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Abstract

This work presents a new framework for Gröbner basis computations with Bool-
ean polynomials. Boolean polynomials can be modeled in a rather simple way,
with both coefficients and degree per variable lying in {0, 1}. The ring of Bool-
ean polynomials is, however, not a polynomial ring, but rather the quotient ring
of the polynomial ring over the field with two elements modulo the field equa-
tions x2 = x for each variable x. Therefore, the usual polynomial data structures
seem not to be appropriate for fast Gröbner basis computations. We introduce
a specialized data structure for Boolean polynomials based on zero-suppressed
binary decision diagrams (ZDDs), which is capable of handling these polynomials
more efficiently with respect to memory consumption and also computational
speed. Furthermore, we concentrate on high-level algorithmic aspects, taking
into account the new data structures as well as structural properties of Boolean
polynomials. For example, a new useless-pair criterion for Gröbner basis com-
putations in Boolean rings is introduced. One of the motivations for our work
is the growing importance of formal hardware and software verification based
on Boolean expressions, which suffer – besides from the complexity of the prob-
lems – from the lack of an adequate treatment of arithmetic components. We
are convinced that algebraic methods are more suited and we believe that our
preliminary implementation shows that Gröbner bases on specific data structures
can be capable to handle problems of industrial size.

Keywords: Gröber basis, formal verification, Boolean polynomials, algebraic
cryptoanalysis, satisfiability



1 Introduction

Gröbner bases have become a standard tool for treating problems which can be
described by polynomial systems. While the concept of Gröbner bases is known
much longer, their current practical importance is a result of dramatical improve-
ments in performance and algorithms in recent years. It has also been shown,
that a specialized implementation can often tackle much harder problems, like
Faugère’s HFE-attacks (2003). The motivation for our work was to provide a
framework for computations in the following special but nevertheless important
case of polynomials: coefficients lie in the field with two elements and expo-
nents are bounded to degree one in each variable. This degree bound usually
originates from the application of field equations of the form x2 = x. As men-
tioned above, this occurs in many significant applications like formal verification
but also in cryptography, logic, and many more. This is due to the fact that
Boolean polynomials correspond to Boolean functions.

Although Gröbner bases have already become a standard tool for treating poly-
nomial systems, current implementations have not been capable of satisfactorily
handling Boolean polynomials from real-world applications yet. One of the first
questions was: Can we use the simplified model to get better data structures?
Of course, we did also ask, whether we can find algorithmic improvements of
the situation.

The role of POLYBORI in this context is to provide a framework of high perfor-
mance data structures and example Gröbner bases algorithms. On the other
hand it is very clear, that many problems arising from practice can only be tack-
led, if optimization occurs on many levels: data structures, higher level algo-
rithms, formulation of equations/problems, good monomial orderings. . .

An important aspect in symbolic computation is that independent of the strategy
polynomials can become very big, but usually keep structured (in a very general
sense). Using this structure to keep the memory consumption moderate was a
primary design goal of POLYBORI. Another observation is that in Gröbner bases
computations often arithmetical operations on similar polynomials (differing only
in a few terms) occur. POLYBORI also gives an answer to that problem using a
cache mechanism on the level of substructures.

Even though it is not essential for the present paper, the reader may be interested
in the following short description of one important application: Formal verifi-
cation is a key challenge during the design process of digital systems. The goal
is to have an automated and dependable way of finding errors in a given lay-
out, before a prototype is built. See also (McMillan, 1993; Hachtel and Somenzi,
1996; Kunz et al., 2002) for more details.
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Boolean Polynomials as Sets

Classical methods for design validation include the simulation of the system with
respect to suitable input stimuli as well as tests based on emulations, which use
simplified prototypes. The latter may be constructed using field programmable
gate arrays (FPGAs). Due to a large number of possible settings, these ap-
proaches cannot cover the overall behavior of a proposed implementation. In
the worst case, a defective system is manufactured and delivered, which might
result in a major product recall.

In contrast, formal verification methods are based on exact mathematical meth-
ods for automated proving of circuit properties. In this context several approaches
like SAT-solving, graph representation of Boolean functions, and (timed) finite au-
tomata are already in use for bringing a designer’s concept into agreement with
the required specifications. Here, formal methods have the ability to disclose un-
expected sideeffects early in the design process, and also they may show that
certain short-hand assumptions are really true for all input patterns and states.

The ability of checking the validity of a proposed design restricts the design itself:
a newly introduced design approach may not be used for an implementation as
long as its verification cannot be ensured. In particular, this applies to digital
systems consisting of combined logic and arithmetic blocks, which may not be
treated with specialized approaches. Here, dedicated methods from computer
algebra may lead to more generic procedures, which help to fill the design gap.

Following, we start with a motivation of suitable data structures for handling of
Boolean polynomials and continue with some mathematical background. Then
we give a brief description of the POLYBORI framework and the implemented
algorithms. Finally, the treatment of some benchmark examples is compared
with those of other computer algebra systems.

