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Abstract

This paper introduces methods for the detection of anisotropies which
are caused by compression of regular three-dimensional point patterns.
Isotropy tests based on directional summary statistics and estimators for
the compression factor are developed. These allow not only for the detec-
tion of anisotropies but also for the estimation of their strength. Using
simulated data the power of the methods and the dependence of the power
on the intensity, the degree of regularity, and the compression strength are
studied. The motivation of this paper is the investigation of anisotropies
in the structure of polar ice. Therefore, our methods are applied to the
point patterns of centres of air pores extracted from tomographic images
of ice cores. This way the presence of anisotropies in the ice caused by the
compression of the ice sheet as well as an increase of their strength with
increasing depth are shown.
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1 Introduction

Polar ice is a remarkable multi-proxy archive for climate information of the past.
With the perspective of highly resolved time series over hundreds of thousand
years it has attracted considerable interest of climate researchers. During the
last decades a couple of deep polar ice cores were drilled through the Antarctic
and Greenlandic ice sheets. Several proxy parameters are identified in the ice, e.g.
temperature, precipitation, dust, aerosol, sea ice extent, biological activity, and
atmospheric composition including the famous records of trace and greenhouse
gases (Bender et al. (1994), EPICA community members (2004), EPICA commu-
nity members (2006)). Accurate chronologies are an important requirement for
the interpretation of ice core records. However they are not satisfyingly developed
until now. No absolute dating tool is available for polar ice. The recent dating
relies on models. A key element of them are the simulations of the individual
history of ice deformation for each specific core site. In this paper we present
the first direct method for the estimation of the deformation history (expressed
by the thinning function as explained below) in polar ice using the measured
anisotropy of air inclusions in centimetre sized ice samples from a deep ice core.

An idealised ice sheet consists of a vertical sequence of compressed snow layers
that have been buried under the load of newly fallen snow. Because ice under
pressure is subject to creep there is a vertical compression accompanied by a total
lateral transport of ice from the interior of an ice sheet to its boundaries. At the
boundaries the ice is exported to the ocean via iceberg calving and melting. Due
to the interaction of compression and lateral transport, the pore structures at
different compression rates do not differ significantly at first sight. In particular,
counterintuitively the number of pores per volume does not increase considerably
owing to the incompressibility of the ice. Furthermore, even ice samples taken
from the same depth show a high variability in their pore structure by reason
of seasonal variations and the small sample size. CT imaging can only handle
centimetre sized samples while the compression rates vary on scales of 10 metres.
The key question is therefore, whether the compression rate can be deduced from
the pore structure.

The age of an ice layer is defined as the time when the water molecules of
such a layer have been accumulated on the surface of the ice sheet as snow. At
undisturbed sites the age is continuously increasing with depth with the oldest ice
at the bottom. The oldest ice drilled so far is dated back to about 100 000 years in
Greenland (Summit station, 72◦34′ N, 37◦37′ W, GRIP ice core) and to about 800
000 years in Antarctica (Dome Concordia station, 75◦06′ S, 123◦20′ E, EPICA-
EDC ice core). Flow models that are used for dating describe the thinning of
annual layers with depth based on a mechanical model and on assumptions about
bedrock conditions and surface elevation changes in the past (Paterson (1994),
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Parrenin et al. (2007), 2007, Ruth et al. (2007), Severi et al. (2007)). Then the
derived thinning function is combined with a snow accumulation model for the
past to estimate the age of the ice as a function of depth. Diverse input parameters
of such models are not well constrained including the mechanical properties of
polycrystalline ice with different chemical load and crystal orientation (a topic of
growing interest which is not fully understood, Duval (2000)) with consequences
for the formulation of the constitutive law in the mechanical model. Due to the
complex interaction between bedrock and ice it will also be difficult to formulate
a physical model for the flow conditions at the bedrock boundary. Parrenin
et al. (2007) tried to avoid these problems in the model parametrisations by the
application of an inverse method using some fixed absolute age markers in the
core.

In this paper we show that the total thinning in polar ice could be directly
retrieved from measured air inclusions in combination with a statistical method
analysing pressed point processes. We have chosen unmarked summary statistics
because the anisotropy cannot be seen in the shape of the pores, which are more
or less spherical on the deeper layers. In our first attempt the application is
restricted to samples from an ice core drilled at a Dome position where the acting
forces are known. In the case of a Dome one can assume that ice deforms simply
in uni-axial compression. Ice layers are compressed by a factor of c in the vertical
and stretched in the lateral direction by a factor of 1/

√
c keeping the total volume

constant. The factor c gives the total thinning of an ice layer. The bubble-like air
inclusions inside the ice matrix are used as strain markers. They are relicts of a
long-term sintering process in the firn column. The term firn refers to the upper
50 to 100 m of an ice sheet and describes sintered ice grains with connected air-
filled pores in between. The ice grains form an ensemble of tetrakaidecahedrons
with the air located at their edges. At the firn-ice transition the interconnected
pore space starts to isolate in individual bubbles. Firn becomes ice per definition.
During the sintering and compaction the pore volume is continuously decreasing
from 50% to about 10% of the total volume at the firn-ice transition. The close-off
process results in a quite regular and uniform distribution of bubbles within the
ice. Their regularity originates from the initial homogeneity of surface snow and
the moderate sintering conditions, particularly the long sintering time with only
slowly increasing pressure load. The mean distance between adjacent bubbles is
of the order of the grain size and this is about 1 mm at the firn-ice transition.
Below the firn-ice transition the bubble distributions are only affected by the
overall deformation process of the ice itself. Bubble migration due to further
grain growth or small temperature gradients is negligible. The increasing pressure
with depth leads to bubble shrinkage but again without affecting the distribution
of the bubble centres. At pressure loads below about 600 to 700 m depth the
bubbles become unstable and the enclosed air is captured as clathrates in the
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ice. There is a natural depth limit for the existence of bubbles in polar ice and
therefore for the application of our method to deep polar ice cores.

The paper is organised as follows. First, we introduce some directional sum-
mary statistics in 3D, which are then used as the basis for some isotropy tests.
The tests are constructed in order to reveal the particular type of anisotropy
caused by simultaneous compression and lateral transport. In Section 4 we per-
form a simulation study comparing the powers of the tests based on different
summary statistics. The estimation of the pressing factor is discussed in Section
5. Both studies are performed on a more general level than needed for the analysis
of the ice samples in order to explore the range of applicability of the suggested
methods. Finally, the methods are applied to the air pore data. The anisotropy
of air pores is studied and the pressing factors are estimated at different depths.

2 Directional summary statistics

There are several summary statistics which can be used to study the spatial dis-
tribution of a point pattern. The nearest neighbour distance distribution function
G is the distribution function of the distance from a typical point of the process to
its nearest neighbour. The empty space function F is the distribution of distance
to the nearest point of the process from a random point in space. The J function
is a combination of the G and the F function. Finally, Ripley’s K function is
related to the expected number of further points of the process within a certain
distance from a typical point of the point process and the pair-correlation function
g is essentially the derivative of the K function w.r.t. the distance (for all these
functions, see e.g. Diggle (2003)). Originally, these functions have been defined in
2D but they can be defined exactly in the same way for three-dimensional point
processes. Usually, these statistics assume that the point pattern is a realisation
of a stationary and isotropic point process.

