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Preface

This thesis is based on some of my research papers during my PhD studies

in the Department of Financial Mathematics at the Fraunhofer Institut für

Techno- und Wirtschaftmathematik (ITWM), Kaiserslautern in Germany.

To keep it focusing on the topic of applications of the Martingale method for

the optimization problems in finance and life insurance, I do not include to

the thesis some of my research papers, which are of independent interest.

The continuous-time intertemporal consumption-portfolio optimization

problem was pioneered by Merton (1969, 1971), using the method of dy-

namic programming. In the 1980s, Karatzas et al (1986), Pliska (1986)

and Cox/Huang (1989) developed an alternative approach, the Martingale

method, to the continuous-time problem. Certainly the economic literature

is dominated by the stochastic dynamic programming approach, which has

the advantage that it identifies the optimal strategy automatically as a func-

tion of the underlying observables, which is sometimes called feedback form.

However, it often turns out that the corresponding Hamilton-Jacobi-Bellman

equation, which in general is a second order non-linear partial differential

equation, does not admit a closed-form solution. In contrast, by utilizing the
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Martingale method, a closed-form solution can be obtained without solving

any partial differential equation in many specific models when asset prices

follow a geometric Brownian motion.

This thesis is devoted to deal with the stochastic optimization problems

in various situations with the aid of the Martingale method. Chapter 2 dis-

cusses the Martingale method and its applications to the basic optimization

problems, which are well addressed in the literature (for example, [15], [23]

and [24]). In Chapter 3, we study the problem of maximizing expected utility

of real terminal wealth in the presence of an index bond. Chapter 4, which is

a modification of the original research paper joint with Korn and Ewald [39],

investigates an optimization problem faced by a DC pension fund manager

under inflationary risk. Although the problem is addressed in the context

of a pension fund, it presents a way of how to deal with the optimization

problem, in the case there is a (positive) endowment. In Chapter 5, we turn

to a situation where the additional income, other than the income from re-

turns on investment, is gained by supplying labor. Chapter 6 concerns a

situation where the market considered is incomplete. A trick of completing

an incomplete market is presented there. The general theory which supports

the discussion followed is summarized in the first chapter.
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Chapter 1

General theory for the

continuous-time financial

market

Let us consider a financial market M, in which m + 1 assets are traded

continuously. The first asset is a riskless bond with price S0(t) being given

by

dS0(t)

S0(t)
= R(t)dt,

S0(0) = s0 (1.1)

and the remaining m assets are stocks with prices Si(t) satisfying

dSi(t)

Si(t)
= µi(t)dt+

d∑

j=1

σij(t)dWj(t),

Si(0) = si, for i = 1, ...,m (1.2)
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Where W (t) = (W1(t), ...,Wd(t))
⊤ is a d-dimensional Brownian motion de-

fined on a given complete probability space (Ω,F ,P) with the component

Brownian motions Wj(t), j = 1, ..., d, being independent. The superscript

(⊤) denotes transposition. The nominal interest rate R(t), the stock ap-

preciation rate vector µ(t) ≡ (µ1(t), ..., µm(t))⊤ and the volatility matrix

σ(t) ≡ {σij(t)}m×d are referred to as the coefficients of the market M.

It can be verified by Itô’s Lemma that S0(t), Si(t), for i = 1, ...,m, sat-

isfying the equations below are solutions to the differential equations (1.1)

and (1.2), respectively.

S0(t) = s0e
∫ t

0 R(s)ds (1.3)

and

Si(t) = sie
∫ t

0(µi(s)−
1
2

∑d
j=1 σ2

ij(s))ds+
∫ t

0

∑d
j=1 σij(s)dWj(s) (1.4)

Definition 1.0.1. Let (X(t),F(t))t≥0 be a stochastic process. X(t) is called

F(t)-progressively measurable if, for all t ≥ 0, the mapping

[0, t] × Ω → R
n

(s, ω) 7→ Xs(ω) (1.5)

is B([0, t]) ⊗F(t) − B(Rn)-measurable.

Obviously, every F(t)-progressively measurable process is also adapted.

The progressive measurability is for the associated stochastic integrals to be

well-defined. So whenever an stochastic integral occurs in this thesis, the

relevant progressive measurability is assumed either explicitly or implicitly.
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Let us assume, from now on, that the filtration {F(t)}t is generated by

the driving Brownian motion {W (s)}0≤s≤t and is thus known as Brownian

filtration. It is convenient to make a general assumption as following.

General Assumption 1.

(i) The coefficients of M are F(t)-progressively measurable;

(ii) m ≤ d;

(iii) The volatility matrix σ(t) has full row rank.

Remark 1.0.1. The assumption that m ≤ d is not a real restriction since

otherwise the number of stocks can always be reduced by duplicating some of

the additional stocks as linear combinations of others. (See Karatzas (1997)

[23])

We now assume that, in the financial market M, a small investor 1.1 with

an initial capital x(≥ 0) can decide, at each time period t ∈ [0, T ],

• what proportion of wealth, πi(t), he should invest in each of the avail-

able stocks and

• what his consumption rate C(t) (≥ 0) should be.

where, πi(t) and C(t) are F(t)-progressively measurable. Once having de-

cided the proportions of wealth to be invested in the stocks, he then sim-

ply puts the rest of money in the bond. That is, the proportion of wealth

invested in the bond is given by 1 −
∑m

i=1 πi(t) or 1 − π⊤(t)1m, where

1.1The term ’small investor’ comes from the fact that the investor is too small to affect

the market prices.
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π(t) ≡ (π1(t), ..., πm(t))⊤ and 1m ≡ ( 1, ..., 1
︸ ︷︷ ︸

m times

)⊤.

Definition 1.0.2. A pair (π, C) consisting of a portfolio π and a consump-

tion rate C is said to be self-financing if the corresponding wealth process

Xπ,C(t), t ∈ (0, T ], satisfies

dXπ,C(t) =
m∑

i=1

πi(t)X
π,C(t)

dSi(t)

Si(t)
+

(

1 −
m∑

i=1

πi(t)

)

Xπ,C(t)
dS0(t)

S0(t)
− C(t)dt

(1.6)

The requirement of being self-financing states that the change in wealth

must equal the difference of the capital gains and infinitesimal consumption.

Substituting the asset returns, Eq. (1.1)-(1.2), into Eq. (1.6), we get

dXπ,C(t) =
m∑

i=1

πi(t)X
π,C(t)

(

µi(t)dt+
d∑

j=1

σij(t)dWj(t)

)

+

(

1 −

m∑

i=1

πi(t)

)

Xπ,C(t)R(t)dt− C(t)dt

Collecting terms and then writing it in terms of vector and matrix, we then

have the wealth process equation as following

dXπ,C(t) = Xπ,C(t)
[
R(t)dt+ π⊤(t) (µ(t) −R(t)1m) dt+ π⊤(t)σ(t)dW (t)

]
− C(t)dt

(1.7)

The terms appearing in the braces in the last line are referred as the per-

centage of the capital gains, during a time interval of dt and are made up of

three parts:

• the percentage of an average underlying gross return on the m + 1

assets, which is reflected by the term R(t)dt,
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• the percentage of a risk premium for investing in the m risky asset,

which is reflected by the term π⊤(t)[µ(t) −R(t)1m]dt, and

• the volatility term proportional to the amount of the investment in the

stocks, which is the term π⊤(t)σ(t).

Let us introduce the market price of risk θ(t) by

θ(t) ≡ σ⊤(t)
(
σ(t)σ⊤(t)

)−1
[µ(t) −R(t)1m] (1.8)

Under the General Assumption 1, part (i), θ(t) is also F(t)-progressively

measurable. The wealth process equation (1.7) now can be rewritten as

dXπ,C(t) = Xπ,C(t)
[
R(t)dt+ π⊤(t)σ(t) (θ(t)dt+ dW (t))

]
− C(t)dt (1.9)

Definition 1.0.3. A self-financing pair (π, C) of portfolio and consumption-

rate process is said to be admissible for the initial capital x (≥ 0), if the

corresponding wealth process Xπ,C(t) satisfies

Xπ,C(t) ≥ 0, almost surely, for all t ∈ [0, T ] (1.10)

The class of admissible pairs will be denoted by A(x).

Let us now assume, for the moment, that there is no consumption (that

is C = 0) and we call the corresponding wealth process as the portfolio value

process which satisfies

dXπ(t) = Xπ(t)
[
R(t)dt+ π⊤(t)σ(t) (θ(t)dt+ dW (t))

]
(1.11)

Definition 1.0.4. A portfolio π is called an arbitrage opportunity if its port-

folio value process with Xπ(0) = 0 satisfies

P[Xπ(T ) ≥ 0] = 1 and P[Xπ(T ) > 0] > 0 (1.12)
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We say a market M is arbitrage-free if no such portfolios exist in it.

An arbitrage opportunity is a way of trading so that one starts with zero

capital and end up, at time t = T , with non-negative wealth for sure and

furthermore has a positive probability of having made money by that time.

It will be convenient to make following notations:

γ(t) ≡
1

B(t)
= e−

∫ t

0 r(s)ds

Z0(t) ≡ e−
∫ t

0 θ⊤(s)dW (s)− 1
2

∫ t

0 ‖θ(s)‖
2ds

H(t) ≡ γ(t)Z0(t) = e−
∫ t

0 R(s)ds− 1
2

∫ t

0 ‖θ(s)‖
2ds−

∫ t

0 θ⊤(s)dW (s)

(1.13)

H(t) is referred to as the stochastic discount factor. The following proposition

tells us that the sum of an accumulated discounted consumption process and

its corresponding discounted wealth process can be expressed as a stochastic

integral with respect to the Brownian motion.

Proposition 1.0.1. Let Xπ,C(t) be the wealth process of a portfolio π, then

the process

H(t)Xπ,C(t) +

∫ t

0

H(s)C(s)ds

is a P-local Martingale.

Proof. By Itô’s formula, H(t) can be written in the following differential

form:

dH(t) = −H(t)[R(t)dt+ θ⊤(t)dW (t)] (1.14)
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An application of the product rule to H(t)Xπ,C(t) using Eq. (1.9) and Eq.

(1.14) gives us that

d(H(t)Xπ,C(t)) = H(t)d(Xπ,C(t)) +Xπ,C(t)d(H(t)) + d(H(t))d(Xπ,C(t))

= H(t)Xπ,C(t)
[
R(t)dt+ π⊤(t)σ(t) (θ(t)dt+ dW (t))

]

−H(t)C(t)dt−H(t)Xπ,C(t)
(
R(t)dt+ θ⊤(t)dW (t)

)

−H(t)Xπ,C(t)π⊤(t)σ(t)θ(t)dt

Collecting terms results in

d(H(t)Xπ,C(t)) = H(t)Xπ,C(t)[π⊤(t)σ − θ⊤(t)]dW (t) −H(t)C(t)dt

= H(t)Xπ,C(t)[σ⊤(t)π(t) − θ(t)]⊤dW (t) −H(t)C(t)dt

(1.15)

Moving H(t)C(t)dt to the left-hand side and then taking integration on both

sides, we get

H(t)Xπ,C(t) +

∫ t

0

H(s)C(s)ds

= x+

∫ t

0

H(s)Xπ,C(s)[σ⊤(s)π(s) − θ(s)]⊤dW (s) (1.16)

The stochastic integral on the right-hand side is a local Martingale under P.

This is to say, H(t)Xπ,C(t) +
∫ t

0
H(s)C(s)ds is a P-local Martingale.

If we let C = 0, then we have following corollary which says that any

discounted portfolio value process is a P-local Martingale.

Corollary 1.0.1. Let Xπ(t) be the portfolio value process of a portfolio π,

then we have that

H(t)Xπ(t) = x+

∫ t

0

H(s)Xπ(s)[σ⊤(s)π(s) − θ(s)]⊤dW (s) (1.17)
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or that, in the differential form,

d(H(t)Xπ(t)) = H(t)Xπ(t)[σ⊤(t)π(t) − θ(t)]⊤dW (t) (1.18)

In the chapters that follow, we will need the following two fundamental

theorems which we refer to Karatzas (1997) [23]. The first theorem can help

us decide whether a market M contains arbitrage opportunities or not while

the second one provides us of a simple criterion to determine whether the

market is complete.1.2

Theorem 1.0.1. (First Fundamental Theorem)

(i) If the market M is arbitrage-free, then there exists a market price of risk

θ(t) satisfying Eq. (1.8).

(ii) Conversely, if such a market price of risk exists and satisfies

∫ T

0

‖θ(t)‖2 dt <∞, a.s. (1.19)

and

E [Z0(T )] = 1 where, Z0(t) is defined in Eq. (1.13). (1.20)

then the market is arbitrage-free.

From the Novikov’s condition,1.3 we know that if

E

[

e
1
2

∫ T

0 ‖θ(t)‖2dt
]

<∞ (1.21)

1.2These two theorems correspond to Shreve’s (2004) two fundamental theorems of asset

pricing which are in the context of risk-neutral probability measure. In this thesis, we

only deal with the actual probability measure.
1.3For example, when the market price of risk θ(t) is constant for all t, the Novikov’s

condition holds.
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then the exponential process Z0(t) in Eq. (1.13) is a martingale under the

probability measure P. In particular, the conditions of (1.19)-(1.20) are sat-

isfied.

Before discussing the second fundamental theorem, we need to give a

definition of completeness.

Definition 1.0.5. A financial market M is called complete, if every F(T )-

measurable contingent claim B is attainable in the sense that there exists a

portfolio π such that the corresponding portfolio value at time T equals the

claim B with probability one, that is,

Xπ(T ) = B, a.s.; (1.22)

otherwise, it is called incomplete.

Theorem 1.0.2. (Second Fundamental Theorem)

(i) Consider a arbitrage-free financial market M, then M is complete if and

only if m = d.

(ii) This market M is incomplete if and only if m < d.

For a market to be complete, it requires that there be exactly as many

stocks as ”sources of uncertainty”. Incompleteness arises when the number of

”sources of uncertainty” is strictly greater than the number of the stocks. We

will discuss, in turn, the optimization in a complete market and an incomplete

market later on.
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Chapter 2

Optimization in complete

markets

2.1 Introduction

The continuous-time intertemporal consumption-portfolio optimization prob-

lem was pioneered by Merton (1969, 1971), using the method of dynamic pro-

gramming. In the 1980s, Karatzas et al (1986), Pliska (1986) and Cox/Huang

(1989) developed an alternative approach-the Martingale method to solve the

continuous-time problem. The main advantage of the latter over the former

is that the Martingale method only involves linear partial differential equa-

tions, unlike the nonlinear partial differential equation involved by the dy-

namic programming. As we will see later that, in many specific models when

asset prices follow a geometric Brownian motion, the optimal controls can

even be obtained without solving any partial differential equation by utilizing

the Martingale method.

17



We will start by studying the basic theory of utility functions, discussing

and comparing the frequently-used utility functions in the literature. The

continuous-time optimization problems are formalized in Section 2.3, where

the standard Martingale method will be discussed and the procedure of im-

plementing it is summarized. To give us a good feeling of how to use the Mar-

tingale method without having to remember the formulations of the optima,

we will derive, step by step, the optima for the terminal wealth optimization

problem as an example in Section 2.4.

2.2 Basics of utility theory

It is assumed throughout this thesis that the investor is risk averse. There-

fore, his utility function must be concave.2.1 We will give a formal definition

of a utility function before looking at some examples.

Definition 2.2.1. In the economic literature, a concave utility function is

often referred to a continuous function u : (0,∞) → R which is (strictly) in-

creasing, (strictly) concave, continuously differentiable (see for example [6],

[11] and [14]). More rigorously, a (concave) utility function should also sat-

isfy the Inada conditions that

(i) u′(0+) ≡ lim
z↓0

u′(z) = +∞ and

(ii) lim
z→∞

u′(z) = 0 (2.1)

2.1A risk-loving investor should have a convex utility function while a risk-neutral in-

vestor should have a linear utility function.

18



where, the prime (′) denotes the derivative (see [23] and [24]).

In the definition above, the requirement that a utility function be (strictly)

increasing says that an increase in z (z can be, for example, consumption

or wealth) increases the utility; the (strict) concavity implies a diminishing

marginal utility, that is, the utility gain decreases with an increase of z. The

infinite marginal utility when z approaches the origin implies that ’some-

thing is much better than nothing’ and the vanishing marginal utility when

z approaches ∞ suggests that, for an extremely rich investor, the utility gain

from a small increase of wealth or consumption can be ignored.

