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Abstract

Layout analysis–the division of page images into text blocks, lines, and determination

of their reading order–is a major performance limiting step in large scale document dig-

itization projects. This thesis addresses this problem in several ways: it presents new

performance measures to identify important classes of layout errors, evaluates the per-

formance of state-of-the-art layout analysis algorithms, presents a number of methods to

reduce the error rate and catastrophic failures occurring during layout analysis, and de-

velops a statistically motivated, trainable layout analysis system that addresses the needs

of large-scale document analysis applications. An overview of the key contributions of

this thesis is as follows.

First, this thesis presents an efficient local adaptive thresholding algorithm that yields

the same quality of binarization as that of state-of-the-art local binarization methods,

but runs in time close to that of global thresholding methods, independent of the local

window size. Tests on the UW-1 dataset demonstrate a 20-fold speedup compared to

traditional local thresholding techniques.

Then, this thesis presents a new perspective for document image cleanup. Instead of

trying to explicitly detect and remove marginal noise, the approach focuses on locating

the page frame, i.e. the actual page contents area. A geometric matching algorithm

is presented to extract the page frame of a structured document. It is demonstrated

that incorporating page frame detection step into document processing chain results in a

reduction in OCR error rates from 4.3% to 1.7% (n = 4, 831, 618 characters) on the UW-

III dataset and layout-based retrieval error rates from 7.5% to 5.3% (n = 815 documents)

on the MARG dataset.

The performance of six widely used page segmentation algorithms (x-y cut, smearing,

whitespace analysis, constrained text-line finding, docstrum, and Voronoi) on the UW-

III database is evaluated in this work using a state-of-the-art evaluation methodology.

It is shown that current evaluation scores are insufficient for diagnosing specific errors

in page segmentation and fail to identify some classes of serious segmentation errors
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altogether. Thus, a vectorial score is introduced that is sensitive to, and identifies, the

most important classes of segmentation errors (over-, under-, and mis-segmentation) and

what page components (lines, blocks, etc.) are affected. Unlike previous schemes, this

evaluation method has a canonical representation of ground truth data and guarantees

pixel-accurate evaluation results for arbitrary region shapes. Based on a detailed analysis

of the errors made by different page segmentation algorithms, this thesis presents a novel

combination of the line-based approach by Breuel [Bre02c] with the area-based approach

of Baird [Bai94] which solves the over-segmentation problem in area-based approaches.

This new approach achieves a mean text-line extraction error rate of 4.4% (n = 878

documents) on the UW-III dataset, which is the lowest among the analyzed algorithms.

This thesis also describes a simple, fast, and accurate system for document image

zone classification that results from a detailed comparative analysis of performance of

widely used features in document analysis and content-based image retrieval. Using a

novel combination of known algorithms, an error rate of 1.46% (n = 13, 811 zones) is

achieved on the UW-III dataset in comparison to a state-of-the-art system that reports

an error rate of 1.55% (n = 24, 177 zones) using more complicated techniques.

In addition to layout analysis of Roman script documents, this work also presents

the first high-performance layout analysis method for Urdu script. For that purpose a

geometric text-line model for Urdu script is presented. It is shown that the method can

accurately extract Urdu text-lines from documents of different layouts like prose books,

poetry books, magazines, and newspapers.

Finally, this thesis presents a novel algorithm for probabilistic layout analysis that

specifically addresses the needs of large-scale digitization projects. The presented ap-

proach models known page layouts as a structural mixture model. A probabilistic match-

ing algorithm is presented that gives multiple interpretations of input layout with asso-

ciated probabilities. An algorithm based on A* search is presented for finding the most

likely layout of a page, given its structural layout model. For training layout models,

an EM-like algorithm is presented that is capable of learning the geometric variability

of layout structures from data, without the need for a page segmentation ground-truth.

Evaluation of the algorithm on documents from the MARG dataset shows an accuracy

of above 95% for geometric layout analysis.
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Chapter 1

Introduction

Layout analysis is often a performance-limiting step of optical character recognition

(OCR) systems since the errors made at this stage propagate to all further stages of

the system. Typical use cases of OCR are desktop scanning and large volume document

conversion. Although, the layout analysis components of existing commercial and re-

search OCR systems are powerful enough to meet the expectations of many users, they

do not fulfill the requirements of large scale digitization tasks [Bai04,Vin07]. This dis-

sertation presents a high performance layout analysis system that satisfies the demands

of both application scenarios. The layout analysis system has a robust and highly ac-

curate generic layout analysis component that addresses the needs of desktop scanning

applications, and a statistically motivated, style-directed, and trainable layout analysis

component that is specifically designed to fulfill the requirements of large-scale document

analysis applications.

Paper documents like books, handwritten manuscripts, magazines, newspapers, etc.

have traditionally been used as the main source for acquiring, disseminating, and pre-

serving knowledge. The advent of personal computers has given birth to another class of

documents called electronic documents. An electronic document is a representation of a

document using data structures that can be understood by computers. Typical examples

of electronic documents are PDF, Word, XML, E-mails, Web pages, etc.

Electronic documents offer several advantages over traditional paper documents like

easier editing, retrieval, indexing, and sharing since document contents can be accessed

electronically. Therefore, most documents are created today by electronic means [Hol04].

An electronic document can be converted into a paper document by means of a printing

device. Converting a paper document into electronic form, on the other hand, needs a way

to transform the document into data structures that can be understood by computers.

1



2 1.1. OVERVIEW OF GEOMETRIC LAYOUT ANALYSIS

A scanning device can be used to obtain a digital image of a paper document. The

transformation of a scanned document image into a structured electronic representation

is a complex artificial intelligence task and is the focus of research in the field of document

analysis and recognition.

A document image may contain different types of contents like text, graphics, half-

tones, etc. The goal of optical character recognition (OCR) is to extract text from a

document image. This is achieved in two steps. The first step locates text-lines in the

image and identifies their reading order. This step is called geometric layout analysis. In

the second step, text-lines identified by the layout analysis step are fed to a character

recognition engine which converts them into an appropriate format (ASCII, UTF-8, . . . ).

Different processes involved in layout analysis are outlined in Section 1.1. The key con-

tributions of this thesis are presented in Section 1.2. Finally, an overview of the structure

of this thesis is given in Section 1.3.

1.1 Overview of Geometric Layout Analysis

Geometric layout analysis of a document image typically involves different processes. The

exact order in which these processes are applied varies from one algorithm to another.

Also, some algorithms might skip one or more of these processes or apply them in a

hybrid way. However, most of the layout analysis systems use these processes in some

form. Therefore, a brief outline of these processes is given here.

• Binarization is the process that converts a given input greyscale or color document

image into a bi-level representation.

• Noise removal is a process that tries to detect and remove noise pixels in a doc-

ument that are introduced by scanning or binarization process.

• Skew correction is a process that detects and corrects the deviation of a docu-

ment’s orientation angle from the horizontal direction.

• Page segmentation is a process that divides a document image into homogeneous

zones, each consisting of only one physical layout structure (text, graphics, pictures,

. . . ) while respecting the columnar structure of the document.

• Zone classification is a process that classifies page regions into one of a set of

predefined classes (e.g. text, image, graphics, . . . ).
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• Reading order determination tries to recover the order in which a human will

go through different parts (segments) of the document.

Binarization, noise removal, and skew correction are typically considered as prepro-

cessing steps in layout analysis. The core part of geometric layout analysis consists of

page segmentation and zone classification modules. Reading order determination is gen-

erally considered as a post-processing step in which simple ordering criterion can be used

to identify the reading order of the detected page segments.

1.2 Contributions of this Dissertation

The main contributions that are presented in this dissertation are:

1. An efficient algorithm for local adaptive binarization (Chapter 2)

(a) A new way of computing local thresholds is presented that makes the compu-

tation time of local thresholds independent of local window size.

(b) The same quality of binarization result as that of state-of-the-art local bina-

rization techniques is achieved in a time close to that of global binarization

techniques.

(c) A 20 times gain in speed as compared to a state-of-the-art local thresholding

scheme is demonstrated on the UW-I database.

2. Identification of page frame detection (PFD) as a new preprocessing step in docu-

ment image analysis (Chapter 3)

(a) Use of a geometric matching algorithm for page frame detection

(b) Demonstration of a significant reduction in OCR error rate from 4.3% to 1.7%

for a commercial OCR system by using PFD

(c) Demonstration of up to 30% lower error rates for layout-based document image

retrieval by using PFD

3. A comprehensive performance evaluation of well-known page segmentation algo-

rithms (Chapter 4)

(a) Performance evaluation and comparison of six well-known algorithms for page

segmentation using a state-of-the-art evaluation methodology [MK01].
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(b) Identification of a severe flaw in the state-of-the-art evaluation scheme when

used for single column documents.

(c) A novel, portable, and pixel-accurate representation for arbitrarily shaped page

segments.

(d) A vectorial score to identify and analyze different common classes of segmen-

tation errors made by a page segmentation algorithm.

(e) Identification of several specific flaws in widely used page segmentation algo-

rithms.

(f) A novel combination of different approaches for page segmentation that results

in the lowest mean error rate on the UW-III dataset.

4. A novel combination of features for document zone classification (Chapter 5)

(a) A detailed performance comparison of widely used features in document anal-

ysis and content-based image retrieval (CBIR) communities.

(b) Introduction of the use of histograms for the measurements of connected com-

ponents and run lengths and show that this leads to a performance increase.

(c) Introduction of a new class of blocks containing speckles that has not been

considered by other researchers. This typical class of noise is important to

detect during the layout analysis especially for images of bound book pages.

(d) Achieving an error rate of 1.5% with simple and computationally efficient

features on the UW-III dataset without using duplicates, which equals the

lowest error rate reported in literature [WPH06] using more complex features.

5. Development of the first high-performance layout analysis system for Urdu script

(Chapter 6)

(a) A geometric model is developed for representing an Urdu text-line.

(b) A geometric matching method is used to extract text-lines from printed Urdu

documents based on the geometric model of an Urdu text-line.

(c) A reading-order determination algorithm for Roman script documents is mod-

ified to adapt to Urdu script.

6. A novel statistical approach for trainable layout analysis (Chapter 7)
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(a) A new approach to model known page layouts as a structural mixture model

is presented.

(b) A probabilistic matching algorithm is presented that gives multiple interpre-

tations of input layout with associated probabilities.

(c) An algorithm based on A* search is presented for finding the most likely layout

of a page, given its structural layout model.

(d) An interactive graphical user interface (GUI) is developed that enables the

user to quickly build structural layout models.

(e) An EM-like training algorithm is presented that is capable of learning the

geometric variability of structural layout models from training data without

the need for page segmentation ground-truth.

1.3 Dissertation Overview

Figure 1.1 gives an overview of the organization of this thesis highlighting the relationship

between different chapters of the thesis.

Chapters 2 and 3 describe novel methods developed in this work for preprocessing

document images. Then, a high performance layout analysis system is explained in

Chapters 4 and 5 that can be used to accurately segment documents with stereotypical

layouts.

Using techniques well-established in segmenting Roman script documents, the first

high accuracy layout analysis system for Urdu script is presented in Chapter 6.

Finally, a statistical approach to layout analysis is presented in Chapter 7 that can be

trained on specific layouts and gives a probabilistic output. This method is particularly

useful in large scale digitization works where the system can be trained to accurately

segment thousands of pages having the same layout structure.
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Figure 1.1: A visualization of the structure of this thesis illustrating the relationship
between different chapters and their contribution to different areas of layout
analysis. Filled blocks show the areas to which this thesis contributes.



Chapter 2

Binarization

Document binarization is an important first step in most document analysis systems. The

goal of document binarization is to convert a given greyscale or color document image into

a bi-level representation. This chapter presents a fast approach to binarize a document

image using local adaptive thresholding. The presented approach uses the concept of sum-

tables [Cro84] that were made popular in the computer vision community by Viola and

Jones [VJ04]. The following contributions to the state-of-the-art in document binarization

are presented in this chapter1 :

1. A new way of computing local thresholds using the concept of integral images is

presented.

2. The computation time of local thresholds is made independent of local window size.

3. The same quality of binarization result as that of the state-of-the-art local binariza-

tion techniques is achieved in a time close to that of global binarization techniques.

4. A 20 times gain in speed as compared to a state-of-the-art local thresholding scheme

is demonstrated on the UW-I database.

2.1 Introduction and related work

Consider a document with black text on white background. When such a paper is scanned

with a flatbed scanner to convert it to digital form, noise from several sources is added

to its digital counterpart. This noise comes both from the imaging mechanisms like finite

1This chapter is based on the author’s work in [SKB08a].

7
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Figure 2.1: A typical scanned book page exhibiting print-through from the back side of
the page and non-uniform illumination near page border.

spatial sampling rate, noise in electronic components, pixel sensor sensitivity variations,

and from the scanning process like de-focusing, non-uniform or poor illumination, and

print-through from the other side of the page [Bai00]. The effect of some of these degrada-

tions on a scanned image are shown in Figure 2.1. Although the original paper document

was bi-level, the image obtained after scanning is greyscale.

A majority of document analysis systems have been developed to work on binary

images [CCMM98]. The performance of subsequent steps in document analysis like page

segmentation or optical character recognition (OCR) heavily depend on the result of

binarization algorithm. Binarization with a high threshold results in merged components

which are difficult to recognize with an OCR system. On the other hand, binarization

with a low threshold results in broken characters that is again a problem for OCR. An

example of OCR results on differently binarized images of the same greyscale image are

shown in Figure 2.2.

Several approaches for binarizing a greyscale document [Ots79,WR83,Ber86,Nib86,

O’G94,SP00] or color document [SKPB00,TL02,BNP06,KKR07] have been proposed in

literature. This chapter focuses on the binarization of greyscale documents because in

most cases color documents can be converted to greyscale without losing much informa-

tion as far as distinction between page foreground (text) and background is concerned.
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Figure 2.2: The effect of choosing different binarization thresholds on the image and the
resulting OCR output.

The binarization techniques for greyscale documents can be grouped into two broad

categories:

1. Global binarization methods

2. Local binarization methods

Global binarization methods, like that of Otsu [Ots79], try to find a single threshold value

for binarizing the whole document. Each pixel in the document image is assigned to page

foreground or background based on its grey value. Global binarization methods are

computationally inexpensive and they give good results for typical scanned documents.

However, if the illumination over the document is not uniform, for instance in the case of

scanned book pages, global binarization methods tend to produce noise along the page

borders [SvBKB07]. Another class of documents are historical documents in which image

intensities can change significantly within a document due to poor paper quality. Local

binarization methods [SP00,Ber86,Nib86] try to overcome these problems by computing

thresholds individually for each pixel using information from the local neighborhood of

the pixel. These methods are able to achieve good results even on severely degraded

documents, but they are often slow since the computation of image features from the

local neighborhood is to be done for each image pixel.

Several authors have compared different techniques for both local and global thresh-

olding. Trier et al. [TT95] evaluated eleven different local adaptive binarization meth-

ods for greyscale images with low contrast, variable background intensity and noise.
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Their evaluation showed that Niblack’s method [Nib86] performed better than other

local thresholding techniques. Badekas et al. [BP05] evaluated seven different algo-

rithms for binarizing historical Greek documents. They found that Sauvola’s binarization

method [SP00] - which is an improvement over Niblack’s method - outperforms the other

local thresholding techniques; whereas Otsu’s binarization method [Ots79] works best

among the global binarization techniques. Another comprehensive evaluation of thresh-

olding techniques was done by Sezgin et al. [SS04]. They have evaluated 40 different

thresholding methods in the applications of non-destructive testing and document image

analysis. In the document analysis application, they synthetically degraded document

images using Baird’s degradation model [Bai00]. They also concluded that on docu-

ment images Sauvola’s binarization method works better than other local binarization

techniques. Based on these findings, Sauvola’s binarization technique was chosen as a

representative state-of-the-art technique for local thresholding, and Otsu’s binarization

method was selected as a representative algorithm for global thresholding.

The rest of the chapter is organized as follows. Otsu’s global thresholding technique is

outlined in Section 2.2, followed by a description of Sauvola’s local adaptive thresholding

technique in Section 2.3. The main contribution of this chapter - using integral images

for local thresholding - is explained in Section 2.4. The experimental setup and results

are discussed in Section 2.5 followed by a conclusion in Section 2.6.

2.2 Otsu’s Global Thresholding Algorithm

Consider a greyscale document image in which g(x, y) ∈ [0, 255] be the intensity of a

pixel at the location (x, y). The aim of global thresholding is to compute a threshold T

such that all the pixels that have grey value lower than the threshold T are assigned to

page foreground, and all pixels with grey value larger than the T are assigned to page

background. Hence the pixel intensities o(x, y) in the output binary image are computed

as follows:

o(x, y) =

{
0 if g(x, y) ≤ T

255 otherwise
(2.1)

Otsu’s thresholding algorithm views document thresholding as a two class classifi-

cation problem. All the pixels that have grey value below the threshold T belong to

one class (i.e. page foreground), while all the pixels that have grey values above the

threshold T belong to the other class (i.e. page background). The global threshold T is

then chosen such that it maximizes the inter-class variance and minimizes the intra-class
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(a) Input image (b) Otsu’s result (c) Input image (d) Otsu’s result

Figure 2.3: Results of applying Otsu thresholding on some example images.

variance of grey values. Let h be the normalized histogram of the given image. Then,

the probabilities of the two classes defined by a threshold T are given as

p1 =
T∑

g=0

hg (2.2)

p2 =
L−1∑

g=T+1

hg = 1− p1 (2.3)

where L is the number of grey levels in the image. The mean of the two classes is given

by

µ1 =
1

p1

T∑
g=0

ghg (2.4)

µ2 =
1

p2

L−1∑
g=T+1

ghg (2.5)

Then, the global threshold T̂ chosen by the Otsu’s method is given by Equation 2.6:

T̂ = arg max
T

p1p2(µ1 − µ2)
2 (2.6)

Otsu’s method works well for images having a uniform illumination over the page since

it adapts to the global changes in illumination in the given image. Some example images

and their binarization results obtained with Otsu’s technique are shown in Figure 2.3.
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2.3 Sauvola’s Local Thresholding Technique

The aim of local adaptive thresholding techniques is to compute a threshold t(x, y) for

each pixel such that

o(x, y) =

{
0 if g(x, y) ≤ t(x, y)

255 otherwise
(2.7)

In contrast to the global thresholding methods, where a single threshold T is used

to binarize the whole page (Equation 2.1), local thresholding methods allow the use of

a different threshold for each pixel (Equation 2.7) so that the threshold can be adapted

to local changes in illumination in different parts of the document. There are several

ways in which the intensities of pixels in the local neighborhood of pixel (x, y) can be

incorporated in the computation of the threshold t(x, y).

White et al. [WR83] proposed to use the mean m(x, y) of grey values in a w × w

window centered around the pixel position (x, y):

t(x, y) = km(x, y) (2.8)

where the parameter k controls the amount by which the threshold is lowered below the

mean value. Usually, the value of k is set to 0.2 [SS04].

Niblack [Nib86] introduced the concept of using both local mean and standard devia-

tion to compute local threshold. In Niblack’s method, local threshold in a w×w window

is computed using

t(x, y) = m(x, y) + ks(x, y) (2.9)

where s(x, y) is the standard deviation of the grey values in the local window. Trier et

al. [TT95] found k = −0.2 to be a good choice. Niblack’s method works better than

that of White et al. specifically in the case of poor illumination because the threshold is

adapted to the local variance inside the w × w window.

Sauvola’s binarization method [SP00] is an improvement of the Niblack’s method. In

Sauvola’s method, the threshold t(x, y) is computed as

t(x, y) = m(x, y)

[
1 + k

(
s(x, y)

R
− 1

)]
(2.10)

where R is the maximum value of the standard deviation (R = 128 for a greyscale

document). The parameter k takes values in the range [0.2, 0.5] and controls the value
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(a) Input image (b) Sauvola’s result (c) Input image (d) Sauvola’s result

Figure 2.4: Results of applying Sauvola’s binarization algorithm on some example images.

of the threshold in the local window such that the higher the value of k, the lower the

threshold from the local mean m(x, y). A value of k = 0.5 was used by Sauvola [SP00]

and Sezgin [SS04]. Badekas et al. [BP05] experimented with different values and found

that k = 0.34 gives the best results. In general, the algorithm is not very sensitive to the

value of k used.

The local mean m(x, y) and standard deviation s(x, y) adapt the value of the threshold

according to the contrast in the local neighborhood of the pixel (x, y). For high contrast

regions in the image, s(x, y) ≈ R which results in t(x, y) ≈ m(x, y). However, when the

contrast in the local neighborhood is very low, the threshold t(x, y) goes below the mean

value thereby successfully removing the relatively dark regions of the background. Some

example images binarized with Sauvola’s technique are shown in Figure 2.4.

The statistical constraint in Equation 2.10 gives good results even for severely de-

graded documents. However in order to compute the threshold t(x, y), local mean and

standard deviation have to be computed for each pixel in the image. Computing m(x, y)

and s(x, y) in a naive way results in a computational complexity of O(w2N2) for an image

of size N ×N using w × w local windows. To speed up the computation, Sauvola et al.

propose computing a threshold for every nth pixel and then using interpolation for the

rest of the pixels. This approach speeds up the computation by some factors at the cost of

reduced accuracy of determining the threshold. In addition, the computational complex-

ity is still a quadratic function of w - the local window dimension. In the following, an

efficient way of computing local means and variances using sum tables (integral images)

is presented.
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2.4 Binarization Using Integral Images

An integral image I of an input greyscale image G is defined as the image in which the

intensity at a pixel position is equal to the sum of the intensities of all the pixels above

and to the left of that position in the original image. The intensity at position (x, y) can

be written as

gi(x, y) =
x∑

u=0

y∑
v=0

g(u, v) (2.11)

The concept of integral images was popularized in the computer vision community by

Viola and Jones [VJ04] based on prior work in computer graphics [Cro84]. The integral

image of a greyscale image can be efficiently computed in a single pass. Using integral

image, the local mean m(x, y) of pixel intensities in the greyscale image can be computed

simply by using two addition and one subtraction operations [PT06]:

m(x, y) = (gi(x + w/2, y + w/2) + gi(x− w/2, y − w/2)−

gi(x + w/2, y − w/2)− gi(x− w/2, y + w/2)) /w2 (2.12)

where the local window has dimensions w×w. Similarly, the computation of the local

variance can be done as:

s2(x, y) =
1

w2

x+w/2∑
u=x−w/2

y+w/2∑
v=y−w/2

g2(u, v)−m2(x, y) (2.13)

the first term in Equation 2.13 can be computed in a similar way as Equation 2.12 by

using an integral image of the squared pixel intensities.

Once the integral images of the pixel intensities and the square of the pixel intensities

are obtained, local means and variances in Equation 2.10 can be computed very efficiently

using Equations 2.12 and 2.13. It is important to note here that the computation of local

mean and variance does not depend on the local window size anymore. Hence the same

statistical constraint as that of Sauvola can be implemented in O(N2) instead of O(w2N2).

An outline of performing local adaptive thresholding using integral images is as follows:

1. Compute the integral images of the grey values and the square of the grey values

in a single pass through the given greyscale image.

2. Set the local window size larger than the size of a typical character in the image.
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3. Compute the local threshold t(x, y) for each pixel using some state-of-the-art thresh-

olding method (e.g. Equation 2.10) in another pass through the image.

4. Obtain the output binarized document image using Equation 2.7.

An important hint from implementation point of view is that the values of the squared

integral image tend to get very large, so overflow problems might occur if 32-bit integers

are used. An implementation of the presented adaptive thresholding algorithm can be

found in the OCRopus open source OCR system [Bre08].

