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Abstract

In this dissertation we consider mesoscale based models for flow driven fibre ori-
entation dynamics in suspensions. Models for fibre orientation dynamics are derived
for two classes of suspensions. For concentrated suspensions of rigid fibres the Folgar-
Tucker model is generalized by incorporating the excluded volume effect. For dilute
semi-flexible fibre suspensions a novel moments based description of fibre orientation
state is introduced and a model for the flow-driven evolution of the corresponding
variables is derived together with several closure approximations.

The equation system describing fibre suspension flows, consisting of the incom-
pressible Navier-Stokes equation with an orientation state dependent non-Newtonian
constitutive relation and a linear first order hyperbolic system for the fibre orienta-
tion variables, has been analyzed, allowing rather general fibre orientation evolution
models and constitutive relations. The existence and uniqueness of a solution has
been demonstrated locally in time for sufficiently small data.

The closure relations for the semiflexible fibre suspension model are studied nu-
merically. A finite volume based discretization of the suspension flow is given and
the numerical results for several two and three dimensional domains with different
parameter values are presented and discussed.
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Chapter 1

Introduction

1.1 Motivation

Transport of suspensions of elongated particles is a feature of various natural and
industrial processes. The suspended particles range from rod-like macromolecules,
viruses, elongated cells to wood pulp fibres in paper making or chopped glass or
carbon fibres used to reinforce a plastic material. The liquid phase of the suspension
can be a Newtonian fluid, such as water or oil, or a non-Newtonian fluid, for instance,
a molten polymer. Addition of fibres even in small concentrations results in non-linear
dynamics of the suspension, thus, in general, fibre suspensions are non-Newtonian
fluids even when the suspending fluid is Newtonian.

As an example, let us consider the injection and compression molding techniques
for processing fibre reinforced thermoplastics. These materials are heated up before
the pressure driven injection in the mold so that the matrix is liquid during the flow.
The suspension flow in the mold is coupled to the fibre orientation in the suspension,
namely, the orientation affects the flow and the flow changes the orientation. The
fibre alignment persists after the solidification of the matrix. Since the mechanical
properties of a fibre reinforced material sensitively depend on the fibre orientation,
understanding the phenomena governing the suspension flow is a neccessary prereq-
uisite for modelling and optimization of the production process.

Direct simulations of the solid-fluid interactions taking place in a fibre suspension
while it flows in a typically sized domain used in industrial applications require huge
data sets and computational efforts that are way out of reach of the modern computing
technology. For dilute and semi-dilute rigid fibre suspensions there exist models based
on mesoscale, allowing the prediction of both macroscopic flow and the averaged
fibre orientation state with reasonable accuracy at relatively low computational costs.
However, these models are not valid for all relevant types of fibre suspensions, for
instance, for highly concentrated suspensions and for suspensions of long flexible
fibres. Deriving mesoscale models valid for these suspension regimes would be an
important contribution to the modelling of fibre suspensions.

When the microstructure of the suspension is described in mesoscale, the equa-
tions governing the suspension flow form a coupled system of partial differential equa-
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tions, consisting of a generalized incompressible Navier-Stokes equation with a non-
Newtonian constitutive law and of a hyperbolic first order system for scalar variables
describing the fibre orientation dynamics. Mathematical analysis of well-posedness
of the system in a unified framework valid for different fibre orientation models and
constitutive laws is another challenging task.

We start this introductary Chapter with a review of some models proposed in
scientifical literature, devoting seperate sections to models for short rigid fibres and
for long semiflexible fibres. In the end of this Chapter, the goals of this thesis are
presented and an outline of the following chapters is given.

1.2 Review of short fibre suspension theory

Flow of fibre suspensions is usually studied in the context of rheology, the science of
flowing complex fluids. A good introduction to the subject are the books of Doi and
Edwards [17], Huilgol and Phan-Thien [35] and the review paper [42]. An introduction
to theory and applications of short fibre suspension flows can be found in the book
[3], in particular Chapter 6, and in the review article [58].

A material consisting of a collection of particles immersed in a liquid is called a
suspension if a typical length scale lm resolving the individual particles (microscale)
is distinctly seperated from the length scale lM characterizing the macroscopic flow
(macroscale): lm ≪ lM. To describe the suspension at the macroscale, averaged
bulk material properties can be defined by appropriately averaging the corresponding
microscale quantities. A prerequisite for applications of such upscaling techniques is
the existence of a representative volume that is small in comparison to the macroscale
but contains a sufficient number of fibres for statistical description to make sense.
Strictly speaking, this is not always the case for fibre suspensions. The length of a
typical fibre ranges from milimeters to several centimeters, and thus can even exceed
the thickness of a typical semistructural part, so a representative volume can hardly
be called pointlike or very small. The application of upscaling techniques is justified
by considering bulk flows, where the macroscopic flow properties are uniform over
a larger volume containing sufficiently many fibres (see e.g. the discussion in [20]),
possibly adopting 2D models for thin shell like domains.

Due to the different length scales, two different values of Reynolds number can
be defined. The microscale Reynolds number is typically much smaller than the
macroscale Reynolds number. In [35], a typical value Remicro = O(10−3) is estimated.
The flow of an incompressible Newtonian fluid through the microscale defined by the
fibres is therefore nearly Stokesian: ∇ · v = 0, η△v = ∇P . The Stokes equations are
linear and exhibit no inertial effects due to the absence of time derivatives, thus the
boundary data are transported instantaneously. The dynamics of the microstructure
is therefore expected to be instantaneous and linear in driving forces.

The dynamics of a single fibre is described by Jeffery’s equation.
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1.2.1 Jeffery’s equation

In the original paper of 1922 [38], George Barker Jeffery considers the dynamics
of a particle of the shape of a prolate ellipsoid immersed in a Newtonian liquid.
The orientation of an axissymmetric particle with a head-to-tail symmetry can be
described by a unit vector p as shown in Figure 1.1.

Figure 1.1: The unit vector p describing the orientatation of a fibre

In his model it is assumed that the only forces acting on the fibre are the traction
forces, which are transfered from the fluid on the boundary. The momentum transfer
from the fibre to the fluid is neglected. Using a first order (linear) expansion of the
fluid velocity field around the particle, the following equation for the fibre orientation
vector p is obtained (see [41] for a modern exposition of the matter):

dp

dt
= M · p− (p⊗ p : M)p, (1.1)

where the effective velocity gradient is defined as

M =
λ+ 1

2
κ+

λ− 1

2
κ⊤,

κ = ∇v is the spatial velocity gradient (Jacobian matrix), and

λ =
r2
a − 1

r2
a + 1

is a fibre geometry parameter with ra = lf/df denoting fibre aspect ratio.

The solutions of (1.1) satisfy
∥∥dp
dt

∥∥2
= 0, hence the unit sphere Sd−1 is an invariant

manifold of this equation. This fact can be stressed by writing the equation in the
equivalent form ṗ = (I−p⊗p) ·(Mp), where the projection operator on the tangential
space of the sphere is involved explicitly, or writing the equation in the angular velocity
formulation. The angular velocity can be computed from (1.1) as ω = p × ṗ =
p× (Mp).
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The solutions of Jeffery’s equations have been studied for stationary flow fields
with analytical (cf. [38], [33]) and numerical (cf. [41]) methods. Depending on the
Jacobian κ and fibre aspect ratio, the orientation vector p either follows periodic
trajectories in the configurational space S2 (so called Jeffery’s orbits) or reaches a
stationary state.

Bretherton has studied the motion of particles of arbitrary axis-symmetric shape
including cylindrical rods ([7]). He has demonstrated that the particle rotation can
be described with Jeffery’s equation, and finds that the parameter λ depends on the
shape of particle.

Jeffery’s equation is not valid if the suspending fluid is non-Newtonian. For ex-
ample, it is well known that in simple shear flows the orientation vector slowly drifts
towards the vorticity axis (see [36], [39]), while Jeffery’s model predicts periodic or-
bits. A simple correction to Jeffery’s equation accounting for this effect has been
proposed in [20], where the expression for the effective velocity gradient is changed
to

M̃ = κ⊤ − 2ǫD − 4c
D ·D
γ̇

,

where D = 1
2

[
κ+ κ⊤

]
is the rate of strain tensor and γ̇ =

√
1
2
D : D is the shear rate;

c and ǫ are real parameters.

1.2.2 Orientation distribution function

An equation ṗ = (I − p⊗ p)f(p), where p : Sd−1 → R
d, defines a vector field on the

d−1-dimensional sphere Sd−1. If the associated flow transports some quantity ψ that
is defined on the sphere, then the law of conservation of this quantity is given by the
Liouville equation ∂ψ

∂t
= −∇p · (ṗψ), where ∇p is the gradient operator on the sphere.

We are mainly interested in the case d = 3, so let us illustrate the calculus of the
sphere embedded in R

3. We introduce the spherical coordinates (Figure 1.2).

Figure 1.2: Spherical coordinates (φ, θ) of a vector p ∈ S2

The sphere is parametrized by the set of unit vectors

S2 = {(cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)) : 0 ≤ φ < 2π, 0 ≤ θ ≤ π} .
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The gradient on S2 is the angular part of the 3-dimensional gradient,

∇p =




cos(φ) cos(θ)
sin(φ) cos(θ)
− sin(θ)



 ∂

∂θ
+

1

sin(θ)




− sin(φ)
cos(φ)

0



 ∂

∂φ
.

We will frequently make use of an equivalent formulation based on the angular mo-
mentum ω = p× ṗ instead of the velocity ṗ. A differential operator called the rotation
operator is very useful in angular velocity formulation. It is defined by Rp := p× ∂

∂p

or componentwise by

Rp =




− cos(φ) cos(θ)
− sin(φ) cos(θ)

sin(θ)



 ∂

∂φ
+




− sin(φ)
cos(φ)

0



 ∂

∂θ
.

For ω = p× ṗ it holds Rp · ω = ∇p · ṗ. The integration by parts rule is
∫

S2

uRpvdσ(p) = −
∫

S2

vRpudσ(p) (1.2)

for sufficiently smooth (say, C1) u and v, see [14] for a proof.
Let us introduce the fibre orientation distribution function ψ(x, p) measuring the

probability density for an arbitrarily chosen fibre near x ∈ Ω to have the orientation p.
More precisely, by assumption, for x ∈ Ω there exists a representative volume Vx ⊂ Ω
containing x and sufficiently many fibres. Let Σ ⊂ Sd−1 be a (measurable) subset of
the orientational space containing no antipodal points (i.e, if p ∈ Σ, then −p /∈ Σ),
then the probability of finding an arbitrary fibre from Vx having an orientation in Σ
is given by the integral 2

∫
Σ
ψ(x, p)dσ(p).

Being a probability distribution function, ψ must satisfy three properties:

1. non-negativity: ψ(x, p) ≥ 0,

2. symmetry: ψ(x, p) = ψ(x,−p) for all (x, p) ∈ Ω × Sd−1 and

3. normalization:
∫
Sd−1 ψ(x, p)dσ(p) = 1.

The law of conservation of probability is the Liouville equation:

∂ψ

∂t
= −∇p · (ṗψ). (1.3)

Taking into account the transport of the material in the domain Ω, time derivative
should be replaced by the material derivative: Dψ

Dt
= −∇p · (ṗψ).

1.2.3 Fibre-fibre interactions and concentration regimes

The orientation of a fibre is affected by interactions with other fibres. One distin-
guishes between long range and short range hydrodynamical interactions and me-
chanical contacts between the fibres; the dominant type of interactions depends on
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the concentration of the suspension. The most important variables determining the
concentration regime are fibre number density nf (the average number of fibres in
a unit volume), fibre length lf and diameter df . The fibre volume fraction φf can
be expressed through the fibre number density and the volume of a single fibre; for

cylindrical fibres we obtain φf =
πnfd

2

f
lf

4
. Fibre suspensions are classified in three

regimes - dilute, semi-dilute and concentrated (see [17], [58]).
If nf l

3
f < 1, then the average distance between neighbouring fibres is larger than

the fibre length. It is generally assumed that the perturbations caused by a fibre
can noticably affect the orientation of other fibres only across a limited distance
comparable with fibre length O(lf), therefore the fibre-fibre interaction are negligible.
This is called the dilute regime. If the average distance between the fibres is larger
than the fibre diameter df but shorter than the fibre length lf , then the suspension is
called semi-dilute; this regime is characterized by nf l

3
f > 1 and nf l

2
fdf < 1. Here the

fibres are close enough for long- and short-range hydrodynamic interactions to play an
important role. Finally, if the average distance between the fibres is smaller than the
fibre diameter (nf l

2
fdf > 1), then the suspension is classified as concentrated. Here a

change of orientation of a single fibre is impossible without turning the surrounding
fibres and mechanical contacts between the fibres are dominating.

Intuitively, long range hydrodynamical interactions can be thought of as small
perturbations in velocity field near a test fibre, which cause a smooth and small devi-
ation of orientation. Short range hydrodynamic interactions are rather like collisions,
that ”kick” the fibre. Direct mechanical contact between fibres leads to a complicated
behaviour, featuring formation of fibre bundles, clusters or networks (flocculation),
where the dynamics of a fibre is strictly constrained by the neighbours. For a short
review of the microscale modelling of these processes see Section 1.2.7. In dilute and
semi-dilute cases the fibre-fibre interactions can be modelled in an average sense

The fibre-fibre interactions result in deviations from Jeffery’s orbits. By denoting
the perturbation of the velocity in the orientation space by Fr, the correction can be
added to Jeffery’s equation:

ṗ = (I − p⊗ p) · (Mp + Fr); (1.4)

in the angular velocity formulation the perturbed Jeffery’s equation is ω = p× (Mp+
Fr). In the dilute and semi-dilute regimes the perturbation Fr is usually modelled as
a vector valued random process. Assuming that the perturbations have no preferred
direction and are not correlated in time, we get vanishing mean value E{Fr(t)} = 0
and the autocorrelation function E{Fr(t1) · Fr(t2)} = 2DrIδ(t1 − t2), where Dr is
called the rotary diffusion coefficient. Thus Fr(t) is a white noise random process,

Fr(t)dt =
√

2Drdw, (1.5)

where w(t) is the vector valued Wiener process. Thus (1.4) is interpreted as a stochas-
tic differential equation on the unit sphere, i.e., a Langevin equation.

This Langevin equation can be used for Brownian dynamics simulation, see [56],
[20]. Other approach is to calculate the average probability flux due to the Brownian
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term utilizing the fibre orientation distribution function ψ(x, p) and applying Ito’s
formula ([26], [56]). If the stochastic differential of p is given dp = Frdw(t), then
for a function ψ(p) Ito’s formula gives dψ(p) = Dr∇2

pψdt +
√

2Dr∇pψdw(t). Cal-
culating the mean value, we obtain a diffusion equation on the sphere: dE(ψ(p)) =
Dr∇2

pE(ψ)dt. Interpreting the rate of change of ψ as a flux on the sphere, we obtain

the mean value of the flux due to the white noise process: ṗ = −Dr

ψ
∇pψ. This

procedure recovers the equation given in [22]:

ṗ = Mp− (M : p⊗ p)p− Dr

ψ
∇pψ. (1.6)

In the angular velocity formulation ω = p × ṗ the probability conservation law can
be written as ([17])

Dψ

Dt
= −Rp(ωψ) (1.7)

where D·
Dt

= ∂·
∂t

+ v · ∇x is the material derivative.
In [22], Fransisco Folgar and Charles L. Tucker III propose to choose the rotary

diffusion coefficient proportional to the shear rate: Dr = Ciγ̇, where the constant Ci
was selected to fit the experimentally observed orientation distribution. It has been
suggested that the isotropic rotary diffusion modelled by a scalar Ci might be too
restrictive, therefore anisotropic versions have been proposed, see [60], [39], [20]. In
these models the equations are modified to accomodate Ci as a symmetric positive
definite second rank tensor. However, the scalar model is preferred due to difficulties
of parameter estimation for the tensorial model.

It is generally assumed that Ci is a function of concentration. This function is
known to increase for low concentrations, to reach a peak at a critical concentra-
tion and then to decrease. Petrich et al have studied the fibre orientation diffusion
experimentally in [57]. They find that the peak is reached at the concentration
nf l

2
fdf ≈ 0.5 . . . 0.8, which corresponds to the transition from semi-dilute to concen-

trated regime. This effect can be incorporated within the Folgar-Tucker mocel by
changing Ci appropriately, however, such models do not explain the physical reasons
behind this phenomenon. In fact, the decrease of Ci can be explained using the con-
cept of excluded volume, see [57], where a nematic potential is introduced to model
this effect. We discuss the related concepts in Section 2.1.

Models including both translational (in Ω) and rotational (in Sd−1) diffusion are
discussed e.g. in [17] and [14]. We assume the fibre concentration to be constant in
Ω and therefore focus exclusively on orientational dynamics.

1.2.4 Folgar-Tucker equation

For a nonnegative integer n we introduce the moment

a(n) =

∫

Sd−1

pnψ(p)dσ(p).
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It is a completely symmetric tensor of rank n. The antipodal symmetry of ψ implies
that the odd order moments vanish, i.e., a(2n+1) = 0. The equations for the moments
are obtained from the Smoluchowski equation (1.7) by multiplying both sides with
pn and integrating over the configurational space Sd−1; in particular, we get

ȧ(2) = −
∫

Sd−1

p⊗ p
[
Rp(ωψ) −DrR

2
pψ
]
dσ(p). (1.8)

The second order moment was introduced by Advani and Tucker in [1], where the
importance of this orientation structure tensor for both suspension rheology and the
material properties in the solid phase is stressed. Plugging ω = p× ṗ with (1.6) into
(1.8) and integrating by parts using (1.2) gives

ȧ(2) =

∫

S2

Rp(p⊗ p)(ψp×Mp)dp +Dr

∫

S2

R
2
p(p⊗ p)ψdp.

The third rank tensor Rp(p⊗ p) for d = 3 has the following components:

Index (i, j) Component Rp(p⊗ p)ij
(1, 1) 2(p3p1e2 − p1p2e3)
(2, 2) 2(p1p2e3 − p2p3e1)
(3, 3) 2(p2p3e1 − p3p1e2)

(2, 3) or (3, 2) (p2
2 − p2

3)e1 + p3p1e3 − p1p2e2
(3, 1) or (1, 3) (p2

3 − p2
1)e2 + p1p2e1 − p2p3e3

(1, 2) or (2, 1) (p2
1 − p2

2)e3 + p2p3e2 − p3p1e1,

where ei form the standard basis of R
3. Further, R2

p(p ⊗ p) = (2I − 6p⊗ p). Using
these identities, integrating and recalling the definition of moments yields

ȧ(2) = M · a(2) + a(2) ·M⊤ − (M +M⊤) : a(4) + 2Dr(I − 3a(2)), (1.9)

which is the most used variant of the Folgar-Tucker model and is often called the
Folgar-Tucker equation in the open form. Note that the right-hand side of (1.9)
depends on the moment a(4).

1.2.5 Closure approximations

The equation (1.9) is not closed in the sense that given only a(2) and M , the term
(M + M⊤) : a(4) cannot be calculated. Moreover, as pointed out by Hinch and Leal
in [34], the equation for the moment a(2n) always contains the higher order moment
a(2n+2). In the modelling part we will show that, in general, higher order moments
do not depend on the lower order moments. Hence, the approach of computing the
evolution of moments of ψ without knowing ψ itself requires an approximation of an
unknown moment tensor.

