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ON TWO-LEVEL PRECONDITIONERS FOR FLOW IN POROUS

MEDIA

R.E. EWING, O.P. ILIEV, R.D. LAZAROV, AND I.V. RYBAK

Abstract. Two-level domain decomposition preconditioner for 3D flows in anisotropic
highly heterogeneous porous media is presented. Accurate finite volume discretiza-
tion based on multipoint flux approximation (MPFA) for 3D pressure equation
is employed to account for the jump discontinuities of full permeability tensors.
DD/MG type preconditioner for above mentioned problem is developed. Coarse
scale operator is obtained from a homogenization type procedure. The influence of
the overlapping as well as the influence of the smoother and cell problem formula-
tion is studied. Results from numerical experiments are presented and discussed.

Keywords: Multiscale problem, Darcy’s law, single phase flow, anisotropic het-
erogeneous porous media, numerical upscaling, multigrid, domain decomposition,
efficient preconditioner

1. Introduction

Multigrid, MG, and Domain Decomposition, DD, are the most advanced methods
for solving large systems of linear algebraic equations arising in discretization of
certain classes of PDEs. Here we are interested in elliptic PDEs, describing flow in
porous media, heat conductivity, etc. Both methods, MG and DD, are extensively
studied in the case when the coefficients of the elliptic equation are smooth, and/or
when the media is isotropic. It is well known, that special attention has to be paid
in the case when there are heterogeneities unresolved on the coarse grid, and when
the full tensor discontinuous coefficients are considered. One approach to deal with
highly oscillating coefficients, is to exploit homogenization techniques for building
coarse grid equations. In the case of periodic isotropic media and clear separation
of scales, such an approach is introduced and discussed in the pioneering work [8].
Here we study a combination of multigrid and homogenization approaches in con-
junction with solving equations with tensor discontinuous coefficients, in the cases
of periodic and non-periodic heterogeneities. Unlike using FEM and only primary
grid, like in [8], we use finite volume, FV, discretization, and exploit a primary grid
for the discretization and for the smoother, and a dual grid for the problem depen-
dent prolongation. The usage of FV, namely of the Multi Point Flux Approximation
based FV discretization, is especially important in the case of discontinuous tensor
coefficients. MPFA does not only provide good discretization accuracy for the PDE
under consideration, but it also does provide good approximation for the coarse scale
equation, thus promoting a good convergence of the two-level algorithm. Further-
more, while the authors of [8] consider only cell problems with periodic boundary
conditions in the upscaling procedure for the coarse grid equation, we discuss sev-
eral possible formulations of cell problems, including such for non-periodic media. In
fact, these formulations of the cell problems are known from the numerical upscal-
ing, see [13], here we discuss them in conjunction with two-level iterative algorithm.
It should be noted that DD community also has developed approaches to deal with
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rapidly oscillating heterogenieties. We refer, e.g., to [7, 6], and to references therein
for a more detailed discussion of this issue.

The reminder of the paper is organized as follows. Next section concerns the
statement of the problem. The Finite Volume discretization is described in section
3. The fourth section is devoted to the two-level iterative algorithm, in particular, to
the choice of the intergrid operators, the choice of the coarse grid operator, etc. The
fifth section presents results from numerical experiments. Finally, some conclusions
are drawn.

2. Statement of the problem

In this paper, we consider steady state incompressible single phase flow in highly
heterogeneous anisotropic porous media. Such flow is described by the equation for
the unknown pressure p

(1) −∇ · (K∇p) = f, in Ω,

subject to the following boundary conditions

(2) p = gD, on ΓD, K∇p · n = gN , on ΓN , ∂Ω = ΓD ∪ ΓN .

This problem could be reformulated in a mixed form as a system of the equation
∇ · v = f expressing mass conservation and the Darcy’s law v = −K∇p. Here the
domain Ω is a parallelepiped with boundaries parallel to the coordinate planes, the
set ΓD is non-empty and had positive surface measure, the permeability tensor is
full, symmetric, and uniformly positive definite in Ω:

K =





kxx kxy kxz

kyx kyy kyz

kzx kzy kzz



 ,





kxy = kyx 6= 0
kxz = kzx 6= 0
kyz = kzy 6= 0



 .

The entries of the permeability tensor K may have jump discontinuities along certain
interfaces that are parallel to the coordinate planes and along these interfaces the
following conditions are satisfied

[p] = 0, [K∇p · n] = 0.