2.5 Experiments and Results

The result of running the Otsu and the Sauvola binarization algorithms on a scanned

book page are shown in Figure 2.5. Illumination over the scanned greyscale image (Fig-

ure 2.5(a)) is not uniform. Hence the grey value of the pixels near the right border of

the scanned page is lower than the global threshold computed by the Otsu’s method, re-

sulting in a thick black bar near the right side of the image loosing all the information in

that region (Figure 2.5(b)). Sauvola’s method computes a local threshold for each pixel

individually taking into account image intensities in the local neighborhood of the pixel

(Section 2.3). This results in a much better output (Figure 2.5(c)) at a cost of a 15-fold

increase in computation time as compared to Otsu’s method. The proposed algorithm

(Section 2.4) achieves the same result as that of Sauvola (Figure 2.5(d)) in a time close

to that of Otsu.

To measure the gain in speed over a large collection of documents, the approach

presented in this chapter was tested on the University of Washington (UW-1) dataset.

The UW-I dataset contains 125 greyscale images scanned at a resolution of 300-dpi. The

typical dimensions of the images are 2530x3300 with little variations for each image. The

experiment was conducted on an AMD Opteron 2.4 GHz machine running Linux. A

comparison of mean running times of the Otsu, Sauvola, and the presented algorithm

is shown in Figure 2.6. The result shows that by using the proposed algorithm, the

execution time of Sauvola binarization came close to that of Otsu’s binarization method.

Mean running time for Otsu’s binarization method was 2.0 secs whereas the presented

algorithm took a mean running time of 2.8 secs. Original Sauvola algorithm took 12.6

secs when using a 15× 15 local window and 65.5 secs when using a 40× 40 local window.

This amounts to a 5-fold speed gain in the case of small window size (15 × 15) and a

20-fold speed gain in the case of large window size (40× 40).
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(a) Input Image (2550× 3509) (b) Otsu’s result (t = 2.7 sec)

(c) Sauvola’s result (t = 39.2 sec) (d) The proposed algorithm’s result (t =
2.9 sec)

Figure 2.5: The result of applying Otsu thresholding, Sauvola binarization, and the pro-
posed binarization algorithm on a scanned book page. Note that Sauvola’s
method achieves better results at a cost of a 15-fold increase in computation
time as compared to Otsu’s method. The proposed algorithm achieves the
same result as that of Sauvola in a time close to that of Otsu.
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Figure 2.6: A comparison of mean running times of the original Sauvola binariza-
tion method [SP00], the proposed algorithm, and the Otsu binarization
method [Ots79] on the UW-1 dataset. The graph shows that the proposed lo-
cal thresholding technique achieves speed close to Otsu’s binarization method.
The graph also demonstrates that the computation time of the proposed tech-
nique is independent of the local window size.

Bradley et al. [BR07] have recently proposed in a parallel work to perform real-time

adaptive thresholding using mean of a local window, where local mean is computed using

integral image. However, for binarizing document images, local mean alone does not work

as good as considering both local mean and local variance [SS04].

2.6 Summary

This chapter presented a novel way of computing thresholds for locally adaptive binariza-

tion schemes. Integral images were used to compute mean and variance in local windows,

which resulted in an algorithm thats running time does not depend on the local window

size. Using the threshold function of Sauvola, the presented technique achieves the same

results as those of Sauvola, but in a time close to that of global binarization schemes

like Otsu. The proposed technique does not only apply to the Sauvola’s local thresh-

olding algorithm, but also to other local thresholding methods, e.g. White’s [WR83] or

Niblack’s [Nib86].
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Chapter 3

Page Frame Detection

When a page of a book is scanned or photocopied, textual noise (extraneous symbols from

the neighboring page) and/or non-textual noise (black borders, speckles, . . . ) appear

along the border of the document. Let the page frame of a scanned document be defined

as the smallest rectangle that encloses all the foreground elements of the document image.

The goal of page frame detection is to find the actual page contents area, ignoring marginal

noise along the page border. This chapter introduces page frame detection as a new

step in document image analysis and demonstrates that using page frame detection as a

pre-processing step significantly reduces error rates in practical applications. The main

contributions of this chapter are1:

1. Identification of page frame detection as a new step in document image analysis

2. Use of a geometric matching algorithm for page frame detection

3. Demonstration of a reduction in OCR error rate from 4.3% to 1.7% (n = 1600) for

a commercial OCR system

4. Demonstration of up to 30% lower error rates for layout-based document image

retrieval

3.1 Introduction

Paper positioning variations is a class of document degradations that results in a skew

and translation of the page contents in the scanned image. Document skew detection

1This chapter is based on the author’s work in [SvBKB07].
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Figure 3.1: Example images showing the results of a page segmentation algorithm on
pages with different amounts of global translation. The results show that the
algorithm identifies the page blocks quite well in each case irrespective of the
translation in the page.

and correction has received a lot of attention in last decades and several skew estima-

tion techniques have been proposed in the literature (for a literature survey, please refer

to [CCMM98]). However, estimating the global position of the page has been largely

ignored by the document analysis community. This is perhaps due to the fact that most

of the layout analysis methods are robust to global translation of the page and would

produce the same segmentation of the page for different translations as long as all page

contents are visible. Hence the OCR output is usually not affected by global translation

of the page. This effect can be seen in Figure 3.1, where a page segmentation algorithm is

shown to correctly identify the page segments irrespective of the translation of the page

in each image.

Different amount of noise can be present along the border of a document image de-

pending on the position of the paper on the scanner. Figure 3.1 shows the effect of paper

positioning variations on the amount of marginal noise in the resulting scanned image. In

general, marginal noise along the page border can be classified into two broad categories

based on its source:

• non-textual noise (black bars, speckles, . . . ) resulting from the binarization process

• textual noise coming from the neighboring page

An example image showing textual and non-textual noise along the page border is

shown in Figure 3.2.
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Figure 3.2: Example image showing textual and non-textual noise along the page border

The most common approach to dealing with non-textual noise is to perform document

cleaning by filtering out connected components based on their size and aspect ratio [Bai94,

Bre02c,O’G93]. This usually works out quite well as pointed out by Nagy, “Additive noise

and isolated specks have been filtered and averaged out and are now on the endangered

species list” [Nag00]. However, when characters from the adjacent page are also present,

they usually cannot be filtered out using these approaches.

State-of-the-art page segmentation algorithms report textual noise regions as text-

zones [SKB06b]. Hence, the OCR accuracy decreases in the presence of textual noise,

because the OCR system outputs several extra characters in these regions.

Textual noise can be avoided altogether by scanning only the page contents area.

Typical desktop scanners come with a graphical user interface to allow the users to

conveniently mark the region to be scanned. This allows the user to manually select the

page frame during document scanning. The resulting document image is then free of

textual noise. However, if a large number of documents have to be scanned, manually

defining the page frame for each one of them might become quite cumbersome.

Researchers have also tried to explicitly detect and remove marginal noise in scanned

documents. For example, Le et al. [LTW96] have proposed a rule-based algorithm using

several heuristics to detect the page borders. The algorithm relies upon the classification

of document rows and columns into blank, textual or non-textual classes. Then, an anal-

ysis of projection profiles and crossing counts is done to detect the marginal noise. Their
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approach is based on the assumption that the marginal noise is very close to the edges of

the image and borders are separated from image contents by a large whitespace, i.e. the

borders do not overlap the edges of an image content area. However, this assumption is

often violated when pages from a thick book are scanned. Avila et al. [AL04] and Fan

et al. [FWL02] propose techniques for removing non-textual noise overlapping the page

content area, but do not consider textual noise removal. Cinque et al. [CLLT02] pro-

pose an algorithm for removing both textual and non-textual noise from greyscale images

based on image statistics like horizontal/vertical difference vectors and row luminosities.

However, their method is not suitable for cleaning binary images. Also, their approach is

very sensitive to the amount of noise present in the document image and the error rates

increases monotonically with the artifact area.

This chapter presents a new approach for dealing with paper positioning variations in

scanned documents. Instead of identifying and removing noisy components themselves,

the proposed method focuses on identifying the actual content area. This is accomplished

by a geometric matching algorithm. Including page frame detection as a document pre-

processing step can help to increase OCR accuracy by removing textual noise from the

document. Also in applications like document image retrieval based on layout informa-

tion [vBKSB06], noise regions result in incorrect matches. Using the page frame to reject

zones originating from noise can therefore reduce the retrieval error rates.

The method for page frame detection takes advantage of structure in a printed docu-

ment to locate its page frame. This is done in several steps. First, a geometric model is

built for the page frame of a scanned document. Then, a geometric matching method is

used to find the globally optimal page frame with respect to a defined quality function.

The use of geometric matching for page frame detection has several advantages. In-

stead of devising carefully crafted rules, the page frame detection problem is solved in a

more general framework, thus allowing higher performance on a more diverse collection

of documents. Additionally, the use of geometric model for page frame detection makes

the presented approach very robust to the amount of noise present in a document image

and can find the page frame even if noise overlaps some regions of the page content area.

The rest of this chapter is organized as follows. Section 3.2.1 briefly describes the

document model used in this work and how the page frame relates to the document

model. Section 3.2 describes the method for page frame detection in detail. In Section 3.3,

several error measures to evaluate the performance of a page frame detection algorithm

are proposed. Section 3.4 presents the experimental protocol and discusses the results

obtained, followed by the conclusion in Section 3.5.
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3.2 Geometric Matching for Page Frame Detection

3.2.1 Document Model

For structured documents, like technical journals and business letters, the document

structure can be described as a hierarchy, where entities at each level of the hierarchy

represent a particular level of information, like zones, text-lines, or connected components.

Different hierarchical models representing document structure have been proposed in the

past [DB89,LPH01,DSC02]. One common shortcoming of these models is that they only

model the contents of the document ignoring textual and/or non-textual noise added to

the document due to photocopy or scanning process. The definition of the hierarchical

document model is extended in this work and another level of hierarchy is added that

represents the actual page content area. The definitions of different levels of the hierarchy

are as follows.

• A binary document image D is defined as the union of the set of the foreground

pixels Pf and the background pixels Pb.

• The set of foreground pixels can then be partitioned into connected components

C = {C1, · · · , CM} such that Ci ∩ Cj = ∅ ∀i 6= j and
⋃M

i=1 Ci = Pf .

• The set of text-lines L = {L1, · · · , LN} is viewed as a partitioning of the connected

components such that Li ⊆ C, Li ∩ Lj = ∅ ∀i 6= j (some connected components

may not be included in any text-line).

• The set of zones Z = {Z1, · · · , ZR} is defined such that each zone Zi ⊆ C and

Zi ∩ Zj = ∅ ∀i 6= j, where each zone consists of only one physical layout structure

like text, graphics, or pictures.

• The page frame F is defined as the minimum rectangle containing all connected

components belonging to the actual document.

Note that other levels of the hierarchy are also possible (e.g.word-level, character-

level), but the above-mentioned levels are sufficient to describe a document for the purpose

of page frame detection.

In order to extract the document structure at different levels of the hierarchy, the page

frame detection system uses a different algorithm at each level. A fast labeling algorithm

is used to extract connected components from the document image. The constrained
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text-line finding algorithm [Bre02c] is used to extract text-lines, whereas the Voronoi-

diagram based algorithm [KSI98] is used to extract zones from the document. The text-

line extraction algorithm was used with a high threshold for the quality of the extracted

text-lines to avoid text-lines generated from non-textual noise components.

3.2.2 Page Frame Model

The page frame of a scanned document is parameterized as a rectangle described by five

parameters ϑ = {l, t, r, b, α}. The parameters {l, t, r, b} represent the left, top, right, and

bottom coordinates respectively, whereas α represents the skew angle of the page frame.

The page frame detection system takes skew corrected documents as input; standard skew

correction methods [OPS99,Bre02b] can be used for this purpose. Hence, the page frame

is modeled as an axis-aligned rectangle, described by four parameters ϑ = {l, t, r, b}.
Given the sets of connected components C, text-lines L, and zones Z, the goal of page

frame detection is to find the maximizing set of parameters ϑ with respect to the sets

C, L, and Z:

ϑ̂(C, L, Z) := arg max
ϑ∈T

Q(ϑ, C, L, Z) (3.1)

where Q(ϑ, C, L, Z) is the total quality for a given parameter set, and T is the parameter

space. The design of the quality function is described in detail in Section 3.2.3, followed by

the description of the algorithm for finding the optimal set of parameters in Section 3.2.4.

3.2.3 Design of Quality Function

The design of the quality function in Equation 3.1 is done by exploiting the text-alignment

property of structured documents. In such documents, text-lines are usually printed in

justified or left-aligned style. Hence, a large number of connected components are aligned

with the page frame of the document. At first glance, it may seem like a good idea to

use the number of character bounding boxes touching the page frame as the quality of

the page frame. The character bounding boxes could be obtained from C by filtering out

noise and non-text components based on their area and aspect ratio. However, such an

approach does not work well in practice because:

1. The top and bottom text-lines do not necessarily contain more characters than other

text-lines in the page (especially when there is only a page number in the header

or footer). Also in some cases, there can be non-text zones (images, logos, etc.) at
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the top or bottom of the page. Hence the parameters t and b can not be reliably

estimated using character level information.

2. The parameters l and r can only be reliably estimated for justified text.

Therefore, instead of using connected component level information, text-lines can be

used. The quality function can then be a function of the number of text-lines that touch

the page frame from inside. Based on this idea, the parameters ϑ can be decomposed

into two parts: ϑh = {l, r} and ϑv = {t, b}. Although ϑh and ϑv are not independent,

such a decomposition can still be done because of the nature of the problem. First, the

parameters ϑv are set to their extreme values (t = 0, b = H where H is the page height)

and then optimal ϑh is searched. This setting ensures that none of the candidate text-

lines is lost based on its vertical position in the image. The decomposition not only helps

in reducing the dimensionality of the searched parameter space from four to two, but also

prior estimates for ϑh make the estimation of ϑv a trivial task, as will be seen later in

sub-section 3.2.5. Hence the optimization problem of Equation (3.1) is reduced to

ϑ̂h(L) := arg max
ϑh∈T

Q(ϑh, L) (3.2)

The total upper bound of the quality Q can be written as the sum of local quality functions

Q(ϑh, L) :=
N∑

j=1

q(ϑh, Lj) (3.3)

An upper and lower bound for local quality function q is computed. Given a line

bounding box L̄ = {x0, y0, x1, y1}, intervals d(l, xi) and d(r, xi) of possible distances of

the xi from the parameter intervals l and r, respectively are determined. The local quality

function q for a given line and a parameter range ϑh can then be defined as

q1(ϑh, (x0, x1)) = max
(
0, 1− d2(l, x0)

ε2

)
+ max

(
0, 1− d2(r, x1)

ε2

)
(3.4)

Where ε defines the distance up to which a text-line can contribute to the page frame.

Text-lines may have variations in their starting and ending positions within a text column

depending on text alignment or paragraph indentation. A value of ε = 150 pixels is used

in this work in order to cope with such variations for documents scanned at 300-dpi.

This quality function alone already works well for single column documents, but for

multi-column documents it may report a single text-column (with the highest number
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of text-lines) as the optimal solution. In order to discourage such solutions, a negative

weighting for text-lines on the ‘wrong’ side of the page frame is introduced in the form

of the quality function

q2(ϑh, (x0, x1)) = −max
(
0, 1− d2(l, x1)

(2ε)2

)
−max

(
0, 1− d2(r, x0)

(2ε)2

)
(3.5)

The overall local quality function is then defined as

q(ϑh, (x0, x1)) = q1(ϑh, (x0, x1)) + q2(ϑh, (x0, x1)) (3.6)

The quality function in Equation (3.6) will yield the optimal parameters for ϑh even if

there are intermediate text-columns with larger number of text-lines. However, if the

first or last column contains very few text-lines, the column can possibly be ignored. The

search space for the parameters ϑh can be limited to certain regions of the document

image to solve this problem. In this work the value of the parameter l was constrained

to lie within the first half of the page, whereas the value of the parameter r was limited

to the second half of the page.

3.2.4 Branch-and-Bound Optimization

The RAST (Recognition by Adaptive Subdivision of Transformation Space) technique by

Breuel [Bre01] is employed to perform the maximization in Equation (3.2). RAST is a

branch-and-bound algorithm that guarantees to find the globally optimal parameter set

by recursively subdividing the parameter space and processing the resulting parameter

hyper-rectangles in the order given by an upper bound on the total quality. During the

search, each partition of the search space is described by a Cartesian product of intervals

for the parameters, i.e.a set of the form T = [l0, l1] × [r0, r1]. The upper bound on the

quality of the page frame with parameters in the rectangular region T is calculated using

interval arithmetic [Bre03d]. Given a computation of an upper bound on the quality, the

search can be organized as follows (for details see [Bre01,Bre03c]):

1. Pick an initial region of parameter values T .

2. Maintain a priority queue of regions Ti, where the upper bound on the possible

values of the global quality function Q for parameters ϑ ∈ Ti is used as the quality.

3. Remove a region Ti from the priority queue; if the upper bound of the quality
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function associated with the region is too small to be of interest, terminate the

algorithm.

4. If the region is small enough to satisfy the accuracy requirements for the dimensions

of a region, accept it as a solution.

5. Otherwise, split the region Ti along the dimension furthest from the accuracy con-

straints and insert the subregions into the queue; then continue the algorithm at

Step 3.

This algorithm will return the parameter set that maximizes the quality of the match

function in Equation (3.2). To make the approach practical and avoid duplicate compu-

tations, a match-list representation [Bre01] is used. That is, with each region kept in the

priority queue in the algorithm, a list (the match-list) of all and only those text-lines is

maintained that have the possibility to contribute with a non-zero local quality to the

global quality. These match-lists shrink with decreasing size of the regions Ti. It is easy

to see that the upper bound of a parameter space region Ti is also an upper bound for all

subsets of Ti. Hence, when a region is split in Step 5, the text-lines in the children that

have already failed to contribute to the quality computation in the parent never have to

be reconsidered. Thus the match-lists can be reused in the children thereby allowing a

very fast computation of quality for the children.

3.2.5 Parameter Refinement

The RAST algorithm returns the optimal parameters for ϑh in terms of mean square

error with respect to the quality function in Equation 3.3. However, if the text is not

aligned in the justified style or if different paragraphs have different indentation, param-

eters ϑh returned by the RAST algorithm may cut through some text-lines as shown in

Figure 3.3. So the parameters are refined to adjust the page frame according to different

text alignments. If the bounding box of a text-line overlaps with the page frame by more

than half of its area, the page frame parameters ϑh are expanded to include the complete

text-line.

The use of match-lists gives the list of text-lines bounding boxes which contributed

positively to the quality function Q(ϑh, L). All these text-lines are sorted with respect to

the top of each text-line’s bounding box (y0). This gives an initial estimate for parameters

ϑv by simply setting t = min(y0,j), j = 1, . . . , N and b = max(y1,j), j = 1, . . . , N . A page
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Figure 3.3: Example image demonstrating parameter refinement in order to adapt the
parameters to text alignment. The detected text-lines are shown in the left-
most image. Note that some part of the text is indented more to the right
as compared to other text on the page. The page frame corresponding to the
optimal parameters with respect to Equation 3.6 is shown in the middle im-
age. The image on the right side shows the initial page frame after adjusting
the parameters for text alignment. (cp. [SvBKB07])

frame detected in this way is shown in Figure 3.3. Although the detected page frame is

correct for most of the documents, it fails in these cases:

1. If there is a non-text zone (images, graphics, logo, . . . ) at the top or bottom of the

page, it is missed by the page frame.

2. If there is an isolated page number at the top or bottom of the page, and it is missed

by the text-line detection, it will not be included in the detected page frame.

An example illustrating these problems is shown in Figure 3.4. In order to estimate

the final values for ϑv = {t, b}, document zones are used as given by the Voronoi algo-

rithm [KSI98]. The Voronoi algorithm performs document cleaning as a part of zoning

process and successfully removes most of the non-textual noise. The output of the Voronoi

algorithm for an example image is shown in Figure 3.4. Textual noise usually appears

only along the left or the right side of the document. Based on this observation, filtering

is performed on the zones obtained by the Voronoi algorithm, such that all the zones

that lie completely inside or do not overlap horizontally with the detected page frame are

removed. Then, all of the remaining zones are included into the page frame. An example

result is shown in Figure 3.4.
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Figure 3.4: Example image demonstrating inclusion of non-text zones into the detected
page frame. The initial page frame detected based only on the text-lines is
shown on left. Note that the detected page frame does not include the images
on the top and the page number at the bottom. The middle image shows
the zones detected by the Voronoi algorithm. The rightmost image shows the
final page frame obtained by using zone-level information. (cp. [SvBKB07])

3.3 Performance Measures

To determine the accuracy of the presented page frame detection algorithm, performance

measures are needed that not only reflect the accuracy of the algorithm, but also quantify

its usefulness in practical document analysis systems. Therefore, the error measures are

categorized into two parts.

3.3.1 Page Frame Detection Accuracy

The goal of the performance measures in this section is to determine the accuracy with

which the page frame is located. Previous approaches for marginal noise removal [LTW96,

AL04,FWL02,CLLT02] use manual inspection to decide whether noise regions have been

completely removed or not. Then, the error rate is defined as the percentage of docu-

ments on which the noise was not completely removed. While these approaches might be

useful for small scale experiments, an automated way of evaluating border noise removal

is needed for evaluation on a large sized dataset. In the following, performance measures

based on area overlap, connected components classification, and ground-truth zone de-

tection are introduced to evaluate different aspects of the presented page frame detection

algorithm.
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Area Overlap

Let Fg be the ground-truth page frame and Fd be the detected page frame. Then the

area overlap between the two page frames can be defined as

A =
2|Fg ∩ Fd|
|Fg|+ |Fd|

(3.7)

The amount of area overlap A will vary between zero and one depending on the overlap

between ground-truth and detected page frames. If the two page frames do not overlap

at all A = 0, and if the two page frames match perfectly i.e. |Fg ∩Fd| = |Fg| = |Fd|, then

A = 1. This gives a good measure of how closely the two page frames match. However,

the area overlap A does not give any hints about the errors made by the algorithm.

Secondly, a small error like including a noise zone near the top or bottom of the page into

the page frame may result in a large error in terms of area overlap. To evaluate the page

frame detection algorithm in more detail, a performance measure based on connected

component classification is defined.

Connected Components Classification

As mentioned in Section 3.2.1, the page frame partitions the connected components into

two sets: Cp and Cn. Based on this property, and defining components detected as

lying within the page frame as ‘positive’, the performance of page frame detection can be

measured in terms of four quantities: ‘true positive’, ‘false positive’, ‘true negative’, and

‘false negative’. The error rate can then be defined as the ratio of incorrectly classified

connected components to the total number of connected components.

The error measure based on classification of connected components gives equal im-

portance to all components, which may not be desired. For instance, if the page number

is not included in the detected page frame, the error rate will still be very low because

page number comprises a very small fraction (typically about 0.03% to 0.1%) of the

total number of connected components in the page frame. However, the page number

carries important information for the understanding of the document. To compensate

this shortcoming, a performance measure based on detection of ground-truth zones is

introduced.

Ground-Truth Zone Detection

For the zone-based performance measure, three different values are determined:



CHAPTER 3. PAGE FRAME DETECTION 31

• Totally In: Ground-truth zones lying completely inside the computed page frame

• Partially In: Ground-truth zones lying partially inside the computed page frame

• Totally Out: Ground-truth zones lying totally outside the computed page frame

Using this performance measure, the ‘false negative’ detections are analyzed in more de-

tail. Since, the page numbers are considered an independent zone, missing page numbers

will have a higher impact on the error rates in this performance measure.

3.3.2 Performance Gain in Practical Applications

In order to demonstrate the usefulness of page frame detection in practical applications,

OCR and layout-based document image retrieval were chosen in this work.

