Efficient Retrieval of Abstract Cases for Case-Based Planning

Ralph Bergmann
University of Kaiserslautern
Centre for Learning Systems and Applications (LSA)
PO-Box 3049
D-67653 Kaiserslautern, Germany
bergmann@informatik.uni-kl.de

Abstract

Recently, the use of abstraction in case-based reason-
ing (CBR) is getting more and more popular. The ba-
sic idea is to supply a CBR system with cases at many
different levels of abstraction. When a new problem
must be solved, one (or several) ’appropriate’ concrete
or abstract case are retrieved from the case base and
the solution that the case contains is reused to derive
a solution for the current problem, e.g. by filling in
the details that a retrieved case at some higher level of
abstraction does not contain. A major problem that
occurs when using this approach is, that for a given
new problem, usually several cases, e.g., from different
levels of abstraction could be reused to solve the new
problem. Choosing a wrong abstract case can slow
down the problem solving process or even prevents
the problem from being solved.

This paper presents a new approach for selecting ab-
stract cases from a case base within in the context of
the case-based planning system PARIS. Based on a
general analysis of the efforts involved in abstraction-
based CBR, the new retrieval technique is developed.
Cases are organized in an abstraction hierarchy that is
constructed during the retain phase. Abstract cases at
higher levels of abstraction are located above abstract
cases at lower levels. The leaf nodes of this hierarchy
contain the concrete cases. Further, this abstraction
hierarchy is pruned based on a cost model of the ex-
pected problem solving time in order to optimze the
retrieval structure. Several experiments conducted in
the domain of manufacturing planning shows clearly
the advantage of the presented retrieval approach.

Introduction

In AT, the use of abstraction was originally inspired by
human problem solving (cf. (Minsky, 1963)) and has
already been successfully used in different fields such
as theorem proving, model-based diagnosis or plan-
ning (Giunchiglia and Walsh, 1992). Recently, some
researchers have started to investigate the use of ab-
straction in case-based reasoning (CBR). In case-based
reasoning (Aamodt and Plaza, 1994; Kolodner, 1993)
problems are solved on the basis of previous experi-
ence (called cases) which is stored in a case base in the

form of problem-solution-pairs. The typical case-based
reasoning problem solving cycle is as follows: A case
that is similar to the current problem is retrieved from
the case base. Then, the solution contained in this re-
trieved case is reused to solve the new problem, i.e., the
solution is adapted in order to come to a solution of the
current problem. Thereby, a new solution is obtained
and presented to the user who can verify and possibly
revise the solution. The revised case (or the experience
gained during the case-based problem solving process)
is then retained for future problem solving, e.g., the
case can be stored in the case base.

The basic idea behind the use of abstraction in CBR
is to supply a CBR system with cases at many dif-
ferent levels of abstraction. These cases are stored
in a case base for being reused to solve new prob-
lems. When a new problem must be solved, one
(or several) ’appropriate’ concrete or abstract case
have to be retrieved from the case base and the so-
lution that the case contains is reused to derive a
solution for the current problem, e.g. by filling in
the details that a retrieved case at some higher level
of abstraction does not contain. For these kind of
approaches the terms hierarchical case-based reason-
ing (Smyth and Cunningham, 1992), stratified case-
based reasoning (Branting and Aha, 1995), and reason-
ing with abstract cases (Bergmann and Wilke, 1995;
Bergmann, 1996; Bergmann and Wilke, 1996) have
been used so far.

A major problem that occurs when using this ap-
proach is, that for a given new problem, usually several
cases, e.g., from different levels of abstraction could be
reused to solve the new problem. However, since differ-
ent cases describe previous solutions at a different level
of detail or use different abstract views, they could be
more or less suited for solving a new problem. Choos-
ing a wrong abstract case can slow down the prob-
lem solving process or even prevents the problem from
being solved. Therefore, abstract cases must be se-
lected carefully. This paper presents an approach for



selecting abstract cases from a case base. This work
has been pursued in the context of the PARIS case-
based planning system (Bergmann and Wilke, 1995;
Bergmann, 1996). The next two sections briefly intro-
duce the idea of case-based reasoning using abstraction
and the concrete PARIS system. Section 4 describes a
new approach for selecting appropriate abstract cases
from a case base and section 5 presents an experimental
evaluation of this approach. Finally, section 6 summa-
rizes the results.