A concave utility is associated with a risk-averse investor and the degree

of curvature of the corresponding utility function determines the intensity

of the investor’s risk aversion. Curvature can be measured by the second

derivative of the utility function, scaled by the first derivative. There are

two main measures of risk aversion in economics. One is the absolute risk

aversion (ARA) which is defined by

ARA(z) ≡ −
u′′(z)

u′(z)
(2.2)

where, (′) denotes the first derivative as before and (′′) denotes the second

derivative. The other measure is the relative risk aversion (RRA) defined by

RRA(z) ≡ −
zu′′(z)

u′(z)
. (2.3)

2.2.1 Frequently used utility functions

The following utility functions appear to be frequently used in the literature

of economics and finance. Each has its own attractive and unattractive fea-
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tures.

(i) Quadratic Utility Function

u(z) = az − bz2, a ≥ 0, b > 0 and 0 < z < a
2b

(2.4)

A quadratic utility function can make an optimization model more tractable,

in particular, when uncertainty is involved. This is due to its characteriza-

tion of linear marginal utility. However, quadratic utility is an implausible

description of behavior toward risk as it implies an increasing absolute risk

aversion in z. It is a common thought that absolute risk aversion should

decrease, or at least should not increase with z (See [11]). Moreover, this

utility function does not satisfy the Inada conditions of (2.1).

(ii) CARA-Exponential Utility Function

u(z) = −e−γz, γ > 0 and z > 0 (2.5)

The exponential utility function is known as a constant absolute risk aver-

sion, or CARA in short, its absolute risk aversion is constant and equal to γ.

Exponential utility can produce simple results if asset returns are normally

distributed. The shortcoming of this function is that it implies negative con-

sumption or wealth which is not desirable in most cases. This utility function

satisfies the Inada condition (ii) but violates the Inada condition (i) of (2.1).

(iii) CRRA-Power Utility Function

u(z) =
z1−γ

1 − γ
, γ > 0, γ 6= 1 and z > 0 (2.6)

20



The power utility has a constant relative risk aversion of γ, and whence

CRRA. This utility implies that the absolute risk aversion is declining in z

and excludes negative consumption or wealth. The power utility function

can produce simple results when asset returns are lognormally distributed.

Furthermore, it satisfies both Inada conditions (i) and (ii) of (2.1). These

are perhaps the main reasons why the CRRA utility function is so commonly

employed in the literature. The coefficient 1
γ

is referred to as the elasticity

of substitution of consumption in economics.

As a special case when γ → 1, the power utility function is simplified to

the logarithmic utility function ln(z). It is worth noting that the logarithmic

utility function ln(z) is not simply the limit of the power utility function z1−γ

1−γ
,

but rather the limit of the power utility function subtracted by a constant

1
1−γ

as this linear transformation does not affect an investor’s preference.

From the discussion above, it appears that the CRRA utility is the most

reasonable description of an investor’s aversion to risk. Therefore, we will

focus on the CRRA utility in what follows.

2.3 The consumption-terminal wealth opti-

mization problem

In this section, we shall consider the financial market M which consists of

m + 1 assets and satisfies the General Assumption 1 with d = m and the
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Novikov condition of (1.21). The prices of the assets are given by

dS0(t)

S0(t)
= R(t)dt,

S0(0) = s0 (2.7)

and

dSi(t)

Si(t)
= µi(t)dt+

m∑

j=1

σij(t)dWj(t),

Si(0) = si, for i = 1, ...,m (2.8)

When m = d, the market price of risk θ(t) defined in Eq. (1.8) becomes

θ(t) = σ−1(t)[µ(t) −R(t)1m] (2.9)

It is assumed that a small investor with initial capital x (0 < x < ∞)

invests his wealth in the market M of (2.7)-(2.8) and wishes to maximize his

expected utility of consumption and final wealth for a given utility function.

His optimal decision is made by observing the stock prices in the past and

the present. He has no knowledge about future prices, nor has he any inside

information. Mathematically, he wishes to solve the following maximization

problem:

max
(π,C)∈A0(x)

E

[

u1(X
π,C(T )) +

∫ T

0

e−ρtu2(C(t))dt

]

(2.10)

subject to

dXπ,C(t) = Xπ,C(t)
[
R(t)dt+ π⊤(t)σ(t) (θ(t)dt+ dW (t))

]
− C(t)dt

Xπ,C(0) = x (2.11)

where, ρ > 0 is the rate of time preference and

A0(x) ≡

{

(π,C) ∈ A(x) : E
[
u−1 (Xπ,C(T ))

]
<∞ and E

[∫ T

0

e−ρtu−2 (C(t))dt

]

<∞

}

(2.12)
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with u−i (·) ≡ max{−u−i (·), 0}, for i = 1, 2. For the convenience of the fol-

lowing discussions, we will name the optimization problem of (2.10)-(2.12)

as the consumption-terminal wealth optimization problem and study how to

solve this problem using Martingale method in the next section.

2.3.1 The Martingale method

In order to discuss the Martingale method, we need the following theorems.

Theorem 2.3.1. (Martingale Representation Theorem)

Let M(t) be a martingale with respect to the Brownian filtration {F(t)}t and

satisfies

E
[
M2(t)

]
<∞ for all t ∈ [0, T ] (2.13)

then there exists a P-progressively measurable process ψ(t) satisfying

E

[∫ T

0

‖ψ(t)‖2 dt

]

<∞ (2.14)

and

M(t) = M(0) +

∫ t

0

ψ⊤(s)dW (s) a.s. (2.15)

Theorem 2.3.2. (Market Completeness)

(i) Given an initial wealth x (> 0), then for any admissible pair (π,C) ∈

A(x), the corresponding wealth process Xπ,C(t) satisfies

E

[

H(t)Xπ,C(t) +

∫ t

0

H(s)C(s)ds

]

≤ x for all t ∈ [0, T ]. (2.16)

(ii) In the market M of (2.7)-(2.8), if a contingent claim B (≥ 0) and a

consumption-rate process C (≥ 0) satisfy

∞ > E

[

H(T )B +

∫ T

0

H(t)C(t)dt

]

≡ x > 0, (2.17)
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then there exists a portfolio process π such that (π,C) ∈ A(x), and the cor-

responding wealth process at the terminal date T satisfies

Xπ,C(T ) = B a.s. (2.18)

In particular, we have

Xπ,C(t) =
1

H(t)
Et

[

H(T )B +

∫ T

t

H(s)C(s)dt

]

, for all t ∈ [0, T ] (2.19)

where, Et denotes the expectation conditional on the information set F(t).

Intuitively, part (i) of this theorem says that the expected discounted (i.e.,

discounted by the stochastic discount factor H(t)) wealth at any feasible time

for any reasonable trading strategy cannot exceed the initial wealth. While

part (ii) tells us that each desired final wealth B can be obtained by trading

according to an appropriate trading strategy given that one possesses enough

initial capital. In particular, Theorem 2.3.2. suggests that the consumption-

terminal wealth optimization problem is equivalent to the problem of

max
B,C

E

[

u1(B) +

∫ T

0

e−ρtu2(C(t))dt

]

(2.20)

subject to the constraint that

E

[

H(T )B +

∫ T

0

H(t)C(t)dt

]

= x (2.21)

withB,C denoting all possible F(T )-measurable contingent claims and consumption-

rate processes, respectively (See for example Korn/Korn (2000) [24] and

Karatzas (1997) [23] for more details).
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The new problem of (2.20)-(2.21) can be solved by using the Lagrange

method as follows. Write λ (> 0) for the Lagrangian multiplier, or shadow

price in the literature of economics, and set

L(B,C, λ) ≡ E

[

u1(B) +

∫ T

0

e−ρtu2(C(t))

]

+ λ

{

x−

[

H(T )B +

∫ T

0

H(t)C(t)dt

]}

.

(2.22)

Equating the derivatives of the Lagrangian function L with respect to B and

C respectively to zero, we obtain the first order conditions

∂L

∂B
= E [u′1(B) − λH(T )] = 0

∂L

∂C
= E

[∫ T

0

(
e−ρtu′2(C(t)) − λH(t)

)
dt

]

= 0 (2.23)

From the convex dual theory,2.2 we know that Eq. (2.23) holds if and only if

B, C(t) are given by

B∗ ≡ (u′)−1(λH(T ))

C∗(t) ≡ (u′)−1(λeρtH(t)) (2.24)

where, λ can be (uniquely) obtained from the budget constraint of (2.21).

B∗ and C∗ are the optima for the problem of (2.20)-(2.21). Having solved

the equivalent problem of (2.20)-(2.21), we can then find the solution to the

consumption-terminal wealth optimization problem of (2.10)-(2.12) accord-

ing to the following theorem.

Theorem 2.3.3. Let B∗, C∗ be the optima of the problem of (2.20)-(2.21).

Then there exists a portfolio π∗ such that the pair (π∗, C∗) ∈ A0(x) and

2.2For a full discussion of the convex dual theory, see Karatzas (1997) [23].
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(π∗, C∗) is optimal for the consumption-terminal wealth optimization problem

of (2.10)-(2.12). The corresponding wealth process satisfies

Xπ∗,C∗

(t) =
1

H(t)
Et

[

H(T )B∗ +

∫ T

t

H(s)C∗(s)dt

]

, for all t ∈ [0, T ].

(2.25)

In particular,

Xπ∗,C∗

(T ) = B∗ (2.26)

The proof of Theorem 2.3.3. is done in three steps. First, we need to show

that, for the optima B∗ and C∗ given in Eq. (2.24), there exists π∗ such that

(π∗, C∗) ∈ A(x) and the corresponding wealth process satisfies Eq. (2.25).

Second, we show that E
[
u−1 (Xπ∗,C∗

(T ))
]
<∞ and E

[∫ T

0
e−ρtu−2 (C(t))dt

]

<

∞, that is, to show (π∗, C∗) ∈ A0(x). Finally, we verify that (π∗, C∗) is

optimal for the original optimization problem of (2.10)-(2.12). To do so, we

need the following Lemma which is cited from Korn and Korn (2001) [24]

Lemma 2.3.1. Let I denote the inverse of the first derivative of a utility

function u, that is I ≡ (u′)−1, then we have

u(I(y)) ≥ u(z) + y(I(y) − z), for 0 < y, z <∞ (2.27)

This lemma can easily be verified by using the Taylor expansion and the

concavity of a utility function.

Proof. (Proof of Theorem 2.3.3.)

Step (i), since B∗ and C∗ are the optima of the problem of (2.20)-(2.21),

they must satisfy the budget constraint (2.21), that is

E

[

H(T )B∗ +

∫ T

0

H(t)C∗(t)dt

]

= x (2.28)
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From Eq. (2.24), we know that B∗, C∗ ∈ (0,∞). The existence of an ad-

missible pair (π∗, C∗) and Eq. (2.25)-(2.26) are then followed directly from

Theorem 2.3.2.

Step (ii), by Lemma 2.3.1., we know, by choosing z = 1 and using Eq.

(2.24), that

u1(B
∗) ≥ u1(1) + λ(x)H(T )(B∗ − 1) (2.29)

Note that u1(·), H(t) and B∗ are strictly positive and finite. If we assume

that λ(x), which is determined from the budget constraint of (2.21) and

therefore is denoted by λ(x) to indicate its dependence of the initial capital

x, is strictly positive and finite, then we can get

u−1 (B∗) ≤ (u1(1) + λ(x)H(T )(B∗ − 1))−

≤ |u1(1) + λ(x)H(T )(B∗ − 1)|

≤ |u1(1)| + λ(x)H(T )(B∗ + 1) <∞ (2.30)

Since u−1 (·) is nonnegative, we then have

E
[
u−1 (Xπ∗,C∗

(T ))
]

= E
[
u−1 (B∗)

]
<∞ (2.31)

Similarly, we can show that

E

[∫ T

0

e−ρtu−2 (C∗(t))dt

]

<∞ (2.32)

Step (iii), let us consider an arbitrary pair (π,C) ∈ A0(x) and its corre-

sponding wealth process Xπ,C(t). From Lemma 2.3.1., we get that

u1(B
∗) ≥ u1(X

π,C(T )) + λ(x)H(T )(B∗ −Xπ,C(T )) (2.33)
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and

∫ T

0

e−ρtu2(C
∗(t))dt ≥

∫ T

0

e−ρtu2(C(t))dt+ λ(x)H(t)(C∗(t) − C(t))

(2.34)

Adding these two inequalities together and then taking expectation, we get

that

E

[

u1(B
∗) +

∫ T

0

e−ρtu2(C
∗(t))dt

]

≥ E

[

u1(X
π,C(T )) +

∫ T

0

e−ρtu2(C(t))dt

]

+ λ(x)

{

E

[

H(T )B∗ +

∫ T

0

H(t)C∗(t)dt] − E[H(T )Xπ,C(T ) +

∫ T

0

H(t)C(t)dt

]}

(2.35)

Keep in mind that B∗ and C∗ satisfy the constraint of (2.21) and use the

conclusion from Theorem 2.3.2. part (i) that

E

[

H(T )Xπ,C(T ) +

∫ T

0

H(t)C(t)dt

]

≤ x, (2.36)

holds for any (π,C) ∈ A(x). Therefore the term in the braces on the last

line of Eq. (2.35) is non-negative. We can now conclude that

E

[

u1(B
∗) +

∫ T

0

e−ρtu2(C
∗(t))dt

]

≥ E

[

u1(X
π,C(T )) +

∫ T

0

e−ρtu2(C(t))dt

]

(2.37)

The portfolio π∗ in Theorem 2.3.3. can be identified from the wealth

process of Eq. (2.25). For typographical convenience, we denote the corre-

sponding optimal wealth process Xπ∗,C∗

(t) by X∗(t).
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Expanding the conditional expectation on the right-hand side of Eq.

(2.25) and multiplying it by H(t), we get

H(t)X∗(t) = Et

[

H(T )B∗ +

∫ T

0

H(s)C∗(s)dt

]

− Et

[∫ t

0

H(s)C∗(s)dt

]

.(2.38)

The optimal consumption rate C∗(s), for all 0 ≤ s ≤ t, is F(t)-measurable

and so is H(s)C∗(s). Therefore, the conditional expection Et, in the last

term of Eq. (2.38), can be dropped out. It now can be written as

H(t)X∗(t) +

∫ t

0

H(s)C∗(s)dt = Et

[

H(T )B∗ +

∫ T

0

H(s)C∗(s)dt

]

︸ ︷︷ ︸

≡M(t)

Note that the conditional expectation is a martingale with respect to the

Brownian filtration {F(t)}t
2.3. If we denote this Martingale by M(t), then it

follows from the Martingale representation theorem that M(t) can be repre-

sented as a stochastic integral with respect to the Brownian motion. In other

words, there exists an P-progressively measurable process ψ(t) such that

M(t) = M(0) +

∫ t

0

ψ⊤(s)dt, for all t (2.39)

By the definition of M(t), it is trivial to check that M(0) = x. So we now

have

H(t)X∗(t) +

∫ t

0

H(s)C∗(s)dt = x+

∫ t

0

ψ⊤(s)dt (2.40)

Obviously, Eq. (1.16) holds at the optimum, that is,

H(t)X∗(t) +

∫ t

0

H(s)C∗(s)ds = x+

∫ t

0

H(s)X∗(s)[σ⊤(s)π∗(s) − θ(s)]⊤dW (s)

(2.41)

2.3This can be verified by the definition of Martingale.
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Comparing Eq. (2.40) with Eq. (2.41), we get

H(t)X∗(t)[σ⊤(t)π∗(t) − θ(t)]⊤ = ψ⊤(t) (2.42)

This gives us the optimal portfolio for the problem of (2.10)-(2.12)

π∗(t) = (σ⊤(t))−1

(
ψ(t)

H(t)X∗(t)
+ θ(t)

)

(2.43)

For the special cases of the terminal wealth optimization problem and the

consumption optimization problem, we have following corollaries which can

be verified by setting u2 ≡ or u1 ≡ 0 correspondingly.

Example 2.3.1. (Terminal wealth optimization problem)

Given an initial capital x (0 < x <∞) and a utility function u1(·), consider

the problem of maximizing expected utility from terminal wealth

max
π∈A1(x)

E [u1(X
π
1 (T ))] (2.44)

subject to

dXπ
1 (t) = Xπ

1 (t)[R(t)dt+ π⊤(t)σ(t) (θ(t)dt+ dW (t))]

Xπ
1 (0) = x (2.45)

with

A1(x) ≡
{
π ≡ (π, 0) ∈ A(x) : E

[
u−1 (Xπ

1 (T ))
]
<∞

}

(2.46)

Corollary 2.3.1. The terminal wealth optimization problem above is equiv-

alent to the problem

max
B

E[u1(B)] (2.47)
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subject to the constraint

E[H(T )B] = x (2.48)

with B denoting all possible F(T )-measurable contingent claims.