Closure rules expressing a(6) in terms of lower order moments have been developed
(see [37]), however this approach is found to increase the computational costs with-
out providing a higher accuracy, therefore we focus on the classical closure problem,
namely, to approximate a(4) in terms of a(2).
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We return to the problem of closure approximations in Section 2.2; here we review
some of the closure relations, i.e., formulae of the form a(4) ≈ f(a(2)) that have been
proposed in scientific literature.

The most simple closure relation is the quadratic closure ([34], [2]):

a
(4)
quadratic = a(2) ⊗ a(2). (1.10)

This closure relation is exact for an uniaxial distribution, i.e., if a(2) = p0 ⊗ p0 for a
vector p0 ∈ Sd−1, then the orientation distribution ψ is uniquely determined: ψ =
1
2
[δp0 + δ−p0], and it holds a(2n) = p2n

0 , hence (1.10) is exact. However, in most
other cases the quadratic closure is a poor approximation to the exact value of a(4).
Nevertheless, this approximation is still often used in simulations (see e.g. [64]) mainly
due to the appealing simplicity (resulting in low computational costs) and certain
stability considerations. For example, in [53] it is demonstrated that the application
of the quadratic closure for computing the stress in suspension is consistent with the
second law of thermodynamics and that the suspension flow is energetically stable
in the sense that the kinetic energy of the fluid is never increasing in the absence of
external forces.

Even older is the linear closure proposed in [30]; this approximation (which is
discussed further in Section 2.2.3) is given by

(
a

(4)
linear

)

ijkl
=

1

7

[
a

(2)
ij δkl + a

(2)
ik δjl + a

(2)
il δjk + a

(2)
jk δil + a

(2)
jl δik + a

(2)
kl δij

]
−

1

35
[δijδkl + δikδjl + δilδjk] ,

where δi1i2 is the Kronecker symbol. The linear closure approximation is exact for
isotropic orientation state, however, it is known to lead to unphysical results, e.g.,
violating the non-negativity of ψ, and hence is not used in pure form.

Advani and Tucker have proposed the hybrid closure (see [1, 2]) as a convex
linear combination of the linear and quadratic closures:

a
(4)
hybrid = fha

(4)
quadratic + (1 − fh)a

(4)
linear,

where fh = 1 − dddet(a(2)). In the paper [2] Advani and Tucker analyze several
closure approximations available at that time (including the ones proposed by Hinch
and Leal in [34]). Their results suggest that the approximations designed to be exact
for a certain fibre orientation state or a specific flow tend perform poorly for other
data.

A remedy is more general closure approximations containing parameters that can
be tuned to fit to the exact data. Verleye and Dupret have proposed the natural

closure in [80] starting with such a general expression:

(
a

(4)
nat

)

ijkl
= β1S (δijδkl) + β2S (δija(2)kl) + β3S (a

(2)
ij a

(2)
kl ) +

β4S (δija
(2)
ij a

(2)
kl ) + β5S (a

(2)
ij a

(2)
kma

(2)
ml ) + β6S (a

(2)
ima

(2)
mja

(2)
kna

(2)
nl ),
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where we sum over repeating indices, the symmetrization operator S is averaging
the tensor under all possible permutations of the indices and βi are real parameters.
Since the closure relation should be objective (independent on the choice of coordinate
system), the constants βi may only depend on the invariants of a(2), given by I2 =
1
2

[
Tr(a(2))2 − Tr(a(2) · a(2))

]
and I3 = det(a(2)). The first invariant, I1 = Tr(a(2)), is

constant and equals 1 by the normalization of ψ. Further constraints (see [19], [28])
reduce the number of independent βi to three.

For planar flows Verleye and Dupret find analytical expressions for βi ([80]) basing
on the analytical solution of (1.7) with Ci = 0 and λ = 1. For three-dimensional flows
they propose to express βi as polynomials in I1 and I2 with coefficients fitted with
a least squares algorithm, exploiting the data of a(2) and a(4) obtained from direct
simulations of (1.7) for prescribed flow fields.

The very same procedure for liquid crystal flows is carried out in [28].
More recently, Chung and Kwon ([12]) have developed the approach of natural

closure, proposing the IBOF (Invariant based optimal fitting) closure, which is con-
structed by fitting the coefficients of certain polynomial expressions βi(I2, I3).

A closely related approach using the eigenvalues of a(2) instead of the invariants
leads to the family of orthotropic fitted closures (ORF) proposed by Cintra and

Tucker in [13]. The tensor a
(4)
ORF is assumed to be orthotropic and to have the same

principal axes as a(2).
Several variants of ORF closures have been published in the literature, differing

in details of the fitting process and choice of parameters for (1.7), cf. Verveyst ([81]),
Chung and Kwon ([11]). The main drawback of the ORF closure family is the need to
compute the eigenvalues and eigenvectors of a(2), thus slowing down the computation
of the closure.

A review comparing some of the fitted closure approximations can be found e.g.
in [11].

As a general remark, there is always a trade-off between the computational costs
and quality of the approximation. When the fibre orientation must be computed with
high accuracy, a fitted closure such as IBOF should be preferred. In the framework
of this thesis, however, we are interested in the behaviour of certain fibre orien-
tation models rather than the effect of closure approximations. For the numerical
experiments a prototype closure relation is needed, and we prefer a simple and well
understood closure over a highly accurate one. For this reason we have chosen the
quadratic closure (1.10). Nevertheless, the scope of our theoretical analysis extends
to a broad class of different closures including the aforementioned ones.

1.2.6 Rheology of fibre suspensions

At the microscale the fluid field variables such as stress T , velocity v and pressure
P fluctuate rapidly due to the inhomogeneities introduced by the fibres. The macro-
scopic field variables are obtained by applying a homogenization technique (see [35]
and references therein). For a suspension in Newtonian fluid the homogenized stress
can be shown to be linear in the strain rate so that the constitutive relation has the
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form
T = η : D,

where η is a fourth-rank tensor with the symmetries ηijkl = ηklij = ηjikl. In praxis,
determining the viscosity tensor requires solving a micromechanical problem for a
representative volume for various configurations and boundary conditions; this is a
major task of rheology. Again it is found that the dominating mechanisms increasing
the stress in suspension depend on the concentration. For dilute suspensions the
dominating extra forces are originating from fluid-fibre interactions, for semi-dilute
suspensions hydrodynamic fibre-fibre interactions have a larger contribution, while
for concentrated suspensions the effects from mechanical contacts between the fibres
dwarf the other contributions to the stress ([44]).

A lot of theoretical work has been devoted to studies of dilute and semi-dilute
suspensions in a Newtonian liquid. Usually the stress in the suspension is decomposed
in a matrix part and fibre part:

T = −PI + 2ηsD + S,

where P is hydrostatic pressure, D = 1
2

[
κ+ κ⊤

]
, κ = ∇v, v is the average fluid

velocity in the suspension and ηs is the viscosity of the matrix. S is the extra stress
term due to the presence of the fibres.

Suspended fibres transfer force to the surrounding liquid through surface traction,
thus contributing to the stress in the suspension. Estimating the averaged hydro-
dynamic stress is a difficult task since the perturbations introduced by the fibres
propagate over large distances. Batchelor (see e.g. [5]) has studied the stress in semi-
dilute suspension of aligned slender rods. He introduced the concept of an isolated
cell, assuming that the perturbations caused by fibres outside the cell are screened
by the fibres in the cell and thus do not influence the suspension in the cell. For the
extra stress he found the following expression:

S = ηf

[
a(4) − 1

3
I ⊗ a(2)

]
: D.

Dinh and Armstrong ([15]) have generalized this approach for arbitrary fibre orien-
tation. Shahfeq and Fredrickson ([68]) dismiss the concept of cell and compute the
stress, accounting for the effects from all mutually interacting fibres in the infinite
suspension.

The result of such modelling work is a constitutive relation of the general form
given in [2]:

Sij = cηs

[
Aκkla

(4)
ijkl +B(κika

(2)
kj + a

(2)
ik κkj) + Cκij + 2Fa

(2)
ij Dr

]
,

where c, A, B, C and F are material constants. The exact expressions for these
constants are reviewed in the literature, cf. [48], [2] and [58]. For non-Brownian fibre
suspensions the constitutive relation can be rewritten in a convenient form (see [2])

T = PI + η
[
κ+Npκ : a(4) +Ns(a

(2) · κ + κ · a(2))
]
, (1.11)
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where η is the effective suspension viscosity, representing the isotropic components of
viscosity from both the matrix and the fibres, and Ns and Np are parameters called
the shear number and the particle number (see [2]).

The model by Dinh and Armstrong ([15]) predicts the following results.

Ns = 0, Np =
φr2

a

3ln(2hf/d)
,

where hf is a typical distance between two neighbouring fibres, which depends on the
volume fraction and type of orientation:

hf =
df
2

√
π

φ

for aligned fibres (uniaxial orientation distribution) and

hf =
πdf
4φra

for isotropic orientation distribution.
For fibres with finite aspect ratio ra the shear number Ns has a nonzero value,

however, already for moderate aspect ratios ra > 10, Ns is negligibly small in com-
parison with Np (see [2]). Thus using the slender body approximation Ns = 0 is
justified.

At concentration levels where the direct mechanical contacts between the fibres
become important, the theories based on hydrodynamical fibre interactions fail (see
[5], [49], [57], [44]). In fact, the stress can be showed to be proportional to the
number of fibre contacts per unit volume ([18]). For flat 2D geometries Le Corre et
al ([43], [44]) neglect the suspending liquid, considering the whole suspension as a
net of rigid rods linked by viscous point interactions of power law type. They show
that, depending on the relation of local translation and rotational viscosities, the
suspension is an effective Cauchy or Cosserat medium.

1.2.7 Simulation techniques

Simulations of fibre suspension flow can be performed at different resolutions. The
most detailed are fibre level simulations, where each fibre is resolved individually, and
the positions and forces acting on each fibre are computed directly. High accuracy
is reached at the price of high computational costs. In multiscale aproaches the
evolution of microstructure is computed directly in certain small cells distributed
over Ω. The microstructure is used to compute the orientation tensors, which are
then used to calculate the macroscopic stress. An example the multiscale aproach
is the CONNFFESSIT method. To decrease the computational costs further, the
suspension can be considered in the mesoscale only. The microstructure is described
by orientation tensor field, which evolves according to Folgar-Tucker model. The
advantages and disadvantages of each aproach are discussed in [61].
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Microscale simulations. Simulations resolving the dynamics of individual fibres
are useful for testing suspension models as well as to study the processes in suspen-
sions that are not accessible by means of physical experiments. For example, [85]
use a direct simulation method by including the short-range hydrodynamic interac-
tions using the lubrication approximation and ignoring the long-range hydrodynamic
interactions. In [49] the fibres are approximated as slender bodies, but all types of
hydrodynamical interactions are included and simulations are done for concentrations
varying from dilute to semi-dilute. Frictionless mechanichal fibre contacts have been
included in [74]. See also [10], [51], [20].

Multiscale simulations. A compromise between the expensive fibre level simu-
lations and the coarse grained (and suffering from closure approximations) mesoscale
simulations is the CONNFFESSIT method (Calculation of Non-Newtonian Flow: Fi-
nite Element and Stochastic Simulation Technique, see [56]). Here the flow equations
are solved by a finite element method, but Brownian dynamics simulation is applied
in selected cells for calculating the fibre orientation.

Mesoscale simulations. This computationally cheapest method solves the non-
Newtonian flow equations coupled to the fibre orientation equations. Several methods
have been proposed to solve non-Newtonian flow problems, for instance, finite differ-
ence, finite volume, finite element, boundary element and spectral methods, see [35]
for a review.

Different techniques have been proposed to implement the coupling of the flow to
the fibre orientation field. Lipscomb et al. ([48]) use the full alignment assumption,
namely, the fibres are oriented along the tangents to the respective streamlines, to
compute the flow in a planar contraction domain using a finite element method for the
flow equations. Rosenberg et al. ([65]) seek a steady-state solution, using a FEM ap-
proach to discretize the flow equations and integrating the hyperbolic Folgar-Tucker
system along the streamlines. This procedure is iterated until convergence is reached.
Reddy and Mitchell ([63]) analyze a finite element method for the coupled problem,
using a standard Galerkin method for the momentum equation and a discontinuous
Galerkin method for the Folgar-Tucker equation. The orientation field from the pre-
vious time-step is used to compute the stress tensor. Apart from theoretical studies,
there exists a range of commercial software, see [59].

1.3 Review of long fibre suspension theory

As we have seen, several models for rigid fibre suspension flows have been proposed
and are used for simulations. Obviously, the microstructure of semiflexible and flex-
ible fibre suspensions is more complicated than the one for rigid fibres, due to the
additional degrees of freedom needed to describe the dynamics of a deformable body.
Since the effects of flexibility scale with fibre length, semiflexible fibres are typically
longer than rigid ones. Hence non-local effects play a more important role. Due to
these and other complications, the most of the proposed models of long semiflexible
fibre suspensions are based at the microscale, i.e., fibre level models, and are therefore
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computationally expensive. Only a few ansatzes for mesoscale models exist.
The first part of this short survey describes some qualitative properties of dilute

long fibre suspensions in low Reynolds number flows as observed experimentally. In
the next part we briefly touch some microscale based approaches used for fibre level
simulations. Finally we review some work that has been done towards modelling
semiflexible fibre suspensions in mesoscale.

1.3.1 Experimental results

The cruical difference distinguishing flexible fibres from rigid ones is the ability to
bend under applied forces. In dilute suspensions the forces arise from fluid-solid
interactions. A lot of experimental work has been devoted to studies of the defor-
mations of a single flexible fibre undergoing a rotation in a shear flow. Forgacs and
Mason ([23]) have classified the observed fibre orbits in several orbit classes. A scalar
parameter - flexibility - is found to determine the type of orbit (see also [70]). The
concept of flexibility is discussed in Section 2.3.1.

At low flexibility the fibres rotate as rigid rods, obeying Jeffery’s model (class
I). With increasing flexibility, the fibre describes a class II orbit (springy rotation or
C-turn), where the fibre is deformed in the shape of an arc in the fastest part of the
orbit. The next is the class IIIa orbit - loop turn or S-turn and the IIIb orbit - snake
turn. A feature of all of these orbits is that the fibre straightens out in the phase of
minimal acting forces, i.e., when the fibre is oriented closely to the flow direction. At
higher value of flexibility the fibres perform a snake turn like orbit, never straightening
out completely. This characterizes a class IV orbit, complex rotation. The periods of
the orbits are increasing with increasing flexibility. Thus, the results of Forgacs et al.
show that the dynamics of a single suspended fibre depend on the flexibility, which
itself depends on the shear rate, bending stiffness and fibre length.

Already at low volume fractions the mutual interactions of flexible fibres play
an important role. Even rare collisions among the fibres may easily lead to mutual
entanglement, thus forming small isolated regions with high fibre concentration called
flocs.

It is well known that the shape of fibres has a significant influence on the bulk
viscosity of the suspension, cf. [7]. For example, it has been observed that slightly
curved fibres bent in the shape of a circular arc with the normal vecors to the centerline
at both endpoints forming an angle of 176 degrees increase the viscosity as much as
by 13% over that for a suspension of straight fibres, other parameters being equal
(see [39] and references therein).

1.3.2 Microscale models

Various models for a single flexible fibre have been proposed and used in simulations.
Stockie ([71], [70]) describes the surface of a 3D fibre as an interwoven net of one
dimensional elements using the immersed boundary method. Tornberg and Shelley
([77]) approximate the fibre (filament) with an inextensible slender body. In models
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of this type the fibre acts on the surrounding fluid through a force defined along the
centerline. Another important class of fibre models are the bead models, where the
fibre is modelled as a string of spherical, ellipsoidal or cylindrical segments connected
by rigid connectors. The fibre interacts with the fluid at points associated with the
beads, which experience external hydrodynamic forces (Stokes drag and lubrication
forces) and internal forces (modelling bending stiffness).

Yamamoto and Matsuoka ([83], [84]) simulate the dynamics of bead chains sus-
pended in a shear flow. Here a fibre consists of spheres connected with springs with
additional potentials to mimic resistance to bending and twisting. Ross and Klin-
genberg ([66]) employ a chain of rigid prolate spheroids connected through ball and
socket joints. Joung et al. ([39]) consider connectors that can bend and twist to a
limited amount. A similar model has been implemented by Tang and Advani ([75]).

The microscale models cannot be used for direct simulations of industrial suspen-
sion flows due to the high computational costs. However, the microscale models can
be used as ingredients for CONNFESSIT like multiscale simulations.

1.3.3 Mesoscale models

The progress towards developing mesoscale based models of flexible fibre suspensions
is slow due to the complexity of the problem. Hinch has given one of the first theoret-
ical works studying the motion of a single inextensible flexible thread in a Newtonian
fluid, cf. [32]. The stress generated by macroscopic strain applied to a semidilute long
fibre suspension has been studied by Doi and Kuzuu in [16]. However, in most of the
recent works the stress in a long fibre suspension is computed under the assumption
that the fibres remain nearly straight at all times, thus the stress is computed from
the fibre orientation tensor from the relations derived for short fibre suspensions (see
[39]). The simulation is multiscale in the sense that the evolution of fibre orientation
is computed in a fibre level simulation, using hundreds or thousands of fibres per
element and making appropriate averages.

Recently Rajabian et al have developed a mesoscale model of semiflexible fibre sus-
pensions in polymeric fluids, taking into account fibre-fibre interactions, fibre-polymer
interactions and the semiflexible nature of the fibres ([61]). The fibre orientation is
described by the moment tensor a(2), a similar tensor field is introduced to describe
the orientation of the rodlike polymer molecules. In this model, the tensor field a(2)

evolves according to a Folgar-Tucker like equation with an additional dissipation po-
tential, which incorporates both fibre-fibre and fibre-polymer interactions and the
fibre flexibility through the Khokhlov-Semenov potential.

1.4 Objectives and structure of the thesis

This thesis is concerning with modelling, analysis and implementation of mesoscale
models of fibre suspensions. The main objectives of the thesis are:

• for modelling part : developing mesoscale models for fibre orientation dynamics
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in suspensions, incorporating the excluded volume effect for concentrated short
fibre suspensions and semiflexibility for dilute long fibre suspensions.

• for analysis part : analyzing well-posedness of the coupled system of mass and
momentum conservation laws and fibre orientation dynamics equations with a
non-Newtonian constitutive relation in a general formulation.

• for implementation part : a finite volume based implementation capable of ac-
comodating various mesoscale based fibre suspension flow models, based on an
existing implementation for complex rheology problems.

The thesis is organized as follows.
In Chapter 2 we consider the derivation of mathematical models. The first part

is concerned with modelling of flow driven orientational dynamics in concentrated
short fibre suspensions. The local orientation state is described in terms of moments
of orientational distribution function, the orientational dynamics of a fibre is assumed
to be a superposition of dynamics governed by Jeffery’s equation and perturbations
due to fibre-fibre interactions. The interaction part is modelled as a combination
of a diffusive part familiar from the Folgar-Tucker theory and a part arising from
geometrical constraints to the rotation of an elongated rigid body in a complex ge-
ometry characteristic for a concentrated suspension. The geometrical constraints are
described in an averaged sense by using the excluded volume concept. A generaliza-
tion of the Folgar-Tucker model is derived. In the second part we study the problem
of closure approximation, which is an integral part of moment based models. A gen-
eral procedure for deriving the familiar linear and quadratic closures is proposed. In
the third part we consider the suspensions of semiflexible fibres, i.e., fibres capable of
slight bending into a C-shaped form. The orientation of a fibre is described by a set of
two unit vectors, leading to a local orientational distribution function depending on
two orientational variables. The moments of such functions are linear combinations
of the coefficients of the bispherical harmonics expansion. In the moments descrip-
tion, local orientational state of a semiflexible fibre suspension is described by a first
order moment and two second-order moments. The closure problem arising in the
moments formulation is investigated in the fourth part of this Chapter. We derive
three variants of linear closure, a polynomial closure and a hybrid closure.

