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An analysis of one regularization approach for

solution of pure Neumann problem

E. Savenkov H. Andrä O. Iliev∗

Abstract

In this paper, the analysis of one approach for the regularization

of pure Neumann problems for second order elliptical equations, e.g.,

Poisson’s equation and linear elasticity equations, is presented. The

main topic under consideration is the behavior of the condition number

of the regularized problem. A general framework for the analysis is

presented. This allows to determine a form of regularization term

which leads to the “natural” asymptotic of the condition number of the

regularized problem with respect to mesh parameter. Some numerical

results, which support theoretical analysis are presented as well.

The main motivation for the presented research is to develop the-

oretical background for an efficient and robust implementation of the

solver for pure Neumann problems for the linear elasticity equations.

Such solvers usually are needed in a number of domain decomposition

methods, e.g. FETI. Developed approaches are planed to be used in

software, developing in ITWM, e.g. KneeMech simulation software.

Contents

1 Introduction 2

2 Problem statement and

general analysis framework 7

3 Approximations and condition number estimates 12

4 Poisson’s equation 13

∗Fraunhofer Institut für Techno- und Wirtschaftsmatehmatik, Fraunhofer-Platz 1, D-

67663, Kaiserslautern, Germany, e-mail: {savenkov, andra, iliev}@itwm.fhg.de

1



5 Elasticity equations 16

6 Implementation 20

7 Numerical results 23

8 Conclusions 26

9 Acknowledgements 26

1 Introduction

Pure Neumann problems often arise in a number of important applications,
e.g. in Neumann-Neumann domain decomposition methods [1], construction
of free-free flexibility matrices in elasticity [3] and others.

The motivation of this study comes from FETI domain decomposition
method, where pure Neumann problems for subdomains have to be solved at
each iteration and for each subdomain. Lets consider this briefly, focussing
the algebraic structure of the method. For comprehensive consideration we
refer to [1, 2].

Consider computational domain Ω, decomposed into a number NΩ of non-
overlapping subdomains Ωi. We assume that Ω is decomposed into finite
elements in such a way, that each subdomain Ωi is a set of elements of such
triangulation. Then the approximate solution of the problem can be obtained
from minimization of the following (finite-dimensional) functional:

L(u) =
1

2
uT Au − fT u → min

with equality-type constraints Bu = 0, which describe continuity conditions
at subdomains’ boundaries. Here the stiffness matrix A and the matrix B
are block matrices given by

A = diag(A1, A2, . . . , ANΩ
), B = [B1, B2, . . . , BNΩ

]. (1)

The block vectors

f = [f1, f2, . . . , fNΩ
]T , u = [u1, u2, . . . , uNΩ

]T

denote right-hand side and problem’s solution. Each block with number i cor-
responds to subdomain Ωi. Local stiffness matrices Ki are usually symmetric
and positive semi-definite, as well as global stiffness matrix A. Nevertheless,

2



the full problem is well-posed if ker A ∩ ker B = {0}, which usually holds as
soon as some Dirichlet boundary conditions are prescribed on ∂Ω.

A kernel of A can be described via some matrix R, such that range R =
ker A, range Ri = ker Ai,

R = diag(R1, R2, . . . , RNΩ
),

which is assumed to be known.
Let λ be the vector of Lagrangian multipliers for the constraint Bu = 0.

Then the minimization problem, stated above, is equivalent to:

Au + BT λ = f,

Bu = 0.

Solving first equation for u, one obtains

u = A+(f − BT λ) + Rα, (2)

where the non-nodal degrees of freedom α have to be determined. Here A+

denotes pseudo-inverse for A,

A+ = diag(A+
1 , A+

2 , . . . , A+
NΩ

).

Substitution of u into the second equation leads to

BA+(f − BT λ) + BRα = 0,

which is equivalent to the following equation for the Lagrangian multipliers
λ:

P (Fλ − d) = 0,

GT λ = e,

with G = BR, F = BA+BT , d = BA+f , e = RT f and P = I−G(GT G)−1GT .
The solution of the last equation with projected preconditioned conjugate

gradient (projected PCG) method is called FETI method.
After λ is computed, the vector α = −(GGT )−1GT (d − Fλ) and the

solution in a particular subdomain can be obtained from (2). Pseudo-inverses
of matrices A+ have to be computed for that. In practice, pseudo-inverse
matrices A+

i are not explicitly computed. Instead, a linear system of the
form

Aiui = fi

3



with several right-hand sides fi is solved to obtain the subdomain solution
ui. This system is singular, symmetric and positive semi-definite and has to
be solved in each subdomain for each projected PCG iteration. Hence, it is
a crucial point for the efficient implementation of FETI methods to have an
efficient and robust solver for such a kind of linear systems.

Finite element stiffness matrices Ai (see (1)), which arise in the latter
case along with many other cases, are sparse, symmetric, semi-definite, and
have non-trivial kernel, — i.e., the matrices are singular.

A number of approaches were suggested to deal with such problems —
iterative as well as direct ones. The most comprehensive overview is pre-
sented in [5], where a number of approaches are considered form the unified
point of view. This paper also contains analysis of the most “sparse” way
of regularization of the singular stiffness matrix, which utilize Dirac’s δ-s as
regularization functionals. It was shown, that for this case and Poisson’s
equation the condition number growth faster, than 1/h2 for 2d and 3d cases.
Here, h is mesh parameter. Details will be discussed later.

This paper focuses only on one of such methods, where the original, sin-
gular stiffness matrix A for a certain problem is regularized via addition of
some matrix Bω to it. The matrix Bω has to be defined in such a way, that
the regularized matrix

Aω = A + Bω

is non-singular. Then the resulting system of equation can be solved by
conventional direct or iterative approaches for non-singular problems. The
solution of the regularized problem is some particular solution of the original,
singular, problem — if Bω is chosen properly.

