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A GRAPH-LAPLACIAN APPROACH FOR CALCULATING THE
EFFECTIVE THERMAL CONDUCTIVITY OF COMPLICATED FIBER

GEOMETRIES

O. ILIEV1, R. LAZAROV2, AND J. WILLEMS3

Abstract. An efficient approach to the numerical upscaling of thermal conductivities
of fibrous media, e.g. insulation materials, is considered. First, standard cell problems
for a second order elliptic equation are formulated for a proper piece of random fibrous
structure, following homogenization theory. Next, a graph formed by the fibers is con-
sidered, and a second order elliptic equation with suitable boundary conditions is solved
on this graph only. Replacing the boundary value problem for the full cell with an aux-
iliary problem with special boundary conditions on a connected subdomain of highly
conductive material is justified in a previous work of the authors. A discretization on the
graph is presented here, and error estimates are provided. The efficient implementation
of the algorithm is discussed. A number of numerical experiments is presented in order
to illustrate the performance of the proposed method.

Keywords: graph laplacian, effective heat conductivity, numerical upscaling, fibrous
materials.

1. Introduction

A wide class of insulation materials, such as glass and mineral wool, are composed of a
big number of fibers. The porosity of such materials is usually high. However, the heat
conductivity of the fibers is much higher than the conductivity of the surrounding air. In a
previous article, [EIL+07], it was shown that the effective heat conductivity of composites
containing highly conductive networks, can be calculated by solving auxiliary problems on
the highly conductive subdomain only, subject to special boundary conditions. Based on
this result, the thermal conductivity of the considered fibrous material is calculated over
the fibers only. A graph formed by the fibers is considered, with the intersection points of
the fibers being the nodes of the graph. Thus the problem for upscaling the conductivity
of fibrous materials reduces to solving Laplace’s equation on a graph.

According to homogenization theory, e.g. [JKO94, Tor02, WEH02, BP04], and the ref-
erences therein, the effective properties of heterogeneous materials can be calculated by
solving suitable sets of “cell problems” on representative elementary volumes (REV). In
this paper the equation under consideration is the stationary heat equation. Assume that
we are given an REV Ω, which is an open domain in Rn. Let us furthermore assume, that
Ω is brick shaped, and that its faces are parallel to the coordinate planes. According to
[JKO94, WEH02, Tor02, Hor97] the effective thermal conductivity tensor K̃ of Ω can be
deduced by post-processing n solutions ui, i = 1, . . . , n of

(1) ∇ · (K∇ui) = 0, in Ω
ui = xi, on ∂Ω,

where the conductivity K = K(x) may vary on a small length-scale, and where xi is the
i-th component of x = (x1, . . . , xn) ∈ Rn.

The above problem is the starting point of our considerations. Our target is to consider
and discuss an efficient approach for solving it in the case when K = K(x) and Ω represent
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a fibrous geometry. Typically, fibrous geometries, e.g. glass- or mineral-wool, satisfy the
following properties:

• a high contrast of the conductivities of the constituents,
• a large (low) volume fraction of the poorly (highly) conductive constituent,
• the highly conductive constituent forming a network, i.e. a graph, with a complex

internal structure.
Let ΩM and ΩA be two open sets satisfying some mild regularity assumptions described

in [EIL+07], such that ΩM ∪ ΩA = Ω. We think of ΩM and ΩA being the highly (metal,
glass) and lowly (air) conductive parts of Ω, respectively. Let us for simplicity assume,
that

K(x) =
{

KA = δ, x ∈ ΩA

KM = 1, x ∈ ΩM ,

where δ � 1. Note, that for high contrast media (i.e. whenever KA � KM ) we can meet
these assumptions by scaling (1) by K−1

M .
With ui, i = 1, . . . , n solving (1) we obtain the effective conductivity K̃ by

(2) K̃ei = −〈φi〉Ω ,

where φi := −K∇ui and 〈·〉Ω :=
1
|Ω|

∫
Ω
· dx denotes the volume average over Ω (cf.