2 Boolean Polynomials as Sets

We are actually interested in Boolean polynomials, i. e. polynomials in the
quotient ring Q = Z2[x1, · · · , xn]/〈x2

1 − x1, · · · , x2
n − xn〉. Hence, we deal with

elements of the polynomial ring P = Z2[x1, · · · , xn] restricted by the field equa-
tions

x2
1 = x1, x2

2 = x2, · · · , x2
n = xn . (1)
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Zero-suppressed Binary Decision
Diagrams

Under these conditions a polynomial p ∈ Q can be written in its expanded form
as

p = a1 · xν11
1 · . . . · xν1n

n + . . . + am · xνm1
1 · . . . · xνmn

n (2)

with coefficients ai ∈ {0, 1}. Furthermore, the constraints x2
i = xi in Equation 1

yield a degree bound on all variables of νij ≤ 1. In particular, the latter can be
restated as the condition νij ∈ {0, 1}.

Hence, a given Boolean polynomial p is defined by the fact, whether each term
xνi1

1 ·. . .·xνin
n occurs in it. Analogously, the occurrences of the variables determine

each term. One can assign a set Sp = {si, · · · , sm} to p consisting of different
subsets sk, si 6= sj for i 6= j, of the variable vector {x1, · · · , xn}. Then Equation 2
can be rewritten as

p =
∑
s∈Sp

(∏
xν∈s

xν

)
with Sp = {{xi1 , · · · , xin1

}︸ ︷︷ ︸
s1

, · · · , {xim , · · · , xinm
}︸ ︷︷ ︸

sm

} . (3)

For practical applications it is reasonable to assume that Sp is sparse, i. e. the
set is only a small subset of the power set over the variable vector. Even the si

can be considered to be sparse, as usually quite few variables occur in a term.
Consequently, the strategies of the used algorithms have to be tuned in such a
way, that this kind of sparsity is preserved.

2.1 Zero-suppressed Binary Decision Diagrams

A binary decision diagram (BDD) is a rooted, directed, and acyclic graph with
two terminal nodes {0, 1} and decision nodes. The latter have two ascending
edges (high/low or then/else), each of which corresponding to the assignment of
true or false, respectively, to a given Boolean variable. In case, that the variable
order is constant over all paths, we speak of an ordered BDD. For a more detailed
treatment of the subject for instance see Ghasemzadeh (2005) and Bérard et al.
(1999).

A series of connected nodes of a BDD starting at the root and ending at a ter-
minal node is called path. We call a path valid, if it finishes at the terminal 1.
Since any subset of the power set of the variables can be represented by the set
of all valid paths of a suitable BDD, these diagrams are perfectly suited for the
representation of Boolean polynomials suggested in Section 2.

For efficiency reasons it is useful to omit variables, which are not necessary
to construct the whole set. A classic variant for this purpose is the reduced-
ordered BDD (ROBDD, sometimes referred to as “the BDD”). These are ordered
BDDs with equal subdiagrams merged, i. e. if some edges point to equivalent
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Boolean Polynomials as Sets

subdiagrams, those are forced to point to the same diagram and share it. Fur-
thermore, a node elimination is applied, if both descending edges point to the
same node.

While the last reduction rule is useful for describing numerous Boolean-valued
vectors, it is gainless for treating sparse sets. For this case, zero-suppressed
BDDs (ZDD, also ZBDD or ZOBDD) have been introduced. They are also ordered
and make use of subtree merging, but the node-elimination rule differs. Here,
a node is removed if and only if its then-edge points to the 0-terminal. Figure 1
shows example ZDDs for a given Boolean polynomial. Note, that both construc-

a

b

c

0 1
(a) a, b, c

1

a

 c c

b

0
(b) a, c, b

Figure 1 ZDD representing the polynomial a c + b c + c for two different variable orders. Dashed/solid connections

marking then/else-edges, respectively.

tions guarantee canonicity of resulting diagrams, see Ghasemzadeh (2005). But
still the structure of resulting decision diagrams depends on the order of vari-
ables. In particular, the number of diagram nodes is highly sensitive to it, as
Figures 1(a) and 1(b) illustrate. Therefore, a suitable choice of the order is always
a crucial point, when modeling a problem using sets of Boolean polynomials.

2.2 State of the Art

Although graph-based approaches using decision diagrams for polynomials were
already proposed before, those were not capable of handling algebraic problems
efficiently. This was mainly due to the fact that the attempts were applied to very
general polynomials, which cannot be represented as binary decision diagrams
in a natural way.