Generally, matrix Bω should be chosen in a way such that Aω is non-
singular, positive-definite and provides Aω with “nice” properties of A, namely,
sparsity and symmetry.

Usually, it is easy to chose Bω in a way, such that Aω is non-singular,
symmetric and positive-definite. But a certain problems are arise to keep Aω

sparse and well conditioned: How to choose regularization term Bω to (i) keep
the resulting, regularized, problem to be sparse; (ii) keep condition number
of Aω as close as possible to the natural condition number (which is defined,
for positive semi-definite matrices as ratio between maximal and minimal
positive eigenvalues) of A (at least, to keep condition number reasonably
“good” in terms of its asymptotic in mesh parameter h, e.g., of the order
1/h2 for the case of 2-nd order elliptic problems)?

An answer to the first question is known: It is possible to have only
diagonal non-zero entities in Bω. The number of such non-zero diagonal
elements is equal to dimension of ker A [3]. In the variational approach,
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which is used in the current paper and in [5], this corresponds to usage of
Dirac’s δ-s as regularization functionals. Paper [5] contains comprehensive
analysis of this case, including the condition number asymptotic, etc. This
analysis shows, that in the case under consideration, the regularized problem
is very badly conditioned (although, non-singular) — asymptotic of condition
number of the regularized problem is worse then 1/h2 for 2d and 3d cases.

The answer to the second question is known as well. In a linear algebra
context, one can consider regularization of the stiffness matrix of the form

Aω = A + RRT , (3)

where R is orthonormalized block-row matrix, whose columns spans kerA,
i.e.

AR = RT A = 0, RT R = I,

where I is an identity matrix of the certain dimension. Matrix R is usually
known a-priori. For instance, for linear elasticity problems, matrix R is
orthonormalized rigid-body matrix.

This regularization shifts all zero eigenvalues of A ∈ R
N×N to one. If

minimal and maximal eigenvalues of A satisfies

0 ≤ λmin(A) < λmax(A)

and
0 < min

i=1,N,λi>0
λi(A) < 1 < max

i=1,N
λ(A),

then it holds:

min
i=1,N

λi(Aω) = min
i=1,N

λi(A), max
i=1,N

λi(Aω) = max
i=1,N

λi(A),

and, hence,
κ(Aω) = κ̃(A),

where κ̃(A) stands for natural condition number of A, which is defined as

κ̃(A) = max
i=1,N,λi>0

λi(A)

/

min
i=1,N

λi(A).

But in this approach matrix RRT is usually dense, and, hence, regular-
ization leads to the dense matrix Aω.

Another choice of regularization matrix is possible [3], i.e

Aω = A + HHT , (4)
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where H is an arbitrary matrix, which satisfies:

dim H = dim R, rank AH = dim ker A = rankR. (5)

Generally, it is possible to chose HHT as a diagonal matrix. In this case
the number of its diagonal entries is equal to the dimension of the problem’s
kernel, dim ker(A).

Two questions arise here: (i) How to choose H, which satisfies eq. (5)
a-priorily? (ii) How to estimate condition number and its dependency on
the mesh parameter h for the given matrix H?

In practice, both approaches (with dense regularization matrix RRT and
with sparse HHT ) are used. Both of them have some advantages and disad-
vantages.

Let us also note, that the latter approach also allows to solve linear sys-
tems with matrix (3). This is done via solving sparse regularized system with
the matrix (4) and then projecting the obtained solution to the (ker A)⊥ using
the projector P = I − R(RT R)−1RT .

In the case of the dense regularization matrix, a resulting system can
be solved iteratively. For the methods, that require, at each iteration, an
application of Aω to some vector v, it can be done efficiently without explicitly
formed Aω. Only A and R has to be stored, and terms z = RRT x can be
computed efficiently in two steps: y = RT x and z = Ry. In this case
a problem with a storage for Aω doesn’t arise [5]. Nevertheless, iterative
methods are not the best choice for some problems — for example, when it
is required to solve a number of problems with the same matrix and different
right-hand sides (this is a common case for domain decomposition methods).

Direct approaches for solution of regularized system can be based on
a certain modification of LU elimination process. In this case, it is often
impossible to store LU-factors and the sparse regularization matrix H is
necessary.

A common approach is not to form matrix H explicitly, but to obtain
it in an implicit manner during some modified LU elimination process, see,
e.g. [3] and [4]. But this approach has its own problems, lack of robustness
(see [3]), and requires modification of the existent codes.

The discussion above shows that the topic concerning efficient regulariza-
tion is still of the interest.

The aim of this paper is to analyze some of the issues discussed above.
The questions addressed are: (i) How to choose regularization term to obtain
condition number of the order 1/h2? (ii) What is the “minimal”, in terms of
sparsity, regularization term?

For convenience, variational framework is used as opposed to linear alge-
bra framework.
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Outline of the paper is the following. A general framework for our analysis
is presented. Properties of the regularization term of the general form, that
lead to the proper behavior of the condition number, are determined. As
the main tool, different versions of Poincaré and Friedrichs inequalities (see
cited papers and [10]) are used. As applications, we consider pure Neumann
problems for Poisson’s equation and linear elasticity equations.

Some numerical results, which confirm obtained theoretical estimates are
presented. For some cases, numerical results are better than those obtained
theoretically, i.e., condition number of the regularized system not only has
the proper asymptotic, but also the same value as natural condition number
for the corresponding singular system, i.e.

κ(Aω) = κ̃(A).

2 Problem statement and

general analysis framework

We start with quite a general consideration of an abstract problem. A mo-
tivation is to show main features of the presented analysis and to decouple
problem-independent issues, which hold for a quite general class of prob-
lems — and problem-dependent ones, consideration of which have to be more
focused and concrete.

