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Abstract

In this paper, a new mixed integer mathematical programme is proposed for the
application of Hub Location Problems (HLP) in public transport planning. This
model is among the few existing ones for this application. Some classes of valid
inequalities are proposed yielding a very tight model. To solve instances of this
problem where existing standard solvers fail, two approaches are proposed. The
first one is an exact accelerated Benders decomposition algorithm and the latter a
greedy neighborhood search. The computational results substantiate the superiority
of our solution approaches to existing standard MIP solvers like CPLEX, both in
terms of computational time and problem instance size that can be solved. The
greedy neighborhood search heuristic is shown to be extremely efficient.

Key words: Integer programming, hub location, transportation, decomposition,
heuristic

1 Introduction

In the last two decades, due to an enormous increase in the body of telecommu-
nications, transportations and logistics, new and modern strategies are inves-
tigated and many studies are devoted to these areas. Hub Location Problems
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(HLP) have received a lot of attention but, the application in Public Trans-
port not.
Hakimi (1964), showed that in order to find the optimal location of a single
switching center that minimizes the total wire length in a communication net-
work, one can limit oneself to finding the vertex median of the corresponding
graph. Hakimi (1965), proved that optimal locations of switching center(s)
in a graph of communication network are at p-medians of the corresponding
weighted graph. In general he emphasized on the node optimality of one-
median and p-median problems in a weighted graph.
Goldman (1969) proposed models for the problem of finding p centers and
assigning flows to center(s) aiming to result in a minimum of transportation
cost. His problem was in fact hub median problem while he used the word
center, instead.
In a HLP network, the flow originated from an origin i and destined to node
j is not shipped directly. Rather, it is sent through some intermediate nodes
(called hub nodes) and maybe intermediate edges (called hub edges) connect-
ing these hub nodes. When the hub nodes are selected, the non-hub nodes
(called spoke nodes) will be allocated to them in order to send their flow via
hub-level network. The allocation scheme can be single or multiple, based on
the permission to allocate a spoke node only to a single node or at least one,
respectively.
In classical HLP models, four main assumptions are always considered:

Ass. a The hub-level network is a complete graph.
Ass. b Using inter-hub connections has a lower price per unit than using spoke

connections. That is, it benefits from a discount factor α, (0 < α < 1).
Ass. c Direct connections between the spoke nodes are not allowed.
Ass. d Costs are proportional to the distance or in another word triangle in-

equality holds.

For the first time, O’Kelly (1986a,b) paved the way for the future study of
hub location problems. On the discrete hub location problem, the first work
is again due to O’Kelly (1987), where he proposed the first mathematical
formulation (a quadratic model) for Single Allocation p-Hub Median Problem
(SApHMP). This problem is also known as Uncapacitated Single Allocation
p-Hub Median Problem (USApHMP).
There are some reviews devoted to HLPs on a discrete network. Among them,
we refer readers to the two latest reviews (Campbell et al., 2002) and (Alumur
and Kara, 2007) wherein one can also find more details about the other works
and reviews.
In the formulation context as mentioned earlier, the first formulation is pro-
posed by O’Kelly (1987) for SApHMP applied to airline passenger transport.
But, the first linear integer programming for pHMP was proposed by Campbell
(1994b) in 1994. Again, Campbell (1996) presented another integer program-
ming (IP) formulations for SApHMP.
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Skorin-Kapov et al. (1996), proposed a tight MIP formulation for the USApHMP.
Ernst and Krishnamoorthy (1996) presented a new LP formulation for the
SApHMP which required fewer variables and constraints than those available
in literature. O’Kelly et al. (1996), tried to use other existing formulations
and improve the linearization scheme for both single and multiple allocations.
Ebery (2001) presented new MIP for USApHMP.

Other work by Sohn and Park (1998) deals with USApHMP. They studied
the case when the unit flow cost is symmetric and proportional to the distance.
They succeed to improve the formulation of (O’Kelly et al., 1996).
The first model for the multiple allocation problem was due to the work of
Campbell (1992). After that, Campbell (1994b) realized that in the absence
of capacity constraints, the total flow from each origin to each destination
will be routed via the least cost hub pair. Therefore, it is not necessary for
all the n4 variables to be binary in MApHMP. He proposed formulations
for UpHMP and UHLP. Again, Campbell (1996) presented another IP for-
mulations for MApHMP. Skorin-Kapov et al. (1996) presented a new MIP
for UMApHMP. A new model for UMApHMP was proposed by Ernst and
Krishnamoorthy (1998a) based on the idea of their earlier work on the sin-
gle allocation scheme. Sohn and Park (1998), proposed another model for the
UMApHMP.
The answer to the question of the optimal number of hubs for a given set of in-
teractions between a number of fixed nodes leads to incorporating new aspects
in the problem. Trying to make the number of hubs an endogenous part of the
problem, one can either make the operating cost of hub facilities explicit or
consider an available budget. For the first time, O’Kelly (1992a) introduced
incorporation of fixed costs as hub node setup cost. Campbell (1994b) also
suggested using a threshold approach and incorporated fixed costs for spoke
edges in pHMP. Sohn and Park (1998), proposed improved MIP formulations
for UMApHMP and USApHMP where fixed cost for hub edges was consid-
ered.

To the best of our knowledge, Nickel et al. (2001) proposed the first model for
HLPs. They assumed fixed costs, not only for hub facilities, but fixed costs
for hub edges and spoke edges were also considered.
When the number of hubs is not fixed, in addition to having multiple and
single allocations, there can be capacity policies. These cases can be studied in
(Campbell, 1994b), (Aykin, 1994), (Ernst and Krishnamoorthy, 1999), (Ebery
et al., 2000), (Labbé et al., 2005), (Yaman, 2005), (Yaman and Carello, 2005),
(Maŕın, 2005a) and (Costa et al., 2007).
The rest of the paper is organized as follows: In the next section, we are
going to present a new mathematical model for application of HLPs in public
transport planning. We will compare our model with the comparable models
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available in literature, in section 3. In section 4, we will propose different
Benders decomposition schemes and accelerated versions. In addition to that,
we will propose a greedy neighborhood search heuristic utilized with some
improving strategies. The results of our heuristic are also used to evaluate the
quality of a linear relaxation of the problem which is tightened by some classes
of valid inequalities. In section 5, we will conclude our work and will propose
some research directions.