For instance, the use of ZDDs for representing polynomials with integer coeffi-
cients can be found in Minato (1995). In this context coefficients and degrees
had to be coded in a binary manner, which had lead to large diagram trees,
even for rather small polynomials. Assuming bit length of m for each polyno-
mial variable xν , a number of m decision variables has to be introduced in order
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to represent x1
ν , x

2
ν , · · · , x2m

ν . Arbitrary xn
ν may be obtained by decomposing n

into a sum of exponentials with respect to base 2. The same can be done to
binary encode the coefficients. For instance, the polynomial 5 x2 + 2 x y has to
be decomposed into x2 + 22 x2 + 21 x1 y1, with the new set of decision “vari-
ables” {x2, x1, y1, 22, 21}.

In this general case addition and multiplication correspond to costly set opera-
tions involving de- and recoding of coefficient and degree numbers. Another
reason, why ZDDs were not used in computer algebra before, is the importance
of nontrivial monomial orderings. Usually, computer algebra systems store poly-
nomials with respect to the current monomial ordering (Bachmann and Schöne-
mann, 1998). This enables fast access to the leading term, and efficient iterations
over all terms. In contrast, binary decision diagrams are ordered naturally in a lex-
icographical way. Fortunately, for special cases like the Boolean polynomials de-
scribed in Section 2, it is possible to implement a search for the leading term and
term iterators with suitable effort. Also, the special case of Boolean polynomi-
als can be mapped to ZDDs more naturally, since the polynomial variables are in
one-to-one correspondence with the decision variables in the diagram. The same
applies for the polynomial arithmetic, which can efficiently be done using basic
set operations. The POLYBORI framework presented in this work is addressed to
the utilization of this in a user-friendly environment.

Our approach can also be considered in the context of the meta approach of Cou-
dert and Madre (1992). Boolean variables x1, · · · , xn yield 2n possible configu-
rations in {0, 1}n for assigning true or false to each xν . Enumerating all valid
solution vectors with respect to rather simple relations leads quickly to large and
dense subsets of {0, 1}n. Since those sets cannot be handled efficiently, it had
been suggested to store and manipulate the relations, which implicitly define
the sets. In the language of computer algebra, the implicit relations are systems
of Boolean polynomials. Hence, we can draw profit from the experience with
Gröbner bases computations and heuristics for the treatment of polynomial sys-
tems. In addition, especially tuned strategies can be refined and developed when
obeying the unique properties of Boolean rings.

3 Algebraic Basics

In this section, we recall some algebraic basics, including classical notions for the
treatment of polynomial systems, as well as basic definitions and results from

7



Algebraic Basics

computational algebra. For a more detailed treatment of the subject see the
book of Greuel, G.-M. and Pfister, G. (2002) and the references therein.

3.1 Classical Notions

Let P = K[x1, . . . , xn] be the polynomial ring over the field K. A monomial
ordering on P , more precisely, on the set of monomials {xα = xα1

1 · . . . ·xαn
n |α ∈

Nn}, is a well ordering “>” (i. e. each nonempty set has a smallest element with
respect to “>”) with the following additional property: xα > xβ ⇒ xα+γ > xβ+γ ,
for γ ∈ Nn.

An expression λm (λ ∈ K, m a monomial) is called a term and λ the coefficient.
An arbitrary element f ∈ P is called a polynomial.

Let f =
∑

α cα · xα (cα,i ∈ K) a polynomial. Then

supp(f) := {xα|cα 6= 0}

is called the support of f .

Furthermore lm(f) denotes the leading monomial of f , the biggest monomial
occurring in f w. r. t. “>” (if f 6= 0). The corresponding term is denoted by lt(f)
and the coefficient by lc(f). Moreover, we set

tail(f) := f − lt(f).

If F ⊂ P is any subset, L(F ) denotes the leading ideal of F , i. e. the ideal in
P generated by {lm(f)|f ∈ F\{0}}. The S-Polynomial of f, g ∈ P\{0} with
lm(f) = xα, lm(g) = xβ is denoted by

spoly(f, g) := xγ−αf − lc(f)
lc(g)

xγ−βg,

where γ = lcm(α, β) := (max(α1, β1), . . . ,max(αn, βn)). Recall that G ⊂ P is
called a Gröbner basis of an ideal I ⊂ P , if {lm(g)|g ∈ G\{0}} generates L(I)
in the ring P and G ⊂ I.

Definition 3.1 (Standard representation) Let f, g1, . . . gm ∈ P , and let
h1, . . . , hm ∈ P . Then

f =
m∑

i=1

hi · gi ∈ K[x1, . . . , xn],

is called a standard representation of f with respect to g1, . . . , gm, if

∀i : hi · gi = 0 or otherwise lm(hi · gi) ≤ lm(f) .
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t-Representations

The classical product criterion of Buchberger (Buchberger, 1985) reads as follows:

Lemma 3.2 (Product criterion) Let f, g ∈ K[x1, . . . , xn] be polynomials. If the
equality lm(f) · lm(g) = lcm(lm(f), lm(g)) holds, then spoly(f, g) has a standard
representation w. r. t. {f, g}.

