Fraunhofer
 Institut Techno- und Wirtschaftsmathematik

O. Iliev, I. Rybak

On approximation property of multipoint flux approximation method

© Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2007
ISSN 1434-9973
Bericht 119 (2007)
Alle Rechte vorbehalten. Ohne ausdrückliche schriftliche Genehmigung des Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, verwendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen Wiedergabe.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.
Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können bezogen werden über:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany
Telefon: $\quad+49(0) 631 / 31600-0$
Telefax: $\quad+49(0) 631 / 31600-1099$
E-Mail: info@itwm.fraunhofer.de
Internet: www.itwm.fraunhofer.de

Das Tätigkeitsfeld des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech-no- und Wirtschaftsmathematik bedeutsam sind.

In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts kontinuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissenschaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Mathematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Berichtreihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Dissertationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.

Darüber hinaus bietet die Reihe ein Forum für die Berichterstattung über die zahlreichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirtschaft.

Berichterstattung heißt hier Dokumentation des Transfers aktueller Ergebnisse aus mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen und Softwareprodukte - und umgekehrt, denn Probleme der Praxis generieren neue interessante mathematische Fragestellungen.

Prof. Dr. Dieter Prätzel-Wolters
Institutsleiter
Kaiserslautern, im Juni 2001

ON APPROXIMATION PROPERTY OF MULTIPOINT FLUX APPROXIMATION METHOD

O.P. ILIEV AND I.V. RYBAK

Abstract

Approximation property of multipoint flux approximation (MPFA) approach for elliptic equations with discontinuous full tensor coefficients is discussed here. Finite volume discretization of the above problem is presented in the case of jump discontinuities for the permeability tensor. First order approximation for the fluxes is proved. Results from numerical experiments are presented and discussed.

Keywords: Multipoint flux approximation, finite volume method, elliptic equation, discontinuous coefficients, anisotropy

1. Introduction

The paper concerns the approximation property of multipoint flux approximation (MPFA) approach applied to second order elliptic equation with discontinuous tensor coefficients. MPFA is a finite volume discretization in which the flux over a face is discretized using several grid points, in contrast to the standard two point approximation for the flux in the case of orthotropic problems. Recall that orthotropic problems are characterized by a diagonal coefficients tensor, while full tensor describes the coefficients of anisotropic problems. One of the first articles introducing MPFA were $[8,10]$, where MPFA was used in conjunction with simulation of porous media flow. No theoretical analysis was presented there. During the years, the method became popular due to its robustness and good accuracy. It was extensively used for solving applied problems, especially in geoscience. This risen the interest in a theoretical analysis of this approach, and some approximation and convergence results were published recently by Aavatsmark [1, 2], Klausen, Winther [4, 5], Wheeler, Yotov [3, 9]. Although the method was originally derived especially for problems with discontinuous tensor coefficients, the presented theoretical results concern MPFA applied to problems with continuous tensor coefficients. There are only numerical studies of the convergence order for discontinuous coefficients. The theoretical results presented in the above articles were obtained by showing equivalence of MPFA approximation to certain mixed finite element method, what allowed to use the well developed theory of mixed finite element method. First order convergence in W_{2}^{1} was proven, recall that the analysis was done for the case of smooth coefficients.

In the current article, we consider MPFA in the context of the theory of finite difference schemes [7, 11, 12]. We prove first order convergence for the MPFA method in discrete W_{2}^{1} norm. More precisely, we write down a specific derivation of MPFA, and show that the components of the continuous flux, $\mathbf{W}=\left(W_{1}, W_{2}\right)^{T}$, are approximated with $O(h)$ in the midpoints of the edges by the components of the discrete flux, $\mathbf{W}_{\mathbf{h}}=\left(W_{1, h}, W_{2, h}\right)^{T}$. Further on, we use a priori estimates like (14) on

Date: November 27, 2007.
p. 14 in [12]. This estimate allows to obtain convergence result in discrete W_{2}^{1} norm, if the error of a finite difference scheme can be written in divergence form, and if the approximation error for the fluxes is known. as it is often done in the analysis of finite difference schemes, we assume that the solution is piecewise smooth even when the coefficients have jump discontinuity. Obviously, our analysis is valid also for the case applying MPFA method for problems with continuous tensor coefficients. When the coefficients are discontinuous, often the solution has not enough regularity. However, for particular combination of the discontinuous coefficients, the solution may be smooth enough for our needs. We refer to [6] for a detailed discussion on the regularity of the solution in the case of scalar discontinuous coefficient.

So, we show that $W_{1}\left(x_{i+1 / 2}, y_{j}\right)-W_{1, h}\left(x_{i+1 / 2}, y_{j}\right)=O(h)$, where $\left(x_{i+1 / 2}, y_{j}\right)$ is the middle point of an edge. We proceed with MPFA written in a specific way.

We consider a cell-centered basic grid, as well as a dual grid. The finite volume discretization is obtained on the original grid by applying divergence theorem. The flux over an edge is split into two parts, so that we have two subfluxes contributions over each edge: one for $\left(x_{i+1 / 2}, y_{j}\right),\left(x_{i+1 / 2}, y_{j+1 / 2}\right)$, and another for $\left(x_{i+1 / 2}, y_{j-1 / 2}\right)$, $\left(x_{i+1 / 2}, y_{j}\right)$. We will show the approximation only for the first subflux. Now we continue the discretization over the dual grid. For each of the four subcells of the dual cell, we will build interpolating linear polynomials. They interpolate the solution in the nodes of the original grid, and in the middle of the edges of the cells from the original grid, e.g., in $\left(x_{i}, y_{j}\right),\left(x_{i+1 / 2}, y_{j}\right)$ and in $\left(x_{i}, y_{j+1 / 2}\right)$. In fact, this is similar to one of the ways in which MPFA is derived by solving system of 4 equations with 4 unknowns. Our aim will be to show that the normal component of the flux, W^{1} in this case, is approximated with $O(h)$ by the flux of this interpolating polynomial.

2. Continuous problem and finite volume discretization

In this section, we describe the mathematical model and the discretization approach. The derivation is based on the finite volume method (method of balance) and on multipoint flux approximation approach (MPFA).
2.1. Statement of the problem. In rectangular domain $\bar{\Omega}=\Omega \cup \partial \Omega$, we consider two-dimensional pressure equation obtained by combining the continuity equation $(\nabla \cdot \mathbf{W}=f)$ and Darcy's law $(\mathbf{W}=-K \nabla u)$ for steady state incompressible single phase flows in porous media

$$
\begin{equation*}
-\nabla \cdot(K \nabla u)=f, \quad \text { in } \Omega . \tag{1}
\end{equation*}
$$

Boundary conditions complete the formulation of the problem

$$
\begin{equation*}
u=g^{D}, \quad \text { on } \Gamma_{D}, \quad K \nabla u \cdot \mathbf{n}=g^{N}, \quad \text { on } \Gamma_{N}, \quad \partial \Omega=\Gamma_{D} \cup \Gamma_{N} . \tag{2}
\end{equation*}
$$

Here u is unknown pressure, f is the source, the set Γ_{D} is non-empty and had positive surface measure, the permeability tensor is full, symmetric, and uniformly positive definite in Ω :

$$
K=\left(\begin{array}{ll}
k_{11} & k_{12} \\
k_{12} & k_{22}
\end{array}\right)>0, \quad k_{12} \neq 0
$$

The entries of the permeability tensor K may have jump discontinuities along certain interfaces that are parallel to the coordinate planes and along these interfaces
the perfect contact interface conditions are satisfied

$$
[u]=0, \quad[K \nabla u \cdot \mathbf{n}]=0,
$$

where $[v]=v(\eta+0)-v(\eta-0)$ for the interface η.
We suppose that the following ellipticity conditions are satisfied as well

$$
\begin{equation*}
0<c_{1} \sum_{\alpha=1}^{2} \xi_{\alpha}^{2} \leq \sum_{\alpha, \beta=1}^{2} k_{\alpha \beta} \xi_{\alpha} \xi_{\beta} \leq c_{2} \sum_{\alpha=1}^{2} \xi_{\alpha}^{2}, \quad c_{1}, c_{2}>0, \tag{3}
\end{equation*}
$$

where $c_{1}, c_{2}>0$ are positive constants, $\xi=\left(\xi_{1}, \xi_{2}\right)$ is an arbitrary nonzero vector $|\xi|=\xi_{1}^{2}+\xi_{2}^{2} \neq 0$.
Remark. Equation (1) describes also heat conductivity in composite materials, diffusion in heterogeneous media, stationary distribution of electric and magnetic field, etc.
2.2. Finite volume discretization. The domain Ω is partitioned into blocks $\Omega_{i j}$ so that the discontinuities of the permeability tensor K are aligned with cell boundaries. The centers of the cells $\Omega_{i j}$ are denoted by $\left(x_{i}, y_{j}\right)$ and the cell vertexes are the points ($x_{i} \pm \frac{1}{2} h_{1}, y_{j} \pm \frac{1}{2} h_{2}$). The mesh that will be used to approximate the pressure will include all cell centers $\left(x_{i}, y_{j}\right)$. This mesh will be called primary mesh $\omega_{h}=$ $\left\{\left(x_{i}, y_{j}\right): \Omega_{i j}\right\}$. Similarly we shall use also the mesh of all cell vertexes, called often dual mesh. The velocities will be calculated at the points $\left(x_{i} \pm \frac{1}{2} h_{1}, y_{j}\right)$ and $\left(x_{i}, y_{j} \pm\right.$ $\frac{1}{2} h_{2}$).

The continuity equation $(\nabla \cdot \mathbf{W}=f)$ is integrated over control volume $\Omega_{i j}$ and making use of the divergence theorem, we obtain

$$
\begin{equation*}
\int_{\Omega_{i j}} \nabla \cdot \mathbf{W} d \mathbf{x}=\int_{\Omega_{i j}} f d \mathbf{x} \Rightarrow \int_{\partial \Omega_{i j}} \mathbf{W} \cdot \mathbf{n} d s=\int_{\Omega_{i j}} f d \mathbf{x} . \tag{4}
\end{equation*}
$$

Replacing the velocity \mathbf{W} in (4) by certain approximation involving u by using the Darcy's relation $\mathbf{W}=-K \nabla u$ we get a conservative method [7]. In this approximation we assume that the unknowns (or degrees of freedom) are the values of the pressure at the cell centers and then use these values to recover the velocity W. According to the multipoint flux approximation this is done in the following manner. First we split each control volume

$$
\Omega_{i j}=\left(x_{i}-\frac{1}{2} h_{1}, x_{i}+\frac{1}{2} h_{1}\right) \times\left(y_{j}-\frac{1}{2} h_{2}, y_{j}+\frac{1}{2} h_{2}\right)
$$

into 4 subvolumes $\Omega_{i j}^{I}=\left(x_{i}-\frac{1}{2} h_{1}, x_{i}\right) \times\left(y_{j}, y_{j}+\frac{1}{2} h_{2}\right), \Omega_{i j}^{I I}=\left(x_{i}-\frac{1}{2} h_{1}, x_{i}\right) \times\left(y_{j}, y_{j}-\right.$ $\left.\frac{1}{2} h_{2}\right), \Omega_{i j}^{I I I}=\left(x_{i}, x_{i}+\frac{1}{2} h_{1}\right) \times\left(y_{j}, y_{j}+\frac{1}{2} h_{2}\right), \Omega_{i j}^{I V}=\left(x_{i}+\frac{1}{2} h_{1}, x_{i}\right) \times\left(y_{j}, y_{j}-\frac{1}{2} h_{2}\right)$.

We take the pressure to be a linear function on each subvolume $\Omega_{i j}^{k}$ so that

$$
\begin{equation*}
u=\alpha^{k} x+\beta^{k} y+\gamma^{k}, \quad k=\overline{1,4} . \tag{5}
\end{equation*}
$$

The coefficients α^{k}, β^{k} and γ^{k} in (5) determined by the following conditions:
(1c) the polynomials interpolate pressure values at the volume centers;
(2c) the continuity of the pressure at the centers of the faces of the volume $\Omega_{i j}$ and the pressure data on faces that are part of Γ_{D};
(3c) the continuity of the normal component of the velocity \mathbf{v} at the centers of the faces of the volume $\Omega_{i j}$ and the boundary data for the normal velocity on faces on Γ_{N}.