[WEH02]) and ei is the i-th unit vector.
In [EIL+07] it was shown, that

(3) K̃ei = − 1
|Ω|

∫
ΩM

ψi +O(δ), i = 1, . . . , n,

where ψi satisfies

(4)


∇ ·ψi = 0 in ΩM

ψi = −K∇vi in ΩM

ψi · n = 0 on ∂ΩM\∂Ω
vi = xi on ∂Ω ∩ ∂ΩM ,

with n denoting the outer unit normal vector. Here we assume, that all path-connected
components of ΩM touch ∂Ω. According to [EIL+07] we may always assume, that this
condition is satisfied (otherwise, we disregard those path-connected components of ΩM

that do not touch the boundary).
The aim of this paper is to efficiently approximate the effective thermal conductivity

of fibrous structures (cf. Figure 1). Thus, in the setting introduced above ΩM is the part
of Ω occupied by fibers and some binder material discussed in Remark 2.1. In computing
the effective thermal conductivity we take advantage of the slender shape of the fibers and
solve (4) on the graph induced by the fiber network. In order to do this we present a proper
mimetic finite volume discretization of the Laplace equation on the domain occupied by
fibers only and carefully analyze the properties of this discretization. Additionally, we
compare the performance of the presented approach for calculating effective thermal con-
ductivities of fibrous materials, with the performance of a commercially available software,
namely GeoDict1.

It should be noted that the considered approach of solving only in the highly conductive
part of the domain when computing the effective properties of composite materials, is not
a new one. Engineers and physicists have applied it for a long time, based on dimensional
analysis and on arguments from physics. In this paper we present a careful mathematical
discretization, and what is more important, we discuss the mathematical properties of the

1For more information about this software we would like to refer the reader to the following webpage:
www.geodict.com
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Figure 1. 3-dimensional fiber structure with binder material.

derived discretization. In order to give an impression of the engineering and mechanical
papers dealing with calculating effective properties of fibrous materials and the like, let us
shortly discuss a very old and a very new article. The flow in porous media is described by
the same equations as above, and a well known approach for calculating the permeability of
fractured porous media suggested by Barenblatt in the 1960s relies on evaluating the flow
in the fractures and neglecting the flow through the remaining big but lowly permeable
part of the domain. The approach is widely used in geoscience, however, we are not aware
of a mathematical study of this approximation.

From the recent considerations, we refer to [VOF+a, VOF+b]. The authors perform a
careful dimensional analysis for the cases of perfect, weak, and bad contacts between fibers.
In the case of perfect contact, they end with a discretization which is equivalent to the one
which will be presented in this paper. However, they do not discuss the properties of the
discretized system. It should also be noted that the lowly conductive part of the domain
is not considered at all in [BER84] and in [VOF+a, VOF+b]. As we will demonstrate
below, accounting for the lowly conductive part of the domain is essential for the correct
calculation of the effective thermal conductivities of highly porous materials (e.g. many
insulation materials). Below we will show how one can account for the contribution of the
lowly conductive part in a cheap way.

It should also be mentioned that fibrous materials and the like are also subject to inten-
sive studies in homogenization theory. The objective there, however, is somehow different
from our goal. For example, in [Pan05] Panasenko focuses on the derivation of a homoge-
nized solution living on the skeleton corresponding to a rod structure, as the diameter of
the rods tends to zero. Another interesting study is the one in [CJLP02] and [CEJ01] (see
also the references therein). In these papers the authors consider periodic lattice structures
embedded in some larger domains. On these lattice structures scalar elliptic equations are
considered along with Dirichlet boundary conditions on the intersection of the boundaries
of the domain and its enclosed lattice structure. On the remaining parts of the boundary
of the lattice structure zero Neumann boundary conditions are imposed. Note, that this
setting is in fact very similar to (4), i.e. the problem whose solution we would like to ap-
proximate efficiently. In [CJLP02] and [CEJ01] the objective is, however, to compute the
effective material property of the considered domain as the period of the enclosed lattice
structure and the diameter of the involved trusses tend to zero. Thus, as in [Pan05], the
objectives in [CJLP02] and [CEJ01] are analytical statements about the convergence of the
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fine scale to some homogenized solution and the existence and the properties of effective
material properties when the period and/or the diameter of the trusses tends to zero.