2 A Hub Location Formulation for the Public Transport Planning
Problem

To the best of our knowledge, Nickel et al. (2001) have been the first to propose
MIP models for application of HLPs in urban traffic networks. They proposed
two models which are known as Public Transport (PT) and General-
ized Public transport. They relax some classical assumptions of HLPs
and their models are customized for the public transport planning.
Here, we propose another MIP model which again emphasizes on the applica-
tion in public transport. We refer to this model by Hub Location Model
for Public Transport (HLPPT).
The variables in this model are defined as follows: xijkl = 1, i �= j, k �= l if the
optimal path from i to j traverses the hub edge k − l and 0, otherwise. Also,
aijk = 1, j �= i, k �= i, j if the optimal path from i to j traverses i − k, while
i is not hub and 0, otherwise and bijk = 1, j �= i, k �= i, j if the optimal path
from i to j traverses k − j, while j is not hub and 0, otherwise. In addition,
eij = 1, i �= j if the optimal path from i to j traverses i− j while either i or j
is hub and 0, otherwise. For the hub-level variables, ykl = 1, k < l if the hub
edge k − l is established and 0, otherwise and hk = 1 if k is used as hub 0
otherwise.
The transportation cost for a given flow with origin i and destination j
amounts to the sum of (i) the costs of sending the flow from i to the first
hub node in the path to j, (ii) the costs incured by traversing one or more
hub edges discounted by the discount factor α, 0 < α < 1, and (iii) the cost
of transition on the last spoke edge. The proposed mathematical formulation
turns out to be as follows:

(HLPPT)
Min

∑
i

∑
j �=i

∑
k

∑
l �=k

αWijCklxijkl +
∑

i

∑
j �=i

∑
k �=i,j

WijCikaijk +

∑
i

∑
j �=i

∑
k �=i,j

WijCkjbijk +
∑

i

∑
j �=i

WijCijeij +

∑
k

Fkhk +
∑
k

∑
l>k

Iklykl (1)
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s.t.
∑
l �=i

xijil +
∑
l �=i,j

aijl + eij = 1, ∀i, j �= i, (2)

∑
l �=j

xijlj +
∑
l �=i,j

bijl + eij = 1, ∀i, j �= i, (3)

∑
l �=k,i

xijkl + bijk =
∑

l �=k,j

xijlk + aijk, ∀i, j �= i, k �= i, j, (4)

ykl ≤ hk, ykl ≤ hl, ∀k, l > k, (5)

xijkl + xijlk ≤ ykl, ∀i, j �= i, k, l > k, (6)∑
l �=k

xkjkl ≤ hk, ∀j, k �= j, (7)

∑
k �=l

xilkl ≤ hl, ∀i, l �= i, (8)

eij ≤ 2 − (hi + hj), ∀i, j �= i, (9)

aijk ≤ 1 − hi, ∀i, j �= i, k �= i, j, (10)

bijl ≤ 1 − hj , ∀i, j �= i, l �= i, j, (11)

aijk +
∑
l �=j,k

xijlk ≤ hk, ∀i, j �= i, k �= i, j, (12)

bijk +
∑
l �=k,i

xijkl ≤ hk, ∀i, j �= i, k �= i, j, (13)

eij + 2xijij +
∑
l �=j,i

xijil +
∑
l �=i,j

xijlj ≤ hi + hj , ∀i, j �= i, (14)

xijkl, ykl, hk, aijk, bijk, eij ∈ {0, 1}. (15)

The objective (1) is the total cost of transportation plus hub nodes and edges
setup costs. The constraints (2)-(4) are the flow conservation constraints. The
constraints (5) ensures that both end-points of a hub edge are hub nodes. The
constraints (6) ensure that a hub edge should exist before being used in any
flow path. In (7) ( (8) ) it is ensured that only a flow with origin (destination)
of hub type is allowed to select a hub edge to leave the origin (arrive to the
destination). Constraints (9)-(11) check the end-points of spoke edges. Any
flow from i to j, if enters to (depart from) a node other than i and j, that
node should be a hub node. This is ensured by (12) ((13)). Selection of edges
on the path between origin and destination (i and j) depends on the status
of i and j: whether both, none or just one of them is a hub node. This has
to be checked by (14). In an uncapacitated environment, as also mentioned
in (Campbell, 1994b), only hub node and hub edge variables may need to be
considered as binary variables. Therefore, the constraints (15) can be replaced
by,

xijkl, aijk, bijk, eij ∈ (0, 1), hk, ykl ∈ {0, 1}. (16)

From now on, whenever we talk about the HLPPT we are referring to the
model of (1)-(14) together with the constraint (16).
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2.1 HLPPT vs. PT

In our new model, we tried to emphasize on the real willingness of passengers
who use public transport services. Some personal communications with them
revealed new aspects. For instance, passengers who arrived to the hub level
network do not like to change their vehicle (train) type inside this network.
That is, if they enter to a hub node they are interested to use fast-lane as long
as they did not reach to the last hub node where their destination is assigned
to.
In addition to that Ass. a and Ass. d are relaxed in our model. In another
word, by relaxing the Ass. a, there is no need to keep the completeness of
hub-level network. But, the connectivity of hub-level will be guaranteed in the
model in order to avoid changes in the types of edges inside it.
The model contains the following attributes:

Attr. a Connected hub-level network.
Attr. b The cost structure neither necessarily satisfies the triangle inequality

nor any other special structure.
Attr. c To ensure some levels of reliability, there will be possibility of multiple

connections between a spoke node and the hub-level network.

While in HLPPT a connected hub-level network is assumed, in (Nickel et al.,
2001), they did not introduce any alternative assumption for the relaxation
of Ass. a. That means, the hub-level network is not necessarily connected.
Moreover, in (Nickel et al., 2001), existence of spoke edges between hub nodes
is allowed which can be a threat for connectivity of hub-level network.
Attr. c can guaranty the existence of an alternative path if due to an unpre-
dicted failure in one transportation element in the spoke-level network a path
is abandoned.
In HLPs with the assumptions of Ass. a - Ass. d, once the hub nodes are nom-
inated, the hub-level configuration is known and the remaining problem in
the multiple allocation will be to find the cheapest routes (although, in single
assignment scheme it will be Quadratic Assignment Problem (QAP) which is
again NP-hard problem but we are not dealing with the single assignment in
our new model ). The HLPPT does not follow this way.
In our model, HLPPT, the problem is first to locate the hub-nodes, second to
choose the connecting hub edges so that results in a connected hub-level graph
and then in the third step, routing the flows. In the second step, neither the
number of hub edges is known nor the way in which they should be connected
to make an optimal connected graph. In fact, the second can be considered
as the problem of assigning an unknown and finite number of edges to pairs
of hub nodes so that it results in a connected graph. Therefore, in the spe-
cial case, it reduces to the QAP. When all these three steps should be solved
simultaneously, it seems to be more difficult than the Single Allocation HLP
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Table 1
HLPPT vs MAHLP and SAHLP

HLPPT MAHLP SAHLP

Locating hubs
√ √ √

Selecting hub edges
√

a × ×
Allocation Polynomial Polynomial NP-hardb

a in special case reduces to QAP.
b QAP.