Figure 1. Control volume: inner and boundary cells
Conditions (1c)-(3c) correspond to O-method with surface midpoints as continuity points [1]. These conditions are applied on a cell from the dual grid, i.e. a cell centered at a vertex point from the dual grid (see interaction volume on Fig. 1). These cells are of three categories: cells corresponding to internal vertices, cells corresponding to boundary vertices, and 4 corner points of the domain Ω.

Consider an internal vertex that is surrounded by four subcells with $u_{i, j+1}, u_{i+1, j+1}$, $u_{i, j}, u_{i+1, j}$ at the corners. To find the polynomial coefficients from (5), we use conditions (1c)-(3c). Note that four interaction volumes should be considered in order to find $\alpha^{k}, \beta^{k}, \gamma^{k}, k=\overline{1,4}$.

The interpolating polynomials are defined by

$$
\begin{align*}
P^{1}(x, y) & =\frac{u_{i+1 / 2, j}-u_{i, j}}{0.5 h_{1}}\left(x+0.5 h_{1}\right)+\frac{u_{i, j+1 / 2}-u_{i, j}}{0.5 h_{2}}\left(y+0.5 h_{2}\right)+u_{i, j} \\
& =a^{1} x+b^{1} y+c^{1}, \\
P^{2}(x, y) & =\frac{u_{i+1, j}-u_{i+1 / 2, j}}{0.5 h_{1}}\left(x-0.5 h_{1}\right)+\frac{u_{i+1, j+1 / 2}-u_{i+1, j}}{0.5 h_{2}}\left(y+0.5 h_{2}\right) \\
& +u_{i+1, j}=a^{2} x+b^{2} y+c^{2}, \\
P^{3}(x, y) & =\frac{u_{i+1, j+1}-u_{i+1 / 2, j+1}}{0.5 h_{1}}\left(x-0.5 h_{1}\right)+\frac{u_{i+1, j+1}-u_{i+1, j+1 / 2}}{0.5 h_{2}}\left(y-0.5 h_{2}\right) \tag{6}\\
& +u_{i+1, j+1}=a^{3} x+b^{3} y+c^{3}, \\
P^{4}(x, y) & =\frac{u_{i+1 / 2, j+1}-u_{i, j+1}}{0.5 h_{1}}\left(x+0.5 h_{1}\right)+\frac{u_{i, j+1}-u_{i, j+1 / 2}}{0.5 h_{2}}\left(y-0.5 h_{2}\right) \\
& +u_{i, j+1}=a^{4} x+b^{4} y+c^{4},
\end{align*}
$$

where $u_{i+1 / 2, j}=u\left(x_{i+1 / 2}, y_{j}\right), u_{i, j}=u\left(x_{i}, y_{j}\right)$, etc.
Similar to the condition for continuity of normal component of fluxes of the solution, we require these interpolating polynomials also to satisfy condition for continuity of normal component of their fluxes:

$$
\begin{align*}
& k_{11} \frac{u_{i+1 / 2, j}-u_{i, j}}{0.5 h_{1}}+k_{12} \frac{u_{i, j+1 / 2}-u_{i, j}}{0.5 h_{2}}= \\
= & k_{11}^{(+11)} \frac{u_{i+1, j}-u_{i+1 / 2, j}}{0.5 h_{1}}+k_{12}^{(+11)} \frac{u_{i+1, j+1 / 2}-u_{i+1, j}}{0.5 h_{2}}, \tag{7}\\
& k_{12} \frac{u_{i+1 / 2, j}-u_{i, j}}{0.5 h_{1}}+k_{22} \frac{u_{i, j+1 / 2}-u_{i, j}}{0.5 h_{2}}= \\
= & k_{12}^{(+12)} \frac{u_{i+1 / 2, j+1}-u_{i, j+1}}{0.5 h_{1}}+k_{22}^{(+12)} \frac{u_{i, j+1}-u_{i, j+1 / 2}}{0.5 h_{2}},
\end{align*}
$$

$$
\begin{aligned}
& k_{11}^{(+12)} \frac{u_{i+1 / 2, j+1}-u_{i, j+1}}{0.5 h_{1}}+k_{12}^{(+12)} \frac{u_{i, j+1}-u_{i, j+1 / 2}}{0.5 h_{2}}= \\
= & k_{11}^{(+11,+12)} \frac{u_{i+1, j+1}-u_{i+1 / 2, j+1}}{0.5 h_{1}}+k_{12}^{(+11,+12)} \frac{u_{i+1, j+1}-u_{i+1, j+1 / 2}}{0.5 h_{2}}, \\
& k_{12}^{(+11)} \frac{u_{i+1, j}-u_{i+1 / 2, j}}{0.5 h_{1}}+k_{22}^{(+11)} \frac{u_{i+1, j+1 / 2}-u_{i+1, j}}{0.5 h_{2}}= \\
= & k_{12}^{(+11,+12)} \frac{u_{i+1, j+1}-u_{i+1 / 2, j+1}}{0.5 h_{1}}+k_{22}^{(+11,+12)} \frac{u_{i+1, j+1}-u_{i+1, j+1 / 2}}{0.5 h_{2}} .
\end{aligned}
$$

As an auxiliary step, we write the above equalities as a system (7) with respect to unknown values at the midpoint of edges:

$$
\begin{equation*}
A v=w \tag{8}
\end{equation*}
$$

where $v=\left(u_{i+1 / 2, j}, u_{i, j+1 / 2}, u_{i+1 / 2, j+1}, u_{i+1, j+1 / 2}\right)^{T}, w=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)^{T}$,

$$
A=\left(\begin{array}{cccc}
\frac{k_{11}+k_{11}^{(+11)}}{h_{1}} & \frac{k_{12}}{h_{2}} & 0 & -\frac{k_{12}^{(+11)}}{h_{2}} \\
\frac{k_{12}}{h_{1}} & \frac{k_{22}+k_{22}^{(+12)}}{h_{2}} & -\frac{k_{12}^{(+12)}}{h_{1}} & 0 \\
0 & -\frac{k_{12}^{(+12)}}{h_{2}} & \frac{k_{11}^{(+12)}+k_{11}^{(+11,+12)}}{h_{1}} & \frac{k_{12}^{(+11,+12)}}{h_{2}} \\
-\frac{k_{12}^{(+11)}}{h_{1}} & 0 & \frac{k_{12}^{(+11,+12)}}{h_{1}} & \frac{k_{22}^{(+11)}+k_{22}^{(+11,+12)}}{h_{2}}
\end{array}\right)
$$

Here

$$
\begin{aligned}
& w_{1}=\left(\frac{k_{11}^{(+11)}}{h_{1}}-\frac{k_{12}^{(+11)}}{h_{2}}\right) u_{i+1, j}+\left(\frac{k_{11}}{h_{1}}+\frac{k_{12}}{h_{2}}\right) u_{i, j} \\
& w_{2}=\left(\frac{k_{12}}{h_{1}}+\frac{k_{22}}{h_{2}}\right) u_{i, j}-\left(\frac{k_{12}^{(+12)}}{h_{1}}-\frac{k_{22}^{(+12)}}{h_{2}}\right) u_{i, j+1} \\
& w_{3}=\left(\frac{k_{11}^{(+12)}}{h_{1}}-\frac{k_{12}^{(+12)}}{h_{2}}\right) u_{i, j+1}+\left(\frac{k_{11}^{(+11,+12)}}{h_{1}}+\frac{k_{12}^{(+11,+12)}}{h_{2}}\right) u_{i+1, j+1} \\
& w_{4}=\left(-\frac{k_{12}^{(+11)}}{h_{1}}+\frac{k_{22}^{(+11)}}{h_{2}}\right) u_{i+1, j}+\left(\frac{k_{12}^{(+11,+12)}}{h_{1}}+\frac{k_{22}^{(+11,+12)}}{h_{2}}\right) u_{i+1, j+1}
\end{aligned}
$$

Now, from the auxiliary step we come to reformulating the system in the form we need. The quantities which are of interest for us at this stage are the approximations to the derivatives of the solution. These new variables coincide with the coefficients of the polynomials $\left.P^{i}(x, y)\right)$:

$$
\begin{gathered}
a^{1}=\frac{u_{i+1 / 2, j}-u_{i, j}}{0.5 h_{1}}, \quad b^{1}=\frac{u_{i, j+1 / 2}-u_{i, j}}{0.5 h_{2}}, \\
a^{3}=\frac{u_{i+1, j+1}-u_{i+1 / 2, j+1}}{0.5 h_{1}}, \quad b^{3}=\frac{u_{i+1, j+1}-u_{i+1, j+1 / 2}}{0.5 h_{2}} .
\end{gathered}
$$

So, we rewrite system (8) in new variables $\tilde{A} \tilde{v}=\tilde{w}$ with $\tilde{v}=\left(a^{1}, b^{1}, a^{3}, b^{3}\right)^{T}$. The matrix of the system is
(9) $\quad \tilde{A}=\left(\begin{array}{cccc}k_{11}+k_{11}^{(+11)} & k_{12} & 0 & k_{12}^{(+11)} \\ k_{12} & k_{22}+k_{22}^{(+12)} & k_{12}^{(+12)} & 0 \\ 0 & k_{12}^{(+12)} & k_{11}^{(+12)}+k_{11}^{(+11,+12)} & k_{12}^{(+11,+12)} \\ k_{12}^{(+11)} & 0 & k_{12}^{(+11,+12)} & k_{22}^{(+11)}+k_{22}^{(+11,+12)}\end{array}\right)$,
and the right-hand side is given by

$$
\begin{aligned}
& \tilde{w}_{1}=2\left(k_{11}^{(+11)} \frac{u_{i+1, j}-u_{i, j}}{h_{1}}+k_{12}^{(+11)} \frac{u_{i+1, j+1}-u_{i+1, j}}{h_{2}}\right), \\
& \tilde{w}_{2}=2\left(k_{y x}^{(+12)} \frac{u_{i+1, j+1}-u_{i, j+1}}{h_{1}}+k_{22}^{(+12)} \frac{u_{i, j+1}-u_{i, j}}{h_{2}}\right), \\
& \tilde{w}_{3}=2\left(k_{11}^{(+12)} \frac{u_{i+1, j+1}-u_{i, j+1}}{h_{1}}+k_{12}^{(+12)} \frac{u_{i, j+1}-u_{i, j}}{h_{2}}\right), \\
& \tilde{w}_{4}=2\left(k_{12}^{(+11)} \frac{u_{i+1, j}-u_{i, j}}{h_{1}}+k_{22}^{(+11)} \frac{u_{i+1, j+1}-u_{i+1, j}}{h_{2}}\right) .
\end{aligned}
$$

Coefficients $a^{i}, b^{i}, i=2,4$, can be expressed through $a^{i}, b^{i}, i=1,3$ and the pressure values at the cell centers

$$
\begin{align*}
& a^{2}=\frac{u_{i+1, j}-u_{i, j}}{0.5 h_{1}}-a^{1}, \quad b^{2}=\frac{u_{i+1, j+1}-u_{i+1, j}}{0.5 h_{2}}-b^{3} \tag{10}\\
& a^{4}=\frac{u_{i+1, j+1}-u_{i, j+1}}{0.5 h_{1}}-a^{3}, \quad b^{4}=\frac{u_{i, j+1}-u_{i, j}}{0.5 h_{2}}-b^{1}
\end{align*}
$$

Note, that it gives us the expressions for the velocity that is constant over each of the 4 subcells of the vertex-centered volume. Consider in the same way three other vertex-centered volumes to find the fluxes incoming and outcoming the cell-centered (control volume) $\Omega_{i j}$. These formulas are used to find $\mathbf{W} \cdot \mathbf{n}$ on $\partial \Omega_{i j}$, as needed by the relation (4).