Definition 3.3 (Elimination orderings) Let R = K[x1, . . . , xn, y1, . . . ym]. An
ordering “>” is called an elimination ordering of x1, . . . , xn, if xi > t for every
monomial t in K[y1, . . . , ym] and every i = 1, . . . , n.

3.2 t-Representations

There is an alternative approach to standard representations formulated in (Becker
and Weispfennig, 1993) and used in (Faugère, J.-C., 1999), which utilizes the no-
tion of t-representations. While this notion is mostly equivalent to using syzygies,
it makes the correctness of the algorithms easier to understand.

Definition 3.4 (t-representation)
Let t be a monomial, f, g1, . . . gm ∈ P , h1, . . . , hm ∈ P . Then

f =
m∑

i=1

hi · gi ∈ P

is called a t-representation of f with respect to g1, . . . , gm if

∀i : lm(hi · gi) ≤ t or hi · gi = 0 .

Example 3.5

• Let the monomials of P be lexicographically ordered (x > y) and let

t = x5y5, g1 = x2, g2 = x5 − y, f = y

• Then f = x3g1 − g2 is a x5y5-representation for f .

• Each standard representation of f is a lm(f)-representation.

• For t < lm(f) t-representations of f do not exist.

Notation: Given a representation p =
∑m

i=1 hi·fi with respect to a family of poly-
nomials f1, . . . fm, we may shortly say that p has a nontrivial t-representation,
if a t-representation of p exists with

t < max{lm(hi · fi)|hi · fi 6= 0}.
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The POLYBORI Framework

For example, spoly(fi, fj) has a nontrivial t-representation if there exists a repre-
sentation of spoly(fi, fj) where the summands have leading terms smaller than

lcm(lm(fi), lm(fj)).

Theorem 3.6 Let F = (f1, . . . , fk), fi ∈ K[x1, . . . , xn], be a polynomial system.
If for each f , g ∈ F spoly(f, g) has a nontrivial t-representation w. r. t. F , then F
is a Gröbner basis.

Proof: For a full proof see (Becker and Weispfennig, 1993). A more sophis-
ticated version of this theorem can be formulated and proven analogously to
(Greuel, G.-M. and Pfister, G., 2002, p. 142). �

4 The POLYBORI Framework

With POLYBORI, we have implemented a C++ library for Polynomials over Boolean
Rings, which provides high-level data types for Boolean polynomials and mono-
mials, exponent vectors, as well as for the underlying polynomial rings. The ring
variables may be identified by their indices or by a custom string. Polynomial
structures and monomials use ZDDs as internal storage type, but this is hidden
from the user. The current implementation uses the decision-diagram manage-
ment from CUDD (Somenzi, 2005). Its functionality is included using interface
classes, which allows an easy replacement of the underlying BDD system without
extensive rewriting of crucial POLYBORI procedures.

In addition, basic polynomial operations – like addition and multiplication – have
been implemented and associated to the corresponding operators. In order to
enable efficient implementation, these operations were reformulated in terms of
set operations, which are compatible with the ZDD approach. This also applies to
other classical functionality like degree computation and leading-term computa-
tions. The ordering-dependent functions are currently available for lexicograph-
ical, degree-lexicographical (graded-lexicographical) ordering (with first variable
being the largest one), and degree-reverse-lexicographical ordering, whereas in
the latter case the variables are treated in reversed order for efficiency reasons.
Product orderings consisting of blocks of these are currently at experimental
state.
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Polynomial Arithmetic

A complete Python (Rossum and Drake, 2006) interface allows for parsing of
complex polynomial systems, and also sophisticated and easy extendable strate-
gies for Gröbner base computations have been made possible by this. An ex-
tensive testsuite, which mainly carries satisfiability examples, and also some from
cryptography, is used to ensure validity during development. Also, with the tool
ipython the POLYBORI data structures and procedures can be used interactively
as a command line tool. In addition, routines for interfacing with the computer
algebra system SINGULAR (Greuel et al., 2005) are under development.

4.1 Polynomial Arithmetic

Boolean polynomial rings are motivated by the fact, that logical operations on
bits can be reformulated in terms of addition and multiplication of Z2-valued
variables. Representing polynomials as ZDDs these operations may also be imple-
mented as set operations. E. g., adding the polynomials p =

∑
s∈Sp

(∏
xν∈s xν

)
and q =

∑
s∈Sq

(∏
xν∈s xν

)
, with Sp and Sq as illustrated in Equation 3 (Sec-

tion 2), is just p + q =
∑

s∈Sp+q

(∏
xν∈s xν

)
, where Sp+q = (Sp ∪ Sq)\(Sp ∩ Sq).