Here [ξ] = ξ(xint + 0)− ξ(xint − 0) for the interface xint.

3. Finite volume discretization

In this section, we derive a discretization for three-dimensional pressure equation
(1) with discontinuous tensor coefficients. The discretization which we use for the
3-D case, is derived in the same way as the schemes in [4, 12], where 2-D problems
were considered. The derivation is based on the finite (control) volume method and
multipoint flux approximation of Aavatmark et al [1] and Edwards and Rogers [5]
for multidimensional problems and general hexahedral meshes.

The domain Ω is partitioned into blocks Ωijk so that the discontinuities of the
permeability tensor K are aligned with cell boundaries. The centers of the cells Ωijk

are denoted by (xi, yj, zk) and the cell vertexes are the points (xi±
1

2
h1, yj±

1

2
h2, zk±

1

2
h3). The mesh that will be used to approximate the pressure will include all cell

centers (xi, yj, zk). This mesh will be called primary mesh ωh = {(xi, yj, zk) : Ωijk}.
Similarly we shall use also the mesh of all cell vertexes, called often dual mesh.
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The continuity equation (∇ · v = f) is integrated over control volume Ωijk and
making use of the divergence theorem, we obtain

(3)

∫

Ωijk

∇ · vdx =

∫

Ωijk

fdx ⇒

∫

∂Ωijk

v · nds =

∫

Ωijk

fdx.

Using the Darcy’s relation v = −K∇p, the velocity v in (3) is replaced by certain
approximation involving p, what results in a conservative method [9]. In this ap-
proximation we assume that the unknowns (or degrees of freedom) are the values
of the pressure at the cell centers and then use these values to recover the velocity
v. According to the multi-point flux approximation (MPFA) this is done in the
following manner. First we split each control volume

Ωijk = (xi −
1

2
h1, xi +

1

2
h1)× (yj −

1

2
h2, yj +

1

2
h2)× (zk −

1

2
h3, zk +

1

2
h3)

into 8 subvolumes Ω1,1,1
ijk = (xi, xi + 1

2
h1)× (yj, yj + 1

2
h2) × (zk, zk + 1

2
h3), Ω−1,1,1

ijk =

(xi −
1

2
h1, xi)× (yj, yj + 1

2
h2)× (zk, zk + 1

2
h3), etc. These are denoted by

Ωαβγ
ijk = (xi +

α

2
h1, xi)× (yj +

β

2
h2, yj)× (zk +

γ

2
h3, zk),

where α, β, γ = ±1. We take the pressure to be a linear function on each subvolume
Ωαβγ

ijk so that

(4) pijk = aαβγ
ijk x + bαβγ

ijk y + cαβγ
ijk z + dαβγ

ijk , α, β, γ = ±1.

The coefficients aαβγ
ijk , bαβγ

ijk , cαβγ
ijk and dαβγ

ijk in (4) are determined by the following
conditions:
(1c) the pressure values at the volume centers;
(2c) the continuity of the pressure at the centers of the faces of the volume Ωijk and
the pressure data on faces that are part of ΓD;
(3c) the continuity of the normal component of the velocity v at the centers of the
faces of the volume Ωijk and the boundary data for the normal velocity on faces on
ΓN .

These conditions are applied on a cell from the dual grid, i.e. a cell centered at a
vertex point from the dual grid. These cells are of four categories corresponding to
internal vertices, boundary vertices (but not on edges), vertices on the edges (but
not in corner), and finally the 4 corner points of the domain Ω.

Consider an internal vertex, as shown on Figure 1, that is surrounded by eight
subcells, and the centers of those subcells are connected together to form a graph
with eight vertices and twelve edges (Fig. 1).

To find the polynomial coefficients from (4), we use conditions (1c)–(3c). Let the
coordinate origin be in the vertex node, so for the considered shifted control volume
we have −h1/2 ≤ x ≤ h1/2, −h2/2 ≤ y ≤ h2/2, −h3/2 ≤ z ≤ h3/2. Condition (1c)
gives us 8 equations by substitution of x, y, z and the pressure at the cell-centers
(P , E, N , NE, P p, Ep, Np, NEp) into equation (4). Taking into account the
conditions (2c) of continuity the pressure at the centers of the faces of Ωijk, we get
12 equations, and finally considering the condition (3c) of continuity of the normal
component of the velocity at the centers of the faces of the volume Ωijk we obtain
last 12 equations needed to determine 32 polynomial coefficients from (4). Note,
that it gives us the expressions for the velocity that is constant over each of the 8
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subcells of the vertex-centered volume. These formulas are used to find v · n on
∂Ωijk, as needed by the relation (3).