Here, we are interested in detecting possible anisotropies which requires direc-
tional counterparts of these functions. So far, this problem has only been studied
in the 2D case. Stoyan and Beneš (1991) discuss different types of anisotropies
in marked point patterns, namely anisotropies of marks (orientation of marks)
and anisotropic distribution of points. They define the point-pair-rose-density,
which describes the anisotropy of the arrangement of points, possibly including
information on the marks. The idea is as follows. Choose a pair of points with
distance in a certain interval (r1, r2) at random, and determine the angle β be-
tween the line going through the points and the 0-direction. This angle is a
random variable taking values between 0 and π, whose distribution gives infor-
mation on the arrangement of the points. The point-pair rose density or1r2

(β) is
the corresponding probability density function (weighted by the marks). It is an
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integrated version of the anisotropic pair-correlation function which is defined as
follows (Stoyan, 1991). The second-order product density ̺(x1, x2) is related to
the probability of finding points of the process in small neighbourhoods of both
x1 and x2. In the stationary but anisotropic case, ̺ is a function of the distance
r and the angle ϕ between the line going through x1 and x2 and the 0-direction.
The anisotropic pair correlation function is then g(r, ϕ) = ̺(r, ϕ)/λ2, where λ is
the intensity of the point process. Both for the point-pair rose density and the
anisotropic pair-correlation function an edge-corrected kernel estimator should
be used. Furthermore, Stoyan et al. (1995, p.127) define a directional version of
Ripley’s K function.

The definitions of these functions carry over to the 3D case without any dif-
ficulties. However, the practical evaluation as well as the visualisation of the
results becomes more challenging. Already in 2D, directional summary statistics
depend on two variables, the distance and the angle. Nevertheless, it is obvious
how to divide a disc into sectors of equal size such that the summary statistics
can be estimated for a discrete set of parameters. Circular diagrams or plots over
the interval [0, 2π] can then be used to display the results.

In 3D, three variables, the distance and two angles, have to be used. The
estimation of the directional summary statistics with respect to different direc-
tions requires a suitable partition of the ball. The sectors should be of equal size
and shape, which means that the directions should be distributed as uniformly
as possible. Other choices might hold the danger of introducing some structure
in the results which is caused by the partitioning of the ball rather than by the
data. In general, it is not clear how to choose such a partition in a way that it is
easily parametrised e.g. by means of spherical coordinates.

Here, we are dealing with a special type of anisotropy, namely anisotropy in z-
direction caused by compression of the point process. In this case, the behaviour
of the point process in z-direction has to be compared to other reference direc-
tions, e.g. the x- and y-direction. For this purpose, the process has to be studied
within suitable sets aligned along these directions. A complete partitioning of
the ball is not necessarily required.

One type of ball segments which are described easily in spherical coordinates,
and therefore suitable for our application, are spherical cones. Let Cu(r, θ) with
r ≥ 0 and 0 ≤ θ ≤ π denote a double spherical cone defined as

Cu(r, θ) =







Ru





s sinϑ cosϕ
s sinϑ sinϕ
s cosϑ



 : s ∈ [0, r], ϑ ∈ [0, θ] ∩ [π − θ, π], ϕ ∈ [0, 2π]







,

where u is a unit vector and Ru is a rotation mapping the z-axis on the line
spanned by u. In order to detect anisotropies, the point pattern is observed
within three double cones aligned along the coordinate axes and centred in the
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typical point of the process. A compressed point process will have a different
appearance within the z-cone than within the x- and y-cones.

In the following we define the directional summary statistics which will be used
to detect the anisotropies. Already Stoyan et al. (1995, p.153) discuss how to use
the directional K function and its zero-contours to estimate the pressing factor of
pressed point patterns. Therefore, the directional K function is the first function
to be considered here. The density functions mentioned above, namely the point-
pair rose density and the anisotropic pair-correlation function, are good when
investigating and describing anisotropies in a particular point pattern. However,
these functions are usually estimated by using kernel estimators. In addition to
the technical problems in 3D, an analysis based on these functions would therefore
pose further questions such as the choice of a suitable bandwidth. For testing
and estimation purposes it might be a better idea to use cumulative functions like
the directional K function. Smaller local fluctuations in the cumulative functions
should make the comparison of the results for different directions more stable. In
addition to the directional K function, we will therefore consider two directional
counterparts of the nearest neighbour distance distribution function G.

2.1 Directional K function Kdir

We consider a directional version of Ripley’s K-function, namely the second re-
duced moment measure of the cone Cu(r, θ) which is denoted by Kdir,u,θ(r). This
means that Kdir,u,θ(r) is the expected number of points within the double cone
centred in a typical point of the point process Ψ. An unbiased estimator of
λ2Kdir,u(r) is given by

λ2K̂dir,u,θ(r) =
∑

x∈Ψ

∑

y∈Ψ,y 6=x

1ICu(r,θ)(x− y)

|Wx ∩Wy|
, r ≥ 0, (1)

where Wx is the translation of the window W by the vector x and |B| denotes
the volume of a set B ⊂ R

3 (Stoyan et al., 1995, p. 134 f).

2.2 Directional G functions

Pressing a hard core point pattern will transform the empty ball centred in each
point of the process into an ellipsoid. Therefore, this particular kind of anisotropy
will influence the distribution of the distance to the nearest neighbour. The
nearest neighbour in z-direction will be closer than the nearest neighbour in x- or
y-direction. Depending on whether the nearest neighbour is determined locally
or globally, this gives rise to the following summary statistics:
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2.2.1 Local G function Gloc

Here, the nearest neighbour is defined locally, i.e. we are looking for the nearest
neighbour contained in the cone x + Cu(r, θ) centred in a point x ∈ Ψ. Denote
by Gloc,u,θ the distribution function of the distance from the typical point of the
process to the closest point in the cone. In order to define an estimator for Gloc,u,θ,
mark each point x ∈ Ψ with the distance d to the closest point in x + Cu(r, θ)
and consider the distribution of the distance d. We use a Hanisch type estimator
for Gloc,u,θ given by

Ĝloc,u,θ(r) =
ĜH,loc,u,θ(r)

λ̂H

(2)

with

ĜH,loc,u,θ(r) =
∑

(x,d)∈Ψ

1I[0,r](d) 1IW⊖Cu(d,θ)(x)

|W ⊖ Cu(d, θ)|
, r ≥ 0,

and

λ̂H =
∑

(x,d)∈Ψ

1IW⊖Cu(d,θ)(x)

|W ⊖ Cu(d, θ)|
.

The term W ⊖Cu(d, θ) denotes the erosion of the window W by the cone Cu(d, θ)
and is included for edge correction. We consider only those points x ∈ Ψ with
the property that the complete cone x+ Cu(d, θ) is contained in the observation
window W . As in Hanisch (1984) it can be shown that ĜH,loc,u,θ is an unbiased
estimator for λGloc,u,θ.