Reasoning with Abstract Cases

While cases are usually represented and reused on a
single level, abstraction techniques enable a CBR sys-
tem to reason with cases at several levels of abstrac-
tions. Firstly, this requires the introduction of several
distinct levels of abstraction.

Each level of abstraction allows the representation
of problems, solutions, and cases as well as the rep-
resentation of general knowledge that might be re-
quired in addition to the cases. Usually, levels of ab-
straction are ordered (totally or partially) through an
abstraction-relation, i.e., one level is called more ab-
stract than another level. A more abstract level is
characterized through a reduced level of detail in the
representation, i.e., it usually consists of less features,
relations, constraints, operators, etc. Moreover, ab-
stract levels model the world in a less precise way,
but still capture certain, important properties. In tra-
ditional hierarchical problem solving (e.g., ABSTRIPS
(Sacerdoti, 1974)), abstraction levels are constructed
by simply dropping certain features of the more con-
crete representation levels. However, it has been shown
that this view of abstraction is too restrictive and rep-
resentation dependent (Bergmann and Wilke, 1995;
Holte et al., 1995) to make full use of the abstrac-
tion idea. In general, different levels of abstraction re-
quire different representation languages, one for each
level. Abstract properties can then be expressed in
completely different terms than concrete properties.

hierarchical
case
. abstract
abstraction Cases
//: abstraction
i o o P
Cases

Figure 1: Different kinds of cases

Based on the level of abstraction, we can distinguish
between two kinds of cases: concrete cases and abstract
cases. A concrete case is a case located at the lowest
available level of abstraction. An abstract case is a
case represented at a higher level of abstraction. The
case-base usually stores abstract and concrete cases.
If several abstraction levels are given (e.g., a hierarchy
of abstraction spaces), one concrete case can be ab-
stracted to several abstract cases, one at each higher
level of abstraction. Such an abstract case contains
less detailed information than a concrete case. On the
other hand several concrete cases usually correspond
to a single abstract case (see Fig. 1). These concrete
cases share the same abstract description; they only
differ in the details.

During case-based reasoning, a case at some level of
abstraction is retrieved (see Fig. 2). Then, the solu-
tion of the retrieved case is possibly adapted, i.e., the
solution is modified but the level of abstraction is not
changed. As a result, an abstract solution to the new
problem is obtained. Then, this adapted abstract so-
lution is refined to a concrete solution to the problem.
During this refinement process (which can be either
done by a generative hierarchical problem solver or in
a case-based manner, see (Bergmann and Wilke, 1996))
the details that the abstract case does not contain are
added. The refined solution is then presented to the
user. For her/him it is transparent, whether the so-
lution presented by the system stems directly from a
matching concrete cases or whether the solution is ob-
tained through the refinement of an abstract case.

Level of Abstraction , : adaplatl(f _
E iy abstract
cases

Level of Abstraction ,

1 LT

Level of Abstraction, : »
/ adaptatiol I )
case abstraction refinement
Level of Abstraction j

(concrete level) available concrete
case

new solutions
Figure 2: Adaptation of abstract cases
In (Bergmann and Wilke, 1996) we have shown that

in general abstraction can support the CBR process

e by reducing the complexity of the case representa-
tion,

¢ by reducing the size of the case base,
e by increasing the flexibility of solution reuse, and

¢ by providing a means for solution adaptation.



PARIS: Using abstraction in case-based
planning

Now, we briefly describe a concrete case-based reason-
ing system, called PARIS! that uses abstraction for
case-based planning. A detailed description of the
system can be found in (Bergmann and Wilke, 1995;
Bergmann, 1996; Bergmann and Wilke, 1996). PARIs
was designed as a generic (i.e., domain independent)
case-based planning system but with a particular area
of application domains in mind: manufacturing plan-
ning in mechanical engineering. Here, a plan is a se-
quence of manufacturing steps that must be performed
in order to produce a particular mechanical workpiece.
Planning in this domain can be viewed as classical
STRIPS (Fikes and Nilsson, 1971) planning: a (man-
ufacturing) operator transforms a certain state (cur-
rent workpiece) into a successor state (workpiece af-
ter the manufacturing step). The planning task is to
find a sequence of operators which transform a mold
(initial state) into the desired workpiece (goal state).
Since finding such a plan is known to be a NP-complete
problem, several case-based approaches have been de-
veloped already that allow to make use of additional
knowledge (in the form of previous cases) during plan-
ning (Bergmann et al., 1998).