We use the midpoint rule for calculating the integrals in the balance method (4), that provides

$$
h_{2} W_{1, h}^{\text {out }}-h_{2} W_{1, h}^{\text {in }}+h_{1} W_{2, h}^{\text {out }}-h_{1} W_{2, h}^{\text {in }}=h_{1} h_{2} f
$$

Here $W_{i, h}^{i n}, W_{i, h}^{\text {out }}, i=1,2$ are obtained by summing the two fluxes incoming and leaving the considered control volume (Fig. 1). Thus, the difference scheme for the pressure equation (1) can be written in the following form

$$
\begin{align*}
& \frac{h_{2}}{2}\left(k_{11} a^{2}+k_{12} b^{2}+k_{11}^{(+11)} \check{a}^{3}+k_{12}^{(+11)} \check{b}^{3}\right)- \\
& \frac{h_{2}}{2}\left(k_{11}^{(-11)} \bar{a}^{2}+k_{12}^{(-11)} \bar{b}^{2}+k_{11} \check{\bar{a}}^{3}+k_{12} \check{\bar{b}}^{3}\right)+ \\
& \frac{h_{1}}{2}\left(k_{12} a^{2}+k_{22} b^{2}+k_{12}^{(+12)} \bar{a}^{3}+k_{22}^{(+12)} \bar{b}^{3}\right)- \tag{11}\\
& \frac{h_{2}}{2}\left(k_{12}^{(-12)} \check{a}^{2}-k_{22}^{(-12)} \check{b}^{2}-k_{12} \check{\bar{a}}^{3}-k_{22} \check{\bar{b}}^{3}\right)=-f h_{1} h_{2},
\end{align*}
$$

where coefficients \bar{a}^{i}, \bar{b}^{i} are calculated by the same formulas as the coefficients a^{i}, b^{i}, but in the grid block $u_{i-1, j+1} u_{i, j+1} u_{i, j} u_{i-1, j}$. The coefficients $\check{a}^{i}, \breve{b}^{i}$ and $\check{a}^{i}, \check{b}^{i}$ are calculated in the grid blocks $u_{i, j} u_{i+1, j} u_{i+1, j-1} u_{i, j-1}$ and $u_{i-1, j} u_{i, j} u_{i, j-1} u_{i-1, j-1}$ respectively.

For vertex that is on the boundary the situation is simpler. In the case of Neumann boundary conditions the flux is given on the boundary, while in the case of Dirichlet boundary conditions we just do the same procedure as for the inner control volume, but in this case we have only one interface.

Combining this relationship for each neighboring vertex gives us a discrete pressure equation with a 9 -point stencil.

Remark. In the case of diagonal (orthotropic) permeability tensor $\left(k_{12}=0\right)$, scheme (11) reduces to the well-known harmonic averaging finite difference scheme

$$
\begin{aligned}
& \frac{1}{h_{1}}\left(\frac{2 k_{11} k_{11}^{(+11)}}{k_{11}+k_{11}^{(+11)}} \frac{u_{i+1, j}-u_{i, j}}{h_{1}}-\frac{2 k_{11} k_{11}^{(-11)}}{k_{11}+k_{11}^{(-11)}} \frac{u_{i, j}-u_{i-1, j}}{h_{1}}\right)+ \\
& \frac{1}{h_{2}}\left(\frac{2 k_{22} k_{22}^{(+12)}}{k_{22}+k_{22}^{(+12)}} \frac{u_{i, j+1}-u_{i, j}}{h_{2}}-\frac{2 k_{22} k_{22}^{(-12)}}{k_{22}+k_{22}^{(-12)}} \frac{u_{i, j}-u_{i, j-1}}{h_{2}}\right)=-f
\end{aligned}
$$

Remark. In the case, the coefficients k_{11}, k_{12}, k_{22} are constant, the difference scheme (11) can be written in the following form

$$
k_{11} u_{x \bar{x}}+k_{12} \frac{u_{\bar{x} y}+u_{x \bar{y}}}{2}+k_{12} \frac{u_{\bar{x} \bar{y}}+u_{x y}}{2}+k_{x y} u_{y \bar{y}}+R=-f
$$

where

$$
R=\frac{k_{12}^{2}}{4}\left(\frac{h_{1}^{2}}{k_{11}}+\frac{h_{2}^{2}}{k_{22}}\right) u_{\bar{x} x \bar{y} y}=O\left(h^{2}\right)
$$

So, in this case the finite volume scheme (11) is equivalent to the second-order finite difference scheme from [7]:

$$
k_{11} u_{x \bar{x}}+0.5 k_{12}\left(u_{\bar{x} y}+u_{x \bar{y}}+u_{\bar{x} \bar{y}}+u_{x y}\right)+k_{22} u_{y \bar{y}}=-f
$$

3. Approximation and CONVERGENCE PROPERTIES

In this section, we prove the first order approximation for the fluxes in the middle points of the edges in the case of discontinuous tensor coefficients.
3.1. Approximation order of fluxes. We examine the order of the approximation of the fluxes in the case of discontinuous tensor coefficients and piecewise smooth solution. To do this, consider the condition for the continuity of normal component of fluxes of the PDE solution at midpoints of edges, and its discrete approximation be the normal components of fluxes of the above derived piecewise linear polynomials. By considering the difference of the both, we will get expressions for the approximation error. After certain manipulations, we show that the approximation is $O(h)$.

To start, consider the flux continuity condition at the point $\left(x_{i+1 / 2}, y_{j}\right)$:

$$
\begin{align*}
& \left.k_{11} \frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}+\left.k_{12} \frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}= \\
& \left.k_{11}^{(+11)} \frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}+\left.k_{12}^{(+11)} \frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)} \tag{12}
\end{align*}
$$

and its discrete approximation (see formula (7)):

$$
\begin{align*}
& k_{11} \frac{u_{i+1 / 2, j}-u_{i, j}}{0.5 h_{1}}+k_{12} \frac{u_{i, j+1 / 2}-u_{i, j}}{0.5 h_{2}}= \tag{13}\\
& k_{11}^{(+11)} \frac{u_{i+1, j}-u_{i+1 / 2, j}}{0.5 h_{1}}+k_{12}^{(+11)} \frac{u_{i+1, j+1 / 2}-u_{i+1, j}}{0.5 h_{2}} .
\end{align*}
$$

By subtracting equation (12) from (13), we obtain

$$
\begin{align*}
& k_{11}\left(\frac{u_{i+1 / 2, j}-u_{i, j}}{0.5 h_{1}}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}\right)+ \\
& k_{12}\left(\frac{u_{i, j+1 / 2}-u_{i, j}}{0.5 h_{2}}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{\left.i+1 / 2-0, y_{j}\right)}\right.}\right)= \tag{14}\\
& k_{11}^{(+11)}\left(\frac{u_{i+1, j}-u_{i+1 / 2, j}}{0.5 h_{1}}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}\right)+ \\
& k_{12}^{(+11)}\left(\frac{u_{i+1, j+1 / 2}-u_{i+1, j}}{0.5 h_{2}}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{\left.i+1 / 2+0, y_{j}\right)}\right)}\right) .
\end{align*}
$$

From polynomials (6) we have

$$
\begin{aligned}
& \frac{u_{i+1 / 2, j}-u_{i, j}}{0.5 h_{1}}=\frac{\partial P^{1}}{\partial x}, \quad \frac{u_{i+1, j}-u_{i+1 / 2, j}}{0.5 h_{1}}=\frac{\partial P^{2}}{\partial x} \\
& \frac{u_{i, j+1 / 2}-u_{i, j}}{0.5 h_{2}}=\frac{\partial P^{1}}{\partial y}, \quad \frac{u_{i+1, j+1 / 2}-u_{i+1, j}}{0.5 h_{2}}=\frac{\partial P^{2}}{\partial y} .
\end{aligned}
$$

Substituting these expressions into equation (14), we get

$$
\begin{align*}
& k_{11}\left(\frac{\partial P^{1}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{\left.i+1 / 2-0, y_{j}\right)}\right)}\right)+k_{12}\left(\frac{\partial P^{1}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}\right)= \tag{15}\\
& k_{11}^{(+11)}\left(\frac{\partial P^{2}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{\left.i+1 / 2+0, y_{j}\right)}\right)}\right)+k_{12}^{(+11)}\left(\frac{\partial P^{2}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{\left.i+1 / 2+0, y_{j}\right)}\right)}\right)
\end{align*}
$$

Simple calculations give

$$
\frac{\partial P^{2}}{\partial x}=\frac{u_{i+1, j}-u_{i, j}}{0.5 h_{1}}-\frac{\partial P^{1}}{\partial x} .
$$

Using the Taylor expansion at the point e, from the last expression we obtain

$$
\begin{equation*}
\frac{\partial P^{2}}{\partial x}=\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}+\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}-\frac{\partial P^{1}}{\partial x}+O\left(h_{1}\right) \tag{16}
\end{equation*}
$$

Substituting the above relation in (15), we get

$$
\begin{aligned}
& k_{11}\left(\frac{\partial P^{1}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}\right)+k_{12}\left(\frac{\partial P^{1}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}\right)= \\
& k_{11}^{(+11)}\left(\left(\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}+\left.\frac{\partial u}{\partial x}\right|_{\left(x_{\left.i+1 / 2-0, y_{j}\right)}\right.}-\frac{\partial P^{1}}{\partial x}+O\left(h_{1}\right)\right)-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}\right)+ \\
& k_{12}^{(+11)}\left(\frac{\partial P^{2}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}\right) .
\end{aligned}
$$

Consider new variables, z_{1}, z_{2}, which are the approximation error for x-derivative at the point $\left(x_{i+1 / 2-0}, y_{j}\right)$, and for y-derivative of the solution at point $\left(x_{i}, y_{j+1 / 2-0}\right)$, respectively:

$$
z_{1}=\left.\left(\frac{\partial P^{1}}{\partial x}-\frac{\partial u}{\partial x}\right)\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}, \quad z_{2}=\left.\left(\frac{\partial P^{1}}{\partial y}-\frac{\partial u}{\partial y}\right)\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)} .
$$

Now, we assume that the solution is piecewise smooth within the cells, where the coefficients are piecewise constants. Under this assumption, we have

$$
\left.\left(\frac{\partial u}{\partial y}\right)\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}=\left.\left(\frac{\partial u}{\partial y}\right)\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)}+O(h)
$$

and respectively,

$$
\left.\left(\frac{\partial P^{1}}{\partial y}-\frac{\partial u}{\partial y}\right)\right|_{\left(x_{\left.i+1 / 2-0, y_{j}\right)}\right.}=\left.\left(\frac{\partial P^{1}}{\partial y}-\frac{\partial u}{\partial y}\right)\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)}+O(h)=z_{2}+O(h)
$$

Thus, equation (17) can be rewritten as

$$
\begin{equation*}
\left(k_{11}+k_{11}^{(+11)}\right) z_{1}+k_{12} z_{2}=O\left(h_{1}\right)+k_{12}^{(+11)}\left(\frac{\partial P^{2}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}\right) \tag{18}
\end{equation*}
$$

We leave for a while the above equation in this unfinished form, and continue with relations at the point $\left(x_{i}, y_{j+1 / 2}\right)$. Similarly to the above derivations for the point $\left(x_{i+1 / 2}, y_{j}\right)$, we consider the flux continuity condition at the point $\left(x_{i}, y_{j+1 / 2}\right)$:

$$
\begin{align*}
& k_{12}\left(\frac{u_{i+1 / 2, j}-u_{i, j}}{0.5 h_{1}}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)}\right)+ \\
& k_{22}\left(\frac{u_{i, j+1 / 2}-u_{i, j}}{0.5 h_{2}}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)}\right)= \\
& k_{12}^{(+12)}\left(\frac{u_{i+1 / 2, j+1}-u_{i, j+1}}{0.5 h_{1}}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i}, y_{j+1 / 2+0)}\right)}\right)+ \tag{19}\\
& k_{22}^{(+12)}\left(\frac{u_{i, j+1}-u_{i, j+1 / 2}}{0.5 h_{2}}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i}, y_{j+1 / 2+0}\right)}\right)
\end{align*}
$$

Recall that derivatives of the polynomial and $P^{4}(6)$ are given by

$$
\frac{u_{i+1 / 2, j+1}-u_{i, j+1}}{0.5 h_{1}}=\frac{\partial P^{4}}{\partial x}, \quad \frac{u_{i, j+1}-u_{i, j+1 / 2}}{0.5 h_{2}}=\frac{\partial P^{4}}{\partial y}
$$

