
Using PDF Documents for Rapid
Authoring of Reusable Elearning

Content in LOXtractor

Projektarbeit am Fachbereich Informatik der Technischen
Universität Kaiserslautern, in Kooperationmit demDeutschen

ForschungszentrumKünstliche Intelligenz (DFKI), Kaiserslautern

Frederick Schulz

June 12, 2008

Erklärung der Selbständigkeit

Hiermit versichere ich, die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenenQuellenundHilfsmi!elbenutzt zuhaben. Zitate sinddeutlichkenntlichgemacht.

Kaiserslautern, June 12, 2008 Frederick Schulz

Contents

1 Overview 1
1.1 Introduction . 1
1.2 Learning, Informal Learning and Elearning 1
1.3 Elearning in theWork"ow: SLEAM . 2

2 Initial State and Task Description 7
2.1 Initial State of LOXtractor . 7
2.2 Assigned Tasks and#eir Motivation . 8

2.2.1 Extending the Choice of Input Formats 8
2.2.2 Additional Improvements . 10

3 User Guide 11
3.1 Step 1: Creating a New Learning Object Project 13
3.2 Step 2: Importing a PDF File . 13
3.3 Step 3: ImportingWri!en or Copied Text . 14
3.4 Step 4: Editing Content andMetadata . 16
3.5 Step 5: Extracting Learning Objects . 16

4 Technical Realization 19
4.1 Technical Background . 19

4.1.1 Eclipse RCP . 19
4.1.2 Plugin Architecture . 19
4.1.3 #e PDF File Format . 21

4.2 #e PDF Parser Plugin . 22
4.2.1 Image Extraction . 23
4.2.2 Metadata Extraction . 23
4.2.3 Text Extraction . 24
4.2.4 Solved and Unsolved Problems . 26

4.3 #e Plain Text Parser Plugin . 26

5 Conclusions 27
5.1 RelatedWork . 27

5.1.1 PDF content extraction . 27

i

Contents

5.1.2 Optical Character Recognition . 28
5.2 Possible Improvements and Extensions . 28
5.3 Conclusion . 28

Bibliography 31

ii

1

Overview

1.1 Introduction

#is thesis presents and details my work in expanding the rapid authoring tool prototype LOX-

tractor, which has been developed atDFKI byMarkus Ludwar as a diploma thesis in 2006. #e
focus of my work was in adding additional input sources, namely PDF $les.
In the remaining pages of chapter 1 I will present the historical, scienti$c and applicational

contexts of theLOXtractor tool. Chapter 2will give anoverviewofLOXtractor itselfwhile chap-
ter 3 will be focused on my improvement and expansion work.

1.2 Learning, Informal Learning and Elearning

Learning, according to ([Doh01] p.3), is the process of aquiring impressions, informations and
requirements from the environment and constructing new knowledge by relating these to ex-
isting correlations of knowledge, imagination and explanation. #is leads to new competencies
of acting and understanding. Learning is categorized as informal ¹ if it takes place outside of or-
ganisations or events especially dedicated to it (like schools or seminaries) and instead happens
during work or leisure time and without an explicit agenda or a designated instructor.

LOXtractor is a tool for generating elearning content in informal learning environments em-
bedded in the work"ow. Elearning, short for electronic learning, is used as a generic term for all
learning activities using new media (see [RR02] p.16). Informal elearning happens all the time
in all kinds of work environments. A recent survey by TNS Infratest, conducted for the german
federalministry of education and research (BMBF)during the europeanadult education survey
(AES) (see [RB08] p.31) states that 35% of all adults aged 19 to 64 used computers and the in-

1 At least it is in the scopeof thiswork; there is noneed to use one of themore elaborate de!nitions commonly
used in scienti!c literature. See e.g. [Doh01], p.18ff.

1

1 Overview

ternet to improve their knowledge in the last twelvemonths. All these people (andmanymore)
bene$ted from informal elearning. #e most obvious example for informal elearning in the
workplace is sur$ng the web for information needed to solve the current task at hand. #atmay
be $nding the mail address or telephone number of a correspondent, reading the online doc-
umentation of a so&ware program or programming language to be used, or browsing message
boards in search for an explanation of a sudden error message. #is type of directed informa-
tion gathering is called elearning by distributing ([RR02] p.16), because the media is only used
to distribute information. #e requirements for the learner are high(see [RR02] p.16), since
information found on the web is (most o&en) not prepared for effective learning and contains
a great share of irrelevant details (see [RL07a] p.1). Depending on the skills and competencies
of the learner, the cost for preparing these raw information to extract the learning-relevant parts
can be quite high.
Elearning content can come in various forms like direct representations of formal learning

sessions (lectures, seminaries, etc.) in new media formats like video recordings or podcasts. It
can also consist of self-learning courses and interactive learning tools. #ese content forms are
rather monolithic and contain many single pieces, o&en connected rather loosely. Separating
or extracting these pieces for reuse is time consuming (see [Lud06] p.9). For the efficient stor-
age a more $nely grained unit is desirable. #e form which is most interesting in the scope of
this paper is the learning object. A learning object is a small, self-contained unit of informational
content that cannot be divided any further (see [Lud06] p.9). #e format of these contents
can vary greatly. Most times it will consist of a single text section, a single image, or a table, but
videos, audio $les and interactive content are also possible. In addition to its actual content,
the learning object may and should contain metadata describing its content (keywords, tags
and similar) and a mapping locating this learning object in an ontology. #is provides a both
machine and human accessible way to $nd learning objects. A set of selected learning objects
can easily be assembled to a bigger course unit – which can itself be described by metadata –
and from these the bundling of full elearning courses is possible. So learning objects with high
quality metadata are a highly reusable and "exible form of elearning content. #is makes the
reusable learning object a natural candidate to be used as a storage unit in knowledge manage-
ment systems (see [Lud06] p.9f).

1.3 Elearning in the Workflow: SLEAM

Elearning by distributing, as described above, happens very o&en², consumes much time and
resources and is o&en redundant since coworkers have already collected andprepared this infor-
mation for themselves in the past and learningdirectly from those coworkers is bothneglectable
in frequency (see [RB08] $g.16) and doubles the cost due to two people being deterred from

2 Information technology workers spend an estimated 7 hours per week with information gathering, accord-
ing to a study performed by#e Ridge Group [Rid03].