2.2.2 Global G function Gglob

In this case we determine the global nearest neighbour y ∈ Ψ for each point
x ∈ Ψ. Then, Gglob,u,θ is defined as the distribution function of the distance
between x and y conditioned on y ∈ x+ Cu(r, θ). An estimator for Gglob,u,θ(r, θ)
is then given by

Ĝglob,u,θ(r) =

∑

(x,y)∈Ψ

1ICu(r,θ)(x− y) 1IW⊖b(0,||x−y||)(x)

∑

(x,y)∈Ψ

1ICu(∞,θ)(x− y) 1IW⊖b(0,||x−y||)(x)
, r ≥ 0. (3)

Here, we consider only the points x ∈ Ψ with the property that the ball b(x, ||x−
y||) is completely contained in W .

Compared to Gloc, the global G function depends on a smaller number of points
of Ψ. Therefore, Gloc should yield better results for small intensities, while, be-
ing related to the nearest-neighbour orientation density, Gglob might be a good
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alternative in the case of high intensity patterns. A drawback of the G functions
might be their ’short-sightedness’ which is caused by the consideration of only
nearest neighbours (Illian et al., 2008, p.214). Even though the phenomena we
are studying are rather local, the use of second order methods such as Kdir might
be expected to yield better results.

3 Isotropy tests

In the following, we introduce some tests which seem suitable to detect anisotro-
pies caused by pressing of isotropic hard core point processes. Monte Carlo tests
are very common tests in spatial statistics (Stoyan and Stoyan, 1994). This tech-
nique, however, requires an appropriate model for the data under investigation.
Deviations between the model and the data might then result in a loss of power
of the related tests. Since we are working with replicated data, we will there-
fore concentrate on non-parametric methods which are only based on estimations
from the data and do not require further simulations.

3.1 Tests using summary statistics

Let Ŝx, Ŝy, and Ŝz be estimators of one of the summary statistics introduced
above with respect to the x-, y-, and z-direction. In the isotropic case, all three
estimates will look similar. For the pressed pattern only Ŝx and Ŝy should be

similar but show a clear deviation from Ŝz.
Consider n point patterns ψ1, . . . , ψn which can be assumed to have the same

distribution and should be tested for isotropy. If the number of samples n is large,
a test can be based on a comparison of the test statistics

Txy,i =

r2
∫

r1

|Ŝx,i(r) − Ŝy,i(r)| dr, i = 1, . . . , n

and

Tz,i = min





r2
∫

r1

|Ŝx,i(r) − Ŝz,i(r)| dr,
r2

∫

r1

|Ŝy,i(r) − Ŝz,i(r)| dr



 , i = 1, . . . , n

where [r1, r2] is a given interval. Tz is defined using the minimum to make sure
that the z-direction differs from both the x- and the y-direction. Other choices
such as the mean or the maximum could be considered as well. The isotropy
hypothesis for a certain sample ψi is rejected at significance level α if the corre-
sponding value Tz,i is larger than 100(1 − α)% of the estimated Txy values.
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If only a few samples are available, a Monte Carlo test using the test statistic

TP =

r2
∫

r1

(

|Ŝx(r) − Ŝy(r)| + |Ŝy(r) − Ŝz(r)| + |Ŝz(r) − Ŝx(r)|
)

dr,

can be considered alternatively. Then, the theoretical value of TP under an
isotropic model is equal to 0. This test, however, requires the existence and the
simulation of an appropriate model for the data.

The alternative statistics

T ′
xy = max

r1≤r≤r2

|Ŝx(r) − Ŝy(r)|,

T ′
z = min

(

max
r1≤r≤r2

|Ŝx(r) − Ŝz(r)| , max
r1≤r≤r2

|Ŝy(r) − Ŝz(r)|
)

,

and

T ′
P = max

r1≤r≤r2

(

|Ŝx(r) − Ŝy(r)| + |Ŝy(r) − Ŝz(r)| + |Ŝz(r) − Ŝx(r)|
)

were also considered in first trials, but performed worse than the integral statistics
above due to large local differences between the functions Ŝx, Ŝy, and Ŝz.

3.2 Direction to the nearest neighbour

The compression of a hard core point process will result in a pattern where the
points are closer in z-direction than they are in x- or y-direction. Therefore, the
direction to the nearest neighbour after pressing will have a preferred direction
along the z-axis. As an alternative to the tests using directional summary statis-
tics, we test this directional distribution for uniformity against the alternative of
a preferred direction using the test described in Anderson and Stephens (1972).
This provides us with another model-free method, whose advantage is its simplic-
ity. It only requires the computation of the directions to the nearest neighbours,
a further choice of parameters such as the interval [r1, r2] or the size of the cone
is not necessary. However, looking only at directions, rather than directions and
distances, this test might be less powerful than tests based on both quantities.

The uniformity test works as follows. Suppose a set of unit vectors vi =
(xi, yi, zi), i = 1, . . . , n, is given. Then compute the orientation matrix

A =





∑

x2
i

∑

xiyi

∑

xizi
∑

xiyi

∑

y2
i

∑

yizi
∑

xizi

∑

yizi

∑

z2
i



 .
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Denote the eigenvalues of A by λ1 ≥ λ2 ≥ λ3 and the corresponding eigenvectors
by u1, u2, and u3. The value of λ1 is used as a test statistic for the uniformity
test against a bimodal alternative. If λ1 is too large, the uniformity hypothesis is
rejected and u1 yields a maximum likelihood estimate of the modal vector. For
n > 100, the significance points for λ1 at a 5% significance level are given by
1
3

+ 0.873√
n

.

4 Simulations

In the following, we will evaluate the powers of the anisotropy tests introduced
above applying them to simulated data. We believe that our methods could be
applied to both clustered and regular point patterns. Nevertheless we restrict
ourselves to hard core point processes since the air pore structures are regular. In
order to cover a wide range of such patterns, we are going to study two established
models: a Matérn hard core point process and a random packing of balls with
a much higher degree of regularity. The choice of the parameter values in the
simulations (intensity, hard core radius) is motivated by the values in the ice
data. Isotropic realisations of both models are scaled by the vector ( 1√

c
, 1√

c
, c)

with 0 < c ≤ 1. This means the patterns are compressed in z-direction but
stretched in x- and y-direction such that the volume of the observation window
is preserved. For the estimation of the summary statistics the value θ = π

4
was

chosen, which yields reasonably large but still non-overlapping cones.