Let B∗ be the optimum of the problem of (2.47)-(2.48). There exists

then a portfolio π∗ such that π∗ ∈ A1(x) and π∗ is optimal for the terminal

wealth optimization problem of (2.44)-(2.46). The corresponding value of the

optimal portfolio process satisfies

X∗
1 (t) ≡ Xπ∗

1 (t) =
1

H(t)
Et[H(T )B∗], for all t ∈ [0, T ].

(2.49)

In particular,

X∗
1 (T ) = B∗ (2.50)

Remark 2.3.1. In the pure terminal wealth optimization problem, it is im-

plicitly assumed that there is no consumption, that is

C(t) = 0, for all t ∈ [0, T ] (2.51)

Otherwise, the investor is not optimizing his utility. Let us assume that

C(t) > 0, for some t ∈ [0, T ], then the investor could have gained more

utility by saving the positive amount consumed given that there is no utility

gain from any consumption (because u2 ≡ 0).

Example 2.3.2. (Consumption optimization problem)

Given an initial capital x (0 < x <∞) and a utility function u2(·), consider

the problem of maximizing expected utility from consumption

max
(π,C)∈A2(x)

E

[∫ T

0

e−ρtu2(C(t))dt

]

(2.52)
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subject to

dXπ,C(t) = Xπ,C(t)
[
R(t)dt+ π⊤(t)σ(t) (θ(t)dt+ dW (t))

]
− C(t)dt

Xπ,C(0) = x

(2.53)

with

A2(x) ≡

{

(π,C) ∈ A(x) : E

[∫ T

0

e−ρtu−2 (C(t))dt

]

<∞

}

(2.54)

Corollary 2.3.2. The consumption optimization problem above is equivalent

to the problem

max
π,C

E

[∫ T

0

e−ρtu2(C(t))dt

]

(2.55)

subject to the constraint

E

[∫ T

0

H(t)C(t)dt

]

= x (2.56)

Let C∗ be the optimum of problem of (2.55)-(2.56). Then there exists

a portfolio π∗ such that the pair (π∗, C∗) ∈ A2(x) and (π∗, C∗) is optimal

for the consumption optimization problem The corresponding optimal wealth

process satisfies

X∗
2 (t) ≡ Xπ∗,C∗

2 (t) =
1

H(t)
Et

[∫ T

t

H(s)C∗(s)dt

]

, for all t ∈ [0, T ].

(2.57)

Remark 2.3.2. In the pure consumption optimization problem, it is implic-

itly assumed that the terminal wealth is zero, that is

Xπ,C(T ) = 0 (2.58)
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Otherwise, the consumer is not optimizing his utility. More specifically, if we

assume that Xπ,C(T ) > 0, then the consumer could have gained more utility

by consuming the positive amount wealth of Xπ,C(T ) before the terminal date

given that there is no utility gain from having a positive wealth (because u1 ≡

0).

Let us summarize the Martingale method below.

Procedure of implementing the Martingale method:

• Step 1 : Identify the equivalent optimization problem;

• Step 2 : Solve the equivalent optimization problem of Step 1 to obtain

B∗ and/or C∗;

• Step 3 : Substitute B∗ and/or C∗ to the corresponding optimal wealth

process X∗(t);

• Step 4 : Find the optimal portfolio π∗ that produces this optimal wealth

process X∗(t).

Following the steps above, we will have obtained the optimal solution π∗

(and C∗) to the original optimization problem. To familiarize ourselves with

the procedure of using the Martingale method, we will look at the terminal

wealth optimization problem with the CRRA utility function in the next

section.
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2.4 The terminal wealth optimization prob-

lem

We adopt the market M of (2.7)-(2.8). For simplicity, we assume the market

coefficients are deterministic. Let us look at the terminal wealth optimization

problem with the CRRA utility function defined in Eq. (2.6).

max
π∈A1(x)

E [u1(X
π
1 (T ))] (2.59)

subject to

dXπ
1 (t) = Xπ

1 (t)
[
R(t)dt+ π⊤(t)σ(t) (θ(t)dt+ dW (t))

]

Xπ
1 (0) = x (2.60)

with

A1(x) ≡
{
π ≡ (π, 0) ∈ A(x) : E

[
u−1 (Xπ

1 (T ))
]
<∞

}

(2.61)

where

u1(z) =
z1−γ

1 − γ
, γ > 0. (2.62)

According to the Corollary 2.3.2., the problem of (2.59)-(2.62) is equiva-

lent to the following static optimization problem.

max
B

E[u1(B)] (2.63)

subject to

E[H(T )B] = x. (2.64)
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The Lagrangian function of this problem is written as

L(B, λ) ≡ E [u1(B) + λ (x−H(T )B)] (2.65)

Equating the derivatives of the Lagrangian L with respect to B to zero, we

obtain:

∂L

∂B
= E [u′1 (B) − λH(T )] = 0 (2.66)

This gives us the optimum

B∗ = (u′1)
−1(λH(T )). (2.67)

For the choice of CRRA utility function, we have

(u′1)
−1(z) = z−

1
γ . (2.68)

Substituting it from Eq. (2.67) gives us

B∗ = λ−
1
γ (H(T ))−

1
γ (2.69)

while the Lagrange multiplier λ is determined by the constraint

E

[

λ−
1
γ (H(T ))

γ−1
γ

]

= x

Solving it for λ, we get

λ−
1
γ =

x

E

[

(H(T ))
γ−1

γ

] (2.70)

A substitution of λ−
1
γ of Eq. (2.70) from Eq. (2.69) gives us the optimal

terminal value via the following formula

B∗ = x
(H(T ))−

1
γ

E

[

(H(T ))
γ−1

γ

] (2.71)
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Substituting B∗ in Eq. (2.71) to the optimal wealth process X∗
1 (t) in Eq.

(2.49), we get

X∗
1 (t) =

1

H(t)
Et[H(T )B∗]

= x
1

H(t)

Et

[

(H(T ))
γ−1

γ

]

E

[

(H(T ))
γ−1

γ

] (2.72)

Multiply both sides of Eq. (2.72) by H(t)

H(t)X∗
1 (t) = x

Et

[

(H(T ))
γ−1

γ

]

E

[

(H(T ))
γ−1

γ

] (2.73)

By introducing the exponential martingale

Z(t) ≡ e
1−γ

γ

∫ t

0 θ⊤(s)W (s)− 1
2(

1−γ
γ )

2 ∫ t

0 ‖θ(s)‖2ds, (2.74)

and defining that

f(t) ≡ e
1−γ

γ

∫ t

0(R(s)+ 1
2γ

‖θ(s)‖2)ds, (2.75)

we obtain

(H(t))
γ−1

γ = f(t)Z(t) (2.76)

Noting that the Martingale Z(t) has expectation of one and f(t) is non-

random, we can get

Et

[

(H(T ))
γ−1

γ

]

E

[

(H(T ))
γ−1

γ

] =
Et[f(T )Z(T )]

E[f(T )Z(T )]

=
Et[Z(T )]

E[Z(T )]

=
Z(t)

Z(0)

= Z(t) (2.77)
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Substituting back into Eq. (2.73), we then arrive at that

H(t)X∗
1 (t) = xZ(t) (2.78)

Taking differentials on both sides of Eq. (2.77) and using Eq. (2.74) results

in

d(H(t)X∗
1 (t)) = xd(Z(t))

= −xZ(t)
γ − 1

γ
θ⊤(t)dW (t).

A use of Eq. (2.77) gives2.4

d(H(t)X∗
1 (t)) = H(t)X∗

1 (t)
1 − γ

γ
θ⊤(t)dW (t) (2.79)

And H(t)X∗
1 (t) also satisfies Eq. (1.18), i.e.,

d(H(t)X∗
1 (t)) = H(t)X∗

1 (t)[σ⊤(t)π∗(t) − θ(t)]⊤dW (t) (2.80)

A comparison of Eq. (2.78) with Eq. (2.79) gives us the optimal portfolio

π∗(t) for the problem of (2.59)-(2.62)

π∗(t) =
1

γ
(σ−1(t))⊤θ(t). (2.81)

The elements of the optimal portfolio vector is given then by

π∗
i (t) =

1

γ

µi(t) −R(t)

σ2
i (t)

, for i=1, ..., m (2.82)

The optimal rule of (2.81) or (2.82), referred to as the classical Merton rule,

tells us that, when the small investor has a constant-relative-risk-aversion

utility, then the optimal share of wealth invested in each of the risky assets is

2.4Note, in this example, that ψ(t) in Eq. (2.39) equals H(t)X∗

1
(t) 1−γ

γ
θ.
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constant over time. By definition, we know that the optimal share of wealth

invested in the risk-free bond, denoted by π∗
0(t), is determined as

π∗
0(t) = 1 −

m∑

i=1

π∗
i (t) = 1 −

1

γ

m∑

i=1

µi(t) −R(t)

σ2
i (t)

(2.83)

Let αi ≡
µi(t)−R(t)

σ2
i (t)

, we can further get

(π∗
0(t), π

∗
1(t), ..., π

∗
m(t))⊤ = (1, 0, ..., 0)⊤ −

1

γ
(

m∑

i=1

αi, α1, ..., αm)⊤ (2.84)

By writing the vector (π∗
0(t), π

∗
1(t), ..., π

∗
m(t))⊤ of fractions of wealth invested

in the m + 1 assets as the linear combination of two independent vectors

(1, 0, ..., 0)⊤ and (
∑m

i=1 αi, α1, ..., αm)⊤. Eq. (2.83) is interpreted as that the

optimal portfolio, including the optimal share invested in the risk-free bond,

can be formed from a linear combination of two mutual funds.

The optimal expected utility of final wealth is then obtained by substitut-

ing B∗ of Eq. (2.71) into the objective function of (2.59) and (2.62),

max
π∈A1(x)

E [u1(X
π(T ))] = E[u1(B

∗)]

=
x1−γ

1 − γ
E








(H(T ))−

1
γ

E

[

(H(T ))
γ−1

γ

]





1−γ



=
x1−γ

1 − γ

(

E

[

(H(T ))
γ−1

γ

])γ

Using Eqs. (2.74)-(2.76), we then obtain

max
π∈A1(x)

E [u1(X
π(T ))] =

x1−γ

1 − γ
e(1−γ)

∫ T

0 (R(t)+ 1
2γ

‖θ(t)‖2)dt

(2.85)
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Chapter 3

Index bond

3.1 Introduction

Inflation-linked bonds were introduced more than 30 years ago in a number

of Latin American and European countries and have enjoyed an increas-

ing popularity in the UK, Canada, and some continental European states

(Zhang/Korn/Ewald (2007)). Since the inflation-linked bonds are risky, they

could be sold at a real interest rate below that on the risk-free bond. In the

work conducted by Korn and Kruse (2004), a fair price for an inflation-linked

bond has been derived with the Black-Scholes argument.

In this chapter, we investigate an optimization problem in a market where

there exists an inflation-linked bond. When an inflation-linked bond presents,

it should make more sense to study the optimization problem maximizing

the expect utility of real terminal wealth or/and from real consumption. We

adopt the basic price dynamics of the inflation-linked bond that has been
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used in the paper by Fischer (1975), where the inflation-linked bond is re-

ferred to as the index bond. We provide a way to transform the problem of

maximizing the expected utility of real terminal wealth to the problem of

maximizing the expected utility of nominal terminal wealth, to which the

Martingale method can be directly applied. This is summarized in Theorem

3.4.1. We find that the optimal portfolio rule offers both optimal expected

utility of real and nominal terminal wealth. This would be desirable for in-

surance agents that bear the risk due to unexpected inflation. We will turn

to discuss the issue related to pension insurance in the next chapter. Let us

now begin by studying the price dynamics of the price level of the market.

It is assumed that the behavior of the price level P (t) is described by the

geometric Brownian motion

dP (t)

P (t)
= i(t)dt+ σ1(t)dW1(t)

P (0) = p > 0 (3.1)

where, i(t) is the expected rate of inflation and W1(t) is the source of uncer-

tainty which causes the price level to fluctuate around the expected inflation

with an instantaneous intensity of fluctuation σ1(t)(6= 0).

3.2 Asset price dynamics

We consider a market M consisting of a risk-free bond, an index bond and

a stock.
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(1) As before, the risk-free bond pays a rate of nominal return of R(t)

and follows the differential equation

dB(t)

B(t)
= R(t)dt (3.2)

(2) The index bond offers a rate of real return of r(t) and its price process

I(t) is given by

dI(t)

I(t)
= r(t)dt+

dP (t)

P (t)

= (r(t) + i(t))dt+ σ1(t)dW1(t) (3.3)

So the index bond pays an expected rate of nominal return equal to the sum

of the rate of real return and the expected rate of inflation, that is r(t)+ i(t).

(3) The price process of the stock S(t) is given by

dS(t)

S(t)
= µ(t)dt+ σ2(t)dW2(t) (3.4)

where, µ(t) is the expected rate of return on the stock and σ2(t)(6= 0) is

the volatility caused by the source of risk W2(t). We assume that W2(t) is

independent of W1(t).

If we denote by 1−π1(t)−π2(t), π1(t), π2(t) the shares of portfolio value

invested in the risk-free bond, the index bond and the stock, respectively,

then the corresponding portfolio value process Xπ(t) satisfies

dXπ(t)

Xπ(t)
= R(t)dt+ π⊤(t)σ(t)[θ(t)dt+ dW (t)] (3.5)

where π(t) = (π1(t), π2(t))
⊤, W (t) = (W1(t),W2(t))

⊤,

σ(t) =






σ1(t) 0

0 σ2(t)




 (3.6)
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and

θ(t) =






r(t)+i(t)−R(t)
σ1(t)

µ(t)−R(t)
σ2(t)




 ≡






θ1(t)

θ2(t)




 . (3.7)

3.3 Asset real returns

The real value of an asset is defined by the quotient of its nominal value

divided by the price level. Dividing the prices of risk-free bond, index bond

and stock by the price level and applying Itô’s lemma, we can express the

returns on the assets in real terms as follows.

(1) The real return on the risk-free bond satisfies

d(B(t)/P (t))

B(t)/P (t)
= r1(t)dt− σ1(t)dW1(t) (3.8)

where r1(t) ≡ R(t) − i(t) + σ2
1(t). This says that the expected rate of real

return on the risk-free bond is the difference between the rate of nominal

return and the rate of expected inflation R(t) − i(t) plus the variance of the

price level σ2
1(t).

(2) The real return on the index bond is given by

d(I(t)/P (t))

I(t)/P (t)
= r(t)dt (3.9)

This confirms that the index bond pays a rate of real return of r(t).

(3) The real return on the stock satisfies

d(S(t)/P (t))

S(t)/P (t)
= r2(t)dt− σ1(t)dW1(t) + σ2(t)dW2(t) (3.10)
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where, r2(t) ≡ µ(t) − i(t) + σ2
1(t). This says that the expected rate of real

return on the stock is the difference between the rate of expected nominal

return and the rate of expected inflation µ(t) − i(t) plus the variance of the

price level σ2
1(t).

3.4 The real terminal wealth optimization prob-

lem

We are now in a position to consider an optimization problem in the market

M of (3.2)-(3.4). It is assumed that a small agent with an initial wealth

of x (0 < x < ∞) invests 1 − π1(t) − π2(t), π1(t), π2(t) shares of wealth in

the risk-free bond, the index bond and the stock, respectively. He wishes

to maximize his expected utility of terminal real value of portfolio. In other

words, he faces a maximization problem as

max
π∈A1(x)

E

[

u

(
Xπ(T )

P (T )

)]

(3.11)

subject to

dXπ(t)

Xπ(t)
= R(t)dt+ π⊤(t)σ(t)[θ(t)dt+ dW (t)]

Xπ(0) = x (3.12)

where,

A1(x) ≡

{

π ∈ A(x) : E

[

u−
(
Xπ(T )

P (T )

)]

<∞

}

. (3.13)

We will demonstrate below that the maximization problem of (3.11)-

(3.13) is equivalent to maximizing the expected utility of terminal value of
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the portfolio on the assets of (3.8)-(3.10). Let we construct a market M̃, in

which there are a risk-free bond and two risky assets as in (3.8)-(3.10).

(1) The risk-free bond offers a rate of nominal return equal to r(t) and

its price process, denoted by Ĩ(t), satisfies

dĨ(t)

Ĩ(t)
= r(t)dt

Ĩ(0) =
I(0)

P (0)
(3.14)

That is, the rate of nominal return on this risk-free bond is equal to the rate

of real return on the index bond.

(2) One of the risky assets’ price process, denoted by B̃(t), is defined by

dB̃(t)

B̃(t)
= r1(t)dt− σ1(t)dW1(t)

B̃(0) =
B(0)

P (0)
(3.15)

where, r1(t) is treated as the expected rate of nominal return on the first

risky asset and W1(t) is the Brownian motion associated with the price level

of (3.1).