2

1.3 Elearning in theWork"ow: SLEAM

work (see [Rid03]). None the less, informal learning in theworkplace is important, even a con-
dition for survival. ([Tri02]p.3)So, fromaneconomicperspective, the learning’smainnegative
effect, the cost in time, must be reduced as much as possible. Especially the redundancy in in-
formation search, retrieval and selection can be reduced greatly by implementing a knowledge
management system. A working knowledge management system can shi& a substantial part of
ineffective ’elearning by distribution’ to elearning by interacting ([RR02] p.16), using the ad-
vantages of new media not only for faster access to information but for facilitating the learning
process, too.³ Workers using learning objects as units of information that are didactically pre-
pared to contain higher information density and are enriched with metadata to facilitate their
locationwhile solving their current learning goal spend less time locating andpreparing thenec-
essary information. #is process of transforming knowledge from implicit personal knowledge
to explicit, collective forms as externalization in the epistemological and ontological dimen-
sion is described as the knowledge spiral concept of knowledge management by Nonaka and
Takeuchi (see [NT97]). But simply representating and collecting knowledge, called ‘squirrel
knowledge management’ [Sch01] is not enough. #ere have to be adequate organisational,
pedagogical and at last technical environments facilitating and cultivating the usage of stored
knowledge ([RR02] p.13f).
However, evenwith the best environments, all elearning solutions need someone tomaintain

and $ll the knowledge repository, and for small and middle-sized enterprises (SME) hiring a
specialized employee for this task or outsourcing it to a service provider is economically not
feasible. #ismight be the reasonwhy less than 25%of enterprises with 500 to 1000 employees
use elearning solutions, and even less smaller enterprises do so.⁴
#e german research center for arti$cial intelligence (DFKI), during the projectTask Embed-

ded Adaptive eLearning (TEAL), devised an optimized process for work"ow embedded author-
ing of elearning objects called SLEAM (see [RL07a]).

identify
knowledge

gap

perform
task

LearnSearch

no knowledge gap

knowledge
gap exists

task
finished

Figure 1.1: Normal task solving work"ow

Figure 1.2 shows a schematic overview of the SLEAM process. SLEAM is an acronym for
the sequence of activities – Search Learn Extract Annotate Map – that describes this method of

3 See core staetement 1 in [RR02]: ‘A user friendly preparation of content can facilitate [. . .] learning pro-
cesses.’

4 Estimated according to a survey of 40 ‘experts’ [Ins06].

3

1 Overview

identify
knowledge

gap

MapAnnotate

perform
task

ExtractLearnSearch

no gap no new content task
finished

learning
object

Figure 1.2: #e SLEAM process

elearning object authoring. #e normal task solvingwork"ow is extendedwith additional steps
to create a metadata-enriched learning object for use in a knowledge management system.
In the normal work"ow ($gure 1.1), for each task given the worker $rst determines if he has

all knowledge necessary for the completion of the task. If one or more parts of knowledge are
missing this is called a knowledge gap. #e worker then searches for information and learns the
missing knowledge, then proceeds with the task, now able to solve it since nomore knowledge
is missing. However, all effort done in the course of searching and learning is lost for everyone
else but the worker himself.
#e SLEAM process ($gure 1.2) strives to conserve this effort. A&er searching, learning and

completing the task, the worker extracts all relevant information from his sources, annotates
themwith metadata describing content and context andmaps them into an ontology for be!er
retrieval, thus creating a metadata enriched learning object ready to be deployed to the com-
pany’s knowledge management system. #us, the output of the work"ow is not only the solu-
tion to the task at hand, but also a learning object. #is learning object conserves part of the
effort invested in information retrieval. A coworker assigned to a similar task can now locate
this learning object in the company’s knowledge database with the help of the metadata, key-
words, and the ontology the learning object is mapped to. #us, a lengthy and expensive search
or a disturbance of the worker already possessing the competence or knowledge can be avoided
– at least partially.
To create substantial advantages that justify the necessary investments, the cost of learning

object creation must be signi$cantly lower than what saving it creates. #is is only realisable
with an appropriate toolchain.
Rostanin and Ludwar suggest some requirements for toolchains supporting SME’s elearn-

ing strategies in [RL07a] ($gure 1.3).#ey conduct evaluations of existing learning content
authoring systems with regard to these requirements in [RL07a] and [Lud06]. #ese evalua-
tions show a great de$ciency of elearning content authoring tools suited for SMEs. Specialized
toolchains like RELOAD (see [Uni]) or EXPLAIN (see [imc]) require trained operators and
content collected with general purpose so&ware – likeMicroso&Office, weblogs, or wikis – re-
quires extensive postprocessing to maintain a well-ordered state. #is lack of appropriate tools
led to the development of the LOXtractor so&ware described in the following chapter.

4

1.3 Elearning in theWork"ow: SLEAM

• #e learning object authoring process. . .

• must be performed by company insiders without deterring them from work for too
long and

• should focus on import and (partial) reuse of existing documents instead of from
scratch creation.

• #e resulting learning objects. . .

• are $ne-grained learning objects instead of full executable learning courses and
• are annotated with metadata according to a standard format to allow import in and
retrieval from learning content management systems.

Source: [RL07a]

Figure 1.3: Requirements for elearning strategies in small and middle sized enterprises

5

1 Overview

6

2

Initial State and Task Description

2.1 Initial State of LOXtractor

As stated above, there are – as of yet – no tools suited for supporting the SLEAM process of
work"ow embedded learning object authoring. Authoring tools for elearningmost times focus
on content creation from scratch, need specially trained authors or produce large monolithic
training courses instead of $ne grained learning objects desired for informal learning on the
work"ow (see [RL07a]). To proof the advantages of SLEAM and to conduct case studies, an
experimental authoring tool tailored for SLEAM – LOXtractor – was implemented by Markus
Ludwar as a diploma’s thesis in 2006 (see [Lud06]).
#is $rst LOXtractor version allows acquiring content from html documents. #ese can be

wikis relying on the mediawiki so&ware (see [Wika]) – e. g. wikipedia (see [Wikb]) – or arbi-
trary websites. #e parser retrieves the documents from the internet and cleans up malformat-
ted ones. #e well-formed HTML documents are then analysed and the markup elements are
used to transform the linear, textual format of HTML to tree structures. #e page’s <title>
is transformed to the root node. Headlines – <h1> to <h6> – are represented by inner nodes.
Higher numbers are treated as children of lower numbers. #e leaves are <p> and <div> el-
ements and text found directly in the <body> element. In most cases this should re"ect the
hierarchy of the information contained in the document very well. Images are represented by
leaves, like text sections. At $rst only the image URL is recorded. #e image itself is down-
loaded only when it is displayed or exported. Tables are treated separately to conserve their
structure.
#at tree representation of the document is then displayed in the tree view of LOXtractor. In

the side panel on the le& ($gure 2.1, 1) the tree viewdisplays the tree nodes. For the selected tree
node, the content can be viewed in the content panel ($gure 2.1, 2). #e lower panel shows and
modi$es the metadata ($gure 2.1, 3) and learning concept ontology ($gure 2.1, 4) properties.
#e tree view provides tools to delete, concatenate and reseparate nodes in order to trim and

restructure information. A&er this, selected parts can be exported to learning objects. #e ex-

7

2 Initial State and Task Description

Figure 2.1: LOXtractor window: 1. side panel with tree view of document structure, 2. content
panel with image, 3. metadata panel, 4. concept and keyword panel

tractor creates learning objects in SCORM and DAMIT (see [DFK]) format. SCORM has
been chosen as themain output format for its widespread use, its role as a standard for learning
content exchange, and its well-documented, XML-based format de$nition.
Since these features are not important for my work on LOXtractor, I refer to [Lud06] for a

more detailed description.