4.1 Matérn hard core point process

Realisations of Matérn hard core point processes with intensities λ = 500 and
hard core radius R = 0.025, 0.05, and 0.075 as well as λ = 1000 and R = 0.025
and 0.05 were simulated. The isotropic realisations were generated within the
cuboids [0,

√
c] × [0,

√
c] × [0, 1

c
] with c = 0.7, 0.8, and 0.9. The pressing of these

realisations with the factor c then yielded point patterns within the unit cube.
For each set of parameters, we simulated 1000 realisations of the pressed point
patterns. Each of these realisations was tested for isotropy using the tests based
on Gloc, Gglob, and Kdir. Good results of the estimation can only be expected
if the envelopes of the directional summary statistics are disjoint on the chosen
observation interval. For the largest hard core values considered in Figures 1 and
2, this is the case on the interval [0, 1.1R] which was therefore chosen for the
computation of the test statistics. In order to check the dependence of the test
results on the choice of the interval, the alternatives [0, 4R

3
] and [0, 0.1] ([0, 0.1]

and [0, 0.2] for R = 0.075) were also considered.
Furthermore, the uniformity test for the direction to the nearest neighbour
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Table 1: Powers of the isotropy tests using directional summary statistics on a 5%
significance level for 1000 Matérn hard core point patterns of intensity λ = 500
and hard core radius R pressed by the factor c. The test statistics were computed
on the interval [0, r2].

c | R 0.025 0.025 0.025 0.05 0.05 0.05 0.075 0.075 0.075

0.9 | r2 0.1 0.033 0.0275 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 1.4 6.6 26.6 3.7 23.2 77.9 18.0 65.7 98.9
Gglob 0.6 6.1 26.8 4.8 22.3 73.9 39.1 56.6 87.0
Kdir 1.0 7.0 26.7 4.5 26.7 82.6 7.9 78.0 99.7

0.8 | r2 0.1 0.033 0.0275 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 1.4 21.9 49.3 15.4 72.7 97.2 77.8 99.8 100

Gglob 1.0 21.2 48.0 21.3 68.2 96.6 93.9 98.6 100

Kdir 1.3 23.3 49.9 19.9 79.7 98.8 36.9 100 100

0.7 | r2 0.1 0.033 0.0275 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 1.9 37.9 56.3 41.4 95.0 99.3 98.3 100 100

Gglob 1.9 36.1 56.2 50.7 91.6 98.1 98.9 99.7 100

Kdir 1.6 37.9 57.7 44.6 98.1 99.6 75.7 100 100

was applied. The powers of the tests for λ = 500 are given in Table 1, the results
for λ = 1000 are displayed in Table 2. The results for the test based on the
eigenvalue λ1 are shown in Table 3.

As expected, higher powers are achieved for higher intensities, larger hard
core radii and stronger pressing. In all cases, the best results were obtained on
the interval [0, 1.1R]. Comparing the powers for different summary statistics on
this interval, we see that Kdir usually yields the best results. Only for R = 0.025
and c = 0.9, i.e. for the smallest hard core radius and the weakest pressing
considered, it is one of the G functions which performs slightly better. Also,
both G functions, especially Gglob, turn out to be more robust when changing the
interval of observation. This can be explained by the fact that both functions
are distribution functions which stabilize at a value of 1 for large values of r.
The conjecture that tests based on summary statistics are superior to the test
based on the eigenvalues of the orientation matrix is confirmed if the integration
intervals for the summary statistics are chosen suitably.

The mean numbers of points contributing to the estimation of the G functions
for the point patterns of intensity 500 are shown in Table 4. As expected, the
numbers are much smaller for Gglob than for Gloc. When increasing the pressing
factor, a decrease of the numbers for the x- and y-direction is observed while the
numbers for the z-direction increase. This tendency is more pronounced for Gglob

than for Gloc. In extreme cases it might lead to instabilities in the estimation of
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Figure 1: Means (solid for xy, dashed for z) and envelopes (short dashed for
xy, dotted for z) of the functions Gloc, Gglob, and Kdir (from top to bottom)
evaluated for 1000 realisations of a pressed Matérn hard core point process with
the parameters λ = 500 and R = 0.05 (left) and R = 0.075 (right). The pressing
factor is c = 0.8.
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Figure 2: Means (solid for xy, dashed for z) and envelopes (short dashed for xy,
dotted for z) of the functions Gloc (top left), Gglob (top right), and Kdir (bottom)
evaluated for 1000 realisations of a pressed Matérn hard core point process with
the parameters λ = 1000, R = 0.05. The pressing factor is c = 0.8.
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Table 2: Powers of the isotropy tests using directional summary statistics on a 5%
significance level for 1000 Matérn hard core point patterns of intensity λ = 1000
and hard core radius R pressed by the factor c. The test statistics were computed
on the interval [0, r2].

c | R 0.025 0.025 0.025 0.05 0.05 0.05

0.9 | r2 0.1 0.033 0.0275 0.1 0.067 0.055

Gloc 1.4 15.1 59.3 18.9 73.1 99.7
Gglob 1.9 15.5 58.8 42.7 71.1 99.8
Kdir 2.1 14.7 58.2 17.9 79.7 100

0.8 | r2 0.1 0.033 0.0275 0.1 0.067 0.055

Gloc 1.3 53.2 87.0 84.4 100 100

Gglob 4.2 53.6 86.2 97.1 99.9 100

Kdir 2.6 56.7 88.5 77.6 100 100

0.7 | r2 0.1 0.033 0.0275 0.1 0.067 0.055

Gloc 2.4 80.2 92.4 99.6 100 100

Gglob 8.8 80.1 91.5 100 100 100

Kdir 3.7 82.5 93.7 99.1 100 100

Table 3: Powers for the test based on λ1 on a 5% significance level for 1000
Matérn hard core point patterns of intensity λ and hard core radius R pressed
by the factor c.

λ 500 500 500 1000 1000

c | R 0.025 0.05 0.075 0.025 0.05

0.9 8.0 11.4 45.1 8.8 32.4
0.8 7.7 21.4 95.4 9.3 88.3
0.7 7.6 39.3 99.9 10.8 99.9
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Table 4: Mean number of points used for the estimation of Gloc and Gglob for the
point processes of intensity λ = 500 in the Matérn (M) and the force biased (FB)
case.

R c Gloc,x Gloc,y Gloc,z Gglob,x Gglob,y Gglob,z

M 0.025 0.9 290.14 289.76 290.68 93.26 92.50 94.16
M 0.025 0.8 289.96 289.55 290.94 92.84 92.09 94.86
M 0.025 0.7 289.82 289.37 291.21 92.38 91.75 95.55

M 0.05 0.9 283.91 283.56 286.12 85.83 85.52 93.96
M 0.05 0.8 283.10 282.74 287.85 83.18 83.00 99.11
M 0.05 0.7 282.04 281.71 289.27 80.42 80.41 103.83

M 0.075 0.9 271.13 271.01 277.39 71.44 71.89 97.02
M 0.075 0.8 269.20 269.17 281.92 63.93 64.49 112.36
M 0.075 0.7 267.48 267.60 286.46 57.92 58.53 124.95

FB 0.05 0.9 267.06 266.84 270.01 72.49 72.97 91.84
FB 0.05 0.8 264.00 264.00 269.93 65.46 65.13 106.26
FB 0.05 0.7 259.83 259.34 267.10 57.70 57.09 120.20

FB 0.1 0.9 241.02 240.70 251.77 32.05 31.85 131.57
FB 0.1 0.8 237.64 237.37 258.71 12.81 12.78 183.13
FB 0.1 0.7 234.22 233.89 262.03 9.34 9.55 197.79

Gglob and a failure of the test.