(3) The price dynamics of the other risky asset, denoted by S̃(t), is given

by

dS̃(t)

S̃(t)
= r2(t)dt− σ1(t)dW1(t) + σ2(t)dW2(t) (3.16)

where, r2(t) is treated as the expected rate of nominal return on the second

risky asset and W2(t) is the Brownian motion associated with the stock price

of (3.4) in the market M.
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Therefore, in the constructed market M̃ of (3.14)-(3.16), the volatility

matrix and the market price of risk are given by

σ̃(t) ≡






−σ1(t) 0

−σ1(t) σ2(t)




 (3.17)

and

θ̃(t) ≡






θ̃1(t)

θ̃2(t)




 ≡ σ̃−1(t)






r1(t) − r(t)

r2(t) − r(t)






=






− 1
σ1(t)

0

− 1
σ2(t)

1
σ2(t)











r1(t) − r(t)

r2(t) − r(t)






=






r(t)−r1(t)
σ1(t)

r2(t)−r1(t)
σ2(t)




 (3.18)

respectively. A simple computation can show that

θ̃1(t) = θ1(t) − σ1(t)

θ̃2(t) = θ2(t) (3.19)

If we denote by 1− π̃1(t)− π̃2(t), π̃1(t), π̃2(t) the shares of portfolio value

invested in the risk-free bond, the first risky asset and the second risky asset

in the market M̃, respectively, then the corresponding portfolio value process

X̃ π̃(t) with an initial value of x
p

satisfies

dX̃ π̃(t)

X̃ π̃(t)
= r(t)dt+ π̃⊤(t)σ̃(t)[θ̃(t)dt+ dW (t)] (3.20)

where π̃(t) = (π̃1(t), π̃2(t))
⊤, W (t) = (W1(t),W2(t))

⊤.
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The following theorem tells us that the optimal portfolio π(t) of the prob-

lem of (3.11)-(3.13) in the market M can be obtained by solving the corre-

sponding maximization problem in the market M̃.

Theorem 3.4.1. Consider the market M̃ of (3.14)-(3.16), the maximization

problem of (3.11)-(3.13) is equivalent to

max
π̃∈A1(x/p)

E

[

u
(

X̃ π̃(T )
)]

(3.21)

subject to

dX̃ π̃(t)

X̃ π̃(t)
= r(t)dt+ π̃⊤(t)σ̃(t)[θ̃(t)dt+ dW (t)]

X̃ π̃(0) =
x

p
(3.22)

where, σ̃(t) and θ̃(t) satisfy Eq. (3.17) and Eq. (3.18), respectively, and

A1(x/p) ≡
{

π̃ ∈ A(x/p) : E

[

u−
(

X̃ π̃(T )
)]

<∞
}

(3.23)

Moreover, we have that

π(t) = (π1(t), π2(t))
⊤ = (π̃0(t), π̃2(t))

⊤

π0(t) = π̃1(t) (3.24)

Proof. First, we show that Xπ(t)
P (t)

= X̃ π̃(t).

An application of Itô’s Lemma to the differential equation of the price level,

Eq. (3.1), gives us that

d

(
1

P (t)

)

= −
1

P (t)
[(i(t) − σ2

1(t))dt+ σ1(t)dW1(t)] (3.25)
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Applying then the stochastic product rule to Xπ(t)
P (t)

and using Eqs. (3.5) and

(3.25), we have

d

(
Xπ(t)

P (t)

)

=
1

P (t)
dXπ(t) +Xπ(t)d

(
1

P (t)

)

+ dX(t)d

(
1

P (t)

)

=
Xπ(t)

P (t)
[(R(t) − i(t) + σ2

1(t)
︸ ︷︷ ︸

=r1(t)

)dt

+π1(t)σ1(t)(θ1(t) − σ1(t))dt+ π2(t)σ2(t)θ2(t)dt

−(1 − π1(t))σ1(t)dW1(t) + π2(t)σ2(t)dW2(t)]

Rearranging gives

d

(
Xπ(t)

P (t)

)

=
Xπ(t)

P (t)
[r(t)dt− (r(t) − r1(t)

︸ ︷︷ ︸

=σ1(t)θ̃1(t)

)dt

+π1(t)σ1(t)(θ1(t) − σ1(t)
︸ ︷︷ ︸

=θ̃1(t)

)dt+ π2(t)σ2(t) θ2(t)
︸︷︷︸

=θ̃2(t)

dt

−(1 − π1(t))σ1(t)dW1(t) + π2(t)σ2(t)dW2(t)]

(3.26)

Using Eq. (3.18)-(3.19) and collecting terms, we get

d

(
Xπ(t)

P (t)

)

=
Xπ(t)

P (t)
[r(t)dt− (1 − π1(t))σ1(t)θ̃1(t)dt+ π2(t)σ2(t)θ̃2(t)dt

−(1 − π1(t))σ1(t)dW1(t) + π2(t)σ2(t)dW2(t)]

(3.27)

Noting that 1 − π1(t) = π0(t) + π2(t) and dividing both sides of Eq. (3.27)

by Xπ(t)
P (t)

, we obtain

d (Xπ(t)/P (t))

Xπ(t)/P (t)
= r(t)dt− (π0(t) + π2(t))σ1(t)θ̃1(t)dt+ π2(t)σ2(t)θ̃2(t)dt

−(π0(t) + π2(t))σ1(t)dW1(t) + π2(t)σ2(t)dW2(t)

(3.28)
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If we write π̃(t) ≡ (π̃1(t), π̃2(t))
⊤, set that

π̃1(t) = π0(t), π̃2(t) = π2(t) (3.29)

and recall that

σ̃(t) =






−σ1(t) 0

−σ1(t) σ2(t)




 ,

then Eq. (3.28) can be rewritten as

d (Xπ(t)/P (t))

Xπ(t)/P (t)
= r(t)dt+ π̃⊤(t)σ̃(t)

[

θ̃(t)dt+ dW (t)
]

. (3.30)

At the initial time, we have

Xπ(0)

P (0)
=
x

p
. (3.31)

So we can conclude that

Xπ(t)

P (t)
= X̃ π̃(t), for all t ∈ [0, T ]. (3.32)

In particular, we have that

Xπ(T )

P (T )
= X̃ π̃(T ). (3.33)

Secondly, we show that the constraint of (3.22) is equivalent to the con-

straint of (3.12).

We have actually proved the necessity in the first step above. We only need

to show the sufficiency. Assume

dX̃ π̃(t)

X̃ π̃(t)
= r(t)dt+ π̃⊤(t)σ̃(t)[θ̃(t)dt+ dW (t)] (3.34)
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Write the vectors appearing on the right-hand side of Eq. (3.34) in compo-

nents as

dX̃ π̃(t)

X̃ π̃(t)
= r(t)dt− (π̃1(t) + π̃2(t))σ1(t)θ̃1(t)dt+ π̃2(t)σ2(t)θ̃2(t)dt

−(π̃1(t) + π̃2(t))σ1(t)dW1(t) + π̃2(t)σ2(t)θ̃2(t)dW2(t)

(3.35)

By using the fact that π̃1(t) + π̃2(t) = 1 − π̃0(t), Eq. (3.35) can be further

written as

dX̃ π̃(t)

X̃ π̃(t)
= r(t)dt− σ1(t)θ̃1(t)

︸ ︷︷ ︸

=r(t)−r1(t)

dt+ π̃0(t)σ1(t)θ̃1(t)dt+ π̃2(t)σ2(t)θ̃2(t)dt

−σ1(t)dW1(t) + π̃0(t)σ1(t)dW1(t) + π̃2(t)σ2(t)dW2(t)

(3.36)

After canceling the terms of r(t)dt on the right-hand side of Eq. (3.36), we

arrive at

dX̃ π̃(t)

X̃ π̃(t)
= r1(t)dt+ π̃0(t)σ1(t)θ̃1(t)dt+ π̃2(t)σ2(t)θ̃2(t)dt

−σ1(t)dW1(t) + π̃0(t)σ1(t)dW1(t) + π̃2(t)σ2(t)dW2(t)

(3.37)

Now using Eq. (3.32), we get

Xπ(t) = P (t)X̃ π̃(t). (3.38)

In particular, we have

Xπ(0) = P (0)X̃ π̃(0) = p
x

p
= x. (3.39)
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Differentiating on the both sides of Eq. (3.38), then applying the stochastic

product rule to P (t)X π̃(t) and using Eqs. (3.37) and (3.1), we can get

dXπ(t) = d(P (t)X̃ π̃(t))

= P (t)dX̃ π̃(t) + X̃ π̃(t)dP (t) + dP (t)dX̃ π̃(t)

= P (t)X̃ π̃(t)
︸ ︷︷ ︸

=Xπ(t)

[(r1(t) + i(t) − σ2
1(t)

︸ ︷︷ ︸

=R(t)

)dt

+π̃0(t)σ1(t)(θ̃1(t) + σ1(t)
︸ ︷︷ ︸

=θ1(t)

)dt+ π̃2(t)σ2(t) θ̃2(t)
︸︷︷︸

=θ2(t)

dt

+π̃0(t)σ1(t)dW1(t) + π̃2(t)σ2(t)dW2(t)] (3.40)

If we set π̃0(t) = π1(t) and π̃2(t) = π2(t), we then get

dXπ(t) = Xπ(t)[R(t)dt+ π1(t)σ1(t)θ1(t)dt+ π2(t)σ2(t)θ2(t)dt

+π1(t)σ1(t)dW1(t) + π2(t)σ2(t)dW2(t)] (3.41)

which is the same as

dXπ(t)

Xπ(t)
= R(t)dt+ π⊤(t)σ(t)θ(t)dt+ π⊤(t)σ(t)dW (t) (3.42)

Finally, we show that π ∈ A1(x) if and only if π̃ ∈ A1(x/p).

Let π ∈ A(x), then by the definition of admissibility we know that

Xπ(t) ≥ 0, a.s., for all t ∈ [0, T ]. (3.43)

Since P (t) > 0, we have

X̃ π̃(t) =
Xπ(t)

P (t)
≥ 0, a.s., for all t ∈ [0, T ]. (3.44)

Using the result concluded in Eq. (3.32), we know that if E

[

u−
(

Xπ(T )
P (T )

)]

<

∞, then E

[

u−
(

X̃ π̃(T )
)]

< ∞. Similarly, let π̃ ∈ A1(x/p), we then have

π ∈ A1(x).
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Now we can solve the problem of maximizing real terminal wealth of

(3.11)-(3.13) by solving a typical terminal (nominal) wealth optimization

problem as in (3.21)-(3.23). Let us consider the CRRA utility function.

Directly applying the result obtained in the last chapter, Section 2.4 Eqs.

(2.81), to the problem of (3.21)-(3.23), we can get the optimal portfolio π̃∗

as follows

π̃∗(t) =






π̃∗
1(t)

π̃∗
2(t)






=
1

γ

(
σ̃−1(t)

)⊤
θ̃(t)

=
1

γ






− 1
σ1(t)

− 1
σ2(t)

0 1
σ2(t)











θ1(t) − σ1(t)

θ2(t)






=
1

γ






1 − θ1(t)
σ1(t)

− θ2(t)
σ2(t)

θ2(t)
σ2(t)




 (3.45)

and

π̃∗
0(t) = 1 − π̃∗

1(t) − π̃∗
2(t) =

1

γ

θ1(t)

σ1(t)
(3.46)

According to the Theorem 3.4.1., we have the relationship between the op-

timal portfolio π∗ for the problem of (3.11)-(3.13) and the optimal portfolio

π̃∗ for the problem of (3.21)-(3.23) as

π∗(t) =






π∗
1(t)

π∗
2(t)




 =






π̃∗
0(t)

π̃∗
2(t)




 (3.47)

Therefore, the optimal portfolio π∗ for the problem of (3.11)-(3.13) is given

51



by

π∗(t) =
1

γ






θ1(t)
σ1(t)

θ2(t)
σ2(t)




 =

1

γ

(
σ−1(t)

)⊤
θ(t) (3.48)

and

π∗
0(t) = 1 − π∗

1(t) − π∗
2(t) =

1

γ

(

1 −
θ1(t)

σ1(t)
−
θ2(t)

σ2(t)

)

= π̃∗
1(t) (3.49)

The optimal portfolio given in Eq. (3.48) is exactly the classical Merton’s

portfolio rule of maximizing the expected utility of (nominal) terminal wealth

in the market M of (3.2)-(3.4). That suggests that the optimal portfolio

of maximizing the expected utility of real terminal wealth, with a CRRA

utility function, can also be achieved by solving the problem of maximizing

the expected utility of (nominal) terminal wealth instead. However, this in

general is not true for markets where the index bond is absent.

3.5 Conclusion

The optimal portfolio of maximizing the expected utility of terminal real

wealth has appeared to coincide with that of maximizing the expected util-

ity of terminal nominal wealth. Put it differently, by following the trad-

ing strategy of (3.48)-(3.49), one can achieve the optimal expected utilities

of both terminal nominal wealth and terminal real wealth, at least for the

CRRA utility. That actually is a good news for the investor who invests in

the index bond because it indeed protects himself against risk due to the

unanticipated inflation.
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Chapter 4

Optimal investment for a

pension fund under inflation

risk

4.1 Introduction

There are two basic types of pension schemes: defined benefit (DB) and de-

fined contribution (DC). In a DB plan, the plan sponsor promises to the plan

beneficiaries a final level of pension benefits. This level is usually defined

according to a benefit formula, as a function of a member’s (or employee’s)

final salary (or average salary) and/or years of service in the company. Ben-

efits are usually paid as a life annuity rather than as a lump sum. The main

advantage of a DB plan is that it offers stable income replacement rates (i.e.

pension as a proportion of final salary) to retired beneficiaries and is subse-

quently indexed to inflation. The financial risks associated with a pure DB
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plan are borne by the plan sponsor, usually a large company, rather than the

plan member. The sponsor is obliged to provide adequate funds to cover the

plan liabilities. The major drawbacks include the lack of benefit portability

when changing jobs and the complex valuation of plan liabilities. In a DB

plan, when a worker moves jobs, he can end up with a much lower pension

in retirement. For example, a typical UK worker moving jobs six times in

a career could end up with a pension of only 71-75% that of a worker with

the same salary experience who remains in the same job for his whole ca-

reer (Blake and Orszag (1997)). In a defined benefit pension plan, the risk

associated with future returns on a fund’s assets is carried out by the em-

ployer or sponsor and the contribution rate varies through time as the level

of the fund fluctuates above and below its target level. This fluctuation can

be dealt with through the plan’s investment policy (including asset alloca-

tion decision, investment manager selection and performance measurement).

Cairns (2000) has considered an investment problem, in which the sponsor

minimises the discounted expected loss by selecting a contribution rate and

an asset-allocation strategy.

A defined contribution (DC) plan has a defined amount of contribution

payable by both employee and employer, often as a fixed percentage of salary.

The employee’s retirement benefit is determined by the size of the accumula-

tion at retirement. The benefit ultimately paid to the member is not known

for certain until retirement. The benefit formula is not defined either, as

opposed to the DB pension plans. At retirement, the beneficiaries can usu-

ally take the money as a life annuity, a phased withdrawal plan, a lump sum
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payment, or some combination of these. As the value of the pension benefits

is simply determined as the market value of the backing assets, the pension

benefits are easily transferable between jobs. In a pure DC plan, plan mem-

bers have extensive control over their accounts’ investment strategy (usually

subject to the investment menu offered). While the employer or sponsor is

only obliged to make regular contributions, the employees bear a range of

risks. In particular, they bear asset price risk (the risk of losses in the value

of their pension fund due to falls in asset values) at retirement and inflation

risk (the risk of losses in the real value of pensions due to unanticipated

inflation). Generally speaking, a pure DC pension plan is more costly for

employees than a pure DB plan.

Nevertheless, Pension plans, in the world, have been undergoing a tran-

sition from DB plans toward DC plans, which involves enormous transfers of

risks from taxpayers and corporate DB sponsors to the individual members

of DC plans (see, for example, Winklevoss 1993 and Blake/Cairns/Dowd

(2001)). So it is of interest to study a DC plan’s investment policy, under

which the plan members can protect themselves against both asset price risk

and inflation risk. We have seen in the last chapter that one can protect

himself against the risk due to unexpected inflation by investing some share

of wealth in the index bond. The way to reduce these risks to the minimum

would then be to trade the DC pension funds in the index bond by following

the optimal portfolio rule which we will address in the sections that follow.
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4.2 The investment problem for a DC pen-

sion fund

It is assumed that a representative member of a DC pension plan makes

contributions continuously to the pension fund during a fixed time horizon

[0, T ]. The contribution rate is fixed as a percentage c of his salary. We will

consider the investment problem, from the perspective of a representative

DC plan member, in which the investment decision is made through an in-

surance company or a pension manager. The objective is to maximize the

expected utility of terminal value of his pension fund.