2.2 Assigned Tasks and Their Motivation

While a $rst, working version of the LOXtractor tool exists, there is still a potential for improve-
ments andextension. Ludwarpresents some ideas in [Lud06], pages81ff. Oneof them is the ex-
tension of the parser sectionwith additional $le types. #e tasks assigned tome formy projects
thesis will be described in the following sections.

2.2.1 Extending the Choice of Input Formats
One of the disadvantages of LOXtractor is its limitation to receive the input only fromweb sites
(see [Lud06] p.89). My task was to extend the spectrum of $le types usable as input for LOX-

8

2.2 Assigned Tasks and#eir Motivation

SCORM

‘#e Sharable Content Object Reference Model (SCORM) de$nes a Web-based learning
“Content Aggregation Model (CAM)” and “Run-Time Environment” (RTE) for learning
objects.[. . .]#is reference model aims to coordinate emerging technologies and commercial
and public implementations. #e SCORM applies current technology developments to a
speci$c content model by producing recommendations for consistent implementations to
the vendor community.’

Source: [Adv]

Figure 2.2: Self-description of SCORM

tractor. I decided to implement an import tool – called parser in the LOXtractor context – for
Adobe PDF $les.
#e Portable Document Format was developed in 1993 as an extension to the PostScript page

description language, extending it with document structure and interactive navigation features
(see [pdf06] p.23). Over the course of 15 years and 8 versions many features for collaborative
editing, digital signing and archiving, security and digital rights management, and accessibility
have been added. PDF has become a de facto standard for prepress systems and electronic doc-
ument exchange (see [pdf06] p.24). In many places, a "ow of PDF $les replaces the previous
paper work"ow. A statistical survey from 2002 reported that an estimated 10% of all $les in-
dexed byGoogle are in PDF format (see [May02]). #is is not surprising, since PDF hasmany
properties qualifying it for electronic document exchange:

• Identical rendering on a great variety of platforms, ranging from all kinds of screen de-
vices (cellphones to PCs) to home or office printers and industry scale printing ma-
chines, made possible by features like font embedding (see [pdf06] p.39f).

• Direct usability on different platformswithout need for character set or end-of-line char-
acter conversion (see [pdf06] p.38).

• Awell documented and publicly available format de$nition¹, leading to a great variety of
so&ware for creating, displaying and modifying PDF $les on many platforms.

• Up- and partial downward compatibility, allowing the continued use of documents cre-
ated with outdated versions of PDF (see [pdf06] p.42).

• #e ability to protect $les frommanipulation (see [pdf06] p.41f).

1 Several subset de!nitions like PDF/A, PDF/X and PDF/E are published ISO standards since 2001. PDF
1.7 was declared ISO standard 32000 in december 2007.

9

2 Initial State and Task Description

So one can be sure to encounter the portable document format while searching for infor-
mation through the internet. Unfortunately, the portable document format is less optimal for
information extraction. Compared to markup languages like (X)HTML, it is not focused on
transporting document structure and content but on transporting a pure visual information
(see [LB95]). While recent developments, especially tagged PDF make up for that de$ciency,
their use is very limited, due in part to the inability of most PDF creation so&ware to use these
features.(see [pdf06] p.883ff). #e facts stated above show clearly that PDF import for LOX-

tractorwas both a necessity and a challenging task.
#e requirements for the PDF parser were the following:

• Extraction of all text content

• Preserving the structure of the text

• Preserving as much text style information (text size, font information) as possible

• Extraction of images

• Extraction of metadata (title, author, subject and keyword information)

• Compatibility with PDF $les created with different so&ware and with different layouts

I also considered a parser for office documents – documents created with Microso& Office,
OpenOffice, or similar programs. While not as abundant as PDF$les on the internet these $les
are none the less spread widely, especially in office environments. Ultimately, I decided against
implementing such a parser for the following reasons. First, there are many different formats in
circulation: doc, ppt, odf, odp, docx, just to name a few. Either, many different parsers would
have to be implemented, or a suitable intermediate format – and conterverters form all other
formats to this format running on all target platforms – would have to be found. Second, the
access of office documents in a Java program is difficult since notmany libraries exist. #ird, the
conversion from these $le formats to PDF is trivially easy and either build-in or easily available
– even for free –with the different so&warepackages. Hence a parser for PDFdocumentswould
also allow the import of these documents with minimal additional effort on the user’s side.

2.2.2 Additional Improvements
While LOXtractor now supports conversions from web pages and PDF documents to learning
objects it was still not possible to enhance the learning object with self-wri!en annotations. To
add explanations and examples in one’s own words, in the current state the user would have to
publish it to a web site which is then parsed by LOXtractor. To avoid this unnecessary com-
plication I added a pure text parser. #is enables the user to copy and paste text from various
applications or write annotations directly into LOXtractor. For branding and recognition pur-
poses, a logo used as application icon and splash image was designed.

10

3

User Guide

When $rst starting LOXtractor, an empty workplace is shown. It should seem familiar to users
experienced with Eclipse or other Eclipse RCP based applications. #e le& part is the naviga-
tor view, where all imported documents and exported learning objects for each learning object
project are presented. #is le& pane can be toggled to a tree view of all currently opened im-
ported documents. #en the area to the right displays contents and metadata for the selected
node in the le& panel (see $gue 3.2).

Figure 3.1: Navigator view in the le& panel

Figure 3.1 shows the navigator viewwith one learning object project containing one imported
document. Each learning object project provides two folders: doc for the storage of imported

11

3 User Guide

documents with a subfolder img for images extracted from PDF $les and los for the storage
extracted learning objects.

Figure 3.2: Tree view in the le& panel, contents andmetadata of selected node in the right panels

Figure 3.2 shows the tree viewwith the document seen in the navigator viewnowopened. One
of the paragraphs of the $rst page is selected, and its contents are displayed in the upper half of
the right window and its metadata in the lower half.
#e LOXtractorwork"ow can be divided in the following steps:

1. Creating a New Learning Object Project

2. Importing a PDF File (repeated as necessary)

3. ImportingWri!en or Copied Text (repeated as necessary)

4. Editing Content/Metadata

5. Extracting Learning Objects

In the following paragraphs, the steps of thework"owwill be described froma user’s perspec-
tive:

12

3.1 Step 1: Creating a New Learning Object Project

Figure 3.3: New project window

3.1 Step 1: Creating a New Learning Object Project

#e $rst step in the creation of learning objects for a certain topic is to establish a container for
the imported documents and exported learning objects. In eclipse terminology this is called
a project. Projects are created by the project creation wizard accessible from the File menu. In
this case we want to create a New LO Project. #e next step inquires a name for the project. It
might be a good idea to name the project a&er the concept to be explained. Finishing thewizard
presents uswith thenavigator view again, nowcontaining a node for the project labelledwith the
chosen name and containing the folders docs and los, as well as a eclipse-speci$c .project
$le which is of no interest to us. We can now start to add content.