The works just mentioned as well as other related homogenization studies of fibrous
materials differ from our considerations in several aspects. In particular, the focus there is
not on the efficient numerical computation of effective material properties. Furthermore,
the lowly conductive parts of the domain are usually not discussed, when computing the
effective material properties of the entire domain. Unlike the homogenization articles
mentioned above, we consider a fixed fibrous geometry, and discuss efficient solution ap-
proaches for the cases when the conductivity of the fibers dominates the conductivity of
the bulk material. In general, finite element or finite volume discretizations of the cell
problems, as well as the properties of the discretized system, are not discussed in the ho-
mogenization literature. The latter is the subject of our discussions. Another difference
between our study and the articles mentioned above is that they discuss the monodisperse
case (i.e. all the fibers have the same diameter). In connection with insulation materials,
we are interested in fibrous materials with certain distributions of the fiber diameters, as
well as with certain distributions of the lengths of the fibers. The implementation and the
numerical experiments are done for the case of a distribution of fiber radii and lengths.

In our setting, the conductivity of the fibers is assumed to be constant (i.e. KM ) and
the geometry of the considered fibrous structure is not affected by any limiting process.
Considering several highly conductive types of fibers can also be easily done. Our objective
is to efficiently compute - for a fixed geometry - an approximation of the solution of (4)
and from there an approximation of the effective thermal conductivity tensor of the whole
sample Ω based on the assumption, that the contrast between KA and KM is rather large.

The remainder of this article is organized as follows: In the next section we introduce
some notation and definitions needed for a smooth exposition of our argument. In section
3 we discuss a mimetic finite volume discretization over the graph formed by the fibers. In
particular, we show that the presented discretization imposes a symmetric positive definite
operator, which justifies the usage of the Conjugate Gradient method. Additionally, a
careful analysis of the dependence of the discretization error on the fiber diameters and on
the lengths of the graph edges is performed. Section 4 provides some results from numerical
simulations demonstrating the accuracy and the efficiency of the presented approach. The
last section is devoted to conclusions.

2. Notations and Definitions

In the previous section we mentioned random fibrous geometries as the main target of
our considerations. Let us now briefly discuss in some more detail what we mean by this.
For a somewhat simpler presentation we restrict our exposition to three spatial dimensions,
i.e. n = 3, while making some simplifying sketches also in 2 dimensions.

By a fiber we mean a cylindrical object of finite or infinite length. In particular, it
is supposed that a fiber has a straight line at its center. Note, that a generalization to
curvilinear fibers is straightforward. For each fiber let l be a unit vector pointing into
the direction of the line at its center. Furthermore, the length of a fiber is required
to be much larger than its diameter. To generate a fibrous geometry these objects are
randomly “thrown into” our domain Ω and cut-off at the boundary ∂Ω. Let the set of all
intersections of the straight lines at the centers of fibers with ∂Ω be denoted by ∂ω. The
actual numerical generation of our fibrous geometries is done by the GeoDict software.
With this random construction different fibers may and in general will intersect.

Now, let ω be the set of points, where two or more fibers cross. For a simpler presentation
and to avoid unnecessary technicalities, we assume, that whenever two fibers (i.e. the
cylindrical objects) have a nonempty intersection the same holds true for their center
lines. We also define ω := ω ∪ ∂ω. Let h be the characteristic distance between adjacent
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(i.e. adjacent on a fiber) nodes in ω and let d be the characteristic diameter of all fibers in
Ω. We require d � h in order to have a meaningful notion of a graph induced by the fibers
(which correspond to the edges of the graph) and their intersections (which correspond to
the nodes of the graph).

The (circular) cross-section of a fiber perpendicular to l and in the middle of two nodes
from ω being adjacent on that fiber is denoted by S. For each cross-section S we denote

its center by xS :=
1
|S|

∫
S
ξdS(ξ). The set of all xS on cross sections between two nodes

is denoted by S . The set of all xS on (circular) faces S being located at those fiber-ends
which are inside of Ω is denoted by ∂S . Finally, we set S := S ∪ ∂S . For a better
understanding of the definitions above we refer to Figure 2.

ω

ω

S

∂S

S

ΩM

ΩA

Ω

∂ω

Figure 2. Domain with nodes and cross-sections.

For each node x ∈ ω we define Vx to be the volume, which is given by the fiber-
segments surrounding x and bounded by the cross-sections S adjacent to x. Similarly, for
each S ∈ S we define VS to be the cylindrical volume between two adjacent nodes from ω,
such that S is contained in the enclosed volume (see Figure 3(a)). Note, that near x ∈ ω
the volumes VS for different S ∈ S actually overlap. These overlapping regions, however,
only have a volume, that is O(dn). The same estimate holds true for the volumes close to
x ∈ ∂ω, which belong to the fiber but not VS and vice versa (see Figure 3(b)).