Chapter 3 is devoted to the analysis of well-posedness (existence, uniqueness
and continuous dependence on the data) of the system consisting of a model devel-
oped in Chapter 2 and macroscopic flow equations described by an incompressible
Navier-Stokes equation, which is coupled to the orientation equations through a non-
Newtonian constitutive relation. We prove the existence and uniqueness of a weak
solution locally in time for sufficiently small data. Some of the fibre orientation mod-
els need to be regularized, e.g., the definition of the shear rate γ̇ near the origin for
Folgar-Tucker like equations and the velocity curvature field µ for the semiflexible
fibre models need to be smoothed (mollified). In order to prove the existence of a
solution, the system is formulated as a fixed-point problem for a mapping consisting
of a solution operator to a Stokes equation and a solution operator to a linearized
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transport equation, and the existence is proved by Schauder’s principle. The contin-
uous dependence of the solution on the data is demonstrated near the trivial solution
for vanishing data.

Numerics and computational experiments are presented in Chapter 4. We start
with comparing the closure approximations for the semiflexible fibres model in two-
dimensional case and find that the polynomial closure is the most robust choice, and
is therefore recommended for implementations. In the second part we present a fi-
nite volume discretization for complex rheology problems, which is implemented in
the CoRheoS (Complex Rheology Solver) software, and describe an upstream dis-
cretization of the transport equations modelling the fibre orientation dynamics. The
third part summarizes the simulation results obtained by using the model developed
in Chapter 2.1 in two and three dimensional domains, and validates the results for
the Folgar-Tucker limit against experimental results and simulations published in
scientific literature.

The work is summarized and conclusions are drawn in Chapter 5.
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Chapter 2

Modelling

This chapter is concerning with mesoscale modelling of fibre orientation dynamics
described by fibre orientation tensors. In the first part a nematic potential is in-
corporated in the framework of Folgar-Tucker model, aiming to study the effects
of excluded volume in concentrated short fibre suspensions. In the second part a
method for constructing simple closure approximations is presented and the familiar
linear and quadratic closures are reconstructed. The third part is concerning with
semiflexible fibre suspensions. A semiflexible fibre is modelled as a system consisting
of three connected beads, and from the dynamics of a single fibre evolution equations
for low order statistical moments of orientation distribution function are derived. The
last section is dealing with the closure problem that origins from the semiflexible fibre
model. We use the techniques developed in Section 2.2 to construct closures.

2.1 Concentrated short fibre suspensions

As discussed in [57], a decrease of effective rotary diffusivity as a function of concen-
tration has been observed at fibre concentration nf l

2
fdf > 0.5 . In most models the

effective rotary diffusion is expressed through the Folgar-Tucker coefficient Ci deter-
mined in an empirical way. However, the physical reasons behind rotary diffusivity
are quasi-random fibre-fibre interactions, and there is no reason to believe that the
frequency of interactions would decrease with increasing concentration. A physical
explanation of this phenomenon can be achieved by using the concept of the excluded
volume.

Let us consider a test fibre in a concentrated suspension. The test fibre has several
geometrically close neighbours, which impose geometrical constraints for the position
and rigid body motion of the test fibre.

Let us denote the fibre length by lf and the diameter by df . Let the orientation of
a background fibre be denoted by p1 ∈ S2, and consider a test fibre with orientation
p ∈ S2 located near the background fibre. The domains occupied by the test fibre
and the background fibre partially overlap if the geometric center of the test fibre is
located in a certain parallelepiped shaped region around the geometric center of the
background fibre as illustrated in Figure 2.1.
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Figure 2.1: Illustration of the excluded volume concept. A background fibre with
orientation p1 does not leave space for a test fibre with orientation p within the
sketched volume.

The volume of this region is approximately Vex(p, p1) = rf l
2
f |p× p1| and is called

the excluded volume.
In a mesoscale description we think of the test fibre as located in a background

mean field enforced by the surrounding fibres. The excluded volume effect can be
modelled as an additional potential acting on the test fibres, thus Jeffery’s equation
(1.6) is modified:

ω = p× (Mp) − Dr

ψ
Rpψ − RpU(p, ψ). (2.1)

The potential U can be derived by using entropic considerations (cf. [45]). Fibre
structures with locally aligned orientation state occupy less volume than disordered
structures, hence at a fixed concentration an ensemble of locally aligned fibres has
more degrees of freedom and thus larger entropy than a disordered ensemble. This
observation gives a qualitative explanation of the fact that at high concentrations the
fibres show a collective orientational behaviour like the molecules of a liquid crystal
in the nematic phase.

L. Onsager proposed the following expression for the potential:

UOnsager(p, ψ) =

∫

S2

Vex(p, p1)ψ(p1)dσ(p1) = rf l
2
f

∫

S2

|p× p1|ψ(p1)dσ(p1),

see [55], [17], [14]. The lack of smoothness of the kernel |p× p1| causes difficulties to
work with this potential. A commonly used approximation of the Onsager potential
has been proposed by Maier and Saupe (see [50] or [14] for a modern exposition)

UMS(p, ψ) = rf l
2
f

∫

S2

|p× p1|2ψ(p1)dσ(p1).
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Using the Lagrange identity |p×p1|2 = |p|2|p1|2−(p·p1)
2, the integral can be evaluated:

UMS(p) = rf l
2
f(1 − a(2) : p⊗ p).

The potential reaches its minimum at the points where a(2) : p ⊗ p is maximal, i.e,
when p is an eigenvector of the matrix a(2) with the largest eigenvalue. Thus, the
force due to the Maier-Saupe potential drives the test fibre towards the average mean
field orientation, resisting thereby the rotary diffusion and explaining the observed
decrease in effective rotary diffusivity. We use a potential proportional to Maier-Saupe
potential, namely,

U(p, ψ) = N0(1 − a(2) : p⊗ p). (2.2)

In general, the constant N0 may depend on the parameters of the suspension.
The function ψ satisfies the Smoluchowski equation (1.7) with ω = p× ṗ and (2.1)

- (2.2). The equation for second order moment a(2) can be obtained by multiplying
both sides of (1.7) with p⊗p and integrating over the unit sphere. For the right hand
side we obtain terms that are familiar from the Folgar-Tucker model and an extra
term

−
∫

S2

p⊗ pRp

[
ψRp[N0(a

(2) : (p⊗ p) − 1)]
]

= 4N0

(
a(2) · a(2) − a(4) : a(2)

)
.

By setting N0 proportional to the shear rate: 4N0 = U0γ̇, we obtain a generalized
Folgar-Tucker equation for concentrated suspensions in the following form:

D
Dt
a(2) = a(2) ·M +M⊤ · a(2) − (M +M⊤) : a(4)

+γ̇
{
Ci(I − 3a(2)) + U0(a

(2) · a(2) − a(2) : a(4))
}
.

(2.3)

This model contains two scalar parameters: the Folgar-Tucker rotary diffusivity
constant Ci and the Maier-Saupe coefficient U0. The physical interpretation of these
parameters is similar as for the Doi-Edwards equation describing the orientational
dynamics of macromolecules, cf. [14], namely, the term proportional to Ci drives
the suspension to the isotropic state, while the term with U0 drives it to an aligned
(nematic) state.

In applications of the model, the parameter values should be estimated, e.g., by
using a formula for calculating Ci from the parameters of the suspension and identify
the corresponding value of U0 by experimentally measuring the fibre alignment degree
in a shear flow, see Section 4.1. Note also that by setting U0 = 0 in (2.3), the Folgar-
Tucker equation is obtained.

2.2 On closure approximations

As described in Section 1.2.5, various closures have been proposed for the Folgar-
Tucker equation. Some of the proposed approximations have been taylored for the
specific application (such as the natural closure and the fitted closures), others can
be applied for various similar problems that arise in the field of statistical mechanics.
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This section aims to provide an unified treatment of the closure problem, explaining
and formalizing the ideas behind some of the most simple closure relations - the linear
and quadratic closures. A formal procedure for constructing analogous closures for
more general situations is formulated; in Section 2.4 it is applied to a new closure
problem.

We start with considering the parent model of the moment equations, namely, the
Smoluchowski equation. In the formulation (1.7) it is expressed in Eulerian coordi-
nates, where it is a degenerate parabolic equation for ψ(t, x, p) on [T0, T )×Ω×Sd−1,
since the diffusive term is acting only in the p space and not in the x space. In
Lagrangian coordinates formulation the convective partial derivatives in x direction
are eliminated, leaving a parabolic equation on the sphere:

ψ̇ = Rp [DrRpψ − p× qj(p)ψ + ψRpUMS(p, ψ)] , (2.4)

where qj(p) is the right-hand side of Jeffery’s equation. Observe that all components
of p×qj(p) = p×(Mp) as well as UMS are second order polynomials in the components
of p. Observe further that the operator Rp = p×∇p maps polynomials to polynomials,
and leaves the polynomial degree invariant.

By multiplying (2.4) with pn and integrating by parts, we obtain an equation
with respect to the moment a(n) with source term components given by the integral
of ψPn+2, where Pn denotes a polynomial of degree n. Hence the equation for the
n-th order moment can be written as ȧ(n) = fn(a

(n+2)). Since the odd order moments
vanish due to the symmetry of ψ, it suffices to consider the moments of even order
n = 2, 4, . . . In fact, the Smoluchowski equation is equivalent to the infinite system
of ordinary differential equations

ȧ(n) = fn(a
(n+2)), n = 2, 4, . . .

Clearly, this expansion is equivalent to the expansion of ψ in orthogonal polynomials
on the sphere, i.e., spherical harmonics for d = 3 and Fourier series for d = 2.

Numerical simulations cannot directly handle equation systems with infinite num-
ber of components, therefore a reduction to finite dimension is required. Let a finite
subset of the equations be chosen, and let the maximal order of a component be 2nl,
then the evolution of this component depends on components of a(2nl+2), which are
unknown by the assumption. To ensure the uniqueness of solution for the result-
ing underdetermined system of equations, it must be supplemented with additional
constraints of the form a(2nl+2) = f(a(2), . . . , a(2nl)) called closure approximations.

Let us provide a way of constructing the additional constraints so that the classical
linear and quadratic closure approximations are reconstructed for nl = 2. These
construction tools are used later in Section 2.4 for constructing analogous closures for
other problems.

2.2.1 Abstract formulation of the closure problem

By definition, the moments are linear operators on ψ, hence the closure problem can
be formulated as approximating an operator using a given set of other operators.
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Let H be a Hilbert space, and let H ′ be its dual space of continuous functionals
m : H → R. By Riesz theorem, H and H ′ are isomorphic, therefore the elements
of H ′ can be identified with the pendants in H . With this identification, the dual
pairing operator 〈·, ·〉H′,H : H ′ ×H → R defined as 〈m,ψ〉H′,H = m(ψ) = mψ equals
the inner product (m,ψ)H , with the short-hand notation mψ = ψm.

Let M ⊂ H be a countable set of functionals M = {mi : i ∈ N}. For every i ∈ N

mi is said to generate a moment mi : (ψ ∈ H) 7→ miψ ∈ R.
Let a subset I ⊂ M be given, we call the elements of I the accessible moments

and write I = {mi : i ∈ I0}, where I0 ⊂ N. The linear hull of the set I is denoted
by GI ⊂ H . The orthogonal projector from H to the subspace GI is denoted by
ΠI . Projectors are self-adjoint operators, in particular, for every mi ∈ M and every
ψ ∈ H it holds

(ΠImi)ψ = (ΠIψ)mi.

The closure problem can be formulated as follows. Suppose that for an unknown
ψ ∈ H the real values of miψ for i ∈ I0 are given. Let m ∈ M \I . Estimate mψ.

Example. For ψ ∈ H = L2(S2), consider the set of all components of the
moments a(n), thus M = {pi : i ∈ N

d
0} using multi-index notation. In the classical

setting the moments of order up to 2 are accessible: I = {pi : |i| ≤ 2}, and the
closure problem is formulated for each component of m ∈ {pi : |i| = 4} separately.

Due to the linearity of the moment operators, the values of the accessible moments
miψ uniquely determine the projection ΠIψ and vice versa.

The sought moment can be splitted as

mψ = m(ΠIψ) +m(Π⊥
Iψ), (2.5)

but the available information does not suffice for determining the last summand unless
m(Π⊥

I
ψ) = 0.

The set I is not necessarily orthonormal or even linearly independent in H . For
example, for the ”classical” closure problem the linear relation p2

1 + p2
2 + p2

3 − 1 = 0
holds. For technical reasons we prefer to work using an orthonormal basis. Let
{χi : i ∈ I1} be an orthonormal basis of GI , then χiψ can be computed as linear
combinations of miψ, and

ΠIψ = Σi∈I1
(χiψi)χi.

In the special case H = L2(Sd−1), mi polynomial and I containing polynomials
up to a certain degree, a suitable choice of the orthogonal basis for G is the Fourier
basis functions (d = 2) and the spherical harmonics (d = 3), see e.g. Appendix A in
[27].

2.2.2 Linear closure

The essence of the closure problem is to invert a projection operator. Indeed, given
m(ΠIψ) = (ΠIm)ψ, then formally

mψ = m(Π−1
I

ΠIψ).
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Of course, the projector ΠI is singular unless it is identity, hence the closure prob-
lem is ill-posed. We use a regularization technique, where the ill-posed problem is
approximated by a family of well-posed problems. In this case, the singular operator
ΠI is approximated by a family of regular operators (ΠI + αI), where α > 0 is a
regularization parameter and I is the identity operator. The inverse is given by

(ΠI + αI)−1 = (1 + α)−1ΠI + α−1Π⊥
I .

Thus the regularized closure problem can be solved as

mψ = m
[
(1 + α)−1ΠI + α−1Π⊥

I

]
ΠIψ = (1 + α)−1(ΠIm)ψ.

The limit α→ 0 is regular, and the last expression can be calculated from accessible
moments, thus we have found a unique solution to the regularized problem, which we
call the linear closure approximation, given by

(mψ)lin = (ΠIm)ψ. (2.6)

The decomposition (2.5) gives the following interpretation of the linear closure. Of
all the possible choices of ψ with a given projection choose the one with the least norm
in H . In other words, the unknown part is assumed to vanish: Π⊥

I
ψ = 0. The linear

closure is a linear combination of the accessible moments {miψ : i ∈ I0}, motivating
the name.

Examples. Let us consider the closure problem for the Folgar-Tucker model, where
the task is to reconstruct a(4) from a(2). Since the components of a moment a(n) are
generated by the monomials pi of order |i| = n, the accessible space GI ⊂ L2(Sd−1)
can be identified with the subspace of the polynomials of (even) order not greater than
n. Let the orthogonal projection onto the subspace of polynomials of order not greater
than n be denoted by Π(n) and the projection onto the subspace of homogeneous
polynomials of order n be denoted by Πn.

Of course, in the relation (2.6) the projector ΠI can be substituted by another
operator Π′ as long as Π′m = ΠIm. In this case we observe that for a homogeneous
polynomial m of even order k ≤ (n + 2) the identity Π(n)m = Π⊥

n+2m holds. This
reformulation allows to easily obtain necessary and sufficient conditions for ψ, under
which the linear closure is exact.

2D case. To compute the linear closure, we evaluate (2.6) with ΠI = Π⊥
4 and

m = pi for all i with |i| = 4. Here p = (p1, p2) ∈ S1. We compute

Π⊥
4 p

4
1 = 3

8
+ 1

2
(p2

1 − p2
2),

Π⊥
4 p

3
1p2 = 1

2
p1p2,

Π⊥
4 p

2
1p

2
2 = 1

8
,

Π⊥
4 p1p

3
2 = 1

2
p1p2,

Π⊥
4 p

4
1 = 3

8
− 1

2
(p2

1 − p2
2).

This gives relations for all the components of Π⊥
4 p

4. The right-hand sides can be
expressed as linear combinations of the components of pi, |i| = 2 and p0, thus giving
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the linear closures. For a matrix M ∈ R
2×2 we compute the contraction

〈p4〉lin, 4 : M = 1
8
Tr(M)I − 1

8
(M +M⊤)+

1
4

[
a(2) · (M +M⊤) + (M +M⊤) · a(2)

]
.

(2.7)

From the derivation it is obvious that the linear closure is exact if and only if Π4ψ = 0.

3D case. 1. Let us first assume that the only accessible moment is a(0), and
compute the linear closure for a(4). In this case, the projector Π = Π⊥

2 ◦ Π⊥
4 can be

used instead of Π(0). Obviously, this closure is exact if and only if Π2ψ = Π4ψ = 0.
We have: Πp4

i = 1
5

and Πp2
i p

2
j = 1

15
; the projection of all other fourth-order monomials

vanishes. Thus, the ”constant” closure is

(
a

(4)
lin,0

)

ijkl
=

1

15
(δijδkl + δikδjl + δilδjk).

2. Let the moments a(0) and a(2) be accessible, then the linear closure for a(4) can
be computed by using the projector Π = Π⊥

4 . Evaluating (2.6), we find the familiar
linear closure approximation formula:

(
a

(4)
lin,2

)

ijkl
= − 1

35
(δijδkl + δikδjl + δilδjk)+

1
7

(
δija

(2)
kl + δkla

(2)
ij + δika

(2)
jl + δjla

(2)
ik + δila

(2)
jk + δjka

(2)
il

)
.

The contraction with a matrix M ∈ R
3×3 is given by

M : a
(4)
lin,2 = − 1

35

[
Tr(M)I +M +M⊤]+ 1

7

[
Tr(M)a(2) + (M : a(2))I+

a(2) · (M +M⊤) + (M +M⊤) · a(2)
]
.

Note the difference between the linear closure in two and three-dimensional cases
with the same set of accessible moments. We have developed a general procedure for
constructing linear closure approximations. Next we consider a generalization of the
quadratic closure approximation.

2.2.3 Quadratic closure

In this section we assume that ψ is a generalized function (distribution), i.e., an
element of the topological dual space to C(Sd−1). Let mi ∈ C(Sd−1). In the special
case when ψ is a delta-distribution ψ = δp0 , where p0 ∈ Sd−1, the moment generated
by the product of two generators factors as (m1m2)ψ = (m1ψ)(m2ψ).

Of course, this identity holds only for few particular cases, and not for an arbitrary
distribution ψ. However, let us consider the following special case, when ψ is the sum
of two delta distributions: ψ = 1

2
[δp1 + δp2]. Moreover, we assume that p1 = −p2 = p0.

Such a distribution is the asymptotic solution of the Smoluchowski equation with
Ci = 0 under certain stationary flow fields, and thus is of interest for our application.
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Again we are interested in the case when the moment generators mi are homoge-
neous polynomials, in the tensorial notation given by m1(p) = pn, m2(p) = pm. An
easy explicit calculation of two expressions yields

(m1m2)ψ =
1

2

[
(−1)n+m + 1

]
pn+m

0

and

(m1ψ)(m2ψ) =
1

4

[
1 + (−1)n+m + (−1)n + (−1)m

]
pn+m

0 .