Let us define the stochastic price level as

dP (t)

P (t)
= idt+ σ1dW1(t)

P (0) = p > 0 (4.1)

where, the constant i is the expected rate of inflation and W1(t) is the source

of uncertainty which causes the price level to fluctuate around the expected

inflation with an instantaneous intensity of fluctuation σ1.

Assume there is a market M consisting of three assets which are of in-

terest for the pension fund manager. These assets are a risk-free bond, an

index bond and a stock.

(1) The risk-free bond pays a constant rate of nominal return of R and
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its price dynamics is given by

dB(t)

B(t)
= Rdt. (4.2)

(2) The index bond offers a constant rate of real return of r and its price

process is given by

dI(t)

I(t)
= rdt+

dP (t)

P (t)

= (r + i)dt+ σ1dW1(t) (4.3)

(3) The price process of the stock is given by

dS(t)

S(t)
= µdt+ σ2dW2(t) (4.4)

where, µ is the expected rate of return on the stock and σ2 is the volatility

caused by the source of risk W2. As before, W2(t) is assumed to be indepen-

dent on W1(t).

Let us assume that σ1 6= 0 and σ2 6= 0. Then the volatility matrix

σ ≡






σ1 0

0 σ2




 (4.5)

is nonsingular. As a consequence, there exists a (unique) market price of risk

θ satisfying

θ = σ−1






r + i−R

µ−R




 ≡






θ1

θ2




 . (4.6)

The market is therefore arbitrage-free and complete. We further assume that

the salary of the pension plan member follows the dynamics:

dY (t)

Y (t)
= κdt+ σ3dW1(t)

Y (0) = y > 0 (4.7)
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where κ is the expected growth rate of salary and σ1 is the volatility of salary

which is driven by the source of uncertainty of inflation. Both κ and σ3 are

constants. It can be verified by Itô’s Lemma that the following process is the

solution to the stochastic differential equation (4.7)

Y (t) = ye(κ− 1
2
σ2
3)t+σ3W1(t) (4.8)

If we write σY ≡ (σ3, 0)⊤, then we can rewrite Eq. (4.8) as 4.1

Y (t) = ye(κ− 1
2
‖σY ‖2)t+σ⊤

Y W (t) (4.9)

If the plan member contributes continuously to his DC pension fund with

a fixed contribution rate (i.e. the percentage of the member’s salary) of c (>

0) and 1− π1(t)− π2(t), π1(t), π2(t) shares of the pension fund are invested

in the riskless bond, the index bond and the stock, respectively. Then the

corresponding wealth process with an initial value of x (0 < x < ∞), which

we denote by Xπ(t), is governed by the following equation

dXπ(t) = Xπ(t)[Rdt+ π⊤(t)σ (θdt+ dW (t))] + cY (t)dt (4.10)

where, cY (t) is the amount of money contributed to the pension fund at time

t and π(t) = (π1(t), π2(t))
⊤. Note that the contributions are assumed to be

invested continuously over time. The contribution at time t, cY (t), can be

viewed as the rate of a random endowment and is strictly positive.

Definition 4.2.1. A portfolio process π is said to be admissible if the corre-

sponding wealth process Xπ(t) in (4.10) satisfies

Xπ(t) + Et

[∫ T

t

H(s)

H(t)
cY (s)ds

]

≥ 0, for all t ∈ [0, T ] (4.11)

4.1So it is straightforward to allow the salary process to be correlated with the stock

price.
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almost surely. We denote the class of admissible portfolio processes by AY .

Note that, in the presence of a positive random endowment stream, the

wealth is allowed to become negative, so long as the present value of future

endowments is large enough to offset such a negative value.

We are now in a position to formally describe the objective of the plan

member. The objective is written mathematically as

max
π∈Ā(x)

E [u (Xπ(T ))] (4.12)

subject to

dXπ(t) = Xπ(t)[Rdt+ π⊤(t)σ (θdt+ dW (t))] + cY (t)dt

Xπ(0) = x (4.13)

where,

Ā(x) ≡
{
π ∈ AY (x) : E

[
u− (Xπ(T ))

]
<∞

}
. (4.14)

The utility function is assumed to be of CRRA form

u(z) =
z1−γ

1 − γ
(4.15)

By the comparison of the constraint of (4.13) with the constraints for the

terminal wealth optimization problems, with which we have dealt so far, we

notice that there is an additional term cY (t)dt, which is not proportional

to the corresponding wealth. We have to get rid of this term before we can

follow the procedure of the Martingale method. We will treat this in the

next section.
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4.3 How to solve it

In order to express the first equality in the budget constraint of (4.13) as a

form linear in the corresponding wealth, let us examine the expectation of

the plan member’s future contribution which is defined below.

Definition 4.3.1. The present value of expected future contribution process

is defined as

D(t) = Et

[∫ T

t

H(s)

H(t)
cY (s)ds

]

(4.16)

where, Et is the conditional expectation with respect to the Brownian filtration

{F(t)}t and

H(t) ≡ e−Rt− 1
2
‖θ‖2t−θ⊤W (t) (4.17)

is the stochastic discount factor which adjusts for nominal interest rate and

market price of risk.

By inspecting the Markovian structure of the expression on the right-

hand side of Eq. (4.16), we note that it should be possible to express D(t)

in terms of the instantaneous contribution cY (t). The following proposition

shows this possibility.

Proposition 4.3.1. The present value of expected future contribution process

D(t) is proportional to the instantaneous contribution process cY (·), that is,

D(t) =
1

β

(
eβ(T−t) − 1

)
cY (t), for all t ∈ [0, T ] (4.18)

with β ≡ κ−R− σ3θ1. In particular,

d ≡ D(0) =
1

β

(
eβT − 1

)
cy

D(T ) = 0 (4.19)
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Proof. By definition we have

D(t) = Et

[∫ T

t

H(s)

H(t)
cY (s)ds

]

= cY (t)Et

[∫ T

t

H(s)

H(t)

Y (s)

Y (t)
ds

]

(4.20)

Both processes H(·) and Y (·) are geometric Brownian motions and therefore

it follows easily that H(s)
H(t)

Y (s)
Y (t)

is independent of F(t) for s ≥ t. As a conse-

quence, the conditional expectation collapses to an unconditional expectation

and we obtain

D(t) = cY (t)g(t, T ) (4.21)

with the deterministic function g(t, T ) being defined by

g(t, T ) ≡ E

[∫ T−t

0

H(s)
Y (s)

Y (0)
ds

]

(4.22)

Noting that

H(s)
Y (s)

Y (0)
= e(κ−R)se(σ3−θ1)W1(s)−θ2W2(s)− 1

2(‖θ‖2+σ2
3)s

= e(κ−R)se(σY −θ)⊤W (s)− 1
2(‖θ‖2+‖σY ‖2)s

= eβse(σY −θ)⊤W (s)− 1
2(‖σY −θ‖2)s, (4.23)

we obtain

E

[

H(s)
Y (s)

Y (0)

]

= E
[
eβs
]
· E
[

e(σY −θ)⊤W (s)− 1
2(‖σY −θ‖2)s

]

= eβs (4.24)

The last equality is obtained by the fact that a stochastic exponential Mar-

tingale has expectation of one. Integrating both sides of Eq. (4.24) gives
∫ T−t

0

E

[

H(s)
Y (s)

Y (0)

]

ds =

∫ T−t

0

eβsds

=
1

β

(
eβ(T−t) − 1

)
(4.25)
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The left-hand side of Eq. (4.25) is equal to g(t, T ) by the Fubini theorem.

Differentiating both sides of Eq. (4.18) and using Eq. (4.7), we get

dD(t) = d

(
1

β

(
eβ(T−t) − 1

)
cY (t)

)

=
1

β

(
eβ(T−t) − 1

)
cdY (t) +

1

β
cY (t)d

(
eβ(T−t) − 1

)

=
1

β

(
eβ(T−t) − 1

)
cY (t)

(
κdt+ σ⊤

Y dW (t)
)
−

1

β
cY (t)eβ(T−t)βdt

Collecting terms, we obtain

dD(t) =
1

β

(
eβ(T−t) − 1

)
cY (t)

(
(κ− β)dt+ σ⊤

Y dW (t)
)
− cY (t)dt

(4.26)

Using the equality of (4.18) and the definition of β in Proposition 4.3.1, we

then have

dD(t) = D(t)
[
(R + σ3θ1)dt+ σ⊤

Y dW (t)
]
− cY (t)dt (4.27)

If we add Eq. (4.27) and the first equality in Eq. (4.13) together, the term

cY (t) will be canceled out. We will define a process based on this observation

below.

Definition 4.3.2. Let us define a process

V (t) ≡ Xπ(t) +D(t) (4.28)

where Xπ(t) and D(t) satisfy Eqs. (4.13) and (4.16), respectively.

Taking differentials on both sides of Eq. (4.28) and using Eq. (4.13) and
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Eq. (4.27), we have

dV (t) = dXπ(t) + dD(t)

= Xπ(t)
[
Rdt+ π⊤(t)σ (θdt+ dW (t))

]
+ cY (t)dt

+D(t)
[
(R + σ3θ1)dt+ σ⊤

Y dW (t)
]
− cY (t)dt

Collecting terms gives us

dV (t) = V (t)

[

Rdt+
Xπ(t)π⊤(t)σ +D(t)σ⊤

Y

V (t)
(θdt+ dW (t))

]

(4.29)

From Eq. (4.29), we can see that dV (t) is proportional to V (t). Next,

we check whether the discounted process of V (t) is a P-local Martingale.

Multiplying V (t) by H(t) in (4.17) and taking diffeentials, we can get

d (H(t)V (t)) = H(t)dV (t) + V (t)dH(t) + dH(t)dV (t)

= H(t)V (t)

[

Rdt+
Xπ(t)π⊤(t)σ +D(t)σ⊤

Y

V (t)
(θdt+ dW (t))

]

−H(t)V (t)
[
Rdt+ θ⊤dW (t)

]

−H(t)V (t)
Xπ(t)π⊤(t)σ +D(t)σ⊤

Y

V (t)
θdt

After canceling out terms, we obtain

d (H(t)V (t)) = H(t)V (t)

[
Xπ(t)π⊤(t)σ +D(t)σ⊤

Y

V (t)
− θ⊤

]

dW (t)

= H(t)V (t)

[
Xπ(t)σ⊤π(t) +D(t)σY

V (t)
− θ

]⊤

dW (t)

(4.30)

This shows that H(t)V (t) is a P- local martingale as it can be written as a

stochastic integral with respect to the Brownian motion W (t). Moreover, we
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know that

V (T ) = Xπ(T ) +D(T ) = Xπ(T ) (4.31)

and

V (0) = Xπ(0) +D(0) = x+ d (4.32)

So we can conclude that the plan member’s optimization problem of (4.12)-

(4.14) is equivalent to maximizing E[u(V (T ))] over a class of admissible port-

folio process π, subject to the constraint of (4.29) and (4.32) (or (4.31)). We

will discuss this formally in the next section.

4.4 Optimal management of the pension fund

We have just discussed in the previous section that the plan member’s op-

timization problem of (4.12)-(4.14) can be solved by solving the problem

of

max
π∈A1(x+d)

E[u(V (T ))] (4.33)

subject to

dV (t) = V (t)

[

Rdt+
Xπ(t)π⊤(t)σ +D(t)σ⊤

Y

V (t)
(θdt+ dW (t))

]

V (0) = x+ d (4.34)

where,

A1(x+ d) ≡
{
π ∈ A(x+ d) : E

[
u− (V (T ))

]
<∞

}
(4.35)
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and A(x + d) is the class of admissible portfolio processes with an initial

value x+ d, such that the corresponding portfolio value process satisfies

V (t) = Xπ(t) +D(t) ≥ 0, for all t ∈ [0, T ] (4.36)

It is easy to check that π ∈ Ā(x) if and only if π ∈ A1(x+ d).

A direct application of the results obtained in Section 2.4 to the problem

of (4.33)-(4.35) with the CRRA utility in (4.15), we can get

B∗ = (x+ d)
(H(T ))−

1
γ

E

[

(H(T ))
γ−1

γ

] (4.37)

The corresponding optimum wealth process is then given by

V ∗(t) =
(x+ d)

H(t)

Et

[

(H(T ))
γ−1

γ

]

E

[

(H(T ))
γ−1

γ

] (4.38)

Let us write

Z1(t) ≡ e
1−γ

γ
θ⊤W (t)− 1

2(
1−γ

γ )
2
‖θ‖2t (4.39)

and

f1(t) ≡ e
1−γ

γ (R+ 1
2γ

‖θ‖2)t. (4.40)

We then obtain

(H(t))
γ−1

γ = f1(t)Z1(t) (4.41)

Eq. (4.38) now becomes

V ∗(t) =
(x+ d)

H(t)
Z1(t) (4.42)
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Multiplying H(t) on both sides of Eq. (4.42) and then differentiating both

sides, we get

d (H(t)V ∗(t)) = H(t)V ∗(t)
1 − γ

γ
θ⊤dW (t) (4.43)

As Eq. (4.30) should also hold at the optimum, we have

d (H(t)V ∗(t)) = H(t)V ∗(t)

[
X∗(t)σ⊤π∗(t) +D(t)σY

V ∗(t)
− θ

]⊤

dW (t),

(4.44)

where, X∗(t) ≡ Xπ∗

(t). A comparison of Eq.(4.44) with Eq. (4.43) leads to

X∗(t)σ⊤π∗(t) +D(t)σY

V ∗(t)
− θ =

1 − γ

γ
θ, (4.45)

from which we can solve for π∗(t)

π∗(t) =
1

γ
(σ⊤)−1θ

V ∗(t)

X∗(t)
− (σ⊤)−1σY

D(t)

X∗(t)
. (4.46)

This formula depends on the optimal portfolio value V ∗(t), which consists of

the optimal pension fund level X∗(t) and the expected future contributions

D(t). We have seen in Proposition 4.3.1 that the expected future contribu-

tions of the plan member is observable given the member’s current salary. So

it will be more convenient for the fund manager to implement the optimal

strategy if we express it in terms of D(t). Substituting V ∗(t) in Eq. (4.46)

by X∗(t) +D(t), we can get

π∗(t) =
1

γ
(σ⊤)−1θ + (σ⊤)−1

(
1

γ
θ − σY

)
D(t)

X∗(t)
(4.47)

In particular, at the initial date t = 0, we have

π∗(0) =
1

γ
(σ⊤)−1θ + (σ⊤)−1

(
1

γ
θ − σY

)
d

x
, for x > 0 (4.48)
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Remark 1. The optimal investment strategy of (4.47) is made up of two

parts:

• one is the classical optimal portfolio rule we saw in Section 2.4, and

• the other is proportional to the ratio of the present value of expected

future contribution to the optimal portfolio value-to-date.

We can express the optimal portfolio strategy π∗(t) obtained in Eq. (4.47)

in terms of the asset prices at time t (I(t) and S(t)) and the plan member’s

current salary Y (t). Since X∗(t) = V ∗(t) − D(t) and D(t) is proportional

to Y (t) (recall Eq. (4.18)), we only need to write V ∗(t) in terms of the

observable variables I(t), S(t) and Y (t).4.2

Dividing both sides of Eq. (4.41) by H(t)f1(t) gives us

1

f1(t)
(H(t))−

1
γ =

1

H(t)
Z1(t) (4.49)

Eq. (4.42) then can be rewitten as

V ∗(t) =
(x+ d)

f1(t)
(H(t))−

1
γ (4.50)

So we only need to write H(t) in terms of the observable variables. It can be

shown that

H(t) = eαt

(
I(t)

I(0)

)a(
S(t)

S(0)

)b

, (4.51)

4.2In fact, it will be sufficient to express the optimal investment strategy in terms of only

two variables from the combination of S(t) and any one of the variables Y (t), I(t) and the

current price level P (t) (see Zhang/Korn/Ewald (2007) for details).
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where,

α ≡ (r + i)

(
r + i−R

σ1

−
1

2

)

+ µ

(
µ−R

σ2

−
1

2

)

−
1

2
‖θ‖2

a ≡ −
r + i−R

σ1

b ≡ −
µ−R

σ2

(4.52)

Therefore, we have

V ∗(t) =
(x+ d)

f1(t)
e−

α
γ

t

(
I(t)

I(0)

)− a
γ
(
S(t)

S(0)

)− b
γ

(4.53)

68



Chapter 5

Optimal decisions in a labor

market

5.1 Introduction

We have dealt with a terminal wealth optimization problem with an exoge-

nous income stream (contributions) being added to the budget constraint in

Chapter 4. In this chapter, we will turn to the intertemporal consumption

optimization problem with a labor-income stream which is determined en-

dogenously within the model.