The task of a case-based planning system in this do-
main is to produce a manufacturing plan (solution) for
a new workpiece (problem) by reusing previous manu-
facturing cases. We have identified, a set of CBR spe-
cific requirements that are important in this domain
(Bergmann, 1996):

e ability to cope with vast space of solution plans,
e construction of correct solutions,

o flexible reuse due to large spectrum of target prob-
lems,

e processing of highly complex cases, and

e only concrete planning cases available (e.g. in
archives of a company).

Abstract Planning Cases
In PARIS,

o abstract planning cases are generated automatically,

e stored together with the concrete cases in the case-
base,

o used for indering during retrieval,

1 PaRis stands for plan abstraction and refinement in an
integrated system.

e and they are adapted and refined automatically dur-
ing the reuse-phase.

Different levels of abstraction are realized by different
planning domains, each of which consists of its own set
of operators and its own representation of states (i.e.,
workpiece descriptions in our domain). Abstract op-
erators and states are described using more abstract
terms than concrete operators. While a concrete plan-
ning case consists of a sequence of operators from the
concrete level, an abstract planning case consists of a
sequence of operators form the abstract level. Each ab-
stract operator that occurs in an abstract case stands
for a sub-sequence of concrete operators of the cor-
responding concrete case. In (Bergmann and Wilke,
1995) a comprehensive formal model of case abstrac-
tion is explained in detail.

Available Concrete Case Abstract Case Refined Case

Case Abstraction Case Refinement

0
[ workpiece

@ ®
@ €) raw & fine

workpiece

Figure 3: Example of generating and refining abstract
cases.

Example

Figure 3 presents an example of the relationship be-
tween a concrete case and an abstract case in the man-
ufacturing domain. Here, the concrete planning do-
main contains operators and predicates to describe the
detailed contour of workpieces and individual manu-
facturing operations (e.g., cutting a certain area) that
must be performed. The abstract domain abstracts
from the detailed contour and represents larger units,
called complex processing areas, together with the sta-



tus of their processing (e.g. not processed, roughly pro-
cessed, or completed). The left side of Figure 3 shows
a section of a concrete case, depicting how a step-like
contour with two grooves is manufactured by a sub-
plan consisting of 6 steps. The abstract case, shown in
the middle of this figure, abstracts from the detailed
contour and just represents a complex processing area
named A that includes raw (step-like contour) and fine
(grooves) elements. The corresponding abstract plan
contains 2 abstract steps: processing in a raw manner
and processing in a fine manner.

Acquisition of Abstract Cases

Engineering departments which develop manufactur-
ing plans manually, usually record them (e.g., in a
database) for documentation purposes. These plans
contain all details necessary for manufacturing the
workpiece; they represent concrete cases only. Because
manual abstraction of such cases seems to be a tremen-
dous effort, abstract cases are generated automatically
from a given concrete case. For this purpose, a domain-
independent case abstraction algorithm has been de-
veloped. Given a concrete and an abstract planning
domain, this algorithm computes abstract cases from
a given concrete case.

Refinement of abstract cases

In PARIS an abstract solution contained in an abstract
case is refined automatically to a concrete level solu-
tion. The right side of Figure 3 shows an example of
such a refinement. Please note that the contour of the
two workpieces differs drastically at the concrete level.
However, the abstract case matches exactly because
the 5 atomic contour elements in the new problem can
be abstracted to a complex processing area with raw
and fine elements. During refinement, the abstract op-
erators of the abstract case are used to guide the gener-
ative planner to find a refined solution to the problem.
Therefore, each abstract state is used as a kind of sub-
goal. The planner starts with the concrete initial state
from the new problem description and searches for a
sequences of concrete operators leading to a concrete
state that can be abstracted to the first abstract state
in the abstract case. The resulting operator sequence is
a refinement of the first abstract operator. All remain-
ing abstract operators are then sequentially refined in
the same way. In the portion of the case shown in Fig-
ure 3, the abstract operator process raw A is refined to
a sequence of four concrete steps which manufacture
area 1 and 2. The next abstract operator is refined to
a four-step sequence which manufactures the grooves
3, 4, and 5.