3.2 Step 2: Importing a PDF File

To import a PDF $le, we $rst switch the le& panel to tree view. #e context menu item Select
Parser brings up the parser wizard ($gure 3.4). By default, theWikipedia Parser is selected in the
Select Parser radio group. We have to change that to pdf Parser. You will notice that the layout
will change to re"ect the different input needed by the PDF parser compared to the wikipedia
parser. Now we need to supply some information: LO Group Name is the label of the node
representing our documents in the navigator view. In the big edit box in the middle we insert
the full paths of the PDF $les we want to extract, seperated by semicolons. Clicking theChoose
File… bu!on open a $le dialog box which allows browsing for a $le and automatically adds it
to the box. Finally, we need to specify a Source Solder. #at should be the docs folder of the
learning object project our document is belonging to. Finally, press the Finish bu!on and wait

13

3 User Guide

Figure 3.4: PDF parser dialog window

for the process to complete. If all went well, the tree view should come back to focus and display
the extracted document ($gure 3.2). #e document is divided into pages and each page into
paragraphs which are labeled with the $rst words they contain. Images are enumerated and
included with the page they appear on and hyperlinks from the whole document are collected
in a special node. While a separation into pages is given by the PDF $le structure, paragraph
detection is done with heuristics based on locality and common properties like font size and
font face. While not always perfect, shortcomings can easily be corrected by manually joining
paragraphs that were unnecessarily separated. A detailed description of the paragraph joining
algorithm can be found in the developer’s section (section 4.2).

3.3 Step 3: Importing Written or Copied Text

To import plain text wri!en or copied from other applications we select the clipboard Parser in
the Select Parser radio group of the parser wizardwindow. LOGroupName is $lled with the title
we like to give our piece of text and Source Folder is set to the docs folder of the learning object
project our text is belonging to. A&er clicking Finish, the tree view should be back to front and
we can begin selecting and editing content for the upcoming learning object creation.

14

3.3 Step 3: ImportingWri!en or Copied Text

Figure 3.5: Text parser dialog window

Figure 3.6: Context menu with node manipulation options

15

3 User Guide

3.4 Step 4: Editing Content and Metadata

To edit the contents of imported documents, they have to be opened in the tree view. New
documents are opened automatically a&er completing the parser wizard, older documents can
be opened manually from their context menu in the navigator view. In the tree view, opened
documents are displayed in a tree-like manner, with the leaves containing the text or images.
By selecting leaves and using the context menu ($gure 3.6), they can be concatenated (Concat
Checked Tree Nodes) and deleted (Remove One Checked Descendend). Nodes that were created
by concatenating two or more nodes can be separated again (ShowOriginal Tree). #e tree view
of a document can be closed withDelete Tree View.

Figure 3.7: Extractor wizard: format selection dialog window

3.5 Step 5: Extracting Learning Objects

When $nished with removing useless text and joining paragraphs to well-sized bundles we can
start extracting the learning object. A single node can be extracted with the Extract A Single
TreeNode in One File With Parent command from the context menu. Several nodes can be ex-
tracted at once with the Extract Each Item in One File command. Next, we see the extractor
wizard. In the format selection dialog window ($gure 3.7) we can select the desired output
format. Let us select SCORM. In the following main window ($gure 3.8) some metadata and
the location to store the learning object have to be completed. #e los folder of the current
learning object project is the recommended location.
A&er clicking $nish, the learning objects can be found in the chosen subfolder of the folder

los in the workspace. From there they can be added to any knowledge database accepting the
SCORM format.

16

3.5 Step 5: Extracting Learning Objects

Figure 3.8: Extractor wizard: main dialog window

17

3 User Guide

18

4

Technical Realization

4.1 Technical Background

4.1.1 Eclipse RCP

LOXtractorwas developed on top of the Eclipse rich client platform (Eclipse RCP).Rich clients
are, in contrast to thin clients orweb applications,mainly located on the user’s computer and not
on a central server. #is allows the native user interface of the platform to be used, using operat-
ing system features like drag and drop, system clipboards andUI customization and, important
for moblie devices, offline usage (see [ML05]).¹ In contrast to stand alone applications, rich
client platforms provide extensive frameworks and development tools, ‘[…]eliminat[ing]many
of the menial programming tasks required to create UIs and access databases […and provid-
ing…] frameworks and infrastructure so developers could spend more time programming do-
main logic rather than reinventing the wheel.’²
#e Eclipse RCP derived from the Eclipse Java IDE. Being based entirely on Java, it is sup-

ported on awide range of platforms, from all kinds ofUnix "avors toWindows and evenmobile
devices, providing eachuserwith the look and feel he is accustomed towithout any adjustments
on the developer’s side.³

4.1.2 Plugin Architecture

Modularity in the Eclipse RCP is archieved via plugins. Plugins depend on each other, ex-
plicitely stating their dependencies in the pluginmanifest. #e Eclipse RCP itself is a set of plug-

1 AJAX and technologies like Google Gears try to deliver these features with web applications, too, but by
reimplementing them instead of using the native operating system features.

2 ‘Foreword by JohnWeigand’ in [ML05]
3 For a more in-depth analysis of potential platforms for LOXtractor see [Lud06], p.42ff

19

4 Technical Realization

ins on top of a Java Runtime Environment⁴, as well as all eclipse base applications, like the Java
IDE or LOXtractor. Plugins are managed, loaded and executed by the OSGi⁵ framework. #e
Eclipse Runtime plugin manages applications, special plugins containing the application logic.
Togetherwith plugins encapsulating user interface elements from the underlying operating sys-
tem (Eclipse UI, JFace and SWT) these plugins form the Eclipse RCP.

Plugin A Plugin B

ExtensionExtension Point extends

Interface or
abstract class Classimplements

instantiates and uses

Figure 4.1: Extension and extension point relation

Plugins not only depend on each other by using classes or methods de$ned in other plugins,
they can also provide functionality for each other via extensions and extension points ($gure
4.1). Via extensions, for example, an image $le viewer could be extended with the logic to dis-
play $les in a new format. A plugin providing an extension point states this in its manifest $le.
It declares a unique ID for the expansion point, de$nes an interface or an abstract class any
extensionmust implement and provides an XML schema, declaring which information any ex-
tension must provide. Likewise, the extending plugin has an entry in its plugin manifest that
extends that extension point and an XML $le corresponding to the provided schema, contain-
ing among others the name of the class implementing the extension point interface. A single
plugin can have many extension points and can extend several extension points in other mod-
ules, it can even extend a single extension point more than once.
#e LOXtractor application plugin provides one extension point for exporting learning ob-

jects with the extractor plugin realising extractors for SCORM and DAMIT by de$ning two
extensions to this extension point. It also de$nes an extraction point for parsers. Parsers are

4 actually only a subset called ‘Foundation Classes’ to reduce the memory footprint on mobile devices, see
[ML05]

5 !e Open Service Gateway Initiative speci"cations, developed and published by the OSGi Alliance specify
a framework for de!ning, composing, and executing components or bundles, called plugins in the Eclipse
world.