OCR Accuracy

The OCR accuracy is determined by the percentage of characters correctly recognized in

a document image. Many extra characters (false alarms) may appear in OCR output if

textual noise is present in the document. Current commercial OCR systems have their

own noise removal techniques to deal with marginal noise. The edit distance [Lev66]

between the OCR output and the ground-truth text is used as the error measure for

determining OCR accuracy. Edit distance is the minimum number of point mutations

(insertion, deletions, and substitutions) required to convert a given string into a target

string. The goal of performance measure based on edit distance is to determine whether

the performance of existing OCR systems improves if page frame detection is used as a

pre-processing step.

Layout-Based Document Image Retrieval

In layout-based retrieval, the purpose is to query document image databases by layout,

in particular by measuring the similarity of different layouts in comparison to a reference

or query layout. Blocks originating from marginal noise result in incorrect matches,

thereby increasing the error rates of the retrieval system. Different layout analysis or

page segmentation algorithms use different methods to deal with noise in a document

image. The goal of this performance measure is to determine the decrease in retrieval

error rates when page frame detection is used as a pre-processing step.
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Figure 3.5: Some example images showing the detected page frame in yellow color.

Figure 3.6: An example image showing the result of page frame detection in case of border
noise overlapping the page content area. Image on the left shows the original
document, the middle image shows the detected page frame, and the right
image shows the cleaned image removing both textual and non-textual noise
outside the page content area while keeping the page content area intact.

3.4 Experiments and Results

The evaluation of the page frame detection algorithm was done on the University of

Washington III (UW-III) database [Phi96]. The dataset was divided into 160 training and

1440 test images. In order to make the results replicable, every 10th image (in alphabetical

order) from the dataset was included into the training set. Hence the training set consists

of images A00A, A00K, . . . , W1UA. The evaluation was done on the remaining 1440 test

images. Some examples of page frame detection for documents from the UW-III dataset

are shown in Figure 3.5. Figure 3.6 shows an example where marginal noise overlaps with

some text-lines at the bottom of the page. The use of page frame detection successfully
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Figure 3.7: The left image shows a document together with its original ground-truth
page frame. The right image shows the corrected ground-truth page frame
obtained by computing the smallest rectangle including all the ground-truth
zones.

detects the page contents region and removes the border noise from the image while

keeping the page contents intact.

3.4.1 Page Frame Detection Accuracy

The evaluation of page frame detection on the basis of overlapping area (Equation (3.7))

showed a page frame detection accuracy of 91%. An inspection of the UW3 ground-truth

page frame showed that it does not tightly enclose the page contents area as shown in

Figure 3.7. Hence, the correct page frame of the documents in the test set was computed

by finding the bounding box of all ground-truth zones for each document. Testing with

the corrected ground-truth page frame gave an overall mean area overlap of 96%. In the

following, when mentioning the ground-truth page frame, this corrected ground-truth

page frame is meant.

The result for the connected component based measure is given in Table 3.1. The high

percentage of true positives shows that the page frame mostly includes all the ground-

truth components. The percentage of true negatives is about 73.5%, which means that

a large part of noise components are successfully removed. The results for the Nth

generation photocopies show that the percentage of true negatives goes down to 42.8%

which may lead to the conclusion, that the computed page frames for this subset are

typically bigger than the ground-truth page frame. The total error rate defined as the

ratio of ‘false’ classifications to the total number of connected components is 1.6%. Since
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Table 3.1: Results for the connected component based evaluation. The number in brack-
ets gives the number of documents of that class. Error rates in [%].

Document Type True False True False
Positive Negative Negative Positive

Scans (392) 99.84 0.16 76.6 23.4
1Gen (1029) 99.78 0.22 74.0 26.0
NGen (19) 99.93 0.07 42.8 57.2

all (1440) 99.8 0.2 73.5 26.5
total (absolute) 4,399,718 8,753 187,446 67,605

Table 3.2: Results for the zone based performance evaluation. Error rates in [%].
Document Type Totally In Partially In Totally Out
Scans (392) 97.6 0.7 1.7
1Gen (1029) 97.1 1.0 1.9
NGen (19) 97.5 0.0 2.5

all (1440) 97.2 0.9 1.9

the test set contains only 19 images in the NGen category, the total results do not reflect

the performance on such severely degraded documents. A detail study of the performance

of the proposed page frame detection method on documents with different noise levels is

presented later in this section.

The results for the zone based measure are given in Table 3.2. Compared to the num-

ber of missed connected components, it can be seen that the percentage of missed zones

is slightly higher than the corresponding percentage of false negatives on the connected

component level. One conclusion that can be drawn from this observation is that the

zones missed do not contain a large number of components, which is typically true for

page numbers, headers and footers of documents. These zones have a few components

and therefore do not contribute much to the mean false negative errors on the connected

component level. In some cases, the text-line finding algorithm merges the text-lines

consisting of textual noise to those in the page frame. In such cases, a large portion of

textual noise is also included in the page frame.

In order to quantify the amount of marginal noise in a document image, the noise

ratio of a document image is defined as

Noise ratio =
npb

np

(3.8)

Where npb is the number of foreground pixels outside the ground-truth page frame, and
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Figure 3.8: Histogram of the noise level of the documents in the test set.

np is the total number of foreground pixels in a document image. A histogram of the

noise level of the documents in the test set is shown in Figure 3.8. Interestingly, there

are many documents with noise levels above 50%. The mean error rate obtained for each

of these noise level based document categories is plotted in Figure 3.9. The plot shows

that the algorithm works well even on documents with very high amount of noise. The

error rates on all three performance measures used are below 10% for noise levels up to

80%.

Some limitations of the presented page frame detection algorithm were also revealed

during the course of evaluation. Although the algorithm works very well for most of the

layouts even under large amount of noise, yet for a few layouts the algorithm does not give

100% result even for noise-free documents. This happens for documents with very few

text-lines beside the margin of the document and there is no text-line that spans across

the main content area and the page margin. In this case, these text-lines lie completely

outside the computed parameters ϑh (Equation 3.2). So the parameter refinement step

(Section 3.2.5) fails to include these text-lines into the page frame. To deal with such

layouts, the quality function can be modified to include an offset between the page frame

parameters and the main content area of the page.
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Figure 3.9: Performance of the page frame detection on different documents categorized
by their noise level.

3.4.2 Performance Gain in Practical Applications

The use of page frame detection in an OCR system showed significant improvement in the

OCR results. For this purpose Omnipage 14 - a commercial OCR system - was chosen.

The ground-truth text provided with the UW-III dataset has several limitations when

used to evaluate an OCR system. First, there is no text given for tables. Secondly, the

formating of the documents is coded as latex commands. When an OCR system is tested

on this ground-truth using error measures like the Edit distance, the error rate is unjustly

too high. Also, our emphasis in this work is on the improvement of OCR errors by using

page frame detection, and not on the actual errors made by the OCR system. Hence,

the UW-III documents are first cleaned using the ground-truth page frame, an then the

output of Omnipage on the cleaned images was used as the ground-truth text. This type

of ground-truth gives us an upper limit of the performance of a page frame detection

algorithm, and if the algorithm works perfectly, it should give 0% error rate, independent

of the actual error rate of the OCR engine itself.

First, OCR was performed on the original images and the Edit distance to the esti-

mated ground-truth text was computed. Then, the computed page frame was used to

remove marginal noise from the documents, and the experiments was run again. The

results (Table 3.3) show that the use of page frame detection for marginal noise removal

reduced the OCR error rate from 4.3% to 1.7%. The insertion errors are reduced by a

factor of 2.6, which is a clear indication that the page frame detection helped in removing

a lot of extra text that were treated previously as part of the document text. There are
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Table 3.3: Results for the OCR based evaluation with page frame detection (PFD) and
without page frame detection.

Total Deletions Substitutions Insertions Total Error

Characters Errors Rate

Without PFD 4831618 34966 29756 140700 205422 4.3%

With PFD 4831618 19544 9828 53610 82982 1.7%

Figure 3.10: Screenshot of Omnipage 14 showing the recognized text of the original doc-
ument (left) and the document cleaned using page frame detection (right).
Note that the reading order of the text has changed, probably due to the
slightly changed geometry. (cp. [SvBKB07])

also some deletion errors, which are a result of the changes in the OCR software’s reading

order determination. One example is shown in Figure 3.10 for which the reading order

changed after document cleaning.

The effect of using page frame detection on the performance of a layout based doc-

ument image retrieval application showed a significant decrease in retrieval error rates.

van Beusekom et al. [vBKSB06] introduced several similarity measures for layout based

document image retrieval. They evaluated the performance of these similarity measures

on the MARG database [FT03]. The experiments showed that the best distance measure

for this task is the overlapping area combined with the Manhattan distance of the corner

points as block distance together with the minimum weight edge cover matching for es-

tablishing correspondences between the matched layouts. The documents in the MARG

database are categorized with respect to 9 different layout types, 59 publishers, and 161

journals. Given a query document, the target is to retrieve a document of the same class

based on layout information only. The error rates are then determined as the percentage



38 3.4. EXPERIMENTS AND RESULTS

Table 3.4: Comparison of the error rates [%] for layout-based document image retrieval
with and without using page frame detection.

Segmentation Page frame MARG database classes

algorithm detection journal type publisher

Voronoi no 31.0 7.5 7.0

yes 29.7 5.3 5.4

X-Y cut no 36.3 11.7 13.6

yes 33.5 8.6 8.0

Docstrum no 40.9 14.0 14.4

yes 32.1 7.4 7.1

Whitespace no 48.3 20.3 24.6

yes 31.2 7.2 6.1

of correctly retrieved documents using leave-one-out cross validation.

In this work retrieval experiments were performed both with and without using page

frame detection. Since each method for page segmentation has a different way of dealing

with noise, four well-known page segmentation algorithms were compared for use in layout

based retrieval: the X-Y cut [NSV92], Docstrum [O’G93], whitespace analysis [Bai94],

and the Voronoi-diagram based approach [KSI98].

In the first experiment, the document images were used directly for page segmentation

without any page frame detection. The blocks extracted from the documents were then

used for the purpose of layout based retrieval.

In the second experiment, the document images in the database were cleaned by

performing page frame detection and removing all the foreground pixels outside the de-

tected page frame. Following the document cleaning, page segments were extracted from

the cleaned images and then retrieval experiment was repeated. The decrease in error

rates for each of the three subdivisions of the data set (according to type, publisher, and

journal) was used as a performance measure.

The use of page frame for layout-based document image retrieval resulted in lower error

rates on all three classes of layouts for each algorithm as shown in Table 3.4. These results

show that the Voronoi-diagram based approach performs better than other algorithms

both with and without page frame detection. The use of page frame detection with the

Voronoi algorithm lowers the retrieval error rates by 4% for the correct journal, 30% for

the correct type, and 20% for the correct publisher. These results clearly demonstrate

the usefulness of page frame detection in practical applications.
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3.5 Summary

This chapter presented an algorithm for page frame detection using a geometric matching

method. The presented approach does not assume the existence of whitespace between

marginal noise and the page frame, and can detect the page frame even if the noise

overlaps some regions of the page content area. Several error measures were defined based

on area overlap, connected component classification, and ground-truth zone detection

accuracy for determining the accuracy of the presented page frame detection algorithm.

It was shown that the algorithm performs well on all three performance measures with

error rates below 4% in each case. It was also demonstrated that the presented method can

handle documents with a very large amount of noise with reasonable accuracy. The error

rates on all three performance measures used are below 10% for noise levels up to 80%.

The major source of errors was missing isolated page numbers. Locating the page numbers

as a separate process and including them in the detected page frame may further decrease

the error rates. The benefits of the page frame detection in practical applications were

highlighted by using it with an OCR system and a layout-based document image retrieval

system, where it showed a significant decrease in the error rates in both applications.
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Chapter 4

Page Segmentation

The task of page segmentation is to divide a document image into homogeneous zones,

each consisting of only one physical layout structure (text, graphics, pictures, . . . ). The

performance of optical character recognition (OCR) systems depends heavily on the page

segmentation algorithm used. Over the last three decades, several page segmentation

algorithms have been proposed in the literature (for a literature survey, please refer

to [CCMM98,Nag00]). This chapter presents the following contributions to the state-of-

the-art in page segmentation1:

1. Performance evaluation and comparison of six well-known algorithms for page seg-

mentation using a state-of-the-art evaluation methodology [MK01].

2. Identification of a severe flaw in the state-of-the-art evaluation scheme when used

for single column documents.

3. A novel, portable, and pixel-accurate representation for arbitrarily shaped page

segments.

4. A vectorial score to identify and analyze different common classes of segmentation

errors made by a page segmentation algorithm.

5. Identification of several specific flaws in widely used page segmentation algorithms.

6. A novel combination of different approaches for page segmentation that results in

the lowest mean error rate on the UW-III dataset.

1This chapter is based on the author’s work in [SKB06a], [SKB06b], and [SKB08b].

41
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(a) Segmentation A (b) Segmentation B (c) Segmentation C

Figure 4.1: An example image showing different segmentations of the same document.
Segmentations A and B are both correct as they separate text in different
columns as well as images from text. Segmentation C is considered to have
two errors: 1) text in the first two columns is merged 2) Caption of the top
figure is merged with the figure itself.

4.1 Introduction

Page segmentation is a key component of geometric layout analysis. Given a document

image, the goal of page segmentation is to perform a decomposition of the document

image into smaller zones or segments. The segments thus obtained are classified as con-

taining text or non-text elements. The text segments or zones are then fed to a character

recognition module to convert them into electronic format. If a page segmentation al-

gorithm fails to correctly segment text from images, the character recognition module

outputs a lot of garbage characters originating from the image parts. Additionally, if the

document contains more than one text-column, the page segmentation algorithm should

segment all text-columns separately so that the text-lines in different text-columns are

not merged together.

Some possibilities of segmenting a document image are shown in Figure 4.1. Note

that there are more than one possible ways for correctly segmenting a document image.

Figure 4.1(c) shows some common segmentation errors that adversely effect OCR accu-

racy. The OCR output of the in-correctly segmented zones in Figure 4.1(c) is shown in

Figures 4.2 and 4.3. Figure 4.2 shows the case of an image merged with a text segment.

The OCR system outputs a large number of garbage characters in an attempt to classify
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(a) Input page segment
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Figure 4 View of fruit shed naked la) and lb) showing the complete androecial ring remaining within the tepals on the spike. (c)
Fruit shed with all tepals attached.

(b) OCR result

Figure 4.2: The OCR result of an in-correctly segmented zone containing both images and
text from Figure 4.1(c). The OCR system generates many garbage symbols
from the non-text parts of the input page segment.

the image portions as text. Figure 4.3 demonstrates the case in which two text-columns

were reported as one segment. The OCR system merged the text from the two columns

and completely destroyed the reading order of the document.

The importance of the page segmentation step in geometric layout analysis has trig-

gered a lot of interest in the scientific community over the last three decades and several

algorithms for page segmentation have been proposed. Cattoni et al [CCMM98] and

Nagy [Nag00] have provided a comprehensive overview of the state-of-the-art in page

segmentation. Some of these algorithms have come to wide spread use for analyzing

documents in different scripts and languages. In this work, six representative algorithms

for page segmentation (Section 4.2) are chosen for a comparative evaluation of their per-

formance (Section 4.3). Then a new algorithm for page segmentation is proposed (Sec-

tion 4.4) that is based on a novel combination of geometric model of column-separator

by Breuel [Bre02c] with the whitespace analysis approach of Baird [Bai94].
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(b) OCR result

Figure 4.3: The OCR result of an in-correctly segmented zone containing multiple text-
columns from Figure 4.1(c). Note that text from the two columns in merged
in the OCR output such that the reading order is completely wrong.
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4.2 Page Segmentation Algorithms

Following algorithms have been selected as representative state-of-the-art page segmen-

tation algorithms due to their wide-spread use in the document analysis community:

1. X-Y Cut by Nagy et al. [NSV92]

2. Smearing by Wong et al. [WCW82]

3. Whitespace Analysis by H. Baird [Bai94]

4. Constrained Text-Line Extraction by T. Breuel [Bre02c]

5. Docstrum by O’Gorman [O’G93]

6. Voronoi by K. Kise [KSI98]

These algorithms can be categorized into two broad classes, namely zone-based algorithm

and line-based algorithm. The zone-based algorithms try to extract text zones from a

document image that further need to be fragmented into text-lines for OCR. A text block

can usually be easily segmented into text-lines using horizontal projection. Examples of

such algorithms are the x-y cut, whitespace analysis, docstrum, and Voronoi algorithms.

The line-based algorithms, on the other hand, directly extract text-lines from the input

document that can be fed to an OCR system. This class of algorithms include the smear-

ing and constrained text-line finding algorithms. A brief description of each algorithm

and its parameters is given in turn in the following.

4.2.1 X-Y Cut

The x-y cut segmentation algorithm [NSV92], also referred to as recursive x-y cuts

(RXYC) algorithm, is a tree-based top-down algorithm. The root of the tree represents

the entire document page. All the leaf nodes together represent the final segmentation.

The RXYC algorithm recursively splits the document into two or more smaller rectan-

gular zones which represent the nodes of the tree. At each step of the recursion, the

horizontal and vertical projection profiles of each node are computed. To compute the

valleys in the projection profile histograms, noise removal thresholds tnx and tny are used.

First the thresholds tnx and tny are scaled linearly based on the current zone’s width and

height. Then, all bins of the histograms that contain values less than the scaled thresh-

olds are set to zero. The valleys along the horizontal and vertical directions, vx and vy,
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are then compared to the corresponding predefined thresholds tx and ty. If the valley is

larger than the threshold, the node is split at the mid-point of the wider of vx and vy into

two children nodes. The process continues until no leaf node can be split further.

4.2.2 Smearing

The run-length smearing algorithm (RLSA) [WCW82] works on binary images where

white pixels are represented by 0’s and black pixels by 1’s. The algorithm transforms a

binary sequence x into y according to the following rules:

1. 0’s in x are changed to 1’s in y if the number of adjacent 0’s is less than or equal

to a predefined threshold C.

2. 1’s in x are unchanged in y.

These steps have the effect of linking together neighboring black areas that are sep-

arated by less than C pixels. The RLSA is applied row-wise to the document using a

threshold tsh, and column-wise using threshold tsv, yielding two distinct bitmaps. These

two bitmaps are combined in a logical AND operation. Additional horizontal smearing is

done to obtain a smoothed final bitmap using a smaller threshold, tsm. Then, connected

component analysis is performed on this bitmap to obtain document zones. The mean

horizontal run-length Rm of the black pixels in the original image, and the mean block

height Hm are calculated. Then, a block is classified into a text block if

R < ftrRm and H < fthHm (4.1)

where ftr and fth are two thresholds, R is the horizontal run-length of the black pixels

in the current block, and H is the block height.

4.2.3 Whitespace Analysis

The whitespace analysis algorithm described by Baird [Bai94] analyzes the structure of

the white background in document images. The first step is to find a set of maximal

white rectangles (called covers) whose union completely covers the background. Breuel’s

algorithm for finding the maximal empty whitespace [Bre02c] is used in this work for this

step. These covers are then sorted with respect to the sort key, K(c):

K(c) =
√

area(c) ∗W (| log2 (height(c)/width(c)) |) (4.2)
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where c is the cover and W (.) is a dimensionless weighting function. Baird [Bai94] chose

a special weighting function using experiments on a particular dataset. The following

approximation of the original weighting function was used in this work:

W (x) =


0.5 if x < 3

1.5 if 3 ≤ x < 5

1 if x ≥ 5

(4.3)

The purpose of the weighting function is to assign higher weight to tall and long rectangles

because they are supposed to be meaningful separators of text blocks.

In the second step, the rectangular covers ci, i = 1, . . . ,m, where m is the total number

of whitespace covers, are combined one by one to generate a corresponding sequence

sj, j = 1, . . . ,m of segmentations. A segmentation is the uncovered area left by the union

of the covers combined so far. Before a cover ci is unified to the segmentation sj, a

trimming rule is applied to avoid early segmentation of narrow blocks. The unification

of covers continues until the stopping rule (4.4) is satisfied:

K(sj)− fw ∗ j/m ≤ ts (4.4)

where K(sj) is the sort key K(cj) of the last cover unified in making segmentation sj, fw

is a weighting factor, and ts is stopping threshold. At the final segmentation, connected

components within the remaining uncovered parts are candidate text regions. Since the

uncovered regions thus obtained are not necessarily rectangular in shape, bounding boxes

of these uncovered regions are taken as representative of the text segments.

4.2.4 Constrained Text-Line Detection

The layout analysis approach by Breuel [Bre02c] finds text-lines as a three step process:

1. Find empty whitespace rectangles that completely cover the page background. The

algorithm for finding maximal empty rectangles is described in [Bre02c]. The algo-

rithm returns whitespace rectangles in order of decreasing area. The rectangles are

allowed a maximum overlap of to. Usually 300 rectangles are sufficient to completely

cover the page background.

2. The whitespace rectangles are evaluated as candidates for column separators or

gutters based on their aspect ratio, width, and proximity to text-sized connected

components.
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3. The whitespace rectangles representing the gutters are used as obstacles in a robust

least square text-line detection algorithm [Bre02b]. Then, the bounding box of all

the characters making the text-line is computed.

4.2.5 Docstrum

The docstrum algorithm proposed by O’Gorman [O’G93] is a bottom-up approach based

on nearest-neighborhood clustering of connected components extracted from the doc-

ument image. After noise removal, the connected components are separated into two

groups, one with characters of the dominant font size and another one with characters in

titles and section headings, using a character size ratio factor fd. Then, K nearest neigh-

bors are found for each connected component. A histogram of the distance and angle of

each connected component from its K nearest neighbors is computed. The peak of the

angle histogram gives the dominant skew in the document image. This skew estimate is

used to compute within-line nearest neighbor pairs. Then, text-lines are found by com-

puting the transitive closure on within-line nearest neighbor pairings using a threshold

ttc. Finally, text-lines are merged to form text blocks using a parallel distance threshold

tpa and a perpendicular distance threshold tpe.

4.2.6 Voronoi-Diagram Based Algorithm

The Voronoi-diagram based segmentation algorithm by Kise et al. [KIDM98,KSI98] is also

a bottom-up algorithm. In the first step, it extracts sample points from the boundaries

of the connected components using a sampling rate rs. Then, noise removal is done

using a maximum noise zone size threshold tn, in addition to width, height, and aspect

ratio thresholds. After that a Voronoi diagram is generated using sample points obtained

from the borders of the connected components. The Voronoi edges that pass through a

connected component are deleted to obtain an area Voronoi diagram. Finally, superfluous

Voronoi edges are deleted to obtain boundaries of document components. An edge is

declared superfluous if it satisfies any of the following criterion:

1. The minimum distance d between its associated connected components is less than

the inter-character gap in body text regions.

2. The minimum distance d between its associated connected components is less than

the inter-line spacing times a margin control factor fm, or the area ratio of the two

connected components is above an area ratio threshold ta.
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3. At least one of its terminals is neither shared by another Voronoi edge nor lies on

the edge of the document image.

The output of the algorithm consists of arbitrarily shaped regions bounded by Voronoi

edges. Each Voronoi region is then represented by its bounding box.

4.3 Performance Evaluation

Several page segmentation algorithms have been proposed over the last decades, some

of which were described briefly in Section 4.2. However, it is hard to predict how well

a page segmentation algorithm will perform at a particular task. This problem arises

due to a lack of comparative evaluation of page segmentation algorithms. The results

of the algorithms as published by their authors can not be directly compared due to

the lack of a common dataset, a wide diversity of objectives, and a lack of meaningful

quantitative evaluation schemes. Hence, the benchmarking of different page segmen-

tation algorithms is becoming an important issue. Recent page segmentation competi-

tions [AGK03,AGB05,AGB07] aimed at addressing the need of comparative performance

evaluation under realistic circumstances. However, each participant in these contests par-

ticipated with his own methods. Unfortunately, none of the widely used page segmenta-

tion algorithms were presented for participation in the contests.