4.2 Random packing of balls

To study also point patterns with a higher degree of regularity, we generated re-
alisations of random packings of balls within the unit cube using the force biased
algorithm (Bezrukov et al., 2001). This algorithm works with the concept of col-
lective rearrangement. It starts with a fixed number of balls which are randomly
placed inside a container. Overlaps are permitted in the initial configuration, but
gradually reduced by shifting the balls and reducing their sizes. Throughout, the
initial size distribution is preserved up to a scaling factor. Using this algorithm,
dense packings of balls with arbitrary radius distributions may be generated.

Here, we are working with balls of equal size. Their radii were chosen as
0.025 and 0.05, yielding hard core radii of R = 0.05 and R = 0.1, respectively.
For the distribution of the number of balls we chose a Poisson distribution with
parameter λ = 500. As in the Matérn case, 1000 realisations were considered and
the ball packings were scaled by the vector ( 1√

c
, 1√

c
, c) with c = 0.7, 0.8, and 0.9.

The envelopes of the directional summary statistics obtained in this case are
shown in Figure 3. The difference between the curves for Kdir and Gloc is more
pronounced, in contrast to the Matérn envelopes which are separated only close
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Table 5: Powers of the isotropy tests using directional summary statistics on a
5% significance level for 1000 force biased packings of intensity λ = 500 and ball
radius R pressed by the factor c. The test statistics were computed on the interval
[0, r2].

c | R 0.05 0.05 0.05 0.1 0.1 0.1

0.9 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 23.4 27.1 14.9 100 100 51.4
Gglob 1.6 1.6 2.0 1.1 1.1 35.5
Kdir 13.4 49.2 15.8 100 100 64.0

0.8 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 85.2 87.0 63.8 100 100 97.3
Gglob 1.5 1.5 3.2 3.2 3.2 26.0
Kdir 88.5 98.8 75.7 100 100 98.3

0.7 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 99.2 99.5 97.3 100 100 100

Gglob 2.7 2.8 4.9 33.7 33.7 63.8
Kdir 99.4 99.9 99.1 100 100 100

to the hard core radius. For the larger hard core distance, the envelopes are even
clearly disjoint over the whole interval of observation. Contrary, for Gglob the
envelopes for xy and z are closer together which is due to the small number of
points included in the statistics in this case (see Table 4). This suggests to work
with Kdir or Gloc and to choose larger intervals for the anisotropy tests when
working with more regular data.

The test results in Table 5 confirm this impression. The highest powers are
obtained for Kdir followed by Gloc if both are evaluated on the intermediate in-
terval. For R = 0.1 we observe powers of 100% for the anisotropy tests based
on Gloc and Kdir for suitably large intervals. In contrast, the test based on Gglob

yields only poor results.

4.3 Existence of outliers

The results presented so far indicate that the range of observation for the di-
rectional summary statistics should be chosen depending on both the degree of
regularity and the hard core distance observed in a particular point pattern. A
situation which is likely to appear in real data is the existence of outliers, i.e. few
points in the pattern are permitted to violate the hard core condition.

In order to study the behaviour of the directional summary statistics in such
cases we insert outliers in some of the simulated point patterns and repeat the
analyses described above. For that purpose, five points x1, . . . , x5 are chosen
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Figure 3: Means (solid for xy, dashed for z) and envelopes (short dashed for xy,
dotted for z) of the functions Gloc (top left), Gglob (top right), and Kdir (bottom)
evaluated for 1000 realisations of a pressed force biased packing with intensity
λ = 500, hard core radius R = 0.05 (left) and R = 0.1 (right), and c = 0.8.
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randomly from each point pattern. For each such point, an additional point yi is
generated from a uniform distribution on a ball of radius R centred in xi. Then
the directional summary statistics are estimated for the point patterns including
the points y1, . . . , y5. To keep the amount of simulations limited, the analysis is
restricted to patterns of intensity λ = 500.

The envelopes obtained for the Matérn hard core processes and the force
biased packings with R = 0.05 are shown in Figure 4. In the Matérn case, the
envelopes for the (x, y)- and the z-direction are no longer separated. Even in the
pure hard core case this was only the case for values of r close to the hard core
distance, exactly in the area which is most affected by the existence of outliers.
The curves for the force biased packings show similar changes for values close
to R. Nevertheless, we might still expect acceptable power of the tests, since
the results in the previous section suggested to use larger intervals in this case.
The most striking changes are visible in the envelopes for Gglob which is strongly
influenced by the existence of outliers.

The powers of the isotropy tests are given in Tables 6 and 7. From the
observation of the envelopes decreasing powers can be expected in the presence
of outliers. Especially for Gglob, this indeed turns out to be the case. Besides this
decrease, the results for the larger hard core radius R = 0.075 look similar to the
results in the pure hard core case. On the interval [0, 0.2] the G functions yield
better results, while on both other intervals as well as in the total, Kdir performs
best. For the smaller hard core radius R = 0.05 the situation is different. Now
the best results for each of the functions are obtained using the intermediate
interval since the structure of the curves for r close to the hard core radius R is
mainly governed by the outliers. Again, the test based on Kdir yields the best
total value.

In the force biased case the powers behave as expected, too. At least on the
two larger intervals we obtain similar values as in the non-outlier case.

5 Estimation of the pressing factor

We have seen that the anisotropy tests work well if both the intensity of the
point pattern and the hard core radius are sufficiently large. Now we are going
to investigate, whether the statistics can also be used for the estimation of the
pressing parameter c. For that purpose, we simulate 100 realisations of Matérn
hard core point processes and force biased packings with parameters as in Section
4. Each realisation is pressed using the pressing factors c = 0.7, 0.8, 0.9, and 1.0.
Then, every pattern is rescaled by the vector (

√
d,
√
d, 1

d
), where d takes values

between 0.6 and 1.1 at steps of 0.025. If the values of c and d are similar, both
operations cancel out and the resulting pattern is close to the original, hence
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Figure 4: Means (solid for xy, dashed for z) and envelopes (short dashed for xy,
dotted for z) of the functions Gloc, Gglob, and Kdir (from top to bottom) evaluated
for 1000 realisations of pressed Matérn hard core point processes (left) and force
biased packings (right) of intensity λ = 500 with five outliers. The hard core
radius is R = 0.05, the pressing factor is c = 0.8.
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Table 6: Powers of the isotropy tests using directional summary statistics on a 5%
significance level for 1000 Matérn hard core point patterns of intensity λ = 500
and hard core radius R including five outliers and pressed by the factor c. The
test statistics were computed on the interval [0, r2].

c | R 0.05 0.05 0.05 0.075 0.075 0.075

0.9 | r2 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 2.8 10.4 6.7 14.1 56.2 81.8
Gglob 3.9 6.4 2.4 23.1 29.5 25.4
Kdir 3.3 10.6 5.0 6.0 63.8 87.8

0.8 | r2 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 13.7 49.6 45.1 67.2 98.1 100