20

4.1 Technical Background

LOXtractor plugin

extractor plugin parser plugin

extractor extension point parser extension point

SCORM DAMIT Wiki-
pedia HTML PDF plain

text

Figure 4.2: Extension points and extensions in LOXtractor

classes which import documents into the internal data structure. #e parser plugin originally
de$ned two parsers (for wikipedia and for general html pages) and was extended by me with
two additional parsers for PDF $les and plain text, now providing four extensions to the parser
extension point in the LOXtractor application class.

4.1.3 The PDF File Format

Document Resource

Page

Page

Font Resource

Text Content
 Stream

etc.

Glyph

Glyph

etc.

etc.
links

Vector Content
 Stream

Raster Content
 Stream

Figure 4.3: PDF $le structure

PDF is a page description language. #is means the basic building block in every PDF doc-
ument is the page (see [MD02] p.539ff). #ere’s a complex object hierarchy around the page
objects. A full description would be impossible and unnecessary in this context, so only the
most important aspects will be picked out.
#e pages are organised in a b-tree. Each page object contains format information, refer-

ences to ressources and content streams (see [MD02] p.544). Ressources are fonts, color spaces,
pa!erns, or raster images that are stored in a central section and can be used in several pages.

21

4 Technical Realization

Content streams de$ne vector drawings, text blocks or raster images and their position on the page
(see [pdf06] p.33). #ey are normally encoded and compressed with various algorithms, un-
like the other PDF objects, which are mostly human readable plain texts.
Vector drawings use a PostScript compatible description language to place drawing objects

(lines, boxes, complex pathes) and $ll themwith colors, pa!erns (e. g. from a pa!ern ressource),
or gradients. Text blocks donot contain plain text but (compressed) references to parts of a font
ressource. #ese parts, called glyphs represent single le!ers or ligatures (see [MD02] p.548f).
#ere are various possibilities howmappings from these glyphs to the le!ers they represent are
stored. #ismakes text extractionhardor even impossible in somecases⁶ (see [MD02]p.550ff).
Tagged PDF $les would include a machine readable representation of the text associated with
each group of glyphs, but those $les are very rare to come across (see [pdf06] p.883ff).
Raster images can be ressources or content streams. In both cases, a great variety of formats

and compression algorithms is supported, including uncompressed, ASCII-encoded bitmaps,
JPEG and JPEG2000 compressions, the PNG format and a great variety of TIFF "avors.
Metadata support in PDF $les is very elaborate, thanks to the eXtensible Metadata Platform

XMP. #e XMP is ‘a standard format for the creation, processing, and interchange of meta-
data, for a wide variety of applications’ [xmp05, p.7]. It provides the ability to store all kind
of document metadata in XML format directly as part of the document and supports metadata
standards likeDublin Core⁷, ResourceDescription Framework⁸, Exchangeable Image File For-
mat⁹ or arbitrary user-de$ned XML namespaces for metadata, all with internationalization –
allowing multiple values for different languages – and full unicode support.

4.2 The PDF Parser Plugin

#e PDF Parser Plugin is my main contribution to the LOXtractor prototype. Functionally it
can be divided in three main parts (image extraction, metadata extraction and text extraction)
and some auxiliarywork. #e la!er involved somemodi$cations in the extension point schema
and the parser selection wizard. #emain parts will be described in the following paragraphs.
But $rst some explanations concerning the way documents are saved internally have to be

made. #ewhole tree representingadocument is saved inTreeObjectobjects. SimpleTreeOb-
ject objects form the leaves and contain the text data as plain text and HTML fragments. Im-
ages are also represented by TreeObject leaves containing a reference to the image location in
the workspace or the internet. Pages are represented by TreeParent objects, a direct subclass
of TreeObjectwith a Collection of TreeNode references added. #ese link to the children,

6 Mappings can be missing or purposely wrong to prevent access to the text to anything but a human reader
or OCR

7 see http://dublincore.org
8 see http://www.w3.org/RDF
9 see http://exif.org, developed by JEITA, the Japan Electronics and Information Technology Industries As-

sociation

22

4.2 #e PDF Parser Plugin

i.e. all text sections and images on the page. #e document as a whole is represented by a Top-
Parent (subclass of TreeParent) containing the document metadata, a TreeObject for all
hyperlinks and a Collection of the TreeParent objects for the pages. For persistence be-
tween runs of LOXtractor, a TopParent object provides methods to store the tree on disk and
reconstruct its datastructure into memory.

PDF
file

<pdf2xml>

<page>

<format>

<text>

TopParent: Document

TreeParent: Page

TreeNode: Paragraph TreeNode: Image

TreeParent: Page

pdftohtml
JDOM

Extractor
Plugin

<SCORM>

<manifest>

<metadata>

<resource>Text
Extraction

Jem
pBo

x

JDOM

<XMP>

<dc:author>

<rdf:title>

<pdf:subject>

Metadata
Extraction

PDFBox

AWTImage
Image

Extr
acti

on

Figure 4.4: From PDF $le to SCORM learning object

#e PDF parsing process can be divided into 3 parts: image extraction, metadata extraction
and text extraction. Each part contributes to the tree representation over a different intermedi-
ate state ($gure 4.4).

4.2.1 Image Extraction

Image extraction was realized via the PDFBox library. ‘PDFBox is an open source Java PDF
library for working with PDF documents. #is project allows creation of new PDF documents,
manipulation of existing documents and the ability to extract content from documents.’ [Litb]
#e library is published under the BSD license. PDFBox allows the handling of PDF $les
from an object oriented perspective by imposing an object hierarchy called pdmodel on them
(see [Lit05] p.1). A&er opening and decrypting a PDF $le with the facilities provided by the
PDFBox library a PDDocument object is obtained. Its methods allow access to the PDPage ob-
jects encapsulating pages and their content streams. From there, Collections of AWTImages
can be referenced and wri!en to disk. #en TreeObjects referencing them can be created.

4.2.2 Metadata Extraction

A&er extracting the images, the PDDocument object is reused to extract the XML stream con-
taining the metadata. #e metadata is stored in this XML document according to the XMP
speci$cation (see [xmp05]). To transform the character data into a object oriented representa-
tion of the XML document, the library JDOM (see [Hun]) is used. From that representation,

23

4 Technical Realization

themetadata is extracted with the help of the JempBox library (see [Lita]). LOXtractor is look-
ing for author, title, subject and keyword information in the default language of the document.
Dublin Core, PDF andXMPBasicmetadata schemata are requested and the acquired informa-
tion is merged and wri!en to the TopParent object of the document.