For vertex that is on the boundary the situation is simpler. In the case of Neumann
boundary conditions the flux is given on the boundary, while in the case of Dirichlet
boundary conditions we just do the same procedure as for the inner control volume,
but in this case we have 4 interfaces only.

Combining this relationship for each neighboring vertex gives us a discrete pressure
equation with a 27-point stencil.

− vertex node

− cell−centered node

− interface

− boundary

NEp
Np

Pp

EP

Ep

N NE

P

Pp

Pp

Pp

Pp

Figure 1. Shifted control volumes: inner and boundary cells

If the coefficient tensor K is constant, then this approximation recovers the linear
pressure and therefore is at least of first order. However, on uniform meshes this
scheme is of second order. The scheme could be written as the combination of the
second order finite difference schemes from [9] with some O(h2) regularizator. For
the simplicity, we write it in two-dimensional case

kxxpxx̄ + 0.5kxy (px̄y + pxȳ + px̄ȳ + pxy) + kyypyȳ + R = −f,

where

R =
k2

xy

4

(

h2
x

kxx
+

h2
y

kyy

)

px̄xȳy = O
(

h2
)

.

Further, in the case of discontinuous permeability tensor K the approximation in-
volves harmonic averaging of the coefficients, which in turn leads to a better scheme.
Second order convergence of the developed algorithm is confirmed by our numeri-
cal experiments. For discontinuous diagonal tensor K the discretization reduces to
7-point stencil difference scheme with the harmonic averaging of the coefficients.

The discretization of the boundary-value problem (1), (2) on the domain Ω̄ gives
us the following linear system

Ahph = fh.

Let Ah : Uh → Uh be a matrix-valued operator, Uh is the space of fine grid functions
with the inner product

(yh, vh)Uh
=

∑

x∈ωh

yh(x)vh(x)h1h2h3.

Operator Ah has the following properties:
(1p) symmetric;
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(2p) positive definite.

4. Two-grid method

In this section, we present two-level preconditioner (TGM) for solving problem
(1), (2). To do this, we consider decomposition of the domain Ω̄ into the fine grid
ωh defined above and the coarse grid defined in a similar way

ωH = {(xI , yJ , zK) : ΩIJK = mxmymzΩijk} ,

where mx, my, mz is the number of fine grid blocks in a coarse one. Both grids are
uniform and cell-centered, moreover, the interfaces of each coarse block match the
interfaces of the fine blocks (Fig. 2).

Figure 2. Fine and coarse grids

4.1. Two-grid iteration. The algorithm of TGM is similar to the multigrid ap-
proach [11], combining two processes - smoothing and coarse grid correction. If we
knew the error on the coarse grid, then we could interpolate it back to the fine
grid and use this as a correction. The error eH on the coarse grid is unknown,
but it could be calculated from the error equation AHeH = rH , if the residual rH

on the coarse grid were known. The residual on the fine grid is known, so we can
use it to approximate the residual on the coarse grid. For two-level algorithms see
also [10, 8, 6].

To define TGM we need the smoother, the transfer operators and the coarse grid
operator. Let P : UH → Uh be the interpolation from the coarse grid to the fine grid,
operator R : Uh → UH be the restriction operator, AH : UH → UH be a discrete
form of the operator on the coarse grid, S : Uh → Uh and S̃ : Uh → Uh be the
smoothing iterations.

Suppose, that pk
h is given, then one iteration of TGM is the following

pk+1

h = TGM(pk
h, Ah, fh),

where pk+1

h is defined by
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Algorithm 4.1.

begin

pre-smoothing: p
k+1/3

h = S(pk
h, Ah, fh),

coarse grid correction: p
k+2/3

h = p
k+1/3

h + PA−1

H R(fh − Ahp
k+1/3

h ),

post-smoothing: pk+1

h = S̃(p
k+2/3

h , Ah, fh).

end

That is, we smooth fine-grid solution, then calculate the residual on the fine grid,
restrict it to the coarse grid, solve the coarse grid problem, interpolate the coarse
grid solution to the fine grid, correct the fine grid solution and post-smooth it.