The right-hand sides of both identities are equal unless n and m are odd simultane-
ously. Thus, for this particular class of ψ the identity

a(n) = a(n1) ⊗ a(n2)

holds whenever n1 + n2 = n and the product n1 · n2 is even.

By setting n1 = n2 = 2, the classical quadratic approximation is reconstructed.

2.2.4 Summary and open questions

The description of local fibre orientation state in terms of low order statistical mo-
ments is efficient due to the low dimension of the configurational space and powerful
since it allows to predict both the rheological properties of the suspension and the
mechanical properties of the fibre reinforced material after solidification of the ma-
trix. However, the models based on this description require closure approximations.
In Section 1.2.5 we have reviewed closures for the Folgar-Tucker model.

Of course, the closure problem for related models such as (2.3) may require differ-
ent approximations. In this section we have shown that the expressions for linear and
quadratic closures depend only on the set of available moments and the polynomial
degree of the source terms in the Smoluchowski equation. Thus we have justified
the application of linear and quadratic closures for the modified fibre orientation
dynamics model (2.3).

The applicability of other closures taylored for Folgar-Tucker model remains an
open question. In particular, the family of fitted closures is derived using the exact
dynamics of the underlying model. It can be expected that using a modified fibre ori-
entation model, e.g., (2.3) would lead to a different set of optimal fitting parameters.
The question, whether the resulting corrections are significant, should be investigated
further.

A further interesting question is at which degree 2n the closure approximation
a(2n+2) = f(a(2n)) can be introduced in an optimal way. For the linear closure this
question is closely related with the spherical harmonics expansion method for solving
the Smoluchowski equation. It can be expected that the optimal value of n depends
on the polynomial degree needed to approximate the stationary values of ψ(p), which
in turn depend on the shear rate γ̇ and the constants Ci and U0.
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2.3 3-beads model for semiflexible fibres

In this section we derive a mesoscale based model for dilute suspensions of semi-
flexible fibres (as published in [72]). The concept of semiflexibility is discussed in the
first part. Next, a model of single fibre dynamics is derived, where the fibre is modelled
as a system consisting of three spherical beads, connected by rigid connectors. Fibre
bending is assumed to be driven by the curvature of the surrounding fluid velocity
field. In the third part we derive the Smoluchowski equation describing the dynamics
of ensembles of fibres, introduce suitable low-order statistical moments and derive the
equations for these moments. Construction of the closure approximations is described
in the next Section 2.4.

2.3.1 Semiflexibility

The surrounding fluid exerts traction forces on an immersed fibre, causing a defor-
mation. Let us quantify the degree of fibre bending and find a rough estimate for a
typical degree of bending of a fibre in a suspension.

Following [71], we introduce the concept of fibre deflection δf as illustrated in
Figure 2.2. This concept can be defined conveniently for a fibre under stationary
planar load at equilibrium. Let us fix one end of the fibre and define δf as the
maximal magnitude of deformation. For the set of the fibres in a suspension parameter

Figure 2.2: Deflection of a semiflexible fibre.

characterizing a typical deflection δf can be introduced. The fibre flexibility in that
particular suspension is then defined by the dimensionless quantity

χ =
δf
lf
.

Let us assume that the fibres are immersed in a viscous fluid. Let the mass of
the fibres be negligible, so the elastic response is quasi-static, i.e., the fibre shape is
instantaneously adjusted to any changes in the forces. Thus, the surface forces are
always balanced by the elastic forces. We also assume that the suspension is dilute,
so each fibre can rotate freely. Thus the translational and angular velocity of the
fibre is always such that the net linear momentum and net torque due to the surface
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forces vanish. Finally, we assume that the presence of the fibres does not significantly
disturb the fluid velocity field.

Let us roughly estimate the flexibility χ for a straight cylindrical fibre for a given
fluid velocity field.

At low Reynolds numbers (creeping flow) in the three-dimensional case Stockie
([71]) considers fibres with fixed orientation. For this case he derives the following
estimate:

χ ∝
ηγ̇df l

3
f

EI
,

where η is viscosity of the liquid, γ̇ is velocity shear rate and EI is the bending
stiffness (E is Young’s modulus of the fibre material and I is area momentum of
inertia of a cross-section of the fibre in the bending plane). In our model the shear
rate γ̇ may induce rotation of the fibre, but does not bend it. We assume that the
bending of the fibre is caused by the variation of the velocity gradient along the
fibre. This can be expressed through the curvature of fluid veloctiy field µ, which
we define as the tensor µijk = ∂2vi

∂xj∂xk
. The variation of κ is given by Taylor’s formula

κ(x0 + ∆x) − κ(x0) ≈ µ · ∆x. Using the distance |∆x| = lf , we obtain the estimate

χ ∝
η|µ|df l4f
EI

,

where |µ| measures the magnitude of the tensor µ.
This estimate is only of qualitative nature; it demonstrates that the flexibility

depends on the shape and material constants of the fibre and the velocity field and
viscosity of the fluid.

In Section 1.3.1 the classification of fibre orbits has been mentioned. Both exper-
imental evidence (see e.g. [23]) and simulations ([71]) suggest that the dominating
fibre orbit class depends on the flexibility. At small values of χ most fibres rotate
in the springy or C-shaped turn mode. In the framework of this thesis we say that
a flowing fibre suspension is a semiflexible fibre suspension if the dominating fibre
rotation mode is the springy rotation.

In the rest of this section we are concerning with deriving a mesoscale model for
semi-flexible fibre suspensions.

2.3.2 3-beads system

The main parameter describing the shape of a semi-flexible fibre in springy rotation
mode is the averaged curvature of the center-line. The curvature can be captured by
specifying the positions of the end-points and a point in the middle of the fibre, as
shown in Figure 2.3.

We introduce the three-beads model for a semiflexible fibre. A 3-beads system
consists of three spherical beads connected by two rigid rods. The interaction with
the flow takes place only at the beads. The connecting rods are inextensible and do
not interact with the fluid.
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Figure 2.3: Describing the shape of a semi-flexible fibre by positions of three points.

Figure 2.4: 3-beads system.

Let the position of the central bead be x0, and the positions of the lateral beads
be x1 and x2, obeying the constraints ‖x1 − x0‖ = ‖x2 − x0‖ = lB. The segment
length lB is one half of the fibre length lf/2.

We introduce the unit orientation vectors p = (x1 − x0)/lB and q = (x2 − x0)/lB,
which are pointing from the central bead located at x0 to the two other beads as shown
in Figure 2.4. Thus, the position and orientation of a 3-beads system is uniquely de-
termined by specifying the coordinates of the central bead x0 and the set of orientation
vectors {p, q}. The lateral beads are assumed to be indistinguishable, hence the order
of the set {p, q} ⊂ S2 does not matter.

The surrounding fluid exerts forces on the 3-beads system through interactions
with the beads.

We introduce an elastic potential U(p, q) mimicking the bending rigidity of the
fibres. Since the elastic forces are invariant with respect to rotations, U depends
only on the angle between p and q or, equivalently, on the scalar product p · q. The
potential reaches the minimum if the 3-beads systems are straight (p · q = −1). The
potential is used to calculate the torque acting on the lateral beads. Let the 3-beads
system have the orientation {p0, q0}, where p0 shows the direction from the central
bead to a lateral bead B, then the torque acting on B is computed by evaluating

RpU(p, q) =
(
p× ∂

∂p

)
U(p, q) at (p, q) = (p0, q0). We neglect the elastic forces acting

against torsional motions of the rods.
A typical choice for the potential is the power law

U(p, q) = k̃(p · q + 1)m̂, (2.8)

where the coefficient k̃ and the exponent m̂ are free parameters that can be used to
fit the model.
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2.3.3 Dynamics of 3-beads system

Let us consider the dynamics of a single 3-beads system with a fixed rod length lB,
position of the central bead x0 and the unit orientation vectors {p, q}. The velocity
of the central bead is denoted by V , the velocity of the lateral beads is expressed
through the angular velocity of the connectors with respect to the central bead ω1

and ω2, where the index 1 refers to the lateral bead in the direction p and index 2
refers to the one in direction q, see Figure 2.5. The linear velocities of the lateral
beads can be expressed as V + lBω1 × p and V + lBω2 × q. This description of bead
velocities ensures the inextensibility of the connectors since the radial component of
the relative veloctity of the lateral beads with respect to the central is zero.

Figure 2.5: Velocity of the 3-beads system.

We make the following assumptions.

1. The beads and the connectors are massless, hence the inertial effects can be
ignored.

2. The presence of the fibre does not affect the surrounding fluid, hence the fluid
velocity is decoupled from the dynamics of the 3-beads system.

3. The force transfer from the fluid to the fibre occurs through the beads only.
The connectors do not interact with the fluid. The beads are assumed to be
pointlike with a given drag coefficient ζ .

We assume that the fibre is immersed in a fluid, which occupies a sufficiently
large domain Ω so that the 3-beads system can travel through it without hitting any
obstacles. One can think of an unbounded domain, e.g., Ω = R

d. Let the flow velocity
v(x, t) be given for all x ∈ Ω and time points t under consideration; we assume v to
be twice continuously differentiable with respect to x.

The drag force acting on the beads depends on the the relative velocity of the
fluid with respect to the beads. We assume that the relative velocity is sufficiently
small, so that the drag FD is proportional to the relative velocity δv:

FD = ζδv.

For spherical beads ζ is given by the Stokes drag coefficient, see [17].
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Since the fibre is assumed to be massless, the linear and angular momentum
equations are quasi-static: the sum of all acting forces as well as the sum of all
torques vanish. The linear momentum conservation law can be expressed in the form

ζ [3V + lBω1 × p+ lBω2 × q−
v(x0) − v(x1) − v(x2)] = −∇xU.

(2.9)

In this relation the sum of drag forces acting on the three beads is balanced by the
totality of forces represented by the conservative potential U = U(p, q, x), which
accounts both for external forces (such as gravity) and internal forces (elastic forces
due to displacement from the equilibrium state p+ q = 0). Assuming that the beads
are neutrally buoyant and in the absence of other external forces (an example of such
potential is (2.8)), we have ∇xU = 0.

The angular momentum conservation law states that the total torque acting on
each of the rigid rods vanishes:

ζlBp× [V + lBω1 × p− v(x1)] = −RpU, (2.10)

ζlBq × [V + lBω2 × q − v(x2)] = −RqU. (2.11)

From the equations (2.9-2.11) we can express the velocity of the central bead:

V = (I + p⊗ p+ q ⊗ q)−1 ·
[v(x0) + (p · v(x1))p+ (q · v(x2))q+ (2.12)

1

ζlB
RpU × p+

1

ζlB
RqU × q

]
.

This expression can be simplified further by using the zeroth order approximation
v(x1) ≈ v(x2) ≈ v(x0):

v = v(x0) + (I + p⊗ p+ q ⊗ q)−1 ·
[

1

ζlB
RpU × p+

1

ζlB
RqU × q

]
. (2.13)

Let us consider the spectral properties of the matrix

A = (I + p⊗ p+ q ⊗ q)−1 ,

assuming that p× q 6= 0. The eigenvectors of A are w1 = p+q
‖p+q‖ , w2 = p−q

‖p−q‖ and w3 =
p×q

‖p×q‖ , where the eigenvalues λi satisfying A ·wi = λiwi are λ1 = 1
2(1+p·q) , λ2 = 1

2(1−p·q)
and λ3 = 1. Since A is symmetric, we have the decomposition A = λiwi ⊗ wi (with
summation over i).

The vectors RpU×p and Rq×q are orthogonal to p and q respectively. Assuming
the fibre deflection to be small, we have p ≈ −q, and hence these vectors lie in a
”narrow” cone around the direction of w3. Thus, the left multiplication of these
vectors by A can be approximated with multiplication by λ3 = 1, and we arrive at
the approximation

V ≈ v(x0) +
1

ζlB
[RpU × p+ RqU × q] . (2.14)
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Assuming that v(x) is twice continuously differentiable in a neighbourhood of x0

(this can be guaranteed, e.g., for a solution of Stokes problem in nice domains), we
apply the Taylor expansion

v(x0 + δx) = v(x0) + κ · δx+
1

2
µijk(δx⊗ δx)jk + O(|δx|3), (2.15)

where κij = ∂vi

∂xj
and µijk = ∂2vi

∂xj∂xk
, both evaluated at x0. By inserting (2.14) into

(2.10-2.11) and by using the expansion (2.15), we get

ω1 = p×
[
κ · p+

lB
2
µ : (p⊗ p)

]
− 1

ζl2B
p×

[
∂U

∂p
+
∂U

∂q

]
, (2.16)

ω2 = q ×
[
κ · q +

lB
2
µ : (q ⊗ q)

]
− 1

ζl2B
q ×

[
∂U

∂p
+
∂U

∂q

]
. (2.17)

The equations (2.14-2.17) are valid for arbitrary potenital U . Let us derive the
equations for a particular case of the potential (2.8) with m̂ = 1, i.e.,

U1(p, q) = k̃(p · q + 1).

In this case, the application of the angular momentum operator on the potential can
be approximated:

p×
[
∂U1

∂p
+
∂U1

∂q

]
= k̃p× q(1 − p · q) ≈ 2k̃p× q. (2.18)

Plugging this approximation in (2.16-2.17), we get equations for the rotational dy-
namics for a 3-beads system in a closed form:

ω1 = p×
[
κ · p+

lB
2
µ : (p⊗ p)

]
− kp× q, (2.19)

ω2 = q ×
[
κ · q +

lB
2
µ : (q ⊗ q)

]
− kq × p, (2.20)

where k = 2k̃
ζl2

B

.

2.3.4 Smoluchowski equation

We have derived equations for a singe 3-beads system. Next we consider an ensemble
of independent 3-beads systems located in a representative volume (RV) near a point
x ∈ Ω ⊂ R

d, where d = 2 or 3 is the dimension of the physical domain.
Let us introduce the fibre orientation distribution function ψ(p, q, x) : Sd−1 ×

Sd−1 × Ω → [0,∞), measuring the probability density to find a fibre in a RV arond
x with orientation (p, q). Since the 3-beads system is invariant with respect to a
permutation of the lateral beads, the physically relevant quantity is the probability
density to find a fibre with orientation {p, q}; it is given by ψ(p, q, x) + ψ(q, p, x).
Hence ψ has the following properties:
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• Normalization:
∫
Sd−1 dσ(p)

∫
Sd−1 ψ(p, q, x)dσ(q) = 1,

• Symmetry: ψ(p, q, x) = ψ(q, p, x),

• Nonnegativity: ψ(p, q, x) ≥ 0 on Sd−1 × Sd−1 × Ω.

The Smoluchowski equation represents the conservation law of probability density
in the state space, which is a generalization of the mass conservation law ∂ρ

∂t
+div(ρv) =

0, where ρ is the density of a quantity and v is the transport velocity. In our case the
velocity in Sd−1 is described as angular velocity, therefore the divergence is replaced
by the angular momentum operator:

∂ψ

∂t
= −∇x(V ψ) − Rp(ω1ψ) − Rq(ω2ψ).

A term describing orientational diffusion, analogous to the one in Folgar-Tucker
model, proportional to

(
R2
p + R2

q

)
ψ, can easily be included in this model, however,

we do not consider mutual interactions of semi-flexible fibres within this thesis.
Assuming that the central bead is travelling with the velocity of the surrounding

fluid, i.e., V ≈ v(x0), and given the incompressibility of the fluid divv = 0, we can
collect two terms appearing in (2.21) in the convective derivative: ∂ψ

∂t
+∇x(vψ) = Dψ

Dt
,

where D
Dt

= ∂
∂t

+ v · ∇x:

Dψ

Dt
+ Rp(ω1ψ) + Rq(ω2ψ) = 0. (2.21)

By inserting the expressions (2.19 - 2.20) we obtain the Smoluchowski equation in
closed form.

2.3.5 Equations for moments

For nonnegative integers m and n we define the (n,m)-th order moment of ψ(p, q, x)
as the (m+ n)-th rank tensor field

a(m,n)(x) =

∫

S2

∫

S2

pmqnψ(p, q, x)dσ(p)dσ(q),

where pmqn = p⊗m ⊗ q⊗n is an (m + n)-th rank tensor. Let i ∈ {1, . . . , d}m and
j ∈ {1, . . . , d}n be multi-indices, then the (i, j)-th component of pmqn is defined as
piqj.

From the properties of ψ we can deduce certain symmetries of the moments. From
ψ(p, q, x) = ψ(q, p, x) it follows that a

(m,n)
i,j = a

(n,m)
j,i , where i and j are multi-indices

as above. Thus, the moments a(m,n) and a(n,m) consist of the same elements. Let us
assume that m ≥ n. The moment a(m,n) is invariant with respect to the following
permutations of indices.

1. Any permutations of the index set {i1, . . . , im}.
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2. Any permutations of the index set {im+1, . . . , im+n}.

This is evident from the definition: a(m,n) preserves all the symmetries of pmqn.
The evolution equations for the moments are obtained directly from the Smolu-

chowski equation (2.21) by multiplying both sides by pmqn and integrating by parts.
For particles with the head-to-tail symmetry such as axis-symmetric rigid fibres

ψ can be defined to satisfy ψ(p) = ψ(−p), hence the odd order moments vanish. The
3-beads systems do not exhibit this symmetry since a system with orientation {p, q}
is not equivalent with the system {−p,−q} unless p = −q, therefore the odd moments
can be different from zero, in particular, this holds for the first order moments a(1,0) =
a(0,1).

For this reason, the moments description for the 3-beads model is more compli-
cated than for the rigid fibres, for example, a single equation for the second-order
moment a(2,0) leads to severe difficulties in constructing closure approximations. In
order to construct meaningful closures, we need the equations for the moments a(2,0),
a(1,1) and a(1,0), which are derived below.

1. The moment a(2,0) is the direct generalization of the Advani-Tucker tensor
a(2) in the sense that, interpreting each 3-beads system as a pair of rigid rods, the
computed second order moment satisfies a(2) = a(2,0). The equation is obtained in a
similar way as for Folgar-Tucker equation: the Smoluchowski equation is multiplied
with p⊗ p and integrated over the variables p and q:

Da(2,0)

Dt
= −

∫

Sd−1

dσ(p)

∫

Sd−1

p⊗ p [Rp(ω1ψ) + Rq(ω2ψ)] dσ(q)

Integrating the right-hand side by parts and using Rq(p⊗ p) = 0 gives

−
∫

Sd−1

dσ(p)

∫

Sd−1

Rp(p⊗ p)ψ

[
p×

[
κ · p+

lB
2
µ : (p⊗ p)

]
− kp× q

]
dσ(q).

This expression is the sum of three parts. The part containing κ is familiar from the
rigid fibre models, the part containing µ models the bending forces acting on the fibre
due to the velocity curvature. The last part, which is proportional to k, stands for
elastic forces. Denoting µ(p)i := µijkpjpk,

Rp(p⊗ p) · (p× µ(p)) = p⊗ µ(p) + µ(p) ⊗ p− 2(µ(p) · p)p⊗ p;

Rp(p⊗ p) · (p× q) = p⊗ q + q ⊗ p− 2(p · q)p⊗ p.