For very regular fiber arrangements depicted in Figures 4(a) (2 dimensional case) and
4(b) (3 dimensional case) it is very easy to see, that

(5) #ω = O
(

1
hn

)
.

Henceforth, we assume, that estimate (5) also holds true for the fiber geometries, that we
consider, which should not be a very restrictive assumption.

Also, we assume that the nodes in ω (and their corresponding surrounding volumes) are
numbered, and we define n∓S to be the unit normal vector to S pointing from the lower
numbered volume to the higher numbered one (see Figure 3).

Remark 2.1. As indicated in section 1 one very often applies some binder material in the
production process of glass and mineral wool. For simplicity the thermal conductivity of
this binder material is assumed to be equal to that of the fibers. Figures 1 and 3(b) show
how this binder can be deposited at the fibers. The volume of each binder segment is
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supposed to be O(dn), and as for the fiber crossings we expect to have O
(

1
hn

)
of these

segments.
For the analysis carried out in section 3 it is important to note that due to this binder

material we may assume the boundary of ΩM to have no re-entrant corners. Thus, the
solution of (4) has no singularities and is therefore smooth enough for our derivations.

x1

x2

Vx1

n∓S

xSVS

(a) Elementary volumes and normal vectors.

O(dn)

Binder
material

(b) Elementary volumes VS with sections of size
O(dn).

Figure 3. Over-all (a) and zoomed-in (b) sketches of fibrous structures.

(a) 2-D (b) 3-D

Figure 4. Interior and boundary nodes for a regular fiber structure.

Now, we define the following spaces of functions being defined on ω and S , respectively.

Definition 2.2.

(6a) U := {y : ω → R} ,

(6b) F :=
{
χ : S → R3 : χ(xS) · nS = 0 ∀xS ∈ ∂S

}
,
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where the nS are unit vectors being normal to the faces at the ends of the fibers and
pointing to the outside of the fibers.

Having defined the quantities and spaces above we are now able to introduce differ-
ence operators and scalar products on the unstructured grids given by ω and S . We
define difference operators G and D corresponding to the differential operators ∇ and ∇·,
respectively.

Definition 2.3.

(7a)

G : U → F , such that

Gy(xS) =
y(x+

S )− y(x−S )
‖x−S − x+

S ‖2
n∓S ∀xS ∈ S

and Gy(xS) = 0 ∀xS ∈ ∂S ,

where ‖ · ‖2 denotes the standard Euclidean norm in Rn.

(7b)

D : F → U , such that

Dχ(x) =
1
|Vx|

∑
S∈S with

S⊂∂Vx

χ(xS) · nS |S|, ∀x ∈ ω

=
1
|Vx|

∑
S∈S with

S⊂∂Vx

χ(xS) · nS |S|, ∀x ∈ ω, since χ · nS |∂S = 0.

Here x+
S and x−S denote the higher and lower numbered node adjacent to S, respectively,

and nS is the unit normal vector to S pointing outside of Vx.
Furthermore, we define the following scalar products on U and F .

Definition 2.4.

(8a) (y, ỹ)U =
∑
x∈ω

|Vx|y(x)ỹ(x),

(8b) (χ, χ̃)F =
∑
x∈ω

∑
S∈S with

S⊂∂Vx

|S|dist(x, S)(χ(xS) · nS)(χ̃(xS) · nS).

As usual, we denote the norms induced by these scalar products by ‖ · ‖U and ‖ · ‖F ,
respectively.

3. Discretization of the Problem and Error Estimates

We first state an important property of the difference operators G and D, which corre-
sponds to the fact that ∇ = −∇·∗ for suitable function spaces (here ∗ denotes the adjoint
w.r.t. the L2-inner-product).

Lemma 3.1. With the definitions and notations above we have, that for all y ∈ U and
χ ∈ F

(9) (y,Dχ)U = − (Gy,χ)F .