Remark. The choice of the intergrid (transfer) operators, as well as the choice of the
coarse scale operator, are critical for the convergence of the method.

4.2. Particular choices of two-grid ingredients.

4.2.1. Smoothing iterations (S, S̃). In connection with the above mentioned TGM,
we use Schwarz smoothers. Schwarz smoothers are simply one-level additive or
multiplicative overlapping Schwarz Domain Decomposition iterative algorithms [10].
We use Dirichlet boundary condition on the interfaces.

Consider the decomposition of the domain Ω into overlapping subdomains Ωi,
i = 1, p. The domain Ωi is Ωijk with some overlapping (see, for example, Fig. 3).
The pure multiplicative Schwarz method involves the following substeps

un+
1

p ← un + B1(f − Aun),

un+
2

p ← un+
1

p + B2(f − Aun+
1

p ),

. . .

un+1 ← un+
p−1

p + Bp(f − Aun+
p−1

p ),

where Bi = RT
i (RiART

i )−1Ri, and Ai = RiART
i is merely the submatrix of A asso-

ciated with the domain Ωi. The residual at each fractional step, f − Au
i−1

p , need
only to be be updated in Ωi using values from Ωi and its immediate neighbors. Ri is
rectangular (restriction) matrix that returns the vector of coefficients defined in the
interior of Ωi. Note, that these matrices are never formed in practice. The matrix
Bi restricts the residual to one subdomain, solves the problem on the subdomain to
generate a correction, and then extends that correction back onto the entire domain.
Again, Bi are never formed explicitely.

Additive Schwarz method

un+1 ← un +
∑

i

Bi(f −Aun).

4.2.2. Restriction transfer operator (R). Restriction operator could be derived from
the condition

∫

Ωijk

rhdx =

∫

Ωijk

Rrhdx,



ON TWO-LEVEL PRECONDITIONERS FOR FLOW IN POROUS MEDIA 7

where midpoint rule is used to approximate the integrals. So, we use volume aver-
aging as a restriction operator

rH =
1

m

mx
∑

i=1

my
∑

j=1

mz
∑

k=1

rijk
h ,

where rH is the residual on the coarse grid, rijk
h is the residual on the fine grid, and

m = mxmymz is the number of fine grid blocks in the coarse grid block Ωijk.

4.2.3. Coarse grid operator (AH). We discretize and solve on a coarse grid the equa-
tion for the correction. The choice of the coarse scale operator is critical for the con-
vergence of the method. So, it is important that the coarse grid problem represents
the fine grid problem well enough. To define the coarse grid discretization we will
use homogenization techniques [3, 13, 2, 14]. The homogenization of equations with
variable coefficients often yields coarse scale equations of a different form than the
original fine scale equations. Homogenization procedures presented here allow the
coarse scale pressure equation to be of the same form as equation (1), but with the
permeability K replaced by the coarse scale or effective permeability tensor K̃:

(5) −∇ · (K̃∇pH) = fH .

Different definitions of K̃ have been proposed [3, 13]. Solutions of the local flow
problems in each coarse grid block are postprocessed in order to upscale the perme-
ability tensor. The main differences among various formulations are the boundary
conditions imposed on the local flow equation and the averaging processes for com-
puting K̃. Let us first shortly discuss the approach from [3], and after that to
summarize the discussions in [13].

Consider a cubic grid block V . Following [3], to define K̃ in V we write the coarse
scale Darcy’s law

(6) 〈v〉V = −K̃ 〈∇p〉V ,

where p and v are fine scale solutions of the problem v = −K · ∇p, ∇ · v = 0 in
the grid block V with appropriate boundary conditions. Note that the source term
is set to zero because effective permeability (if it exists) should be independent on
the source term f and on the boundary conditions posed on the boundary ∂Ω of the
domain of interest. Here < . >V is the volume average over V :

〈.〉V =
1

V

∫

V

(.)dx.

In three-dimensional case, three fine scale flow solutions are necessary in order to
determine K̃ from (6), provided that the volume averages of the pressure gradients
are linearly independent. So, we need to solve three local problems in each coarse
block

(7) 〈vi〉V = −K̃ 〈∇pi〉V , i = 1, 3.