This work presents a comprehensive performance evaluation of well-known page seg-

mentation algorithms and compares their performance on common grounds. The UW-III

dataset is used for performance evaluation and benchmarking of the analyzed algorithms

with OCR as the objective application. First, a pixel-accurate representation of page

segmentation is introduced in Section 4.3.1. Then, some techniques are discussed to gen-

erate pixel-level ground-truth for benchmarking purposes in a quick and efficient manner

in Section 4.3.2. An overview of the state-of-the-art in evaluation methods for page seg-

mentation is given in Section 4.3.3 followed by the description of a vectorial score based

on pixel-level page segmentation information. Finally, a thorough evaluation of the six

page segmentation algorithms described in Section 4.2 is presented in Section 4.3.5 based

on a state-of-the-art evaluation score as well as the proposed vectorial score.

4.3.1 Representation of Page Segments

Layouts of a document image are generally categorized into two main classes: Manhat-

tan layouts, and non-Manhattan layouts [CCMM98]. Manhattan layouts are defined as
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layouts that can be decomposed into individual segments by vertical and horizontal cuts.

For Manhattan layouts, the individual zones can be represented by non-overlapping rect-

angles. This representation is particularly useful due to its simplicity and segments of

most of the structured documents like technical journals or business letters can be rep-

resented by their bounding rectangles. Therefore, this representation was adapted in the

Document Attribute Format Specification (DAFS) format [DDS+97] used for represent-

ing the ground-truth zones for the UW-III dataset. The DAFS format was developed

with the intention to be used as a standard for the representation of document images.

However, it did not come to widespread use and other representations based on XML have

emerged [FT03] for Manhattan layouts. For non-Manhattan layouts, the zones cannot be

represented accurately by non-overlapping rectangles. Instead, a XML based representa-

tion of document zones by their bounding isothetic polygons was used in [AGK03,AGB05].

A common problem with these approaches is that they need specialized software to view

the files representing the page segmentation, thereby limiting their portability and ease

of use.

To overcome these problems, a new way of representing page segments in color image

format is proposed in this work. Consider a document image decomposed into N homo-

geneous zones Zi, i = 1, . . . , N . The document segmentation can be represented as an

image in which each foreground pixel is assigned as its value the index of the segment

Zi to which it belongs. In practice, the pixel-based representation of page segmentation

can be implemented as 24-bit RGB color images. This enables the use of up to N = 224

labels, which will be sufficient for virtually all images that are of interest. A particu-

lar color can be assigned to the page background (e.g. 0xffffff) and to the noise pixels

(e.g. 0x000000). This representation of page segmentation is particularly convenient be-

cause it can be used to accurately represent different levels of layout in the same image

as shown in Figure 4.4. Secondly, it is independent of the zone shape and it can be saved

and exchanged using any lossless color image format.

4.3.2 Preparation of Pixel-Level Ground-Truth

An image of a 300-dpi scanned A4 document usually contains over one million foreground

pixels. The cost of coloring all foreground pixels using their respective segment label

can be too high if all pixels are labelled individually. To overcome this problem, two

alternatives are considered for preparing pixel-level ground-truth.

1. A bounding polygon is drawn for each zone in the page image. The polygon is
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(a) Word level (b) Text-line level

(c) Zone level (d) Multiple layout levels

Figure 4.4: An example image demonstrating color encoding of multiple layout levels.
The top images show word level and text-line level segmentation repre-
sentation, whereas the bottom images show zone level and multiple layout
levels information encoded in different color channels of the same image.
(cp. [SKB08b])

filled with a color representing the index of the zone contained inside the polygon

(Figure 4.5(b)). Then each foreground pixel is assigned the color of the polygon

that contains it (Figure 4.5(c)). This approach is suitable when separation between

zones in a page is significant. A benefit of preparing pixel-level ground-truth with

this approach is that a polygon of any shape can be drawn. For Manhattan layouts

a simple rectangle can do the task. For non-Manhattan layouts, a polygon can

be drawn quickly around each zone. Hence the cost of producing ground-truth in

this way is equal to the cost of producing any other bounding-box based ground-

truth in the case of Manhattan layouts. For non-Manhattan layouts, the cost

for producing pixel-level ground-truth can be much lower than other approaches

because the polygons can be arbitrarily shaped and need not tightly enclose the

containing zones.
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(a) Original Image (b) Labeled Zones (c) Generated zone level
ground-truth

(d) Labeled text-lines (e) Generated text-line ground-
truth

Figure 4.5: An example image demonstrating the process of generating pixel-level ground-
truth. The zone-level ground-truth is prepared by first drawing a polygon
around each zone (Fig. 4.5(b)) and then transferring the colors to foreground
pixels in the zone (Fig. 4.5(c)). The text-line level ground-truth is created by
drawing lines (Fig. 4.5(d)) and then labeling connected components touching
these lines with the line color (Fig. 4.5(e)). (cp. [SKB08b])

2. If separation between page zones is not large, for instance in the case of text-

lines, the approach of creating ground-truth with bounding polygons can become

cumbersome. In such a situation, another approach can be taken. First, a line is

drawn on a zone such that it touches or passes through all the connected components

of that zone (Figure 4.5(d)). The color of the line is chosen to be the index of

that zone. Then, connected components are extracted from the page and all the

foreground pixels in a connected component are assigned the color of the line that

touches or passes through that component (Figure 4.5(e)). In the final step, all

small-sized components like i-dots, punctuation marks etc. are assigned the color

of their closest neighbor if their distance to the closest neighbor is less than a

threshold, chosen equal to the x-height in this case. This step makes sure that any
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components that might not have been intersected in the first step get labeled as

well.

Both the above methods for creating pixel-level ground-truth can be applied using

any off-the-shelf image manipulation program like Gimp, MS-Paint, etc. These methods

were applied in creating ground-truth for the DFKI-1 warped documents dataset used in

the document image dewarping contest [SB07] held with CBDAR 2007.

4.3.3 Evaluation Methods for Page Segmentation

The problem of automatic evaluation of page segmentation algorithms is increasingly be-

coming an important issue [LHA+04, AKB06]. An approach for measuring the quality

of page segmentation algorithms by analyzing the errors in the text recognized by OCR

was first proposed in [KNRN93]. Agne et al. [ARR00,ADK03] proposed a benchmark-

ing system for document segmentation based on detecting page segmentation errors by

analyzing OCR errors. However, text-based approaches have found little use since they

measure the output of multiple steps and cannot be used to evaluate page segmentation

alone. Yanikoglu et al. [YV95] presented a region-based page segmentation benchmarking

environment, named Pink Panther. Their approach is based on representing regions as

arbitrary polygons, and hence becomes quite complex and cumbersome to use. Thulke et

al. [TD98,TMD99] presented a quality evaluation scheme for page segmentation based us-

ing precision and recall concepts from the information retrieval literature. An advantage

of this method is that it can be used to detect segmentation errors at different layout

levels. A practical limitation of their approach is that they require the words in the

ground-truth segmentation be exactly the same as the words in the segmented output -

which is difficult to achieve.

Liang et al. [LPH01] proposed a performance metric for document structure extraction

algorithms by finding the correspondences between detected entities and ground-truth.

Das et al. [DSC02] suggested an empirical measure of performance of a segmentation

algorithm based on a graph-like model of the document. However, their performance

measure does not support evaluation of non-Manhattan page layouts. Similar approaches

have been presented for range image segmentation in [HJBJ+96], and for image segmen-

tation in general [JMIB06]. Mao et al. [MK01] presented an empirical benchmarking

methodology based on text-line measure of page segmentation accuracy. This measure is

particularly useful because it does not make assumptions about the layout of the docu-

ment. Besides, it requires only text-line level ground-truth. Therefore, this measure was
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chosen as a representative state-of-the-art methodology for evaluation the performance

of page segmentation algorithms.

The performance evaluation measure proposed in [MK01] is based on set theory. This

measure is based on the assumption that a text block can be easily segmented into text

lines using horizontal projection. Let G be the set of all the ground-truth text-line in

a document image, and G denote the cardinality of the set G. Then, three subsets of

text-lines are defined as follows:

1. The set of ground-truth text-lines that are missed (C), i.e. they are not part of any

detected text region.

2. The set of ground-truth text-lines whose bounding boxes are split (S), i.e. the

bounding box of a text-line does not lie completely within one detected segment.

3. The set of ground-truth text-lines that are horizontally merged (M), i.e. two hori-

zontally overlapping ground-truth lines are part of one detected segment.

The overall error rate is measured as the percentage of ground-truth text-lines that are

not identified correctly:

ρ =
|C ∪ S ∪M |

|G|
(4.5)

A ground-truth text-line is said to lie completely within one detected text segment if the

area overlap between the two is significant. Significance is determined using two length

thresholds in number of pixels. The thresholds control the tolerance level along the

horizontal and vertical directions such that differences in overlap less than the threshold

in that particular direction are ignored.

Despite the many useful features, there is also a limitation of this approach. If a seg-

mentation algorithm just takes the whole page as one segment, the split and missed errors

vanish (C = ∅, S = ∅). Typically for single-column documents, M = ∅. Hence, without

doing anything, the segmentation accuracy can be high if there is a large proportion of

single-column document images in the test dataset. This effect was not considered in the

original evaluation [MK01]. To check the severity of the problem, a dummy segmentation

algorithm that returns the whole page as one segment is added into the comparison.

This limitation is overcome is this work by defining a vectorial score (Section 4.3.4)

that clearly identifies the common classes of segmentation errors including the under-

segmentation problem identified above.
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4.3.4 Vectorial Score for Performance Evaluation

Based on the pixel-accurate representation of page segmentation as described in Sec-

tion 4.3.1, several performance measures are defined to evaluate different aspects of the

behavior of a page segmentation algorithm. Consider two segmentations of a document

in image form, the hypothesized segmentation H, and the ground truth G. The im-

ages representing these segmentations should have the same dimensions, and for each

corresponding pair of pixels in the two images, either both pixels should belong to the

background or to the foreground. To compare the quality of a hypothesized segmen-

tation against a ground truth segmentation, a weighted bipartite graph called pixel-

correspondence graph [Bre02a] can be constructed as follows. Each color value in H or G

is associated with one node of the components in the graph, where the two components

correspond to pixels of H and G respectively. Since each segment has a unique color,

each node represents a unique segment (either in H or in G). A segment that is labeled

with a special color like noise (see Section 4.3.1) can be removed at this stage. Then,

an edge is constructed between two nodes such that the weight of the edge equals the

number of foreground pixels in the intersection of the regions covered by the two segments

represented by these nodes. If their corresponding segments do not overlap in H and G,

no edge is needed.

If the hypothesized segmentation H agrees perfectly with the ground truth segmen-

tation G, then the pixel-correspondence graph will be a perfect matching. That is, each

node in the two component of the graph has exactly one edge incident to it. If there are

differences between the two segmentations, then the graph will not be a perfect matching.

Instead, a node representing a segmentation in H or G may have multiple edges.

If P be the total number of pixels corresponding to one node (segment), M be the

number of edges incident to that node, and wi, i = 1, 2, . . . ,M be the weight associated

with each edge, then P =
∑M

i=1 wi. For each node on either component of the graph,

wi/P gives the fraction of pixels overlapping with each of its corresponding nodes.

An edge between two nodes is considered significant if wi/P ≥ tr or wi ≥ ta, where tr

is a relative threshold and ta is an absolute threshold. The use of tr allows a tolerance in

the evaluation by ignoring fractional overlaps less than tr. In practice, tr = 0.1 is found

to be a good choice. However, if a segmentation algorithm completely fails and gives the

whole page as one segment, regions containing less than 10% of the foreground pixels may

get ignored. Therefore, an absolute threshold ta is used to ensure that overlaps of more

than ta pixels are not ignored. The exact value of ta can be chosen based on the properties

of the document images under consideration (minimum font size, resolution, · · · ) and the
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Figure 4.6: Example image illustrating different performance measures. The left image
shows two color coded document images. A pixel correspondence graph ob-
tained from these images is shown on the right side. The nodes corresponding
to the ground-truth segments are labeled 1-7, whereas the nodes in the seg-
mented image are labeled a-i. Only significant edges are shown in the pixel
correspondence graph. Based on the definitions given in Section 4.3.4, the
values of each performance measure for this example are given on the right
side of the graph. (cp. [SKB08b])

desired geometric accuracy of the evaluation results. For the UW-III document images,

ta = 500 pixels was used for zone-level evaluation and ta = 100 pixels was used for

textline-level evaluation.

If there is more than one significant edge incident to a node in G or in H, the node is

considered oversegmented or under-segmented, respectively. Using these definitions, sev-

eral measures for evaluating a page segmentation algorithm are introduced in this work.

An illustration of these measures is given in Figure 4.6. These measures are defined as

follows:

Total correct segmentations (Tc): the total number of one-to-one matches between

the ground truth components and the segmentation components

Total oversegmentations (To): the total number of significant edges that ground truth

components have, minus the number of ground truth components to which at least one

significant edge is incident

Total undersegmentations (Tu): the total number of significant edges that segmenta-

tion components have, minus the number of segmentation components to which at least

one significant edge is incident

Oversegmented components (Co): the number of ground truth components having
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more than one significant edge.

Undersegmented components (Cu): the number of segmentation components having

more than one significant edge.

Missed components (Cm): the number of ground truth components that did not match

any foreground component in the hypothesized segmentation.

False alarms (Cf ): Number of components in the hypothesized segmentation that did

not match any foreground component in the ground truth segmentation.

4.3.5 Experiments and Results

The experiments have been divided into two parts:

A. Benchmarking of the algorithms based on text-line based measure of block segmen-

tation accuracy given by Equation 4.5.

B. Performance evaluation of the algorithms based on the vectorial score defined in

Section 4.3.4.

The first experiment augments the work of Mao et al. [MK01] and adds three more

algorithms to the comparison. A detailed analysis of the errors is done to show that

the limitation of the algorithm as pointed out in Section 4.3.3 is reflected in the results.

It is also shown that due to this limitation, the evaluation score gives completely mis-

leading results in certain cases. The second experiments demonstrates the benefits of the

proposed vectorial score based evaluation method as compared to the single-score based

measure.

Benchmarking

The benchmarking of the page segmentation algorithms was done on a subset of the UW-

III database. The 978 images that correspond to the UW-I dataset pages were chosen

as in [MK01]. Only the text regions are evaluated, and non-text regions are ignored.

The dataset is divided into 100 training images and 878 test images. The purpose of

the training images is to find suitable parameter values for the segmentation algorithms.

The experiments are done using both default parameters as mentioned in the respective

papers and tuned/optimized parameters (Table 4.1). This allows us to assess how much

the performance of each algorithm depends on the choice of good parameters for the

task. The parameters for the x-y cut algorithm are highly application dependent, so no

default parameters are specified in [NSV92]. The optimized parameter values used for
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Table 4.1: Parameter values used for each algorithm in the evaluation given in Table 4.2.
For dummy, x-y cut, smearing, and text-line finding algorithms, default and
optimized parameters are the same.

Algorithm Default values Optimal values
Dummy None
X-Y cut tx = 35, ty = 54, tnx = 78, tny = 32
Smearing tsh = 300, tsv = 500, tsm = 30, ftr = 3, fth = 3
Text-line to = 0.8
Whitespace fw = 42.43, ts = 34.29 fw = 42.43, ts = 65
Docstrum K = 5, ttc = 2.578, fd = 9, K = 8, ttc = 2.578, fd = 9,

tpe = 1.3, tpa = 1.5 tpe = 0.6, tpa = 2.345
Voronoi sr = 6, tn = 11, sr = 6, tn = 11,

fm = 0.34, ta = 40 fm = 0.083, ta = 200

Table 4.2: Mean text-line detection error rates (Eq. 4.5) expressed as percentage for dif-
ferent page segmentation algorithms on 100 train images and 878 test images.

Default parameters Optimized parameters

Algorithm Train (n = 100) Test (n = 878) Train (n = 100) Test (n = 878)

Dummy 52.2 48.8 52.2 48.8

X-Y cut 14.7 17.1 14.7 17.1

Smearing 13.4 14.2 13.4 14.2

Whitespace 12.7 12.2 9.1 9.8

Text-line 8.9 8.5 8.9 8.5

Docstrum 8.7 11.2 4.3 6.0

Voronoi 6.8 7.5 4.7 5.5

x-y cut, docstrum, and Voronoi-diagram based algorithms were the same as in [MK01].

For the smearing, whitespace, and constrained text-line finding algorithms, experiments

were done with different parameter values and those which gave lowest error rates on the

training set were selected.

The page segmentation evaluation toolkit (PSET) [MK02] that implements the train-

ing and evaluation scheme by [MK01] was used in this work. The average text-line

detection error rate for each algorithm is given in Table 4.2. The high standard deviation

in the error rate of each algorithm shows that the algorithms work very well on some

images, while failing badly on some other images.

Table 4.3 shows the error rates of the algorithms separated for different document

characteristics. First, the documents were separated according to the ‘maximum columns

number’ attribute recorded for each page. There are 362, 449, and 67 one-, two-, and
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Table 4.3: Text-line detection errors [%] for each page segmentation algorithm separated
for one-, two-, and three-column documents, and separated for photocopies or
direct scans.

No. of columns Photocopy
Algorithm 1 2 3 No Yes
Dummy 8.3 75.6 88.5 68.7 46.2
X-Y cut 19.9 15.6 11.7 14.7 17.4
Smearing 23.5 7.9 5.8 6.6 15.1
Whitespace 14.5 6.7 5.6 2.9 10.8
Text-line 13.3 5.3 4.4 3.6 9.2
Docstrum 5.8 6.2 5.2 6.2 5.9
Voronoi 6.9 4.6 3.4 2.8 5.8

three-column documents in the test set of 878 pages, respectively. It can be observed that

the smearing, whitespace, and text-line algorithms perform much worse on one-column

documents than on the average. This behavior can be explained by the stronger effect

of the noise blocks occurring in photocopied images for these one-column documents,

because each line is affected. This hypothesis was further investigated by separating the

documents according to their ‘degradation type’ attribute. There are 776 photocopied

and 102 directly scanned documents in the test set. The respective results are shown

in Table 4.3. It can be observed that the algorithms performing worse on one-column

documents in fact also perform worse on the photocopied images due to the noise blocks.

Interestingly, especially the docstrum algorithm does not gain accuracy for clean docu-

ments, while the Voronoi-based algorithm still performs best. The smearing, whitespace

and text-line algorithms are most affected by the photocopy effects. This suggests that

they would perform better for current layout analysis tasks in which most documents are

directly scanned.

Figure 4.7 shows a box plot of the error rates observed for each algorithm. The boxes

in the box plot represent the interquartile range, i.e. they contain the middle 50% of

the data. The lower and upper edges represent the first and third quartiles, whereas the

middle line represents the median of the data. The notches represent the expected range

of the median. The ’whiskers’ on the two sides show inliers, i.e. points within 1.5 times

the interquartile range. The outliers are represented by small circles outside the whiskers.

The following details can be observed from the box plot: A ranking of the algorithms

based on their median error would deviate from the ranking based on the average error.

Remarkably, the docstrum algorithm does not make any errors for more than 50% of the

pages in the test set. This performance is not achieved by any other algorithm. This
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Figure 4.7: A box plot of the results obtained with optimized parameters on the test
data. The plot shows that the Docstrum algorithm has the lowest median
error, but it fails badly on a larger number of documents than the Voronoi
algorithm. (cp. [SKB08b])

might be a property that would be preferable in certain applications, while for other

applications the average error rate may be more important.

To study the similarities in the behavior of different algorithms, the correlation of the

errors made by each algorithm is plotted in Figure 4.8. Each dot in the correlation plot

represents one document image. The horizontal and vertical axis represent the error made

by the corresponding algorithms. It can be seen from the correlation plot that docstrum

and the Voronoi algorithms show strong correlation because they both are bottom-up

approaches. Also, the x-y cut and the dummy algorithm are highly correlated. This is

due to the fact that the x-y cut algorithm fails on documents with a large amount of

noise and reports the whole page as one segment, which is the same output as generated

by the dummy algorithm. When this happens for a single column document, the error

rate computed by Equation 4.5 is zero. However, in the case of single-column documents

with a large amount of noise, it is not possible to segment them into text-lines merely

by horizontal projection. Hence the error rates reported in these cases give mis-leading

results. An example of such a document from the test set is shown in Figure 4.9. Since

there are only a few images in the test set that fall into this category, the experimental
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Figure 4.8: Correlation plot of the errors made by each algorithm. Each dot in the cor-
relation plot represents one document image. The horizontal and vertical
axis represent the error made by the corresponding algorithms. The plot
shows that the Docstrum and the Voronoi algorithms show strong correla-
tion, whereas the x-y cut algorithm has a high correlation with the dummy
algorithm. (cp. [SKB08b])

results are still valid. An interesting observation that can be made from the correlation

plot is that for each algorithm, there are some documents on which it performs better

than all the other algorithms. This indicates that combining the output of more than

one algorithm might yield better results.

Performance Evaluation

The performance of the six page segmentation algorithms was evaluated on the complete

UW-III dataset based on the measures defined in Section 4.3.4. These measures evaluate

different aspects of a page segmentation algorithm for a given parameter setting. The

goal of these performance measures is not to optimize the parameters of an algorithm on

this basis because the importance of different measures is entirely application-dependent.
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(a) X-Y cut (ρ = 0.000) (b) Smearing (ρ = 0.976) (c) Whitespace (ρ = 0.463)

(d) Docstrum (ρ = 0.561) (e) Voronoi (ρ = 0.561) (f) Text-line (ρ = 0.756)

Figure 4.9: Segmentation results from applying each algorithm to one page image (D047)
in the test set. The figure illustrates that according to the error rates calcu-
lated as in [MK01] (Equation 4.5), the x-y cut algorithm performs the best
in this case, which is clearly mis-leading (cp. [SKB08b]).
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Table 4.4: Different types of errors made by each algorithm on original zone-level
groundtruth. Each text paragraph is considered a separate text zone. All
entries are normalized by the total number of zones - 24247, and are expressed
in percentage. The column labels are: total correct segmentations (Tc), total
oversegmentations (To), total undersegmentations (Tu), oversegmented com-
ponents (Co), undersegmented components (Cu), missed components (Cm),
false alarms (Cf )

Algorithm Segmented zones Tc To Tu Co Cu Cm Cf

Dummy 6.60 0.00 0.00 93.34 0.00 6.60 0.00 0.00
X-Y cut 61.74 19.66 28.29 57.23 11.94 17.70 1.73 24.90
Whitespace 84.27 35.22 28.78 43.29 11.98 18.27 0.47 31.10
Docstrum 155.88 44.13 81.23 30.38 13.26 13.94 1.34 67.89
Voronoi 165.22 38.34 92.32 34.59 14.57 15.25 1.72 42.21

Table 4.5: Different types of errors made by each algorithm on textline-level ground truth.
For a key to column labels please refer to Table 4.4.. All entries are normalized
by the total number of text-lines - 105443, and are expressed in percentage.
Algorithm Segmented lines Tc To Tu Co Cu Cm Cf

Textline 100.13 97.17 3.77 1.64 2.82 1.23 0.26 36.05
Smearing 98.55 92.82 3.30 1.25 1.64 0.86 3.92 38.24

If an OCR system expects single text-line images as input, under-segmentation (e.g.

putting two consecutive lines together) poses a much more serious problem than over-

segmentation (like segmenting a text-line into words). If the OCR system accepts both

text-lines and text-blocks as input, the only major problem is under-segmentation (e.g.

merging two text-columns). In any case, the ground-truth should also fulfil the de-

mands of the target application. For instance, for single-line OCR text-line level ground-

truth should be used. Whereas for block-level OCR either text-column or text-zone level

ground-truth should be used. Since the parameters of the page segmentation algorithms

given in Table 4.1 were optimized with respect to block-level OCR application, these

parameters can be used in these evaluations as well. The parameters for x-y cut, whites-

pace analysis, docstrum, and Voronoi-diagram-based algorithms were tuned to segment

text-zones. Hence, they were evaluated on zone-level ground truth with the results given

in Table 4.4. The smearing, and the constrained text-line finding algorithms locate text-

lines in the given image. So they are evaluated on textline-level ground truth with the

results given in Table 4.5.