Proof. Observe, that

(10)

(y,Dχ)U =
∑
x∈ω

|Vx|y(x)
1
|Vx|

∑
S∈S with

S⊂∂Vx

χ(xS) · nS |S|

=
∑
x∈ω

∑
S∈S with

S⊂∂Vx

y(x)χ(xS) · nS |S|

=
∑
S∈S

χ(xS) · n∓S
(
y(x−S )− y(x+

S )
)
|S|,
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where the last equality follows from the fact, that each S ∈ S is summed over exactly
twice (once for each node on either side of S). On the other hand we have
(11)

− (Gy,χ)F = −
∑
x∈ω

∑
S∈S with

S⊂∂Vx

|S|dist(x, S) (χ(xS) · nS)
(

y(x+
S )− y(x−S )

‖x−S − x+
S ‖2

n∓S · nS

)

= −
∑
x∈ω

∑
S∈S with

S⊂∂Vx

|S|1
2

(χ(xS) · nS)nS · n∓S
(
y(x+

S )− y(x−S )
)

=
∑
x∈ω

∑
S∈S with

S⊂∂Vx

|S|1
2
(
χ(xS) · n∓S

) (
y(x−S )− y(x+

S )
)

=
∑
S∈S

χ(xS) · n∓S
(
y(x−S )− y(x+

S )
)
|S|,

where to obtain the second equality we have used that dist(x−S , S) = dist(x+
S , S) =

1
2
‖x−S−

x+
S ‖2, which holds by construction. The last equality follows by a similar observation.
Combining (10) and (11) we obtain our claim. �

We now prove a discrete Poincaré type inequality. For this we need the following

Definition 3.2. Let y ∈ U then

(12a) ‖y‖2
G := (Gy,Gy)F + (y, y)U

and

(12b) |y|2G := (Gy,Gy)F .

It is easy to see, that ‖ · ‖G and | · |G define a norm and a semi-norm on U , respectively.
Like for other Poincaré type inequalities we now show, that on a suitable subspace of U ,
‖ · ‖G and | · |G are actually equivalent norms.

Proposition 3.3. Let y ∈ U such that y|∂ω ≡ 0, then ∃C, such that

(13) ‖y‖2
G ≤ C|y|2G ,

where C is a generic constant independent of y.

Proof. Suppose the statement were wrong. Then ∀C ∃y ∈ U with y|∂ω ≡ 0 such that
‖y‖2

G > C|y|2G . In particular:

∀m ∈ N ∃ym such that ‖ym‖2
G > m|ym|2G .

Devision by ‖ym‖2
G yields:

1
m

> |ỹm|2G ,

where ỹm :=
ym

‖ym‖G
and thus ‖ỹm‖G = 1.

Since (U , ‖ · ‖G) is a finite dimensional normed vector space, and since {ỹm}m∈N is a
bounded sequence, we know that there exists a subsequence - again denoted by {ỹm} -
that converges to, say, ỹ ∈ U . We certainly have, that

‖ỹ‖G = 1 and (Gỹ,Gỹ)F = |ỹ|2G = 0.

Using the latter relation and plugging in the definitions of (·, ·)F and Gỹ we readily
deduce ∑

S∈S

|S| 1
‖x+

S − x−S ‖2
(ỹ(x+

S )− ỹ(x−S ))2 = 0.
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Thus, ỹ(x+
S ) = ỹ(x−S ) for all S ∈ S , which implies that ỹ is piecewise constant (constant

on each subset of ω corresponding to a connected component of ΩM ). Since, however,
ỹ|∂ω ≡ 0 we thus know that ỹ ≡ 0 in ω (each connected component of ΩM touches ∂Ω by
assumption). This contradicts the fact that ‖ỹm‖G = 1, and we have proven our claim. �

With Lemma 3.1 and Proposition 3.3 we have two essential tools for proving the follow-
ing error estimate in ‖ · ‖G-norm.

Proposition 3.4. For i = 1, . . . , 3 let vi ∈ H1 (ΩM ) be the solution of

(14)


∇ ·ψi = −f in ΩM

ψi = −K∇vi in ΩM

ψi · nΩM
= 0 on ∂ΩM\∂Ω

vi = xi on ∂Ω ∩ ∂ΩM ,

where f ∈ L2(ΩM ), and let yi ∈ U be the solution of

(15) D (KGyi) = f̃ in ω
yi = xi on ∂ω,

where f̃(x) :=
1
|Vx|

∫
Vx

f(ξ)dξ, ∀x ∈ ω. Then

(16) ‖yi − ui‖G = O
(
(h + d)2

)
.

As above, h and d is the characteristic distance between two adjacent nodes and the char-
acteristic fiber diameter, respectively.

Remark 3.5. As mentioned above, the discretization given by (15) corresponds to that
used in [VOF+a, VOF+b] for the perfect contace case.