Substituting these expressions together with similar expressions for P^{1} into equation (19), we get

$$
\begin{align*}
& k_{12}\left(\frac{\partial P^{1}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)}\right)+k_{22}\left(\frac{\partial P^{1}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)}\right)= \tag{20}\\
& k_{12}^{(+12)}\left(\frac{\partial P^{4}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i}, y_{j+1 / 2+0}\right)}\right)+k_{22}^{(+12)}\left(\frac{\partial P^{4}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i}, y_{j+1 / 2+0}\right)}\right) .
\end{align*}
$$

It is easy to see that

$$
\frac{\partial P^{4}}{\partial y}=\frac{u_{i, j+1}-u_{i, j}}{0.5 h_{2}}-\frac{\partial P^{1}}{\partial y}=\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i}, y_{j+1 / 2+0}\right)}+\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)}-\frac{\partial P^{1}}{\partial y}+O\left(h_{2}\right)
$$

Substituting this into (20), and using the expansion

$$
\left.\left(\frac{\partial P^{1}}{\partial x}-\frac{\partial u}{\partial x}\right)\right|_{\left(x_{i}, y_{j+1 / 2-0}\right)}=\left.\left(\frac{\partial P^{1}}{\partial x}-\frac{\partial u}{\partial x}\right)\right|_{\left(x_{i+1 / 2-0}, y_{j}\right)}+O(h)=z_{1}+O(h)
$$

we get

$$
\begin{equation*}
k_{12} z_{1}+\left(k_{22}+k_{22}^{(+12)}\right) z_{2}=k_{12}^{(+12)}\left(\frac{\partial P^{4}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i}, y_{j+1 / 2+0}\right)}\right)+O(h) \tag{21}
\end{equation*}
$$

Now we proceed with the remaining two edges, $\left(x_{i+1 / 2}, y_{j+1}\right)$ and $\left(x_{i+1}, y_{j+1 / 2-0}\right)$, as well as with remaining terms in the equations at $\left(x_{i+1 / 2+0}, y_{j}\right)$ and $\left(x_{i}, y_{j+1 / 2+0}\right)$. First, we introduce the variables

$$
z_{3}=\left.\left(\frac{\partial P^{3}}{\partial x}-\frac{\partial u}{\partial x}\right)\right|_{\left(x_{i+1 / 2+0}, y_{j+1}\right)}, \quad z_{4}=\left.\left(\frac{\partial P^{3}}{\partial y}-\frac{\partial u}{\partial y}\right)\right|_{\left(x_{i+1}, y_{j+1 / 2+0}\right)},
$$

By simple calculations we get

$$
\begin{align*}
& \frac{\partial P^{2}}{\partial y}=\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1}, y_{j+1 / 2+0}\right)}+\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1}, y_{j+1 / 2-0}\right)}-\frac{\partial P^{3}}{\partial y}+O\left(h_{2}\right), \tag{22}\\
& \frac{\partial P^{4}}{\partial x}=\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j+1}\right)}+\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2-0}, y_{j+1}\right)}-\frac{\partial P^{3}}{\partial x}+O\left(h_{1}\right) . \tag{23}
\end{align*}
$$

Next, from the assumption that the solution is piecewise smooth, we have

$$
\begin{aligned}
& \left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1}, y_{j+1 / 2-0}\right)}=\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}+O(h), \\
& \left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}=\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1}, y_{j+1 / 2-0}\right)}+O(h) .
\end{aligned}
$$

Then using the above formula together with formula (22), we obtain

$$
\begin{aligned}
\frac{\partial P^{2}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)} & =\frac{\partial P^{2}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1}, y_{j+1 / 2-0}\right)}+O(h)= \\
& -\left(\frac{\partial P^{3}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1}, y_{j+1 / 2+0}\right)}\right)+O(h)=-z_{4}+O(h)
\end{aligned}
$$

Thus, equation (18) can be written as

$$
\left(k_{11}+k_{11}^{(+11)}\right) z_{1}+k_{12} z_{2}+k_{12}^{(+11)} z_{4}=O\left(h_{1}\right) .
$$

In the same way we obtain

$$
\begin{aligned}
\frac{\partial P^{4}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i}, y_{j+1 / 2+0}\right)} & =\frac{\partial P^{4}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2-0}, y_{j+1}\right)}+O(h)= \\
& -\left(\frac{\partial P^{3}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j+1}\right)}\right)+O(h)=-z_{3}+O(h)
\end{aligned}
$$

and rewrite equation (21) in the following way

$$
k_{12} z_{1}+\left(k_{22}+k_{22}^{(+12)}\right) z_{2}+k_{12}^{(+12)} z_{3}=O(h)
$$

The last what we need before finalizing the derivations, are the continuity conditions at the points $\left(x_{i+1 / 2}, y_{j+1}\right)$ and $\left(x_{i+1}, y_{j+1 / 2-0}\right)$:

$$
\begin{align*}
& k_{11}^{(+12)}\left(\frac{\partial P^{4}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2-0}, y_{j+1}\right)}\right)+k_{12}^{(+12)}\left(\frac{\partial P^{4}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i}, y_{j+1 / 2+0}\right)}\right)= \tag{24}\\
& k_{11}^{(+11,+12)}\left(\frac{\partial P^{3}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j+1}\right)}\right)+k_{12}^{(+11,+12)}\left(\frac{\partial P^{3}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1}, y_{j+1 / 2+0}\right)}\right) .
\end{align*}
$$

$$
\begin{align*}
& k_{12}^{(+11)}\left(\frac{\partial P^{2}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}\right)+k_{22}^{(+11)}\left(\frac{\partial P^{2}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1}, y_{j+1 / 2-0}\right)}\right)= \\
& k_{12}^{(+11,+12)}\left(\frac{\partial P^{3}}{\partial x}-\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j+1}\right)}\right)+k_{12}^{(+11,+12)}\left(\frac{\partial P^{3}}{\partial y}-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i+1}, y_{j+1 / 2+0}\right)}\right) . \tag{25}
\end{align*}
$$

Using similar approach and taking into account that

$$
\left.\begin{array}{c}
\frac{u_{i+1, j+1}-u_{i+1 / 2, j+1}}{0.5 h_{1}}=\frac{\partial P^{3}}{\partial x}, \quad \frac{u_{i+1, j+1}-u_{i+1, j+1 / 2}}{0.5 h_{2}}=\frac{\partial P^{3}}{\partial y} \\
\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1}, y_{j+1 / 2-0}\right)}=\left.\frac{\partial u}{\partial x}\right|_{\left(x_{i+1 / 2+0}, y_{j}\right)}+O(h),\left.\quad \frac{\partial u}{\partial y}\right|_{\left(x_{i+1 / 2-0}, y_{j+1}\right)}=\left.\frac{\partial u}{\partial y}\right|_{\left(x_{i}, y_{j+1 / 2+0}\right)}+O(h), \\
\left.\left(\frac{\partial P^{3}}{\partial x}-\frac{\partial u}{\partial x}\right)\right|_{\left(x_{i+1}, y_{j+1 / 2+0}\right)} \\
=\left.\left(\frac{\partial P^{3}}{\partial x}-\frac{\partial u}{\partial x}\right)\right|_{\left(x_{i+1 / 2+0}, y_{j+1}\right)}+O(h)=z_{3}+O(h), \\
\left.\left(\frac{\partial P^{3}}{\partial y}-\frac{\partial u}{\partial y}\right)\right|_{\left(x_{i+1 / 2+0}, y_{j+1}\right)}
\end{array}\right)=\left.\left(\frac{\partial P^{3}}{\partial y}-\frac{\partial u}{\partial y}\right)\right|_{\left(x_{i+1}, y_{j+1 / 2+0}\right)}+O(h)=q_{3}+O(h),
$$

we rewrite equations $(24),(25)$ in the following form

$$
\begin{aligned}
& k_{12}^{(+12)} z_{1}+\left(k_{11}^{(+12)}+k_{11}^{(+11,+12)}\right) z_{3}+k_{12}^{(+11,+12)} z_{4}=O(h), \\
& k_{12}^{(+11)} z_{1}+k_{12}^{(+11,+12)} z_{3}+\left(k_{22}^{(+11)}+k_{22}^{(+11,+12)}\right) z_{4}=O(h) .
\end{aligned}
$$

So, system (15), (20), (24), (25) can be written as

$$
M z=r,
$$

where $M=\tilde{A}, z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{T}, r=\left(r_{1}, r_{2}, r_{3}, r_{4}\right)^{T}$, and $r_{i}=O(h)$. It is easy to see that matrix M is symmetric. To show that it is positive definite, consider the scalar product

$$
\begin{align*}
(M v, v)= & k_{11}^{(+11)} v_{1}^{2}+k_{11} v_{1}^{2}+2 k_{12} v_{1} v_{2}+k_{22}^{(+12)} v_{2}^{2}+k_{22} v_{2}^{2}+ \\
& 2 k_{12}^{(+12)} v_{2} v_{3}+k_{11}^{(+12)} v_{3}^{2}+k_{11}^{(+11,+12)} v_{3}^{2}+2 k_{12}^{(+11)} v_{1} v_{4}+ \tag{26}\\
& 2 k_{12}^{(+11,+12)} v_{3} v_{4}+k_{22}^{(+11)} v_{4}^{2}+k_{22}^{(+11,+12)} v_{4}^{2},
\end{align*}
$$

where $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{T}$. Since K is positive definite in every point, than taking into account the ellipticity condition (3) valid for any nonzero $\xi=\left(\xi_{1}, \xi_{2}\right),|\xi|=$ $\xi_{1}^{2}+\xi_{2}^{2} \neq 0$, and using $\xi=\left(v_{1}, v_{2}\right), \xi=\left(v_{1}, v_{4}\right), \xi=\left(v_{3}, v_{2}\right), \xi=\left(v_{3}, v_{4}\right)$, from (26) we get

$$
\begin{aligned}
(M v, v)= & \left(k_{11} v_{1}^{2}+2 k_{12} v_{1} v_{2}+k_{22} v_{2}^{2}\right)+\left(k_{11}^{(+11)} v_{1}^{2}+2 k_{12}^{(+11)} v_{1} v_{4}+k_{22}^{(+11)} v_{4}^{2}\right)+ \\
& \left(k_{11}^{(+12)} v_{3}^{2}+2 k_{12}^{(+12)} v_{2} v_{3}+k_{22}^{(+12)} v_{2}^{2}\right)+ \\
& \left(k_{11}^{(+11,+12)} v_{3}^{2}+2 k_{12}^{(+11,+12)} v_{3} v_{4}+k_{22}^{(+11,+12)} v_{4}^{2}\right) \geq \\
& c_{1}\left(v_{1}^{2}+v_{2}^{2}\right)+c_{1}\left(v_{1}^{2}+v_{4}^{2}\right)+c_{1}\left(v_{3}^{2}+v_{2}^{2}\right)+c_{1}\left(v_{3}^{2}+v_{4}^{2}\right)= \\
& 2 c_{1}\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}\right)>0 .
\end{aligned}
$$

Hence, there exists M^{-1} such that $z=\tilde{r}$, where $\tilde{r}=M^{-1} r$, and $\tilde{r}_{i}=O(h)$. Thus

$$
z_{i}=O(h), \quad q_{i}=O(h), \quad i=\overline{1,4}
$$

and we have first order approximation for the normal components of the fluxes at the midpoints of the edges.
3.2. Convergence of MPFA. In this section we prove convergence of MPFA knowing that the flux is approximated with $O(h)$.