A problem with the text-zone level ground truth, in the UW-III dataset, is that a single

paragraph is considered one text zone. Hence, two consecutive paragraphs on the same
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Table 4.6: Different types of errors made by each algorithm on modified zone-level ground
truth. For a key to column labels please refer to table 4.4.

Algorithm Segmented zones Tc To Tu Co Cu Cm Cf

Dummy 8.05 0.00 0.00 91.88 0.00 8.04 0.00 0.00
X-Y cut 74.55 22.07 37.18 51.83 16.29 19.32 1.95 31.09
Whitespace 101.61 37.41 40.18 37.15 16.49 18.45 0.52 39.05
Docstrum 188.68 45.73 105.99 23.54 21.63 13.43 1.23 84.16
Voronoi 199.89 40.68 118.18 27.43 22.02 14.96 1.66 53.03

page make two different zones. In many documents, the segmentation of text columns

into paragraphs is indicated by indentation rather than spacing. Determining paragraphs

from indentations is usually a separate processing step. Therefore, an evaluation based

on paragraph-level ground truth may not correctly reflect the performance of a page

segmentation algorithm by giving more undersegmentation errors than the algorithm

actually made.

The ground truth for UW-III was modified to get text-zones instead of paragraphs.

For this purpose, first a partial order of the text paragraphs was specified based on their

spatial relationships, and then a topological sorting algorithm was used to find the reading

order as in [Bre03b]. The bounding boxes of two consecutive paragraphs in the reading

order were merged if their start and end positions along the horizontal direction were

within 5 pixels of each other. These modified text-zones were used to evaluate the page

segmentation algorithms, with the results as shown in Table 4.6.

The result of applying each algorithm to an example image are shown in Figure 4.10.

Based on the results in Tables 4.5 and 4.6, the following observations can be made about

each algorithm:

• The dummy algorithm has no correct segmentations and all the components are

under-segmented.

• The x-y cut algorithm fails in the presence of noise and tends to take the whole

page as one segment. This results in many undersegmentation errors.

• The whitespace algorithm is sensitive to the stopping rule. Early stopping re-

sults in a higher number of undersegmentation errors, late stopping results in more

over-segmentation errors. The whitespace algorithm also made few missed errors

because all connected components with width larger than half the page width or

height greater than half the page height were removed prior to the computation
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(a) X-Y cut (b) Smearing (c) Whitespace

(d) Docstrum (e) Voronoi (f) Text-line

Figure 4.10: Segmentation results from applying each algorithm to one page image. The
page contains a title in large font and a big noise strip along the right border.
(a) The x-y cut algorithm fails in the presence of noise and tends to take the
whole page as one segment. (b) The smearing algorithm also classifies the
detected regions as text/non-text, and thus misses the lines joined by the
noise bar. (c),(d),(e) Due to the large font size and big inter-word spacing,
the Voronoi, docstrum, and whitespace algorithms split the title lines. (f)
Due to the noise bar, several characters on the right side of each line in
the second column were merged with the noise bar and the text-line finding
algorithm did not include these characters. (cp. [SKB08b])
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of whitespaces. Hence separator lines in header or footer, which are considered as

zones in UW-III ground truth, were missed by the algorithm.

• In the Voronoi and docstrum algorithms, the inter-character and inter-line spacings

are estimated from the document image. Hence spacing variations due to different

font sizes and styles within one page result in over-segmentation errors in both

algorithms. For instance, in many cases, they fail to estimate the inter-line distance

correctly, and hence split the zones into individual text-lines, resulting in a large

number of over-segmentation errors. The number of segmented zones for these two

algorithms is much higher than the number of zones in the ground truth. In some

cases, text-lines in page title are incorrectly segmented (see Figure 4.10) due to

large variation in font size.

• The smearing algorithm classifies text-lines merged with noise blocks as non-text,

resulting in a large number of missed errors.

• The major part of the errors made by the constrained text-line finding algorithm

are missed errors. Single digit page numbers are missed by the text-line finding

algorithm, because it requires at least two connected components to form a line.

In some cases, the characters from two consecutive lines are merged. Hence, the

bounding box of the lower text-line spans across both text-lines, resulting in both

over-segmentation and under-segmentation errors.

The choice of the values of thresholds tr and ta defining significant edges is application-

dependent. In the case of OCR, it might be important to keep the thresholds low so that

even a missed dot is reported as an error. However, other applications like layout-based

document image retrieval have less strict demands on the geometric accuracy of page

segmentation. To evaluate the sensitivity of the performance measures with respect to

the thresholds tr and ta, an additional experiment was conducted. The Voronoi algorithm

was chosen as a sample page segmentation algorithm. The goal of the experiment was to

observe the changes in the number of reported total over-segmentation errors as the values

of the thresholds tr and ta are varied over a broad range. The algorithm was run over the

complete UW-III dataset. Then the output was compared to the zone-level ground-truth

using different combinations of tr and ta. The resulting plot is shown in Figure 4.11.

From the plot it can be noticed that setting either tr or ta to a very low value makes

the performance measure independent of the other threshold. As expected the number

of detected total over-segmentations decreases when the values of both thresholds are
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Figure 4.11: A plot of the values of total over-segmentations made by the Voronoi al-
gorithm as the values of thresholds tr and ta defining significant edges are
changed. The plot shows that setting either tr or ta to a very low value makes
the performance measure independent of the other threshold.(cp. [SKB08b])

increased simultaneously. For OCR applications, just setting ta to a very small value, for

instance equal to the size of a dot, and ignoring tr altogether might be a good choice. In

the case of layout-based retrieval, both thresholds should be considered because the size

of small zones like page numbers might be smaller than a moderately chosen value of ta.

In such case tr helps by keeping the threshold low for small zones.

The average running time of the evaluated page segmentation algorithms is shown in

Figure 4.12. The timing of the algorithms cannot be directly compared because of the

differences in their input and output. The whitespace, docstrum, Voronoi, and x-y cut

algorithms give text blocks which have still to be separated into text-lines, whereas the

constrained text-line finding algorithm directly gives the text-lines as output. Secondly,

the smearing algorithm also includes a block-classification step, which is missing in other

algorithms. Furthermore, the docstrum, whitespace, and constrained text-line finding

algorithms depend on the computation of connected components in the image, which

were calculated off-line and stored in the database. In general, x-y cut, docstrum, and

Voronoi algorithms took less than half the time as compared to smearing, whitespace
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Figure 4.12: Average running time for each algorithm on the UW-III dataset. The ex-
periment was run on an AMD Opteron 2.4 GHz machine running Linux.
(cp. [SKB08b])

analysis, and constrained text-line finding algorithms.

4.4 Page Segmentation Using Whitespace Cuts

An analysis of the state-of-the-art page segmentation algorithms presented in Section 4.3.5

showed that zone-based algorithms (whitespace analysis, docstrum, Voronoi) tend to over-

segment page title and section headings if their font size is much bigger than the rest of

the text on the page. This effect is also evident from Figure 4.10 where the page title is

over-segmented by whitespace analysis, docstrum, and Voronoi algorithms. This section

presents a novel combination of the column-separator model by Breuel [Bre02c] with the

whitespace analysis approach by Baird [Bai94] to solve the over-segmentation problem

in Baird’s approach. This new algorithm is named as the whitespace-cuts algorithm and

is intended for segmenting Manhattan layouts. The main idea behind the algorithm is

to first extract the columnar structure of the document based on the column-separator

model by Breuel, and then extract horizontal whitespaces that respect this structure.

The whitespace-cuts algorithm proceeds by first extracting the connected components
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Figure 4.13: An example image illustrating different steps of the whitespace-cuts algo-
rithm. Left to right: whitespace cover of the page background, extracted
vertical separators and borders, extracted horizontal separators, extracted
page segments.

in a document image using a fast labeling approach based on a union-find data struc-

ture. Noise removal is done at this stage by rejecting very small and very large connected

components. Then statistics about the document, like inter-word spacing, inter-line spac-

ing etc. are computed. These filtered connected components are used as input in the

following steps described below.

4.4.1 Whitespace Cover Computation

The whitespace analysis algorithm described by Breuel [Bre02c] is used for finding a

collection of maximal white rectangles (called covers), i.e. rectangles that do not overlap

with any of the connected components on the page. The key idea behind the algorithm is

similar to quicksort or branch-and-bound methods. The details of the algorithm can be

found in [Bre02c]. The algorithm returns globally optimal covers in decreasing order with

respect to their area, until a minimum area is reached or the maximum specified number

of rectangles have been obtained. Usually 300 rectangles are sufficient to completely

cover the page background. The result of applying the whitespace analysis to an example

image is shown in Figure 4.13.

4.4.2 Extraction of Vertical Separators

The whitespace rectangles belonging to the whitespace cover are evaluated as candidates

for vertical separators as in [Bre02c] based on the following constraints:

1. They must have an aspect ratio of at least 1:3
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2. They must have a width of at least 1.5 times the mode of the distribution of widths

of inter-word spaces.

3. They must be adjacent to a few character-sized connected components on their left

and their right side. Such connected components are called the neighbors of the

whitespace rectangle.

The candidates satisfying these criteria are selected as vertical separators. If there are

overlapping vertical separators, the tallest one is selected. Then the vertical separators

are filtered based on the text column width defined by two consecutive vertical separa-

tors along the horizontal direction. If the text-width is below a threshold, the vertical

separator with lesser weight is dropped, where the weight of a whitespace rectangle is

the total number of its neighbors multiplied by the normalized height of the whitespace.

Some examples of vertical separators found in this way are shown in Figure 4.13.

After finding whitespace candidates for columns separators, the whitespaces repre-

senting the vertical borders of the document image are extracted. These borders are

simply extracted by first computing a bounding rectangle of all the connected compo-

nents of the page. Then the vertical page borders are the two vertical whitespace strips

that touch the page border on one side and the bounding rectangle on the other side as

shown in Figure 4.13. If the bounding rectangle covers the whole page area, two thin

rectangles of 10 pixels width each are inserted at both the left and the right side of the

page.

4.4.3 Extraction of Horizontal Separators

The selection of horizontal separators is based on the same concept as that for vertical

separator. A useful horizontal separator should separate text spanning across multiple

columns from text inside individual columns. Segmenting a single-column text into text-

lines can be done using horizontal projection. The following constraints are imposed on

horizontal separators similar to those in Section 4.4.2:

1. They must have an aspect ratio of at least 2:1

2. They must have a height greater than the mode of the distribution of inter-line

spacing.

3. They must be adjacent to a few character-sized connected components on their

upper and their lower side.
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To restrict the horizontal separators to the columnar structure defined by vertical

separators, the horizontal separators are constrained to touch at least two vertical sep-

arators. This constraint make sure that isolated horizontal separators are removed. If

there are overlapping horizontal separators, the widest one is kept and the others are

discarded. At this stage the hanging parts of all horizontal separators are also trimmed

such that they do not extend beyond the extreme vertical separators touching them. An

example of horizontal separators extracted in this way is shown in Figure 4.13.

4.4.4 Extraction of Page Segments

The set of horizontal and vertical separators segments the page into non-rectangular

zones. These zones can be extracted by introducing the vertical and horizontal separators

as obstacles and running the maximal empty rectangle extraction algorithm [Bre02c]

again. The rectangles returned by this algorithm are the page segments. Then following

post-processing steps are performed on these segments to obtain the final segmentation:

1. If there are character-sized connected components that are only partially included

in a segment, the segment is enlarged such that these components are completely

included.

2. A vertical projection profile of the character-sized connected components in each

segment is computed. If the zero-valley in the projection profile is larger than 10

times the mode of the distribution of widths of inter-word spaces, the segment is split

into two segments at the middle of the valley. This helps in correctly segmenting

header and footer zones.

4.4.5 Experiments and Results

The evaluation of the page segmentation algorithms was done on the 100 training images

and 878 test images from the UW-III collection as outlined in Section 4.3.5. The results

obtained are shown in Table 4.7. The results show that the mean error rate for the

whitespace-cuts algorithm is the lowest among all the compared algorithms. The high

standard deviation in the error rate of each algorithm shows that the algorithms work

very well on some images, while failing badly on some other images. Therefore it is

interesting to count the number of documents for each algorithm for which it had the

lowest error rate among all the compared algorithms. If more than one algorithm share

the lowest error rate on a given document, the document is counted for each of them. A
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Table 4.7: Evaluation results for different page segmentation algorithms on the 878 test
images in terms of percentage of text-lines detection errors (Eq. 4.5).

Error rates (%)

Train Test

Algorithm Mean Mean Stdev

X-Y cut 14.7 17.1 24.4

Smearing 13.4 14.2 23.0

Whitespace 9.1 9.8 18.3

Text-line 5.6 7.0 13.3

Docstrum 4.3 6.0 15.2

Voronoi 4.7 5.5 12.3

Whitespace-cuts 1.7 4.4 11.1

comparison of the algorithms on this basis is shown in Figure 4.14. The results show that

the whitespace-cuts algorithm has the best segmentation results for the highest number

of documents among all the compared algorithms. However, it should be noted that the

smearing and the text-line finding algorithm work on the text-line level, and therefore

include the segmentation errors of one additional step, i.e. segmenting a text block into

individual text-lines.

An analysis of the errors made by the whitespace-cuts algorithm shows that the al-

gorithm made 2.0% split errors, 2.4% merge errors, and 0.01% missed errors. The main

source of split errors was the vertical separators found in lists and references, thereby

splitting the text-lines into two parts. The main source of merge errors was the text lines

in headers and footers, where the page number was very close to the rest of the text in

the header or footer. Also in some cases, column separators were missed thereby resulting

in merged text-lines across the two columns. There were only a few missed errors owing

mainly to single digit page numbers that were filtered out as noise. The average running

time of the whitespace-cuts algorithm is about 1.1 seconds on an AMD Opteron 2.4 GHz

machine running Linux.

4.5 Summary

This chapter presented an approach for evaluating page-segmentation algorithms using

a color-based representation. The proposed color-based representation of segmentation

is independent of zone shape, and it can be saved and exchanged using any lossless

color image format. Instead of using a single score for measuring the performance of an
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Figure 4.14: A bar plot showing the number of documents for each algorithm on which
it had the lowest error rate among all the compared algorithms.

algorithm, different aspects of the algorithm are evaluated separately. Depending on the

target application, different error measures may be weighed according to their significance

in that application. Using these performance measures, the strengths and weaknesses of

six well-known page segmentation algorithms were analyzed in this work.

The experiments presented in this work showed that the x-y cut and the smearing

algorithms fail to segment a page in the presence of noise. The whitespace analysis

algorithm is sensitive to the stopping rule and results in either over-segmentations or

under-segmentations. The docstrum and the Voronoi algorithms tend to over-segment

page title and section headings if the font size is much larger than the body text in that

page. The constrained text-line finding algorithm misses single-digit page numbers as it

requires at least two components to make a line.

Based on these experiments, it can be concluded that for a homogeneous document

collection with a large proportion of documents with Manhattan layouts, docstrum and

Voronoi algorithms are the best choice. In the case of a heterogeneous document collection

with different font sizes, styles, and scan resolutions; the constrained text-line finding

algorithm appears to be the best choice.

Finally, this chapter presented a highly accurate algorithm for page segmentation.

The algorithm is based on the concept of whitespace-cuts, which is a modification of the
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whitespace analysis algorithm by Baird. The algorithm is tested on the UW-III dataset

and is compared to six other well-known page segmentation algorithms. The results show

that the proposed algorithm has the lowest mean error rate on the test data among all

the compared algorithms. However, for each algorithm there are some images on which

it works better than all the other images. Ranking the algorithms on the basis of the

number of documents on which they have the lowest error rate results in the following

order (best to worst): whitespace-cuts, Docstrum, Voronoi, whitespace analysis, text-line

finding, smearing, and X-Y cut. Note that the text-line finding and smearing algorithms

extract text-lines directly, and therefore include the errors of one additional step, i.e.

segmenting a text block into individual text-lines.



Chapter 5

Zone Classification

Document zone classification aims at classifying the blocks detected by the page segmen-

tation step (Chapter 4) of a geometric layout analysis system into one of a set of predefined

classes (e.g. text, image, graphics, . . . ). Blocks identified as text can then be fed to a

character recognition module. Similarly, other actions can be taken for zones of specific

types; for instance graphics regions can be sent to a raster to vector conversion program,

whereas table zones can be fed to a table understanding system. Several algorithms for

document zone classification have been proposed over the years (for a literature survey,

please refer to [ODP99,WPH06]). This chapter presents a simple high-performance zone

classification system that achieves the same error rate as the lowest reported in literature

while using only simple and easy to compute features. This chapter presents the following

contributions to the state-of-the-art in document zone classification1:

1. A detailed performance comparison of widely used features in document analysis

and content-based image retrieval (CBIR) communities.

2. Introduction of the use of histograms for the measurements of connected compo-

nents and run lengths and show that this leads to a performance increase.

3. Introduction of a new class of blocks containing speckles that has not been consid-

ered by other researchers. This typical class of noise is important to detect during

the layout analysis especially for images of bound book pages.

4. Identification of the presence of duplicate documents in the UW-III dataset which

might have positively influenced the results of other researchers.

1This chapter is based on the author’s work in [KSB07].
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halftone

text

graphics

math

Figure 5.1: An example page of an article containing different types of zones.

5. Achieving an error rate of 1.5% with simple and computationally efficient features

on the UW-III dataset without using duplicates, which equals the lowest error rate

reported in literature [WPH06] using more complex features.

5.1 Introduction

A document image may contain different types of contents, like text, math, figures, etc.

An example document containing different types of zones is shown in Figure 5.1. There is

a constant interest in the document image analysis community on document zone content

classification problem. Many approaches have been proposed in literature for classifying

the contents of a document zone into one of the predefined classes. However, most

of these approaches focus on extraction of specific application-dependent zone classes.

For instance, Xiao and Yan [XY03] worked on text region extraction problem, Zanibbi

et al. [ZBC02] on Mathematics expression recognition, Kieninger and Dengel [KD98a,

KD98b,KD01] on table extraction problem, Chen et al. [CLG03] and Pham [Pha03] on

logo detection, Li et al. [LNG00] on image (halftone) extraction problem, and Futrelle et

al. [FSCG03] on diagram (drawing) extraction and classification problem. Due to a wide

diversity of objectives for document understanding, this work focuses on recognition of

entities that usually appear in technical journal documents. For this purpose, eight classes
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of zones are considered in this chapter: math, logo, text, table, drawing, halftone, ruling,

and speckles. Sample images of each class are shown in Figure 5.2. Some related work

for classifying document zones into different target classes is presented in this section.

For a more detailed overview of related work in the field of document zone classification

please refer to [ODP99,WPH06].

Inglis and Witten [IW95] present a study of the zone classification problem as a

machine learning problem. They use 13831 zones from the UW database and distinguish

the three classes text, halftone, and drawing. Using seven features based on connected

components and run lengths, the authors apply various machine learning techniques to

the problem, of which the C4.5 decision tree performs best at 6.7% error rate.

The review paper by Okun et al. [ODP99] succinctly summarizes the main approaches

used for document zone classification in the 1990s. The predominant feature type is based

on connected components (see also for example [LPHH96]) and run-length statistics.

Other features used include the cross-correlation between scan-lines, vertical projection

profiles, wavelet coefficients, learned masks, and the black pixel distribution. The most

common classifier used is a neural network.

The most recent and detailed overview of the progress in document zone classification

and a very accurate system is presented by Wang et al. [WPH06]. The authors represent

each zone with a 25 dimensional feature vector and use an optimized decision tree classifier

to classify each zone into one of nine target classes. They use 24177 zones extracted from

the UW-III database to evaluate their approach and report an accuracy of 98.45%. The

features they use include run-length statistics, spatial features, auto-correlation features,

background features, a text glyph feature and a feature based on column width ratio.

Additionally, they incorporate contextual constraints in the classification of some zones

to get better classification results.

The approaches presented in the literature have one common short-coming: they

present the performance of a complete system without highlighting the contribution of

each feature to the overall system performance. This work fills this gap by comparing

a large set of commonly used features for block classification and includes in the com-

parison three features that are known to yield good performance in content-based image

retrieval (CBIR) and are applicable to binary images [DKN04]. A detailed analysis of the

performance of the features used in the document analysis and the CBIR communities

enables the development of a zone classification system that is based on very simple and

computationally efficient features and yields the same performance as the state-of-the-art

block classification system by Wang et al. [WPH06]. An overview of the features used in
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Figure 5.2: Examples of document image block types distinguished in this work.
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this work is given in Section 5.2. A simple nearest-neighbor classifier (Section 5.3) was

used in this work since the focus was on extracting suitable features for zone classifica-

tion. The dataset used and the experimental results are discussed in Section 5.4 followed

by a conclusion in Section 5.5.

5.2 Feature Extraction

The features used in this work can be grouped into two categories:

1. features known to work well in content-Based image retrieval (CBIR) [DKN04]

2. features commonly used in the document zone classification literature [ODP99,

WPH06]

The overall most successful features in CBIR are usually based on color information.

This work restricts the analysis for zone classification to those features that are promising

for the analysis of binary images. The CBIR features chosen in this work are based on the

open source image retrieval system FIRE [DKN04]. These features include Tamura tex-

ture features histogram, relational invariant feature histograms, and down-scaled images

of size 32× 32.

The most widely used features in the document zone classification literature [ODP99,

WPH06] are based on connected components and run-length statistics. These features

not only yield high performance, but also are simple to implement. Hence these feature

types were used as representative from the document zone classification literature. An

outline of all the features compared in this work is:

1. Tamura texture features histogram (TTFH)

2. Relational invariant feature histograms (RIFH)

3. Down-scaled images of size 32× 32 (DSI)

4. The fill ratio, i.e. the ratio of the number of black pixels in a horizontally smeared

[WCW82] image to the area of the image (FR)

5. Run-length histograms of black and white pixels along horizontal, vertical, main

diagonal, and side diagonal directions; each histogram uses eight bins, spaced apart

as powers of 2, i.e. counting runs of length ≤ 1, 3, 7, 15, 31, 63, 127 and ≥ 128

(RL{B,W}{X,Y,M,S}H)
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6. The vector formed by the total number, mean, and variance of the runs of black

and white pixels along the horizontal, vertical, main diagonal, and side diagonal

directions as used in [WPH06] (RL{B,W}{X,Y,M,S}V)

7. Histograms (as in 5) of the widths and heights of connected components (CCXH,

CCYH)

8. The joint distribution of the widths and heights of connected components as a

2-dimensional 64-bin histogram (CCXYH)

9. The histogram of the distances between a connected component and its nearest

neighbor component (CCNNH)

5.3 Classification

To evaluate the various features, a simple nearest neighbor classifier is used. A test sample

is classified into the class the closest training sample belongs to. The distance measures

used in this work are the Jensen-Shannon divergence for histograms and the Euclidean

distance for all other features [DKN04]. When different feature sets are combined, the

overall distance is calculated as the weighted sum of the individual normalized distances.