We can seen that the abstract case decomposes the
original problem into a set of much smaller subprob-

lems. Due to this decomposition, the effort for problem
solving is drastically reduced compared to a pure from
scratch problem solver.

Adaptation of Abstract Cases

PARIS also performs solution adaptation. For that pur-
pose, a case (either abstract or concrete) is generalized
into a generalized case (similar to a schema or script).
Such a generalized case does not only describe a sin-
gle problem and a single solution but a problem class
together with a solution class. Such classes are real-
ized by introducing variables into the initial and goal
state as well as into the plan. Additionally, a general-
ized case contains a set of constraints that restricts the
instantiation of these variables. PARIS includes an al-
gorithm for automatically generalizing concrete or ab-
stract cases into schemas (Bergmann, 1996) by apply-
ing explanation-based generalization (Mitchell et al.,
1986). Adaptation with generalized cases is done by
finding an instantiation of the variables such that in-
stantiated generalized case matches the target problem
to be solved. In PARIS, matching (similarity assess-
ment) and adaptation is done by a constraint satisfac-
tion problem solver. The effort for solving this con-
straint satisfaction task can be very high: in the worst
case it is exponential in the number of constraints and
the size of the problem class. Typically, the represen-
tations at a higher level of abstraction are less complex
than representations at lower levels. Consequently,
generalized cases at higher levels of abstraction contain
less constraints and the problem class is composed of
a small number of prepositions. Therefore, adaptation
of abstract cases requires less effort than adaptation of
concrete cases.

Selecting Abstract Cases During
Retrieval

Within the framework of using abstraction in case-
based reasoning, a major problem is to retrieve appro-
priate cases from the case base. Selecting the wrong
case can slow down problem solving or can even pre-
vent a problem from being solved. Therefore, we now
focus on how to retrieve appropriate cases.

General Considerations

To enable an efficient overall case-based problem solv-
ing two major factors must be considered during re-
trieval. Since the overall case-base problem solving ef-
fort is the sum of the retrieval effort and the reuse
effort,

e a case (either abstract or concrete) must be retrieved
that can be reused to solve the new problem by
spending as little effort as possible for reuse and



e the effort for the retrieval step itself should be as low
as possible.

For case-based reasoning systems that make use of
abstraction, the effort for reuse can be again divided
into the effort for adapting an abstract solution and
the effort for refining the adapted abstract solution to
a concrete solution (see also Fig. 2). If we take a closer
look at these efforts, we observe that

o the effort for adaptation increases, the lower the level
of abstraction of the case is. The reason for this is
that cases at lower levels include more details in the
representation all of which must possibly be modi-
fied consistently to come to a solution for the new
problem.

e On the other hand, the effort for refinement de-
creases the lower the level of abstraction of the case
is. The reason for this is that in more concrete cases
less details are missing that must be generated dur-
ing the refinement.

Reuse Effort

high

1 Adaptation Effort
2 Refinement Effort
3 Total Effort (1+2)

low

- - Level of Abstraction
abstract optimal point concrete

Figure 4: Reuse effort depending on level of abstrac-
tion.

Figure 4 shows these efforts depending on the level of
abstraction. From these very general considerations it
becomes immediately clear that the best case for reuse
is usually located at some middle level of abstraction;
neither the most abstract nor the most concrete case
should be reused.

Besides the selection of an abstract case that can be
reused efficiently, the retrieval process itself must be
efficient as well. A trade-off between the objective to
find the best case and the objective of minimizing the
retrieval time exists as depicted in Figure 5 (adapted
from (Veloso, 1992)). As the number of cases visited
during retrieval increases, more time must be spent for
retrieval (see curve 2) but better cases resulting in a
shorter adaptation time will be found (see curve 1). Up
to a certain point (optimal point), the total case-based
planning time (retrieval+reuse, see curve 3) decreases
when more cases are visited during retrieval. However,

beyond this point the total planning time increases
again if more cases are visited, because the possible
gain through finding better cases does not outweigh
the effort of finding them.

1 Reuse effort
2 Retrieval effort
3 Total effort (1+2)

Casesvisited during retrieval

Figure 5: Trade-off between retrieval effort and reuse
effort.