In the domain $\bar{\Omega}$ we consider staggered mesh $\bar{\omega}_{0}=\omega_{0} \cup \gamma_{0}, \bar{\omega}_{1}=\omega_{1} \cup \gamma_{1}, \bar{\omega}_{2}=$ $\omega_{2} \cup \gamma_{2}$. Here ω_{0} defines the cell centers where the pressure is considered, while ω_{1} and ω_{2} define the midpoints of the edges, where the velocity components (i.e., fluxes) are defined.

$$
\begin{aligned}
\bar{\omega}_{0}= & \left\{\left((i+1 / 2) h_{1},(j+1 / 2) h_{2}\right), i=-1 / 2,0,1, \ldots, N_{1}, N_{1}+1 / 2,\right. \\
& \left.j=-1 / 2,0,1, \ldots, N_{2}, N_{2}+1 / 2\right\}, \\
\bar{\omega}_{1}= & \left.\left\{\left(i h_{1},(j+1 / 2) h_{2}\right)\right), i=0,1, \ldots, N_{1}, j=0,1, \ldots, N_{2}\right\}, \\
\bar{\omega}_{2}= & \left.\left\{\left((i+1 / 2) h_{1}, j h_{2}\right)\right), i=0,1, \ldots, N_{1}, j=0,1, \ldots, N_{2}\right\},
\end{aligned}
$$

where $h_{1}=1 / N_{1}, h_{2}=1 / N_{2}$, and N_{1}, N_{2} are positive integers. Note that on the boundary there are nodes belonging to ω_{0} and ω_{1}, or ω_{0} and ω_{2}.

Figure 2. Grids for pressure u (left picture) and fluxes W_{1}, W_{2} (right picture)
Following notations for the spaces of grid functions defined on ω_{0}, ω_{1}, and ω_{2} are introduced:

$$
\begin{gathered}
H_{y}=\left\{y(x), x \in \bar{\omega}_{0}\right\}, \quad H_{y}^{0}=\left\{y(x), x \in \bar{\omega}_{0}, y(x)=0 \text { for } x \in \gamma_{0}\right\}, \\
H_{1}=\left\{w_{1}(x), x \in \bar{\omega}_{1}\right\}, \quad H_{2}=\left\{w_{2}(x), x \in \bar{\omega}_{2}\right\} \\
\mathbf{H}_{\mathbf{w}}=H_{1} \times H_{2}, \mathbf{w}=\left(w_{1}, w_{2}\right)
\end{gathered}
$$

The inner products are defined in the usual way

$$
\begin{gathered}
(y, \tilde{y})_{\omega_{0}}=\sum_{i=1}^{N_{1}} \sum_{j=1}^{N_{2}} y_{i, j}(x) \tilde{y}_{i, j}(x) h_{1} h_{2}, \quad\|y\|_{\omega_{0}} \sqrt{(y, y)_{\omega_{0}}} . \\
(\mathbf{w}, \tilde{\mathbf{w}})_{\bar{\omega}_{1} \times \bar{\omega}_{2}}=\left(w_{1}, \tilde{w}_{1}\right)_{\bar{\omega}_{1}}+\left(w_{2}, \tilde{w}_{2}\right)_{\bar{\omega}_{2}}=\sum_{i=0}^{N_{1}} \sum_{j=1}^{N_{2}-1} w_{1}(x) \tilde{w}_{1}(x) h_{i} h_{j}+\sum_{i=1}^{N_{1}-1} \sum_{j=0}^{N_{2}} w_{2}(x) \tilde{w}_{2}(x) h_{i} h_{j},
\end{gathered}
$$

where $h_{i}=h_{1}, i=\overline{1, N_{1}-1}, h_{0}=h_{N_{1}}=h_{1} / 2, h_{j}=h_{2}, j=\overline{1, N_{2}-1}, h_{0}=h_{N_{2}}=$ $h_{2} / 2$.

Let us now define discrete operators associated with divergence and gradient operators. Discrete divergence operator $D: \mathbf{H}_{\mathbf{w}} \rightarrow H_{y}$ is defined in the following way

$$
(D \mathbf{w})_{i, j}=\frac{\left(w_{1}\right)_{i+1, j}-\left(w_{1}\right)_{i, j}}{h_{1}}+\frac{\left(w_{2}\right)_{i, j+1}-\left(w_{2}\right)_{i, j}}{h_{2}}, 1<i \leq N_{1}, 1<j \leq N_{2} .
$$

Discrete gradient operator $G: H_{y} \rightarrow \mathbf{H}_{\mathbf{w}}$ is defined as $G y=\left(G^{1} y, G^{2} y\right)$, where

$$
\begin{aligned}
& G^{1} y=\left\{\begin{array}{l}
\frac{y_{i+1, j}-y_{i, j},}{h_{1}}, 1 \leq i \leq N_{1}-1, \\
\frac{y_{1}-y_{0}}{h_{1}, 2}, i=0, \\
\frac{y_{N_{1}+1}-y_{N_{1}}}{h_{1} / 2}, i=N_{1} .
\end{array}\right. \\
& G^{2} y= \begin{cases}\frac{y_{i, j+1}-y_{i, j}}{h_{2}}, & 1 \leq j \leq N_{2}-1, \\
\frac{y_{1}-y_{0}}{h_{2} / 2}, j=0, \\
\frac{y_{N_{2}+1}-y_{N_{2}}}{h_{2} / 2}, & j=N_{2} .\end{cases}
\end{aligned}
$$

Note that the above introduced operators satisfy $D=-G^{*}$ in the respective scalar products:

$$
(D w, \tilde{y})=(D G y, \tilde{y})_{\omega_{0}}=-(G y, G \tilde{y})_{\omega_{1} \times \omega_{2}} .
$$

We will need some auxiliary inequalities, norms, etc., which we list here for completeness.

Lemma 3.1. For any grid function $y \in H_{y}^{0}$ the following inequality (Friedrichs' inequality) holds

$$
\|y\|_{\bar{\omega}_{0}} \leq c_{1}\|G y\|_{\bar{\omega}_{1} \times \bar{\omega}_{2}} .
$$

Discrete W_{2}^{1} norm is defined as

$$
\|y\|_{W_{2}^{1}}=(y, y)_{\bar{\omega}_{0}}+(G y, G y)_{\bar{\omega}_{1} \times \bar{\omega}_{2}} .
$$

From Friedrichs' inequality we get

$$
\|y\|_{W_{2}^{1}} \leq c_{2}\|G y\|_{\bar{\omega}_{1} \times \bar{\omega}_{2}}
$$

Let us denote by z the error, $z=y-u$. We will need to write in divergence form the equation for the error. Suppose there exists \bar{K} such that

$$
c_{1}(w, \tilde{w})_{\omega_{1} \times \omega_{2}} \leq(\bar{K} w, \tilde{w})_{\omega_{1} \times \omega_{2}} \leq c_{2}(w, \tilde{w})_{\omega_{1} \times \omega_{2}},
$$

and such that we can write our discrete equation for the error as

$$
-D \bar{K} G z=-D \psi
$$

Note: Later we will show that for MPFA there exist such \bar{K} (although we can not write it in explicit form). So, from the inequalities above we have:

$$
\begin{gathered}
-(D \bar{K} G z, z)_{\omega_{u}}=-(D \psi, z)_{\omega_{u}} \Rightarrow \\
c_{1}\|G z\|_{\omega_{1} \times \omega_{2}}^{2} \leq(\bar{K} G z, G z)_{\omega_{1} \times \omega_{2}}=(\psi, G z)_{\omega_{1} \times \omega_{2}} \leq\|\psi\|_{\omega_{1} \times \omega_{2}}\|G z\|_{\omega_{1} \times \omega_{2}} .
\end{gathered}
$$

Next, we can use the approximation property of MPFA, shown above, to get

$$
c_{1}\|G z\|_{\omega_{1} \times \omega_{2}} \leq\|\psi\|_{\omega_{1} \times \omega_{2}}=O(h) .
$$

This is the end of the proof, because from Friedrichs inequality applied to z we have the desired result.

It still remains to show that there exist \bar{K} with the desired properties. From equation $\tilde{A} \tilde{v}=\tilde{w}$ with $\tilde{v}=\left(a^{1}, b^{1}, a^{3}, b^{3}\right)^{T}$, where \tilde{A} is given by (9), we see that $\tilde{\omega}_{1}$, $\tilde{\omega}_{2}, \tilde{\omega}_{3}, \tilde{\omega}_{4}$ contain different components of the gradient $G y$, and ONLY components of $G y$. If we denote $\tilde{B}=\tilde{A}^{-1}$, we will have

$$
a_{1}=b_{11} \tilde{w}_{1}+b_{12} \tilde{w}_{2}+b_{13} \tilde{w}_{3}+b_{14} \tilde{w}_{4},
$$

i.e., a_{1} will also contain only components of $G y$, multiplied by some coefficients independent on the solution. Similar conclusion can be drawn for b_{1}, a_{2}, b_{2}, and
other similar expressions which we use to write our finite difference scheme 11. Note, that 11 is already written in divergence form, thus we are able to write MPFA as $D \bar{K} G y$, with some \bar{K} which can not be explicitely written. Next, we have to clarify what are the properties of \bar{K}. From [1] we know that on rectangular grid MPFA can be written as $M y=f$ with $M=M^{*}>0$. Thus we have

$$
M y=f, \quad-D \bar{K} G y=f, \Rightarrow M=D \bar{K} G
$$

It follows from here that

$$
(M y, y)=-(D \bar{K} G y, y)=-(\bar{K} G y, G y)
$$

Now we can conclude: i) Because M is symmetric, it follows \bar{K} is also symmetric.
ii) Because $(M y, y) \geq 0$, $\Rightarrow(\bar{K} G y, G y) \geq 0$. Moreover, $(M y, y)>0$ for $y \neq 0$. It remains to answer the question is $(\bar{K} G y, G y)>0$ for $G y \neq 0$? In our case, $y=$ const \Rightarrow is possible only for $y \equiv 0$, and with this we have shown that there exist \bar{K} with the desired properties.

4. Numerical Results

In this section, we validate the developed difference scheme by performing several numerical experiments for variable continuous and discontinuous full tensor coefficients.
4.1. Validation of the discretization for continuous coefficients. Consider the example from [3]. In this experiment, the permeability tensor is full symmetrical with variable continuous components

$$
K=\left(\begin{array}{cc}
(x+2)^{2}+y^{2} & \sin (x y) \tag{27}\\
\sin (x y) & 1
\end{array}\right)
$$

The exact solution is given by the following formula

$$
u=x^{3} y+y^{4}+\sin (x) \cos (y)
$$

with f and g^{D} defined accordingly by (1), (2).
Convergence rate for the pressure is established by running cases for seven levels of grid refinement, starting with 5×5 grid cells on level one and refining the grid steps by a factor of two for each successive level. Further, we will use the following notations

$$
\left\|\delta_{u}\right\|_{C}=\frac{\left\|u-u_{h}\right\|_{C}}{\|u\|_{C}}, \quad\left\|\delta_{u}\right\|_{L_{2}}=\frac{\left\|u-u_{h}\right\|_{L_{2}}}{\|u\|_{L_{2}}}
$$

where u is the solution of the differential problem (1), (2), and u_{h} is the solution of the difference scheme (11).

From Tab. 1 we see that if we refine the grid step by the factor of two, then the error reduces by the factor of four. Hence, the approximate solution u_{h} converges to the exact solution u with the second order both in the maximum and L_{2} norms.