The weights are set proportional to the inverse of the error rate of a particular feature.

No tuning with respect to these weights or with respect to the distance measures was

performed. Although a k-nearest-neighbor approach gives better results in many cases

only the 1-nearest-neighbor classifier was evaluated in this work. The nearest neighbor

error rates were determined using leave-one-out cross-validation. The nearest neighbor

classifier serves as a good baseline classifier, although in many cases a more suitable clas-

sifier can be found for a given task. As this work concentrates on feature extraction and

analysis a detailed study of suitable classifier was not performed. An important short-

coming of the nearest neighbor classifier is its requirement on computational resources.

Both memory and run-time can be prohibitive for some applications.

5.4 Experiments and Results

To evaluate the presented approach for document zone classification, the University of

Washington III (UW-III) database [GHHP97] is used. The database consists of 1600

English document images with bounding boxes of 24177 homogeneous page segments or
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(a) E00D (b) C000 (c) W033 (direct scan) (d) E04A (photocopy)

Figure 5.3: Example document pages from the UW-III database. Note that some docu-
ments, as shown on the right, occur in different versions. For our experiments,
we made sure that no such duplicates were used.

Table 5.1: Summary of UW zone classification error rates from the literature along with
the number of pages, zones and block types used. Note that an exact compar-
ison between all error rates is not possible.

reference # pages # zones # types error [%]
[IW95] 1001 13831 3 6.7
[LPHH96] 979 13726 8 5.4
[SPH+95] 979 13726 9 3.3
[WHP00] 1600 24177 9 2.5
[WPH06] 1600 24177 9 1.5
this work 713 13811 8 1.5

blocks, which are manually labeled into different classes depending on their contents,

making the data very suitable for evaluating a block classification system. Table 5.1

shows an overview of related results in zone classification on the UW dataset along with

the results obtained in this work.

The documents in the UW-III dataset are categorized based on their degradation type

as follows:

1. Direct scans of original English journals

2. Scans of first generation English journal photocopies

3. Scans of second or later generation English journal photocopies

Some documents in the dataset are duplicated and differ sometimes only by the degra-

dation applied to them. This type of collection is useful when one is evaluating a page
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segmentation algorithm to see how well the algorithm performs when, for instance, pho-

tocopy effect degradation is applied to a document. However, the degradation introduced

by photocopying a document does not affect the appearance of the contents of a document

to a large extent. One such example can be seen in Figure 5.3, where the same docu-

ment is present in the dataset four times (E04A, W033, S04A, W133, two of them shown

here). Although the photocopied documents are usually darker than the corresponding

direct scans, the difference is not substantial. This duplication of documents tends to bias

the evaluation results towards lower error rates when some of these documents are used

in training, while others are used in testing. This effect seems to have been unnoticed

previously by other researchers who use the complete dataset for the evaluation of their

algorithms.

In this work, a subset of the UW-III dataset was used to avoid using duplicate docu-

ments. The documents in the scans from the first generation photocopies category were

chosen because they were largest in number. These are all the documents with prefixes

A0, C0, D0, IG, H0, J0, K0, E0, V0, I03, and I04. There are 713 documents of this

type. The ground-truth zones and their labels from each of these 713 documents were

extracted. For some of the zone types like “seal”, “announcement”, “advertisement”, etc.

there were only a few samples in the dataset. Hence only those classes were considered

for evaluation that contained at least ten example images.

One limitation of the UW-III ground-truth zones is that they do not contain any ex-

ample of noise regions, i.e. regions that emerge from noise introduced during the scanning

or photocopy process. These regions mostly consist of speckles and dots present along

the border of the document. Since such regions often appear in practice, it is important

to detect such regions as noise so that these can be removed from further processing. The

UW-III dataset images contain many such regions but these are not labeled. In order

to extract examples of such regions the page segmentation algorithm from [KSI98] was

used to extract page segments. Then all the segments that did not overlap with any of

the ground-truth zones were filtered out as examples of the noise zones. However these

contained both textual and non-textual noise. Textual noise appears only along the left

or the right side of a document when the facing pages of a book are scanned. Since these

extraneous symbols cannot be distinguished from the actual contents of the document

based on their appearance alone, textual noise is not considered in this work. Therefore

only examples of non-textual noise, i.e. speckles were taken as noise class. The speckles

heavily depend on the degradation of the document and vary considerably from the di-

rect scan of a document to its first generation photocopy as can be seen in Figure 5.3.
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Table 5.2: Leave-one-out nearest neighbor error rates and extraction run-times for each
feature and for combinations.

feature # features extr.-time [s] error [%]
TTFH 512 5.51 3.4
RIFH 512 12.59 7.8
DSI 1024 0.01 8.1
FR 1 0.02 27.3
RLBXH 8 0.01 7.9
RLWXH 8 0.01 5.1
RLBYH 8 0.01 8.2
RLWYH 8 0.01 5.6
RLBMH 8 0.01 11.8
RLWMH 8 0.01 6.6
RLBSH 8 0.01 10.5
RLWSH 8 0.01 6.2
RLBXV 3 0.01 12.9
RLWXV 3 0.01 9.7
RLBYV 3 0.01 14.6
RLWYV 3 0.01 12.1
RLBMV 3 0.01 17.2
RLWMV 3 0.01 12.6
RLBSV 3 0.01 16.7
RLWSV 3 0.01 12.2
CCXH 8 0.04 14.5
CCYH 8 0.04 14.9
CCXYH 64 0.04 6.2
CCNNH 8 0.05 19.0
RL**V, constant weight 4.1
RL**H, constant weight 1.8
RL*, CC*, 1/error weight 1.5
FR, RL*, CC*, 1/error weight 1.5
TTFH, FR, RL*, CC*, 1/error weight 1.5
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Therefore, for the speckles class, examples were extracted from all 1600 documents of

the UW-III database. The corresponding number of examples used for each zone type is

included in Table 5.3.

Table 5.2 shows the error rates that the nearest neighbor classifier achieves for each

single feature along with the dimensionality of the feature vectors and the average time

used to compute the feature vector. (All timing information is given for a standard PC

with 1.8GHz AMD Athlon processor without special performance tuning of the algo-

rithms.) The last rows show results for combined feature sets.

The following results can be observed from Table 5.2:

• The Tamura texture feature is the single best feature but is more than 100 times

slower to compute than most other features.

• The use of histograms as descriptors of the run-lengths distribution leads to much

lower error rates than the use of number, mean, and variance. The combination of

these histograms alone leads to a very good error rate of 1.8%.

• Interestingly, the use of the white (background) runs for the computation of features

consistently leads to better results than the use of black (foreground) runs.

• Among the run-lengths based features, those based on the horizontal runs lead to

the best error rates.

• The fill ratio as a single feature does not lead to good results, which is not surprising

as it consists only of a single number. However, it is very useful to distinguish

drawings from text. This is however also achieved by using the distribution of the

white run lengths, such that the FR feature is not part of the best observed feature

set.

Table 5.3 shows the frequency of misclassifications between different classes of the

best classifier. It can be observed that high recognition accuracy was achieved for the

text, ruling, speckles, math, halftone, and drawing classes. However, our system failed

to recognize logos correctly, and most of the logos were misclassified as either text, or

halftone/drawing. Note that the accuracy rate for type ‘logo’ in [WPH06] is even lower

at 0.0%. The reason for this effect is the very small number of samples for this class,

which on the other hand implies that it has only a very small influence on the overall

system error rate. Similarly, the table detection accuracy was not high, and about 21%

of the tables were misclassified as text.
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Table 5.3: Contingency table showing the distribution of the classification of zones of
a particular type in percent. (The total number of errors equals 201 within
13811 tests.) The labels M, L, T, A, D, H, R, S correspond to the types math,
logo, text, table, drawing, halftone, ruling, and speckles, respectively.
M L T A D H R S error [%] # samples

M 90.8 0.0 8.6 0.0 0.0 0.6 0.0 0.0 9.2 476
L 9.1 27.3 36.4 0.0 9.1 9.1 0.0 9.1 72.7 11
T 0.1 0.0 99.8 0.0 0.0 0.0 0.0 0.0 0.2 10450
A 0.8 0.0 20.7 68.6 9.9 0.8 0.0 0.0 31.4 121
D 1.5 0.3 3.0 5.5 86.0 3.5 0.0 0.3 14.0 401
H 0.0 0.9 0.0 0.0 9.7 86.7 0.9 1.8 13.3 113
R 0.4 0.0 1.3 0.0 0.4 0.0 96.1 2.2 3.9 232
S 0.1 0.0 0.5 0.0 0.1 0.1 0.0 99.4 0.6 2007

To visualize the errors made, the nearest-neighbor images for each misclassified block

were investigated. Figures 5.4, and 5.5 shows some typical examples of misclassified zones.

It can be seen that some of these images cannot be simply classified correctly by using

the block content alone, and even humans are likely to make errors if they are asked to

classify these images.

The error rates achieved in this work are competitive to the best error rate reported

in literature by Wang et al. [WPH06]. For a comparison it should be noted that at

most 0.2% (53/24177) of the error rate Wang et al. present is caused by their distinction

between the text classes of different font-sizes and the class “other” with the remaining

classes. On the other hand, a new class “speckles” is added in this work, which is related

to 0.15% (21/13811) error. Additionally the presence of duplicates in the UW-III dataset

was ignored by Wang et al. As they use 9-fold cross-validation to obtain their results,

it might be possible that the error rates they present (the best result is an overall error

rate of 1.5%) may be influenced positively by this fact, because it is likely that instances

of blocks of the same document occur in training and test set. In a similar direction,

Wang et al. use one feature that “uses a statistical method to classify glyphs and was

extensively trained on the UWCDROM-III document image database.” It is not clear if

this implies that the glyphs that occur in testing have also been used in the training of

the glyph classifier. Finally, in this work zone context modeling is not used, although it

is likely that a context model (which can be integrated in a similar way as presented by

Wang et al.) would help the overall classification performance.
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Misclassified Nearest
image neighbor

math text

math text

logo halftone

ruling speckles

halftone drawing

drawing halftone

speckles text

Figure 5.4: Examples of misclassification showing the misclassified image and its nearest
neighbor from a different class.
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Misclassified Nearest
image neighbor

ruling speckles

logo speckles

table text

text speckles

drawing table

drawing halftone

Figure 5.5: Some more examples of misclassification showing the misclassified image and
its nearest neighbor from a different class.
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5.5 Summary

This chapter showed that a very accurate document zone classification system can be

constructed based on a feature vector consisting of run-length histograms alone. Run-

length features are very easy to implement and fast to extract and thus should be part of

any practical zone classification system. Interestingly, the distribution of the background

runs is more important for document zone classification than the distribution of the

foreground runs. In this work, a very competitive error rate of below 1.5% was obtained

on zones extracted form the UW-III database using features based on run-length and

connected component statistics only. Examination of the errors made by the system

makes it seem likely that further improvements significantly below the error rate reached

in this work may be difficult to achieve without a significantly increased effort, for example

by using a dedicated sub-classifier to distinguish between text and table zones.



Chapter 6

Layout Analysis of Urdu Documents

Automatic recognition of documents in scripts other than Roman like Arabic, Chinese,

Japanese etc. has gained a lot of attention in recent years. However, recognition of

printed Urdu - the national language of Pakistan - has largely been ignored. To date, no

working Urdu OCR system is known to the author. One of the main reasons for the lack

of a complete Urdu OCR system is a limited support of the Urdu language in computing

environments. Many software do not have an Urdu user interface, and only a few Urdu

editors are available. Recent projects like Urdu Localization Project [Hus04] aimed at

improving Urdu language support in computing environments. These advances in the

support of Urdu in computing are leading to an increased interest in digitization of Urdu

literature resulting in more demand for an Urdu OCR system. Layout analysis is a crucial

part of an OCR system. Kumar et al. [KKJ07] have recently reported that none of the six

well-known page segmentation algorithms outlined in Chapter 4 of this thesis work well for

segmenting printed Urdu documents. This chapter presents the first high-performance

layout analysis system for Urdu documents and demonstrates that the system works

well in segmenting documents in different layouts. The following contributions to the

state-of-the-art in automatic recognition of printed Urdu documents are presented in this

chapter1:

1. A geometric model is developed for representing an Urdu text-line.

2. A geometric matching method is used to extract text-lines from printed Urdu doc-

uments based on the geometric model of an Urdu text-line.

3. A reading-order determination algorithm for Roman script documents is modified

to adapt to Urdu documents.

1This chapter is based on the author’s work in [SuHKB06].

89
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(a) Sample Arabic document written in Naskh script

(b) Sample Urdu document written in
Nastaliq script

Figure 6.1: An example of printed Arabic and Urdu text. Nastaliq script is derived from
Naskh script but has a more complicated nature. Text-lines in Nastaliq script
are taller and have very little spacing between them.

6.1 Introduction

Urdu is the national language of Pakistan with more than 150 million speakers. Urdu

alphabet is written in Nastaliq script, which is also used to write other languages like

Persian and Pashto. Although Nastaliq script is sometimes used to write Arabic text

as well, the pre-dominant script used for writing Arabic is Naskh. On the other hand, a

small fraction of Urdu documents are also printed in Naskh script. An example of printed

Urdu and Arabic texts is shown in Figure 6.1, where Urdu text is written in Nastaliq

script and Arabic text is written in Naskh script. Nastaliq script has many differences

to Naskh script, the most important of which from layout analysis point of view are very

small inter-line spacing, and tall ascenders and descenders that penetrate into adjacent

text-lines. An example of this case can be seen in Figure 6.1(b), where ascender from the

second text-line gets merged with the dots belonging to the first text-line.

There has been very little work in the area of Urdu document analysis. Husain et

al. [HA02] proposed an Urdu character recognition system for the Nastaliq script. It is a

cursive script, i.e. individual characters are usually combined to form ligatures. Urdu is
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written in Nastaliq script using more than 20,000 ligatures [Wik]. Husain et al. skipped

the layout analysis step to concentrate more on the OCR part. They chose only some

frequently used characters and ligatures for their experiments. They trained a neural

network with samples of these ligatures and tested its performance. However, the neural

network based approach is not suitable for recognizing printed Urdu because collecting a

large number of samples for each of the 20,000 ligatures becomes prohibitive.

Pal et al. [PS03] present an approach for recognizing printed Urdu documents. First,

they perform skew correction of the document using Hough transform. Text-lines in

the skew corrected document are then segmented by horizontal projection. Finally, each

extracted line is segmented into individual ligatures by vertical projection and connected

component labeling. Once ligatures belonging to a text-line are obtained, they are fed to

a two-stage character recognition system. Pal et al. focused on the recognition of basic

characters and numerals and did not consider the recognition of compound characters.

In the first stage the characters are grouped into a few subsets by a tree classifier using

simple features. In the second stage more sophisticated features are used to recognize

similar characters belonging to the leaf nodes of the classification tree.

Research on Arabic and Persian OCR has primarily been focused on word recognition,

and very few approaches have been proposed for text-line extraction. Since Arabic is gen-

erally written in Naskh script, text-line segmentation using horizontal projections works

quite well due to large inter-line spacing [Kho02]. A similar approach is used by Jelodar

et al. [JFMF05] to extract text-lines from printed Persian documents. Segmentation of

a page image into individual lines by horizontal projection is a primitive approach and

works only for clean, single-column documents with large inter-line spacing. To handle

multi-column documents, either the x-y cut method [NSV92] is used, or morphological

operations are used to get text blocks [SSMSSS06] which can then be further subdivided

into individual text-lines by horizontal projection.

Over the last two decades, several layout analysis algorithms have been proposed in

the literature (for a literature survey, please refer to [CCMM98, Nag00]) that work for

different layouts and are quite robust to the presence of noise in the document. Many of

these algorithms have come to wide-spread use for analyzing document images in different

scripts. Kumar et al. [KKJ07] have evaluated the performance of six algorithms for page

segmentation on Nastaliq script: the x-y cut [NSV92], the smearing algorithm [WCW82],

whitespace analysis [Bai94], the constrained text-line finding algorithm [Bre02c], Doc-

strum [O’G93], and the Voronoi-diagram based approach [KSI98]. These algorithms work

very well in segmenting documents in Roman script as shown in Chapter 4. However,
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when Kumar et al. applied these algorithms to segment Nastaliq script documents, none

of these algorithms were able to achieve an accuracy of more than 70% on their test data

which had simple book layouts with no font size variations within each page.

This chapter proposes a two-descender model of Urdu text-lines and based on this

geometric model presents an algorithm for extracting Urdu text-lines from a scanned

documents. This work is based on the layout analysis system described in [Bre03b] that

uses globally optimal geometric algorithms, combined with robust statistical models, to

model and analyze the layouts of Roman script documents. A particular advantage of

this system is that it is nearly parameter-free. A detailed illustration of the presented

system is given in Section 6.2. To evaluate the performance of this system in segmenting

real-world documents, a dataset of Urdu documents is prepared. As a control experiment,

the documents in the test set are also segmented using projection profiles. The recursive

x-y cut algorithm (Section 4.2.1) is used for this purpose. The dataset, the experimental

setup, and the results obtained are described in Section 6.3 followed by a conclusion in

Section 6.4.

6.2 Urdu Document Layout Analysis

The document layout analysis system presented in [Bre03b] - that is adapted to Nastaliq

script in this work - consists of the following main steps:

1. Empty whitespace rectangles that completely cover the page background are found.

2. The whitespace rectangles are evaluated as candidates for column separators or

gutters based on their aspect ratio, width, and proximity to text-sized connected

components.

3. Text-Lines that respect the columnar structure of the document are extracted using

a geometric matching algorithm.

4. The reading order of the text-lines is determined using constraints on the geometric

arrangement of text-line segments on a page.

To adapt the layout analysis system of Breuel to Nastaliq script, a text-line model

is developed for Urdu text-lines written in Nastaliq script. This model is used in the

geometric matching algorithm at step 3 of the layout analysis system outlined above.

Then, the reading order algorithm in step 4 is modified to adapt to Urdu documents.
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geometric layout analysis

r ,

d

Figure 6.2: An illustration of Roman script text-line model proposed by Breuel [Bre02b].
The baseline is modeled as a straight line with parameters (r, θ), and the
descender line is modeled as a line parallel to the baseline at a distance d
below the baseline.

“ray” “meem” “noon” “jeem”

Figure 6.3: An example image showing the descender distance of different characters in
Nastaliq script. The characters like “noon”, “jeem” etc. make a line of de-
scenders whether they appear alone or appear at the end of a compound
character. On the other hand, characters like “meem” descend much lower
than other characters. Characters like “ray” may either lie on the baseline, on
first descender line, or on the second descender line depending on their posi-
tion in the compound character, and other characters making the compound
character.

6.2.1 Geometric Model for an Urdu Text-Line

The presented geometric text-line model for Urdu text is based on Roman script text-line

model by Breuel [Bre02b]. Breuel proposed a parameterized model for a text-line with

parameters (r, θ, d), where r is the distance of the baseline from the origin, θ is the angle

of the baseline from the horizontal axis, and d is the distance of the line of descenders

from the baseline. This model is illustrated in Figure 6.2. The advantage of explicitly

modeling the line of descenders is that it removes the ambiguities in baseline detection

caused by the presence of descenders.

In Nastaliq script, the descender distance of all compound and individual characters

is not the same as illustrated in Figure 6.3. Some individual characters are highlighted in

Figure 6.3 both in isolated form and as a part of a ligature. An important characteristic

of the Nastaliq script is that a character descends below the baseline only in its isolated
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Second-descender-line

Base-line
First-descender-line

Figure 6.4: Modeling an Urdu text-line using two descender lines. The text-line at the
top shows a line of text in Nastaliq script, whereas the text-line at the bottom
shows the same piece of text in Naskh script. Although different characters
appear at different heights in both scripts, the resulting text-lines can be
accurately modeled using two descender lines in each script.

form or if it is the last character in a compound ligature. Another source of variation

comes from the script, for example the character “bari yay” (the left-most character of

the text-lines shown in Figure 6.4) lies on the baseline in Nastaliq script, whereas it lies

on the second descender line in Naskh script. Hence the single-descender model used for

Roman script is not suitable for modeling text-lines in Nastaliq script.

A careful observation of printed Urdu text reveals that characters descending from

the baseline can be grouped into two categories based on their descending distance. One

group including characters like “noon”, “jeem” etc. descends to a constant depth below

the baseline, while another group including characters like “ray”, “wao” etc. descends to

a different constant depth below the baseline. All descending characters can be assigned

to one of these groups with the exception of the character “meem” which descends lower

than all other characters. Therefore, a new text-line model is developed for Nastaliq

script using two descenders as shown in Figure 6.4. These lines are parameterized by

parameters (r, θ, d1, d2), where d1 is the distance of the first descender line and d2 is the

distance of the second descender line from the baseline.

6.2.2 Extraction of Urdu Text-Lines

Breuel [Bre02b] used geometric matching to extract text-lines from scanned documents

based on the text-line model described in Section 6.2.1. A quality function is defined

which gives the quality of matching the text-line model to a given set of points. The

goal is to find a collection of parameters (r, θ, d) for each text-line in the document image
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that maximizes the number of bounding boxes matching the model and that minimizes

the distance of each reference point from the baseline in a robust least square sense. The

RAST algorithm [Bre93] is used to find the parameters of all text-lines in a document im-

age. The algorithm is run in a greedy fashion such that it returns text-lines in decreasing

order of quality.

Consider a set of reference points {x1, x2, · · · , xn} obtained by taking the middle of

the bottom line of the bounding boxes of the connected components in a document image.

The goal of text-line detection is to find the maximizing set of parameters ϑ = (r, θ, d)

with respect to the reference points {x1, x2, · · · , xn}:

ϑ̂ := arg max
ϑ

Qxn
1
(ϑ) (6.1)

The quality function used in [Bre02b] is:

Qxn
1
(ϑ) = Qxn

1
(r, θ, d) =

n∑
i=1

max(q(r,θ)(xi), αq(r−d,θ)(xi)) (6.2)

where

q(r,θ)(x) = max
(
0, 1−

d2
(r,θ)(x)

ε2

)
(6.3)

The first term in the summation of Equation 6.2 calculates the contribution of a

reference point xi to baseline, whereas the second term calculates the contribution of a

reference point xi to the descender line. Since a point can either lie on the baseline or the

descender line, maximum of the two contributions is taken in the summation. Typically

the value of α is set to 0.75, and its role is to compensate for the inequality of priors

for baseline and descender such that a reference point has more chances to match with

the baseline as compared to the descender line. The contribution of a reference point

to a line is measured using Equation 6.3 and its value lies in the interval [0, 1]. The

contribution q(r,θ)(x) is zero for all reference points for which d(r,θ)(x) ≥ ε. These points

are considered as outliers and hence do not belong to the line with parameters (r, θ).

In practice, ε = 5 proves to be a good choice for documents scanned at 300-dpi. The

contribution q(r,θ)(x) = 1 if d(r,θ)(x) = 0 which means the contribution of a point to a line

is one if and only if the point lies exactly on the line.

The RAST algorithm is used to extract the text-line with maximum quality as given

by Equation 6.1. Then all reference points that contributed with a non-zero quality to

the extract text-line are removed from the list of reference points and the algorithm is
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run again. In this way, the algorithm returns text-lines in decreasing order of quality

until all text-lines have been extracted from the document image.

To adapt the quality function in Equation 6.2 to the extraction of Urdu text-lines,

the contribution of a reference point to both descender lines is used:

Qxn
1
(ϑ) = Qxn

1
(r, θ, d1, d2) =

n∑
i=1

max(q(r,θ)(xi), αq(r−d1,θ)(xi), αq(r−d2,θ)(xi)) (6.4)

The local quality function q(r,θ)(x) is the same as in Equation 6.3. The quality function

in Equation 6.4 can be maximized in Equation 6.1 to extract Urdu text-lines from a

scanned document.