The subscript of v and ∇p designates the flow problem (1 corresponds to flow in x
direction, 2 to flow in y, and 3 to flow in z). From these three flow problems the
components of the full tensor K̃ can be computed.

Upscaled permeability tensor K̃ computed via equations (7) will not in general be
symmetric. Various procedures can be applied to enforce symmetry. The simplest
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approach is to set each of the cross terms equal to (k̃xy + k̃yx)/2, (k̃xz + k̃zx)/2, (k̃yz +

k̃zy)/2.
Unfortunately, the mentioned above approach doesn’t guarantee the positive def-

initeness of the upscaled permeability tensor K̃. There exists another method of
computing the upscaled permeability tensor [13], which leads to symmetric and pos-

itive definite K̃:
ei · K̃ej = 〈∇pi ·K∇pj〉V ,

where ei is the unit vector in the ith direction. But the disadvantage of this approach
is that it could not be applied to certain types of local boundary conditions which
will be described later.

A number of local flow boundary conditions are used in practice, see the deep
discussion in [13]. Periodic conditions can be formulated as

(8) pi = xi + ε, periodic on V,

linear pressure drop conditions

(9) pi = xi, on ∂V,

pressure drop no-flow conditions

(10) pi = xi, on ∂Γi, n · vi = 0, on ∂Γj , i 6= j,

where Γi are the faces of ∂V normal to ei.
Oscillatory boundary conditions can also be posed

(11) pi = xi, on ∂Γi, pi = P1d(xi), on ∂Γj , i 6= j.

The operator P1d will be defined in next section.

Figure 3. Extended coarse block

Remark. Local flow problems could also be solved in some extended local subdomain
(see Fig. 3), these are the approaches known as oversampling.

4.2.4. Prolongation transfer operator (P ). Since we deal with discontinuous and
strongly varying by several orders of magnitude coefficients in the domain of interest,
the problem dependent prolongation operator has to be used [11].

Suppose that the pressure values pC = pIJK are known in the coarse grid nodes
(xI , yJ , zK), and these values pC have to be interpolated to the fine grid. Consider
8 neighboring coarse grid nodes forming a cube (Fig. 4).

To build the interpolation operator P , the following three-stage algorithm is used.
First, we solve 12 one-dimensional problems

(12) −∇ · (K∇pedge
h ) = 0, in the edges,
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P I,J,K P I+1,J,K

P I+1,J,K+1

P I+1,J+1,K+1P I,J+1,K+1

P I,J+1,K

P I,J,K+1

P I+1,J+1,K

Figure 4. Local subdomain

(13) pedge
h = pcorner

H , in the corners ,

where the points (xI , yJ , zK), (xI + IxHx, yJ + IyHy, zK + IzHz) are the corners,
the permeability is scalar K = kxxIx + kyyIy + kzzIz, and

IxIyIz = 0, Ix + Iy + Iz = 1, Ix, Iy, Iz ∈ {0, 1}.

We discretize problem (12), (13) by means of the finite volume method (harmonic
average scheme with 3-point stencil), and solve the discrete problem directly using
Thomas algorithm. The solutions of one-dimensional problems (12), (13) give us
fine grid pressure values along 12 edges of the considered local subdomain

pedge
h = P1d(p

corner
H ).

After that we solve 6 two-dimensional problems of the type

(14) −∇ · (K∇pplane
h ) = 0, in the planes,

(15) pplane
h = pedge

h , on the edges,

where the permeability is given by

K =

(

kxx 0
0 kyy

)

Ixy +

(

kxx 0
0 kzz

)

Ixz +

(

kyy 0
0 kzz

)

Iyz,

IxyIxzIyz = 0, Ixy + Ixz + Iyz = 1, Ixy, Ixz, Iyz ∈ {0, 1}.

Solutions of local problems (12), (13) are used as Dirichlet boundary conditions (15).
We discretize and solve on a fine grid problem (14), (15). The discretization is based
on the finite volume approach (harmonic average scheme with 5-point stencil). By
solving two-dimensional problems (14), (15), we obtain fine grid pressure on 6 planes
of the local subdomain under consideration

pplane
h = P2d(p

edge
h ) = P2dP1d(p

corner
H ).

To interpolate the rest of the values we solve three-dimensional problem

(16) −∇ · (K∇ph) = 0, in the cube,

(17) ph = pplane
h , on the planes,
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where the permeability tensor is defined in the following way

K =





kxx 0 0
0 kyy 0
0 0 kzz



 .