Similar analysis, but in a context of solvability of pure Neumann problems
for 2-nd order elliptical PDEs was performed in [7, 8, 9]. In [7] general
second-order elliptical problems are considered. Papers [8] and [9] cover
the particular case of linear elasticity. Although regularized problems aren’t
discussed there, a very comprehensive analysis of pure Neumann problem was
performed, including conditions of solvability and uniqueness for solution of
the problem, different versions of Korn’s inequalities, etc. Here we utilize
these results in a way, which is more convenient for analysis of regularized
finite elements approximations. The key difference is that we work with
modified (regularized) equations and “original” solution spaces — rather than
with “original” (not modified) equations and modified, quotient, spaces.

In the sequel we will deal with two kinds of problems. The first one is the
“original”, singular problem. The second one is a conventional well-posed
variational problem, which is the regularization of the first problem.

We start with the first problem.
Consider linear operator A which acts on a Hilbert space V , and maps

V onto its dual, i.e.
A : V → V ′,
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and space H = H ′, such that V ⊂ H = H ′ ⊂ V ′. Let (·, ·)H ≡ (·, ·) denote
the inner product in H or duality between H and H ′.

Then the following Green’s formula is valid under certain circumstances
(see [6]):

(Au, v)H = a(u, v) − 〈γ1u, γ0v〉,

for an arbitrary u, v ∈ V . Here a(·, ·) is a bilinear form induced by operator
A; γ0 is an abstract “trace” operator, which maps function u ∈ V to some
function γ0u ∈ T ,

γ0 : V → T,

where T stands for certain “trace” space; and

γ1 : V → T ′

is the “conormal derivative” operator which corresponds to A. The duality
between T ′ and T or the corresponding inner product is denoted by 〈·, ·〉.

An abstract pure Neumann problem reads: Find u ∈ V , such that

Au = f, f ∈ V ′; γ1u = g.

Hence, using Green’s formula, one can obtain a variational statement of
this problem: Find u ∈ V such that

a(u, v) = F (v), v ∈ V, (6)

where F ∈ V ′ is defined by

F (v) = f(v) + 〈g, γ0v〉. (7)

Since our goal is to consider the case of singular operator A, we assume that
kerA is non-trivial, kerA 6= {0}. Also we assume that a(·, ·) is symmetric
and semi-definite.

A kernel of operator A and bilinear form a(·, ·) is defined as

kerA = {r ∈ V : a(r, v) = 0, ∀v ∈ V } 6= {0}.

Hereafter r denotes an arbitrary element from kerA.
Solution of problem (6) is not unique and is defined up to an arbitrary

function from kerA. To define a unique solution, some restrictions have to
be imposed on u. The most natural way is to require orthogonality of u to
kerA, i.e.

u⊥ kerA,
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or
(u, r) = 0, ∀r ∈ kerA, (8)

where orthogonality is considered with respect to inner product in H.
In other words, we are looking for a unique solution of (6) in the quotient

space V/ kerA, and problem (6) turns into

a(u, v) = F (v), v ∈ V ; (u, r) = 0, ∀r ∈ kerA. (9)

Substituting an arbitrary r ∈ kerA into (6), one obtains:

F (r) = f(r) + 〈g, γ0r〉 = 0, ∀r ∈ kerA, (10)

which is a consistency condition for the problem (6).
In what follows we suppose that kerA is finite-dimensional,

kerA = span{r1, r2, . . . , rL}, dim kerA = L

with rl ∈ kerA, l = 1, L.
Particularly, this holds for pure Neumann problem for Poisson’s equation

(L = 1) and linear elasticity (L = 3 for 2D case and L = 6 for 3D case).
We assume, that rl are orthonormalized rl with respect to scalar product

in H, i.e.
(rl, rk) = δkl, .

where δkl is Kronecker δ. In the general case it is always possible to orthonor-
malize r1, . . . , rL using Gram-Schmidt procedure.

Then u⊥ ker A means:

(u, r) = 0, ∀r =
L
∑

l=1

αrl ∈ kerA, α ∈ R
L. (11)

Since rl are orthonormalized, an arbitrary r ∈ kerA can be expanded in
terms of rl as:

r =
L
∑

l=1

(r, rl)rl =
L
∑

l=1

αlrl; αl = (r, rl), ∀l ∈ 1, L,

and α = {α1, . . . , α2} ∈ R
L. When v runs over kerA, then α runs over R

L

and otherwise.
The following holds for arbitrary v ∈ V and r ∈ ker A:

(v, r) =

(

v,

L
∑

l=1

αlrl

)

=
L
∑

l=1

(v, rl)αl =
L
∑

i=l

(v, rl)(r, rl).
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Hence, equation (11) can be written as:

L
∑

i=1

(ri, u)(ri, u) = 0, ∀r ∈ kerA. (12)

The next step involves decomposition of space V into direct sum

V = V ⊥ ⊕ kerA, V ⊥ = (kerA)⊥ , v⊥⊥ kerA. (13)

An arbitrary v ∈ V can now be decomposed as

v = v⊥ + vr, v⊥ ∈ V ⊥, vr ∈ kerA,

where (v⊥, vr) = 0. Hence, the relation

∀r ∈ kerA : (r, v) = (r, vr)

is valid, and we can see, that equation (12) holds if r ∈ kerA is replaced
with an arbitrary v ∈ V , i.e.

L
∑

i=1

(u, rl)(v, rl) = 0, ∀v ∈ V.