Although each of these three operations is already available for ZDDs, it is usually
more preferable to have them replaced by one specialized procedure. This avoids
large intermediate sets (like Sp ∪ Sq) and repeated iterations over both argu-
ments. Algorithm 1 below shows a recursive approach for such an addition. Note

Algorithm 1 Recursive addition h = f + g

Require: f , g Boolean polynomials.
if f = 0 then

h = g
else if g = 0 then

h = f
else if f = g then

h = 0
else

set xν = top(f), xµ = top(g)
if ν < µ then

h = ite(xν , then(f), else(f) + g)
else if ν > µ then

h = ite(xµ, then(g), f + else(g))
else

h = ite(xν , then(f) + then(g), else(f) + else(g))
return h

that top(p) = min
⋃

s∈Sp
s denotes the variable associated to the root node of the

current ZDD. Also, then- or else-branch of the latter correspond to polynomials
referred to as then(p) and else(p), respectively. Since the indices of top(p), top(q)
are greater than i, the if-then-else operator ite(xi, p, q) ≡ xi · p + q used here,
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The POLYBORI Framework

can just be generated by linking then- and else-branches of the new root node
for xi to p and q, respectively.

In a similar manner multiplication is given in Algorithm 2. The advantage of

Algorithm 2 Recursive multiplication h = f · g
Require: f , g Boolean polynomials.

if f = 1 then
h = g

else if f = 0 or g = 0 then
h = 0

else if g = 1 or f = g then
h = f

else
xν = top(f), xµ = top(g)
if ν < µ then

set p1 = then(f), p0 = else(f), q1 = g, q0 = 0
else if ν > µ then

set p1 = then(g), p0 = else(g), q1 = f , q0 = 0
else

set p1 = then(f), p0 = else(f), q1 = then(g), q0 = else(g)
h = ite(xmin(ν,µ), p0 · q1 + p1 · q1 + p1 · q0, p0 · q0)

return h

the recursive formulation is, that one easily can look up in a cache, whether the
sum f+g, or the product f ·g, has already been computed before. The lookup can
be placed in the beginning of the procedure, right after the trivial if-statements.
Since this also applies to those subpolynomials, which are generated by then(f)
and else(f), it is very likely, that common subexpressions can be reused. This
holds even more, in the case of Gröbner base computations, in which likewise
polynomials occur quite often. This is caused by those multiplication and addition
operations used in Buchberger-based algorithms for elimination of leading terms
and the tail-reduction process. Hence, while generating new Gröbner base ele-
ments the procedure results in summing up the same terms (up to some factor),
which can be represented by combinations of subdiagrams of the original ZDDs.

4.2 Monomial Orderings

The operations treated in Section 4.1 are independent of the actual monomial
ordering. Crucial for Gröbner algorithms is the computation of the leading term
or leading monomial. Both concepts are equal in our context, and mean the
largest monomial, with respect to the current “<”-relation. Lexicographically,
the leading monomial is just the product of all node variables in the first valid
path of the underlying ZDD, i. e. the sequence of nodes from the root down to
the 1-leaf consisting of those nodes adjacent by then-branches only.
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Monomial Orderings

In case of degree orderings, one has to work harder. For instance, the leading
monomial for the degree-lexicographical ordering can be found by iterating over
all monomials (see Section 4.3) as follows: initially, degree and monomial of the
first term are stored. If incrementing to the next term leads to a strictly higher
degree, both – degree and monomial – are replaced by the current ones. This
naïve approach does not make use of recursions, and hence it cannot be cached
efficiently. A more suitable variant is given in Algorithm 3.

Algorithm 3 Recursive leading term and degree (degree-lexicographical)
{h, d} = lead_and_deg(f) = {lead(f),deg(f)}
Require: f Boolean polynomial.

if f is constant then
h = 1, d = 0

else
{h1, d1} = lead_and_deg(then(f)), {h0, d0} = lead_and_deg(else(f))
if d0 < d1 + 1 then

h = top(f) · h1, d = d1 + 1
else

h = h0, d = d0

return {h, d}

Sometimes the degree of a polynomial is cheap to compute, for instance, if an
upper bound, like the sugar value discussed in Section 5.1 can be used, as Al-
gorithm 4 illustrates. In any case, the number of ring variables may always be

Algorithm 4 Recursive degree computation d = deg(f, dmax) with upper bound
Require: f Boolean polynomial, dmax upper bound for degree

if f is constant then
d = 0

else
d1 = deg(then(f), dmax − 1) + 1
if d1 = dmax then

d = d1

else
d = max(d1,deg(else(f), dmax))

return d

used for such an upper bound. Also caching is useful, since immediately a single
call of deg(f) makes deg(g) available on the cache for all recursively generated
subpolynomials. Having such a kind of cheap deg-functionality available, one can
formulate Algorithm 5, which only generates the leading term, but not the other
terms of the polynomial.