In the same way we calculate the convergence for the fluxes W_{1} and W_{2}. In Tab. 2 the following notations are used

$$
\begin{aligned}
\left\|\delta_{1}\right\|_{C}=\frac{\left\|W_{1}-W_{1, h}\right\|_{C}}{\left\|W_{1}\right\|_{C}}, & \left\|\delta_{1}\right\|_{L_{2}}=\frac{\left\|W_{1}-W_{1, h}\right\|_{L_{2}}}{\left\|W_{1}\right\|_{L_{2}}} \\
\left\|\delta_{2}\right\|_{C}=\frac{\left\|W_{2}-W_{2, h}\right\|_{C}}{\left\|W_{2}\right\|_{C}}, & \left\|\delta_{2}\right\|_{L_{2}}=\frac{\left\|W_{2}-W_{2, h}\right\|_{L_{2}}}{\left\|W_{2}\right\|_{L_{2}}}
\end{aligned}
$$

Grid	$\left\\|\delta_{u}\right\\|_{C}$	$\left\\|\delta_{u}\right\\|_{L_{2}}$
5×5	1.97×10^{-2}	1.73×10^{-2}
10×10	6.02×10^{-3}	4.87×10^{-3}
20×20	1.56×10^{-3}	1.23×10^{-3}
40×40	3.84×10^{-4}	3.05×10^{-4}
80×80	9.49×10^{-5}	7.56×10^{-5}
160×160	2.36×10^{-5}	1.86×10^{-5}
320×320	5.90×10^{-6}	4.64×10^{-6}

TABLE 1. Convergence of the pressure for problem (1), (2) with permeability tensor (27)

Grid	$\left\\|\delta_{1}\right\\|_{C}$	$\left\\|\delta_{1}\right\\|_{L_{2}}$	$\left\\|\delta_{2}\right\\|_{C}$	$\left\\|\delta_{2}\right\\|_{L_{2}}$
5×5	7.78×10^{-3}	7.76×10^{-3}	7.47×10^{-3}	6.83×10^{-3}
10×10	4.69×10^{-3}	2.98×10^{-3}	4.76×10^{-3}	4.18×10^{-3}
20×20	2.21×10^{-3}	9.93×10^{-4}	2.20×10^{-3}	1.73×10^{-3}
40×40	1.00×10^{-3}	2.88×10^{-4}	9.23×10^{-4}	5.40×10^{-4}
80×80	4.72×10^{-4}	8.08×10^{-5}	4.29×10^{-4}	1.56×10^{-4}
160×160	2.27×10^{-4}	2.23×10^{-5}	2.09×10^{-4}	4.39×10^{-5}
320×320	1.11×10^{-4}	6.09×10^{-6}	1.03×10^{-4}	1.21×10^{-5}

TABLE 2. Convergence of the fluxes for problem (1), (2) with permeability tensor (27)

From Tab. 2 we can see that for the fluxes we have the first order convergence in the maximum norm and the second order convergence in the L_{2} norm.
4.2. Validation of the discretization for discontinuous coefficients. Consider jump discontinuity on the interfaces $x_{\xi}=0.4$ and $y_{\eta}=0.4$. The permeability tensor is given by

$$
K_{1}=K_{4}=\left(\begin{array}{cc}
1 & 1 / 2 \tag{28}\\
1 / 2 & 1
\end{array}\right), \quad K_{2}=K_{3}=\left(\begin{array}{cc}
\lambda & \lambda / 2 \\
\lambda / 2 & \lambda
\end{array}\right)
$$

where λ is called the contrast of discontinuity. We choose the exact solution which satisfies the conditions of the pressure and fluxes continuity across the interfaces

$$
u=\left(x-x_{\xi}\right)^{2}\left(y-y_{\eta}\right)^{2} \sin (\pi(x+y)) .
$$

The right hand side and the boundary conditions can be found from the initial differential problem (1), (2) for known exact solution. The experiments are performed for $\lambda=10$ and $\lambda=1000$.

From Tab. 3 it is easy to see that the approximate solution u_{h} converges to the exact solution u with the second order both in the maximum and L_{2} norms. For the fluxes we have first order convergence in the C norm and the second order convergence in the L_{2} norm (see Tab. 4).

Note, that for this artificial smooth solution the accuracy does not depend on jump discontinuity.

Figure 3. The surface of discontinuity

Grid	$\left\\|\delta_{u}\right\\|_{C}$		$\\| \delta_{u} L_{2}$	
	$\lambda=10$	$\lambda=1000$	$\lambda=10$	$\lambda=10000$
5×5	1.56×10^{-1}	1.56×10^{-1}	1.61×10^{-1}	1.63×10^{-1}
10×10	5.77×10^{-2}	5.78×10^{-2}	4.58×10^{-2}	4.64×10^{-2}
20×20	1.72×10^{-2}	1.73×10^{-2}	1.18×10^{-2}	1.20×10^{-2}
40×40	4.91×10^{-3}	4.91×10^{-3}	3.02×10^{-3}	3.06×10^{-3}
80×80	1.30×10^{-3}	1.30×10^{-3}	7.67×10^{-4}	7.77×10^{-4}
160×160	3.37×10^{-4}	3.37×10^{-4}	1.93×10^{-4}	1.96×10^{-4}
320×320	8.66×10^{-5}	8.66×10^{-5}	4.86×10^{-5}	4.92×10^{-5}

Table 3. Convergence of the pressure for problem (1), (2) with permeability tensor (28)

Grid	$\left\\|\delta_{1}\right\\|_{C}=\left\\|\delta_{2}\right\\|_{C}$		$\left\\|\delta_{1} L_{2}=\right\\| \delta_{2} \\|_{L_{2}}$	
	$\lambda=10$	$\lambda=1000$	$\lambda=10$	$\lambda=10000$
5×5	1.63×10^{-1}	1.72×10^{-1}	1.92×10^{-1}	2.29×10^{-1}
10×10	1.51×10^{-2}	1.60×10^{-2}	2.92×10^{-2}	3.06×10^{-2}
20×20	1.70×10^{-2}	1.70×10^{-2}	1.05×10^{-2}	1.08×10^{-2}
40×40	1.04×10^{-2}	1.04×10^{-2}	4.32×10^{-3}	4.39×10^{-3}
80×80	5.59×10^{-3}	5.59×10^{-3}	1.52×10^{-3}	1.54×10^{-3}
160×160	2.87×10^{-3}	2.87×10^{-3}	4.89×10^{-4}	4.95×10^{-4}
320×320	1.45×10^{-3}	1.45×10^{-3}	1.47×10^{-4}	1.49×10^{-4}

Table 4. Convergence of the fluxes for problem (1), (2) with permeability tensor (28)

5. Concluding remarks

The purpose of the paper was to study the approximation properties of the multipoint flux approximation discretization for two-dimensional second order elliptic equations in the case of discontinuous tensor coefficients. The discretization is based on the finite volume method and multipoint flux approximation approach. Specific derivation of MPFA is written and it is shown that the components of the discrete flux approximate the components of the continuous flux with the first order in the midpoints of the edges. The error of the finite difference scheme is written i divergence form, so this is used to show first order convergence for the fluxes in
discrete W_{2}^{1} norm. The analysis is also valid for the problems with continuous tensor coefficients. Results from numerical experiments are presented and discussed.

Acknowledgments

This work has been partially supported by EC under the project INTAS-30-504395, by Deutscher Akademischer Austausch Dienst (I. Rybak, scholarship grant A/05/57218) and by Belarusian Republican Foundation for Fundamental Research (project F07MS-054).

References

[1] Aavatsmark I. An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6(2002), pp. 405-432.
[2] Aavatsmark I., Eigestad G.T., Klausen R.A., Wheeler M.F., and Yotov I. Convergence of a symmetric MPFA method on quadrilateral grids, Comput. Geosci., submitted.
[3] Arbogast T., Wheeler M.F., Yotov I., Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., 34(1997), No.2, pp. 828852.
[4] Eigestad G.T., Klausen R.A. On the convergence of the multi-point flux approximation Omethod: numerical experiments for discontinuous permeability, Numer. Methods Partial Diff. Eqns., 21(2005), No.6, pp. 1079-1098.
[5] Klausen R.A., Winther R. Convergence of multipoint flux approximations on quadrilateral grids, Numer. Methods Partial Diff. Eqns., 22(2006), No.6, pp. 1438-1454.
[6] Petzoldt, M., A posteriori error estimators for elliptic equations with discontinuous diffusion coefficients, WIAS Preprint No. 533, (1999) http://www.wias-berlin.de/main/publications/wias-publ/
[7] Samarskii A. A., The Theory of Difference Schemes, Marcel Dekker, Inc., New York-Basel, 2001.
[8] Ware A.F., Parrott A.K., Rogers C., A finite volume discretisation for porous media flows governed by non-diagonal permeability tensors, Proceedings of CFD95, Third Annual Conference of the CFD Society of Canada, Banff, Alberta, Canada, 25-27 June, 1995.
[9] Wheeler M., Yotov I. A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 4 (2006), No.5, pp. 2082-2106.
[10] Edwards M.G., Rogers C.F. Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2(1998), pp. 259-290.
[11] Samarskii A. A., Andreev V.B. Difference Methods for Elliptic Equations, (In Russian), Nauka, Moscow, 1976.
[12] Samarskii A. A., Lazarov R.D., Makarov V.L. Difference Schemes for Differential Equations having Generalized Solutions, (In Russian), Vysshaya Shkola Publishers, Moscow, 1987.

Fraunhofer Institut fuer Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany, and Institute of Mathematics, Bulgarian Academy of Science, Acad. G.Bonchev str., bl.8, BG-1113, Sofia, Bulgaria, iliev@itwm.fhg.de

Institute of Mathematics, National Academy of Sciences of Belarus, Surganov Str. 11, 220072 Minsk, Belarus, rybak@im.bas-net.by

Published reports of the Fraunhofer ITWM

The PDF-files of the following reports are available under: www.itwm.fraunhofer.de/de/ zentral__berichte/berichte

1. D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for Compressible Flows
(19 pages, 1998)

2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application of Hilbert Transform and Multi-Hypothesis Testing
Keywords: Hilbert transform, damage diagnosis, Kalman filtering, non-linear dynamics
(23 pages, 1998)
3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic MultiHypothesis Algorithms: Application to Rotating Machinery
Keywords: Robust reliability, convex models, Kalman filtering, multi-hypothesis diagnosis, rotating machinery, crack diagnosis
(24 pages, 1998)
4. F.-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer in Glass Cooling Processes
(23 pages, 1998)
5. A. Klar, R. Wegener

A hierarchy of models for multilane vehicular traffic
Part I: Modeling
(23 pages, 1998)

Part II: Numerical and stochastic
investigations
(17 pages, 1998)
6. A. Klar, N. Siedow

Boundary Layers and Domain Decomposition for Radiative Heat Transfer and Diffusion Equations: Applications to Glass Manufacturing Processes
(24 pages, 1998)

7. I. Choquet

Heterogeneous catalysis modelling and numerical simulation in rarified gas flows Part I: Coverage locally at equilibrium (24 pages, 1998)
8. J. Ohser, B. Steinbach, C. Lang

Efficient Texture Analysis of Binary Images (17 pages, 1998)

9. J. Orlik

Homogenization for viscoelasticity of the integral type with aging and shrinkage (20 pages, 1998)
10. J. Mohring

Helmholtz Resonators with Large Aperture (21 pages, 1998)
11. H. W. Hamacher, A. Schöbel

On Center Cycles in Grid Graphs
(15 pages, 1998)
12. H. W. Hamacher, K.-H. Küfer Inverse radiation therapy planning -
a multiple objective optimisation approach
(14 pages, 1999)
13. C. Lang, J. Ohser, R. Hilfer

On the Analysis of Spatial Binary Images (20 pages, 1999)
14. M. Junk

On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes
(24 pages, 1999)
15. M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations
(20 pages, 1999)
16. H. Neunzert

Mathematics as a Key to Key Technologies (39 pages (4 PDF-Files), 1999)
17. J. Ohser, K. Sandau

Considerations about the Estimation of the Size Distribution in Wicksell's Corpuscle Problem
(18 pages, 1999)
18. E. Carrizosa, H. W. Hamacher, R. Klein, S. Nickel

Solving nonconvex planar location problems by finite dominating sets
Keywords: Continuous Location, Polyhedral Gauges, Finite Dominating Sets, Approximation, Sandwich Algorithm, Greedy Algorithm
(19 pages, 2000)
19. A. Becker

A Review on Image Distortion Measures
Keywords: Distortion measure, human visual system (26 pages, 2000)
20. H. W. Hamacher, M. Labbé, S. Nickel, T. Sonneborn

Polyhedral Properties of the Uncapacitated Multiple Allocation Hub Location Problem
Keywords: integer programming, hub location, facility location, valid inequalities, facets, branch and cut (21 pages, 2000)
21. H. W. Hamacher, A. Schöbel

Design of Zone Tariff Systems in Public Transportation
(30 pages, 2001)
22. D. Hietel, M. Junk, R. Keck, D. Teleaga

The Finite-Volume-Particle Method for Conservation Laws
(16 pages, 2001)
23. T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, S. Nickel

Location Software and Interface with GIS and Supply Chain Management
Keywords: facility location, software development, geographical information systems, supply chain management
(48 pages, 2001)
24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation Problems: A State of Art
(44 pages, 2001)
25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson equation
Keywords: Poisson equation, Least squares method, Grid free method
(19 pages, 2001)
26. T. Götz, H. Rave, D. Reinel-Bitzer, K. Steiner, H. Tiemeier