(MAHLP) as well as Multiple Allocation (SAHLP). Table 1 sheds some light
on this fact.

Therefore, in terms of difficulty of problem, one can say that HLPPT is more
difficult than MAHLP. Comparing with SAHLP, if not be more difficult is
not easier. Because, allocation of n− q spoke nodes to q hub nodes should not
be more difficult than allocation of unknown and finite number of hub edges
to pairs of hub nodes to make a connected graph. We expect it to be NP , too.
It is well-known that the HLPs are NP-Hard problems which even small size
instances cannot be solved to optimality in a reasonable amount of time. Our
new HLPPT model, as we will show later, paves the way for preparing a
good basis for exact decompositions as well as (meta-)heuristic algorithms.
This may enable us to solve larger size instances to optimality or as good as
possible of solutions, respectively.
To have a comparison between our new model and PT model of (Nickel et al.,
2001), some modifications to the model should be taken into account. By
adding new constraints and avoiding spoke connections between hub nodes,
the following comparable model (CPT) is obtained.
(Comparable PT (CPT))

Min
∑

i

∑
j �=i

∑
k

∑
l �=k

Wijdkl(αXijkl + Sijkl) +
∑

k,l>k

IklYk,l +
∑
k∈N

FkHk (17)

s.t.
∑
l∈N

(Xijkl + Sijkl − Xijlk − Sijlk) = (18)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+1, ∀i, j, k ∈ V : k = i, i �= j,

−1, ∀i, j, k ∈ V : k = j, i �= j,

0, ∀i, j, k ∈ V : k �= i, k �= j,

Xijkl ≤ Ykl ∀i, j, {k, l} ∈ E , (19)

Xijlk ≤ Ykl ∀i, j, {k, l} ∈ E , (20)

Sijik ≤ Hk ∀i, j, k, l : k �= j, (21)

Sijkj ≤ Hk ∀i, j, k, l : k �= i, (22)

Sijij ≤ Hi + Hj ∀i, j, (23)

Sijkl = 0 ∀i, j, k, l : k �= i, l �= j, (24)
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Table 2
Comparison between HLPPT and CPT

number of constraints Number of variables

binary continuous

CPT 6n4 + 3n3 + 2n2 n(n−1)
2

+ n 2n4

HLPPT n4 + 5n3 + 7n2 n(n−1)
2

+ n n4 + 2n3 + n2

Table 3
Comparison between HLPPT and CPT on CAB instances

CPT HLPPT

r.n.g(%) c.t.u (sec.) r.n.g(%) c.t.u (sec.)

CAB 5 27.08 0.50 opt 0.03

CAB 10 36.30 19.81 opt 0.42

CAB 15 64.35 461.63 opt 2.27

CAB 20 59.95 4596.49 opt 9.09

CAB 25 77.38 � opt 28.23

Ykl ≤ Hk ∀{k, l} ∈ E , (25)

Ykl ≤ Hl ∀{k, l} ∈ E , (26)

Sijkl + Sijlk ≤ 2 − Hk − Hl ∀i, j, k, l > k, (27)

Sijkl, Xijkl ≥ 0 ∀i, j, k, l, (28)

Ykl, Hk ∈ {0, 1} ∀k, l. (29)

As one can see in Table 2, in our new model HLPPT, the number of
constraints is much less than CPT. Roughly speaking, it contains almost
less than 1

6
of constraints in CPT. With respect to the number of variables,

though they both use the same number but the number of continuous variables
in HLPPT is considerably less than in PT.

3 Computational Comparison

In this section, we are going to solve instances of AP and CAB dataset (from
OR-Library) using both CPT and HLPPT models. We will compare root
node gaps(r.n.g), cpu time usage(c.t.u) and problem size that can be solved
by each one in a given time limit.

As it is depicted in the Table 3, there is a considerable difference between the
root node gaps of HLPPT and CPT on CAB instances. HLPPT solves all
the instances of CAB dataset just in the root node to an integral optimal solu-
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Table 4
Comparison between HLPPT and CPT on AP instances

CPT HLPPT

r.n.g(%) c.t.u (sec.) r.n.g(%) c.t.u (sec.)

AP 5.2 opt 0.1 opt 0.03

AP 10.4 39.74 26.58 38.99 8.81

AP 15.6 39.87 1055.46 67.75 318.24

AP 20.8 39.89 12564.14 42.75 3683.07

AP 25.10 51.15 > 1 db 44.55 56839.31

AP 30.12 N.A.a N.A. 43.27c N.A.

a N.A., Not able to solve the instance.
b day: 864000 seconds.
c The root node relaxation was solved.

tion. That is the LP relaxation bound coincides with the MIP optimal value.
In Table 4, again the superiority of HLPPT to CPT with respect to the com-
putational time is obvious. In general, the HLPPT shows to be superior to
the CPT. For the problem size of 30, the CPT even could not load the model
in the memory while it takes more than 1.4 GB of memory. But, HLPPT
could load and did the primary computation and not only emphasized on the
feasibility of problem but also the root relaxation was solved successfully and
gap was reported. However, it failed when proceeded and needed extra mem-
ory.
With respect to the computational effort and CPU time usage, obviously
HLPPT outperforms CPT when CPLEX 9.1 is used to solve both instances
of AP and CAB. Especially, in the case of CAB instances, HLPPT can be
used to solve even more than 500 times faster for some instances in compare
with CPT.
In our tables, the sign “�” states that the results have been much worse than
the worst results in the rows. Analogously, “>” is used to show that the results
are worse than the best results of the row in the table.