Gglob 13.7 30.6 17.2 75.3 84.3 79.3
Kdir 11.1 54.3 39.5 22.6 99.4 100

0.7 | r2 0.1 0.067 0.055 0.2 0.1 0.0825

Gloc 34.5 77.8 68.3 96.1 100 100

Gglob 29.8 57.1 35.0 93.3 95.3 90.2
Kdir 33.4 81.7 70.1 65.1 100 100

Table 7: Powers of the isotropy tests using directional summary statistics on
a 5% significance level for 1000 force biased packings of intensity λ = 500 and
hard core radius R including five outliers and pressed by the factor c. The test
statistics were computed on the interval [0, r2].

c | R 0.05 0.05 0.05 0.1 0.1 0.1

0.9 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 23.9 26.1 9.2 100 100 0.5
Gglob 0.5 0.5 0.6 0.1 0.1 0.1
Kdir 11.0 44.2 9.6 100 100 0.6

0.8 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 82.2 84.7 50.9 100 100 0.8
Gglob 0.0 0.0 0.0 0.1 0.1 0.1
Kdir 81.4 97.9 58.5 100 100 1.3

0.7 | r2 0.2 0.15 0.1 0.2 0.15 0.1

Gloc 98.9 99.0 93.4 100 100 64.8
Gglob 0.1 0.1 0.1 0.0 0.0 0.1
Kdir 98.5 99.0 97.6 100 100 96.7
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isotropic. For large differences between c and d, however, the resulting pattern
will show a certain degree of anisotropy which can be detected by our methods.

For each of the rescaled patterns we compute the statistic TP

,d (the statistic
TP for the pattern rescaled by the factor d) based on all three summary statistics
introduced above using two different choices of the integration interval: [0, 1.1R]
and [0, 4R

3
] in the Matérn case and [0, 0.15] and [0, 0.2] for the force biased pack-

ings. The statistic TP was chosen here rather than a statistic based on Tz or
Txy, since it allows for a simultaneous measurement of the deviation between all
three directions. Now ĉ = argmind T

P

,d, i.e. the value of d leading to the most
isotropic patterns, is considered as estimator for the pressing factor c.

The means of the estimated values and the mean squared error (MSE) of
the estimation are displayed in Tables 8 and 9. Only the values for the interval
yielding the smaller MSE are shown. In most of the cases, this turned out to be the
smaller interval. In general, the trends observed in the testing part are confirmed
in this study. The MSE for the estimates is smaller for higher intensities and
higher degrees of regularity and in most of the cases Kdir yields the best results.
Only in some of the Matérn examples the degree of compression does not influence
the estimation results as significantly as in the testing part. When interpreting
the results one should keep in mind that the MSE is also influenced by the choice
of the d values considered.

6 Application to the ice data

We now apply our estimation methods to ice samples from an ice core which
was drilled during an ongoing deep drilling project at Talos Dome, Antarctica
(159◦04′ E, 72◦46′ S). The achieved drilling depth after the season 2006/2007 is
about 1600 m, only slightly less than the predicted absolute ice thickness. The
accumulation rate is estimated to about 100 mm water equivalent per year in the
Thalos Dome region (Stenni et al. (2002)).

Three different depths between the firn-ice transition and the transition of
bubbly to clathrate ice are chosen: 153 m, 353 m, and 505 m depth. For each
depth 14 samples are prepared to cover the structural variations on the centimetre
scale as the amount of bubbles per volume ice is fluctuating on the small scale.
The fluctuations correspond to variations in grain size at the firn-ice transition
caused by seasonal variations in surface snow properties and snow fall events.

The samples are imaged by X-ray microfocus computer tomography (µCT)
using a µCT-1072 (Skyscan, Belgium) inside a cold room at -15 ◦C. The sample
size is limited to cylinders of 15 mm diameter and 15 mm height. Therefore the
ice is cut into cubes of 2 cm side length and rasped on a rotating turn table to
form regular cylinders. The scanning volume is adjusted to the specific sample
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Table 8: Means of the estimated pressing factors ĉK , ĉGloc
, and ĉGglob

for the
Matérn point patterns and MSE of the estimation.

λ R r2 c ¯̂cloc MSE ¯̂cglob MSE ¯̂cK MSE
1000 0.05 0.055 1.0 0.9988 5.813e-4 0.9995 7.625e-4 0.9993 4.063e-4

1000 0.05 0.055 0.9 0.8985 4.375e-4 0.8985 4.750e-4 0.8988 3.438e-4

1000 0.05 0.055 0.8 0.7988 3.438e-4 0.8018 5.313e-4 0.7990 4.125e-4
1000 0.05 0.055 0.7 0.6993 4.313e-4 0.6990 4.125e-4 0.6998 3.938e-4

1000 0.025 0.033 1.0 0.9480 1.513e-2 0.9513 1.596e-2 0.9590 1.154e-2

1000 0.025 0.033 0.9 0.8745 1.335e-2 0.8858 1.071e-2 0.8950 1.270e-2
1000 0.025 0.033 0.8 0.8248 1.141e-2 0.8250 1.360e-2 0.8285 1.290e-2
1000 0.025 0.0275 0.7 0.6865 7.325e-3 0.6820 7.038e-3 0.6923 6.769e-3

500 0.075 0.0825 1.0 1.0000 5.625e-4 1.0000 5.375e-4 0.9988 5.063e-4

500 0.075 0.0825 0.9 0.8955 5.250e-4 0.8968 7.438e-4 0.8973 4.563e-4

500 0.075 0.0825 0.8 0.7973 4.438e-4 0.7945 9.625e-4 0.7980 4.375e-4

500 0.075 0.0825 0.7 0.6978 5.063e-4 0.7003 5.813e-4 0.6963 4.813e-4

500 0.05 0.055 1.0 0.9828 3.944e-3 0.9795 6.763e-3 0.9875 4.850e-3
500 0.05 0.055 0.9 0.8810 5.813e-3 0.8855 5.138e-3 0.8933 3.631e-3

500 0.05 0.055 0.8 0.7780 5.363e-3 0.7818 4.544e-3 0.7923 2.844e-3

500 0.05 0.055 0.7 0.6880 1.850e-3 0.6913 1.981e-3 0.6860 1.988e-3
500 0.025 0.033 1.0 0.8270 6.264e-2 0.8285 6.020e-2 0.8335 5.733e-2

500 0.025 0.033 0.9 0.8158 3.473e-2 0.8210 3.291e-2 0.8200 3.335e-2
500 0.025 0.033 0.8 0.7678 2.299e-2 0.7860 2.364e-2 0.7708 2.037e-2

500 0.025 0.0275 0.7 0.6263 9.981e-3 0.6245 9.663e-3 0.6263 1.00e-2

Table 9: Means of the estimated pressing factors ĉK , ĉGloc
, and ĉGglob

for force
biased packings with m outliers and MSE of the estimation.