Calculating the integrals and using the definition of the moments, we obtain an equa-
tion for a(2,0):

Da(2,0)

Dt
= a(2,0) · κ⊤ + κ · a(2,0) − (κ+ κ⊤)kla

(4,0)
klij +

lB
2

[
µjkla

(3,0)
ikl + µikla

(3,0)
jkl − 2µklma

(5,0)
klmij

]
−

2k
[
a(1,1) − a

(3,1)
ijkk

]
. (2.22)
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2. The moment a(1,1) is defined as the averaged value of p ⊗ q. The trace
Tr[a(1,1)] =

∫
dσ(p)

∫
p · qψdσ(q), can be interpreted as the averaged cosine of the

angle between the rods connecting the beads, thus Tr[a(1,1)] can be used as a scalar
measure of the local degree of fibre bending. The corresponding equation is obtained
from the Smoluchowski equation

Da(1,1)

Dt
= −

∫

Sd−1

dσ(p)

∫

Sd−1

p⊗ q [Rp(ω1ψ) + Rq(ω2ψ)] dσ(q).

Integrating by parts, we obtain expressions of the type (Rp(p ⊗ q))ij = (Rp(p))iqj ,
which we calculate explicitly:

(Rp(p))1 = p3e2 − p2e3;
(Rp(p))2 = p1e3 − p3e1;
(Rp(p))3 = p2e1 − p1e2.

Plugging in the relations (2.19-2.20), we find that the integral splits in three sum-
mands, again representing Jeffery’s dynamics, bending and spring force parts of the
model. The integrands can be computed directly:

Rp(p⊗ q) · (p× κp) = κ · p⊗ q − (p⊗ q)(p⊗ p : κ),

Rq(p⊗ q) · (q × κq) = p⊗ κ · q − (p⊗ q)(q ⊗ q : κ),

Rp(p⊗ q) · (p× µ(p)) = µ(p) ⊗ q − p⊗ q(µ(p) · p),
Rq(p⊗ q) · (q × µ(q)) = p⊗ µ(q) − p⊗ q(µ(q) · q),

Rp(p⊗ q) · (p× q) = q ⊗ q − p⊗ q(p · q),
Rq(p⊗ q) · (q × p) = p⊗ p− p⊗ q(p · q).

Integrating these components and using the definitions of the moments, we obtain

Da(1,1)

Dt
= a(1,1) · κ⊤ + κ · a(1,1) − κkl(a

(3,1)
klij + a

(3,1)
klji ) +

lB
2

[
µjkla

(2,1)
kli + µikla

(2,1)
klj − µklma

(4,1)
klmij − µklma

(4,1)
klmji

]
−

2k
[
a(2,0) − a

(2,2)
ikkj

]
. (2.23)

3. The moment a(1,0) is the ensemble average of p+ q. The equation is

Da(1,0)

Dt
= −

∫

Sd−1

dσ(p)

∫

Sd−1

p [Rp(ω1ψ) + Rq(ω2ψ)] dσ(q).

Integrating by parts and using Rqp = 0, we arrive at the integral of

(Rpp) ·
[
p×

[
κ · p + µ : (p · p⊤)

]
+ p× q

]
=

κ · p− p(p⊗ p : κ) + µ(p) − p(µ(p) · p) + q − p(p · q).
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After integration, we get

Da(1,0)

Dt
= κ · a(1,0) − κjka

(3,0)
jki +

lB
2

[
µijka

(2,0)
jk − µjkla

(4,0)
jkli

]
− k

[
a(1,0) − a

(2,1)
ijj

]
. (2.24)

The equations (2.22-2.24) are not closed. In general, the evolution equation for
a(m,n) depends on the moments a(m+2,n), a(m+1,n+1) and a(m+3,n), as indicated by the
polynomial degree of the right-hand sides of the relations (2.19) and (2.20). To obtain
a model in closed form, we introduce suitable closure approximations. This is the goal
of the next section.

2.4 Closure approximations for mixed moments

The closure problem for the 3-beads model is more difficult than the corresponding
problem for rigid fibre models, as the evolution of a moment depends on three higher
order moments rather than a single one.

The objective of this section is to follow the approach used for constructing the
hybrid closure approximation, which is a convex combination of linear and polynomial
closures. This section is organized as follows. We start with computing the linear
closure approximation from (2.6). Upon the observation that this closure performs
poorly for the important case of nearly straight fibres (p ≈ ±q), we derive a modified
version of linear closure, assuming the absence of the restoring elastic force. These
two relations are called type 1 and type 2 linear closures respectively. For the states
characterized by an intermediate fibre bending degree we construct a closure inter-
polating between type 1 and type 2 linear closures, using a scalar measure of fibre
bending degree. Next we define a family of homogeneous order preserving polynomial
closures, generalizing the concept of quadratic closure, and motivate the choice of a
particular representative from this class. Finally, a hybrid closure approximation is
defined as a convex combination of the hybrid linear closure and the homogeneous
polynomial closure. We restrict the constructions to the two-dimensional case, leav-
ing the three-dimensional case for future work. The discussion of the performance of
the closures is postponed to Section 4.1.

The formula (2.6) contains a projection operator on the space L2(C × C), where
C is a configurational space. In the two-dimensional case C is the circle S1, while
in the three-dimensional case it is the sphere S2. The projection of the elements
of L2(C × C) can be expressed in terms of projections of L2(C); this fact allows
to simplify the computations of closure relations. Let us recapitulate the relevant
concepts from functional analysis.

Let H1 and H2 be two Hilbert spaces with orthonormal bases {w1
i : i ∈ I1} and

{w2
i : i ∈ I2}. The tensor product of H1 and H2 is the Hilbert space H1 ⊗ H2

defined by the following steps. First, construct the linear vector space with the basis
{wij : i ∈ I1, j ∈ I2}, where we formally define wij := w1

iw
2
j . Secondly, endow the
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vector space with the unique inner product satisfying 〈wij , wkl〉H = δikδjl. Finally,
form the closure with respect to the inner product norm.

Let X and Y be measurable spaces with measures µX and µY . Further let the
space of square measurable functionals over the product space X×Y with the measure
µX × µY be denoted L2(X × Y ). Then the space L2(X × Y ) is isomorphic to the
Hilbert space L2(X) ⊗ L2(Y ). It follows that if f ∈ L2(X × Y ) is a.e. equal to a
continuous function, then it can be expanded as

f(p, q) =
∑

i,j

〈
f(·, q), wXi

〉
L2(X)

〈
f(p, ·), wYj

〉
L2(Y )

wXi (p)wYj (q).

If f can be expressed as f(p, q) = P (p)Q(q) (separation of variables), then

f(p, q) =

(
∑

i

〈
P,wXi

〉
L2(X)

wXi (p)

)
·
(
∑

i

〈
Q,wYi

〉
L2(Y )

wYi (q)

)
.

In this case, the coefficients 〈f, wij〉 for all i ≤ n1, j ≤ n2 can be computed in
the following efficient way: first compute ai =

〈
P,wXi

〉
L2(X)

for i ≤ n1 and bj =〈
Q,wYj

〉
L2(Y )

for j ≤ n2, and then use 〈f, wij〉 = aibj .

Remark: Let X = Y = S2 and the basis functions wi be the spherical harmonics,
then the basis functions wij(p, q) = wi(p)wj(q) are called the bispherical harmonics.

2.4.1 Linear closure

Let us formulate the closure problem for the two-dimensional version of the equations
(2.22-2.24) using the notation introduced in Section 2.2. We are working in the space
H = L2(S1 × S1). The set of moments is given by M = {piqj : i, j ∈ N

2
0}. The

accessible moments are the components of the moments, for which the equations
(2.22-2.24) are solved, namely, I = {piqj : i, j ∈ N

2
0, (|i|, |j|) ∈ {(1, 0), (1, 1), (2, 0)}.

The closure problem is formulated for each component of the inaccessible moments
appearing in the equations (2.22-2.24), namely, for mij = piqj, where (|i|, |j|) ∈
{(2, 1), (2, 2), (3, 0), (3, 1), (4, 0), (4, 1), (5, 0)}.

Because of the symmetry a(2,0) = a(0,2) and a(1,0) = a(0,1), the accessible subspace
GI is spanned by the components of p, p ⊗ p, p ⊗ q, q, q ⊗ p and q ⊗ q. The
normalization condition Tr(p⊗p) = 1 implies that G contains the constant functions.
Throughout this section, let Π be the orthogonal projector Π : H → GI .

Next we cumpute the linear closure by (2.6); this means evaluating Πm for all
components of inaccessible moments m.

Note that each component of pmqn can be expressed as pm1

1 pm2

2 qn1

1 qn2

2 , where m1 +
m2 = m and n1 + n2 = n, thus we can exploit the symmetries of a(m,n) and compute
only the projections of the different monomials. The results are summarized below,
using the following notation. For each inaccessible component of m(p, q) = pnqm we
write the indices (n,m), followed by the projections of the monomials pm1

1 pm2

2 qn1

1 qn2

2

for all choices with m1 +m2 = m and n1 + n2 = n.
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• (2, 1): Πpipjqk = 1
2
δijqk.

• (2, 2):

Πp2
1q

2
1 = 1

2
(p2

1 + q2
1) − 1

4
, Πp2

1q1q2 = 1
2
q1q2, Πp2

1q
2
2 = 1

2
(p2

1 + q2
2) − 1

4
,

Πp1p2q
2
1 = 1

2
p1p2, Πp1p2q1q2 = 0, Πp1p2q

2
2 = 1

2
p1p2,

Πp2
2q

2
1 = 1

2
(p2

2 + q2
1) − 1

4
, Πp2

2q1q2 = 1
2
q1q2, Πp2

2q
2
2 = 1

2
(p2

2 + q2
2) − 1

4
.

• (3, 0): Πp3
1 = 3

4
p1, Πp2

1p2 = 1
4
p2, Πp1p

2
2 = 1

4
p1, Πp3

2 = 3
4
p2.

• (3, 1): Since q ∈ GI and q ⊥ pi in H , all components can be computed by
Πpiqj = qjΠp

i for any multiindex |i| = 3.

• (4, 0): Πp4
1 = 3

8
+ 1

2
(p2

1 − p2
2), Πp3

1p2 = 1
2
p1p2 Πp2

1p
2
2 = 1

8
, Πp1p

3
2 = 1

2
p1p2,

Πp4
1 = 3

8
− 1

2
(p2

1 − p2
2).

• (4, 1): Πp4
1qj = Πp4

2qj = 3
8
qj, Πp2

1p
2
2qj = 1

8
qj , all other components vanish.

• (5, 0): Πp5
1 = 5

8
p1, Πp4

1p2 = 1
8
p2, Πp3

1p
2
2 = 1

8
p1, Πp2

1p
3
2 = 1

8
p2,

Πp1p
4
2 = 1

8
p1, Πp5

2 = 5
8
p2.

Thus we have derived linear closure approximations for all unknown terms of (2.22-
2.24). Let us write out the resulting equations in a convenient way for implementation
and analysis.

Equations with Type 1 linear closure. In order to distinguish the solutions
of equations (2.22-2.24) with closure approximations from the exact moments, we
denote the approximation of a(2,0) by a, that of a(1,1) by b and that for a(1,0) by c.
Where possible, we simplify the equations by using the incompressibility condition
Tr(κ) = 0. We denote the components of µ as follows:

µ1
·· =

(
µ1

1 µ1
3

µ1
3 µ1

2

)
, µ2

·· =

(
µ2

1 µ2
3

µ2
3 µ2

2

)
.

The equation (2.22) with linear closure can be written as

Da

Dt
= AFT +

lB
2
Aµ − 2kAk, (2.25)

where the first component is

AFT = a · κ⊤ + κ · a +
1

4
(κ + κ⊤) − 1

2

[
a · (κ + κ⊤) + (κ+ κ⊤) · a

]
,

Aµ is symmetric and has the components

(1, 1) 1
4
[(µ1

1 + µ1
2 − 2µ2

3)c1 + (2µ1
3 − µ2

1 − µ2
2)c2] ,

(2, 2) 1
4
[(2µ2

3 − µ1
1 − µ1

2)c1 + (µ2
1 + µ2

2 − 2µ1
3)c2] ,

(1, 2) 1
4
[(3µ2

1 + µ2
2 + 2µ1

3)c1 + (µ1
1 + 3µ1

2 + 2µ2
3)c2] ,
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Ak =
1

4

[
b22 − b11 −2b12
−2b21 b11 − b22

]
.

The equation (2.23) with linear closure is

Db

Dt
= BFT +

lB
2
Bµ − 2kBk, (2.26)

where
BFT = b · κ⊤ + κ · b− B1,

B1 is a symmetric matrix with the components

(1, 1) κ11b11 + 1
2
(κ12 + κ21)b12,

(2, 2) κ22b22 + 1
2
(κ12 + κ21)b12,

(1, 2) 1
4
(κ12 + κ21)(b11 + b22),

and the term Bµ has the components

(1, 1) −4(µ1
1 + µ2

3)c1,
(2, 2) −4(µ2

2 + µ1
3)c2,

(1, 2) −2 [(µ2
2 + µ1

3)c1 + (µ1
1 + µ2

3)c2] .

Surprisingly, we find that the term modelling the bending rigidity of the fibres is
constant:

Bk =
1

4
I.

Finally, (2.24) with linear closure approximation is given by

Dc

Dt
= CFT +

lB
2
Cµ − kCk, (2.27)

where the summands stand for the following matrices:

CFT = κ · c− 1

4

[
2κ11c1 + (κ12 + κ21)c2
2κ22c2 + (κ12 + κ21)c1

]
,

Cµ = µijk : ajk −
[
ν1

11 + ν2
12

ν1
12 + ν2

22

]
,

where νijk := µilm(a
(4,0)
cl )jklm, and

Ck =
1

2
c.

The equations (2.25-2.27) form a closed system of equations, which we call the moment
equations for dilute semi-flexible fibre suspensions with type 1 linear closure.

Discussion. From (2.5) we can find a necessary and sufficient condition for the
type 1 linear closure to be exact. The closure is exact if and only if in the bispherical
harmonics expansion of ψ all coefficients of order (2, 1), (2, 2), (3, 0), (3, 1), (4, 0), (4, 1)
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and (5, 0) vanish. Unfortunately, there are physically relevant orientation states, for
which this closure yields meaningless results.

For instance, let us consider the case of flow with vanishing spatial derivatives
κ = 0 and µ = 0. Let at the initial time the fibres be straight, with isotropic
orientation distribution: b = −1

3
I. In this case, (2.26) reduces to

ḃ = −k
2
I,

and the solution is b(t) = −(1
3
+ k

2
t)I. For any k > 0 and t > 0, we have Tr(b(t)) < −1,

contradicting the normalization of ψ, which would imply the inequality
∣∣Tr[a(1,1)]

∣∣ ≤ 1.

Thus, type 1 linear closure may fail if the fibres are nearly straight. For such orien-
tational states ψ(p, q) shows a sharp peak in regions near p = −q, thus the bispherical
harmonics expansion of ψ converges slowly, and the linear closure approximation is
indeed likely to fail. An explanation based on the model behaviour can be given as
follows. In the modelling we assume no correlation between the orientation vectors
p and q of a single fibre, hence the average fibre is expected to be bent. Due to the
bending rigidity, the fibre exhibits a tendency to straighten out. Since the model
fails to recognize the moment when the fibres are straight and the spring forces stop
acting, the solution leaves the physically admissible subset of the state space in finite
time. Next we present a modification of the linear closure preventing the scenario of
this instability.

Type 2 linear closure. Let us construct a linear closure approximation for the
case p ≈ −q. The first naive approach to derive the closure using the identity p = −q
implies that a(n,m) = (−1)ma(n+m,0) and a(2n+1,0) = 0, what actually defines rigid
fibres. For this reason, we use the identity p ≈ −q only to turn off the spring forces.

In terms of closure approximations this can be achieved by using one set of closure
approximations for the parts of equations (2.22-2.24) proportional to k and another,
namely, type 1 linear closure for the other terms. Using p = −q for the terms
proportional to k, by the definition of the moments we compute a

(3,1)
ijkk = a

(2,0)
ij , a

(2,2)
ikkj =

a
(1,1)
ij and a

(2,1)
ijj = a

(1,0)
i . This leads to vanishing of the parts proportional to k. Thus,

an equivalent description of the equations with type 2 linear closure is using type 1
linear closure with

k = 0.

The resulting system of equations is identical to (2.25-2.27), with the terms Ak, Bk
and Ck set to zero.

Discussion. This closure can be used for nearly straight fibres with nearly isotropic
orientation distribution. A drawback of this model is that the fibre bending rigidity is
neglected, therefore its application is limited to states with low fibre bending degree.
An advanage is that the equations are very similar to the ones with type 1 linear
closure, therefore a convex combination of type 1 and type 2 linear closures can be
implemented efficiently. In next part we construct such a hybrid linear closure, where
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the fibre bending degree is used as a interpolation parameter between the two linear
closures.

Linear hybrid closure. As for the rigid fibre models, linear closure approxima-
tions show the best performance in nearly isotropic fibre orientation states. In the
3-beads model there is another important parameter - the fibre bending degree. We
introduce the following parameter measuring the average angle between the segments
of the fibre:

fα := 〈p · q〉 = Tr(a(1,1)) ≈ Tr(b).

If the fibre bending distribution is isotropic, i.e., if the pairs of orientation vectors
{p, q} are uncorrelated, then fα = 0, while for straight fibres with p ·q = −1 the value
is fα = −1.

Of course, the value of fα does not contain enough information to identify the
bending state uniquely, for example, the value fα = 0 characterizes both bending
state, when fibres are bent in a right angle and the bending state, where half of the
fibres satisfy p · q = 1 and the other half p · q = −1. However, p · q > 0 indicates a
very high flexibility χ, so that the assumptions of the 3-beads model do not hold.

We assume that fα ∈ [−1, 0], where fα = 0 indicates an isotropic bending distri-
bution, where type 1 linear closure is exact, and fα = −1 indicates straight fibres,
where type 2 linear closure applies. For intermediate values of fα we propose to use
a convex linear combination of the two linear closures. This is equivalent to rescaling
the bending rigidity constant

k → k′ := (1 + fα)k. (2.28)

In the case of overbent fibres fα > 0 we set k′ = k.

So the equations with linear hybrid closure are given by the equations (2.25-2.27),
where k is replaced by k′ as given in (2.28).

Discussion. First we note, that the hybrid linear closure is actually not linear in
the lower moments, since fα depends on b. This closure performs well for isotropic
orientation states with a ≈ 1

d
I, for all degrees of fibre bending. However, the closure

may lead to physically impossible results in planar or uniaxial orientation states,
when the determinant det(a) reaches zero. The reason for this is that there is no
mechanism to prevent some eigenvalues of the solution a to become negative.

For such nearly uniaxial distributions we construct the homogeneous polynomial
closures.

2.4.2 Homogeneous polynomial closure

The homogeneous polynomial closure is constructed as a generalization of the quadratic
closure for rigid fibre models. In the two-dimensional case the condition det(a) = 0
is equivalent to saying that the fibre orientation state is uniaxial. It follows that all
fibres are straight.
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In this case, the probability distribution function is the sum of two δ-distributions
ψ = 1

2

[
δ(p0,−p0) + δ(−p0,p0)

]
. The moments can be computed:

a(m,n) =
1

2
pm+n

0 [(−1)m + (−1)n] .

Let the indices be partitioned as m = m1 +m2, n = n1 + n2, then

a(m1,n1) ⊗ a(m2,n2) =
1

4
pm+n

0

[
(−1)m + (−1)n + (−1)m1+n2 + (−1)n1+m2

]
.

