+1) forming a
rectangle V . To reconstruct the solution in the considered subdomain the following two-
stage algorithm is used. First, we solve four one-dimensional problems

∂

∂x

(

k11

∂pedge

∂x

)

= 0, in Γ2, pedge(x, y) = p̃, in Γ1 ∩ Γ2, (20)
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∂

∂y

(

k22

∂pedge

∂y

)

= 0, in Γ1, pedge(x, y) = p̃, in Γ1 ∩ Γ2. (21)

Solutions of problems (20), (21) give problem dependent interpolation of the values p̃I,J

along the boundary ∂V of the considered vertex-centered grid block V . Then solutions pedge

are used as Dirichlet boundary conditions for two-dimensional problem in block V :

∂

∂x

(

k11

∂pc
rec

∂x

)

+
∂

∂y

(

k22

∂pc
rec

∂y

)

= 0, in V, (22)

pc
rec = pedge, on ∂V. (23)

Solution of problem (22), (23) provides the reconstructed solution pc
rec in subdomain V under

consideration. For subdomains near the boundary ∂Ω we use global boundary conditions on
∂V ∩ ∂Ω.

4. Numerical results

In this section, we validate the developed single grid finite volume discretization for prob-
lems with discontinuous tensor coefficients, calculate effective properties of the media and
solve multiscale problem using combination of permeability upscaling and multipoint flux
approximation approach.

4.1. Validation of the discretization for single scale problems

To validate the developed finite volume scheme we perform numerical experiments for Dirich-
let boundary-value problem (p = gD on ∂Ω) for the pressure equation (1) with the coefficients
discontinuous along the interfaces x = xξ and y = yη. The permeability tensor is given by

K(x, y) =

{

α · I, (x, y) ∈ K1 ∪ K4,

β · I, (x, y) ∈ K2 ∪ K3,
, where I =

(

1 0.5
0.5 1

)

,

where λ = β/α is the contrast of discontinuity (Fig. 3).

K3

K2

xξ

yη

0 1

1

K1

K4

Figure 3. Discontinuity surface

We choose the exact solution which satisfies the continuity conditions of the pressure and
the fluxes along these interfaces

p = (x − xξ)
2(y − yξ)

2 sin(π(x + y)).
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Source f and boundary conditions gD are defined by (1) and (2) accordingly.
Convergence rate for the pressure and the velocity is established by running cases for

several levels of grid refinement, refining the grid steps by factor of two for each successive
level. The following notations are used

‖δph‖C =
‖p − ph‖C

‖p‖C

, ‖δph‖L2
=

‖p − ph‖L2

‖p‖L2

,

where p is the (exact) solution of the differential problem (1), (2), and ph is the (approximate)
solution of the MPFA finite volume scheme. In this particular problem vx = vy = v, so we
define in the same way

‖δvh‖C =
‖v − vh‖C

‖v‖C

, ‖δvh‖L2
=

‖v − vh‖L2

‖v‖L2

.

For these experiments the following parameters are used xξ = 0.4, yη = 0.4, α = 1, β =
1000. Table 1 shows the difference between the analytic and the numerical solutions in the
corresponding energy and maximum norms.

Error N = 20 N = 40 N = 80 N = 160 N = 320

‖δph‖L2
1.20E-2 3.06E-3 7.77E-4 1.96E-4 4.92E-5
1.97 1.98 1.98 1.99

‖δvh‖L2
1.08E-2 4.39E-3 1.56E-3 4.95E-4 1.49E-4
1.29 1.49 1.66 1.73

‖δph‖C 1.73E-2 4.91E-3 1.30E-3 3.37E-4 8.66E-5
1.82 1.92 1.95 1.96

‖δvh‖C 1.70E-2 1.04E-2 5.59E-3 2.87E-3 1.45E-3
0.70 0.89 0.96 0.99

Table 1. Errors and orders of convergence for problem (1), (2) in L2 and C norms

From Tab. 1 it is easy to see that the approximate solution ph converges to the exact
solution p with the second order both in the maximum and energy norms, while for the
fluxes we have first order convergence in C norm and second order convergence in L2 norm.

4.2. Efficient calculations of effective properties

As was mentioned above, isotropic inhomogeneity may lead to a dense tensor. To demon-
strate this, J. Bourgat considered the L-shaped region [3] with the following permeability
tensor

K(x, y) =

{

1 · I, (x, y) ∈ Ω0,

10 · I, (x, y) ∈ Ω1,
, where I =

(

1 0
0 1

)

.