Simulation of the fiber spinning process
Keywords: Melt spinning, fiber model, Lattice
Boltzmann, CFD
(19 pages, 2001)

27. A. Zemitis

On interaction of a liquid film with an obstacle
Keywords: impinging jets, liquid film, models, numeri-
cal solution, shape
(22 pages, 2001)

28. I. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to model the filling of expanding cavities by Bingham Fluids
Keywords: Generalized LBE, free-surface phenomena, interface boundary conditions, filling processes, Bingham viscoplastic model, regularized models (22 pages, 2001)

29. H. Neunzert

»Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann"
Vortrag anlässlich der Verleihung des Akademiepreises des Landes Rheinland-
Pfalz am 21.11.2001
Keywords: Lehre, Forschung, angewandte Mathematik, Mehrskalenanalyse, Strömungsmechanik
(18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations
Keywords: Incompressible Navier-Stokes equations, Meshfree method, Projection method, Particle scheme, Least squares approximation
AMS subject classification: 76D05, 76M28
(25 pages, 2001)
31. R. Korn, M. Krekel

Optimal Portfolios with Fixed Consumption or Income Streams
Keywords: Portfolio optimisation, stochastic control, HJB equation, discretisation of control problems. (23 pages, 2002)

32. M. Krekel

Optimal portfolios with a loan dependent credit spread
Keywords: Portfolio optimisation, stochastic control, HJB equation, credit spread, log utility, power utility, non-linear wealth dynamics
(25 pages, 2002)

33. J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets - on the choice of adjacency in homogeneous lattices Keywords: image analysis, Euler number, neighborhod relationships, cuboidal lattice
(32 pages, 2002)
34. I. Ginzburg, K. Steiner

Lattice Boltzmann Model for Free-Surface flow and Its Application to Filling Process in Casting
Keywords: Lattice Boltzmann models; free-surface phenomena; interface boundary conditions; filling processes; injection molding; volume of fluid method; interface boundary conditions; advection-schemes; up-wind-schemes
(54 pages, 2002)
35. M. Günther, A. Klar, T. Materne, R. Wegener Multivalued fundamental diagrams and stop and go waves for continuum traffic equations
Keywords: traffic flow, macroscopic equations, kinetic derivation, multivalued fundamental diagram, stop and go waves, phase transitions
(25 pages, 2002)
36. S. Feldmann, P. Lang, D. Prätzel-Wolters

Parameter influence on the zeros of network determinants
Keywords: Networks, Equicofactor matrix polynomials, Realization theory, Matrix perturbation theory (30 pages, 2002)

37. K. Koch, J. Ohser, K. Schladitz

Spectral theory for random closed sets and estimating the covariance via frequency space
Keywords: Random set, Bartlett spectrum, fast Fourier transform, power spectrum
(28 pages, 2002)
38. D. d'Humières, I. Ginzburg

Multi-reflection boundary conditions for lattice Boltzmann models
Keywords: lattice Boltzmann equation, boudary condistions, bounce-back rule, Navier-Stokes equation (72 pages, 2002)
39. R. Korn

Elementare Finanzmathematik

Keywords: Finanzmathematik, Aktien, Optionen, Port-folio-Optimierung, Börse, Lehrerweiterbildung, Mathematikunterricht
(98 pages, 2002)
40. J. Kallrath, M. C. Müller, S. Nickel

Batch Presorting Problems:

Models and Complexity Results
Keywords: Complexity theory, Integer programming, Assigment, Logistics
(19 pages, 2002)

41. J. Linn

On the frame-invariant description of the phase space of the Folgar-Tucker equation
Key words: fiber orientation, Folgar-Tucker equation, injection molding
(5 pages, 2003)

42. T. Hanne, S. Nickel

A Multi-Objective Evolutionary Algorithm for Scheduling and Inspection Planning in Software Development Projects
Key words: multiple objective programming, project management and scheduling, software development, evolutionary algorithms, efficient set (29 pages, 2003)

43. T. Bortfeld, K.-H. Küfer, M. Monz,

 A. Scherrer, C. Thieke, H. TrinkausIntensity-Modulated Radiotherapy - A Large Scale Multi-Criteria Programming Problem Keywords: multiple criteria optimization, representative systems of Pareto solutions, adaptive triangulation, clustering and disaggregation techniques, visualization of Pareto solutions, medical physics, external beam radiotherapy planning, intensity modulated radiotherapy (31 pages, 2003)

44. T. Halfmann, T. Wichmann

Overview of Symbolic Methods in Industrial Analog Circuit Design
Keywords: CAD, automated analog circuit design, symbolic analysis, computer algebra, behavioral modeling, system simulation, circuit sizing, macro modeling, dif-ferential-algebraic equations, index
(17 pages, 2003)

45. S. E. Mikhailov, J. Orlik

Asymptotic Homogenisation in Strength and Fatigue Durability Analysis of Composites
Keywords: multiscale structures, asymptotic homogenization, strength, fatigue, singularity, non-local conditions
(14 pages, 2003)
46. P. Domínguez-Marín, P. Hansen,
N. Mladenovi'c, S. Nickel

Heuristic Procedures for Solving the

Discrete Ordered Median Problem

Keywords: genetic algorithms, variable neighborhood search, discrete facility location
(31 pages, 2003)
47. N. Boland, P. Domínguez-Marín, S. Nickel, J. Puerto

Exact Procedures for Solving the Discrete Ordered Median Problem
Keywords: discrete location, Integer programming (41 pages, 2003)

48. S. Feldmann, P. Lang

Padé-like reduction of stable discrete linear systems preserving their stability
Keywords: Discrete linear systems, model reduction, stability, Hankel matrix, Stein equation
(16 pages, 2003)
49. J. Kallrath, S. Nickel

A Polynomial Case of the Batch Presorting Problem
Keywords: batch presorting problem, online optimization, competetive analysis, polynomial algorithms, logistics
(17 pages, 2003)

50. T. Hanne, H. L. Trinkaus

knowCube for MCDM -

Visual and Interactive Support for Multicriteria Decision Making
Key words: Multicriteria decision making, knowledge management, decision support systems, visual interfaces, interactive navigation, real-life applications. (26 pages, 2003)

51. O. Iliev, V. Laptev

On Numerical Simulation of Flow Through Oil Filters
Keywords: oil filters, coupled flow in plain and porous media, Navier-Stokes, Brinkman, numerical simulation (8 pages, 2003)
52. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva

On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media
Keywords: Nonlinear multigrid, adaptive refinement, non-Newtonian flow in porous media
(17 pages, 2003)

53. S. Kruse

On the Pricing of Forward Starting Options under Stochastic Volatility
Keywords: Option pricing, forward starting options, Heston model, stochastic volatility, cliquet options (11 pages, 2003)
54. O. Iliev, D. Stoyanov

Multigrid - adaptive local refinement solver for incompressible flows
Keywords: Navier-Stokes equations, incompressible flow, projection-type splitting, SIMPLE, multigrid methods, adaptive local refinement, lid-driven flow in a cavity
(37 pages, 2003)

55. V. Starikovicius

The multiphase flow and heat transfer in porous media
Keywords: Two-phase flow in porous media, various formulations, global pressure, multiphase mixture mod-
el, numerical simulation
(30 pages, 2003)
56. P. Lang, A. Sarishvili, A. Wirsen

Blocked neural networks for knowledge extraction in the software development process
Keywords: Blocked Neural Networks, Nonlinear Regression, Knowledge Extraction, Code Inspection (21 pages, 2003)
57. H. Knaf, P. Lang, S. Zeiser

Diagnosis aiding in Regulation
Thermography using Fuzzy Logic
Keywords: fuzzy logic, knowledge representation, expert system
(22 pages, 2003)
58. M. T. Melo, S. Nickel, F. Saldanha da Gama Largescale models for dynamic multicommodity capacitated facility location
Keywords: supply chain management, strategic
planning, dynamic location, modeling
(40 pages, 2003)
59. J. Orlik

Homogenization for contact problems with periodically rough surfaces
Keywords: asymptotic homogenization, contact problems
(28 pages, 2004)
60. A. Scherrer, K.-H. Küfer, M. Monz, F. Alonso, T. Bortfeld

IMRT planning on adaptive volume structures - a significant advance of computational complexity
Keywords: Intensity-modulated radiation therapy (IMRT), inverse treatment planning, adaptive volume structures, hierarchical clustering, local refinement, adaptive clustering, convex programming, mesh generation, multi-grid methods
(24 pages, 2004)
61. D. Kehrwald

Parallel lattice Boltzmann simulation of complex flows
Keywords: Lattice Boltzmann methods, parallel computing, microstructure simulation, virtual material design, pseudo-plastic fluids, liquid composite moulding (12 pages, 2004)
62. O. Iliev, J. Linn, M. Moog, D. Niedziela, V. Starikovicius

On the Performance of Certain Iterative Solvers for Coupled Systems Arising in Discretization of Non-Newtonian Flow Equations
Keywords: Performance of iterative solvers, Preconditioners, Non-Newtonian flow
(17 pages, 2004)
63. R. Ciegis, O. Iliev, S. Rief, K. Steiner

On Modelling and Simulation of Different Regimes for Liquid Polymer Moulding Keywords: Liquid Polymer Moulding, Modelling, SimuIation, Infiltration, Front Propagation, non-Newtonian flow in porous media
(43 pages, 2004)
64. T. Hanne, H. Neu

Simulating Human Resources in

Software Development Processes
Keywords: Human resource modeling, software process, productivity, human factors, learning curve (14 pages, 2004)

65. O. Iliev, A. Mikelic, P. Popov

Fluid structure interaction problems in deformable porous media: Toward permeability of deformable porous media
Keywords: fluid-structure interaction, deformable porous media, upscaling, linear elasticity, stokes, finite elements
(28 pages, 2004)
66. F. Gaspar, O. Iliev, F. Lisbona, A. Naumovich, P. Vabishchevich

On numerical solution of 1-D poroelasticity equations in a multilayered domain
Keywords: poroelasticity, multilayered material, finite volume discretization, MAC type grid
(41 pages, 2004)

67. J. Ohser, K. Schladitz, K. Koch, M. Nöthe

Diffraction by image processing and its application in materials science
Keywords: porous microstructure, image analysis, random set, fast Fourier transform, power spectrum,
Bartlett spectrum
(13 pages, 2004)

68. H. Neunzert

Mathematics as a Technology: Challenges for the next 10 Years
Keywords: applied mathematics, technology, modelling, simulation, visualization, optimization, glass processing, spinning processes, fiber-fluid interaction, trubulence effects, topological optimization, multicriteria optimization, Uncertainty and Risk, financial mathematics, Malliavin calculus, Monte-Carlo methods, virtual material design, filtration, bio-informatics, system biology (29 pages, 2004)
69. R. Ewing, O. Iliev, R. Lazarov, A. Naumovich

On convergence of certain finite difference discretizations for 1D poroelasticity interface problems
Keywords: poroelasticity, multilayered material, finite volume discretizations, MAC type grid, error estimates (26 pages, 2004)
70. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva

On Efficient Simulation of Non-Newtonian Flow in Saturated Porous Media with a Multigrid Adaptive Refinement Solver Keywords: Nonlinear multigrid, adaptive renement, non-Newtonian in porous media
(25 pages, 2004)

71. J. Kalcsics, S. Nickel, M. Schröder

Towards a Unified Territory Design Approach - Applications, Algorithms and GIS Integration
Keywords: territory desgin, political districting, sales territory alignment, optimization algorithms, Geographical Information Systems
(40 pages, 2005)

72. K. Schladitz, S. Peters, D. Reinel-Bitzer, A. Wiegmann, J. Ohser

Design of acoustic trim based on geometric modeling and flow simulation for non-woven Keywords: random system of fibers, Poisson line process, flow resistivity, acoustic absorption, LatticeBoltzmann method, non-woven
(21 pages, 2005)

73. V. Rutka, A. Wiegmann

Explicit Jump Immersed Interface Method for virtual material design of the effective elastic moduli of composite materials
Keywords: virtual material design, explicit jump immersed interface method, effective elastic moduli, composite materials
(22 pages, 2005)
74. T. Hanne