Evidently, the right hand sides are equal if and only if (−1)m +(−1)n = (−1)m1+n2 +
(−1)m2+n1 . This identity holds if and only if at least one of the congruences hold:
m1 ≡ n1(mod2) or m2 ≡ n2(mod2). An equivalent formlulation: for an uniaxial FO
distribution, the formula

a(m,n) = a(m1,n1) ⊗ a(m2,n2) (2.29)

is exact iff (m1 + n1) · (m2 + n2) is even. (We call this the parity condition.)
Clearly, the equation (2.29) can be applied recurrently to the multiplicands in

the right-hand side, provided that the parity condition holds in each step. In this
way, closure relations with more than two multiplicands in the right-hand side can
be obtained.

Examples : the formula for splitting the moment a(3,1) = a(2,0) ⊗ a(1,1) satisfies the
parity condition, while the formula a(3,1) = a(3,0) ⊗a(0,1) does not since (3+0) · (0+1)
is odd. From the formulas a(4,1) = a(4,0) ⊗ a(0,1) and a(4,0) = a(2,0) ⊗ a(2,0) we can
”recursively” construct a(4,1) = a(2,0) ⊗ a(2,0) ⊗ a(0,1).

Since the tensor products of moments for an uniaxial orientation distribution are
commutative, this class of closure approximations reminds of spliting a monomial into
a product of several monomials of lower order, hence we call these formulas monomial
closures.

One and the same moment can be expressed in various ways, for example, a(2,2) =
a(2,0) ⊗ a(0,2) = a(1,1) ⊗ a(1,1). Moreover, any covex combination of a set of monomial
closures yields a formula which is exact for the uniaxial orientation distribution. We
propose the name (homogeneous) polynomial closures for this class of closures.

Of course, these relations are not identities for arbitrary fibre orientation states.
Even in the case ψ = 1

2

[
δ(p0,q0) + δ(q0,p0)

]
for |p0 · q0| 6= 1 the commutativity of tensor

products of the moments is lost, therefore application of the homogeneous polynomial
closures in such cases introduces an approximation error.

We have seen that for a moment of given order, a whole family of homogeneous
polynomial closures can be constructed. To apply this approach for closing the equa-
tion system (2.22-2.24), a single closure approximation has to be selected. The prob-
lem of choosing the closure in an optimal way is non-trivial. For the purposes of this
thesis we have chosen the closure by considerations described below, but the question
of optimality remains open.

We use approach of splitting the moment according to (2.29) in building blocks
as suggested by the Smoluchowski equation. For example, the moment a(5,0) in (2.22)
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is used in the contraction µklma
(5,0)
klmij , which arises from integrating the expression

p ⊗ pµ(p) · p. We interpret it as the product of the moment a(2,0) and a vector:
〈p⊗ pµ(p) · p〉 ≈ 〈p ⊗ p〉〈µ(p) · p〉. In the second step we decompose the vector as a

matrix-vector product, to arrive at µklma
(5,0)
klmij ≈ a

(2,0)
ij

[
(µ : a(2,0)) · a(1,0)

]
. Following

this somewhat arbitrary method of decomposition of the inaccessible moments, we
obtain (2.22-2.24) with the monomial closure approximation

Da

Dt
= a · κ⊤ + κ · a− (κ + κ⊤) : aa +

lB
2

[(µ : a) ⊗ c+ c⊗ (µ : a) − 2(µ : a) · ca] − 2k [b− aTr(b)] , (2.30)

where (µ : a)i = µijkajk,

Db

Dt
= b · κ⊤ + κ · b− 2(κ : a)b+

lB
2

[(µ : a) ⊗ c+ c⊗ (µ : a) − 2(µ : a) · cb] − 2k [a− bTr(b)] , (2.31)

Dc

Dt
= κ · c− κ : ac+

lB
2

[µ : a− a · (µ : a)] − k [1 − Tr(b)] c. (2.32)

Discussion. Since the homogeneous polynomial closure is exact for uniaxial fibre ori-
entation states, the solution of the equations (2.30-2.32) never violates the condition of
positive semi-definiteness of a, provided that the initial condition is physically admis-
sible. However, the approximation error is expected to increase for biaxial (or triaxial
for the three-dimensional case) fibre orientation states. To bundle the advantages of
linear and polynomial closures in a single formula, a hybrid closure approximation is
constructed in the next section.

2.4.3 Hybrid closure

The hybrid closure is a generalization of the hybrid closure for the Folgar-Tucker
model as proposed by Advani and Tucker in [1]. For the rigid fibre models the hybrid
closure is a convex combination of the linear and quadratic closures. For the 3-beads
model we construct the hybrid closure as a convex combination of the hybrid linear
closure (derived in Section 2.4.1) and the homogeneous polynomial closure (derived
in Section 2.4.2).

Following [1], we introduce a scalar parameter

fs := 1 − dddet(a),

measuring the distance of the fibre orientation state from the isotropic state. For the
isotropic orientation state we have fs = 0, while for an uniaxial state fs = 1. Let the
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hybrid linear closure for the moment a(m,n) be denoted by a
(m,n)
lh and the homogeneous

polynomial closure - by a
(n,m)
hp , then the hybrid closure is defined as

a
(m,n)
hyb = fsa

(n,m)
hp + (1 − fs)a

(m,n)
lh .

With the scalar parameter fα = −Tr(b) we can express the hybrid linear closure as

a convex combination of type 1 linear closure a
(n,m)
lin1 and type 2 linear closure a

(n,m)
lin2 .

Then the hybrid closure is

a
(m,n)
hyb = fsa

(m,n)
hp + (1 − fs)

[
fαa

(m,n)
lin2 + (1 − fα)a

(m,n)
lin1

]
.

Discussion. The hybrid closure is a convex combination of three closures, con-
structed to be exact whenever any of the three closures is exact. The closure is further
discussed in Section 4.1.

2.4.4 Summary and open questions

For the selected set of accessible fibre orientation moments a(1,0), a(1,1) and a(2,0) we
have developed three versions of linear closure, a family of polynomial closures and a
hybrid closure.

There are different criteria for measuring the quality of a closure approximation.
A local measure (depending on the actual fibre orientation state ψ) is given by the
approximation error, however, this measure cannot be evaluated during a moments
based simulation since the values of the accessible moments do not suffice to determine
the exact fibre orientation state. Therefore, the global properties of the solutions of
the moment equations such as the invariance of the physically admissible subset of
the state space (as discussed in Section 4.1) are more important to ensure the stability
of the model.

The linear closures perform well in terms of local approximation error for suitable
fibre orientation states. For example, type 1 linear closure is exact for the isotropic
fibre orientation state with isotropic bending distribution ψ(p, q) = 1

4π2 . Type 2 linear
closure is exact for isotropic orientation state with straight fibres ψ(p, q) = 1

2π
δ(p+ q)

(the support of this distribution is the (d− 1) dimensional submanifold characterized
by p + q = 0), and the hybrid linear closure is exact for both cases. However, the
linear closures do not satisfy the global stability criteria.

Hence, the only suitable candidates for applications in fibre orientation simulations
are the polynomial and hybrid closures. The performance of the two approximations
is discussed in Section 4.1. We next formulate some open questions.

What is an optimal choice of the set of accessible moments? In this thesis we use a
minimal set of moments that contains the generalization of the Advani-Tucker tensor
a(2,0) and allows constructing meaningful polynomial closures. The other moments
used in this model also have physical interpretations. The moment a(1,0) is the average
deviation from the axially symmetric state of the bent fibres, and a(1,1) contains
information about averaged bending angle and distribution of the bending directions.
However, the question of optimality of this choice remains open.
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Linear closures and Smoluchowski equation. The linear closure is closely related
to orthogonal series expansion of the Smoluchowski equation on the torus S1 × S1

or bispherical harmonics expansion on S2 × S2. Hence the lowest degree of the
moment, at which the linear closure is a sufficiently good approximation, depends on
the convergence of orthogonal series expansion of ψ.

Construction of fitted closures. One can follow the strategy used for computing
the orthotropic fitted closures for the Folgar-Tucker model. The procedure starts
with the construction of a family of closure relations parametrized by a small number
of scalars. Next a set of relevant velocity fields is selected, and the Smoluchowski
equation is numerically solved for these flow fields (for numerical techniques see e.g.
[31]). The accessible and inaccessible moments as functions of time are computed
from this numerical solution. Finally, a fitting procedure is used to determine the
values of parameters, for which the closure approximation describes the numerical
data best.

Three-dimensional case. All closures mentioned here can be naturally generalized
for the three-dimensional case. The challenge is to find closures with a reasonably
good performance for arbitrary orientational states. In particular, the resulting equa-
tions should leave the physically admissible state space invariant.
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Chapter 3

Some well-posedness results

Now that we have presented several models for fibre orientation dynamics in suspen-
sions, which further depend on the choice of closure approximations, let us introduce
a unified notation for the equations. We assume that the fibre orientation is described
by a system of transport equations for a vector function s : (x, t) 7→ R

d2 ,

Ds

Dt
= F ,

where F is a function of s and the spatial derivatives of an external velocity field v(x),
which we leave unspecified for the moment. Hence, the fibre orientation dynamics
equations form a linear first order hyperbolic system with the principal part ∂t+v ·∇x.

One can formulate a mixed problem for this hyperbolic system assuming the veloc-
ity v(x) to be decoupled from s(x). For this, the input data such as the velocity field v,
initial and boundary conditions should be specified so that the resulting mixed prob-
lem admits a unique solution. Let us consider the problem on Ω×[t0, T ], where Ω ⊂ R

d

is an open set. Assume that the data needed to comupte F are specified, in particu-
lar, let a sufficiently smooth time continuous vector field v(x, t) : Ω̄× [t0, T ] → R

d be
given. We specify a suitable initial condition s(x, t0) = s0(x) for x ∈ Ω.

The solution of the transport problem can be constructed by using the method of
characteristics, which are curves in Ω × [t0, T ] tangent to the vector field (v(·, t), 1).
Informally speaking, a solution for (x, t) ∈ (t0, T ] × Ω can be constructed if the
characteristic going through the point (x, t) can be traced back in time to a point,
where the initial or boundary condition is specified. Hence it is obvious that the
uniqueness of solution can be ensured by specifying a Dirichlet boundary condition
on the inflow part of the boundary, which is defined by the subset (x, t) ∈ ∂Ω×(t0, T ],
for which

v(x, t) · n(x) < 0,

where, for x ∈ ∂Ω, n(x) denotes the unit outer normal to ∂Ω. Thus, the mixed
problem is supplemented with the Dirichlet boundary condition

s(x, t) = sb(x, t), x ∈ ∂Ω, v(x, t) · n(x) < 0
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or, to ensure the continuity of the solution, the homogeneous Neumann boundary
condition on the inflow boundary.

The velocity field v(x, t) obeys an incompressible Navier-Stokes like equation

Re
Dv

Dt
= divT + ρb, divv = 0,

where T is the stress tensor, depending on pressure, ∇v and s. A mixed problem for
this system can be formulated by prescribing initial and boundary conditions

v(x, t0) = v0(x), x ∈ Ω,
v(x, t) = vb(x, t), x ∈ ∂Ω × (0, T ].

To the knowledge of author, the well-posedness of suspension flow equations and,
indeed, for non-Newtonian flow equations with more general boundary conditions
than the non-slip condition has not been studied in literature. Thus, the known well-
posedness results are valid for homogeneous Dirichlet boundary condition v(x) = 0 on
x ∈ ∂Ω only. In this case the inflow boundary is empty, hence no boundary conditions
are required for s.

Well-posedness of complex fluids models with no-slip boundary conditions has
been studied in several works, see e.g. the review article [46] and references therein.
For viscoelastic fluids with Oldroyd type constitutive law the pioneering work [29]
gives proofs of local in time existence and uniqueness results for arbitrary data and
global results for small enough data. In [47], global in time existence results are
proven for a simplified Oldroyd-B model. Related results in Banach spaces as well as
analysis of finite element approximations have been considered in [6]. An existence
result for a multiscale model of general dumbbell suspension models in simple Couette
flows has been published in [40]. Upon a smoothing of the convective velocity field
and in some cases also the extra stress tensor field, the existence result for a coupled
system of flow and Fokker-Planck equations has been shown in [4].

As for fibre suspension flow models, the Folgar-Tucker equations have been ana-
lyzed in [25], where a local existence for small data is shown for quadratic closure, and
in [52], where for a constant orientational diffusivity and linear and quadratic closures
the existence of a unique classical solution is shown locally in time and globally in
time for sufficiently small data.

The goal of this section is to extend the results from [25] to a wide class of fibre
orientation models and for a wide class of constitutive laws. More precisely, we
assume the source term of the transport equation and the constitutive relations to
be polynomial in s and at most linear in flow variables. Furthermore, we assume
that the fibre orientation state characterized by |s| = 0 is stationary for quiescent
suspensions v = 0 and causes no extra forces in the suspension. These assumptions
are formalized in the statement of Problem P in Section 3.2. In order to apply these
theoretical results to actual models for rigid fibre and 3-beads models, the equations
must be formulated so that the isotropic orientation state corresponds to |s| = 0.
This is discussed in Section 3.1.2. The results proven in this Chapter do not apply
for the 3-beads model with type 1 linear closure since the rest state |s| = 0 fails to be
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stationary for v = 0. The main results of this Chapter is the existence and uniqueness
of a solution locally in time for sufficiently small data s0, v0 and external forces.

3.1 Preliminaries

We introduce notation used in the rest of this Chapter and formulate some useful
results. In particular, we study the solutions to two auxiliary problems.

3.1.1 Notation and function spaces

Let Ω ⊂ R
d, d = 2 or 3, be a bounded Lipschitz domain with the boundary ∂Ω.

Let us introduce the notation for some standard function spaces with Ω as domain.
Spaces of continuous functions. The space of continuous real-valued functions
on Ω is denoted by C(Ω), the space of uniformly continuous functions - by C(Ω).
This space can be equipped with the norm ‖v‖C(Ω) := sup{v(x) : x ∈ Ω}, making
it a Banach space. For natural m, we introduce the space of m-times continuously
differentiable functions Cm(Ω) = {v ∈ C(Ω) : Dαv ∈ C(Ω) for |α| ≤ m}, where α is

d-dimensional multi-index and Dα = Dα1

1 . . .Dαd

d =
(

∂
∂x1

)α1

. . .
(

∂
∂xd

)αd

. Cm(Ω) is a

Banach space, equipped with the norm

‖v‖Cm(Ω) :=
∑

|α|≤m
‖Dαv‖C(Ω).

Further, let C∞(Ω) = {v ∈ C(Ω) : v ∈ Cm(Ω) ∀m ∈ N} be the space of smooth
functions. The subspace of smooth functions with compact support is denoted by
D(Ω) = C∞

0 (Ω), this is often called the space of test functions. The space of vector
valued test functions with vanishing divergence is denoted by V (Ω) = C∞

0,σ(Ω) = {v ∈
C∞

0 (Ω)d : divv = 0}.
Lebesgue spaces. For p ≥ 1, we introduce the Lebesgue space Lp(Ω). Consider

the class of functions v : Ω → R, for which |v|p is Lebesgue integrable, with the
seminorm

‖v‖Lp = ‖v‖p :=

(∫

Ω

|v(x)|pdx
)1/p

.

The Lebesgue space Lp(Ω) is the space of equivalence classes of functions under
the equivalence relation v ∼p w if and only if ‖v − w‖p = 0. This is a Banach
space. Finally, L∞(Ω) is the space of essentially bounded functions with the norm
‖v‖L∞(Ω) := ess–sup {v(x) : x ∈ Ω}.

The space L2(Ω) is a Hilbert space with the inner product

〈v;w〉L2 =

∫

Ω

v(x)w(x)dx.
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Sobolev spaces. Let v ∈ L1(Ω) and α be a multi-index. A function Dαv is
called the weak derivative of order α of v if and only if for all φ ∈ D(Ω) it holds

∫

Ω

φDαvdx = (−1)|α|
∫

Ω

vDαφdx.

The Sobolev space W k,p is defined as

W k,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), ∀ |α| ≤ k}.

This is a Banach space, equipped with the norm

‖v‖W k,p = ‖v‖k,p =




∑

|α|≤k
‖Dαv‖pLp




1/p

.

The space W k,2(Ω) = Hk is a Hilbert space with the inner product

〈v;w〉Hk =
∑

|α|≤k

∫

Ω

DαvDαwdx.

From the Sobolev embedding theorem we deduce the following result.

Proposition 3.1. (Corollary from Sobolev embedding theorem.) Let Ω ⊂ R
d be a

bounded Lipschitz domain.

1. If d ≤ 3, then H2(Ω) embeds continuously in L∞(Ω), i.e., there exists a constant
c = c(Ω) such that for every v ∈ H2(Ω) it holds

ess–supx∈Ω|v(x)| ≤ c‖v‖H2 . (3.1)

2. If d ≤ 4, then H1(Ω) embeds continuously in L4(Ω) and there exists a constant
c = c(Ω) such that for every v ∈ H1(Ω) it holds

‖v‖L4 ≤ c‖v‖H1.

Of course, the statements are not sharp. For instance, if d = 3, then H1 contin-
uously embeds in L6, and if d = 2, then H1 embeds in Lp for every 1 ≤ p < ∞. We
will also use the following extension result due to Calderón ([8]).

Proposition 3.2. If Ω ⊂ R
d has Lipschitz boundary, then it is a W 1,p - extension

domain for all 1 < p < ∞. That is, there exists a bounded linear extension operator
E : W 1,p(Ω) →W 1,p(Rd) with (Eu)|Ω = u for all u ∈W 1,p(Ω).

The subspaces of functions, whose derivatives up to the order k− 1 vanish on ∂Ω
in the sense of traces, are defined as:

Hk
0 (Ω) = D(Ω)

‖·‖k,2

.
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To study the solutions to Stokes equation, we define the subspaces

V := H1
0,σ(Ω) = V (Ω)

‖·‖1,2

,

H := V (Ω)
‖·‖2

.

The spaces H and V are Banach spaces, endowed with the corresponding norms
(‖ · ‖1,2 for V and ‖ · ‖2 for H). These spaces can be characterised as follows (see [76]
for details):

H = {v ∈ L2(Ω)d : divv = 0 in Ω, v · n = 0 on ∂Ω},
V = {v ∈ H1

0 (Ω) : divv = 0 in Ω}.
The condition v · n = 0 is understood in the sense of traces, i.e., there exists a trace
operator γ mapping v ∈ H to γv · n ∈ H−1/2(∂Ω) (see [76]).

We use the standard notation for topological dual spaces.
Bochner spaces. The solution to a non-stationary problem is often sought in a

certain Bochner space. For a Banach space X and a real number p ≥ 1, the Bochner
space Lp(0, T ;X) consists of all Bochner-measurable functions v : (0, T ) → X with

finite value of the integral
∫ T
0
‖v(t)‖pXdt <∞. This space, endowed with the norm

‖v‖Lp(0,T ;X) = ‖v‖X,p;T :=

[∫ T

0

‖v(t)‖pXdt

]1/p

is itself a Banach space. In situations, when the value of T is clear from the context,
we use the shorthand notation ‖v‖Lp(X). A function u′ ∈ Lp(0, T ;X) is called the
weak derivative of u ∈ Lp(0, T ;X) if and only if for every φ ∈ C∞

0 (0, T ) the following
identity holds in X: ∫ T

0

u′φdt = −
∫ T

0

φ′udt.

Mollification is a technique for approximating a locally integrable function with a
smooth function. Let φ ∈ D(Rd) be chosen such that φ(x) ≥ 0 ∀x and

∫
Rd φ(x)dx = 1.

Let supp(φ) ⊂ Br(0). For v ∈ L1
loc(R

d) we define the mollification of v as the
convolution

Mφv(x) = (v ⋆ φ)(x) =

∫

Rd

v(x− y)φ(y)dy =

∫

Rd

φ(x− y)v(y)dy.