All of these lead to the following variational problem for (9): Find u ∈ V ,
such that

a(u, v) = F, ∀v ∈ V ⊥,

L
∑

l=1

(rl, r)(rl, u) = 0, ∀r ∈ kerA,

or, since (13) holds: Find u ∈ V , such that

a(u, v) +
L
∑

l=1

(rl, v)(rl, u) = F (v), ∀v ∈ V. (14)

Any solution of the original problem (9) satisfies this equation. To show
that an inverse result is valid, it is enough to substitute v ∈ kerA in the last
equation.

More general conditions, that provide uniqueness of solution of prob-
lem (6) can be imposed in the following way.

Consider some functionals ωl ∈ V ′, l = 1, L, such that matrix M ∈ R
l×l

with elements
Mkl = ωl(rk) (15)
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is non-singular.
Now replace rl in (14) with functionals ωl ∈ V ′ to obtain the following

regularized problem: Find u ∈ V such that

aω(u, v) = F (v), ∀v ∈ V, (16)

where aω(·, ·) is a regularized bilinear form which corresponds to a(·, ·),

aω(u, v) = a(u, v) +
L
∑

l=1

ωl(u)ωl(v),

and F ∈ V ′ is given by (7).
Substituting v = rk in (16), one obtains:

L
∑

l=1

ωl(u)ωl(rk) = 0, ∀k = 1, L.

Here a zero right-hand side appears due to the consistency conditions on f
and g, see (10).

The last equation can be rewritten as:

Muω = 0,

where M is defined by (15) and column vector uω ∈ R
L is

uω = [ω1(u), ω2(u), . . . , ωL(u)]T .

Since M is non-singular, uω = 0. It means that solution of (16) satisfies (6)
and is orthogonal to

span(ω1, . . . , ωl)

with respect to duality between V and V ′.
Since the goal of such regularization is to obtain a well-posed prob-

lem (16), bilinear form aω(·, ·) has to satisfy conditions of Lax-Milgram
Lemma [6], which states that aω(·, ·) has to be coercive and continuous in V :

C1‖u‖
2
V ≤ aω(u, u), ∀u ∈ V ; a(u, v) ≤ C2‖u‖V ‖v‖V , ∀u, v ∈ V. (17)

Let us also note, that when the original bilinear form a(·, ·) is symmetric,
aω(·, ·) is also symmetric.

A proof of regularity of (16) for some particular cases of a(·, ·) and ωl is
a main topic for the following sections.
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3 Approximations and condition number es-

timates

Approximations of problem (16) are obtained in a conventional way. The
space V is approximated by a finite-dimensional space Vh ⊂ V to obtain a
finite dimensional problem: Find uh ∈ Vh such that

aω(uh, vh) = F (vh), ∀v ∈ Vh.

Let
Vh = span(ϕ1, ϕ2, . . . , ϕN),

where N is the total number of unknowns (degrees of freedom, DOFs). The
corresponding stiffness matrix

Aω = A + Bω, (18)

is given by

Aij = a(ϕi, ϕj), (Bω)ij =
L
∑

l=1

ωl(ϕi)ωl(ϕj), i, j = 1, N.

Matrix Aω is the stiffness matrix for the regularized problem. Matrix A is
the stiffness matrix of the original (singular) problem and Bω approximates
the regularization term and can be written as

Bω = CωCT
ω ,

where matrix C ∈ R
N×L is defined by

C =











ω1(ϕ1) ω2(ϕ1) · · · ωL(ϕ1)
ω1(ϕ2) ω2(ϕ2) · · · ωL(ϕ2)

...
...

. . .
...

ω1(ϕN) ω2(ϕN) · · · ωL(ϕN)











.

Further, estimation of the condition number, depends on particular prob-
lems, choice of regularization terms, basis functions, etc.

Therefor, before we proceed, we briefly discuss how these estimates are
usually obtained. For details see, for example, [1].

The first step is to obtain estimates (17) for a particular bilinear form
and functional spaces. This step actually does not depend on any mesh-
dependent parameter, choice of approximations (i.e., basis functions), etc.
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The second step is essentially “finite-dimensional” and uses inverse esti-
mates in Sobolev spaces (see [6] or [1]), and estimates for eigenvalues of the
mass or Gram matrix Mij = (ϕi, ϕj)H .

The latter step does not depend on the particular structure of the form
aω(·, ·) and depends only on the choice of functional spaces V and H and
corresponding finite-dimensional space Vh.

Combination of these estimates provide us with an estimate for the con-
dition number of the form

κ(Aω) ≤ Chα,

with a certain α, which depends on the choice of functional spaces and basis
functions.

The main observation here is that once all function spaces and type of
approximations are chosen, the last estimate does not depend on particular
form of a(·, ·) — once (17) holds.

For the case of second order elliptical problems and first order finite ele-
ments basis functions on triangular or tetrahedral meshes, the estimate

κ(Aω) ≤ Ch−2, (19)

is obtained for an arbitrary problem, which satisfies (17).
Discussion, presented above, allows us to choose the following strategy:

after fixing type of approximations (piece-wise linear finite elements on tri-
angular or tetrahedral meshes) and an “original”, singular, bilinear form, we
consider regularization terms of some form and prove estimates (17).

An analysis of such coercivity and continuity estimates is strongly problem-
dependent and is the main topic for the rest of the paper. Once these
estimates are obtained for regularized problem, we automatically have its
condition number satisfying (19).

Next, we consider, in a sequel, two particular cases: pure Neumann prob-
lem for Poisson’s equation and linear elasticity equation. For Poisson’s equa-
tion 2d and 3d cases are considered. For elasticity equations only problems
in 3d are considered.

As it was mentioned before, we are interested in estimates (17) for the
corresponding regularized problems.