4 Two Solution Approaches for the HLPPT

In this section, we propose two solution approaches namely, an exact Benders
decomposition and a greedy neighborhood search.
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4.1 Benders Decomposition

Benders algorithm was proposed by Benders (1962). This approach which is
an iterative algorithm has been applied to many problems in combinatorial
optimization. It exploits the decomposable structure of problems and tries to
solve a decomposition of problem into a pair of master and sub-problem, iter-
atively. Master Problem (MP) prepares a lower bound and Sub-Problem (SP)
an upper bound. The method makes use of exchange of information between
these two smaller problems to reach the optimality. This is to be done by
decreasing the upper bound and increasing the lower bound and eventually
reaching to a optimality where these two values coincide. Details of these ap-
proach can be studied in (Benders, 1962).
Benders decomposition approaches for UMAHLP for the formulation of Hamacher
et al. (2004) is considered by R.S. de Camargo et al.. They decomposed the
problem following the Benders scheme and solve the sub-problem for each ori-
gin and destination by inspection.
Rodriguez-Martin and Salazar-Gonzalez also presented an MIP model and
proposed methods is a Double Benders Decomposition.

4.1.1 Classical Benders algorithm

A classical Benders algorithm is a procedure that generates a single cut for
the master problem in each iteration. This cut is generated from the solution
to the dual of sub-problem (SPD). A choice for the MP and SP can lead to
the following problems:
(MP1)

Min
∑
k

Fkhk +
∑
k

∑
l>k

Iklykl + η

s.t. ykl ≤ hk, ∀k, l > k, (30)

ykl ≤ hl, ∀k, l > k, (31)∑
k,l>k

ykl,≥ 1 ykl, ∀k, l > k, (32)

ykl, hk ∈ {0, 1}, η ≥ 0. (33)

and for fixed values of hk and ykl, and also regarding the symmetry in the
shortest paths, we will have:
(SP)

Min
∑

i

∑
j>i

∑
k

∑
l �=k

α(Wij + Wji)Cklxijkl +
∑

i

∑
j>i

∑
k �=i,j

(Wij + Wji)Cikaijk +

∑
i

∑
j>i

∑
k �=i,j

(Wij + Wji)Ckjbijk +
∑

i

∑
j>i

(Wij + Wji)Cijeij +
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∑
k

Fkhk +
∑
k

∑
l>k

Iklykl (34)

s.t.
∑
l �=i

xijil +
∑
l �=i,j

aijl + eij = 1, ∀i, j > i, (35)

∑
l �=j

xijlj +
∑
l �=i,j

bijl + eij = 1, ∀i, j > i, (36)

∑
l �=k,i

xijkl + bijk =
∑

l �=k,j

xijlk + aijk, ∀i, j > i, k �= i, j, (37)

xijkl + xijlk ≤ ykl, ∀i, j > i, k, l > k, (38)∑
l �=k

xkjkl ≤ hk, ∀j, k < j, (39)

∑
k �=l

xilkl ≤ hl, ∀i, l > i, (40)

eij ≤ 2 − (hi + hj), ∀i, j > i, (41)

aijk ≤ 1 − hi, ∀i, j > i, k �= i, j, (42)

bijl ≤ 1 − hj , ∀i, j > i, l �= i, j, (43)

aijk +
∑
l �=j,k

xijlk ≤ hk, ∀i, j > i, k �= i, j, (44)

bijk +
∑
l �=k,i

xijkl ≤ hk, ∀i, j > i, k �= i, j, (45)

eij + 2xijij +
∑
l �=j,i

xijil +
∑
l �=i,j

xijlj ≤ hi + hj , ∀i, j > i, (46)

xijkl, aijk, bijk, eij ∈ (0, 1). (47)

and SPD would be:
(SPD)

Max − ∑
i,j>i

(uij + vij) −
∑
i,j>i

∑
k �=i,j

(sijk + wijk)hk −
∑

j,k>j

pjkhk

− ∑
i,l>i

qilhl −
∑
i,j>i

eij(2 − hi − hj) −
∑
i,j>i

dij(hi + hj)

− ∑
i,j>i

∑
k �=i,j

(aijk(1 − hi) + bijk(1 − hj)) −
∑
i,j>i

∑
k,l>k

oijklykl

s.t. uij + vij + pji + qij + oijij + 2dij ≥ −α ∗ (Wij + Wji) ∗ Cij, ∀i, j > i,

vij + rijk + wijk + qij + oijkj + dij ≥ −α ∗ (Wij + Wji) ∗ Ckj, ∀i, j > i, k �= i, j,

uij + pji + dij + sijl − rijl + oijil ≥ −α ∗ (Wij + Wji) ∗ Cil, ∀i, j > i, l �= i, j,

rijk − rijl + sijl + wijk + oijkl ≥ −α ∗ (Wij + Wji) ∗ Ckl, ∀i, j > i, k, l �= i, j,

uij − rijk + sijk + aijk ≥ −(Wij + Wji) ∗ Cik, ∀i, j > i, k �= i, j,

vij + rijk + wijk + bijk ≥ −(Wij + Wji) ∗ Ckj, ∀i, j > i, k �= i, j,

uij + vij + dij + eij ≥ −(Wij + Wji) ∗ Cij, ∀i, j > i,

dij, eij, pij , qij, aijk, bijk, sijk, wijk, oijkl ∈ R
+,

uij, vij, rijk free in sign.

11



This master problem, (MP1), cannot guaranty a feasible hub-level configu-
ration at each iteration. Moreover, the number of infeasible configuration is
higher than feasible ones which are the connected hub-level networks. There-
fore, another master problem should be considered to be replaced by. These
infeasible hub-level configurations are disconnected graphs and each one leads
to generating a cut. Since the cardinality of the set of infeasible hub-level con-
figurations is much higher than the set of feasible ones, the algorithm may
visit too many of them during the solution process (even tens of them be-
tween two consecutive feasible configurations). This not only compels solving
an MIP1 master problem for each of them but also as the iterations proceed
it makes a very hard-to-solve MP1 with the added cuts. We suggest to replace
the MP1 with the following one to ensure that the added cuts are only from
the extreme points rather than extreme rays.
Let G(V, E) be a connected graph, where V = {1, 2, 3, . . . , n} is the set of
nodes or vertices and E the set of edges. Let Gd = (V, A) be a directed
graph derived from G, where A = {(i, j), (j, i)|{i, j} ∈ E}, that is, each
edge u is associated with two arcs (i, j) and (j, i) ∈ A. Two new graphs
G0 = (V0, E0) and G0

d = (V0, A0) where V0 = V ∪{0}, E0 = E∪{{0, j}|j ∈ V },
A0 = A ∪ {{0, j}|j ∈ V }, are defined.
Let h = (hi)i∈V ∈ {0, 1}|V |, y = (yu)u∈E0 ∈ {0, 1}|E0| two 0 − 1 vectors, and
zk

ij ≥ 0, (i, j) ∈ A0, k ∈ V ′, where V ′ is a subset of V , and zk
ij is a real flow in

the arc (i, j) ∈ A0, having 0 as source and k as destination. E(i) is considered
as the set of edges u ∈ E such that an endpoint is i, Γ+(i) = {j|(i, j) ∈ A0}
and Γ−(i) = {j|(j, i) ∈ A0}, m = |E| and n = |V | (Maculan et al., 2003).
From now on, we will refer to the following model as MP.
(MP)