Note, that similar algorithms can be formulated for the degree-reverse-lexico-
graphical ordering (with reversed variable order). For this purpose, the strict
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Algorithm 5 Recursive leading term h = lead(f) (degree-lexicographical)
Require: f Boolean polynomial.

if deg(f) = 0 then
h = 1

else if deg(f) = deg(then(f)) + 1 then
h = top(f) · lead(then(f))

else
h = lead(else(f))

return h

less-comparison in Algorithm 3 has to be replaced by less or equal, and in Algo-
rithm 5, the else-branch has to be tested instead of the then-branch.

4.3 Iterators

POLYBORI’s polynomials also provide term access. For this purpose iteration
over all monomials was implemented in the style of Standard Template Library’s
(STL) iterators, obtained using begin() and end() member functions, like in
Stepanov and Lee (1994). Very much like a generalization of the pointer concept,
such a kind of iterator can be dereferenced to gain constant, i. e. read-only, ac-
cess to the current term, and incremented to go to the next term in question.
Also, comparison with other iterators of the same type is possible. In particular,
equality with a special end marker yields the end of the iteration. This ensures
compatibility with STL algorithms, originally designed for template classes like
std::vector and std::list.

This kind of term iterator was implemented by a stack, which stores a sequence
of references pointing to the diagram nodes. Initially, these are generated from
following the first valid path. The resulting term is then stored using a temporary
variable. Incrementing the iterator is equivalent to popping the top element from
the stack as long as the corresponding nodes have invalid else-edges only. Then
the subdiagram adjacent to this edge, and also its first valid path, is put on the
stack, in order to represent the next lexicographical term. After popping/filling
the temporary term value has to be updated subsequently.

In addition to the natural order of the underlying ZDD, iterators have been im-
plemented for all supported monomial orderings. This hides the fact, that the
internal data structure is actually ordered lexicographically. Hence, we have a
sophisticated programming interface, which allows the formulation of general
procedures in the manner of computational algebra, without the need for caring
about certain properties of binary decision diagrams or the current ordering.
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5 Algorithmic Aspects in Higher Level Computations

POLYBORI implements basic polynomial arithmetic as well as higher level func-
tions from computational algebra as Gröbner basis algorithms and normal form
computations.

These algorithms from computational algebra have been adjusted to the facts
that
• We have a very special situation: only coefficients 0 or 1, no exponents greater

than 1.
• The framework can only represent Boolean polynomials (which is sufficient for

the practice, since Boolean functions are equivalent to Boolean polynomials),
but not general polynomials, in particular not the field equations themselves.

• Our data structures behave completely different, some operations are more
costly, some are faster.

Paying attention to these points it is possible to achieve high performance using
POLYBORI.

5.1 Leading Terms

It is a common practice in computational algebra to have a degree bound (or
sugar value, see Giovini et al., 1991) of intermediate polynomials, which can be
generated using basic degree formulas, like

deg(f + g) ≤ max(deg(f), deg(g)) .

In POLYBORI these degree bounds are of even greater use.

Even in degree orderings you can make use of them: Having the degree bound
you can speed up leading-term calculations, having the leading term you can
improve the degree bound (this is not the exact, original sugar strategy, but it
behaves very useful in practice).

5.2 Normal Forms

A good example for this redesign of existing algorithms is the classical normal
form algorithm:
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Algorithm 6 Buchberger normal form
Require: G finite tuple of Boolean polynomials, f Boolean polynomial.

while f 6= 0 and ∃g ∈ G : lm(g)| lm(f) do
f := spoly(f, g)

return f

An algorithm more suitable in POLYBORI would be the following:

Algorithm 7 Greedy normal form
Require: G finite tuple of Boolean polynomials, f Boolean polynomial.

while f 6= 0 and ∃g ∈ G : lm(g)| lm(f) do
h := f/ lm(g) /* division by remainder, so the resulting terms correspond to
terms in f divisible by the lead of g */
f := f − h · g /* no term of f is divisible by lm(g) any more */

return f

This last algorithm combines many small steps. The cost of the single steps can
be higher using ZDD operations, but the combined step can be done much faster.
The high cost (compared to classical polynomial representations) of these single
additions might be surprising in the first moment, but can be explained quite
easily. Good normal form strategies try to select a monomial for g, whenever
possible. Then of course classical structures like linked list don’t need a general
addition, but can simply pop the first element (term) from the list. This can be
done in constant time. In fact only applying this greedy technique to the case,
where g is a monomial, already gives a quite good normal form implementation
in POLYBORI. Of course, it is a matter of heuristics to decide, when it might be
better only to perform a single reduction step.