4 Poisson’s equation

Consider the following problem in domain Ω ⊂ R
n, n = 2 or 3: Find u such

that

−∆u = f in Ω;
∂u

∂~n
= g on Γ,
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where Γ = ∂Ω and g denote the Neumann boundary condition on Γ.
In this case we have V = H1(Ω), V ′ = H−1(Ω) = [H1

0 (Ω)]
′
and H = H ′ =

L2(Ω) with conventional norms and semi-norms

‖u‖2
L2(Ω) =

∫

Ω

u2 dΩ,

|u|2H1(Ω) =

∫

Ω

∇u · ∇u dΩ, ‖u‖2
H1(Ω) = ‖u‖2

L2(Ω) + |u|2H1(Ω).

The variational problem has the form (6), where

a(u, v) =

∫

Ω

∇u · ∇v dΩ, (20)

and
F (v) = (f, v)L2(Ω) + 〈g, γ0v〉Γ,

where 〈·, ·〉Γ ≡ 〈·, ·〉 denotes conventional inner product in L2(Γ).
A kernel of this problem is one-dimensional (L = 1) and spans constant

functions. Hence, we can chose r = const. In what follows, we take r = |Ω|−1,
where |Ω| is area of Ω in R

2 or its volume in R
3. Let us note, that in this

case operator P : u 7→ (u, r) · 1(x) (where 1(x) = 1 for all x ∈ Ω) defines
projector in L2(Ω).

Regularization functional ω in (16) can be chosen as an arbitrary element
from H−1(Ω) and the regularized problem is defined by:

a(u, v) + ω(u)ω(v) = F (v), ∀v ∈ H1(Ω), (21)

where a(·, ·) is given by (20).
The most simple choice is to take ω = const in Ω. In this case the

regularization term reads

ω(u) = (ω, u) =

∫

Ω

ωu dΩ.

As in [5], we assume w(r) > 0. This implies correctness of the regularized
problem and its positive definiteness; refer to (15) for discussion concerning
properties of matrix M .

Another possible choice for ω is

ω(u) = 〈ωΓ, u〉Γ =

∫

Γ

ωΓu dΓ.
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with ωΓ ∈ L2(Γ). In this case (21) reads

a(u, v) + 〈ωΓ, u〉Γ〈ωΓ, v〉Γ = f(v), ∀v ∈ H1(Ω), (22)

i.e., regularization term “lives” only at the domain’s boundary.
A motivation for such choice of regularization term is that, using FEM

approximation for (21) and ω = const in Ω, one obtains a dense finite-
dimensional problem, due to that fact that regularization term in (21) is
non-local, and, hence, matrix Bω in (18) is dense. Obviously, using bound-
ary regularization term, it is possible to increase sparsity of the matrix Bω

and regularized matrix Aω. It will be shown later, that this choice for ω,
while increasing sparsity of the problem, doesn’t change behavior of condi-
tion number of the regularized problem — at least when talking about its
asymptotic in mesh parameter h.

A proof of coercivity of both problems (21) and (22) is provided by the
following theorem [1]:

Theorem 1. Let Ω ⊂ R
n be a bounded domain and let fi, i = 1, . . . L, L ≥ 1,

be functionals (not necessary linear) in H1(Ω), such that, if v is constant in
Ω,

L
∑

l=1

|fi(v)|2 = 0

is equivalent to
v = 0.

Then, there exist constants, depending only on Ω and functionals fi, such
that,

‖v‖L2(Ω) ≤ C1|v|H1(Ω) + C2

L
∑

l=1

|fi(v)|2, ∀v ∈ H1(Ω).

Choosing fi in a different ways, we can obtain different versions of Poincaré
and Friedrichs inequalities.

Coercivity of (21) follows if one choose L = 1 and

f(v) = ω(v) = (ω, v),

and coercivity of (22) follows if one choose L = 1 and

f(v) = ω(v) = 〈u, ωΓ〉Γ.

Continuity of the first problem (21) can be easily proved using Cauchy-
Schwartz inequality in L2(Ω).
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Continuity of the second problem (22) can be proved utilizing Cauchy-
Schwartz inequality in L2(Γ) and well known property of continuity of the
trace operator: For all v from H1(Ω) it holds [6]

‖γ0u‖L2(Ω) ≤ ‖γ0u‖H1/2(Ω) ≤ CΓ‖u‖H1(Ω), γ0u = u|Γ. (23)

Hence, estimates (17) hold for both problems under consideration.
According to the consideration in section 3, we have the same estimates

for the condition number of the regularized problem, i.e. (19). At the same
moment the second approach (22) adds to the stiffness matrix a number of
nonzero elements of the order O(N2/3) for 3d case and O(N1/2) for 2d case,
while the first one — O(N).

The existence of the trace theorem (23) shows the differences between an
arbitrary set of nodes, that can be used for construction of regularization
matrix Bω, and a set of the boundary nodes.

5 Elasticity equations

In this section pure Neumann problem for 3d linear elasticity equations is
considered.

For the following section we use notation ~x, ~u,. . . for geometrical vectors
and vector fields in Ω ⊂ R

3. We do not use vector sign for algebraic vectors.
Also, dot sign “·” denotes inner product in R

3, and “:” denotes convolution
of tensor and vector or convolution of two tensors. Tensors are typesetted in
bold typeface (σ, ǫ,. . . ).

For the case of pure Neumann problem for linear elasticity, we have the
following problem statement: Find the displacements ~u = [u1, u2, u3]

T such
that

− div σ(~u) = ~f in Ω, σ : ~n|Γ = ~g, Γ = ∂Ω,

where σ is the Cauchy stress tensor. The Hookean law

σ(~u) = C : ǫ(~u)

is the relation between the stress tensor σ and the infinitesimal strain tensor,
which is defined by

ǫ(~u) =
1

2

(

∇~u + (∇~u)T
)

,

C is 4-th order elastic moduli tensor.
The variational problem has a form of (6) with

V = (H1(Ω))3, H = (L2(Ω))3,
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(equipped with conventional direct product norm, semi-norms and inner
products) and

a(~u,~v) =

∫

Ω

σ(~u) : ǫ(~v) dΩ =

∫

Ω

ǫ(~u) : C : ǫ(~v) dΩ,

γ1~u = σ(~u) : ~n.