Eine Übersicht zum Scheduling von Baustellen
Keywords: Projektplanung, Scheduling, Bauplanung Bauindustrie
(32 pages, 2005)
75. J. Linn

The Folgar-Tucker Model as a Differetial Algebraic System for Fiber Orientation Calculation
Keywords: fiber orientation, Folgar-Tucker model, invariants, algebraic constraints, phase space, trace stability
(15 pages, 2005)
76. M. Speckert, K. Dreßler, H. Mauch, A. Lion, G. J. Wierda

Simulation eines neuartigen Prüfsystems für Achserprobungen durch MKS-Modellierung einschließlich Regelung
Keywords: virtual test rig, suspension testing, multibody simulation, modeling hexapod test rig, optimization of test rig configuration
(20 pages, 2005)
77. K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, F. Alonso, A. S. A. Sultan, Th. Bortfeld, D. Craft, Chr. Thieke

Multicriteria optimization in intensity modulated radiotherapy planning
Keywords: multicriteria optimization, extreme solutions, real-time decision making, adaptive approximation schemes, clustering methods, IMRT planning, reverse engineering
(51 pages, 2005)
78. S. Amstutz, H. Andrä

A new algorithm for topology optimization using a level-set method
Keywords: shape optimization, topology optimization, topological sensitivity, level-set (22 pages, 2005)
79. N. Ettrich

Generation of surface elevation models for urban drainage simulation
Keywords: Flooding, simulation, urban elevation models, laser scanning
(22 pages, 2005)
80. H. Andrä, J. Linn, I. Matei, I. Shklyar,
K. Steiner, E. Teichmann

OPTCAST - Entwicklung adäquater Strukturoptimierungsverfahren für Gießereien Technischer Bericht (KURZFASSUNG)
Keywords: Topologieoptimierung, Level-Set-Methode, Gießprozesssimulation, Gießtechnische Restriktionen, CAE-Kette zur Strukturoptimierung
(77 pages, 2005)

81. N. Marheineke, R. Wegener

Fiber Dynamics in Turbulent Flows

Part I: General Modeling Framework
Keywords: fiber-fluid interaction; Cosserat rod; turbulence modeling; Kolmogorov's energy spectrum; dou-ble-velocity correlations; differentiable Gaussian fields (20 pages, 2005)
Part II: Specific Taylor Drag
Keywords: flexible fibers; k - ε turbulence model; fi-ber-turbulence interaction scales; air drag; random Gaussian aerodynamic force; white noise; stochastic differential equations; ARMA process
(18 pages, 2005)

82. C. H. Lampert, O. Wirjad

An Optimal Non-Orthogonal Separation of the Anisotropic Gaussian Convolution Filter Keywords: Anisotropic Gaussian filter, linear filtering, orientation space, nD image processing, separable filters (25 pages, 2005)

83. H. Andrä, D. Stoyanov

Error indicators in the parallel finite element solver for linear elasticity DDFEM
Keywords: linear elasticity, finite element method, hierarchical shape functions, domain decom-position, parallel implementation, a posteriori error estimates (21 pages, 2006)
84. M. Schröder, I. Solchenbach

Optimization of Transfer Quality in Regional Public Transit
Keywords: public transit, transfer quality, quadratic assignment problem
(16 pages, 2006)

85. A. Naumovich, F. J. Gaspar

On a multigrid solver for the three-dimensional Biot poroelasticity system in multi-

layered domains

Keywords: poroelasticity, interface problem, multigrid, operator-dependent prolongation (11 pages, 2006)
86. S. Panda, R. Wegener, N. Marheineke

Slender Body Theory for the Dynamics of Curved Viscous Fibers
Keywords: curved viscous fibers; fluid dynamics; NavierStokes equations; free boundary value problem; asymptotic expansions; slender body theory (14 pages, 2006)

87. E. Ivanov, H. Andrä, A. Kudryavtsev

Domain Decomposition Approach for Automatic Parallel Generation of Tetrahedral Grids Key words: Grid Generation, Unstructured Grid, Delaunay Triangulation, Parallel Programming, Domain Decomposition, Load Balancing
(18 pages, 2006)
88. S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert, R. Wegener

A Meshfree Method for Simulations of Interactions between Fluids and Flexible Structures Key words: Meshfree Method, FPM, Fluid Structure Interaction, Sheet of Paper, Dynamical Coupling (16 pages, 2006)
89. R. Ciegis, O. Iliev, V. Starikovicius, K. Steiner Numerical Algorithms for Solving Problems of Multiphase Flows in Porous Media
Keywords: nonlinear algorithms, finite-volume method, software tools, porous media, flows
(16 pages, 2006)
90. D. Niedziela, O. Iliev, A. Latz

On 3D Numerical Simulations of Viscoelastic Fluids
Keywords: non-Newtonian fluids, anisotropic viscosity, integral constitutive equation
(18 pages, 2006)
91. A. Winterfeld

Application of general semi-infinite Programming to Lapidary Cutting Problems
Keywords: large scale optimization, nonlinear programming, general semi-infinite optimization, design centering, clustering
(26 pages, 2006)

92. J. Orlik, A. Ostrovska

Space-Time Finite Element Approximation and Numerical Solution of Hereditary Linear Viscoelasticity Problems
Keywords: hereditary viscoelasticity; kern approximation by interpolation; space-time finite element approximation, stability and a priori estimate
(24 pages, 2006)
93. V. Rutka, A. Wiegmann, H. Andrä

EJIIM for Calculation of effective Elastic Moduli in 3D Linear Elasticity
Keywords: Elliptic PDE, linear elasticity, irregular domain, finite differences, fast solvers, effective elastic moduli
(24 pages, 2006)

94. A. Wiegmann, A. Zemitis

EJ-HEAT: A Fast Explicit Jump Harmonic Averaging Solver for the Effective Heat Conductivity of Composite Materials
Keywords: Stationary heat equation, effective thermal conductivity, explicit jump, discontinuous coefficients, virtual material design, microstructure simulation, EJHEAT
(21 pages, 2006)
95. A. Naumovich

On a finite volume discretization of the three-dimensional Biot poroelasticity system in multilayered domains
Keywords: Biot poroelasticity system, interface problems, finite volume discretization, finite difference method.
(21 pages, 2006)
96. M. Krekel, J. Wenzel

A unified approach to Credit Default

Swaption and Constant Maturity Credit Default Swap valuation
Keywords: LIBOR market model, credit risk, Credit Default Swaption, Constant Maturity Credit Default Swapmethod.
(43 pages, 2006)

97. A. Dreyer

Interval Methods for Analog Circiuts

Keywords: interval arithmetic, analog circuits, tolerance analysis, parametric linear systems, frequency response, symbolic analysis, CAD, computer algebra (36 pages, 2006)
98. N. Weigel, S. Weihe, G. Bitsch, K. Dreßler

Usage of Simulation for Design and Optimization of Testing
Keywords: Vehicle test rigs, MBS, control, hydraulics, testing philosophy
(14 pages, 2006)
99. H. Lang, G. Bitsch, K. Dreßler, M. Speckert

Comparison of the solutions of the elastic and elastoplastic boundary value problems Keywords: Elastic BVP, elastoplastic BVP, variational inequalities, rate-independency, hysteresis, linear kinematic hardening, stop- and play-operator (21 pages, 2006)
100. M. Speckert, K. Dreßler, H. Mauch

MBS Simulation of a hexapod based suspension test rig
Keywords: Test rig, MBS simulation, suspension, hydraulics, controlling, design optimization (12 pages, 2006)

101. S. Azizi Sultan, K.-H. Küfer

A dynamic algorithm for beam orientations in multicriteria IMRT planning
Keywords: radiotherapy planning, beam orientation optimization, dynamic approach, evolutionary algorithm, global optimization
(14 pages, 2006)
102. T. Götz, A. Klar, N. Marheineke, R. Wegener A Stochastic Model for the Fiber Lay-down Process in the Nonwoven Production
Keywords: fiber dynamics, stochastic Hamiltonian system, stochastic averaging
(17 pages, 2006)

103. Ph. Süss, K.-H. Küfer

Balancing control and simplicity: a variable aggregation method in intensity modulated radiation therapy planning
Keywords: IMRT planning, variable aggregation, clustering methods
(22 pages, 2006)
104. A. Beaudry, G. Laporte, T. Melo, S. Nickel

Dynamic transportation of patients in hospitals
Keywords: in-house hospital transportation, dial-a-ride, dynamic mode, tabu search
(37 pages, 2006)
105. Th. Hanne

Applying multiobjective evolutionary algorithms in industrial projects
Keywords: multiobjective evolutionary algorithms, discrete optimization, continuous optimization, electronic circuit design, semi-infinite programming, scheduling (18 pages, 2006)
106. J. Franke, S. Halim

Wild bootstrap tests for comparing signals and images
Keywords: wild bootstrap test, texture classification, textile quality control, defect detection, kernel estimate, nonparametric regression
(13 pages, 2007
107. Z. Drezner, S. Nickel

Solving the ordered one-median problem in the plane
Keywords: planar location, global optimization, ordered median, big triangle small triangle method, bounds, numerical experiments
(21 pages, 2007)
108. Th. Götz, A. Klar, A. Unterreiter, R. Wegener

Numerical evidance for the non-existing of solutions of the equations desribing rotational fiber spinning
Keywords: rotational fiber spinning, viscous fibers, boundary value problem, existence of solutions (11 pages, 2007)
109. Ph. Süss, K.-H. Küfer

Smooth intensity maps and the BortfeldBoyer sequencer
Keywords: probabilistic analysis, intensity modulated radiotherapy treatment (IMRT), IMRT plan application, step-and-shoot sequencing
(8 pages, 2007)
110. E. Ivanov, O. Gluchshenko, H. Andrä, A. Kudryavtsev
Parallel software tool for decomposing and meshing of 3d structures
Keywords: a-priori domain decomposition, unstructured grid, Delaunay mesh generation (14 pages, 2007)
111. O. Iliev, R. Lazarov, J. Willems

Numerical study of two-grid preconditioners for 1d elliptic problems with highly oscillating discontinuous coefficients
Keywords: two-grid algorithm, oscillating coefficients, preconditioner
(20 pages, 2007)
112. L. Bonilla, T. Götz, A. Klar, N. Marheineke, R. Wegener
Hydrodynamic limit of the Fokker-Planckequation describing fiber lay-down pro-

cesses

Keywords: stochastic dierential equations, FokkerPlanck equation, asymptotic expansion, Ornstein-
Uhlenbeck process
(17 pages, 2007)

113. S. Rief

Modeling and simulation of the pressing section of a paper machine
Keywords: paper machine, computational fluid dynamics, porous media
(41 pages, 2007)
114. R. Ciegis, O. Iliev, Z. Lakdawala

On parallel numerical algorithms for simulating industrial filtration problems
Keywords: Navier-Stokes-Brinkmann equations, finite volume discretization method, SIMPLE, parallel computing, data decomposition method (24 pages, 2007)
115. N. Marheineke, R. Wegener

Dynamics of curved viscous fibers with surface tension
Keywords: Slender body theory, curved viscous bers with surface tension, free boundary value problem (25 pages, 2007)
116. S. Feth, J. Franke, M. Speckert

Resampling-Methoden zur mse-Korrektur und Anwendungen in der Betriebsfestigkeit Keywords: Weibull, Bootstrap, Maximum-Likelihood, Betriebsfestigkeit
(16 pages, 2007)
117. H. Knaf

Kernel Fisher discriminant functions - a concise and rigorous introduction
Keywords: wild bootstrap test, texture classification, textile quality control, defect detection, kernel estimate, nonparametric regression
(30 pages, 2007)
118. O. Iliev, I. Rybak

On numerical upscaling for flows in heterogeneous porous media
Keywords: numerical upscaling, heterogeneous porous media, single phase flow, Darcy's law, multiscale problem, effective permeability, multipoint flux approxima-
tion, anisotropy
(17 pages, 2007)
119. O. Iliev, I. Rybak

On approximation property of multipoint flux approximation method
Keywords: Multipoint flux approximation, finite volume method, elliptic equation, discontinuous tensor coefficients, anisotropy
(15 pages, 2007)