Proof. Recall, that for each S ∈ S its center-point is defined by xS :=
1
|S|

∫
S
ξdS(ξ). For

a better readability we will drop the subindex i in this proof. Now, for x ∈ ω we observe

(17)

1
|Vx|

∫
Vx

∇ ·ψ(ξ)dξ

=
1
|Vx|

∑
S∈S with

S⊂∂Vx

∫
S
ψ(ξ) · nSdS(ξ)

=
1
|Vx|

∑
S∈S with

S⊂∂Vx

∫
S

(
ψ(xS) +∇ψ(xS) · (ξ − xS) +O(|ξ − xS |2)

)
· nSdS(ξ)

= Dψ(x) +
1
|Vx|

∑
S∈S with

S⊂∂Vx

(
∇ψ(xS) ·

∫
S
ξ − xSdS(ξ)︸ ︷︷ ︸

=|S|xS−|S|xS=0

·nS +
∫

S
O(d2) · nSdS(ξ)

)
= Dψ(x) +D

(
O(d2)

)
.

Secondly, we observe, that

(18)

D(KGv)(x) =
1
|Vx|

∑
S∈S with

S⊂∂Vx

v(x+
S )− v(x−S )

‖x−S − x+
S ‖2

n∓S · nS |S|K(xS)

=
1
|Vx|

∑
S∈S with

S⊂∂Vx

(
∇v(xS) · n∓S +O(dist(S,x−S )2)n∓S

)
· nS |S|KM

= −Dψ(x) +
1
|Vx|

∑
S∈S with

S⊂∂Vx

O(h2) · nS |S|

= −Dψ(x) +D
(
O(h2)

)
,
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where we have used Taylor expansion and the fact that dist(S,x−S ) = dist(S,x+
S ) =

1
2
‖x−S − x+

S ‖2.

Combining (17) and (18) we thus obtain

(19) D(KGv)(x) = − 1
|Vx|

∫
Vx

∇ ·ψ(ξ)dξ +D
(
O(h2)

)
+D

(
O(d2)

)
.

Now, since ∇ ·ψ = −f we obtain by the definition of f̃ that

(20) D(KGv)(x) = f̃(x) +D
(
O(h2)

)
+D

(
O(d2)

)
.

Due to (15) we are therefore left with

(21) D (KG(v − y)) (x) = D
(
O(d2)

)
+D

(
O(h)2

)
.

Multiplying (21) scalarly by v − y yields
(22)

(D(KG(v − y)), v − y)U =
(
D
(
O(d2)

)
, v − y

)
U

+
(
D
(
O(h2)

)
, v − y

)
U

⇒ KM (G(v − y),G(v − y))F ≤
∣∣(O(d2),G(v − y)

)
F

∣∣+ ∣∣(O(h2),G (v − y)
)
F

∣∣
≤ ‖G(v − y)‖F

(∥∥O(d2)
∥∥

F
+
∥∥O (h2

)∥∥
F

)
⇒ ‖v − y‖G ≤ C

KM

(
‖O(d2)‖F + ‖O

(
h2
)
‖F

)
,

where we have applied Lemma 3.1, the Cauchy-Schwarz inequality, and Proposition 3.3.
From (22) we easily conclude (16). �

With Proposition 3.4 we are now finally able to state our main result.

Theorem 3.6. Let yi, i = 1, . . . , 3 be a solution of

(23) D (KGyi) = 0 in ω
yi = xi on ∂ω,

then

(24) K̃ei =
1
|Ω|
∑
S∈S

KMGyi(xS)|VS |+O
(
(h + d)2

)
+O(δ) +O

((
d

h

)3
)

.

Proof. Note, that we have the following:
(25)∥∥∥∥∥K̃ei −

1
|Ω|
∑
S∈S

KMGyi(xS)|VS |

∥∥∥∥∥
2

=

∥∥∥∥∥−1
|Ω|

∫
ΩM

ψidx−
1
|Ω|
∑
S∈S

KMGyi(xS)|VS |

∥∥∥∥∥
2

+O(δ) (by (3))

=
KM

|Ω|

∥∥∥∥∥
∫

ΩM

∇vidx−
∑
S∈S

Gyi(xS)|VS |

∥∥∥∥∥
2

+O(δ)