The mollification is smooth: Mφv ∈ C∞, since

DαMφv(x) = (−1)|α|
∫

Rd

v(y)Dα
xφ(x− y)dy

is well-defined and bounded in all bounded domains Ω ⊂ R
d as can be seen by Hölder’s

inequality

|DαMφv(x)| ≤
∫

Ω̃

|v(y)Dα
xφ(x− y)|dy ≤ ‖Dαφ‖L∞(Ω̃)‖v‖L1(Ω̃).
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Here Ω̃ denotes the r-neighbourhood of Ω.
Let v ∈ H1(Ω) for a bounded Lipschitz domain, and Ω̃ be the r-neighbourhood of

Ω. Let E : H1(Ω) → H1(Ω̃) be a continuous extension operator, e.g., the restriction
of the operator that exists due to Prop. 3.2, then we define the mollification operator
Mφ : H1(Ω) → C∞(Ω), mapping v to Mφv:

Mφv(x) = (v ⋆ φ)(x) =

∫

Ω̃

φ(x− y)Ev(y)dy.

3.1.2 Formulations

We start with rewriting the equations in dimensionless form. Let L0 represent
a typical length scale and V0 - typical velocity. From this, we compute the typical
time scale T0 = L0

V0
. Further, a typical pressure value is P0 = ηV0

L0
and typical value

of force density per unit mass is B0 = ηV0

ρL2

0

. We also introduce the Reynolds number

Re = ρV0L0

η
.

The dimensionless form is obtained by replacing x with x̂ = x/L0, t with t̂ = t/T0,
v with v̂ = v/V0, P with P̂ = P/P0 and b with b̂ = b/B0. We use dimensionless
variables in the rest of this Chapter, but we surpress the hats in notation.

We introduce the deformation rate and vorticity tensors D = 1
2
(∇v + ∇⊤v),

W = 1
2
(∇v −∇⊤v).

Fluid dynamics equations. The conservation of the linear momentum is given
by

Re
Dv

Dt
− divT = ρb, (3.2)

where b is body force per unit mass and the stress tensor is given by

T = −PI + 2ηD + S, (3.3)

S = 2η[Npa
(4) : D +Ns(D · a(2) + a(2) ·D)]. (3.4)

Np and Ns are material constants (particle number and shear number; see [25] and
Section 4.3), and η is a dimensionless viscosity. We add the mass conservation law
for incompressible fluids:

divv = 0.

We introduce the traceless part of a(2) via s = a(2) − 1
d
I. In order to calculate the

extra stress tensor, a closure for a(4) is required. For the time being, we formulate
the equations using the quadratic closure, however, the well-posedness results extend
to arbitrary closure that can be expressed as a polynomial in the components of a(2).
With the quadratic closure, (3.4) becomes

S = 2η[Np(s : D)(s+
1

d
I) +Ns(Ds+ sD +

2

d
I)].

Concentrated suspensions model. The equation (2.3) with quadratic closure
can be written as

Ds
Dt

+ (sW −Ws) − λ
[
Ds− sD + 2

d
D − 2(s : D)(s+ 1

d
I)
]

+U0|D|
[
ss+ ωs− (s : s)(s+ 1

d
I)
]

= 0,
(3.5)

52



Some well-posedness results

where ω = cid
U0

+ 1
d

is a constant. The function |D| =
√
D : D is not differentiable

in the point D = 0 corresponding to the rest state κ = 0. Since later we require
the source term of the transport equation to be differentiable with respect to D, we
introduce an approximation

γ̇ǫ := (D : D + ǫ2)1/2 − ǫ,

where ǫ > 0 is a constant. γ̇ǫ is a smooth function of D, moreover, the derivatives
∂|α|γ̇ǫ

∂Dα are bounded. As |D| → ∞, the approximation error γ̇ǫ(D) − |D| → 0.
Observe that all the summands of the source term in (3.5) are either linear in

κ = ∇u or grow linearly with |κ|. By dimension analysis one can verify that this
property is not accidental.

General formulation. Assuming the fibre orientation dynamics are described
by a system of transport equations with a special kind of source term, we write the
equation in general form:

Ds

Dt
= F(s,∇v), (3.6)

where F is continuously differentiable with respect to the totality of its arguments
(this is why a mollification of the diffusive constant in the Folgar-Tucker model is
needed). Furthermore, we assume that there exists a polynomial P with |Fi(s, κ)| ≤
P(|s|)|κ| and |∂jFi(s,κ)

∂κj | ≤ P(|s|) for 1 ≤ j ≤ 2.
3 beads model. The equations (2.22 - 2.24) can be transformed to dimensionless

form by introducing l̂B = lB
L0

, µ̂ = L0T0µ, k̂ = T0k. Henceforth we assume that the
equations are in dimensionless form and surpress the hats in the notation. Let a set
of closure approximations be given as polynomial functions of components of a(2,0),
a(1,1) and a(1,0). We introduce a vector s consisting of the independent components
of the tensors a(2,0) − 1

d
I, a(1,1) + 1

d
I and a(1,0). The variables are chosen so that the

natural equilibrium state at rest (κ = 0, µ = 0), characterized by straight fibres with
isotropic orientation distribution, corresponds to |s| = 0. Due to the symmetry of
a(2,0) and a(1,1), the dimension is s ∈ R

d2+2d. In two dimensions s ∈ R
8, in three

dimensions s ∈ R
15. The equations (2.22 - 2.24) can be written in the general form

Ds

Dt
+ F1(s, κ) + F2(s, µ),

where F1 is linear in κ and F2 is linear in µ, furthermore, there exists a polynomial
P such, that |F1(s, κ)| ≤ P(|s|)|κ| and |F2(s, µ)| ≤ P(|s|)|µ|.

3.1.3 Instationary Stokes problem

Let us recapitulate some useful well-posedness results for the instationary Stokes
problem, which is formulated as follows.

Problem (A). (The instationary Stokes problem.) Given Re > 0, η > 0 and a
suitable force term f . Find v and P , that satisfy the equations

Re vt − η△v + ∇P = f

div v = 0
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for almost all t ∈ [0, T ] almost everywhere in Ω, the boundary condition v = 0 on ∂Ω
and and the initial condition

v(0) = v0.

Assuming that v ∈ L2(Ω)d, we decompose the Hilbert space in the subspace of
divergence-free (solenoidal) functions denoted by H = L2

σ and its orthogonal comple-
ment G = H⊥. G can be characterized as

G = {f ∈ L2(Ω)d : ∃P ∈ L2
loc with f = ∇P},

see [69], [24]. This is called the Helmholtz-Weil decomposition. Let us denote the
orthogonal projector L2(Ω)d → H by PHW and define the Stokes operator

L := −PHW△.

The operator L is linear and maps D(L) = V ∩H2 to H . It induces the graph norm
in V ∩ H2, defined by ‖v‖D(L) = ‖Lv‖2. This norm is equivalent to the natural H2

norm (see [24], [29]). Problem A is reformulated as

Problem (1). (Instationary Stokes problem, pressure free formulation.) Find v(t, ·)
with v(t, ·) ∈ H for almost all t ∈ (0, T ) solving the following equation in H:

Re vt + ηLv = f (3.7)

v(0) = v0. (3.8)

The following result is standard, see e.g. [69], [76].

Lemma 3.1. Let ∂Ω ∈ C2, v0 ∈ V and f ∈ L2(Ω× [0, T ]). If η > 0, then Problem 1
admits a unique solution v ∈ L2(0, T ;D(L))∩C([0, T ];V ) such that vt ∈ L2(Ω×[0, T ])
and the associated pressure P ∈ L2(0, T ;H1(Ω)). Furthermore, there exists a constant
C1(Re, η,Ω) such that

‖v‖2
L2(0,T ;D(L))∩L∞(0,T ;V ) + ‖vt‖2

2 + ‖P‖2
H1,2;T ≤ C1(‖v0‖2

2 + ‖f‖2
2).

The existence and uniqueness of the solution is proved in [76], and the estimate
is given in [29]. The estimate involves a norm of intersection of two Banach spaces.
There are several equivalent norms that make the intersection a Banach space, for in-

stance, the sum norm ‖·‖X∩Y = ‖·‖X+‖·‖Y or the Hilbertian norm (‖ · ‖2
X + ‖ · ‖2

Y )
1/2

.
Throughout this chapter we equip the intersection of two Banach spaces with the sum
norm.

Provided that the domain and the data are more regular, one can prove a higher
regularity of the solution.

Lemma 3.2. Assume that ∂Ω ∈ C3, Ft ∈ L2(0, T,H−1), v0 ∈ D(L). If η > 0, then
the unique solution of Problem 1 satisfies

v ∈ L2(0, T ;H3) ∩ C([0, T ];D(L)),

vt ∈ L2(0, T ;V ) ∩ C([0, T ];H),

P ∈ L2(0, T ;H2),
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and there exists a constant C∗ = C∗(Re, η,Ω) such that

‖v‖2
L2(0,T ;H3)∩L∞([0,T ];D(L)) + ‖vt‖2

L2(0,T ;V )∩L∞([0,T ];H) + ‖P‖2
L2(0,T ;H2)

≤ C∗
{
‖Lv0‖2

2 + ‖f‖2
L1(0,T ;(H1)d) + ‖ft‖2

L1(0,T ;(H−1)d) + ‖f(0)‖2
2

}
.

This lemma is adopted from [29].

3.1.4 Linearized transport problem

Let us introduce the bilinear mapping

B(v, s) := v · ∇s.

Provided that divv = 0, any vector field of arbitrary dimension s ∈ H1(Ω)d1 satisfies
the identity

〈B(v, s); s〉L2 =
1

2

∫

Ω

v · ∇(s2)dx = 0. (3.9)

From Prop. 3.1 and Hölder’s inequality we obtain

Proposition 3.3. Let Ω ⊂ R
d, d ≤ 4, be a bounded Lipschitz domain; then:

1. the trilinear form b1(u, v, w) :=
∫
Ω
uvwdx is well defined and continuous on

[H1(Ω)]2 × L2(Ω), and ∃c > 0 s.t.

|b1(u, v, w)| ≤ c‖u‖H1‖v‖H1‖w‖L2.

2. (see [76], pp. 169-172) the trilinear form b2(u, v, w) :=
∫
Ω
u∂ivwdx is well

defined and continuous on [H1(Ω)]3 and there exists a constant c such that for
all u, v, w

|b2(u, v, w)| ≤ c‖u‖H1‖v‖H1‖w‖H1.

3. moreover, the spaceH2(Ω) is an algebra, i.e., whenever u, v ∈ H2, then the prod-
uct uv ∈ H2 and there exists c > 0 such that ∀u, v ∈ H2 ‖uv‖H2 ≤ c‖u‖H2‖v‖H2.

Linearization. Let us concentrate on the dependence of the source term on s
only, i.e., let F(s) : R

d2 → R
d2 be a vector-function with components polynomial

in components of s. By a linearization of F we understand an expression F(s) =
l(s) · s + g , where l : R

d
2 → R

d2
2 is a matrix with polynomial entries, and g = F(0)

does not depend on s. If d2 > 1 and F contains a mixed product, e.g., sisj for i 6= j,
then the linearization is not unique.

As an example we consider the source term in (3.5). It is a symmetric tensor
valued function with components polynomial in s. A suitable symmetry preserving
linearization in the tensor notation is

l(s̄) · s+ g = (Ws− sW ) − λ
[
2(s : D)(s̄+ 1

d
I) −Ds− sD − 2

d
D
]

−U0|D|
[

1
2
(ss̄+ s̄s⊤) + ωs− (s : s̄)(s̄+ 1

d
I)
]
,
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where g = 2λ
d
D.

After the linearization with respect to s we consider the dependence of F on the
velocity field variables such as the gradient κ and for the 3-beads model the curvature
µ. Here we observe that the source terms either depend on κ and µ linearly or at least
have a linear growth with respect to these variables. To prove the existence result for
the coupled system, we need the assumption that the H2 norms of the parts, which
are not linear with respect to κ, can be estimated from above by the H1 norm of v,
hence the existence is only proved for a regularized version of the fibre orientation
models, where the velocity curvature µ and the nonlinear parts such as γ̇ǫ are mollified
in an appropriate way. For these reasons, we introduce an additional variable ξ with
d3 components.

Denote Br1,r2 = {(x, y) ∈ R
d2 × R

d2+d3 : |x| ≤ r1, |y| ≤ r2}.
We consider a transport problem under the following assumptions.

Problem (2). (Linearized transport problem). Given v̄ ∈ L∞(0, T ;H1(Ω)d), s̄ ∈
L∞(0, T ;L2(Ω)d2) and a functional ξ̄ = ξ(v̄), such that there exists c > 0, for which
the estimate ‖ξ̄‖H2(Ω) ≤ c‖v̄‖H1(Ω) holds. Find s(·, t) ∈ L2(Ω)d2, which satisfies a.e.
in (0, T )

st +B(v̄, s) + l(s̄,∇v̄, ξ̄) · s+ g(∇v̄, ξ̄) = 0,
s(0) = s0.

(3.10)

Here l ∈
[
C2(Rd2+d2+d3)

]d2×d2
and g ∈

[
C2(Rd2+d3)

]d2
, where d2 > 0, d3 ≥ 0 are

integers, are given functions satisfying ‖l‖C2(Br1,r2
) ≤ P(r1)(1+r2) and ‖g‖C2(Br) ≤ cr

for a polynomial P. Furthermore, l and g at most linear in the components of (κ, ξ) in
the sense that the second order derivatives with respect to any pair of the components
of (κ, ξ) vanish.

Let us estabilish some continuity properties of l and g.

Lemma 3.3. Let l and g satisfy the assumptions of Problem 2. Further, let the
components of s̄, κ and ξ be of class H2(Ω). Then l(s̄, κ, ξ̄) and g(κ, ξ̄) are in H2(Ω).
Moreover, there exists a polynomial P0 with nonnegative coefficients s.t.

‖l‖H2 ≤ P0(‖s̄‖H2)(‖κ‖H2 + ‖ξ‖H2 + 1), (3.11)

‖g‖H2 ≤ c(‖κ‖H2 + ‖ξ‖H2). (3.12)

Proof. We demonstrate the estimate (3.11). By the chain rule,

∂l

∂xi
=
∂l

∂s̄
· s̄,i +

∂l

∂κ
: κ,i +

∂l

∂ξ
· ξ,i,

and
∂2l

∂xi∂xj
=

(
∂2l
∂s̄2
s̄,j + ∂2l

∂s̄∂κ
κ,j + ∂2l

∂s̄∂ξ
ξ,j

)
s̄,i +

∂l
∂s̄
s̄,ij+(

∂2l
∂s̄∂κ

s̄,j + ∂2l
∂κ2κ,j + ∂2l

∂κ∂ξ
ξ,j

)
κ,i +

∂l
∂κ
κ,ij+(

∂2l
∂s̄∂ξ

s̄,j + ∂2l
∂κ∂ξ

κ,j + ∂2l
∂ξ2
ξ,j

)
ξ,i +

∂l
∂ξ
ξ,ij.

(3.13)
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Using the assumption about the C2 norm of l and the linearity with respect to κ and
ξ, we obtain the following inequalities, which hold pointwise in Ω:

|l| ≤ (|κ| + |ξ̄| + 1)P(|s̄|),
|∂s̄i

l| ≤ (|κ| + |ξ̄| + 1)P(|s̄|),
|∂κi

l| ≤ P(|s̄|),
|∂ξi l| ≤ P(|s̄|),

|∂κiκj
l| = |∂ξiξjF | = |∂ξiκj

F | = |∂ξiξjF | = 0,
|∂s̄iĀj

l| ≤ (|κ| + |ξ̄| + 1)P(|s̄|),
|∂s̄iκj

l| ≤ P(|s̄|).

(3.14)

By the first part of Prop. 3.1, the pointwise values of s̄, κ and ξ are essentially
bounded by the H2(Ω) norms. By the second part of Prop. 3.1, the right-hand side
of (3.13) is square integrable. This together with (3.13-3.14) implies (3.11).

The estimate (3.12) follows by the same lines, by using ∂s̄i
g = 0 and the fact that

g(0, 0) = 0.
Now we are prepared to prove the following result for Problem 2.

Lemma 3.4. Let ∂Ω be of class C1, v̄ ∈ L2(0, T ;H3)∩L∞(0, T ;D(L)), s̄ ∈ L∞(0, T,H2)
and s0 ∈ H2 be given, satisfying the following estimates:

‖v̄‖L2(0,T ;H3) + ‖v̄‖L∞(0,T ;D(L)) ≤ B1,

‖s̄‖L∞(0,T ;H2) ≤ B2,

where the constant B2 is taken sufficiently large so that

B2 ≥ 2(B1 + ‖s0‖H2). (3.15)

Let ‖ξ̄‖L∞(0,T ;C2) ≤ cB1.
Then there exists a constant T ∗ depending on the domain, B1, B2 and the material

constants such that for any T̂ ≤ min{T, T ∗} Problem 2 admits a unique solution s in
the time interval (0, T̂ ) in the function class

s ∈ L∞(0, T̂ ;H2), st ∈ L∞(0, T̂ ;H1).

Furthermore, it holds
‖s‖L∞(0,T̂ ;H2) ≤ B2, (3.16)

‖st‖L∞(0,T̂ ;H1) ≤ B3, (3.17)

where B3 is (B1+B2)P∗(B2) and P∗ is a polynomial, depending only on the functions
l and g.

Proof. The scheme of proof is similar to the proof of Lemma 2.3 in [29] and
Lemma 3 in [25]. We first derive apriori estimates for the H2 norm of a solution,
from these a suitable value for T ∗ satisfying the estimates (3.16) and (3.17) is found.
Then the construction of a solution in the space L2(0, T ⋆;H2) is sketched. The proof
is completed by demonstrating the uniqueness of solution in this space.
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A-priori estimates. Let s : t 7→ s(·, t) ∈ H2(Ω)d2 be a solution of (3.10). The
rate of change of the H2 norm of s(·, t) can be estimated by using (3.10). First
compute the L2 inner product of both sides of (3.10) with s. Next, for i ∈ 1, d
differentiate both sides of (3.10) with the operator ∂i and form the inner product with
∂is. Finally, differentiate (3.10) with the operator ∂ij and form the inner product with
∂ijs. The sum of thus obtained (1+d+d2) equations gives an equation for d

dt
‖s(t)‖2

H2 .
Using the orthogonality property (3.9), this equation is

1
2
d
dt
‖s‖2

H2 = −〈B(v̄, s); s〉H2 − 〈l · s+ g; s〉H2

= −
∫
Ω

[v̄i,j (s,is,j + 2s,iks,jk) + v̄i,jks,is,jk] dx
−〈l · s+ g; s〉H2.

(3.18)

(Throughout this proof, c will stand for a positive constant, which depends on the
domain and probably on material constants, but never on the unknowns).

The terms of (3.18) are estimated as follows. Since v̄i,j ∈ H2, the inequality (3.1)
applies: ∣∣∣∣

∫

Ω

v̄i,j (s,is,j + 2s,iks,jk) dx

∣∣∣∣ ≤ c‖v̄‖H3‖s‖2
H2.

Further, vi,jk and s,i are in H1, therefore by second part of Prop. 3.3

∣∣∣∣

∫

Ω

v̄i,jks,is,jkdx

∣∣∣∣ ≤ c‖v̄‖H3‖s‖2
H2.