4.2.3 Text Extraction
Text extraction was the most difficult feature to implement. While many commercial, free and
open source libraries claim to support text extraction, the results were not satisfying. Most li-
braries simply extract the plain text as a monolithic block, discard all style information or sep-
aration into structural elements(e.g. paragraphs) and mix captions, headlines and footnotes in
the body text.
Others extract text with the goal to look like the PDF page, but sever connections between

structurally grouped elements, leading to a $ne-grainedmess of unrelated text fragments which
the user would have to puzzle together. For LOXtractor the desired output is some intermedi-
ate, coarse-grained structure, conserving text style and structure of the document. A&er some
experiments with different libraries the following work"ow was established:

1. #e PDF document is converted to XML data with the command line tool pd"ohtml.

2. #e XML data is converted to an XML document object in Java with the JDOM library.

3. #e text fragments stored in the XML document are grouped by identical style.

4. #e groups of text fragments with the same style are grouped by local proximity into
paragraphs.

5. For each paragraph a TreeObject is created to store its text and style.

6. #e TreeObjects are inserted into the document tree as children of the corresponding
page TreeParent.

pd"ohtml is a command line tool originally intended to create HTML documents from PDF
$les.¹⁰ Important for its use in LOXtractor is the feature to create an XML document instead.
Figure 4.5 shows a sample from such a $le. #e program is executed from within the Java run-
time and its output to stdout is captured and parsed to get a JDOMXMLdocument. It is nec-
essary to provide the environment variable pdf2htmlcommand containing the absolute path to
the pd"ohtml executable.(Step 1 & 2)
Now the XML data is in a Java object based form and can be manipulated by the Java pro-

gram. As seen in the example ($gure 4.5), the text is grouped by lines in text elements, each
line carries location and size properties and each line references to a description of its style

10 It is available free of charge and supports a great variety of platforms. See [Lin]

24

4.2 #e PDF Parser Plugin

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE pdf2xml SYSTEM ”pdf2xml.dtd”>

<pdf2xml>

<page number=”1” position=”absolute” top=”0” left=”0”

height=”1188” width=”918”>

<fontspec id=”0” size=”24” family=”Helvetica” color=”#000000”/>

<fontspec id=”1” size=”12” family=”Times” color=”#000080”/>

<fontspec id=”2” size=”52” family=”Helvetica” color=”#000000”/>

<text top=”942” left=”257” width=”256” height=”14” font=”0”>

ADOBE SYSTEMS INCORPORATED

</text>

<text top=”1042” left=”257” width=”147” height=”14” font=”1”>

http://www.adobe.com

</text>

<text top=”137” left=”257” width=”468” height=”50” font=”2”>

XMP Specification

</text>

</page>

</pdf2xml>

Figure 4.5: Sample XML $le created by pd"ohtml

properties in a fontspec element. #e $rst thing to do is to group the redundant style de$-
nitions. #e fontspec elements are iterated and a Collection of Fontspecgroup elements
is created. #e class Fontspecgroup is a custom datatype, having a unique name and storing
size, font and color information and a list of IDs referencing which fontspec elements share
this text style. Each fontspec element is member of exactly one Fontspecgroup. When this
assignment is done, the references to fontspec elements in the font a!ribute in each text el-
ement is replaced by a reference to the correct Fontspecgroup. Now it is obvious which lines
of text share a common text style and might belong to the same paragraph. (Step 3)
To group lines together in paragraphs, some assumptions are made. First, two lines belong-

ing to the same paragraph must have identical text style, indicated by referencing the same
Formatgroup. Second, they must start at the same le& coordinate. #e $rst line of a paragraph
may be indented, so a skew to the le& is allowed a&er the $rst line. #ird, they have a regular
vertical spacing of no more than line height (with double line spacing, normally much lower).
According to these criteria, lines are grouped to paragraphs, represented by Paragraph objects.
Paragraph objects store the text content of the paragraph, and a reference to the Formatgroup
de$ning the text style for this part of the text. (Step 4)
In the last step, the Paragraph objects are transformed to TreeNodes and appended to the

TreeParents representing the page. From the $rst words of each paragraph a label for the

25

4 Technical Realization

TreeNode is created to identify paragraphs in the tree view easily. With the information from
the Fontspecgroup referenced, a HTML <p> element containing the text in the original style
is created and appended to the TreeNode.

4.2.4 Solved and Unsolved Problems
While implementing the PDF parser, several problems arose and had to be solved or avoided.
#e $rst class of those problems were performance problems. Originally, the W3C DOM im-
plementation included in the Java Runtime Environment was used for the manipulation of
XML documents. #is caused parsing times of several minutes for documents with single-
digit page numbers; this was unacceptable. #e use of the JDOM library caused an enormous
speedup and made the handling of large documents (several hundreds of pages) possible. On
the downside, the set of dependencies was enlarged further. It also led to a refactoring that
moved all third-party libraries in a supportive plugin to avoid version clashes between different
instances of the same library used in all LOXtractor plugins.
Many problems resulted from errors and shortcomings of the pd"ohtml program. A long-

known – but never $xed – bug in this program causes the generated XML code to be mal-
formed. Several search-and-replace operations recti$ed this, fortunately with li!le impact on
performance. One of these was a <A> tag being closed with . Fixing the errors in pd"ohtml
was not possible in the given time frame. Another error in this category prevented the preserva-
tion of bold and italic text styles. To obtain valid XML, all and <i> tags have to be removed
from the XML text $le before passing it to the parser.
An intrinsic problemwith the XML approach is the use of reservedXML elements in the text

that is to be extracted. #e most obvious candidate for failure is the]]> character string – the
CDATA end delimiter. #e occurrence of this string in a text section creates invalid XML code.
pd"ohtml should have taken care to encode this sequence properly but fails in doing so.
A more general problem are the PDF-intrinsic rights management and content protection

measures. Support forpassword-protectedPDFdocuments andPDFdocumentswith restricted
text extraction is not implemented. Circumventing these protection measures would be criti-
cally close to ‘hacking’, so no progress is to be expected in this $eld. Fortunately, this feature is
rarely used.

4.3 The Plain Text Parser Plugin

#e plugin realising the import of plain text is called clipboard Parser. Its implementation is
nearly trivial: A TopParent with a single TreeNode child is created. #e input text is assigned
to the TreeNode both in the text a!ribute and a HTML <p> element. Despite its simplicity, its
use in quickly adding content is indisputable.