The solutions of problems (14), (15) are used as Dirichlet boundary conditions.
Problem (16), (17) is discretized by the finite volume method. The solution of this
three-dimensional problem gives us fine grid pressure values in the considered local
subdomain

ph = P3d(p
plane
h ) = P3dP2dP1d(p

corner
H ).

Obviously, by applying this procedure to all local subdomains, it is easy to ob-
tain the matrix associated with the prolongation operator P . So, we get ph =
P3dP2dP1dpH , and P = P3dP2dP1d.

Note. To interpolate the pressure values in the near boundary subdomains, we solve
local problems with the boundary conditions defined on the boundary of the domain
of interest ∂Ω.

5. Numerical experiments

In this section, we apply TGM to several example cases. In some of the examples
the permeability tensor is isotropic on a fine grid while it is full on a coarse grid,
in the other cases both, fine and coarse scales are anisotropic. We will consider
three-dimensional periodic medium with cubic inclusions (see Fig. 6 for its two-
dimensional analog), periodic medium with L-shaped inclusions (Fig. 5) and non-
periodic medium with random cubic inclusions (Fig. 7).

K1

K2

Figure

5. Lshape

K1

K2

Figure

6. Cubic

K2

K1

Figure

7. Random

In the paper, both soft and stiff inclusions are studied. The permeability tensor
of the inclusion is K1, while K2 is the permeability tensor of the surroundings. For
stiff inclusion the permeability tensor is defined in the following way

(18) K1 =





1 0 0
0 1 0
0 0 1



 , K2 =





10000 0 0
0 10000 0
0 0 10000



 ,

while for soft inclusions we have

(19) K1 =





1 0 0
0 1 0
0 0 1



 , K2 =





0.0001 0 0
0 0.0001 0
0 0 0.0001



 .

The influence of the overlapping as well as the influence of the smoother and cell
problem formulation is investigated.
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For all experimental results, cell-centered uniform grids are used. The number of
coarse grid blocks is equal in every direction Nx = Ny = Nz = N , the number of fine
grid blocks in each coarse one is also the same for every direction nx = ny = nz = n.

The convergence of TGM is attained when the residual in the L2 norm was reduced
by q orders of magnitude

‖rn‖

‖r0‖
≤ 10−q, or

‖rn‖

‖r1‖
≤ 10−q.

The initial guess for TGM iterations is the null vector, the right-hand side is constant
vector.

5.1. One-level DD and TGM. To compare one-level DD and TGM, we consider
the example with 4 × 4 × 4 periodic stiff cubic inclusions. One-level DD is simply
additive Schwarz method S, so we execute only first step of Alg. 4.1, while for TGM
we perform all the three steps with 2 pre- and 2-post-smoothings. We define the
overlap by the number of grid points included in it. So, if we refine the grid, the
overlapping becomes smaller. That is why we need more DD and TGM iterations for
the finer grids. In Tab. 1 we give the number of one-level DD and TGM iterations
needed to reduce the initial residual by the factor of 10−4.

N n # DD iter. # TGM iter.

4 8 49 (16 sec) 4 (5 sec)
4 16 83 (162 sec) 4 (41 sec)
4 32 136 (2187 sec) 8 (312 sec)

8 4 78 (20 sec) 3 (11 sec)
8 8 133 (256 sec) 4 (64 sec)
8 16 216 (3371 sec) 5 (441 sec)

Table 1. Number of DD and TGM iterations needed to reduce the
initial residual by the factor of 10−4

The results in the Table demonstrate the better performance of the TGM, com-
pared to the one level DD iterative method.

5.2. TGM components. We study the influence of the smoothing iterations and
the coarse grid correction on the convergence of the two-grid method.

5.2.1. Smoothing procedure. For TGM we use Schwarz smoothers as well as ILU
smoother. Schwarz smoothers are simply one-level additive or multiplicative over-
lapping Schwarz preconditioners with Dirichlet boundary conditions on the inter-
faces.