Min
∑
k

Fkhk +
∑
k

∑
l>k

Iklykl + η

s.t.
∑

j∈Γ+(0)

zk
0j − hk = 0, ∀k ∈ V, (48)

∑
j∈Γ+(i)

zk
ij −

∑
j∈Γ−(i)

zk
ji = 0, ∀i ∈ V − {k}, k ∈ V,(49)

∑
j∈Γ+(k)

zk
kj −

∑
j∈Γ−(k)

zk
jk + hk = 0, ∀k ∈ V, (50)

zk
ij ≤ yij, ∀{i, j} ∈ E0, k ∈ V, (51)

zk
ji ≤ yij, ∀{i, j} ∈ E0, k ∈ V, (52)

yij ≤ xi, ∀{i, j} ∈ E, (53)

yij ≤ xj , ∀{i, j} ∈ E, (54)∑
j∈V

y0j = 1, ∀i, j = 1, . . . , n, (55)

zk
ij ≥ 0, ∀(i, j) ∈ A0, k ∈ V,(56)

yij ∈ {0, 1}, {i, j} ∈ E0, hk ∈ {0, 1}, k ∈ V, η ≥ 0. (57)

12



A cut for MP is in the form of the following constraint:

− ∑
i,j �=i

⎛
⎝(uij + vij) +

∑
k �=i,j

(sijk + wijk)hk + pjihi + qijhj +
∑

k,l>k

oijklykl

+
∑

k �=i,j

(aijk(1 − hi) + bijk(1 − hj)) + dij(hi + hj) + eij(2 − hi − hj))

⎞
⎠ ≤ η,

where the LHS is composed of n(n−1)
2

different independent terms. If we look

at it more carefully, each of n(n−1)
2

terms is generated from the corresponding
SPDi,j>i. In each of those problems, for a given i, j > i we can generate the
following part of the cut:

−
⎛
⎝(uij + vij) +

∑
k �=i,j

(sijk + wijk)hk + pjihi + qijhj +
∑

k,l>k

oijklykl

+
∑

k �=i,j

(aijk(1 − hi) + bijk(1 − hj)) + dij(hi + hj) + eij(2 − hi − hj))

⎞
⎠ ≤ ηij,

where ηij ≥ 0, η =
∑

ij>i ηij .
Briefly speaking, instead of solving one large LP problem as SPD and generate
the corresponding cut, one can generate such a cut by solving n(n−1)

2
easier

sub-SPDs. Such a cut is in the form of:

−
⎛
⎝(u + v) +

∑
k

(sk + wk)hk + phi + qhj +
∑

k,l>k

oklykl + d(hi + hj)

+
∑
k

(aijk(1 − hi) + bijk(1 − hj)) + e(2 − hi − hj))

)
≤ ηij . (58)

If this single cut is produced instantaneously (traditional Benders algorithm),
we call the approach SC1 and if it is assembled from sub-cuts of form (58) we
call it SC2.
SP is well-known due to its degenracy and therefore SPD due to its multiple
optimality. As a results, these cuts may be the cuts dominated by the other
ones corresponding to the other solutions. Therefore, we apply the concept
of pareto-optimal cut proposed in (Magnanti and Wong, 1981) for both SC1
and SC2 and call them SC1d and SC2d, respectively. The computational
results are reported in Table 5. In Table 5, SC1 obviously outperforms SC2.
That means the single cuts in their aggregated from are not as strong as the
original cuts. This can also be deduced from the superscript which stands

13



Table 5
Comparison between SCs.

Instance SC1s (sec.) SC2s (sec.)

SC1 SC1d SC2 SC2d

AP5.2 0.31(8) 0.11(4) 2.72(16) 0.33(4)

AP10.4 42.42(30) 3.52(8) 6529.39(367) 6.02(8)

AP15.6 14155.78(97) 48.48(8) � 47.50(9)

AP20.8 > 1d 854.08(14) � 820.83(12)

AP25.10 � 55902.8224 � 45801.05(22)

for the number of iterations of algorithms. However, in the pareto-optimality
approach, although the Benders algorithm was still performing very poor, yet
we observed that for a given machine specification, SC2d can solve larger
instances when compared to SC1d in a given time limit. When the problem
size grows, SC2d is superior to the SC1d. Therefore, SC2d is clearly superior
to all the other three schemes. With respect to the number of iterations, it is
also clear that in the pareto-optimality approach, cuts are stronger. This idea
may help us in the next section to propose a new cutting strategy. Here, we
set the time limit to 48 hours.

4.1.2 Accelerated Benders algorithm

Instead of adding just one cut in each iteration, it can also be possible to add
more than one cut. That is, we add the sub-cuts to the MP without assembling
them. So, we will have MC1 when n − 1 cuts by aggregating for each i all
the cuts of ij-th sub-SPDs and another one, MC2, which adds all the n(n−1)

2

cuts. Moreover, both of them can be subjected to strengthening of cuts and
make the MC1d and MC2d. The computational results depicted in Table 6
revealed the superiority of MC2d to all other three variants.

As one can see the pareto-optimal cut approaches work much better with re-
spect to the computational time needed to solve the problem to optimality.
However, MC2d is absolutely superior to the MC1d with respect to the effi-
ciency of resolution of the problem. The number of iterations after which the
optimality is met are considerably reduced and computational time are strictly
less. Yet, in a given time limit of 10 hours MC2d can solve larger instances.

14



Table 6
Comparison between MCs.