Different techniques were used to find the homogenized tensor K̃ which is constant in
the whole domain Ω0 ∪ Ω1. The asymptotic computation of Bourgat gives

K̃as =

(

1.915 −0.101
−0.101 1.915

)

.
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x

y

1/6 3/6 5/6 1

1/6

3/6

5/6

1

Ω0

Ω1

Figure 4. L-shaped inhomogeneity

Black box homogenization [16] also provides a full tensor, specifically for grid 768 × 768
effective tensor is equal

K̃bb =

(

1.959 −0.153
−0.153 1.959

)

.

We calculated effective permeability numerically on the same grid 768×768 using different
formulas and local flow formulations

K̃dl =

(

1.937 −0.136
−0.136 1.937

)

, K̃el =

(

1.935 −0.135
−0.135 1.935

)

, K̃dn =

(

1.887 −0.127
−0.127 1.887

)

.

Effective permeability tensors K̃dl, K̃dn are calculated by means of formula (11) while K̃el is
computed via formula (19). For calculating K̃dl and K̃el linear boundary conditions (13) are
posed, for K̃dl – pressure drop no-flow conditions (14). For particularly this case oscillatory
boundary conditions (15) give the same result as linear boundary conditions (13) since there
are no inhomogeneities on the domain boundary. Note that for this case all the approaches
give quite similar results.

4.3. Computation of multiscale problems

In order to compare permeability upscaling with multiscale finite element method (MsFEM)
and heterogeneous multiscale method (HMM), we consider the multiscale problems with
unseparable scales posed in the paper by P. Ming and X. Yue [15]. The authors reported
that MsFEM and HMM fail in solving this problem.

In domain Ω̄ = [0, 1] × [0, 1] consider pressure equation (1) with homogeneous Dirichlet
boundary conditions (p = 0, on ∂Ω) and constant right-hand side (f = 10). The problem is
characterized by highly heterogeneous isotropic continuous coefficients

K =

(

aε(x, y) 0
0 aε(x, y)

)

,

with the components

aε(x, y) =
1

6

(

1.1 + sin(2πx/ε1)

1.1 + sin(2πy/ε1)
+

1.1 + sin(2πy/ε2)

1.1 + cos(2πx/ε2)
+

1.1 + cos(2πx/ε3)

1.1 + sin(2πy/ε3)

+
1.1 + sin(2πy/ε4)

1.1 + cos(2πx/ε4)
+

1.1 + cos(2πx/ε5)

1.1 + sin(2πy/ε5)
+ sin

(

4x2y2
)

+ 1

)

,

(24)
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where ε1 = 1/5, ε2 = 1/13, ε3 = 1/17, ε4 = 1/31, ε5 = 1/65 (Fig. 5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

aε (x
,0

.5
)

Figure 5. Coefficient (27) at y = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

y

aε (0
.4

,y
)

Figure 6. Coefficient (27) at x = 0.4

We solve local flow problems with pressure drop no-flow boundary conditions (14) and
use formulas (11) for calculating effective permeability tensor.

To compare fine grid solution with the coarse grid one the following criterion is used. We
will check convergence of the coarse grid solution pc to the reference solution prf calculated
on the single grid 2048 × 2048. First we consider how close the volume average of the fine
grid solution

〈

prf
〉

is to the solution pc obtained on the coarse grid

∥

∥

〈

prf
〉

− pc
∥

∥

L2

‖prf‖L2

,

∥

∥

〈

prf
〉

− pc
∥

∥

C

‖prf‖C

. (25)

Then we reconstruct the solution from the coarse grid into the fine grid by approach described
in Section 3.3. The reconstructed solution is denoted by pc

rec.

∥

∥prf − pc
rec

∥

∥

L2

‖prf‖L2

,

∥

∥prf − pc
rec

∥

∥

C

‖prf‖C

. (26)

Numerical results demonstrating convergence of the pressure with the first order on the
coarse grid O(H) are summarized in Tab. 2. The following notations are used: Nx × Ny is
the number of coarse blocks in the domain Ω, nx × ny is the number of fine blocks in the
coarse one.

From Tab. 2 it is easy to see that in this case, the coarse grid solution converges to fine
grid one with O(H). Fig. 7, 8 visualize the results from Tab. 2. From these pictures we can
see that discussed here two-level permeability upscaling converges for considered problem
while MsFEM and HMM diverges (see [15]).

We also consider influence of different local flow formulations on the convergence of the
method. From Fig. 9, 10 it is easy to see that pressure drop no-flow boundary conditions (14)
and oscillatory boundary conditions (15) give better results, and linear local flow boundary
conditions (13) don’t provide the convergence.