26

5

Conclusions

5.1 Related Work

5.1.1 PDF content extraction

#e $eld of content extraction from PDF $les with its problems outlined in section 4.1.3 re-
cieved a great variety of both academic and commercial treatment. Whilemost commercial so-
lutions focus on visually exact reproduction of the PDF content and were of no use due to high
license fees, someworks in the academic sector propose and implement interresting approaches
for extraction focussedmore on semantics than on visual similarity: Withmy approach of join-
ing lines that are located closely together and share a common text style, I follow the approach
of Tamir Hassan in [Has02]. Hassan describes and implements a program that converts PDF
$les to HTML documents using a bo!om-up grouping algorithm. Starting from single glyphs,
words, lines and $nally text columns are formed based on proximity and alignment measures.
Unfortunately, the libraryheused (JPedal) is no longer available freeof charge, so itwasnot pos-
sible to reuse his coding work. A similar approach was described byWilliam S. Lovegrove and
David F. Brailsford (see [LB95]) though no actual implementation is available. Hassan con-
tinued to work on this topic in the following years (see [HB05]) comparing his algorithm to
top-down segmentation algorithms based on visual analysis of pages. Here, rivers of whitespace
are identi$ed, which are supposed to outline paragraphs. #is algorithm has been explained
and implemented earlier by Christian Liensberger in [Lie05]. An entirely different approach
based on plain text (which is delivered by simple text extraction so&ware) was used by Brent
M. Dingle (see [Din04]). Here, based on a dictionary of names and some assumption on the
structure of scienti$c publications, abstract, author name and title are extracted from a plain
text representation of the document’s $rst page.

27

5 Conclusions

5.1.2 Optical Character Recognition

Closely related is the wide and complex $eld of optical character recognition with its unman-
ageable amount of both scienti$c and commercial research and publication. Giving a compre-
hensive survey is not possible in this document, so only a few aspects will be considered.
Treating a bitmap representation of the PDF document’s pages with layout recognition algo-

rithms used in OCR applications might improve the paragraph clustering results. #is is cer-
tainly worth looking into for future improvements, since it combines the performance of OCR
layout detectionwith the text correctness, since text extracteddirectly from thedocument bears
no risk of recognition errors. #e open OCR tool OCRopus (see [OCR]) – a project led by
DFKI’s Image Understanding and Pa#ern Recognition group – naturally comes tomind as a start-
ing point.

5.2 Possible Improvements and Extensions

Still missing for use in a production environment is a backend construction to automate the
upload of exported learning objects, now stored on the workplace, to a central knowledgeman-
agement repository. Currently the resulting SCORM learning objects have to be processed
manually.
Contrary to the html parser, the PDF parser does not recognise tables. Table detection is

HTML is nearly trivial¹ compared to tables in PDF, which are not marked and o&en composed
of several PDF objects – e. g. separate objects for lines and content. Perhaps the work on ta-
ble recognition done by Kieninger (see [Kie98]) – applying vertical neighborhood graphs and
several proximity and alignmentmeasures on text blocks to $nd tables and table-like structures
– could be applied here to improve the PDF parser.
Another project, Aperture (see [Adu]) – led by Aduna and DFKI – might be promising to

provide input to LOXtractor from a great variety of sources. It’s PDF import however – failing
to conserve document structure – was considered too simple for use in LOXtractor.

5.3 Conclusion

#eprototype of a rapid authoring tool for reusable learning objects, LOXtractorwas extended
with the ability for importing PDF $les and for direct input of plain text. #e access to the PDF
content was facilitated by several third party libraries. #e ability to process PDF $les was a
major step forward to the goal of creating an application that integrates the creation of small-
scale learning objects, their annotation with metadata and their mapping to an ontology for
later retrieval into the task solving work"ow, as intended by the SLEAM process. Especially

1 Tables are designated by <table> tags

28

5.3 Conclusion

small and medium sized enterprises can pro$t from this easy and affordable way to conserve
individual informal learning effort for the whole company.

29

5 Conclusions

30

Bibliography

[Adu] Aduna: Aperture, a $exible content and metadata extraction %amework. http:

//www.aduna-software.com/technologies/aperture/overview.view

[Adv] AdvancedDistributed Learning Initiative: Shareable Content Object Ref-
erence Model 2004. http://www.adlnet.gov/scorm/

[DFK] DFKI – Deutsches Forschungszentrum für Künstliche Intelligenz:
Forschungsprojekt DaMiT - Data Mining Tutor. http://www.dfki.de/web/

kompetenz/elearning/projekte/base_view?pid=59

[Din04] Dingle, BrentM.: Abstract Extraction fromPDFFiles /Texas A&MUniversity.
2004. – Forschungsbericht

[Doh01] Dohmen, Günther: Das informelle Lernen. Bonn : Bundesministerium für Bil-
dung und Forschung, 2001 (BMBF Publik)

[DTPS07] Dösinger, Gisela ; Tochtermann, Klaus ; Puntschart, Ines ; Stocker,
Alexander: Bedarfsorientierter technologiegestützter Wissenstransfer. In: Bre-
itner, Michael H. (Hrsg.) ; Bruns, Beate (Hrsg.) ; Lehner, Franz (Hrsg.):
Neue Trends im E-Learning. Heidelberg : Physica-Verlag, 2007

[GGM+05] Geldermann, Brigi!e ; Günther, Dorothea ; Mohr, Barbara ; Sack, Clau-
dia ; Reglin, #omas ; Loebe, Herbert (Hrsg.) ; Severing, Eckart (Hrsg.):
Leitfaden für die Bildungspraxis. Bd. 5: Blended learning für die betriebliche Praxis.
Bielefeld : W. Bertelsmann Verlag, 2005

[GGWV07] Gabriel, Roland ; Gersch, Martin ; Weber, Peter ; Venghaus, Christian:
Blended Learning Engineering: der Ein"uss von Lernort und Lernmedium auf
Lernerfolg und Lernzufriedenheit - Eine evaluationsgestützte Untersuchung. In:
Breitner, Michael H. (Hrsg.) ; Bruns, Beate (Hrsg.) ; Lehner, Franz (Hrsg.):
Neue Trends im E-Learning. Heidelberg : Physica-Verlag, 2007

31

Bibliography

[Has02] Hassan, Tamir: PDF toHTMLConversion /University ofWarwick. Coventry,
West Midlands, UK, März 2002. – Project Report

[HB05] Hassan, Tamir ; Baumgartner, Robert: IntelligentWrapping from PDFDoc-
uments. In: Svátek, Vojtěch (Hrsg.) ; Snášel, Václav (Hrsg.): Proceedings of the
&WS2005 InternationalWorkshop onProceedings of the&WS2005 International
Workshop on Representation and Analysis of Web Space. Točná, September 2005,
S. 33 – 40

[Hun] Hunter, Jason: JDOM, a complete, Java-based solution for accessing ,manipulating ,
and outpu#ing XML data %om Java code. http://www.jdom.org

[imc] imc informationmultimedia communicationAG: AuthoringManagement
Platform EXPLAIN. http://www.explain-project.de/

[Ins06] Institut für Medien- und Kompetenzförderung (MMB): Corporate
Learning 2006. http://www.sofind.de/vfs/pp/checkpoint_mmb_306.