Hierarchical organization of the case base

The enable an efficient retrieval, the organization of the
case base plays an important role. In PARIS, abstract
cases located at different levels of abstraction are used
as hierarchical indexes to those concrete (or abstract)
cases that contain the same kind of information but
at a more detailed level. For this purpose, an abstrac-
tion hierarchy is constructed during the retain phase,
in which abstract cases at higher levels of abstraction
are located above abstract cases at lower levels. The
leaf nodes of this hierarchy contain concrete cases (see
Fig. 6).

Abstraction hierarchy

high
A
Abstract
level of Cases
abstraction
\/ Conrete
low I N 3 R == =

Figure 6: Abstraction hierarchy for indexing cases.

During retrieval, this hierarchy is traversed top-
down. The abstract case at the node of the hierarchy
is examined in order to find out whether the abstract



solution it contains can be adapted to become an ab-
stract solution to the current problem. If this is the
case, the successor nodes of the hierarchy are examined
in a predefined order. The search through this hierar-
chy proceeds at the next level with the first successor
node that contains an abstract case that is adaptable
for the current problem.

As explained so far, this retrieval strategy has two
major shortcomings:

o It usually ends up with an applicable case at a lowest
level possible level of abstraction. Hence, we do not
hit the optimal point in Fig. 4, but we are too much
on the right side of curve 3.

o It has to examine many cases to decide whether they
are adaptable, particularly also case at lower levels
of abstraction. Hence, we do not hit the optimal
point in Fig 5, but again we are too much on the
right side of curve 3.

As a consequence of these two shortcomings, this ap-
proach spends a lot of effort for retrieval and selects a
case that requires high adaptation effort.

Optimized Retrieval

In order to cope with these problems, we have to mod-
ify the approach in a way that cases that require a
high adaptation effort are not selected by the retrieval
and are not even be examined during retrieval. This
can be efficiently realized through a pruning of the ab-
straction hierarchy, i.e., deleting some branches of the
tree. If a certain branch of the tree is removed (to-
gether with the respective concrete and possibly ab-
stract cases) the abstract cases that remain accessible
can still cover the set of target problems previously cov-
ered by the deleted case. However, not all details are
present any more. During reuse they must therefore
be reconstructed by the generative planner. Conse-
quently, pruning of the abstraction hierarchy has two
contrary effects on the overall problem solving time:

e Since the detailed parts of the solution are not avail-
able any more, the refinement effort increases, but
the adaptation effort decreases.

e Since the number of cases that must be inspected
during retrieval is reduced, the retrieval effort is also
reduced.

Now, the question arises which parts of the hierarchy
should be pruned? This determines how far we move
the points in Fig 4 and 5 to the left side. We aim, of
course, getting close to the optimal point.

Cost Model

The PARIS system makes use of an elaborated cost
model for determining the expected cost/benefit (re-
trieval effort + reuse effort) of pruning certain parts
of the abstraction hierarchy (and the case base). This
cost model is based on an estimation of the expected
value of the case-based problem solving time.

Tew(P) =Y Pr(p)- Ti(p).

pEP

Here, P is the set of all problems that possibly must
be solved, Pr(p) is the probability that the problem
p must be solved, and T, (p) is the overall case-based
problem solving time for solving p given a particularly
pruned abstraction hierarchy. The idea is to compute
an estimation of this expected problem solving time for
different pruned abstraction hierarchies and to select
the hierarchy with lowest expected value. In order to
compute such an estimation, the assumption must be
made that the distribution of the cases from the cases
base is equal to the distribution of the problems to
be solved in the future. Given this assumption, the
probabilities Pr(p) can be determined directly from
the case base.

In order to compute an estimation for T, (p) for a
given problem and an abstraction hierarchy, for each
node K in the hierarchy an estimation is required for
the following values:

e T,(K,p): The time required for adapting the ab-
stract case at node K to the problem p. We assume
that the time for determining whether an abstract
case is adaptable is the same than the time for doing
the actual adaptation. This is at least the case for
the adaptation approach used in PARIS.

e T,(K,p): The time required for refining the adapted
abstract solution from the case at node K to a solu-
tion of p.

e Pi(K,p): Let K have the not-pruned successor
nodes Ki,...,K,. Then P;(K,p) for j = 1..r is
the probability that the abstract case at the node
K; is adaptable for p and the abstract cases at the
nodes Ki,...,K;_; are not adaptable for p given
that the abstract case at node K is adaptable for p.