6.2.3 Reading Order Determination

Reading direction of Urdu text is from right to left, which is opposite to the Roman

script. Therefore the algorithm for determining the reading order in [Bre03b] is modified

as follows:

1. Text-Line a comes before text-line b if their ranges of x-coordinates overlap and if

text-line a is above text-line b on the page.

2. Text-Line a comes before text-line b if a is entirely to the right of b and if there does

not exist a text-line c whose y-coordinates are between a and b and whose range of

x-coordinates overlaps both a and b.

Applying these two ordering criteria is sufficient to define a partial order of text-line

segments in a document. This partial order is then extended to a total order of all

elements using a topological sorting algorithm [CLR90].

6.3 Experiments, Results, and Discussion

In order to evaluate the performance of the described layout analysis system, 25 Urdu

documents from different sources were scanned. The scanned images are categorized into

five classes: book, poetry, digest, magazine, and newspaper. There are 5 images of each

class in the dataset. The dataset is made publicly available and can be downloaded

freely from http://www.iupr.org/demos downloads/. The Urdu documents that are in

common use today are both typeset documents and documents handwritten by calligra-

phers. Samples of typeset and handwritten Urdu text are shown in Figure 6.5. Due to

http://www.iupr.org/demos_downloads/
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(a) Typeset Urdu text (b) Urdu text written by a Calligrapher

Figure 6.5: An example of typeset and handwritten Urdu text. The text written by
calligraphers closely resembles typeset text and shares the same properties.

the complex nature of Nastaliq script and the availability of calligraphers, the first Urdu

typesetter was developed as late as early 1980s [Wik]. Hence to date many printed books

are available only in handwritten form. As a representative sample of Urdu text, the doc-

uments in the book and poetry categories are scanned from text written by calligraphers,

whereas the documents in the digest, and magazine categories are scanned from typeset

sources. The newspaper documents contain both handwritten text by calligraphers and

typeset text in the same page. Important headlines are written by calligraphers in large

text, whereas the news text itself is typeset. Although the dataset is quite small in size,

it contains many types of layouts. Hence it can be used to evaluate the performance of

a layout analysis algorithm for Urdu documents. However, for a thorough evaluation, a

larger dataset may be required.

The evaluation of the algorithm is done in two parts: the first part analyzes the errors

made in text-line detection and the second part evaluates the reading order algorithm.

6.3.1 Text-Line Detection Accuracy

The text-line detection accuracy measures how many text-lines were correctly detected.

A text-line is said to be correctly detected if it does not fall into any of the three types

of error defined below.

Oversegmented text-lines: the number of text-lines that are either split into more

than one text-line, or partially detected.

Undersegmented text-lines: the number of text-lines merged with some other text-

line.

Missed text-lines: the number of text-lines that were not found by the algorithm.
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Figure 6.6: A comparison of text-line segmentation accuracies of the proposed technique
and the x-y cut algorithm.

The documents in the dataset were segmented using the x-y cut algorithm and the

text-line extraction algorithm described in Section 6.2. The x-y cut algorithm was chosen

as a representative state-of-the-art algorithm for segmenting Nastaliq script documents.

A comparison of the percentage of correctly segmented text-lines by both methods is

shown in Figure 6.6.

Horizontal projection of sample paragraphs in Nastaliq script is shown in Figure 6.7.

In both paragraphs, there are no zero-valleys in the projection profile. To segment

Urdu text with x-y cut, noise thresholds are set to a high value so that the algorithm

can find the main body of a text-line. The parts of a text-line cut out at this stage can

be assigned to the text-line by simple post-processing steps. Hence, text-lines as shown

in Figure 6.8 are considered correctly segmented. The results of segmentation using the

x-y cut algorithm are shown in Table 6.1. The values of the parameters for the x-y

cut algorithm used were: tx = 30, ty = 2, tnx = 20, tny = 250 (see Section 4.2.1 for an

explanation of these parameters).

The results show that the algorithm is able to segment book, and poetry documents

with high accuracy owing to relatively large inter-line spacing. However, it fails to segment

digest, magazine, and newspaper layouts due to smaller inter-line gaps and presence of

multiple columns.
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Figure 6.7: Horizontal projection of Urdu text samples. The top figure shows the case of
larger inter-line spacing, the bottom figure shows the case of small inter-line
spacing. Note that in both cases, there are no between-line zero-valleys in
the projection profile.

Figure 6.8: Results of segmenting an Urdu piece of text using the x-y cut algorithm.
The resulting text-lines are considered correct as the body of each text-line
is correctly identified. The ascenders and descenders can be assigned to the
text-line body using simple post-processing steps.
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Table 6.1: The performance of the x-y cut algorithm on the Urdu documents dataset.
Document Correctly Over- Under- Missed
Type (n =) Detected Segmented Segmented Text-Lines

Text-Lines (%) Text-Lines (%) Text-Lines (%) (%)
Book (231) 82.68 5.19 6.93 5.19
Poetry (284) 94.72 1.76 0.00 3.52
Digest (702) 64.67 0.57 29.91 4.84
Magazine (1156) 64.45 0.17 33.82 1.56
Newspaper (819) 24.54 0.85 60.2 2.20

Table 6.2: The performance of the presented text-line extraction algorithm on each cat-
egory of the dataset.

Document Correctly Over- Under- Missed
Type (n =) Detected Segmented Segmented Text-Lines

Text-Lines (%) Text-Lines (%) Text-Lines (%) (%)
Book (231) 92.21 5.63 0.00 2.16
Poetry (284) 92.25 4.58 0.00 3.17
Digest (702) 80.63 11.54 0.00 7.83
Magazine (1156) 90.48 4.15 0.87 4.33
Newspaper (819) 72.16 7.81 4.15 15.87

Table 6.2 summarizes the results obtained by applying the presented layout analysis

algorithm to the test data, and manually inspecting the resulting text-lines detected by

the system. Example images showing the result of the algorithm are shown in Figure 6.9

and 6.10. Note that the presented system achieved better results than the x-y cut ap-

proach on all categories of documents except poetry documents. The presented algorithm

made more split errors than the x-y cut algorithms. These errors appeared as a result

of partially detected text-lines in which the first or the last word of the line was not

vertically aligned with the rest of the text-line and hence was ignored by the text-line

extraction algorithm.

Based on the results presented in Table 6.2, the following observations can be made:

• The algorithm works quite well on documents in the book, magazine, and poetry

categories. A few number of missed error are those in which the text-line consisted

of only one connected component as the text-line detection algorithm needs at least

two components to make a line. The over-segmentation errors occur due to page

curl in some documents.

• In the digest layout, many over-segmentation errors occur due to enumerated lists,

in which the enumerator symbol is segmented separately.
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(a) Facing pages of a prose book

(b) Facing pages of a poetry book

Figure 6.9: Example images illustrating results of the proposed layout analysis system
on a book and a poetry page. The yellow rectangles show the detected ver-
tical gutters. Thin horizontal blue lines indicate detected text-line segments,
and the thick magenta lines running down and diagonally across the image
indicate reading order.
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Figure 6.10: Example image illustrating results of the proposed layout analysis system
on a magazine page. Note that images and graphics were not removed, so
they result in some spurious text-lines.
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Figure 6.11: An example image cropped from the front page of a newspaper containing
both normal and inverted text in the same image. The binarization step
fails to identify the inverted text and makes it a part of the page background
(white) as shown in the binarized image. (cp. [SuHKB06])

• In the newspaper layout, many text-lines are missed. This is due to very small

inter-line spacing between two consecutive text-lines. Due to this small spacing,

connected components from two neighboring text-lines sometimes merge together.

In such a case the upper text-line is missed by the algorithm. Another source of a

missed text-line error is the presence of inverted text resulting in poor binarization

of the image as shown in Figure 6.11. A number of false alarms also appear in these

layouts due to non-text elements on the page.

6.3.2 Reading Order Determination Accuracy

The performance of the reading order determination algorithm heavily depends on the

text-line detection accuracy. Manual inspection of the results showed the following types

of errors:

1. If two text-lines from different text columns are merged, they are interpreted as a

separator and hence the algorithm gives a wrong reading order.

2. In some cases, the separation between different sections of a multi-column document

is not represented by a text-line spanning along the columns, but instead a ruling
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(thick horizontal black line) is used. In that case the algorithm fails to detect the

start of a new section.

3. The reading order of Urdu poetry in two-column layout is not handled by the

current algorithm.

6.3.3 Problems and Future Directions

Based on the experimental results presented in this chapter, the described layout analysis

system can possibly be improved in the following ways:

1. Image statistics like x-height (height of a lower case letter ’x’) estimation play

an important role in automatically adjusting parameters of the algorithm to the

resolution and dominant font size of the input document. Incorporating a statistical

analysis for Urdu documents to estimate dominant font size may reduce the number

of missed lines.

2. If the first or the last word of a text-line is not aligned with the rest of the line, the

word is ignored resulting in a split error. This happens if the last character of the

word is “meem” which descends lower than both descender lines. Image statistics

can be used to solve this problem in a post-processing step.

3. Using a binarization technique that can handle both normal and inverted text on

the same image will result in improved performance on the newspaper images.

4. A large dataset of scanned Urdu documents with ground-truth should be collected to

obtain a more reliable estimate of the performance of the presented layout analysis

system.

5. If the skew of a scanned document is so large that axis-aligned gutters cannot be

found, an algorithm to extract whitespace rectangles at arbitrary orientations [Bre03a]

can be used.

6. The reading order algorithm cannot handle Urdu poetry written in two column

format, as it is misinterpreted as a two-column text. Hence a different algorithm

must be used to analyze poetry documents in two-column format.
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6.4 Summary

This chapter presented a high-performance layout analysis system for Urdu documents.

A well-known layout analysis system for Roman script was adapted to analyze Urdu

documents. The described system was tested on scanned Urdu documents from differ-

ent sources like books, novels, magazines, and newspapers. The algorithm achieved an

accuracy of above 90% in terms of text-line detection for books, poetry, and magazine

images. The accuracy decreased to about 80% for documents from digest class due to

small inter-line spacing and presence of enumerated lists. Newspaper documents proved

to be the toughest class presenting several challenges like the presence of many font sizes

within the same image, small inter-line spacing, inverted text, and poor quality of page

resulting in lot of noise. The text-line detection accuracy for the newspaper images was

around 72%.
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Chapter 7

Statistical Layout Analysis

Current layout analysis methods can handle a variety of simple document layouts with

high accuracy as demonstrated in Chapter 4. A key limitation of these methods is

that they rely on many hard-coded assumptions about document layouts and can not

adapt to new layouts for which the underlying assumptions are not satisfied. Another

major drawback of these approaches is that they do not return confidence scores for their

outputs. These problems pose major challenges in large scale digitization efforts where a

large number of different layouts need to be handled and manual inspection of the results

on each individual page is not feasible. This chapter presents a statistical approach to

layout analysis that solves the above-mentioned problems. The contributions of this

chapter to the state-of-the-art in layout analysis are:

1. A new approach to model known page layouts as a structural mixture model is

presented.

2. A probabilistic matching algorithm is presented that gives multiple interpretations

of input layout with associated probabilities.

3. An algorithm based on A* search is presented for finding the most likely layout of

a page, given its structural layout model.

4. An interactive graphical user interface (GUI) is developed that enables the user to

quickly build structural layout models.

5. An EM-like training algorithm is presented that is capable of learning the geometric

variability of structural layout models from training data without the need for a page

segmentation ground-truth.

107
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7.1 Introduction and Related Work

A number of different approaches for geometric layout analysis of scanned documents

were presented and evaluated in Chapter 4. These approaches have shown to work quite

well on the UW-III dataset which consists of scanned journal articles. A summary of the

text-line detection error rates for these approaches is presented in Table 4.7. The table

shows that Docstrum, Voronoi, and Whitespace-Cuts algorithms achieve very low error

rates on structured journal articles in the UW-III dataset. These algorithms rely on many

hard-coded assumptions about document layouts. For instance, a common assumption

is that larger structural divisions inside a document are indicated by larger amounts of

whitespace. This assumption holds for many simple document layouts, but it may break

for more complex or non-stereotypical layouts.

An example of a non-stereotypical layout from the Google 1000 books dataset is shown

in Figure 7.1. The dataset was released by Google Inc. in September 2007 and contains

1000 scanned books with hOCR-format [Bre07] ground-truth. It contains scans of old

books for which copyrights have expired. Therefore, most of the books have simple one-

column page layouts. The ground-truth was generated by an anonymous OCR software.

The example image in Figure 7.1 is from a book containing mixed one-two column layout.

As shown in the figure, the OCR software failed to segment the page correctly and merged

the text from the two columns of the page. The results of applying the state-of-the-art

page segmentation algorithms to this image are shown in Figure 7.2. Interestingly, none

of the algorithms was able to segment the two-column part of the page correctly.

A closer look at the example image reveals that the gap between the two text columns

is not larger than the global inter-word spacing of the document. Hence the basic assump-

tion of most of the research algorithms and commercial systems - that larger structural

divisions inside a document are indicated by larger amounts of whitespace - does not

hold for this layout. This results in incorrect segmentation of the page both by research

algorithms and commercial systems.

Commercial systems address this problem by providing a GUI with which the user

can manually define the layout of the page. One such example is shown in Figure 7.3.

This solution is suitable for daily office use when a small number of documents have to

be dealt with. However, it does not fit the needs for large scale digitization tasks since

the user has to manually fix the results for all incorrectly handled pages, which is not

feasible due to the scale of the problem.

Research algorithms, on the other hand, usually present several parameters that can
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(a) sample page

CHAP. 13. A L KORAN. 57

joy a long and happy life: but afterwards I punished them ; a'id 
how severe was the punishment which J in­flicted on them ! 
Who is it therefore that standeth over every soul, to observe 
that which it committeth? They attribute companions unto 
GOD. Say, Name them : will ye declare unto him that which he 
knoweth not in the earth? or will ye name them in outward 
speech only8 ? But the deceitful procedure of the infidels was 
prepared for them; and they are turned aside from the right 
path: for he whom GOD shall cause to err, shall have no 
director. They shall suffer punishment in this life; but the 
punishment of the next shall be more grievous: and there shall 
be none to protect them against GOD. This is the description 
of para­dise, which is promised to the pious. It is watered by 
rivers; its food is perpetual, and its shade also: this shall be 
the reward of those who fear GOD. . But the reward of the 
infidels shall be hell-fire. Those to whom we have given the 
scriptures, rejoice at what hath been revealed unto thee1'. Yet 
there are some of the confederates who deny part thereof'. 
Say unto them, Verily I am commanded to worship GOD 
alone; and to give him no companion: upon him do I call, and 
unto him shall I return. To this purpose have we sent down the 
KORAN, a rule of judgment, in the Arabic language. And verily 
if thou follow their desires, after the knowledge which hath 
been given thee, there shall be none to defend or protect thee 
against GOD. We have formerly sent apostles before thee, 
and bestowed on them

* In outward speech only.] That is, pleased to find the Koran so consc-
calling them the companionsof GOD, nant to their own scriptures (a),
without being able to assign any rea- ' Some of the confederates, &c.]
son, or give any proof, why they de- That is, such of them as had entered
serire to be sharers in the honour and into a confederacy to oppose Moham-
worship due from mankind to him(l). med: as did Caab Ebn al Ashraf, and
h Those to whom we have given the the Jews who followed him ; and al
scriptures, &c.] viz. The first prose- Seyid al Najrani, al Akib, and several
lytes to Mohammedism from Judaism other Christians; who denied such
and Christianity, or the Jews and parts of the Koran as contradicted their
Christians in general, who were corrupt doctrines and traditions (3).

(l) AIBEIDAWI. (2) See chap. 3. (3) Idem.

(b) text ground-truth

(c) cropped two-column part of the sample page

* In outward speech only.] That is, pleased to find the Koran so consc-
calling them the companionsof GOD, nant to their own scriptures (a),
without being able to assign any rea- ' Some of the confederates, &c.]
son, or give any proof, why they de- That is, such of them as had entered
serire to be sharers in the honour and into a confederacy to oppose Moham-
worship due from mankind to him(l). med: as did Caab Ebn al Ashraf, and
h Those to whom we have given the the Jews who followed him ; and al
scriptures, &c.] viz. The first prose- Seyid al Najrani, al Akib, and several
lytes to Mohammedism from Judaism other Christians; who denied such
and Christianity, or the Jews and parts of the Koran as contradicted their
Christians in general, who were corrupt doctrines and traditions (3).

(d) text ground-truth of the cropped two-column part

Figure 7.1: An example image from Google 1000 books dataset with its ASCII text
ground-truth. The software that was used to extract the ground-truth text
failed to find the column separator in the two-column part of the page and
merged the text across the two columns.
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(a) Docstrum (b) Voronoi (c) Whitespace-Cuts

Figure 7.2: Segmentation results of applying state-of-the-art page segmentation algo-
rithms on the example image in Figure 7.1. None of the algorithms segmented
the page correctly.

be tuned to correctly segment the target document. However, parameter tuning is not

trivial for most of the page segmentation algorithms especially for an end-user. Manually

refining parameters of an algorithm requires an in-depth understanding of the algorithm.

Automatic parameter tuning using some objective function, on the other hand, requires

a large amount of labeled training data. Finally, the assumptions made by an algorithm

might prohibit it altogether to segment a particular layout correctly.

Another major issue in large scale digitization projects is to find the documents on

which the OCR software failed so that these can be presented to the operator for manual

correction. The state-of-the-art layout analysis algorithms and commercial software do

not give any confidence of their output. Hence the user has no clue when an algorithm

fails to segment a page until he takes a look at the segmentation result of the algorithm.

Manual inspection of the results of a segmentation algorithm for each scanned image

becomes prohibitive in large scale applications where hundreds of thousands of pages are

involved.

This chapter presents a statistical approach to layout analysis aimed at solving these

problems. A statistical layout analysis system is based on statistical modeling of layouts.

These layout models can be learned from training data and hence can be adapted to seg-

ment non-stereotypical layouts. Secondly, the use of statistical layout models to segment

a page allows to get the probability of a performed segmentation. This probability can
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Figure 7.3: A screen-shot of processing the example document image with ABBYY
FineReader 7.0 Professional Edition. Note that FineReader also fails to de-
tect the two columns in the page. The GUI has a toolbox with which user
can manually correct page segmentation errors.

be used as a confidence value of the output of the algorithm. Hence, the user can look at

the segmentation results of only those documents for which the statistical layout analysis

algorithm gives a low probability.

Some attempts to build a trainable layout analysis system have been carried out in the

past. One of the first attempts in this direction was made by Gary Kopec et al. [KC94,

KK96]. They presented a communication theory approach to document recognition and

called it “document image decoding”. The key idea of their approach is to view document

recognition as consisting of three elements: an image generator, a noisy channel and an

image decoder. A document image generator is a Markov source that combines a message
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source with an imager that converts a one-dimensional message string into an ideal two-

dimensional bitmap. The channel transforms the ideal image into a noisy observed image.

The decoder estimates the message, given the observed image, by finding the a posteriori

most probable path through the combined source and channel models using a Viterbi-

like dynamic programming algorithm. The approach was used for direct recognition of

text from scanned single-column parts of telephone yellow pages. However, this approach

could not come to wide-spread use because it can not handle multi-column layouts.

Most of the efforts made by other researchers towards the development of trainable

layout analysis systems have focused on the use of probabilistic grammars, owing to the

great success of grammatical modeling in several areas of computer science like natural

language processing. Tokuyasu et al. [TC01], inspired by the document image decod-

ing view of Kopec et al., presented a turbo recognition approach for statistical layout

analysis. Their key idea in turbo recognition is to use two stochastic regular grammars

to describe horizontal and vertical page structure simultaneously, thereby reducing the

overall complexity of the system. Kanungo et al. [KM03] present a segmentation algo-

rithm that models the physical structure of a document as a hierarchical structure. Each

node in the document hierarchy describes a region of the document using a stochastic

regular grammar. The key insight of their approach is to let the user specify the exact

form of the hierarchy and the stochastic language. The latest development in the domain

of grammatical modeling of document layouts is by Shilman et al. [SLV05]. They use a

discriminative grammar to model page layout instead of generative grammars as used in

previous work. Their work is inspired by the advances in research on grammars, where

it is shown that discriminative models are strictly more powerful than the probabilistic

context-free grammars. A common limitation of modeling page layouts using stochastic

grammars is that optimal geometric parsing is exponential in the number of terminal

symbols. Liang et al. [LNSV05] have proposed a set of efficient geometric constraints

that yield near O(n3) complexity on most types of printed documents, where n is the

number of terminal symbols. Using these constraints, Shilman et al. [SLV05] were able to

achieve a parsing time of 30 seconds for the task of grouping text-lines into paragraphs

and text-columns (80 terminal symbols) on a 1.7GHz Pentium 4 machine. If we consider

the task of grouping connected components into text-lines, where the number of termi-

nal symbols is usually around 4000 for a typical A4 document, the running time of the

algorithm becomes a major bottleneck.

Other attempts for statistical modeling of page layout include the Markov Random

Field (MRF) approach by Liang et al. [LHP99], and the generative zone model approach
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of Gao et al. [GWHD07]. Liang et al. modeled the statistical relationships between

the locations of characters, lines, and paragraphs as a hierarchical MRF. The model

is trained by measuring different kinds of distances between terminal and non-terminal

symbols on an extensive training set. Gao et al. present the approach of generating

overlapping zone hypothesis by using Voronoi diagrams. Then an optimal maximum a

posteriori non-overlapping zone combination is obtained using a learned generative zone

model. Both these approaches are capable of learning layout information from training

data. However, they require large amounts of labeled training data just to capture coarse

document layout structure.

In this work, page layout is represented as a structural mixture model, where each

component in the model is a layout that we are interested in. An individual layout

is represented as a hierarchical tree of horizontal or vertical whitespace cuts - that is

axis-aligned whitespace rectangles that divide a particular page segment into two parts.

A parametric model is built to model the geometric variability in position and size of

corresponding whitespace cuts across different documents of the same layout. For each

layout, the distribution of parameters is estimated from the training set. These learned

models are then matched on the input image and the best matching model is returned

with the positions of best fit and the associated probability. The details of the layout

model and the matching algorithm are described in Section 7.2. Experimental results are

presented in Section 7.3 followed by a conclusion in Section 7.4.

7.2 Statistical Layout Analysis

7.2.1 Statistical Layout Model

The first problem that needs to be addressed for designing a statistical layout analysis

algorithm is the representation of page layout. Although different models for page layouts

have been proposed in the literature, each model comes with its own problems. The hier-

archical MRF model by Liang et al. and the generative zone model by Gao et al. require

large amounts of labeled training data to obtain good results. Stochastic grammars, on

the other hand, are not a natural representation of page layouts. Page layouts are gen-

erated by a number of typesetting rules and hence exhibit a large amount of regularity.

However, parsing a page with stochastic grammars might result in page layouts that do

not appear in practice.

Instead of trying to model generic page layouts, we take the approach of style-directed
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M
1

M
2

M
3

Figure 7.4: An illustration of modeling page layout as a structural mixture model. This
example models page layout as a mixture of three layout components. The
geometric variability of these components is visualized by the arrows.

layout analysis [DLU87, Spi01, KM03]. A particular advantage of style-directed layout

analysis is that it closely resembles the document generation process, hence it can obtain

better performance on a specific class of documents. In contrast to previous approaches

like [DLU87,Spi01] that use rule-based systems to model document style, this work rep-

resents page layout as a statistical mixture model of layouts. Each layout is represented

as a hierarchical X-Y tree of whitespace rectangles. A visualization of the model is shown

in Figure 7.4. The primary focus of this work are document images with a Manhattan

layout that can be represented as an X-Y tree. However, the algorithms presented here

can be readily applied to non-Manhattan layouts if a suitable representation is available

for them.