A closed-form solution to the intertemporal consumption problem, in

which both asset return and labor income uncertainty are considered simul-

taneously, appears to be absent in the literature of economics. Much of the

existing literature either provides an approximate solution or relies on re-

strictive assumptions to obtain analytical results. The former includes Ma-
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son/Wright (2001), Chan/Viceira (2000) and Chamberlain/Wilson (2000).

For the latter, much of the published work assumes that the asset return is

non-stochastic. This is reflected, for example, in the book by Blanchard and

Fischer (1989) and many others. Some of the literature takes the advantage of

the quadratic utility function that has the characterization of linear marginal

utility. This can be seen, for example, in the work by Blanchard and Fischer

(1989) and the some references therein. However, as having been discussed

in Section 2.2 of Chapter 2, the quadratic utility is an unattractive descrip-

tion of behavior toward risk as it implies increasing absolute risk aversion.

Some assumptions are also restricted to the nature of the uncertainty of labor

income. For example, Toche (2005) assumes that the uncertainty is about

the timing of the income loss in addition to the assumption of non-stochastic

asset return. Similarly, Pitchford (1991) takes the form of uncertainty as the

timing of the reversal of an income shock.

In this chapter, we investigate the continuous-time consumption model

with stochastic asset returns and stochastic labor income, while the latter

is caused by the stochastic labor supply which is to be determined within

the model upon the available market information. The utility function is as-

sumed to be a linear combination of two CRRA utility functions with respect

to consumption and labor supply, respectively. Our model appears to have

some similarity with the model considered by Bodie, Merton and Samuel-

son in that, both consider the objective of maximizing expected discounted

lifetime utility and both assume that the utility function has two arguments
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(consumption and labor/leisure).5.1 Nonetheless, our work differs from that

studied by Bodie, Merton and Samuelson in the following main aspects:

(i) The first distinction, which is the main finding in this work, is that we

derive analytically a closed-form solution for the consumption, labor supply

and portfolio, other than the conclusion drawn also by Bodie, Merton and

Samuelson that the labor income induces the individual to invest an addi-

tional amount of wealth to the risky asset. The paper by Bodie, Merton and

Samuelson appears to make much effort to show that labor income and invest-

ment choices are related, while leaving the optimal consumption unanalyzed.

Moreover, the optimal consumption and leisure appears to rely on the indi-

rect utility function, when using the dynamic programming approach, which

in general does not admit a closed-form solution. By contrast, the Martin-

gale method enables us to obtain a closed-form solution (even without solving

any partial differential equation). We also establish the Euler equation un-

der uncertainty, finding that the uncertainty gives rise to an additional term

(corresponding to the market price of risk) in the Euler equation under cer-

tainty. This is represented in Eq. (5.38). The finding is also supported by

the results concluded by Toche (2005) and Mason/Wright (2001). In Toche

(2005), the inclusion of an additional term to the Euler equation is due to the

risk of permanent income loss while, in Mason/Wright (2001), the conclusion

is drawn based on the approximation of a discrete-time problem.

5.1I wish to take this opportunity to thank an anonymous referee for the comments and

criticism of the very early version of this model and for bringing the work by Bodie, Merton

and Samuelson and others to my mind.
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(ii) In their work, consumption and leisure are treated as a ’composite’

good. This makes their model essentially equivalent to the basic consump-

tion model with the consumption or leisure being the only argument of the

utility function. Indeed, from the constraint of (4) on page 430 [7], it is easy

to see that the consumption or the leisure can be expressed as the other. See

also the step 3 on page 431 [7] for the confirmation that they determine the

optimal level of the total spending on the composite good in order to solve a

static problem, in which the optimal consumption is determined as if it would

be in any static decision. By contrast, our decisions of optimal consumption

and labor supply are made individually. Moreover, the optimal investment

in the risky asset, in our work, is directly determined as the proportion of the

financial wealth, rather than as the sum of the financial wealth and uncertain

future labor income as done in the work of Bodie, Merton and Samuelson.

In their case, the optimal portfolio is determined by subtracting the total in-

vestment in the risky asset by the implicit investment of the expected future

labor income in this asset.

(iii) In addition, our work shows a way of modeling the situation that

people do not work after retirement by introducing a dummy variable. This

model also covers the general case, in which it is commonly assumed that

people work for their whole time horizon (see also Romer [32] on the Base-

line Real-Business-Cycle model and Walsh [35] on the basic New Keynesian

model). To see this, we simply need to redefine the dummy variable as equal

to one for all time t. That is the same as to simply omitting the dummy
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variable and then following the same techniques used in this model. 5.2

In Section 5.2, we will specify the model which is solved by using the

martingale method in Section 5.3. The closed forms of consumption, labor

supply and portfolio are given in Eqs. (5.34), (5.46) and (5.61) in Section 5.3,

where the economic interpretations of the results are provided. Conclusions

follow in Section 5.4.

5.2 Description of the model

We assume that an infinitely-lived small individual with zero initial capital

works only before retirement age T while consuming continuously during his

time horizon.5.3 Given his wage rate w(t) with an initial wage w(0) and its

growth rate a being fixed, he earns a labor income of w(t)L(t) by supplying

an amount of labor L(t) at the time t when t ≤ T . The labor income is in-

vested into a risk-free bond offering a gross return R and a risky asset offering

an instantaneous expected gross return µ. After the individual retires, his

post-retirement consumption is financed by his savings when young and the

5.2In the very early version of this work, it was introduced two such dummy variables.

The other of which was used to capture a situation, where people may not need to consume

of their financial wealth and labor income before retirement as they may have rich families

or huge bequest to finance their living expense before they retire. That was criticized

immediately as non-realistic. However, dropping this dummy variable even saves our

effort on computation, while not affecting the basic structure of the optimal solution.
5.3In what we have discussed before, the time horizon is finite. An infinite time horizon

can be viewed as the limit of a finite time horizon.
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capital gains from the investment. His objective is to maximize his expected

lifetime utility by choosing the optimal consumption, the amount of work

(when young) and portfolio. The individual has a utility function which is a

linear combination of two CRRA utilities with respect to consumption and

labor supply, respectively.

5.2.1 The dynamics of the asset prices

(1) The price of the risk-free bond B(t) satisfies

dB(t)

B(t)
= Rdt (5.1)

where, R is the nominal interest rate.

(2) The price of the risky asset, or stock, follows the geometric Brownian

motion

dS(t)

S(t)
= µdt+ σdW (t), (5.2)

Where, µ is the expected nominal return on the risky asset per unit time, σ

(σ 6= 0) is the volatility of the asset price and W (t) is a Brownian motion

defined on a probability space (Ω,F ,P).

As before, the stochastic discount factor H(t) is given by

H(t) ≡ e−Rt− 1
2
θ2t−θW (t) (5.3)

where, θ is the market price of risk defined by

θ ≡
µ−R

σ
(5.4)
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5.2.2 The utility function

The (instantaneous) utility function is defined by

u(C(t), L(t)) =
(C(t))1−γ

1 − γ
− b

(L(t))1+η

1 + η
(5.5)

where, γ > 1 5.4 and η > 0 5.5. The utility function has two arguments. One

is the consumption per unit time C(t), and the other is the labor supply

(or the amount of work) per unit time L(t). The coefficient b is positive,

together with the negative sign, indicating disutility gained from working.

The parameters γ and η regulate the curvature of the utility function with

respect to consumption and labor supply, respectively.

5.2.3 The wealth process

By assumption, the individual works only before age T . In other words, he

no longer works after reaching his retirement age T . In order to capture this

fact in the lifetime horizon, we introduce a dummy variable as follows:

1(t) =







0 , t > T

1 , t ≤ T
(5.6)

If we assume that the individual with no initial capital invests proportion

π(t) of his wealth into the risky asset at time t, t > 0, and 1−π(t) fraction of

his wealth into the risk-free bond, then his wealth process X(t) ≡ Xπ,C,L(t)

5.4So that the utility function with respect to the consumption is bounded
5.5So that the utility function with respect to the labor supply without the negative sign

is convex
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satisfies

dX(t) = X(t) [Rdt+ π(t)σ (θdt+ dW (t))] − C(t)dt+ w(t)L(t)1(t)dt

X(0) = 0 (5.7)

It says that the change in wealth must equal the capital gains less infinitesi-

mal consumption plus infinitesimal labor income when t ≤ T and equal the

difference between the capital gains and the infinitesimal consumption when

t > T . The labor income before retirement is equal to the amount of work

L(t) times a wage rate w(t). The wage rate grows exponentially at a rate of

a with a strictly positive initial wage w(0), that is

w(t) = w(0)eat (5.8)

The financial market under consideration is complete (because the num-

ber of the risky asset is the same as the number of the driving Brownian

motion) and is free of arbitrage (because σ 6= 0). As a consequence, the

individual’s current wealth must equal the expected present value of his fu-

ture consumption less the expected present value of his labor income. In

other words, the resources for his expected future consumption come from

the current value of his accumulated financial wealth through investment plus

the expected present value of his future labor income if he is still working.

Formally, the wealth process X(t) must satisfy that

X(t) = Et

[∫ ∞

t

H(s)

H(t)
C(s)ds

]

− Et

[∫ ∞

t

H(s)

H(t)
w(t)L(s)1(s)ds

]

(5.9)

where, Et is the expectation conditional on the Brownian filtration {F(t)}t

and F(t) ⊆ F . By the definition of the dummy variable 1(t), Eq. (5.9) can
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be further expressed as

X(t) = Et

[∫ ∞

t

H(s)

H(t)
C(s)ds

]

− Et

[∫ T

t

H(s)

H(t)
w(t)L(s)ds

]

(5.10)

The wealth vanishes when lifetime comes to end, that is

lim
t→∞

X(t) = 0 (5.11)

Furthermore, at time zero,5.6 we have

E0

[∫ ∞

0

H(s)C(s)ds

]

= E0

[∫ T

0

H(s)w(t)L(s)ds

]

(5.12)

where E0 is the conditional expectation conditional on the trivial information

set F(0), which is actually equal to the unconditional expectation E. We will

drop the subscript 0 when it appears in what follows. Intuitively, Eq. (5.12)

says that the expected discounted future consumption when old (i.e. after

retirement age T ) is financed by the expected discounted labor income when

young (i.e. before retirement).

5.2.4 The consumption-labor supply-portfolio problem

We start by defining the admissibility which is eqivalent to the constraint of

non-negative values of the present expected future consumption.

Definition 5.2.1. A consumption-labor supply-portfolio process set (C(t), L(t), π(t))

is said to be admissible if

X(t) + Et

[∫ ∞

t

H(s)

H(t)
w(t)L(s)1(s)ds

]

≥ 0, for all t ≥ 0 (5.13)

with probability one. The resulting class of admissible sets is denoted by AL.

5.6Note that H(0) = 1 and X(0) = 0
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Similar to the case with a positive endowment of Definition 4.2.1., the

wealth before age T is allowed to become negative so long as that the present

value of future labor income is large enough to offset such a negative value .

The individual wishes to maximize the expected total discounted utility

by choosing an optimal consumption-labor supply-portfolio set over the class

that

A2 ≡

{

(C(t), L(t), π(t)) ∈ AL : E

[∫ ∞

0

e−ρtu−(C(t), L(t))dt

]

<∞

}

(5.14)

Namely, his optimization problem is given by

max
(C(t),L(t),π(t))∈A2

E

[∫ ∞

0

e−ρtu(C(t), L(t))dt

]

(5.15)

subject to

dX(t) = X(t) [Rdt+ π(t)σ (θdt+ dW (t))] − C(t)dt+ w(t)L(t)1(t)dt

X(0) = 0 (5.16)

where, the discount rate satisfies ρ > 0.

5.3 Solving the optimization problem

It follows from the martingale method that the (dynamic) maximization

problem (5.15)-(5.16) is equivalent to the following problem

max
C(t),L(t)

E

[∫ ∞

0

e−ρtu(C(t), L(t))dt

]

(5.17)
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subject to

E

[∫ ∞

0

H(t)C(t)dt

]

= E

[∫ T

0

H(t)w(t)L(t)dt

]

(5.18)

This budget constraint of (5.18) is the same as

E

[∫ ∞

0

H(t) (C(t) − w(t)L(t)1(t)) dt

]

= 0 (5.19)

We see that, in the maximization problem above, the portfolio π(t) has dis-

appeared from the control variables.

5.3.1 Optimal consumption and labor supply

We now apply the Lagrangian method to the static problem just described.

The Lagrangian function L ≡ L(λ;C,L) is written as

L = E

[∫ ∞

0

e−ρtu(C(t), L(t))dt

]

+ λ

(

0 − E

[∫ ∞

0

H(t)(C(t) − wtLt1(t))dt

])

(5.20)

where, λ is the Lagrangian multiplier. The first order conditions are

∂u

∂C(t)
= λeρtH(t)

∂u

∂L(t)
= −λeρtH(t)w(t)1(t) (5.21)

From the utility function given in Eq. (5.5), we know that

∂u

∂C(t)
= C(t)−γ

∂u

∂L(t)
= −bL(t)η (5.22)

Substituting them back into the first order conditions (5.21) leads to

C∗(t) = λ−
1
γ e−

ρ
γ

tH(t)−
1
γ

L∗(t) = λ
1
η e

ρ
η
tH(t)

1
η

(
w(t)

b

) 1
η

1(t) (5.23)
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The multiplier λ can then be obtained from the budget constraint: Substi-

tuting C∗(t) and L∗(t) into the budget constraint of (5.18), we get

λ−
1
γ E

[∫ ∞

0

e−
ρ
γ

tH(t)
γ−1

γ dt

]

= λ
1
η b−

1
η E

[∫ T

0

e
ρ
η
t(H(t)w(t))

η+1
η dt

]

According to the Fubini theorem, we can interchange the order of the expec-

tation and integration as

λ−
1
γ

∫ ∞

0

e−
ρ
γ

t
E

[

H(t)
γ−1

γ

]

dt = λ
1
η b−

1
η

∫ T

0

e
ρ
η
t
E

[

(H(t)w(t))
η+1

η

]

dt (5.24)

From the definition of H(t) in (5.3), we have that

H(t)
γ−1

γ = e−
γ−1

γ
(r+ θ2

2
)t− γ−1

γ
θW (t)

= e−
γ−1

γ
θW (t)− 1

2
( γ−1

γ
)2θ2t · e−

γ−1
γ

(r+ θ2

2γ
)t (5.25)

Noting that e−
γ−1

γ
θW (t)− 1

2
( γ−1

γ
)2θ2t is a martingale and thus has unit expecta-

tion, we obtain

E

[

H(t)
γ−1

γ

]

= e−yt, with y ≡ γ−1
γ

(r + θ2

2γ
). (5.26)

Similarly, we can get that

E

[

(H(t)w(t))
η+1

η

]

= w
η+1

η

0 e−zt, with z ≡ η+1
η

(r − a− θ2

2η
) (5.27)

The substitution of E

[

H(t)
γ−1

γ

]

(5.26) and E

[

(H(t)w(t))
η+1

η

]

(5.27) from

Eq. (5.24) gives us that

λ−
1
γ

∫ ∞

0

e−
ρ
γ

te−ytdt = λ
1
η b−

1
ηw

η+1
η

0

∫ T

0

e
ρ
η
te−ztdt (5.28)

Making the following denotations

ȳ ≡ y +
ρ

γ

z̄ ≡ z −
ρ

η
(5.29)
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we can rewrite Eq. (5.28) as

λ−
1
γ

∫ ∞

0

e−ȳtdt = λ
1
η b−

1
ηw

η+1
η

0

∫ T

0

e−z̄tdt (5.30)

A simple calculation leads to5.7

λ−
1
γ
1

ȳ
= λ

1
η b−

1
ηw

η+1
η

0

1

z̄
(1 − e−z̄T ) (5.31)

provided that ρ 6= (η + 1)(r − a − θ2

2η
).5.8 Multiplying both sides by λ−

1
η ȳ

results in5.9

λ−
γ+η
γη = A(T ), with A(T ) ≡ ȳb−

1
ηw

η+1
η

0
1
z̄
(1 − e−z̄T ) (5.32)

So we have

λ−
1
γ = (A(T ))

η
γ+η

λ
1
η = (A(T ))−

γ
γ+η

(5.33)

Replacing λ−
1
γ and λ

1
η in (5.31) by (5.33), we obtain the optimal consumption

and optimal labor supply as follows

C∗(t) = (A(T ))
η

γ+η e−
ρ
γ

tH(t)−
1
γ ,

L∗(t) = (A(T ))−
γ

γ+η e
ρ
η
tH(t)

1
η

(
w(t)

b

) 1
η

1(t)

(5.34)

5.7γ > 1, ρ > 0 and r > 0, so ȳ > 0
5.8This condition is to ensure that z̄ 6= 0.
5.9The variable T indicates that A depends on T

81



5.3.2 Economic interpretation and the Euler equation

In the last subsection, we have obtained the optimal consumption and labor

supply policies in Eq. (5.34). By inspecting Eq. (5.34), it is clear that the

individual will work more when his wage rate w(t) rises but work less when

the relative weight of the disutility from working b is bigger. With constant

risk aversions (i.e. γ and η are held fixed), the individual will work more and

consume less when the rate of time preference ρ becomes larger. Moreover,

we can see from Eq. (5.34) that C∗
t is decreasing in H(t) and L∗(t) is increas-

ing in H(t). If we refer to the inverse of the stochastic discount factor 1
H(t)

as the market deflater, these phenomena can then be interpreted as that the

individual is allowed to consume more if the market as a whole performs well

but has to work harder if the market develops bad as he has to compensate

for the market’s bad performance.