5.3 Gröbner Basis

The first real Gröbner basis algorithm implemented in POLYBORI is an enhanced
and specialized variant of the slimgb (Brickenstein, 2006), which was imple-
mented first in SINGULAR. Slimgb is a Buchberger algorithm, which was de-
signed to reduce the intermediate expression swell. In particular it features a
good strategy for elimination orderings (e. g. lexicographical orderings) using a
special weighted length function, which not only considers the number of terms
of a polynomial, but also their degree. We will concentrate in the presentation
of the results on Gröbner bases computations, as there exists a large example set
and it is a task, which is optimized in many systems.
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5.3.1 Implementation Tricks

The availability of ZDDs for set operations can also used for other things than
polynomial representation. For instance, having a polynomial p, the search for a
polynomial q in your generations with the property, that lm(q) divides lm(p) can
be implemented using set operations in the following way:

Algorithm 8 Search for reductor
Require: G Tuple of generating polynomials, each one has a different leading

term, set of leading terms S, lm2p map (which maps a leading term to the
corresponding ideal generator), polynomial p 6= 0
S := {lm(g)|g ∈ G}
lm2p : S → G /* map back leading terms to polynomials */
t := {s ∈ S|s divides lm(p)} /* this last step can be implemented as a single
ZDD Operation */
D := {lm2p(s)| for s ∈ t}
return D

This presented algorithm is supposed to be much faster than linear search, under
the following (sensible) assumptions
• S is a large set
• each leading term in S is unique
• m has quite small degree compared to the number of variables
• D is small
• a call of lm2p has complexity O(log2(#S))
• lm2p is precomputed
This follows from the general principle, first to minimize the set of considered
leading terms via set operations, and then to access the actual polynomial via
a hash lookup. You can also use a similar technique, when applying the prod-
uct criterion. There are many other possibilities to use the ZDDs for improving
Gröbner basis computations.

5.3.2 Criteria

Criteria for keeping the set of critical pairs in the Buchberger algorithm small
are central part of Gröbner basis algorithms. In most implementations the chain
criterion and product criterion or variants of them are used.

These are of quite general type. This leads to the question, whether we can
formulate new criteria for our particular case. There are two types of pairs to
consider: Boolean polynomials with field equations, and pairs of Boolean poly-
nomials. We concentrate on the first kind of pairs here.

Theorem 5.1 Let f be a Boolean polynomial in Z2[x1, . . . , xn], f = l · g, l a
polynomial with linear leading term xi, g a polynomial. Then spoly(f, x2

i + xi)

17



Algorithmic Aspects in Higher
Level Computations

has a nontrivial t-representation against the system consisting of f and the field
equations.

Proof: First, we consider the case g = 1. In this situation the following formula
holds: lm(f) = xi. Let r be a reduced normal form of spoly(f, x2

i +xi) against f
and the field equations. Then r is (tail) reduced, so it is a Boolean polynomial and
irreducible against f , so xi does not occur. In particular considered as a Boolean
function it is independent from the value of xi.

Since r is a linear combination of f and field equations (which are zero considered
as Boolean functions) we get:

r(x1, . . . , xn) = 1 ⇒ f(x1, . . . , xn) = 1.

Now, we assume that r 6= 0. As a nonzero Boolean polynomial corresponds to
a nonzero Boolean function, we know, that there exist v1, . . . , vn ∈ {0, 1}, s. t.
g(v1, . . . , vn) = 1. The above implication gives, that f(v1, ..., vn) = 1.

Then we can change the value of xi without affecting the value of r

r(v1, . . . , vi + 1, . . . , vn) = 1,

but
f(v1, . . . , vi + 1, . . . , vn) = 0,

as xi only occurs in the one term xi of f . This contradicts the above implication
between r and f . So r = 0 and spoly(f, x2

i + xi) has a standard representation.

Now, we consider a general Boolean polynomial g. spoly(l, x2
i + xi) has a stan-

dard representation against l and the field equations:

spoly(l, x2
i + xi) =

n∑
j=1

hj · x2
j + xj + α · l ,

for polynomials α, hj (j ∈ {1, . . . , n}):

x2
j · lm(hj) ≤ lm(spoly(l, x2

i + xi)) < x2
i , lm(α · xi) < x2

i .

We multiply this equation by g and get by that fact, that xi does not occur in g:

spoly(l · g, x2
i + xi) = spoly(l · g, g · x2

i + xi)− tail(g) · (x2
i + xi)

= g · spoly(l, x2
i + xi)− tail(g) · (x2

i + xi).

Using the standard representation for spoly(l, x2
i + xi) from above, both sum-

mands have a t-representation for a monomial t < x2
i · lm(g), so we also get a

nontrivial t-representation in the sum. �
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Remark 5.2 The polynomials l and g are indeed Boolean polynomials, as a Bool-
ean polynomial only factors in Boolean polynomials (this can be seen using de-
gree formulas). Together with the product criterion, we get, that we have only
to consider pairs of Boolean polynomials f with field equations for variables x,
which do not occur in an irreducible nonlinear factor of f . In the above proof,
we make use of the fact, that we only consider well orderings, when claiming,
that xi does not occur in the tail of f .

5.4 Gröbner Proof System

The Gröbner proof system (Clegg et al., 1996) is a combination of backtracking
for calculation. Traditional SAT-solvers using backtracking split a logical expres-
sion into clauses, which have to be satisfied simultaneously (Kunz et al., 2002).
This algorithm works the following way. On each level of the calculation a value
for a chosen variable is plugged in. If even a single clause is unsatisfiable, then
the system is obviously unsatisfiable. Then the other branch (the chosen value of
the opposite variable) has to be checked.