Instance MC1s(sec.) MC2s(sec.)

MC1 MC1d MC2 MC2d

AP5.2 0.34(5) 0.25(3) 0.22(4) 0.25(4)

AP10.4 9.61(11) 4.30(6) 5.47(7) 3.77(5)

AP15.6 97.30(10) 16.11(4) 21.34(5) 12.00(4)

AP20.8 933.88(11) 240.17(8) 223.05(8) 153.61(6)

AP25.10 26332.39(15) 3351.60(9) 2672.11(7) 1855.69(6)

AP30.12 � 8209.14(9) 9083.13(10) 3350.86(6)

AP35.14 � >10 hrs � 120206.82(7)

AP40.16 � � � > 6 d

4.1.3 Extra Accelerated Benders algorithm

By adding some classes of valid (improving) inequalities, one can obtain a very
tight formulation of the problem which can be used to solve the LP relaxation
and accelerating the resolution of MIP problem.
In this approach, while the LP relaxation is not solved to optimality, the cuts
corresponding to the fractional values of relaxed modified MP (i.e. AMP) are
used to generate the cuts and be added to the relaxed AMP. When the LP
is solved, AMP will be un-relaxed and from a very small integrality gap the
MC2d proceeds. We refer to this approach by AMC2d. The AMP will be as
it follows:
(AMP)

Min
∑
k

Fkhk +
∑
k

∑
l>k

Iklykl,

s.t. (48), (49), (50), (51), (52), (53), (54), (55), (56),∑
k

y0k ≤ 1, (59)

∑
k

yk0 = 1, (60)

∑
k,l>k

ykl ≥ 1, (61)

∑
k

hk ≥ 2, (62)

∑
l>k

ykl ≥
∑
k

hk − 1, (63)

hk ≤ ∑
l �=k

(ykl + ylk), ∀k, (64)
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Table 7
Final Comparison.
Instance CPLEX 9.1 SC2d MC2d AMC2d(sec.)

(sec.) (sec.) (sec.) OptLP nonOptLP

AP5.2 0.03 0.33(4) 0.25(4) 0.53(6) 0.52(6)

AP10.4 0.09 6.02(8) 3.77(5) 3.30(6) 4.23(6)

AP15.6 2.3 47.50(9) 12.00(4) 12.19(7) 13.09(6)

AP20.8 62.02 820.83(12) 153.61(6) 56.47(8) 40.34(7)

AP25.10 900.50 45801.05(22) 1855.69(6) 172.89(8) 134.19(7)

AP30.12 5530.00 � 3350.86(6) 675.09(13) 534.56(8)

AP35.14 N.A. � 120206.82(7) 4238.14(12) 2771.99(8)

AP40.16 N.A. � > 6 d 25676.55(14) 14181.73(8)

AP45.18 N.A. � � 87130.57(15) 99483.25(10)

AP50.20 N.A. � � 566360.33(14) 528663.42(10)a

a � 146.85 hrs (approximately 6 days).

ykl ≤
∑
m�=k

(ymk + ykm) +
∑
m�=l

(yml + ylm), ∀k, l > k, (65)

yij ∈ (0, 1), {i, j} ∈ E0, hk ∈ (0, 1), k ∈ V, (66)

A natural question might arise here: whether it is necessary to solve the relaxed
problem to the optimality. Here, we proposed two approaches. The first one
solves that LP to optimality before un-relaxing the AMP and the second one
to a gap of less than %0.05 between lower and upper bounds of our Benders
algorithm. The first one will be referred by OptLP and the latter by nonOptLP.

As depicted in Table 7, in general, Benders approaches are capable of solving
larger instances where CPLEX 9.1 fails. Yet, multiple cut approaches (MC2d

and AMC2ds) and specially the accelerated multiple cut schemes, AMC2ds,
seem to be capable of solving much larger instances. In terms of computational
time, obviously MC2d and AMC2ds are superior. For some instances like
AP30.12, AMC2d in the second variant, solves the instance more than 10
times faster than CPLEX 9.1.
Among the multiple cut approaches, with respect to the problem instance size
which is solved, AMC2ds outperform MC2d. While it takes more than 6 days
to solve AP40.16 with MC2d, the larger instance of AP50.20 can be solved by
AMC2d (the second variant), in such an amount of time (approximately 146
hrs). However, the absolute superiority of AMC2d to other methods both in
terms of computational time and the instance size that can solve is obvious in
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Table 7.

4.2 Greedy Neighborhood search

A simple greedy neighborhood search will be proposed in this section which
as we will show later is extremely efficient to solve instances of HLPPT in a
reasonable amount of time and to high quality solutions.
As mentioned earlier, our problem can be re-stated to be the problem of finding
a connected hub-level network and consequently a minimum flow cost prob-
lem. Obviously, the second part is a function of the first part. That means,
how the flow should be transferred is induced by the hub-level network con-
figuration. Therefore, without loss of generality we concentrate on the search
for the best (or as good as possible) hub-level configuration.

Definition 1 (Edge Vector) An edge vector a, is an n(n−1)
2

vector of 0-1
values, where ai = 1 if the edge corresponding to i-th element of vector receives
a hub edge and 0, otherwise.

Now, we translate our problem into the necessary components of a greedy
algorithm.

• Set of all edges as the set of candidates,
• Δ = fnew − f cur as the selection function,
• a functionality for checking the connectivity, to act as a feasibility function,
• and the objective function of HLPPT (hub-level network setup cost plus

the flow cost) as the objective function.

In fact this greedy algorithm is a Hill Climbing algorithm on a neighborhood
induced by the Hamming metric on the set of edge vectors. In this algorithm
internal loop iteratively checks for a new neighbor with distance of 1.
Although, the size of this neighborhood is n×(n−1)

2
, however, not all of them

can result in a connected hub-level network. In this algorithm we merge the
feasibility function and the objective function and let Eval to return ∞ if the
resulted trial point is infeasible and the objective value, elsewhere. That is, in
order to improve the performance of algorithm, our concern would not be to
move from a feasible solution to other feasible ones and examining them to
find the best one. Rather, this is to be done by objective function whether it
is infeasible or not and return corresponding value.