λ R m r2 c ¯̂cloc MSE ¯̂cglob MSE ¯̂cK MSE
500 0.1 0 0.15 1.0 1.0005 2.000e-4 1.0130 4.200e-3 0.9983 1.063e-4

500 0.1 0 0.15 0.9 0.8998 1.438e-4 0.9290 5.763e-3 0.8985 7.500e-5

500 0.1 0 0.15 0.8 0.7995 1.000e-4 0.8378 7.806e-3 0.7990 6.250e-5

500 0.1 0 0.15 0.7 0.6998 4.375e-5 0.7358 8.419e-3 0.6995 1.250e-5

500 0.1 5 0.15 1.0 0.9988 1.938e-4 1.0103 3.806e-3 0.9980 1.125e-4

500 0.1 5 0.15 0.9 0.8988 1.563e-4 0.9320 6.150e-3 0.8990 6.250e-5

500 0.1 5 0.15 0.8 0.7990 1.250e-4 0.8470 1.095e-2 0.7993 3.125e-5

500 0.1 5 0.15 0.7 0.6993 4.375e-5 0.7660 1.805e-2 0.6995 2.500e-5

500 0.05 0 0.15 1.0 1.0005 2.625e-3 0.9385 2.081e-2 0.9955 1.813e-3

500 0.05 0 0.15 0.9 0.8953 2.806e-3 0.9060 1.819e-2 0.8993 1.669e-3

500 0.05 0 0.15 0.8 0.7968 2.306e-3 0.8655 2.511e-2 0.8030 1.013e-3

500 0.05 0 0.15 0.7 0.6958 1.631e-3 0.8128 3.222e-2 0.7015 7.125e-4

500 0.05 5 0.15 1.0 0.9920 3.163e-3 0.9195 2.649e-2 1.0018 1.819e-3

500 0.05 5 0.15 0.9 0.9023 3.294e-3 0.8705 2.038e-2 0.9025 1.775e-3

500 0.05 5 0.15 0.8 0.8033 2.594e-3 0.8745 3.070e-2 0.8043 1.444e-3

500 0.05 5 0.15 0.7 0.6995 2.088e-3 0.8188 3.722e-2 0.6990 1.013e-3
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Figure 5: 2d sections of the original (left) and the binarised (right) image of an
ice sample from depth 353 m.

size by varying the spatial resolution between 13 and 16 µm per pixel. For each
sample a digital reconstruction algorithm generates a set of 900 images of 1024 x
1024 pixels.

In this paper, we restrict attention to the samples taken from 353 m and 505
m depth. Due to the large difference in X-ray absorption between air and ice,
the volume images are simply segmented by global thresholding to identify air
bubbles in the ice matrix (see Figure 5). A subsequent labelling algorithm allows
to distinct the single bubbles and to compute their centres. For the estimation of
the summary statistics, cuboidal observation windows are fitted into the cylinders
and all pore centres contained in the cuboids are extracted. In order to find
the maximal number of pores for each sample, the observation windows are not
required to have equal size. Only objects with a volume larger than 25 voxels
are included in the analysis yielding point patterns containing between 329 and
733 points. All image processing steps are performed on volume images using the
MAVI software package (Fraunhofer ITWM, 2005). Figure 6 shows visualisations
of one sample from each depth.

In contrast to the simulated data, the pore intensities in different ice samples
cannot be assumed to be the same due to the variations on the centimetre scale.
Therefore, we use the ratio estimation method described in Baddeley et al. (1993)
to pool the summary statistics within the depths. This means that the mean
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Figure 6: Visualisations of the system of air pores in ice samples from depth 353
m (left) and 505 m (right).

curves are estimated as

Ŝ =

14
∑

i=1

Ui

14
∑

i=1

Vi

.

For Kdir, Ui is the double sum in (1) and Vi is the estimated squared intensity
evaluated for sample i. For the G functions, Ui and Vi are the numerators and
denominators, respectively, in (2) and (3). Scatter plots of Ui against Vi, which
are not shown here, indicated that the assumption of a linear relation between
these numbers is justified. Confidence bands at a 95% level were computed using
the sample variances and the quantiles of the t-distribution with 13 degrees of
freedom. The means and confidence bands of the directional summary statistics
Gloc, Gglob, and Kdir for the ice samples are shown in Figure 7. Especially for
Gloc and Kdir, a clear deviation between the confidence bands for the (x, y)- and
the z-direction is observed. Therefore, the hypothesis of isotropy can clearly be
rejected in this case.

For the estimation of the pressing factors, we have to choose a suitable interval
of integration. Therefore, we first investigate the degree of regularity of the
pore system by estimating the isotropic pair-correlation function of the point
patterns of pore centres. The results for five samples from each depth are shown
in Figure 8. The wave-like appearance of the curves resembles the structure
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Figure 7: Means and confidence bands of the functions Gloc, Gglob, and Kdir (from
top to bottom) evaluated for the ice samples from depth 353 m (left) and 505 m
(right).
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which is typically observed in pair-correlation functions of dense packings of balls
(Stoyan et al., 1995). This is an evidence for a very regular structure of the data.

The histograms of the nearest neighbour distances for three samples per depth
are shown in Figure 9. The gaps on the left tail of the histograms indicate the
existence of outliers in the ice samples.

Combined with the results of our simulation studies, these observations sug-
gest the choice of an intermediate interval size for the estimation of the pressing
factors as well as the use of Gloc or Kdir rather than Gglob. The confidence bands
shown in Figure 7 are clearly separated over the whole interval [0, 2.0]. There-
fore, we decided to choose [0, 2.0] for the estimation of the pressing factors, which
allows to control the behaviour of the functions over the whole range. For the
rescaling of the samples from depth 353 m, we used values of d ranging between
0.5 and 1.0 at steps of 0.025. Since stronger pressing is expected in deeper areas,
the values for the samples from depth 505 m were chosen between 0.3 and 0.8.
The estimates ĉG and ĉK obtained using Gloc and Kdir are given in Table 10.
They confirm that the compression of the ice is stronger at the depth 505 m than
at 353 m depth.

In order to investigate the estimation variance in this case, we adopt a boot-
strap method as described in Illian et al. (2008, p.454). For each of the two
summary statistics and depths, 200 new samples of ĉ values are generated by
random resampling from the estimated values with replacement. The estimation
variance is then approximated by the sample variance of their means. For depth
353 m, we obtained values of 3.045 ·10−4 (Gloc) and 1.667 ·10−4 (Kdir), the values
for 505 m are 9.341 · 10−5 (Gloc) and 2.543 · 10−4 (Kdir). The corresponding 95%
confidence intervals are disjoint for the two depths considered. They are

353m : (0.607, 0.679) using Gloc and (0.604, 0.655) using Kdir, and

505m : (0.518, 0.577) using Gloc and (0.516, 0.552) using Kdir.

In order to further evaluate the estimates, the mean curves of Gloc and Kdir

for the rescaled point patterns are shown in Figure 10. For both functions, the
difference between the (x, y)- and the z-direction turns out to be small in the
rescaled patterns.