As we also see from Eq. (5.34), both of the optimal consumption and

labor supply are stochastic and depend on the market prices through the

market deflater H(t). It is thus more convenient to study their growth in

terms of expectation. Similar to (5.25)-(5.26), we have

H(t)−
1
γ = e

1
γ
(r+ θ2

2
)t+ θ

γ
W (t)

= e
θ
γ

W (t)− θ2

2γ2 t
· e

1
γ
(r+ γ+1

2γ
θ2)t (5.35)

The expectation of e
θ
γ

W (t)− θ2

2γ2 t
equals one, so

E

[

H(t)−
1
γ

]

= e
1
γ
(r+ γ+1

2γ
θ2)t (5.36)
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And consequently, the expected optimal consumption is given by

C̄∗
t ≡ E [C∗(t)] = (A(T ))

η
γ+η e−

ρ
γ

t
E

[

H(t)−
1
γ

]

= (A(T ))
η

γ+η e
1
γ
(r−ρ+ γ+1

2γ
θ2)t (5.37)

The growth rate of the expected optimal consumption then equals

1

C̄∗
t

d(C̄∗
t )

dt
=

1

γ

(

r − ρ+
γ + 1

2γ
θ2

)

(5.38)

This is referred to the Euler equation for the intertemporal maximization

above (under uncertainty). The positive term θ2 captures the uncertainty of

the financial market. A risky financial market induces the consumer to shift

consumption over time. It can be seen that the growth rate is decreasing in γ

or increasing in the elasticity of substitution between consumptions 1
γ
: when

γ is smaller, the less marginal utility changes as consumption changes, the

more the individual is willing to substitute consumption between periods.

When the difference r − ρ is fixed, a higher market price of risk θ leads to a

steeper slope of the expected consumption, thus a more prudent behavior. If

the risk premium µ−r equals nothing, then the market price of risk becomes

zero and therefore all the wealth will be optimally invested into the risk-free

bond. The Euler equation (under uncertainty) will then coincide with the

well-known Euler equation for the case of certainty and becomes.

1

C̄∗
t

d(C̄∗
t )

dt
=
r − ρ

γ
(5.39)

It states that, when the nominal interest rate exceeds the discount rate, the

expected consumption of the individual with a constant relative risk aversion

(with respect to the consumption) is rising and falling if the reverse holds.
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From (5.38), it is easy to see that the growth rate of the expected con-

sumption is strictly positive when ρ < r + γ+1
2γ
θ2, strictly negative if ρ >

r + γ+1
2γ
θ2 and constant if ρ = r + γ+1

2γ
θ2. Intuitively, as the discount rate

captures the consumer’s preference over time, a smaller discount rate im-

plies that the consumer is more patient and therefore is more willing to shift

consumption between different periods (that is, consumption is rising). Sim-

ilarly, he will be less patient if ρ is larger, in particular, when the discount

rate exceed the critical value r+ γ+1
2γ
θ2, he will prefer to consume more earlier

than later (that is, consumption is falling).

Parallel to the analysis of the optimal consumption, we have

H(t)
1
η = e−

1
η
(r+ θ2

2
)t− θ

η
W (t)

= e
− θ

η
W (t)− θ2

2η2 t
· e−

1
η
(r+ η−1

2η
θ2)t (5.40)

So the expectation is equal to

E

[

H(t)
1
η

]

= e−
1
η
(r+ η−1

2η
θ2)t (5.41)

The expected optimal labor supply for t ≤ T is then computed as

L̄∗
t ≡ E [L∗(t)] = (A(T ))−

γ
γ+η

(
w(t)

b

) 1
η

e
ρ
η
t
E

[

H(t)
1
η

]

= (A(T ))−
γ

γ+η

(
w(t)

b

) 1
η

e−
1
η
(r−ρ+ η−1

2η
θ2)t (5.42)

The growth rate of the expected labor supply equals

1

L̄∗
t

d(L̄∗
t )

dt
= −

1

η

(

r − ρ+
η − 1

2η
θ2

)

(5.43)
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When θ = 0, it becomes

1

L̄∗
t

d(L̄∗
t )

dt
= −

r − ρ

η
(5.44)

It can be included from (5.43) that the expected labor supply is constant

when ρ = r+ η−1
2η
θ2. And it is strictly decreasing in time when ρ < r+ η−1

2η
θ2

while strictly increasing when ρ > r + η−1
2η
θ2.

Using the first order conditions (5.21) and the marginal utility functions

(5.22), we can obtain the tradeoff between consumption and labor supply

bLη
t

C(t)−γ
= w(t)1(t) (5.45)

This implies that labor supply when t ≤ T is decreasing in consumption

(due to the diminishing marginal utility with respect to consumption) and

increasing in the wage rate.

5.3.3 Optimal wealth and portfolio rule

By following the procedure of the Martingale method discussed in Chapter

2, it is easy to check that the optimal portfolio for the consumption-portfolio

problem with CRRA utility is constant over time and given by

π∗(t) =
1

γ

µ− r

σ2
(5.46)

Since there is no labor supply after retirement, the intertemporal consumption-

labor supply-portfolio problem for t > T collapses to the intertemporal consumption-

portfolio problem starting from the time point T with a constant relative risk
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aversion (CRRA) utility.5.10 That is to say, the optimal portfolio rule for our

problem when t > T is given by (5.46). We now focus on the case when t ≤ T .

Clearly, the optimally invested wealth X∗(t), t ≤ T , satisfies Eq. (5.10)

at the optimum, that is

X∗(t) = Et

[∫ ∞

t

H(s)

H(t)
C∗(s)ds

]

− Et

[∫ T

t

H(s)

H(t)
w(t)L(s)∗ds

]

(5.47)

We compute the first term on the right-hand side of Eq. (5.47) below. The

second term can be computed in a similar manner. Multiplying and dividing

the integrand of the first term by C∗(t) and noting that C∗(t) is F(t) mea-

surable and therefore can be taken out from the conditional expectation5.11

Et

[∫ ∞

t

H(s)

H(t)
C∗(s)ds

]

= C∗(t)Et

[∫ ∞

t

H(s)C∗(s)

H(t)C∗(t)
ds

]

(5.48)

5.10As the horizon is infinite, it does not matter for the optimal investment strategy

whether it starts at time zero or at a positive time point T .
5.11The reason C∗(t) is F(t) measurable is simply because C∗(t) is a function ofH(t) which

is F(t) measurable. The fact that C∗(t) can be taken out from the conditional expectation

is due to the property of ’Taking out what is known’ of conditional expectation.
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Substituting the optimal consumption obtained in (5.34) gives us

Et

[∫ ∞

t

H(s)

H(t)
C∗(s)ds

]

= C∗(t)Et

[
∫ ∞

t

e−
ρ
γ
(s−t)

(
H(s)

H(t)

) γ−1
γ

ds

]

= C∗(t)E

[
∫ ∞

t

e−
ρ
γ
(s−t)

(
H(s)

H(t)

) γ−1
γ

ds

]

= C∗(t)

∫ ∞

0

e−
ρ
γ

s
E

[

H(s)
γ−1

γ

]

ds

= C∗(t)

∫ ∞

0

e−
ρ
γ

se−ysds

= C∗(t)

∫ ∞

0

e−ȳsds

= C∗(t)
1

ȳ
(5.49)

where, the conditional expectation is replaced by the unconditional expecta-

tion (the second equality) since the increment of a Brownian motion W (s)−

W (t) is independent of F(t) for s ≥ t. The third equality is obtained by re-

labeling s− t as s for the reason that {W (s)−W (t)}s≥t is again a Brownian

motion. We have used the result obtained in Eq. (5.26) to get the fourth

equality. Similarly, we can get that

Et

[∫ T

t

H(s)

H(t)
w(t)L∗(s)ds

]

=
1

z̄
(1 − e−z̄(T−t))w(t)L∗(t) (5.50)

We now have obtained that

X∗(t) =
1

ȳ
C∗(t) −

1

z̄
(1 − e−z̄(T−t))w(t)L∗(t) (5.51)

Rearranging it, we get

C∗
t = ȳX∗(t) +

ȳ

z̄
(1 − e−z̄(T−t))w(t)L∗(t) (5.52)

Noting that both ȳ and ȳ
z̄
(1−e−z̄(T−t)) are strictly positive (so long as z̄ 6= 0),

we can say that the consumption before retirement, at the optimum, is both
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proportional to the financial wealth-to-date and proportional to the labor

income.

Discounting the optimally invested wealth in Eq. (5.51) by the stochastic

discount factor H(t) and then taking differentials, we can get5.12

d(H(t)X∗(t)) = −H(t)

(
1

ȳ
C∗(t)

γ − 1

γ
−

1

z̄
(1 − e−z̄(T−t))w(t)L∗(t)

η + 1

η

)

θdW (t)

−H(t)C∗(t)dt+H(t)w(t)L∗(t)dt (5.53)

On the other hand, we know, by applying Itô’s lemma to the stochastic

discount factor H(t), that

dH(t) = H(t)(Rdt+ θdW (t)) (5.54)

and, by further applying the stochastic product rule to H(t)X(t), that

d(H(t)X(t)) = H(t)dX(t) +X(t)dH(t) + dH(t)dX(t)

= H(t)X(t)(π(t)σ − θ)dW (t) −H(t)C(t)dt+H(t)w(t)L(t)1(t)dt

(5.55)

From the definition of the dummy variable, we have 1(t) = 0 when t > T

and 1(t) = 1 when t ≤ T . So the last equation becomes

d(H(t)X(t)) = H(t)X(t)(π(t)σ − θ)dW (t) −H(t)C(t)dt+H(t)w(t)L(t)dt,

(5.56)

for t ≤ T . This also holds at the optimum as

d(H(t)X∗(t)) = H(t)X∗(t)(π∗(t)σ − θ)dW (t) −H(t)C∗(t)dt+H(t)w(t)L∗(t)dt

(5.57)

5.12The details of the derivation are given in the Appendix
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A Comparison of Eq. (5.53) with Eq. (5.57) gives us the optimal portfolio

rule for the case when t ≤ T

π∗(t) =

(

1 −

1
ȳ
C∗(t)γ−1

γ
− 1

z̄
(1 − e−z̄(T−t))w(t)L∗(t)η+1

η

X∗(t)

)

θ

σ
(5.58)

with

θ =
µ−R

σ
(5.59)

and C∗(t), L∗(t) satisfy Eq. (5.34). By comparing the numerator in the

parentheses in Eq. (5.58) with X∗(t) in Eq. (5.51), it is trivial to conclude

that

π∗(t) → 0, when γ → ∞ and η → ∞ (5.60)

In words, when the investor is extremely risk-averse, he will invest almost all

of his wealth in the risk-free bond for the reason of safety.

The optimal portfolio Eq. (5.58) can be further written as

π∗(t) =
1

γ

µ− r

σ2
+ (

1

γ
+

1

η
)
µ− r

σ2

1

z̄
(1 − e−z̄(T−t))

w(t)L∗(t)

X∗(t)
(5.61)

Similar to the case with endowments (contributions) discussed in the previous

chapter, the share of the wealth optimally invested into the risky asset is made

up of two parts:

• the classical Merton portfolio rule for the consumption-portfolio prob-

lem 1
γ

µ−r
σ2 plus

• the correction term which is proportional to the optimal labor income

relative to the optimally invested wealth-to-date,

( 1
γ

+ 1
η
)µ−r

σ2
1
z̄
(1 − e−z̄(T−t))w(t)L∗(t)

X∗(t)
.
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Remark 5.3.1. The fact that the solution (C∗(t), L∗(t), π∗(t)) obtained in

Eqs. (5.34), (5.46) and (5.61) is optimal for the consumption-labor supply-

portfolio problem of (5.15)-(5.16) with the utility function in (5.5) can be

verified in a similar way to the proof of Theorem 2.3.3.

5.4 Conclusion

It has been found that, at the optimum, a smaller discount rate implies lower

expected labor supply before retirement and higher expected consumption

during retirement. When the discount rate is below some critical values (for

example, when ρ < min{r+ γ+1
2γ
θ2, r+ η−1

2η
θ2}), the expected labor supply will

drop during the working period and reach its minimum at the retirement age;

while the consumption is expected to grow with no limit. When the discount

rate exceeds these critical values, the expected labor supply will increase

and reaches its maximum at the retirement age; but the consumption is

expected to decrease and converge to zero. We have derived that when labor

income supplements total wealth, the classical Merton portfolio rule needs

to be adjusted by adding an additional share of the total wealth which is

proportional to the labor income.

90



Chapter 6

Optimization in incomplete

markets

6.1 Introduction

In this chapter, we consider a small investor with an initial capital x (0 <

x <∞) who invests his wealth into the market M of (1.1)-(1.2) which satis-

fies the General Assumption 1 and m < d. As before, he wishes to maximize

his expected utility for a given utility function but has no knowledge about

future prices and has no inside information either. His optimal decision is

made only by observing the past and the present stock prices. For a com-

plete market, we have demonstrated that such an optimization problem and

its modifications can be solved using the Martingale method. However, as we

have seen, the traditional Martingale method is based on the fact that,in a

complete financial market, every F(T )-measurable contingent claim B can be

obtained by trading following an appropriate portfolio strategy given enough
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initial wealth. According to the second fundamental theorem, we know that

incompleteness arises when the number of stocks is strictly less than the

dimension of the underlying Brownian motion. In such a situation, the tra-

ditional Martingale method can’t solve the investor’s maximization problem

directly. To overcome the problem of incompleteness, Karatzas/Shreve/Xu

(1991) have developed a way to complete the market by introducing addi-

tional fictitious stocks and then making them uninteresting to the investor

so that the optimal proportions of his wealth invested into such stocks are

actually equal nothing (For the details of this approach, see for example,

Karatzas/Shreve/Xu (1991)). In this chapter, we will introduce an easier

way to transform an incomplete market to a complete one, in which the tra-

ditional Martingale method can be applied. Our principal is to reduce the

dimension of the driving Brownian motion by summing up the normalized

Itô integrals to get new Brownian motions. However, the created new Brow-

nian motions are no longer independent when the number of new Brownian

motions needed is more than one. We then need to recreate independent

Brownian motions from correlated ones.6.1

6.1This method is drawn form Zhang (2007a). I believe that the result presented in this

chapter was known by many authors. But, to the best of my knowledge, it had never been

published explicitly in the literature.
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6.2 Transformation from an incomplete mar-

ket to a complete one

Let us assume that the market is incomplete and the market price of risk

θ(t) is given by

θ(t) ≡ σ⊤(t)
(
σ(t)σ⊤(t)

)−1
[µ(t) −R(t)1m] (6.1)

Given an initial capital x (0 < x <∞) and a CRRA utility function u(·), we

consider the problem of maximizing expected utility from terminal wealth

max
π∈A1(x)

E [u(Xπ(T ))] (6.2)

subject to

dXπ(t) = Xπ(t)
[
R(t)dt+ π⊤(t)σ(t) (θ(t) + dW (t))

]

Xπ(0) = x (6.3)

with

A1(x) ≡
{
π ∈ A(x) : E

[
u−(Xπ(T ))

]
<∞

}
(6.4)

6.2.1 One stock

We start by looking at a simple case where, except one riskless bond, there

is only one stock whose price is driven by a d-dimensional Brownian motion

and d > 1. Their price dynamics are given by

dS0(t)

S0(t)
= R(t)dt,

S0(0) = s0 (6.5)
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and

dS(t)

S(t)
= µ(t)dt+

d∑

j=1

σj(t)dWj(t)

S(0) = s (6.6)

Denoting by σ(t) ≡ (σ1(t), σ2(t), ..., σd(t))
⊤ the volatility vector, we define

a process by

B(t) ≡
d∑

j=1

∫ t

0

σj(s)

‖σ(s)‖
dWj(s), (6.7)

Then B(t) is a Brownian motion. To see this, let us refer to Lévy’s Theorem.