Note 1 By flattening out a 2D edge array and taking into account the indi-
rectedness of the hub-level graph, the hub edge k− l (l > k) corresponds to the
(k × n− k × (k − 1)/2 + l − k)-th entry of a the linear edge vector. From now
on we will always refer to this 1D vector as the edge array.
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Algorithm 1: A simple greedy algorithm for HLPPT

Input: init sol
Output: x∗

x:=Create initial solution();
min := Eval(x);
last min := ∞;
repeated min := 0;
while (repeated min = 0) do

f := Eval(x);
if f ≤ min then

min := f ;
x∗ = x;

end
foreach i = 1 to nrLocations ∗ (nrLocations − 1)/2 do

Δf := 0;
x′ := x;
x′

i := 1 − x′
i;

if is not feasible(x′) then
Δf := ∞;

else
Δf := Eval(x′) − min;

end
if Δf < 0 then

x∗ := x′ ;
min := Eval(x′);

end

end
if min = last min then

repeated min := repeated min + 1;
end
last min := min;
x = x∗;

end
stop.

The greedy algorithm is depicted in Algorithm 1.

4.2.1 Initial Solution

As we can see in Algorithm 1, an initial solution is needed for our algorithm
to proceed. Our experiments have revealed that starting with a random initial
solution may not be the best idea. Actually, this is the nature of COPs which
have many local optimums that may work as whirlpools to stop the search
in one of them. Therefore, it would be worthwhile to have a more prudent
strategy in order to create an initial solution.
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From the experiences with the instances of HLPPT, we observed that:

• the number of hubs in the optimal solution is an unknown function of the
discount factor. That is, the number of hubs has a direct relationship with
the discount considered for using of hub edges; The higher discount, the
higher tendency to having more hub edges and subsequently hub nodes,

• it is more likely for the most center oriented and busiest (in terms of total
flow arriving to and departing from) locations to receive hub (in our expe-
rience with our data, there was at least one hub node in a set composed of
n × 0.2 most central nodes in union with n × 0.2 busiest nodes).

For example, for α = 0.5, we try to select max(n × 0.2, 2) of the most central
nodes and (higher income-outgoing) max(n × 0.2, 2) of busiest locations as
initial hubs. Preferably, the hub level network should be a complete graph of
these selected locations which we call them hubs from now on. This initial
solution will be passed to the main process of the algorithm.

4.2.2 Complexities

In this subsection we try to shed some light on the complexity of algorithm
and the size of neighborhood used.

Since the hub-level network is an undirected graph, we will have n×(n−1)
2

possi-
ble hub edges. In the other hand, we assume two configurations to be neighbors
if they have distance of 1 with respect to the Hamming metric. As a result,
the cardinality of the set of neighbors of a given configuration is in general
n×(n−1)

2
. Therefore, the size of the neighborhood in the worst case is n×(n−1)

2
,

that is of O(n2). At each iteration of external loop, the internal loop checks

the best and feasible move from among maximum n×(n−1)
2

moves. Therefore,
in each iteration at most one move will take place. How long the external loop
will iterate, is not known in anticipation. But, from the experiences, it is much
less than neighborhood size. Therefore we cannot say it to be of O(N2), as we
cannot say it to be of O(N), either. On the other hand, for each feasible neigh-
bor (a feasible neighbor is a neighbor with the connected hub-level graph) and
for each pair of origin-destination i−j(j>i) a shortest path Dijkstra’s algorithm
is applied. The complexity of each Dijkstra’s algorithm is O(|E|+ |V |log|V |),
where |E| ≤ q + p(n − p) ≤ n×(n−1)

2
and |V | = n, where q is the number of

hub edges and p is the number of hub nodes in the feasible neighbor. This
procedure should be considered for n−1 nodes and as a result the complexity
is of O(|V |(|E| + |V |log|V |)) ≤ O((n − 1)(n×(n−1)

2
) + n log n) = O(n3).
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Table 8
Overall Comparison.

Instance AMC2d (sec.) Greedy Algorithm (sec.) Gap (%)

AP5.2 0.52 0.00 0opt

AP10.4 4.23 0.01 0opt

AP15.6 13.09 0.08 0opt

AP20.8 40.34 0.44 0opt

AP25.10 134.19 1.33 0opt

AP30.12 534.56 4.64 0opt

AP35.14 2771.99 7.91 0.01

AP40.16 14181.73 20.72 0.01

AP45.18 99483.25 31.89 0.01

AP50.20 528663.42 135.99 2.67

4.2.3 Computational Results

As is reported in the Table 8, insofar as the optimal solution for HLPPT
instances (i.e. sizes of 5. . . 50) are known, our heuristic except for one case
either reached to the optimal solution or for a few cases to a gap of less than
%0.01.
The Benders algorithm successfully found the optimal solution of HLPPT
instances in a smaller amount of time compared to CPLEX 9.1 and also could
solve larger size instances within a specific time limit. The following table
shows the computational time comparison between the best of Benders algo-
rithms and that of our greedy heuristic. Table 8 shows that except for one
case, either the solutions reported by heuristic were optimal or the gap was less
or equal to %0.01 . Furthermore, our heuristic could find them in a fraction
of cpu time that Benders algorithm needs. However, they are not guaranteed
to be optimal as far as the optimal is not found by our Benders algorithm.

4.3 More Exploration for Better Solutions

Due to the metaheuristic nature of the method and myopic characteristic of
greedy algorithms, this possibility always exists that the search process gets
stuck in a local optimum as it is the case for example for the problems of
AP35.14 until AP50.20 for which the optimums are known. This is always
worthwhile to try a prudent diversification of the search rules and directions
with the hope of reaching to a new better solution.
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Definition 2 (Neighborhood I) Due to the metaheuristic nature of the method
and myopic characteristic of greedy algorithms, this possibility always exists
that the search process gets stuck in a local optimum as it is the case for ex-
ample for the problems of AP35.14 until AP50.20 for which the optimums are
known. This is always worthwhile to try a prudent diversification of the search
rules and directions with the hope of reaching to a new better solution.

The process continues like this: there exist a spoke node as the best of p-th
level best spoke nodes corresponding to any of the hubs that can be replaced
by that hub (resulted configuration may have worst objective function but
is a locally best choice which imitates the diversification process; if the new
trial point is worst, maybe it is standing on a non-previously explored peak
which can drop to a deeper narrow if become subjected to a neighborhood
search with respect to the original neighborhood). By moving to this neighbor
regarding the idea of neighborhood I and clashing this new structure to the
original neighborhood structure by delivering this new trial point to the greedy
search, we may have a new better hub-level structure. That is, greedy search
may remove some components in favor of other ones (In this case we just used
p = 1).