For simplicity, we consider the case of

σ(~u) = C : ǫ(~u) = 2µǫ(~u) + λ div(~u)I

where I is identity tensor and λ, µ are Lamé parameters. Generalization to
the C of general form is straightforward.

Then

a(~u,~v) =

∫

Ω

(2µǫ(~u) : ǫ(~v) + λ div(~u) div(~v)) dΩ,

or, equivalently,

a(~u,~v) = 2µ(ǫ(~u), ǫ(~v))L2(Ω) + λ(div(~u), div(~v))L2(Ω),

and

F (v) = (~f,~v)L2(Ω) =

∫

Ω

~f · ~v dΩ +

∫

Γ

~g · ~v dΓ.

Here, for arbitrary tensors ǫ and σ we define

(ǫ,σ)L2(Ω) =

∫

Ω

ǫ : σ dΩ =
n
∑

i,j=1

∫

Ω

ǫijσij dΩ, ‖ǫ‖2
L2(Ω) = (ǫ, ǫ)L2(Ω).

A kernel of elasticity operator A~u = − div σ(~u) (also called rigid body
modes space, RB) and the corresponding bilinear form is 6-dimensional,
consisting of 3 translation and 3 rotations around 3 non-collinear directions
(for 3d case). An arbitrary kernel element is:

~r(~x) = ~a +~b × ~x, ~x = [x1, x2, x3]
T ∈ R

3,

where ~a = [a1, a2, a3] ∈ R
3 corresponds to translations and ~b = [b1, b2, b3] ∈

R
3 corresponds to rotational degrees of freedom. So, rigid body modes space

can be defined as

RB ≡ kerA =
{

~r(~x) = ~a +~b × ~x, ~a,~b ∈ R
3
}

.
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There is another, more convenient way for describing of an arbitrary ~r ∈ RB.
Direct computations show that

~r(~x) = ~a +~b × ~x = ~a + Q~x, (24)

with

Q =





0 −b3 b2

b3 0 −b1

−b2 b1 0



 .

Another, equivalent, form of (24) is

~r(~x) = R(~x)α,

where
α = [a1, a2, a3, b1, b2, b3] ∈ R

6,

and matrix R ∈ R
3×6 reads:

R(~x) =





1 0 0 0 +x3 −x2

0 1 0 −x3 0 x1

0 0 1 x2 −x1 0



 . (25)

Columns of the matrix R form a basis in the rigid-body modes space, i.e.,
one can chose:

~r1 = [1, 0, 0]T , ~r2 = [0, 1, 0]T , ~r3 = [0, 0, 1]T , (26)

~r4 = [0,−x3, x2]
T , ~r5 = [x3, 0,−x1]

T , ~r6 = [−x2, x1, 0]T . (27)

Compatibility conditions (10) reads:

∫

Ω

~f · ~r dΩ +

∫

Γ

~g · ~r = 0, ∀~r ∈ kerA,

and poses self-equilibrium conditions for the applied boundary and volume
forces.

Regularized problem is formulated in the form (16) with

aω(~u,~v) = a(~u,~v) +
6
∑

l=1

ωl(~u)ωl(~v).

Since µ0 > 0 exists, such that

2µǫ(~u) : ǫ(u) + λ div2(~u) ≥ µ0ǫ(~u) : ǫ(~u),
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almost everywhere [9], an estimate

a(~u, ~u) ≥ C‖ǫ(~u)‖2
L2(Ω)

holds, and hence, for regularized form one has

aω(~u, ~u) ≥ C‖ǫ(~u)‖2
L2(Ω) +

6
∑

l=1

ωl(~u)ωl(~u). (28)

Now we have to obtain corresponding coercivity estimates of the form

‖ǫ(~u)‖2
L2(Ω) +

6
∑

l=1

ωl(~u)ωl(~u) ≥ ‖~u‖2
V . (29)

These estimates are known for some particular cases.
Consider a system of linear functionals ωl ∈ V ′, such that from

~v ∈ RB :
6
∑

l=1

ω2
l (~v) = 0

it follows that
~v = 0,

then Korn’s inequality (29) holds [7, 8, 9].
This condition is equivalent to the condition of non-degeneracy of the

matrix M , presented above, see (15).
Different choices of ωl can be considered; see, again [7, 8, 9] for examples.

An interesting to us case is

ωl(~v) =

∫

X

vl dX, l = 1, 3; ωl(~v) =

∫

X

(~x × ~v)l−3 dX, l = 4, 6, (30)

where X is either a set of positive volume measure, X = Ω̃ ⊂ Ω, or an
arbitrary open part Γ′ of the boundary Γ̃ = ∂Ω̃. This is also valid for Ω̃ = Ω,
Γ̃ = Γ = ∂Ω and, so, as particular case, for X = Γ′ ⊂ Γ being a part of
the domain’s boundary Γ. Thus, the same result as obtained for Poisson’s
equation holds for this case too, i.e. κ(Aω) ≤ Ch−2, when ωl are chosen
according to (30).

Now coercivity estimates for aω(·, ·) are direct implication of (28) and (29).
Continuity estimates for regularized problem can be easily obtained, taking
into account, that ωl is continuous, i.e. ωl ∈ V ′.