=
1
|Ω|

∥∥∥∥∥∑
S∈S

(∫
VS

∇vidx− Gyi(xS)|VS |
)∥∥∥∥∥

2

+O(δ) +O

((
d

h

)3
)

(by (5))

≤ 1
|Ω|
∑
S∈S

∥∥(∇vi(xS) +O(h2) +O(d2)
)
|VS | − Gyi(xS)|VS |

∥∥
2
+O(δ) +O

((
d

h

)3
)

,

where for the third equality we have used the boundedness (in L2-norm) of ∇vi (cf.
[EIL+07, Lemma 3.1]) and the fact that the volume of the overlapping and binder regions
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depicted in Figure 3(b) isO

((
d

h

)3
)

. Now, observe, that∇vi(xS) =
vi(x+

S )− vi(x−S )
‖x+

S − x−S ‖2
n∓S +

O(d2). This holds, since every component of ∇vi(xS) normal to nS is O(d2), which in
turn follows from the zero Neumann boundary conditions formulated in (4) and the fact,

that xS is in the center of S, i.e. xS :=
1
|S|

∫
S
ξdS(ξ).

With this, and by taking into account the definition of G we may write

(26)

∥∥∥∥∥K̃ei −
1
|Ω|
∑
S∈S

KMGyi(xS)|VS |

∥∥∥∥∥
2

≤ 1
|Ω|
∑
S∈S

∥∥G(vi − yi)(xS) +O(d2) +O(h2)
∥∥

2
|VS |+O(δ) +O

((
d

h

)3
)

=
1
|Ω|
∑
S∈S

∣∣nS · G(vi − yi)(xS) +O(d2) +O(h2)
∣∣ |VS |+O(δ) +O

((
d

h

)3
)

Observe, that we have
(27)

(G(vi − yi),G(vi − yi))F =
∑
x∈ω

∑
S∈S with

S⊂∂Vx

|S|dist(x, S) (G(vi − yi) · nS) (G(vi − yi) · nS)

=
∑
S∈S

|VS | (G(vi − yi)(xS) · nS)2

Combining (26) with (27) and Proposition 3.4 we easily deduce∥∥∥∥∥K̃ei −
1
|Ω|
∑
S∈S

KMGyi(xS)|VS |

∥∥∥∥∥
2

≤ O((h + d)2) +O(δ) +O

((
d

h

)3
)

,

which clearly implies (24). �

4. Numerical Results

Before taking a look at the numerical results, which can be obtained by applying the
theory developed above, let us specify the components of the used algorithm more precisely:

First of all, an analysis is carried out determining all crossings of fibers. (An efficient
way of doing this is the content of a forthcoming paper.) Based on this information
an undirected graph is constructed. Corresponding to this graph we set up the discrete
system defined by (23). The arising linear system is then solved by the ILU preconditioned
Conjugate Gradient solver implemented in the LASPack package2. Once the solution
is obtained, it is post-processed according to (24) to approximate the effective thermal
conductivity.

Additionally, we note that as discussed in [EIL+07, section 4] an approximation of the
flux in ΩA and in the path-connected components of ΩM which don’t touch ∂Ω does
enter our computations. Asymptotically, as δ → 0 these components can be neglected.
Nonetheless, for a specific choice for δ we may still hope to (and in many numerically tested
cases do) obtain better estimates of the effective thermal conductivity tensors, by taking
into account some approximation of the flux in those regions. In the numerical examples
presented below the temperature in ΩA is approximated by linearly interpolating the
(Dirichlet) boundary conditions, leading to a constant approximation of the temperature
gradient. The temperature gradient in the path-connected components of ΩM not touching
the boundary is obtained in the same way and then scaled by δ.

2For more details about this package please refer to www.mgnet.org/mgnet/Codes/laspack/html/laspack.html
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Now, let us have a look at two specific examples. Both fiber structures are cubic and have
a solid volume fraction of 5% (see Figure 5(a)) and 15% (see Figure 5(b)), respectively. In
both cases 80% of the fiber volume is occupied by long thin fibers (colored white), whereas
the remaining 20% are taken up by short thick fibers (colored red). Both fiber geometries
are isotropic. They were generated by the GeoDict software using a 5003 voxel mesh for
discretization.

(a) Fiber structure with 5% fibers. (b) Fiber structure with 15% fibers.

Figure 5. Two fiber structures with different densities of fibers.