Roughly speaking, the theorem says that a Martingale starting at origin,

with continuous paths and quadratic variation of < W (t),W (t) >= t is a

Brownian motion. For a full story, see for example Shreve (2004), page 168-

171. Being a sum of stochastic integrals, B(t) is a continuous Martingale

with B(0) = 0 and

dB(t)dB(t) =
d∑

j=1

σ2
j (t)

‖σ(t)‖2dt = dt (6.8)

So B(t) is a Brownian motion according to Lévy’s Theorem. We can then

write the stock price in terms of B(t), with volatility ‖σ(t)‖, as

dS(t)

S(t)
= µ(t)dt+ ‖σ(t)‖ dB(t) (6.9)

As we see, the dimension of the Brownian motion has been reduced to one.

Consequently, the market now becomes complete. The Martingale method

can now be applied in the completed market. The market coefficients, i.e., the

interest rate R(t), the stock appreciation rate µ(t) and the volatility vector

σ(t), are assumed to be F(t)-measurable and F(t) is the Brownian filtration.
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If πold(t), πnew(t) denote the proportion of wealth invested into the stock in

old market and new market, respectively. The optimal portfolio π∗(t) in both

markets should coincide under our assumption that the optimal decision is

made via observing the stock prices in the past and the present only. So

the maximization problem in the incomplete market can be replicated in

the complete market using the Martingale method. A direct application of

the optimal portfolio process π∗(t) of the Section 2.4 in Chapter 2 for the

completed market gives us that

π∗(t) =
1

γ

µ(t) −R(t)

‖σ(t)‖2

=
1

γ

µ(t) −R(t)

σ(t)σ⊤(t)

=
1

γ

µ(t) −R(t)
∑d

j=1 σ
2
j (t)

(6.10)

6.2.2 More than one stock

When there is more than one stock, the created new Brownian motions will

be no longer independent. We then need to recreate independent Brownian

motions from correlated ones. We will treat this below.

Let us consider an incomplete market M, where the number of indepen-

dent Brownian motions is strictly greater than the number of stocks and

strictly greater than one, that is 2 ≤ m < d. The asset prices of this market

are given by

dS0(t)

S0(t)
= R(t)dt,

S0(0) = s0 (6.11)
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and

dSi(t)

Si(t)
= µi(t)dt+

d∑

j=1

σij(t)dWj(t),

Si(0) = si, for i = 1, ...,m, (6.12)

where W (t) = (W1(t), ...,Wd(t))
⊤ is a d-dimensional Brownian motion on

a probability space (Ω,F ,P) with the component Brownian motions Wj(t),

j = 1, ..., d, being independent. When the market has more than one stock

available, we need two main procedures to ’complete’ the incomplete market:

Step 1: Reducing the dimension of the Brownian motion

In this step, the principle of reducing the dimension of the driving Brown-

ian motion is the same as in the case with one stock. Denote by σi(t) ≡

(σi1(t), σi2(t), ..., σid(t)), for i = 1, ...,m, row vectors. Then the volatility ma-

trix in the incomplete market can be written as σ(t) = (σ1(t), σ2(t), ..., σm(t))⊤

which is a matrix of size m× d. we define processes by

Bi(t) ≡
d∑

j=1

∫ t

0

σij(s)

‖σi(s)‖
dWj(s), i = 1, ...,m (6.13)

Expressing the stock prices in terms of Bi(t) gives that

dSi(t)

Si(t)
= µi(t)dt+ ‖σi(t)‖ dBi(t), i = 1, ...,m (6.14)

Where (B1(t), ..., Bm(t))⊤ is an m-dimensional Brownian motion. But the

component Brownian motions are not independent. Specifically, we have

(see Shreve (2004) Exercise 4.15, Page 199)

dBi(t)dBk(t) = ρik(t)dt, for all i 6= k (6.15)
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with

ρik(t) =
1

‖σi(t)‖ · ‖σk(t)‖

d∑

j=1

σij(t)σkj(t)

=
〈σi(t), σk(t)〉

‖σi(t)‖ · ‖σk(t)‖
(6.16)

From the Cauchy-Schwarz inequality, it follows that |ρik(t)| ≤ 1. Under

the assumption that the volatility matrix has full row rank, i.e., row vectors

σ1(t), ..., σm(t) are linearly independent, we have

|ρik(t)| < 1 for i 6= k (6.17)

Step 2: Creating independent component Brownian motions from

correlated ones

Denote by Ψ(t) the matrix generated by the correlation coefficients of the

correlated m-dimensional Brownian motion, (B1(t), ..., Bm(t))⊤

Ψ(t) ≡












ρ11(t) ρ12(t) · · · ρ1m(t)

ρ21(t) ρ22(t) · · · ρ2m(t)

...
...

. . .
...

ρm1(t) ρm2(t) · · · ρmm(t)












(6.18)

with

ρik(t)







= 1, if i = k

< 1, if i 6= k

The matrix Ψ(t) is nonsingular, symmetric and positively semi-definite

for all t. So there exists a nonsingular matrix A(t) ≡ (aij(t))i,j=1,...,m such

that

Ψ(t) = A(t)A⊤(t) (6.19)
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It can be shown that there existm independent Brownian motions W̃1(t), ..., W̃m(t)

such that (see Shreve (2004) Exercise 4.16, Page 200)

Bi(t) =
m∑

j=1

∫ t

0

aij(s)dW̃j(s), for all i = 1, ...,m (6.20)

So far we have arrived at a complete market with m stocks and m in-

dependent component Brownian motions. The m stocks in the incomplete

market can now be rewritten as

dSi(t)

Si(t)
= µi(t)dt+ ‖σi(t)‖

m∑

j=1

aij(t)dW̃j(t), for all i = 1, ...,m (6.21)

The volatility matrix, denoted by σ̃(t), under the completed market is given

by

σ̃(t) =












‖σ1(t)‖ a11(t) ‖σ1(t)‖ a12(t) · · · ‖σ1(t)‖ a1m(t)

‖σ2(t)‖ a21(t) ‖σ2(t)‖ a22(t) · · · ‖σ2(t)‖ a2m(t)

...
...

. . .
...

‖σm(t)‖ am1(t) ‖σm(t)‖ am2(t) · · · ‖σm(t)‖ amm(t)












=












‖σ1(t)‖ 0 · · · 0

0 ‖σ2(t)‖ · · · 0

...
...

. . .
...

0 0 · · · ‖σm(t)‖












· A(t)

(6.22)

Let Σ(t) denote the diagonal matrix

Σ(t) ≡












‖σ1(t)‖ 0 · · · 0

0 ‖σ2(t)‖ · · · 0

...
...

. . .
...

0 0 · · · ‖σm(t)‖












(6.23)
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Since both of the matrices Σ(t) and A(t) are nonsingular, the inverse of

the volatility matrix reads

σ̃−1(t) = (Σ(t)A(t))−1 = A−1(t)Σ−1(t) (6.24)

Applying the Martingale method in the completed market of (6.11) and

(6.21) as before, we get the optimal portfolio process as follows

π∗(t) =
1

γ
· (σ̃−1(t))⊤ · (σ̃−1(t)) · (µ(t) −R(t)1m)

=
1

γ
·
(
A−1(t)Σ−1(t)

)⊤
·
(
A−1(t)Σ−1(t)

)
· (µ(t) −R(t)1m)

=
1

γ
· Σ−1(t) ·

(
A(t)A⊤(t)

)−1
· Σ−1(t) · (µ(t) −R(t)1m)

On the other side, we know from (6.19) that A(t)A⊤(t) = Ψ(t), so we get

π∗(t) =
1

γ
· Σ−1(t) · Ψ−1(t) · Σ−1(t) · (µ(t) −R(t)1m)

=
1

γ
· (Σ(t)Ψ(t)Σ(t))−1 · (µ(t) −R(t)1m) (6.25)

where Ψ(t) and Σ(t) are defined by (6.18) and (6.23), respectively.

Keep in mind our assumptions that the optimal decision is made on the

basis of observation of the past and present stock prices and that the coef-

ficients of stocks are either deterministic or functions of stock prices. The

optimal portfolio process for the completed market coincides with that for

the original incomplete market. We summarize the main results for the max-

imization problem in the incomplete market in the following proposition.

Proposition 6.2.1. Consider the maximization problem of (6.2)-(6.4) with

a CRRA utility function. The market coefficients are assumed to be adapted
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to the Brownian filtration. We then have the following results:

(1) the optimal portfolio π∗(t), t ∈ [0, T ], is given by

π∗(t) =
1

γ
·
(
σ(t)σ⊤(t)

)−1
· (µ(t) −R(t)1m) (6.26)

with the corresponding optimal terminal wealth Xπ∗

(T ) satisfying

Xπ∗

(T ) = B∗ = x
(H(T ))−

1
γ

E

[

(H(T ))
γ−1

γ

] (6.27)

where,

H(T ) = e−
∫ T

0 R(t)dt− 1
2

∫ T

0 ‖θ̃(t)‖
2
dt−

∫ T

0 θ⊤(t)dW (t) (6.28)

with θ̃(t) satisfying

θ̃(t) = A−1(t) · Σ−1(t) · (µ(t) −R(t)1m), (6.29)

(2) the maximal expected utility of final wealth is given by

E[u(Xπ(T ))] = E

[
1

1 − γ
(B∗)1−γ

]

=
x1−γ

1 − γ
e
(1−γ)

∫ T

0

(

R(t)+ 1
2(1−γ)‖θ̃(t)‖

2
)

dt
(6.30)

with

∥
∥
∥θ̃(t)

∥
∥
∥

2

= (µ(t) −R(t)1m)⊤ ·
(
σ(t)σ⊤(t)

)−1
· (µ(t) −R(t)1m) (6.31)

Proof. (Sketch). From Eqs. (6.16), (6.18) and (6.23), it is clear that

Σ(t)Ψ(t)Σ(t) = σ(t)σ⊤(t) (6.32)

(1) π∗(t) in (6.26) is obtained by substituting (6.32) into (6.25)
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When the market is complete, the market price of risk θ̃(t) then satisfies

θ̃(t) = σ̃−1(t) · (µ(t) −R(t)1m) (6.33)

where, σ̃−1(t) satisfies Eq. (6.24). That is the equality of (6.29).

(2) From (6.29), (6.19) and (6.32), we have

∥
∥
∥θ̃(t)

∥
∥
∥

2

= θ⊤(t) · θ̃(t)

= (µ(t) −R(t)1m)⊤ · (Σ−1(t))⊤ · (A−1(t))⊤ · A−1(t) · Σ−1(t) · (µ(t) −R(t)1m)

= (µ(t) −R(t)1m)⊤ · (Σ−1(t))⊤ ·
(
A(t)A⊤(t)

)−1
· Σ−1(t) · (µ(t) −R(t)1m)

= (µ(t) −R(t)1m)⊤ · (Σ−1(t))⊤ · (Ψ(t))−1 · Σ−1(t) · (µ(t) −R(t)1m)

= (µ(t) −R(t)1m)⊤ · (Σ(t)Ψ(t)Σ(t))−1 · (µ(t) −R(t)1m)

= (µ(t) −R(t)1m)⊤ ·
(
σ(t)σ⊤(t)

)−1
· (µ(t) −R(t)1m) (6.34)

Remark 6.2.1. In Proposition 6.2.1., since the matrix A(t) appears in Eq.

(6.29), the optimal final wealth Xπ∗

(T ) is not unique although both the opti-

mal portfolio process π∗(t) and the optimal expected utility are unique. The

non-uniqueness of Xπ∗

(T ) is a result of the non-uniqueness of the decompo-

sition of the matrix of correlation coefficients Ψ(t).

Remark 6.2.2. When the optimal decision is made based on the observation

of the stock prices in the past and the present, the optimal solution to the

maximization problem of (6.2)-(6.4) in an incomplete market appears to be

analogue to that in the complete market.
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Chapter 7

Appendix

The derivation of Eq. (5.53)

Multiplying Eq. (5.51) by H(t) and then substituting C∗(t) and L∗(t)

obtained in Eq. (5.34) gives us

H(t)X∗(t)

=
1

ȳ
H(t)C∗(t) −

1

z̄

(
1 − e−z̄(T−t)

)
H(t)wL∗(t)

=
1

ȳ
(A(T ))

η
γ+η e−

ρ
γ

tH(t)
γ−1

γ −
1

z̄

(
1 − e−z̄(T−t)

)
(A(T ))−

γ
γ+η b−

1
ηw(t)

η+1
η e

ρ
η
tH(t)

η+1
η

(7.1)

Taking differentials

d(H(t)X∗(t))

=
1

ȳ
(A(T ))

η
γ+η d

(

e−
ρ
γ

tH(t)
γ−1

γ

)

−
1

z̄
(A(T ))−

γ
γ+η b−

1
ηw

η+1
η

0 d
(

e(
ρ
η
+a η+1

η )t
(
1 − e−z̄(T−t)

)
H(t)

η+1
η

)

(7.2)
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By applying Itô’s lemma and then using Eq. (5.54), we can get

d
(

H(t)
γ−1

γ

)

= −H(t)
γ−1

γ

(
γ − 1

γ
θdW (t) + ydt

)

(7.3)

and

d
(

H(t)
η+1

η

)

= −H(t)
η+1

η

(
η + 1

η
θdW (t) +

(

z + a
η + 1

η

)

dt

)

(7.4)

Applying the product rule to e−
ρ
γ

tH(t)
γ−1

γ and e(
ρ
η
+a η+1

η )t(1−e−z̄(T−t))H(t)
η+1

η ,

respectively, and using (7.3), (7.4) and (5.29), we get

d
(

e−
ρ
γ

tH(t)
γ−1

γ

)

= H(t)
γ−1

γ d
(

e−
ρ
γ

t
)

+ e−
ρ
γ

td
(

H(t)
γ−1

γ

)

= −
ρ

γ
e−

ρ
γ

tH(t)
γ−1

γ dt− e−
ρ
γ

tH(t)
γ−1

γ

(
γ − 1

γ
θdW (t) + ydt

)

= −e−
ρ
γ

tH(t)
γ−1

γ

(
γ − 1

γ
θdW (t) + ȳdt

)

(7.5)

and

d
(

e(
ρ
η
+a η+1

η )t
(
1 − e−z̄(T−t)

)
H(t)

η+1
η

)

= d
((

e(
ρ
η
+a η+1

η
)t − e−z̄T e(z+a η+1

η
)t
)

H(t)
η+1

η

)

= H(t)
η+1

η d
(

e(
ρ
η
+a η+1

η
)t − e−z̄T e(z+a η+1

η
)t
)

+
(

e(
ρ
η
+a η+1

η
)t − e−z̄T e(z+a η+1

η
)t
)

d
(

H(t)
η+1

η

)

= H(t)
η+1

η

((
ρ

η
+ a

η + 1

η

)

e(
ρ
η
+a η+1

η
)t −

(

z + a
η + 1

η

)

e−z̄T e(z+a η+1
η

)t

)

dt

−
(

e(
ρ
η
+a η+1

η
)t − e−z̄T e(z+a η+1

η
)t
)

H(t)
η+1

η

(
η + 1

η
θdW (t) +

(

z + a
η + 1

η

)

dt

)

= −e(
ρ
η
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η )t
(
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)
H(t)

η+1
η
η + 1

η
θdW (t) − z̄e(

ρ
η
+a η+1

η )tH(t)
η+1

η dt

(7.6)
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Substituting (7.5) and (7.6) back to (7.2) and then collecting terms and using

(5.8), (5.29) and (5.34) results in

d(H(t)X∗(t))

= −
1

ȳ
(A(T ))

η
γ+η e−

ρ
γ

tH(t)
γ−1

γ

(
γ − 1

γ
θdW (t) + ȳdt

)

+
1

z̄
(A(T ))−

γ
γ+η b−

1
ηw

η+1
η

0

(

e(
ρ
η
+a η+1

η )t(1 − e−z̄(T−t))H(t)
η+1

η
η + 1

η
θdW (t)

+z̄e(
ρ
η
+a η+1

η )tH(t)
η+1

η dt
)

= −H(t)

(
1

ȳ
C∗(t)

γ − 1

γ
−

1

z̄
(1 − e−z̄(T−t))w(t)L∗(t)

η + 1

η

)

θdW (t)

−H(t)C∗(t)dt+H(t)w(t)L∗(t)dt

(7.7)
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