It is known that the multiplicative method converges approximately two times
faster than the additive one [10]. We studied the influence of the smoother on the
convergence of the overall TGM. We consider stiff periodic cubic inclusions (Fig. 6),
and execute TGM with 2 pre- and 2 post-smoothings by different smoothers. In
Tab. 2, we give the number of TGM iterations needed to reduce the initial residual
by the factor of 10−5 for different smoothers. It is easy to see that the multiplicative
Schwarz method is better smoother for TGM. We investigated also the influence of
the overlapping on the convergence of overall TGM. We fix the grid and use several
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choices for overlap. From Tab. 2 it is easy to see, the more points in overlapping
are then the faster TGM converges. Here H = 1

4
, h = 1

64
, c = 43, c - number of

inclusions, β - size of overlapping.

Smoother β =
1

128
β =

3

128
β =

7

128
AS 23 (213 sec) 7 (74 sec) 5 (75 sec)
MS 11 (102 sec) 5 (53 sec) 3 (46 sec)
ILU 8 (44 sec) 8 (44 sec) 8 (44 sec)

Table 2. # TGM iterations

We also studied the influence of the number of pre- and post-smoothings on the
convergence of TGM. Consider again stiff periodic. Here H = 1

8
, h = 1

64
, number of

inclusions c = 83, size of overlappingβ = 1

128
, accuracy 10−5. Tab. 3 shows, that in

the case of highly varying permeability tensor it is better to perform both pre- and
post-smoothings.

Smoother 0-pre, 2-post 2-pre, 2-post 0-pre, 4-post
AS 35 14 19
MS 17 7 10
ILU 26 9 12

Table 3. # TGM iterations

5.2.2. Coarse grid operator. To define the coarse grid operator we need to know the
effective permeability tensor in the coarse blocks. Note that effective permeability
can be full tensor, even if fine scale permeability is isotropic. Different boundary
conditions could be posed for local flow problems, as well as oversampling could be
used or not. Here, we studied the influence of the cell problem formulation on the
convergence of TGM.

There exist two possibilities: to solve local flow problems exactly in the coarse
grid block or in extended subdomain (Fig. 3). Note, that in both cases the volume
average of the pressure gradient ∇p and the velocity v are calculated exactly in the
considered coarse block.

Suppose that we have periodic porous media, for example, L-shape inclusions
(Fig. 5). When we calculate the effective permeability tensor by solving local flow
problems with no oversampling in the coarse block, we will have the same effective
permeability tensor for each coarse cell. However, if we use oversampling and solve
local flow problems in extended subdomain, the effective permeability tensor in
inner coarse grid cells will differ from permeability tensor in near the boundary
coarse blocks. Nevertheless, these two approaches require almost the same number
of TGM iterations for the particular problem which we are solving here.

5.3. Different geometries. We investigated the convergence of TGM for different
geometries (Fig. 6–7). From Tab. 5.3 we see that the convergence of TGM depends
on the geometry of inclusions.
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Local flow N n # TGM iter.

No oversampling 10 12 18
Oversampling 10 12 17

Table 4. Number of TGM iterations needed to reduce the initial
residual by the factor of 10−4.

Geometry N n # TGM iter.

Periodic L-shape 10 12 14
Periodic cubic 10 12 11
Random cubic 10 12 9

Table 5. Number of TGM iterations needed to reduce the initial
residual by the factor of 10−6

5.4. Soft and stiff inclusions. We study the convergence of TGM for both soft
(19) and stiff (18) inclusions. While a very good convergence is observed in the case
of stiff inclusions, there is no convergence for some of the examples in the case when
the inclusions are soft, see Tab. 5.4.

Geometry N n # TGM it. (stiff) # TGM it. (soft)

Periodic L-shape 10 12 14 ∞
Periodic cubic 10 12 11 ∞
Random cubic (r = 1) 10 12 9 9
Table 6. Number of TGM iterations needed to reduce the residual
by the factor of 10−6.

5.5. Concluding remarks. Two level domain decomposition algorithm for 3D
flows in anisotropic heterogeneous porous media is presented. Finite volume dis-
cretization based on MPFA is used on the fine, as well as on the coarse scales. Addi-
tive and multiplicative Schwarz DD iterative methods, as well as ILU factorization,
are implemented as smoothers for the two-level algorithm. The coarse scale operator
is obtained from numerical upscaling, different formulations of the cell problems in
the coarse blocks are discussed. The influence of the overlapping, of the choice of
the smoother, of the number of subdomains, on the convergence of TGM is studied.
Applicability of the proposed method for non-periodic media is considered.
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