The choice X = Ω leads to regularized problem, solution of which is
orthogonal to RB with respect to L2(Ω) inner product. The case X = Γ
leads to the case of the boundary regularization.
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6 Implementation

This section covers only the case of boundary regularization term. Since the
topic of our interest is to consider only the properties of the problem’s stiffness
matrix, boundary conditions and its approximations, right-hand side, etc.,
are not considered below.

Consider at first the case of Poisson’s equation. Let us remind, that finite
dimensional problem under consideration is: Find uh ∈ Vh such that

a(uh, vh) + 〈ω, uh〉Γ〈ω, vh〉Γ = f(vh), ∀vh ∈ Vh. (31)

Finite element approximation uh to the solution u of the problem, reads

uh =
N
∑

i=1

uiϕi,

where N is a number of finite-element nodes in Ω and ϕi ∈ Vh are basis
functions, Vh = span(ϕi).

The stiffness matrix of the problem is

Aω = A + Bω,

where A corresponds to the first term in the left hand side of the equa-
tion (31), and Bω corresponds to the second one.

Matrix A corresponds to the approximation of the pure Neumann problem
with zero Neumann boundary conditions and reads:

Aij = a(ϕi, ϕj), i, j = 1, N.

Consider now representation for the second term. Since it depends only on
values at the boundary, it is enough to consider uh,Γ = uh|Γ and vh,Γ = vh|Γ,

uh,Γ =
∑

i∈Γ

uiϕi, vh,Γ =
∑

i∈Γ

viϕi, ωh =
∑

i∈Γ

ωiϕi,

where i ∈ Γ implies that the summation above is performed only over the
set of boundary nodes. For some vh, denote as vΓ a set of its boundary
components, i.e. vΓ = {vi, i ∈ Γ}. Then, for an arbitrary vh one has:

〈vh,Γ, ωh〉Γ = ωT MΓvΓ,

where MΓ ∈ R
NΓ×NΓ is “boundary” Gram’s or mass matrix,

(MΓ)ij = 〈ϕi, ϕj〉Γ, i, j ∈ Γ;

20



vectors vΓ, ωΓ ∈ R
NΓ corresponds to the boundary degrees of freedom, and

NΓ is a number of boundary nodes at Γ.
Then

〈uh, ω〉Γ〈vh, ω〉Γ = vT
Γ (MΓω)(MΓω)T uΓ = vT

Γ RΓRT
ΓuΓ = vT Bωu

with RΓ = MΓω and

Bω =

(

0 0
0 RΓRT

Γ

)

. (32)

Resulting system of equations for uh is

Aωuh = Fh,

or, in a block form (corresponding to internal (uh,I) and boundary (uh,Γ)
degrees of freedom, uh = [uh,I , uh,Γ]T ):

((

AII AIΓ

AΓI AΓΓ

)

+

(

0 0
0 RΓRT

Γ

))(

uh,I

uh,Γ

)

=

(

FI

FΓ

)

.

This equation shows that an additional “boundary” term RΓRT
Γ regularizes

the Schur complement system. Indeed, since AII is non-singular, by direct
elimination of internal degrees of freedom, one has

S + RΓRT
Γ = G,

where
S = AΓΓ − AΓIA

−1
II AIΓ

is a Schur complement matrix, which is singular.
Thus, we can state, that regularization of the entire singular stiffness

matrix using boundary regularization is exactly the same as regularization
of the corresponding singular Schur complement matrix.

We now consider a particular case, where ωΓ = const (ωΓ,i = ω = const
for i = 1, NΓ.) In this case

(RΓ)i = (MΓω)i =
∑

i∈Γ

MΓ,ijωj =
∑

i∈Γ

〈ϕi, ϕj〉Γω =

ω

〈

ϕi

∑

i∈Γ

ϕj

〉

Γ

= ω〈ϕi, 1〉Γ.

This is valid for both the 2d and 3d case.
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Now, for simplicity, we consider only the 2d case. If the boundary mesh
on Γ, induced from triangulation of Ω, is uniform with mesh parameter h
(this it what holds in our numerical experiments), then 〈ϕi, 1〉Γ = h and

(RΓ)i = (MΓω)i = ωh, i = 1, NΓ

and
Bω = ω2h2JJΓ, (33)

where vector JΓ ∈ R
N has zero entries at the internal nodes and ones at the

boundary nodes. Hence, elements of regularization matrix are
For 3d case, using similar procedure, one has 〈ϕi, 1〉Γ ∼ h2 to obtain

(RΓ)i = (MΓω)i ∼ ωh2, i = 1, NΓ

and
Bω ∼ ω2h4JΓJT

Γ , (34)

with JΓ of the same structure as for 2d case.
The same procedure can be performed for elasticity equations. In the

latter case the regularization matrix Bω, corresponding to the regularization
functionals (30) has the form

Bω = (MXR)(MXR)T (35)

with a (3N) × 6 block-column matrix

R =











R(~x1)
R(~x2)

...
R(~xN)











with R(~x) from (25) and ~xi, i = 1, N being finite elements nodal coordinates;

MX =

∫

X

ΦT Φ dX, MX ∈ R
3N

where 3 × 3N matrix Φ reads

Φ = (Φ1, Φ2, . . . , ΦN) , Φi = diag(ϕi, ϕi, ϕi).

For the matrix C = MXR another form can be obtained:

C =











C1

C2
...

CN











,
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where 3N × 6 matrix Ci reads

Ci =

∫

X





ϕi 0 0
0 ϕi 0 (~x × ~e1)ϕi (~x × ~e2)ϕi (~x × ~e3)ϕi

0 0 ϕi



 dX.

Here ~x = x1~e1 + x1~e2 + x1~e3 and ~e1, ~e2, ~e3 are basis vectors. The last three
columns of this matrix are components of the corresponding cross products.