Now, we compare the effective thermal conductivity tensors of these two structures com-
puted by GeoDict, which in turn uses the solver “EJ-HEAT”, and by our algorithm de-
scribed above. In this context we would like to point out, that GeoDict uses periodic
boundary conditions in the formulation of the cell problems, whereas we use linear bound-
ary conditions. It is well known (cf. e.g. [BP04]), that for REVs these different types of
boundary conditions produce (asymptotically with the length scale of the microscopic vari-
ations going to zero) the same effective conductivity tensors. In our examples we consider
the case, that the conductivity of the fibers is 50-times larger than the conductivity of the
air. By the numerical analysis performed in [IRW07] it is reasonable to assume, that for
this contrast both fiber geometries constitute REVs. Also, a contrast of 1:50 corresponds
to an application in engineering, namely the conductivities of air and glass or mineral
fibers used in glass- and mineral-wool, respectively. Tables 1(a) and 1(b) show the nu-
merical results produced by GeoDict and our algorithm, which we refer to as “COGraph”
for both fiber structures, respectively. As stopping tolerance we used 1e − 6 in all cases.
For comparing the efficiency, we also report the total runtime of each algorithm and the
amount of memory used. Since the off-diagonal elements of the effective thermal conduc-
tivity tensors are negligibly small, we only report the diagonal entries. For an objective
comparison all computations were performed on the same computer platform.

5. Conclusions

As we can see from the numerical data provided in Table 1, the results produced by
COGraph are very much comparable to those of GeoDict - up to two digits they are almost
identical. Comparing the required runtime and the used memory, however, we see, that
COGraph uses significantly fewer resources. For the geometry containing only 5% fiber
material it requires less than 0.02% of the time and about 0.4% of the memory that is
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(a) Effective thermal conductivity tensor of the fiber structure shown in 5(a).

GeoDict COGraph
1.653 - - 1.672 - -

K̃= - 1.637 - - 1.643 -
- - 1.614 - - 1.624

# unknowns 1.25e8 3859
runtime > 5500sec. < 1sec.
memory 3169MB 13MB

(b) Effective thermal conductivity tensor of the fiber structure shown in 5(b).

GeoDict COGraph
3.244 - - 3.158 - -

K̃= - 3.190 - - 3.094 -
- - 3.274 - - 3.205

# unknowns 1.25e8 26549
runtime > 6000sec. < 5sec.
memory 4876MB 84MB

Table 1. Comparison of the effective thermal conductivity tensors for the
fiber structures shown in Figure 5 computed by GeoDict and COGraph.
KM = 50 and KA = 1.

required by the EJ-HEAT solver. For the denser fiber geometry these differences aren’t
quite as large, however, they remain substantial.

It is obvious, that by increasing the number of fibers, while keeping the size and resolu-
tion of the voxelized gird constant, affects the performance of COGraph more than that of
GeoDict. The reason is, that usually more fibers have more intersections entailing a higher
number of unknowns for COGraph, while the number of unknowns for EJ-HEAT stays
exactly the same. Nonetheless, the number of unknowns for COGraph remains several
orders of magnitude smaller than that of EJ-HEAT.

These observations also concern a related issue. For geometries where only (very) small
fractions of the total volume are occupied by fibers we typically need a (very) large sam-
ple size to obtain an REV (cf. [IRW07]). For some glass-/mineral-wool fabrics the solid-
volume-fraction is less than 1%. In order to resolve the fibers in such a structure and at the
same time consider a large enough sample, one easily needs to consider voxel discretizations
with 10003, 20003, or even more unknowns depending on the remaining material param-
eters, such as fiber thickness, conductivity of the fiber material, etc. Obviously, there is
no chance to solve cell problems on such extremely large grids with standard methods.
COGraph, on the other hand, is only sensitive to the number of fiber intersections, which
is strongly related to the total number of fibers and thus to the total amount of fiber
material in a sample. Due to this property COGraph is, in fact, particularly well suited
for calculating the effective thermal conductivity tensors for large sparse fiber geometries.

On the whole, we may say, that our developed algorithm is a specialized tool for com-
puting the effective thermal conductivity tensors of fiber geometries, which exhibit a large
contrast between the conductivities of the fiber materials and the surrounding air. For
fiber structures with a (very) low solid-volume-fraction it allows to consider (very) large
sample sizes, which are too large to be treated by classical methods.
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