Let a layout component be modeled as a sequence of rectangles M = {m1, . . . ,mN},
each defined by four parameters describing the center position (x, y), width w, and height

h of the corresponding rectangle. These parameters are assumed to have independent

Gaussian distributions. The sequence describes the hierarchy of model rectangles. An

illustration of such a hierarchical tree is shown in Figure 7.5. Some important features

of this model tree are:

• Each model rectangle divides a page segment into two parts. Due to this property

a model rectangle will also be referred as a model cut in the work.

• The parameters of model rectangles are relative to the page segment to which they
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Figure 7.5: An example image illustrating the hierarchical tree model of page layout as
used in this work.

are applied.

• The first model cut is applied to the page frame. A horizontal cut divides the page

frame into upper and lower parts, whereas a vertical cut divides the page frame

into left and right parts. As a result of applying the model cut to the page frame,

two new page segments are generated.

• The generated page segments are inserted as children of the root node in a pre-

defined order. Upper or left page segment is inserted as the left child, whereas

lower or right page segment is inserted as the right child.

• If a page segment is not further sub-divided, two dummy nodes are added as its

children.

For the convenience of implementation, the binary model tree is stored as an array such

that the root node of the tree is at index zero, and the children of a node at index i are

found at indices 2i + 1 and 2i + 2, while its parent (if any) is found at index b(i− 1)/2c .

A particular advantage of the ordered hierarchical structure of the layout tree is that

the foreground segments can be extracted in reading order by a simple depth-first-search
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(DFS) traversal of the layout tree. During the DFS traversal of the tree, as soon as a

dummy node is encountered, its corresponding page segment is marked as a final page

segment and its children are not explored. The order in which foreground segments are

visited corresponds to their reading order as illustrated in Figure 7.6.

7.2.2 Statistical Model Matching

The goal of statistical model matching is to find a set of whitespace rectangles in a target

document that correspond to the layout model with the highest probability. For this

purpose, first a whitespace cover of the page background is extracted using the algorithm

described in [Bre02c]. Then, each layout component in the structural mixture model is

considered as a candidate that can explain the layout of the target document. We are

interested in finding the layout model that best explains the target document and then

extracting whitespaces corresponding to that best matching layout model. An illustration

of this layout matching algorithm is shown in Figure 7.7.

Consider a layout model M = {m1, . . . ,mN} consisting of N model rectangles, and

a set S of K whitespace rectangles {w1, . . . , wK}, where N < K, that constitute a

whitespace cover of page background. We are interested in computing p(W |M), i.e. the

probability of observing W given M where

• W = (w1, . . . , wN) is an n-tuple with wi ∈ S and wi 6= wj ∀i, j : i 6= j

• each element of W corresponds to an element of M

Overall, we want to find the most probable subset of whitespaces:

Ŵ = arg max
W

p(W |M) (7.1)

The probability of observing whitespace rectangles W = (w1, . . . , wN) given a layout

model M = {m1, . . . ,mN} can be written as

p(W |M) = p(w1, w2, · · · , wN |mN
1 )

= p(w1|mN
1 )p(w2, · · · , wN |w1, m

N
1 )

= p(w1|mN
1 )p(w2|w1, m

N
1 ) · · · p(wN |w1, · · · , wN−1, m

N
1 ) (7.2)

where wi is the whitespace cover rectangle that mi has been matched on. Due to the

hierarchical structure of our layout models, the probability of observing whitespace wi

does not depend on model cuts that are lower in the hierarchy, i.e. model cuts with indices
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Figure 7.6: Example image illustrating the extraction of page foreground segments from
the layout tree using depth-first-search traversal of the tree. The numbers
indicate the order in which foreground segments in the final segmentation
are visited. Due to the ordered hierarchical structure of the layout tree, this
sequence corresponds to their reading order.
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Figure 7.7: An overview of the different steps of the presented statistical layout matching
algorithm. First, a whitespace cover of page background is extracted, as de-
picted by the yellow rectangles. Then, the whitespace rectangles are matched
to model rectangles for different layout model components. Finally, the best
fitting model and the corresponding whitespaces are extracted.

i+1 to N . Hence, the first term on the right hand side of Equation 7.2 - p(w1|mN
1 ) - can

be computed as

p(w1|mN
1 ) = p(w1|m1, m2, · · · , mN)

= p(w1|m1)

= N (x1; µx1 , σx1)N (y1; µy1 , σy1)N (w1; µw1 , σw1)N (h1; µh1 , σh1) (7.3)

Similarly, other terms in Equation 7.2 can be written as:

p(wj|w1, · · · , wj−1, m
N
1 ) = p(wj|w1, · · · , wj−1, m

j
1) (7.4)

The dependency between a whitespace cut wj and its ancestors is modeled by the

hierarchy of the tree. The ancestors of wj define the page segment to which the cut wj

is to be applied. Since the coordinates of whitespace cuts are computed relative to the

page segment to which they are applied (see Figure 7.5), these need to be recomputed

based on the current page segment. This is done by first intersecting the whitespace

wj with the current page segment to trim its part extending beyond that segment, and

then normalizing its coordinates with the page segment’s width or height (x-center and

width are divided by the page segment width, whereas y-center and height are divided

by page segment height). The probability of observing the updated whitespace can then

be simply computed by using Equation 7.3.

Using Equations 7.3 and 7.4 in Equation 7.2 gives the probability of matching a

particular combination of whitespaces to the layout model. The main challenge then is
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to find the global maximum in Equation 7.1. The total number of possible solutions for

choosing N out of K whitespace rectangles is:

PK
N =

K!

(K −N)!
(7.5)

This implies that for 300 whitespaces and 10 model rectangles, the total number of

possible solutions are 5× 1024. This is a combinatorial optimization problem and brute-

force search to find the globally optimal solution is not practically possible. In this work,

A* search is employed to find the globally optimal combination of whitespaces that best

matches the layout model.

A* Search Algorithm

A* is a best-first graph search algorithm, which finds the least-cost path from an initial

node to a goal node. It maintains a set of partial solutions, i.e. unexpanded leaf nodes

of expanded nodes, stored in a priority queue. The priority assigned to a path passing

through a node x is determined by the function:

f(x) = g(x) + h(x) (7.6)

where g(x) is a cost function, which measures the cost it incurred from the initial node

to the current node x, and h(x) is a heuristic function estimating the cost to the goal

node from x. To ensure the search algorithm finds the optimal solution, h(x) must be

admissible, meaning that it never overestimates the actual minimal cost of reaching the

goal.

To enable a straightforward application of A* search for finding the global maximum in

Equation 7.1, the maximization problem can be reformulated as a minimization problem:

Ŵ = arg min
W

{− log p(W |M)} (7.7)

Hence Equation 7.2 can be written as

log p(W |M) = log p(w1|mN
1 )+log p(w2|w1, m

N
1 )+· · ·+log p(wN |w1, · · · , wN−1, m

N
1 ) (7.8)

This minimization problem can be formulated as A* search as follows: Let the state

variable x be defined as a sequence of rectangles x = x1, x2, . . . , xN such that each element

represents a whitespace from the document that has been matched to the corresponding
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model rectangle. All elements of the state variable x are assigned a dummy rectangle (a

rectangle with parameters (−1,−1,−1,−1) ) in the start of the search. As the search

proceeds, these dummy rectangles are replaced by actual whitespaces that are matched

to the corresponding model rectangles. Hence, an initial state will be represented by an

N -dimensional sequence of dummy rectangles, whereas a goal state is represented by an

N -dimensional sequence of whitespaces from the document. Note that the state variable

will either have all dummy rectangles (initial state), all actual whitespaces (goal state),

or k consecutive whitespaces (k < N) followed by N − k consecutive dummy rectangles

since all model cuts are matched in order.

The priority of a node x with k model cuts matched is given by

g(x) = − log p(m1|wN
1 )− log p(m2|m1, w

N
1 )− · · · − log p(mk|m1, · · · , mk−1, w

N
1 ) (7.9)

Since the logarithm of the probability of a whitespace to represent a model cut is strictly

non-negative, the heuristic function h(x) can be safely set to zero:

h(x) = 0 (7.10)

Since h(x) defined above can never over-estimate the minimum cost of reaching the

goal state, as soon as a goal state reaches the top of the priority queue, it is guaranteed

to be the globally optimal solution for Equation 7.1. Using A* search, mean running

time of matching one layout model to an image is less than one second on a 2GHz AMD

Athlon machine running Linux. A hint from the implementation point of view is that

when using double precision floating point numbers, the probability in Equation 7.3 goes

to zero when the value inside any of the exponents gets larger than 746. Hence large

portions of search space that do not fit the layout model are quickly discarded by the

search algorithm.

7.2.3 Learning Model Parameters

An important aspect of the statistical layout analysis approach is that it can be trained

without the need for page segmentation ground-truth. Learning layout models from a set

of training images can be done in two steps.

In the first step, the goal is to find out the structure of layout model components.

This step is done by grouping documents of the same layout together and defining a

structural layout model for each layout. In the present work, this task is done manually.
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First, the user selects documents with the same layout. Then, a structural layout model

is built from one document of that layout with the help of an interactive GUI that is

specifically designed for that purpose. The GUI uses a whitespace cover computation

algorithm to extract whitespaces belonging to page background. Clicking at a particular

location on the image selects a whitespace with the highest area at that location. If this

is the rectangle desired by the user, he just clicks on another position to select the next

model rectangle. However, if the user did not intend to select that highest area rectangle

presented to him by the system, he can click inside the selected rectangle. Clicking inside

selected rectangles cycles through all rectangles that contain the click position. Some

structural layout models built with that GUI are shown in Figure 7.8.

In the second step, the goal is to learn geometric variability of the structural layout

models built in the first step. For this purpose, an EM-like training algorithm is used.

Consider training images {1, 2, · · · , T}. The total quality of matching a layout model on

this training set can be computed as:

q = −
T∑

i=1

log pi(Ŵ |M) (7.11)

The training algorithm tries to minimize this quantity iteratively. An outline of the

training procedure is as follows:

1. Initialize model parameters to some fixed values. Set mean values to the attributes

of corresponding whitespaces selected by the user, and variance to some small ar-

bitrary values.

2. Compute q(0) for training set using initial model by matching the initial model to

all documents in the training set.

3. The matching result gives a set of whitespace rectangles for each training image

that best match the model rectangles. Compute model parameters using maximum

likelihood estimation from the obtained whitespaces.

4. Compute q(1) for training set using updated model parameters

5. If q(t) ≥ q(t−1), then terminate; otherwise continue at Step 3

The training algorithm converges very quickly to a local minimum. The convergence

of the training algorithm for different partitions of a 5-fold partitioned training set is

shown in Figure 7.9. The convergence of each run to similar values suggests that the
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(a) Some sample layouts selected by the user

(b) Structural layout model built by the user for each layout

(c) A visualization of initial model parameters for each layout structure

Figure 7.8: Figure illustrating the first step of learning layout models. (a) The user selects
some representative layouts from the training data. (b) Structural layout
models are built for each of the selected layouts with the help of an interactive
GUI. (c) A visualization of initial parameters for each model rectangle. The
rectangle itself represents the mean value and the horizontal/vertical bars
represent 2σ interval around the mean values. A bar centered at the middle
of a rectangle shows variation in position, whereas a bar centered on one side
of a rectangle illustrates variation in width/height of the rectangle.
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Figure 7.9: A plot showing the convergence of training algorithm. Different curves cor-
respond to training on different partitions of data.

optimal parameters found for each partition correspond closely to the global optimum. A

visualization of the model parameters learned in this way is shown in Figure 7.10. Note

that the position and width of the column separator at the bottom of the page appears to

vary very little over the training data and is reflected by small variances of corresponding

model cut. Similarly, the large variance of lower horizontal separator’s vertical position

depicts that the actual position of this model cut varies quite a lot in the training data.

7.3 Experiments and Results

The statistical layout analysis algorithm presented in this chapter exhibits several key

properties that are essential for layout analysis tasks in large scale application. To

evaluate the performance of the algorithm, a subset of the publicly available MARG

dataset [FT03] was chosen. The MARG dataset is naturally suitable for this purpose

since it was developed as a part of the efforts made in digitizing the US National Library

of Medicine. Therefore, it contains a large variety of journal layouts with several exam-

ples of title pages from each journal. The journal layouts are categorized into nine classes

based on the geometric arrangement of logical page blocks (title, author, affiliation, ab-

stract). Since this classification is made based on logical layout elements, layouts from
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Figure 7.10: An illustration of the result of learning geometric variability of structural
layout models. The left image shows a visualization of the initial model,
whereas the right image shows a visualization of the learned model.

two different classes might look identical for geometric layout analysis. Secondly, for two

journals belonging to the same class, geometric page layout might differ a lot.

In this work, six journals were chosen from the MARG dataset that had different

geometric layouts of the page. These journals are:

• Laboratory Investigations (LabInv)

• Angle Orthodontist (AngOrt)

• Cellular and Molecular Life Sciences (CMLS)

• Poultry Science (PouSci)

• European Respiratory Journal (ERS)

• Supportive Care in Cancer (SCC)

An example image from each of these journals is shown in Figure 7.11. There are 142

images of these journals collectively in the MARG dataset. The details of the number

of samples from each journal are shown in Table 7.1. The number of samples per class

are too small for a reasonable training of the layout model of that class. Therefore, more

samples of each journal were obtained through the central library of Technical University
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(a) LabInv (b) AngOrt (c) CMLS

(d) PouSci (e) ERS (f) SCC

Figure 7.11: Example images from each of the journals used in the experiments.

of Kaiserslautern. The number of samples per class thus obtained are also shown in

Table 7.1. After obtaining a reasonably sized dataset, it was partitioned into five parts to

separate training and test sets. 5-fold cross-validation was then used in all experiments

to obtain reliable results.

Four experiments were then designed to evaluate the performance of the algorithm

in three different use-cases. In a first experiment, c.f. 7.3.1, the assumption of the pa-

rameters being distributed normally is analyzed. The second experiment, described in

Section 7.3.2, aims at testing if the obtained page segmentation is correct, given a doc-

ument image and its layout model. The experiment presented in Section 7.3.3 tests the

ability of the proposed approach to find the correct model for an unknown document

image type. Finally, Section 7.3.4 shows the results of the new approach on the subset of

the MARG dataset.
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Journal No. of samples No. of additionally

in MARG dataset collected samples

Laboratory Investigations 5 127

Angle Orthodontist 14 169

Cellular and Molecular Life Sciences 38 213

Poultry Science 25 224

European Respiratory Journal 49 205

Supportive Care in Cancer 11 220

Table 7.1: The number of samples of each journal used in the experiments.

7.3.1 Experiment 1

The proposed approach of model matching for page segmentation is partially based on

the assumption, that the parameters of the model have a Gaussian distribution. To verify

if this assumption is correct, the following experiment has been done: after learning a

model for a given type, the model has been matched to all the documents of that type.

If the assumption is correct, the parameters should be distributed normally.

In Figure 7.12(a), the histograms of the parameters y position and height of the upper

and lower horizontal whitespace cuts are plotted for the shown model. It can be seen

that the parameters appear to be distributed normally, which supports the assumption

about the distribution of the parameters.

7.3.2 Experiment 2

In this experiment, the performance of the statistical model matching approach is tested

on synthetic document images where the model is known. Thus, the method tries to

match the correct model to the document image. The most likely segmentation of the

page according to the model is obtained. A segmentation is considered correct if the

resulting segmentation is the same as the canonical text to block mapping, grouping

logical text blocks together. If a segmentation maps text of different blocks together (e.g.

text lines from the abstract together with text lines from the title), the segmentation is

considered wrong.

Total accuracy for this test is 99.6%. In total 1153 samples of 1158 where segmented

correctly. A detailed overview of the number of errors per type can be found in Table 7.2.
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(a)

(b) (c)

(d) (e)

Figure 7.12: In Figure 7.12(a) the model is visualized. Figure 7.12(b) and 7.12(d) show
the distribution of the y-positions of the upper and lower horizontal whites-
pace cut respectively. Figure 7.12(c) and 7.12(e) show the distribution of
heights of the upper and lower horizontal whitespace cut.

7.3.3 Experiment 3

This experiment focusses on the ability of the method to find the correct model for an

unknown document layout type belonging to one of the trained models. The method

finds the most likely model for a given document image. A correct segmentation is again

defined as being the canonically correct mapping of the text to the blocks. In this case,

matching the wrong model also leads to an incorrect segmentation.

This test yielded 57.5% of correctly matched models. The confusion matrix is shown

in Table 7.3. It can be seen that the simple model of LabInv journal matched documents

Journal samples correct
LabInv 127 127
AngOrt 169 169
CMLS 213 213
PouSci 224 224
ERS 205 201
SCC 220 219

Table 7.2: Segmentation accuracy of pages of a given journal.
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Journal LabInv AngOrt CMLS PouSci ERS SCC
LabInv 127
AngOrt 169
CMLS 184 29
PouSci 21 203
ERS 129 76
SCC 158 62

Table 7.3: Confusion matrix for the matching multiple models using log-likelihood as the
match quality. It can be clearly seen that simple models, having a smaller
number of whitespace cuts, are preferred.

Journal LabInv AngOrt CMLS PouSci ERS SCC
LabInv 124 3
AngOrt 169
CMLS 213
PouSci 224
ERS 1 204
SCC 1 219

Table 7.4: Confusion matrix for the matching using the normalized quality of fit (Equa-
tion 7.12). Only 5 documents are segmented using the wrong model type.

with more complex layouts. A closer investigation of this problem showed that if a

layout model is a subset of another layout model, the simpler model will always fit in

the documents of the more complex model. Additionally, the likelihood of match defined

by: q = log p(Ŵ |M) will usually have lower values for complex models due to additional

Gaussians involved for each model cut (see Equation 7.2). To avoid this problem, first

the quality per cut is computed by simply dividing the log-likelihood of match by the

number of model cuts. Then, the per-cut quality is normalized by the complexity of the

model to give complex models a better score as compared to their sub-models when both

have a good matching score. The quality function thus obtained is:

q = − log p(Ŵ |M)

N2
(7.12)

The use of this quality function increased the total accuracy to 99.6%, which means that

1153 documents out of the 1158 were segmented correctly. The confusion matrix can be

found in Table 7.4.
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Journal LabInv AngOrt CMLS PouSci ERS SCC
LabInv 0 5
AngOrt 13 1
CMLS 38
PouSci 25
ERS 1 48
SCC 11

Table 7.5: Confusion matrix for documents from the MARG dataset. The correct layout
was found for 135 out of 142 documents.

7.3.4 Experiment 4

The test setup in this experiment is the same as for the previous one, except for the test

data, which in this case consists of document images from MARG dataset. Again the

canonical correctness of the text to block mapping is used as correctness measure. The

total accuracy for this test is 95.1% using the normalized quality of fit (Equation 7.12).

In absolute numbers this means that 135 out of the 142 documents have been successfully

segmented. The confusion matrix can be found in Table 7.5.

A closer look at the results showed that the errors are mainly due to complex models

being fit to simple layouts. In the case of LabInv, which is a two column layout having

a one column title part and a two column footer, the AngOrt model consisting of a one

column title, two column main text part and a one column footer fitted well, and was

chosen due to the normalization of the quality.

7.4 Summary

This chapter presented a novel statistical approach to layout analysis. The approach is

based on top-down modeling of page layouts using a mixture of structural layout models.

The geometric variability of individual layout components is modeled as a multi-variate

Gaussian distribution, which can be learned from training data without the need for page

segmentation ground-truth. An algorithm for finding the globally optimal match of a lay-

out model to a target document was presented. The algorithm returns the probability of

match as its confidence score. The trainable nature of the algorithm and its probabilistic

output make it suitable for performing geometric layout analysis in large-scale digitiza-

tion tasks. The application of the algorithm on documents collected by the author and

on the MARG dataset showed high accuracy for geometric layout analysis.
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Chapter 8

Conclusions and Outlook

Starting from algorithms for efficient preprocessing, accurate page segmentation, and

simple and effective block classification, this thesis lead to a high-accuracy, trainable

layout analysis system. This thesis made several key contributions to the state-of-the-art

in geometric layout analysis, the most important of which are outlined here.

This thesis presented an efficient local thresholding algorithm based on integral im-

ages. The time complexity of the presented algorithm is independent of local window size

and is of the same order as that of global thresholding algorithms. Hence, the algorithm

successfully combines the strengths of local and global thresholding schemes, achieving

the same binarization result as that of local thresholding techniques like Sauvola [SP00]

in a time close to that of global thresholding schemes like Otsu [Ots79].

Then, this thesis presented page frame detection as a new approach for document

image cleanup. A geometric matching algorithm was used in this work to automatically

find the optimal page frame of structured documents. It was demonstrated that using

page frame detection significantly reduces OCR error rates of commercial OCR systems.

An approach for evaluating page-segmentation algorithms using a color-based repre-

sentation was proposed in this work. The proposed color-based representation of segmen-

tation is independent of zone shape, and it can be saved and exchanged using any lossless

color image format. Instead of using a single score to evaluate the performance of a page

segmentation algorithm, a novel vectorial score was presented. Using this vectorial score,

the strengths and weaknesses of six widely used page segmentation algorithms were high-

lighted. Based on a better understanding of the problems with each algorithm [SKB08b],

a modification of the whitespace analysis approach by Baird [Bai94] was proposed. It

was shown that with this modification, the whitespace analysis algorithm achieved the

lowest mean error rate on the UW-III dataset among all the compared algorithms.
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Furthermore, an in-depth study of the performance of different features for block clas-

sification was conducted in this thesis. It was concluded that a very accurate classification

system can be constructed based on run-length histograms alone. A simple feature vector

consisting of run-length histograms and connected component statistics achieved an error

rate of 1.5% on the UW-III dataset, which equals the lowest error rate reported in the

literature using more complex features.

Based on experiences made in analyzing Roman script documents, the first high-

performance layout analysis system for Urdu documents was developed in this work.

A geometric model was built to represent an Urdu text-line, and a branch-and-bound

algorithm was employed to directly extract text-lines from a scanned document. Results

show that the presented system achieves high text-line segmentation accuracy on Urdu

documents with different layouts like books, magazines, and newspapers. An interesting

future direction would be to apply the Urdu text-line model to Persian and Arabic script

documents, since they are written in similar writing styles.

This thesis also presented a statistically motivated trainable layout analysis system

that is specifically suitable for use in large scale document analysis tasks. A structural

mixture model was proposed for representing known layouts. An EM-like training al-

gorithm was developed that can learn geometric variability of model components from

training data without the need for page segmentation ground-truth. Then, a probabilistic

matching algorithm was presented that can find multiple interpretations of input layout

with associated probabilities. Finally, the A* search algorithm was used to find the most

likely layout of a page, given its layout model. Experiments on documents collected by

the author and from the MARG dataset show that the system can perform geometric lay-

out analysis of trained layouts with high accuracy. An important extension to this work

would be to incorporate foreground information into the layout model and the matching

algorithm so that the algorithm can distinguish layouts that are similar in structure, but

have different foreground features e.g. different font size and/or font style.

Overall, this thesis presented high performance layout analysis systems for both desk-

top scanning and large scale document analysis applications. The algorithms presented

in this thesis had a significant practical impact and were used to construct different

components of the layout analysis module of OCRopus, a state-of-the-art open source

OCR system. With these components, OCRopus was able to achieve highest text-line

extraction accuracy among existing open source OCR systems [Bre08]. It is expected

that the document analysis community will find the open source implementation of this

work helpful in using and extending it.
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