Integration in the entries of the matrix Ci over subset X, can be reduced
to the integration over supp̟i ∩ X.

For the particular case under consideration, X is the domain boundary,
X = Γ = ∂Ω and, hence,

Ci ∼ h2R(~xi),

for all non-zero entries of C. Here h is an “average” mesh step size, i.e.

c1h ≤ hmin ≤ hmax ≤ c2h,

for every h and c1, c2 constants, independent on h. Here hmin and hmax stand
for minimal and maximal values of the mesh parameter for the particular
mesh.

Hence, for the 3d elasticity problem, that is considered here, one gets

Bω ∼ h4RΓRT
Γ , (36)

where matrix RΓ is obtained form matrix R by setting zero values to those
blocks of R which correspond to the internal degrees of freedom.

7 Numerical results

All numerical tests for Poisson’s equation are performed in Matlab. Compu-
tational domain Ω was chosen to be a unit square Ω = [0, 1]3 ⊂ R

2 or a cube
Ω = [0, 1]3 ⊂ R

3. Piece-wise linear first-order, finite elements on a triangular
or tetrahedral meshes are used.

All meshes are triangular (for 2d) or tetrahedral (for 3d case), with mesh
nodes arranged in 2d (3d) uniform rectangular array. In this case number N
of degrees of freedom is equal to N = Nx ×Ny (for 2d) or N = Nx ×Ny ×Nz

(for 3d) with Nx = Ny = Nz. For 2d case numerical tests were done for
values of N from 10 to 300. For 3d case N varies form 5 to 25.

Boundary regularization functional corresponds to the case ωΓ = ω = 1.
For simplicity, the “simplified” regularized term of the form (33) and (34)

was used. All presented results correspond to this choice of Bω. Nevertheless,
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Figure 1: Poisson’s eq., 3d case, ω = 1 (◦ — κ̃(A), (× — κ(Aω))

some numerical tests were done for the “full” regularization term (32). They
resulted in the same values for condition numbers of the regularized system.
This goes to show, that the efficiency of such regularization is due to proper
scaling of the rigid body matrix R in mesh parameter h. For example, in 2d
case ωΓ = 1 corresponds to (RΓ)i = ωhΓ = hΓ, where hΓ is boundary mesh
step size, which is set as a constant in our examples.

The numerical results obtained are as follows. For the 2d problem,
condition number of the regularized matrix differs only slightly from nat-
ural condition number of the original, singular, problem. For example, for
Nx = Ny = 151 we obtain κ̃(A) = 18604.3 and κ(Aω) = 20257.0. Despite the
fact that this result is greater, than the one obtained in the previous section,
proper asymptotic is also observed.

Results for 3d case and ω = 1 are presented on Fig. 1. In that case we
have

κ(Aω) ∼ h−1.8

which is in complience with the theoretical results. Let us also note that now
the condition numbers are of the same asymptotic, but with different values,
when compared to the 2d case.

Now lets turn to the elasticity equations. For this case only 3d ex-
periments were performed. Again, computational domain was chosen to
be a cube Ω = [0, 2]3. All meshes are tetrahedral, with mesh nodes ar-
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Figure 2: Elasticity equation, 3d case (◦ — κ̃(A), (× — κ(Aω))

ranged in 3d uniform rectangular array. Number N of degrees of freedom,
N = 3(Nx × Ny × Nz), where Nx = Ny = Nz = 5, . . . , 40. The boundary
regularization matrix was chosen according to (36).

The PRIMME library was used [11, 12] to compute eigenvalues of the ma-
trices.

The results obtained are similar to the case of the Poisson’s equation. The
resulting plot plot is presented on Fig. 2. It can be seen, that asymptotics
are proper for sufficiently small h. Moreover, values of condition numbers,
both for the singular system and the regularized system are the same.

The “∼ h” behavior of the condition number of the regularized matrix
for large h is also observed. Although we didn’t conduct a detailed analysis
of this feature, such behavior seems to be natural for such a kind of reg-
ularization and is connected with how the orders of minimal and maximal
eigenvalues of A in mesh parameter h corresponds with order in h of the
entries of regularization matrix Bω.

For example, consider regularization using orthonormalized rigid body
matrix R (3), which shifts all zero eigenvalues of A to 1. Taking into account,
that for the 3d case

c1h
3 ≤ λmin,>0(A) < λmax(A) ≤ c2h,
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we have

κ(Aω) ≤
max(1, c1h)

min(1, c2h)
.

Hence, we obtain asymptotic κ(Aω) ∼ h−2 if c1h
3 < 1 < c2h, κ(Aω) ∼ h if

1 < c1h
3 < 1 < c2h and κ(Aω) ∼ h−3 if h3 < 1 < c2h < 1.

The above plot displays similar behavior.
This shows, that a proper asymptotic of the condition number can be

obtained by appropriate scaling of the regularization term.

8 Conclusions

In this paper, asymptotic behavior of condition number of the regularized
problem for solution of pure Neumann problem was investigated. The main
result is that the regularization terms should be continuous functionals over
corresponding Sobolev space H1(Ω) to keep the condition number of the
same order in h as the natural condition number for the original singular
system. As a particular case, regularization functional can be chosen as a
constant function defined on the domain (or its mesh-independent part) or
at the boundary of the domain (or its mesh-independent part).

For 2D and 3D Poisson’s equations and 3d elasticity equations it was
observed that it suffices to consider regularization at the boundary of the
domain to keep exactly the same condition number as for the regularization
in the entire domain and for the natural condition number of the original
singular stiffness matrix.

We conclude with stating that proper scaling of the (boundary) regular-
ization matrix plays a crucial role for the behavior of the condition number.
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