To be more sure that permeability upscaling gives more accurate results, we consider the
example from the paper [8]. By this example, we compare performance of two-level upscaling
procedure with multiscale finite element method. In domain Ω̄ = [0, 1] × [0, 1] consider
pressure equation (1) with homogeneous Dirichlet boundary conditions (p = 0, on ∂Ω) and
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Nx × Ny nx × ny

∥

∥

〈

prf
〉

− pc
∥

∥

L2

‖prf‖L2

∥

∥

〈

prf
〉

− pc
∥

∥

C

‖prf‖C

∥

∥prf − pc
rec

∥

∥

L2

‖prf‖L2

∥

∥prf − pc
rec

∥

∥

C

‖prf‖C

4 × 4 8 × 8 0.1889 0.1714 0.0643 0.1362
8 × 8 8 × 8 0.1372 0.1210 0.0904 0.1267

16 × 16 8 × 8 0.0195 0.0280 0.0227 0.0500
32 × 32 8 × 8 0.0132 0.0203 0.0132 0.0380
64 × 64 8 × 8 0.0068 0.0114 0.0080 0.0253

128 × 128 8 × 8 0.0048 0.0060 0.0051 0.0123
256 × 256 8 × 8 0.0031 0.0035 0.0032 0.0059

4 × 4 16 × 16 0.2544 0.1898 0.0961 0.1750
8 × 8 16 × 16 0.0515 0.0507 0.0251 0.0634

16 × 16 16 × 16 0.0214 0.0286 0.0175 0.0475
32 × 32 16 × 16 0.0107 0.0171 0.0114 0.0345
64 × 64 16 × 16 0.0061 0.0107 0.0075 0.0256

128 × 128 16 × 16 0.0046 0.0059 0.0049 0.0122

Table 2. Convergence of the pressure for problem (8)
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Figure 7. Results for n = 8 according to criterium (25) (left) and criterium (26) (right)
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Figure 9. Compare volume average of reference solution with coarse solution for n = 16 (criterium (25))
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Figure 10. Compare reference solution with reconstructed for n = 16 (criterium (26))

constant right-hand side (f = -1). The problem is characterized by highly heterogeneous
isotropic continuous coefficients

aε(x, y) =
2 + P sin(2πx/ε)

2 + P cos(2πy/ε)
+

2 + sin(2πy/ε)

2 + P sin(2πx/ε)
, P = 1.8. (27)

In Tab. 3, 4 we compare results from two-level upscaling procedure with the results obtain
by MsFEM in the paper [8]. These results are marked by (HW).

N n ‖p − ph‖L2
(HW) ‖p − ph‖C (HW)

∥

∥

〈

prf
〉

− pc
∥

∥

L2

∥

∥

〈

prf
〉

− pc
∥

∥

C

32 64 2.52e-5 4.89e-5 3.79e-5 7.80e-5
64 32 5.79e-5 1.06e-4 1.35e-5 4.87e-5
128 16 9.65e-5 1.74e-4 7.40e-6 2.64e-5
256 8 2.10e-4 3.76e-4 1.28e-5 5.16e-5
512 4 9.88e-5 1.77e-4 7.11e-5 1.27e-4

Table 3. Results for ε = 0.005

From Tab. 3 we see that two-level upscaling procedure gives more accurate results. (Dif-
ferent error estimates for h < ε and h > ε).

From Tab. 4 it is easy to see that we don’t observe here resonance effect like in MsFEM.
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N ε ‖p − ph‖L2
(HW)

∥

∥

〈

prf
〉

− pc
∥

∥

L2

∥

∥

〈

prf
〉

− pc
∥

∥

C

16 64 6.23e-5 1.83e-4 2.99e-4
32 32 8.43e-5 7.08e-5 1.31e-4
64 16 9.32e-5 3.39e-5 6.95e-5
128 8 9.65e-5 7.40e-6 2.65e-5

Table 4. Results for ε/h = 0.64 and n = 16

5. Conclusions

The purpose of the paper was to develop and apply fine-coarse scale algorithm for solving
elliptic problems describing flows in strongly heterogeneous porous media with unseparable
scales.

The method combines multipoint flux approximation approach and permeability up-
scaling technique. Convergence properties of the discretization on a single grid is studied
numerically for pressure and fluxes in energy and maximum norms.

Different local flow formulations are considered at the pre-processing step for efficient
calculating the effective properties of the heterogeneous porous media. Numerical results
are compared with known analytical solutions as well as with other numerical techniques.

Finally, developed fine-coarse scale algorithm is applied for solving multiscale problem
with unseparable scales, for which MsFEM and HMM do not converge. We show that the
developed algorithm successfully solves this problem.
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