The Gröbner proof system works similar to these classical SAT-solvers. The dif-
ference is, that the criterion for a system to be obviously unsatisfiable is that a
run of the Buchberger algorithm with degree bound yields one (so the ideal is
the whole ring). This algorithm has been implemented in a first experimental
version. It will be a challenge for the future to find good strategies and heuristics
for this very high level algorithm.

6 Results

This section presents some benchmarks comparing POLYBORI to general purpose
and specialized computer algebra systems. Note, that it only presents the state
of POLYBORI in the development version at the end of December 2006. Since the
project is very young we can expect major performance improvements for sure
in the near future.

The following timings have been done on a AMD Dual Opteron 2.2 GHz (all
systems have used only one CPU) with 16 GB RAM on Linux.

The used ordering was lexicographical ordering. POLYBORI also implements de-
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gree ordering, but for the presented practical examples elimination orderings
seem to be more appropriate. A recent development in POLYBORI was the imple-
mentation of block orderings, which behave very natural for many examples.

We compared the following system releases

• MAGMA 2.13-8, command: GroebnerBasis, default options
• POLYBORI CVS Dez 06, slimgb with default options
• Singular 3-0-3 (beta): slimgb, option(redTail) analogous to the default in POLY-

BORI
• Maple 10.06 : Gröbner package, default options

We also tried the Maple interface to FGb (Faugère, J.-C., 2006), but the docu-
mentation didn’t provide a way to use the lexicographical ordering, which we
consider to be an appropiate ordering for these problems. Using a degree order-
ing in FGb we got worse results. In the spirit of a fair competition, we decided
not to include FGb in our tables.

The examples were chosen from current research problems in formal verification
and algebraic crypto analysis.

The basis for AES (small scale) attack was provided by Stanislav Bulygin (private
communication). We made some optimizations on the formulation of the equa-
tions on it. The CTC example is due to Martin Albrecht (Albrecht, M., 2006). The
systems describing the formal verification of multipliers were provided by Markus
Wedler (private communication).

All timings of the computations are summarized in Table 1 below.

Example Vars./Eqs. POLYBORI SINGULAR MAGMA Maple
ctc-5-3 189 354 3.04 s 49 MB 32 s 69 MB 83 s 64MB >1800 s >89MB
ctc-8-3 297 561 4.8 s 52 MB 117 s 154 MB 817s 335 MB
ctc-15-3 549 1044 8.04 s 69 MB 748 s 379 MB >3000 s >570MB
aes-10-1-1-4pp 164 184 0.14 s ∗ 0.25 s 0.92 s 9.25MB >1000 s
aes-7-1-2-4pp 204 255 3.24 s 50 MB 18 s 366s 211 MB
aes-10-1-2-4pp 288 318 6.7 s 51 MB 1080 s 694 MB 1007 s 476 MB >70 h >324MB
mult4x4 55 48 0.01 s ∗ 0.01 s 0.7 MB 0.91 s 10 MB 0.99 s 9.8 MB
mult5x5 83 84 0.022 s ∗ 0.03 s 0.7 MB 31.5 s 44 MB 23.89s 16 MB
mult6x6 117 106 0.047 s ∗ 0.169 s 2.9 MB 4582 s 1044 MB
mult8x8 203 188 1 s ∗ 106 s 153 MB
mult10x10 313 294 2.5 min 86 MB

∗too short to trace memory usage

Table 1 Timings and memory usage for benchmark examples

The authors of this article are quite convinced, that the default strategy of MAGMA
is not well suited for these examples (walk, see Collart et al. (1997), or homoge-
nization). However, when we tried a direct approach in MAGMA, it ran very fast
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out of memory (at least in the larger examples). So we can conclude, that the
implemented Gröbner basis algorithm in POLYBORI offers a good performance
combined with low memory consumption. Part of the strength in directly com-
puting Gröbner bases (without walk or similar techniques) is inherited from the
slimgb algorithm in SINGULAR. On the other hand our data structures provided
a fast way to rewrite polynomials, which might be of bigger importance than
sparse strategies in the presented examples.

While we used the normal slimgb algorithm for the presented examples, we were
able to tackle much harder problems like 12BIT-Multiplier, AES small scale chiffre
SR(10-1-2-8), SR(10-2-1-8), SR(10-2-2-4) using optimized scripts.

In this way the initial performance of POLYBORI seems to be very promising. It can
be seen, that the advantage of POLYBORI grows with the number of variables. For
many practical applications this size will even be bigger. We are very confident,
that it will be possible to tackle some of these problems in future by using more
specialized approaches. This is a key point in the development of POLYBORI to
facilitate problem specific, high performance solutions.
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