Now, it can be shown that the expected value for
the case-based problem solving time can be computed
recursively as follows:



T,(K,p)

Tew(K,p) = { >Yiey Tew (Ki,p) - P;(K,p) +

Y To(Ki,p) - (1= Y1 Py

T,(K,p) - (1 = 3 iy Pi(K,p))

In order to compute this expected value for a pruned
hierarchy, estimations for T, (K, p), T, (K, p), P;(K,p)
are necessary. Estimations for T, (K, p) and T, (K, p)
can be obtained by measuring the average adaptation
time and average the refinement time when using the
abstract case at node K during problem solving. Es-
timations for P;(K,p) can be obtained from the in-
formation which previous problem from the case base
can be solved by using which abstract case from the
hierarchy.

Based on the model, a hill-climbing optimization al-
gorithm computes a pruned abstraction hierarchy and
thereby the related fragment of the case base that leads
to the lowest estimation of the expected overall cost for
solving a new problem.

Experimental Results

We now present the results of an experimental study
which shows the benefits of the developed retrieval ap-
proach. This study was done using the fully imple-
mented PARIS system in the domain of manufacturing
planning for rotary symmetric workpieces on a lathe
(see (Bergmann and Wilke, 1995) for details of the do-
main).

200000 F

150000

100000

Problem solving time [msec]

g

30 40 60 70 80 9
Problems [Case No.]

10 20 100

Figure 7: Problem solving time for 100 problems.

For the experiments, 100 concrete cases were gen-
erated randomly. From these concrete cases a set of

(K

K is leaf node in the hierarchy,

K has of the not-pruned successors

ap))+ K]-J“‘JKT'

Table 1: Cases in the Case Base
| Selected Case || average problem solving time

Best case 12 sec.
Average case 109 sec.
retrieved case 13 sec.

111 cases at four levels of abstraction could be gener-
ated. The retrieval mechanism constructed an abstrac-
tion hierarchy. Due to the pruning of the hierarchy, 85
cases became inaccessible and the retrieval is restricted
to the remaining 26 cases.

In order to assess the efficiency of the retrieval, we
determined the case-based problem solving time (re-
trieval+adaptation+refinement) for solving 100 prob-
lems. A time limit of 200 seconds was imposed. Prob-
lems that could not be solved within this time limit re-
mained unsolved and a value of 200 seconds was noted
as problem solving time for this problem. Fig. 7 shows
the problem solving time for each of the 100 problems.
The problems are ordered according to the length of
the solution plan, i.e., problems with a higher num-
ber require a longer solution plan. As a reference, we
also determined for each problem the problem solving
time when using the best possible cases and the aver-
age problems solving time over the set of all possible
applicable cases. The respective curves are also plot-
ted in Fig. 7. Table 1 summarizes the average problem
solving time over the problems that could be solved for
the three conditions. Additionally, the maximally con-
servative sign text as described in (Etzioni and Etzioni,
1994) was performed to determine whether the perfor-
mance gain when selecting the retrieved case over se-
lecting the average case was significant. As expected,
it was significant with a p-value p < 0.000001.

First, this experiment shows clearly that accurate
retrieval is crucial for the performance of the system
since the difference between retrieving the best and
retrieving the worst case is very big. Second, the curve
which shows the problem solving time for the retrieved
case indicates only slightly higher values for most cases
than the curve representing the best case.

Please note that the problem solving time measured



pruned hierarchy ——

Table 2: Comparison of different retrieval techniques.

Retrieval approach solved problems | average time | average time
(percentage) | (solved probs.) | (all probs.)
linear 6 % 157 sec. 197 sec.
hierarchical, not pruned 41 % 26 sec. 127 sec.
hierarchical, pruned 93 % 13 sec. 24 sec.

for the retrieved case includes also the retrieval time,
while the problem solving time for the best case does
not. A detailed examination of the retrieval has shown
that in 57% of the problems the retrieval selects the
best possible case.

In a second experiment, we compared the retrieval
results with two other variants:

e first, a linear retrieval in which cases are stored in
arbitrary order in a list and the first adaptable case
is selected and

e second, using the retrieval approach presented in sec-
tion but without pruning of the abstraction hierar-
chy.