7 Discussion

The main aim of the paper was to study anisotropy of air pores in polar ice.
The hypothesis is that the ice is compressed and therefore, the spatial pattern
of the air pores in z-direction differs from the pattern in x- or y-direction. To
investigate this, we introduced some directional summary statistics in 3D based
on the nearest neighbour distance distribution function and Ripley’s K function.
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Figure 8: Isotropic pair correlation functions estimated for five ice samples taken
from depth 353 m (left) and 505 m (right).
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from depth 353 m (top) and 505 m (bottom).
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Figure 10: Means (solid) and confidence bands (dashed) of the functions Gloc

(top) and Kdir (bottom) for the rescaled versions of the ice samples using the
estimated pressing factors ĉG and ĉK , respectively. The samples from depth 353
m are shown on the left, the samples from depth 505 m on the right.
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Table 10: Results for the ice samples: number of pores n, pores per volume NV ,
and the pressing factors ĉG and ĉK estimated using Gloc and Kdir, respectively.

353 m n NV ĉG ĉK 505 m n NV ĉG ĉK

1 411 0.3511 0.575 0.575 1 675 0.3559 0.500 0.575
2 431 0.3228 0.550 0.550 2 733 0.4414 0.550 0.500
3 398 0.2981 0.625 0.625 3 549 0.2937 0.500 0.700
4 478 0.3906 0.675 0.675 4 639 0.4310 0.550 0.525
5 411 0.4019 0.625 0.625 5 590 0.4398 0.500 0.625
6 439 0.3861 0.675 0.600 6 398 0.3063 0.500 0.500
7 372 0.3125 0.650 0.575 7 356 0.2682 0.550 0.525
8 334 0.2938 0.550 0.575 8 439 0.2761 0.575 0.500
9 369 0.3246 0.575 0.600 9 493 0.2969 0.600 0.525
10 329 0.3907 0.650 0.775 10 463 0.2870 0.500 0.475
11 550 0.3220 0.650 0.750 11 479 0.2885 0.500 0.550
12 485 0.2754 0.700 0.725 12 466 0.2931 0.575 0.575
13 649 0.3577 0.650 0.650 13 541 0.3357 0.575 0.575
14 711 0.3318 0.675 0.675 14 413 0.2715 0.500 0.475

mean 454.79 0.3403 0.630 0.641 mean 516.71 0.3241 0.534 0.545

These summary statistics were used to develop tests for isotropy against this
specific type of anisotropy. An adaptation of the methods for the detection of
anisotropies with respect to other directions is straightforward.

The tests presented here are based on replicates, and have the advantage that
there is no need to assume and fit a model to the data. In a simulation study
we evaluated the powers of the tests for regular patterns of different intensities,
degrees of regularity, and strengths of compression. As expected, the best results
(highest powers) were obtained with high intensities, high degrees of regularity
(e.g. large hard-core radii) and strong pressing. For Matérn hard core point
processes, the test based on the directional K function performed best. The
size of the interval of observation should be chosen depending on the hard core
distance. However, it turned out that tests based on the G functions are more
robust to changes of this interval. For point processes with a high degree of
regularity, such as packings of balls, the use of the K function or the local G
function on a larger interval is recommended. In this case, our methods also
proved robust to the existence of outliers. In the point process literature it is
often suggested to use more than one summary statistic for the analysis of a
point pattern. Despite the better test results for Kdir it seems therefore advisable
to work with both Kdir and Gloc.

If only a few replicates are available, it is possible to perform a Monte Carlo
tests based on the summary statistics presented here. In this case, it is necessary
to find an appropriate model for the data in order to be able to simulate patterns
from it. The results based on the Monte Carlo test are similar to the results based
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on the data based tests, when testing on simulated data. If the regularity in the
data is not very pronounced, one has to be careful when determining the hard
core distance, since it affects the choice of the interval on which the differences
between the summary statistics in different directions are investigated.

In addition to the summary statistics we have considered here, the distribution
of the distances not only to the nearest neighbour but to all other points in the
pattern could be investigated. This function is closely related to the point-pair-
rose-density. The advantage of using all points is discussed in a paper by Fry
(1979) on strain measurement in rocks. For the estimation of this function, only
distances up to a maximal value should be considered. Depending on how large
this value is chosen, an edge correction similar to the ones for the G functions
would result in estimates based on either a small number of points with a lot of
information or a large number of points with little information. It is not clear in
advance, which alternative should be preferred.

We performed a simulation study for regular patterns with hard core since the
air pore patterns are regular. However, it is also interesting to investigate how the
tests work for clustered patterns. In this case, the aim is a detection of a change
of the shapes of clusters caused by the pressing. We performed a simulation study
also for Matérn cluster processes even though the results are not reported here.
As in the hard core case, both high intensities and large pressing factors yield
high powers of the test. In contrast to the regular case, anisotropies within point
patterns with small cluster radii are easier to detect than within patterns with
large cluster radii, since the concentration of points within the clusters is higher.
Also, it turns out that the tests work better in the case of less points in a cluster.
As in the regular case, the test based on the K function works best followed by
the local G function while the global G function yields only poor results.

For the analysis of the ice samples not only the detection of anisotropies was
required but also the measurement of its strength. In order to study this, we
introduced a method to estimate the pressing factor. The observed pattern is
’stretched’ using different pressing factors. The factor minimizing the difference
between the spatial structure in the three coordinate directions, hence yielding
the most isotropic pattern, is chosen as the estimate of the pressing factor. The
evaluation of the estimation procedure on simulated data produced satisfactory
results. Especially for very regular patterns the method works very well even in
the presence of outliers.

Applied to the ice data, our methods render the anisotropy in z-direction
caused by the compression of the ice sheet clearly visible. The means of the
estimated pressing factors of 0.63/0.64 for the samples from 353 m depth and
0.53/0.55 for the depth of 505 m are consistent with the expected increase of
the degree of compression with increasing depth. For the samples from 153 m
depth we obtained mean pressing factors of 0.81/0.82 which confirms this finding.
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However, the comparison of the mean curves for the two depths shown in Figure 11
indicate further structural differences between samples from different depths. A
detailed investigation of these questions including samples from further depths is
subject to future research.

A simple model of ice flow known as Nye formula in the glaciological literature
(described in Paterson (1994)) assumes a constant thinning rate with depth. The
Nye-approach is fairly simple and needs only the absolute ice thickness as an
input parameter. Assuming an ice thickness of about 1600 m for Talos Dome
one gets thinning factors of 0.90 (153 m), 0.78 (353 m) and 0.68 (505 m). Our
estimations show an excellent agreement in the relative trend but with an absolute
offset of about 0.1. One possible reason might be the oversimplification of the
Nye-approach. It takes neither the bedrock boundary conditions nor the change
of mechanical properties of ice with age and climate into account. The absolute
thinning factor is very sensitive against the bedrock conditions. An assumed
freezing at the bedrock would shift the absolute values in the upper part of the ice
sheet towards higher thinning factors. Simulations with the so called Dansgaard-
Johnsen approach (also described in Paterson (1994)) which parametrised the
effect of bedrock freezing with a linear decrease of the thinning rate to zero
at bedrock results in absolute thinning factors comparable to our estimations.
However, the parametrisation of the linear decrease is arbitrary in the model
and the real bedrock conditions at the Talos Dome site are not known due to
the incomplete drilling so far. However, the qualitative agreement with the pure
constrained model representations gives us confidence that the dating of ice cores
will benefit from the independent estimations of the thinning function in future.
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