Alternatively, there can be another neighborhood structure to be used in the
case that the Neighborhood I gets stuck in local optimum or even it was not
able to find a better solution than what has been found by the basic greedy
algorithm.

Definition 3 (Neighborhood II) For a given hub-level structure and for a
given hub node i, the new structure resulted by replacing the given hub with the
p-th(p = 1 . . . 3) closest non-hub node to i and switching the assignment of all
the incoming and outgoing edges of the given hub to this p-th closest non-hub
is called the p-th level neighbor of i with respect to the Neighborhood II for the
existing hub-level structure.

In the case of the AP instances, the first neighborhood was sufficient to find
the optimal solution of those instances with known optimal solution. However,
there have been some other instances of AP for which the second neighborhood
could improve the solution compared to the first one.

4.3.1 Quality of Solutions

Here, we examine the quality of our heuristic by comparing the best-known
solution of heuristic with that of LP relaxation of HLPPT (HLPPTLP ). In
Table 9, the gap between the solution of our heuristic and the LP relaxation is
measured by UB−LB

LB
×100 and is depicted in the column titled by GapLP (%).

The gap between the optimal solution of AMC2d and that of our heuristic is
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Table 9
Quality of greedy+ solutions

Instance greedy+ (sec.) HLPPTLP GapLP (%) Gapopt (%)

AP5.2 0.03 0.41 0 0opt

AP10.4 0.14 2.44 0 0opt

AP15.6 0.27 11.50 0 0opt

AP20.8 0.95 32.98 0.1 0opt

AP25.10 2.53 96.16 1.8 0opt

AP30.12 7.13 451.06 1.4 0opt

AP35.14 18.39 1024.25 3.9 0opt

AP40.16 34.66 2475.16 3.9 0opt

AP45.18 70.22 4098.70 4.8 0opt

AP50.20 176.13 6188.42 5.9 -

AP55.22 264.05 12070.44 6.9 -

AP60.24 565.91 28774.47 7.7 -

AP65.26 663.86 54109.12 12.0 -

reported in the last column (Gapopt(%)).

One may conclude that our heuristic is extremely satisfactory and also LP
relaxation is good approximations of optimal solution of HLPPT.

4.3.2 Computational Results

Table 10 reports the computational results for some instances of the AP
dataset. As mentioned earlier, insofar as the optimal solution is known the
metaheuristic algorithm was able to reach it.

In a time limit of �4.5 hrs, greedy+ can meet the termination criteria for all
the problem instances up to size 100 as depicted in Table 10.

5 Summary and Conclusion

We proposed a new HLP model customized for public transport application in
which some of the classical assumptions of the HLPs have been relaxed in favor
of achieving a more realistic model. Several variants of Benders decomposition
are proposed. We have also shown how the model can be tightened by means of
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Table 10
greedy+ Algorithm run-time report

Instance T. Cpu(s) Instance T. Cpu(s)

AP5.2 0.03 AP55.22 264.05

AP10.4 0.14 AP60.24 565.91

AP15.6 0.27 AP65.26 663.86

AP20.8 0.95 AP70.28 1407.46

AP25.10 2.53 AP75.30 1785.86

AP30.12 7.13 AP80.32 3142.24

AP35.14 18.39 AP85.34 4274.56

AP40.16 34.66 AP90.36 6934.25

AP45.18 70.22 AP95.38 8601.04

AP50.20 176.13 AP100.40 15370.72

valid inequalities improving the performance of our exact Benders algorithm.
Moreover, the presented heuristic is successful in finding mostly the optimal
solution of problem as far as it is known.

Taking into account other issues such as capacity policies and multiple criteria
aspects, are possibilities for future research on HLPs in public transport plan-
ning. Other aspects like, reliability, congestion and re-routing scenarios are
among the areas which also deserve more attention in connection with public
transport planning.
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(Spain) for valuable comments on an earlier version of this model and Bernard
Fortz from Université Libre de Bruxelles for his useful hints.

References

S. Alumur and B. Y. Kara. Network hub location problems: The state of the
art. European Journal of Operational Research, 2007.

T. Aykin. Lagrangian relaxation based approaches to capacitated hub-and-
spoke network design problem. European Journal of Operational Research,
79 (3):501–523, 1994.

23



J. Benders. Partitioning procedures for solving mixed-variables programming
problems. Computational Management Science, 2(1):3–19, 01 1962.

J.F. Campbell. Location and allocation for distribution systems with trans-
shipments and transportation economies of scale. Annals of Operations
Research, 40:77–99, 1992.

J.F. Campbell. Integer programming formulations of discrete hub location
problems. European Journal of Operational Research, 72, 1994b.

J.F. Campbell. Hub location and the p-hub median problem. Operations
Research, 44 (6):1–13, 1996.

J.F. Campbell, A.T. Ernst, and M. Krishnamoorthy. Hub location problems,
chapter 12. Springer, 2002.

M.G. Costa, M.E. Captivo, and J. Climaco. Capacitated single allocation
hub location problem a bi-criteria approach. Computers and Operations
Research, in press, 2007.

J. Ebery. Solving large single allocation p-hub problems with two or three
hubs. European Journal of Operational Research, 128 (2):447–458, 2001.

J. Ebery, M. Krishnamoorthy, A. Ernst, and N. Boland. The capacitated mul-
tiple allocation hub location problem: Formulations and algorithms. Euro-
pean Journal of Operational Research, 120:614–631, 2000.

A.T. Ernst and M. Krishnamoorthy. Efficient algorithms for the uncapacitated
single allocation p-hub median problem. Location Science, 4 (3):139–154,
1996.

A.T. Ernst and M. Krishnamoorthy. Exact and heuristic algorithms for the
uncapacitated multiple allocation p-hub median problem. European Journal
of Operational Research, 104:100–112, 1998a.

A.T. Ernst and M. Krishnamoorthy. Solution algorithms for the capacitated
single allocation hub location problem. Annals of Operations Research, 86:
141–159, 1999.

A.J. Goldman. Optimal location for centers in a network. Transportation
Science, 3:352–360, 1969.

S. L. Hakimi. Optimum locations of switching centers and the absolute centers
and medians of a graph. Operations Research, 12:450–459, 1964.

S. L. Hakimi. Optimum distribution of switching centers in a communication
network and some related graph theoretic problems. Operations Research,
13(3):462–475, 1965.
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