Fig. 8 shows the resulting curves. Tab 2 summarizes
for every condition the percentage of solved problems,
the average problem solving time over the solved prob-
lems, and the average problem solving time over all
problems (for unsolved problems the time limit of 200
seconds was used). Additionally, the maximally con-
servative sign text was performed to determine whether
the performance gain of the proposed retrieval ap-
proach with pruned hierarchies was significant over the
linear retrieval and over the hierarchical retrieval with-
out pruning. It turned out to be significant in both
cases with a p-value p < 0.000001.

200000

150000 ||

100000

Problem solving time [msec]

50000 |

linear —-—-
not pruned -

o wat

60 70 8 9 100
Problems [Case No.]

10 20 30 40 50

Figure 8: Comparison of different retrieval techniques.

This comparison makes clear that the pruning ap-
proach based on the developed cost model is in fact
responsible for the good results. The naive linear re-
trieval is completely inappropriate; only 7% of the
problems could be solved at all.

Summary

In this paper, we demonstrated how abstraction tech-
niques can be successfully employed within case-based
problem solving. We briefly presented the case-based
planning system PARIS as an example of an approach
that integrates CBR with abstraction. Further, we ar-
gued that the selection of appropriate cases is very cru-
cial for those systems, a claim that is further supported
by the presented experiments. Therefore, we focused
on a particular retrieval technique for selecting appro-
priate cases efficiently. Based on a general analysis of
the efforts involved, the new retrieval technique is de-
veloped. Its main source of efficiency is a cost model
of the expected problem solving time which allows to
use an optimization approach for determining a good
retrieval structure.

References

Aamodt, A. and Plaza, E. (1994). Case-based rea-
soning: Foundational issues, methodological varia-
tions, and system approaches. AI Communications,
7(1):39-59.

Bergmann, R. (1996). Effizientes Problemlosen durch
flexible Wiederverwendung von Féllen auf verschiede-
nen Abstraktionsebenen (in German). DISKI 138, In-
fix Verlag, Sankt Augustin (Germany).

Bergmann, R., Munoz-Avila, H., Veloso, M., and
Melis, E. (1998). Case-based reasoning applied to
planning tasks. In Lenz, M., Bartsch-Spoerl, B.,
Burkhard, H.-D., and Wess, S., editors, Case-Based
Reasonig Technology from Foundations to Applica-
tions. Springer (in press).

Bergmann, R. and Wilke, W. (1995). Building and
refining abstract planning cases by change of repre-
sentation language. Journal of Artificial Intelligence
Research, 3:53-118.



Bergmann, R. and Wilke, W. (1996). On the role of
abstraction in case-based reasoning. In Smith, I. and
Faltings, B., editors, Advances in Case-Based Rea-
soning, Lecture Notes in Artificial Intelligence, 1186,
pages 28-43. Springer Verlag.

Branting, K. and Aha, D. (1995). Stratified case-
based reasoning: Reusing hierarchical problem solv-
ing episodes. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 384-390.

Etzioni, O. and Etzioni, R. (1994). Statistical meth-
ods for analyzing speedup learning. Machine Learn-
ing, 14:333-347.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189-208.

Giunchiglia, F. and Walsh, T. (1992). A theory of
abstraction. Artificial Intelligence, 57:323-389.

Holte, R. C., Mkadmi, T., Zimmer, R. M., and Mac-
Donald, A. J. (1995). Speeding up problem solving
by abstraction: A graph-oriented approach. Technical
report, University of Ottawa, Ontario, Canada.

Kolodner, J. L. (1993). Case-based reasoning. Morgan
Kaufmann.

Minsky, M. (1963). Steps toward artificial intelli-
gence. In Feigenbaum, E.; editor, Computers and
Thought. McGraw-Hill, New York, NY.

Mitchell, T. M., Keller, R. M., and Kedar-Cabelli,
S. T. (1986). Explanation-based generalization: A
unifying view. Machine Learning, 1(1):47-80.

Sacerdoti, E. (1974). Planning in a hierarchy of ab-
straction spaces. Artificial Intelligence, 5:115-135.

Smyth, B. and Cunningham, P. (1992). Deja vu: A
hierarchical case-based reasoning system for software
design. In Neumann, B., editor, FCAI-92, pages 587—
589.

Veloso, M. M. (1992). Learning by analogical reason-
ing in general problem solving. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA.