pdf. Version: 2006

[Kie98] Kieninger, #omas G.: Table Structure Recognition Based On Robust Block
Segmentation. In: roceedings of the '"h SPIE Conference on Document Recognition.
San Jose, California, Januar 1998

[LB95] Lovegrove, William S. ; Brailsford, David F.: Document analysis of PDF
$les: methods, results and implications. In: Electronic Publishing 8 (1995),
September, Nr. 2 & 3, S. 207 – 220

[Lie05] Liensberger, Christian: Ideas for Extracting Data from an Unstructured Doc-
ument / Database and Arti$cial Intelligence Group, TU Wien. 2005. – Final
Report

[Lin] Lincoln&Company, ADivisionofBiscom Inc.: PDFTOHTMLConversion
Program. http://pdftohtml.sourceforge.net/

[Lita] Litchfield, Ben: JempBox, an open source Java library that implements Adobe’s
XMP speci'cation. http://www.Jempbox.org

[Litb] Litchfield, Ben: PDFBox, an open source Java PDF library for working with PDF
documents. http://www.pdfbox.org

[Lit05] Litchfield, Ben: Making PDFs Portable: Integrating PDF and Java Technol-
ogy. In: Java Developers Journal (2005), März. http://java.sys-con.com/

read/48543_1.htm

32

Bibliography

[Lud06] Ludwar,Markus: Methoden zum schnellen Erstellen von wieder benutzbaren Lern-
inhalten in kleinen undmi#lerenUnternehmen, TUKaiserslautern, Fachbereich In-
formatik, Diplomarbeit, Dezember 2006

[May02] Mayr, Philipp: Das Dateiformat PDF imWeb – eine statistische Erhebung. In:
nfd – Information, Wissenscha" und Praxis 8 (2002), S. 475 – 481

[MD02] Kapitel 12 – Das Dateiformat PDF. In:Merz, #omas ; Drümmer, Olaf: Die
PostScript- & PDF-Bibel. Heidelberg, 2002, S. 523 – 557

[ML05] McAffer, Jeff ; Lemieux, Jean-Michel: Eclipse Rich Client Platform: Designing,
Coding, and Packaging Java Applications. AddisonWesley Professional, 2005

[NT97] Nonaka, Ikujiro ; Takeuchi, Hirotaka: Die Organisation des Wissens: Wie
japanische Unternehmen eine brachliegende Ressource nutzbar machen. Frankfurt
amMain : Campus, 1997

[OCR] OCRopus Project, The: (e OCRopus(tm) open source document analysis and
OCR system. http://code.google.com/p/ocropus/

[pdf06] PDF Reference, sixth edition: Adobe Portable Document Format version 1.7. San
Jose, California : Adobe Systems Incorporated, 2006

[RB08] Rosenbladt, Bernhard von ; Bilger, Frauke: Weiterbildungsbeteiligung in
DeutschlandundEuropa–Eckdaten zumBSW-AES2007/TNS Infratest Sozial-
forschung. München, Januar 2008. – Forschungsbericht

[Rid03] Ridge Group in Conjunction with Solis Consulting, The: Information
Gathering in the Electronic Age. electronic publication on h!p://safaribooks.com,
Januar 2003

[RL07a] Rostanin, Oleg ; Ludwar, Markus: From Informal Learner to Active Content
Provider: SLEAM approach / DFKI, Kaiserslautern. 2007. – Poster Session of
the 2nd European Conference on Technology Enhanced Learning (ECTEL 07)

[RL07b] Rostanin, Oleg ; Ludwar, Markus: LOExtractor - Rapid Authoring Tool to
Support Work"ow-Embedded Authoring. In: Proceedings of the 3rd International
WorkshoponLearner-OrientedKnowledgeManagement&KM-OrientedE-Learning
(LOKMOL 2007), 2007

[Ros08] Rosenbladt, Bernhard von: BSW-AES Arbeitspapier Nr. 3: Weiterbildungs-
beteiligung inDeutschland und Europa –Konzeptionelle Fragen /TNS Infratest
Sozialforschung. München, Januar 2008. – Forschungsbericht

33

Bibliography

[RR02] Reinmann-Rothmeier, Gabi: Der Wandel der Bedingungen des Lehrens und
Lernens: Wissensmanagement. In: Grundlagen derWeiterbildung - Praxishilfen 49
(2002), Oktober, S. 5.380

[RS06] Rostanin, Oleg ; Schirru, Rafael: Identi$cation of User’s Learning Goals
in Work"ows. In: Proceedings of the Joint International Workshop on Professional
Learning, Competence Development and Knowledge Management - LOKMOL and
L3NCD held in conjunction with the 1st European Conference on Technology En-
hanced Learning, 2006

[Sch01] Schneider, Ursula: Die siebenTodsünden imWissensmanagement. Kardinaltugen-
den für die Wissensökonomie. Frankfurt amMain : Frankfurter Allgemeine Buch,
2001

[Tri02] Trier, Ma!hias: Der Wandel der Bedingungen des Lehrens und Lernens: Zur
Kritik des überkommenenWeiterbildungskozepts. In: Grundlagen der Weiterbil-
dung - Praxishilfen 49 (2002), Oktober, S. 5.370

[Uni] UniversityofBolton: Reusable eLearningObject Authoring&Delivery. http:
//www.reload.ac.uk/

[Wika] Wikimedia Foundation, Inc.: Mediawiki, a %ee so"ware wiki package originally
wri#en for Wikipedia. http://www.mediawiki.org/wiki/MediaWiki

[Wikb] Wikimedia Foundation, Inc.: Wikipedia – (e Free Encyclopedia. http://

www.wikipedia.org/

[xmp05] XMP Speci'cation: Adding Intelligence to Media. San Jose, CA : Adobe Systems
Incorporated, 2005

[ZS] Zhang,Wende ; Song, Yanjuan: Research on PDF documents information extrac-
tion system Based-on XML. – Bibliothek der Fuzhou Universität, Fujian, Volksre-
publik China

34

List of Figures

1.1 Normal task solving work"ow . 3
1.2 #e SLEAM process . 4
1.3 Requirements for elearning strategies in small and middle sized enterprises . . . 5

2.1 LOXtractorwindow . 8
2.2 Self-description of SCORM . 9

3.1 Navigator view in the le& panel . 11
3.2 Tree view in the le& panel, contents and metadata of selected node in the right

panels . 12
3.3 New project window . 13
3.4 PDF parser dialog window . 14
3.5 Text parser dialog window . 15
3.6 Context menu with node manipulation options 15
3.7 Extractor wizard: format selection dialog window 16
3.8 Extractor wizard: main dialog window . 17

4.1 Extension and extension point relation . 20
4.2 Extension points and extensions in LOXtractor 21
4.3 PDF $le structure . 21
4.4 From PDF $le to SCORM learning object . 23
4.5 Sample XML $le created by pd"ohtml . 25

35