By triangle inequality, Cauchy-Schwarz inequality and third part of Prop. 3.3,

〈l · s+ g, s〉H2 ≤ c(‖l‖H2‖s‖H2 + ‖g‖H2)‖s‖H2 .

By Lemma 3.3, and the assumptions |s̄| ≤ B2, |ξ| ≤ cB1,

〈l · s+ g, s〉H2 ≤ c‖s‖H2(‖v̄‖H3 +B1 + 1) [1 + ‖s‖H2P (B2)] .

Thus, (3.18) implies the following inequality in differential form:

d

dt
‖s‖2

H2 ≤ c‖s‖H2(‖v̄‖H3 +B1 + 1) [1 + ‖s‖H2P∗ (‖s̄‖H2)] ,

where P∗ is a polynomial with non-negative coefficients, majorizing all the P which
appear in the estimates. Let us denote y(t) := ‖s‖2

H2, g(t) := ‖v̄‖H3 and B̂ := P∗(B2).
Using the assumption about the norm of s̄, we get

y′ ≤ c
√
y(1 + B̂

√
y)(g +B1 + 1).

Using the inequality of arithmetic and geometric means gc
√
y ≤ 1

2
(g2 + c2y) and

(B1 + 1)cy ≤ 1
2
((B1 + 1)2 + c2y), we obtain

y′ ≤
(
c2 + B̂c(g +B1 + 1)

)
y +

1

2

(
g2 + (B1 + 1)2

)
.
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We seek the upper ”barrier” of the solution in the form

y(t) = k(t) exp

[(
c2 + B̂c(B1 + 1)

)
t+ B̂c

∫ t

0

g(τ)dτ

]
.

The unknown function k(t) is found by substitution:

k(t) = c1 +
1

2

∫ t

0

[
g(t1)

2 + (B1 + 1)2
]
×

exp

{
−
[
c2 + B̂c(B1 + 1)

]
t1 − B̂c

∫ t1

0

g(τ)dτ

}
dt1,

and the integration constant c1 = y0 = ‖s0‖2
H2 comes just from the initial data. The

negative power of e can be estimated from above by 1, giving

k(t) ≤ y0 +
1

2

(
B2

1 + (B1 + 1)2t
)
≤ 3

8
B2

2 + (B1 + 1)2 t

2
;

the latter estimate is obtained from (3.15). We complete the estimation by using the
Cauchy-Schwarz inequality:

∫ t

0

g(τ)dτ ≤
√
t

[∫ t

0

g(τ)2dτ

]1/2

≤ B1

√
t,

to arrive at
y(t) ≤ k(t) exp

[(
c2 + B̂c(B1 + 1)

)
t+ B̂B1c

√
t
]
.

In light of the continuity of y and the fact that y(0) ≤ 3
8
B2

2 , it is obvious that for a
sufficiently small time interval t ∈ (0, T ∗) we have y(t) ≤ B2

2 . Notice that T ∗ depends
on B1 and B2, but not on the particular choices of s̄ and v̄. This proves (3.16).

The estimate (3.17) is proven by computing the H1 norm of the first row of (3.10);
since v̄ ∈ H3, one immediately has

‖B(v̄, s)‖H1 ≤ c‖v̄‖H3‖s‖H2.

By assumption, setting F := l · s+ g, ‖F‖L2 → 0 as ‖s‖H2 + ‖κ‖H2 → 0.
Using the chain rule and estimates as in proof of Lemma 3.3, we obtain a similar

estimate for the semi-norm |F |H1. Combining these inequalities, we obtain

‖F‖H1 ≤ (B1 +B2)P∗(B2),

which is exactly (3.17).
Existence. A solution can be constructed by using the method of characteristics.

In [25] Galdi suggests a way how to construct a solution s ∈ L2(0, T ⋆;H2) with the
help of a Galerkin method.

Uniqueness. Let s(1) and s(2) be two solutions corresponding to the same data,
and set s := s(1) − s(2), we have s(0) = 0 almost everywhere. Further, set l0 :=
l(s̄,∇v̄, ξ̄). s satisfies the following equation:

s′ +B(v̄, s) + l0 · s = 0.
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We compute the L2 scalar product with s. Due to (3.9), B part vanishes, and by
Lemma 3.3,

|〈l0 · s; s〉L2 | ≤ c(‖v̄‖H3 + 1)‖s‖2
L2,

with c = P1(B2). It follows that

1

2

d

dt
‖s‖2

L2 − c(‖v̄‖H3 + 1)‖s‖2
L2 ≤ 0.

Since the norm of s is square time-integrable, we can apply Grönwall’s lemma ([87],
p. 82) to deduce that ‖s‖2

L2 = 0 almost everywhere in time, which leads to s(1) = s(2)

almost everywhere in space and time. This implies the uniqueness of the solution.

3.2 Local existence of solutions

In this section we study a coupled problem consisting of the incompressible Navier-
Stokes equations with a non-Newtonian constitutive law, which depends on a multidi-
mensional quantity s in a rather general way and a transport equation for the quantity
s. The assumptions about the form of the constitutive relation and the source term
of the transport equation are summarized in the formulation of the problem.

Problem P. Find
v(·, t) ∈ V and s(·, t) ∈ (H2(Ω))d2 ,

such that for almost all t ∈ (0, T ) the following equations are satisfied

Re[vt + (v · ∇)v] + ηLv − divT = b,

T = T (s,∇v),
st + (v · ∇)s = F(s,∇v, ξ(v)),

and the given initial conditions v(·, 0) = v0 and s(·, 0) = s0 hold.
Here T , F and ξ are given and satisfy the following assumptions.

T ∈
[
C2(Rd2+d2)

]d2
, the function T (s, κ) is linear in κ, and together with its first

and second order derivatives has a polynomial growth with respect to |s|. Furthermore,
whenever |s| = 0 or |κ| = 0, the gradient ∇(s,κ)T = 0.

F ∈
[
C2(Rd2+d2+d3)

]d2
, the function F(s, κ, ξ) is linear in (κ, ξ), and together

with its first and second order derivatives has a polynomial growth with respect to |s|.
Moreover, F(0, 0, 0) = 0.

ξ : H3(Ω)d → C2(Ω)d3 is a continuous functional with a linear growth: ‖ξ(v)‖ ≤
c‖v‖.

The solution should be equal to a time-continuous function v ∈ C([0, T ];V ) and
s ∈ C([0, T ];H1(Ω)d2) almost everywhere. We define the solution space

XT := C([0, T ];V ) × C([0, T ];H1(Ω)d2)
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and a subset of XT :

RT := {(v, s) : v ∈ C([0, T ];D(L)) ∩ L2([0, T ];H3),
v′ ∈ C([0, T ];H) ∩ L2([0, T ];V ),
s ∈ L∞([0, T ]; (H2)d2), s′ ∈ L∞([0, T ]; (H1)d2),
v(0) = v0, s(0) = s0,
‖v‖2

L∞(0,T ;D(L))∩L2(0,T ;H3) + ‖v′‖2
L∞(0,T ;H)∩L2(0,T ;V ) ≤ B2

1 ,

‖s‖L∞(0,T ;(H2)d2 ) ≤ B2, ‖s′‖L∞(0,T ;(H1)d2 ) ≤ B3

}
,

where B1 is a constant, B2 satisfies the condition (3.15) and B3 is computed from B1

and B2 as in Lemma 3.3. By Arzela-Ascoli Theorem (see e.g., [87], p. 772), RT is
compact in XT .

As in [29] and [52], we find a value of B1 > 0, for which RT 6= ∅. Consider the
instationary Stokes problem

Rev∗′ + ηLv∗ = 0,

where v∗(·, t) ∈ V and v∗(·, 0) = v0. By Lemma 3.2, this problem has a unique
solution for every time interval [0, T ], and there exists a constant C∗(Re, η,Ω) such
that

‖v∗‖2
L∞(0,T ;D(L))∩L2(0,T ;H3) + ‖v∗′‖2

L∞(0,T ;H)∩L2(0,T ;V ) ≤ C∗‖Lv0‖2
L2.

If B1 satisfies
B2

1 ≥ 2
[
C∗‖Lv0‖2

L2 + ‖s0‖2
H2

]
=: c21, (3.19)

then the pair (v∗, s0) ∈ RT for ∀T > 0, and thus RT 6= ∅. From now on, we assume
that B1 satisfies (3.19). Thus, RT is a nonempty compact convex subset of XT .

Suppose that (v̄, s̄) ∈ RT is given. By linearizing F , we obtain an instance of
Problem 2, and by setting

f = −ReB(v̄, v̄) + PHW b+ PHWdivT (v̄, s̄), (3.20)

we obtain an instance of Problem 1. By Lemmata 3.2 and 3.4, these auxiliary prob-
lems admit unique solutions (v, s).

This defines a mapping Φ : (v̄, s̄) → (v, s). We want to show that for sufficiently
small T and suitable choice of B1 Φ maps RT into itself.

In order to estimate the norm of force term ‖f‖H1, we need to consider the H1

norm of

divTj = ∂iTij =
∂Tij
∂s

· s,i +
∂Tij
∂κ

: κ,i.

We use an ambigious notation P and Q for some polynomials with nonnegative co-
efficients, meaning that ”there exists a polynomial such that...” The notation Q is
used to signify that the polynomial satisfies Q(0) = 0.

‖divTj‖L2 ≤
∥∥∥∥
∂Tij
∂s

∥∥∥∥
L∞

∥∥∥∥
∂s

∂xi

∥∥∥∥
L2

+

∥∥∥∥
∂Tij
∂κ

∥∥∥∥
L∞

∥∥∥∥
∂κ

∂xi

∥∥∥∥
L2

≤ P(‖s‖H2)‖v‖H3‖s‖H1 + Q(‖s‖H2) · 1 · ‖v‖H2

≤ Q(‖s‖H2)‖v‖H3.
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By using chain rule, Proposition 3.1 and integrating over time, we find

‖divT ‖L2(0,T ;H1) ≤ Q1(B2)B1.

The initial value of the stress term depends on initial conditions:

‖divT (0)‖L2 ≤ Q2(‖s0‖H2)‖v0‖H2 ,

‖divT ′‖L2(0,T ;H−1) = ‖∂T
∂s
s′ + ∂T

∂κ
κ′‖L2(0,T ;H−1)

≤ c(1 + Q31(B2))B1B3 + Q32(B2)‖v′‖L2(0,T ;H1)

≤ (cB3 + Q3(B2))B1.

Employing these estimates and using the continuity of B in (3.20), we derive

‖f‖L2(0,T ;H1) ≤ k1(Q1(B2) +B1)B1 + ‖b‖L2(0,T ;H1) =: F1B1 + c2;

‖f(0)‖L2 ≤ k1[Q2(‖s0‖H2)‖v0‖H2 + ‖v0‖2
H2 ] + ‖b(0)‖L2 =: c3;

‖f ′‖L2(0,T ;H−1) ≤ k1[cB3 + Q3(B2) +B1]B1 + ‖b′‖L2(0,T ;H−1) =: F2B1 + c4.

Here the constants ci depend only on the input data, and Fi → 0 as |B1|+ |B2| → 0.
Let us choose

B1 = c1 + 4
√
C∗(c2 + c3 + c4);

then (3.19) is satisfied automatically, and we get

C∗
[
‖Lv0‖2

L2 + ‖f‖2
L2(0,T ;H1) + ‖f(0)‖2

L2 + ‖f ′‖2
L2(0,T ;H−1)

]

≤ C∗‖Lv0‖2
L2 + C∗ [‖f‖L2(0,T ;H1) + ‖f(0)‖L2 + ‖f ′‖L2(0,T ;H−1)

]2

≤ 1
2
B2

1 + C∗ [(F1 + F2)B1 + (c2 + c3 + c4)]
2

≤ 1
2
B2

1 +
[
(F1 + F2)B1

√
C∗ + B1

4

]2
.

Next, we may choose

B2 = 4B1;

this satisfies the condition (3.15) because of (3.19). Now it is obvious that F1 and F2

tend to zero if B1 → 0. However, for sufficiently small data, (3.19) allow arbitrary
small positive values of B1. Let B1 > 0 be so small that

(F1 + F2)
√
C∗ ≤ 1/4,

then Lemma 3.2 guarantees that the solution v of the auxiliary Problem 1 with the
force term (3.20) is unique and satisfies ‖v‖2+‖vt‖2 ≤ B2

1 . This together with Lemma
3.4 proves that Φ maps RT ∗ into itself (where T ∗ is given by Lemma 3.4, and depends
on B1 and B2). A direct application of the Schauder fixed point theorem ([87], p. 57)
yields the following result.
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Theorem 1. Let Ω have C3 boundary, b ∈ L2
loc(R

+;H1), b′ ∈ L2
loc(R

+;H−1), v0 ∈
D(L) and s0 ∈ H2(Ω)d2 . Then there exist positive constants K and T such that
whenever

‖b′‖L2(0,T ;H1)∩L2(0,T ;H−1) + ‖v0‖D(L) + ‖s0‖H2 ≤ K,

then Problem P admits at least one solution (v, P, s) in Ω × (0, T ) in the spaces

v ∈ L2(0, T ;H3), v′ ∈ L2(0, T ;V ), P ∈ L2(0, T ;H2),
s ∈ L∞(0, T ;H2), s′ ∈ L∞(0, T ;H1).

The constant K depends only on the domain Ω and on the material constants, while
T also depends on the data. Finally, such solutions satisfy the estimate

‖v‖L2(0,T ;H3)∩L∞(0,T ;D(L)) + ‖v′‖L2(0,T ;V )∩L∞(0,T ;H)

+‖P‖L2(0,T ;H2) + ‖s‖L∞(0,T ;H2) + ‖s′‖L∞(0,T ;H1) ≤ k,

where k depends on the data in such a way that

k → 0 as ‖b‖L2(0,T ;H1) + ‖b′‖L2(0,T ;H−1) + ‖v0‖H2 + ‖s0‖H2 → 0.

3.3 Uniqueness of solution

Now we demonstrate that, for sufficiently small data, the solution given by Theorem
1 is unique. Let (v1, P1, s1) and (v2, P2, s2) be two solutions corresponding to the same
data. By Theorem 1, for every δ > 0 we can restrict the norms of initial data so that

‖s1‖L∞(0,T ;H2) + ‖s2‖L∞(0,T ;H2) ≤ δ.

Let us define v = v1 − v2, P = P1 −P2, s = s1 − s2, τ1 = T (s1,∇v1), τ2 = T (s2,∇v2),
φ1 = F(s1,∇v1, ξ1), φ2 = F(s2,∇v2, ξ2). These can be verified to satisfy the following
equations.

Re[v′ −B(v, v) +B(v1, v) +B(v, v1)] + Lv = PHWdiv(τ1 − τ2),

s′ −B(v, s) +B(v1, s) +B(v, s1) = φ1 − φ2.

Multiplying the first equation with v and the second with s and integrating over Ω,
we get

Re

[
1

2

d

dt
‖v‖2

L2 + 〈B(v, v1); v〉
]

+ |v|2H1 = 〈τ1 − τ2;D〉,

1

2

d

dt
‖s‖2

L2 + 〈B(v, s1); s〉 = 〈φ1 − φ2; s〉,

where D = 1
2
(∇+∇⊤)v, 〈·; ·〉 is the L2 inner product and | · |H1 is the familiar Sobolev

seminorm. Using Prop. 3.1,

|〈B(v, v1); v〉| ≤ c‖v1‖H3‖v‖2
L2,
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|〈B(v, s1); s〉| ≤ c‖s1‖H2‖v‖H1‖s‖L2 ≤ cδ‖v‖H1‖s‖L2.

Plugging in this and using Cauchy-Schwarz inequality yields

Re
1

2

d

dt
‖v‖2

L2 + |v|2H1 ≤ cRe‖v1‖H3‖v‖2
L2 + ‖τ1 − τ2‖L2‖v‖H1, (3.21)

1

2

d

dt
‖s‖2

L2 ≤ cδ‖v‖H1‖s‖L2 + ‖φ1 − φ2‖L2‖s‖L2 . (3.22)

Next, we use the linearity of T in κ and the estimate |T (s, κ)| ≤ Q1(|s|)|κ|

|τ1 − τ2| = |T (s1, κ1) − T (s2, κ2)|
≤ |T (s1, κ1) − T (s2, κ1)| + |T (s2, κ1) − T (s2, κ2)|
≤ |Q1(|s1|) −Q1(|s2|)| · ‖v1‖H1 + Q1(|s2|)‖v‖H1,

where Q1 is a polynomial with nonnegative coefficients and Q1(0) = 0. Moreover,
since |s| is bounded by δ, Q1 is Lipschitz continuous with Lipschitz constant q(δ),
i.e., |Q1(|s1|)−Q1(|s2|)| ≤ q(δ) ||s1| − |s2|| ≤ q(δ)|s1−s2|, where q is continuous. Let
us denote V := ‖v1‖H3 + ‖v2‖H3 ; then

‖τ1 − τ2‖L2 ≤ q(δ)V ‖s‖L2 + Q1(δ)‖v‖H1.

By the Poincare-Friedrichs inequality, there exists a constant c∗ = c∗(Ω) > 0 such
that ∀v ∈ H1

0 (Ω) it holds |v|2H1 ≥ c∗‖v‖2
L2, thus |v|2H1 ≥ c∗

1+c∗
‖v‖2

H1. Let α > 0 be a

fixed constant satisfying 1
2α2 <

c∗
1+c∗

. By the inequality of algebraic and geometrical

mean values (for real a and b, 2ab ≤ a2 + b2),

q(δ)V ‖s‖L2‖v‖H1 ≤ α2

2
q(δ)2V 2‖s‖2

L2 +
‖v‖2

H1

2α2
.

With this, (3.21) transforms to

Re
1

2

d

dt
‖v‖2

L2 + |v|2H1 ≤
[
Q1(δ) +

1

2α2

]
‖v‖2

H1 +
α2q(δ)2

2
V 2‖s‖2

L2 + cReV ‖v‖2
L2.

Using Poincare-Friedrichs inequality, we get

Re
1

2

d

dt
‖v‖2

L2 ≤
[
Q1(δ) +

1

2α2
− c∗

1 + c∗

]
‖v‖2

H1 +
α2q(δ)2

2
V 2‖s‖2

L2 + cReV ‖v‖2
L2.

(3.23)
Since Q1(0) = 0, we can choose δ0 > 0 so small that ∀δ ∈ (0, δ0)

η :=
c∗

1 + c∗
− 1

2α2
−Q1(δ) > 0.

By suitably increasing the right-hand side of (3.23), we conclude that there exists a
constant c with

d

dt
‖v‖2

L2 ≤ c(V 2‖s‖2
L2 + V ‖v‖2

L2) − 2η

Re
‖v‖2

H1. (3.24)
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Next we estimate the right-hand side of (3.22):

|φ1 − φ2| = |F(s1, κ1, ξ1) − F(s2, κ2, ξ2)|
≤ |F(s1, κ1, ξ1) −F(s2, κ1, ξ1)| + |F(s2, κ1, ξ1) −F(s2, κ2, ξ2)|.

Using the continuity properties of F in a similar way as for T , we can show that there
exists a constant C depending on δ with

‖φ1 − φ2‖L2 ≤ C(V ‖s‖L2 + ‖v‖H1).

Plugging this into (3.22) and using inequality of algebraic and geometric means, we
find a constant c with

d

dt
‖s‖2

L2 ≤ c
[
‖v‖2

H1 + (V + 1)‖s‖2
L2

]
. (3.25)

Now we make a linear combination of the equations (3.24) and (3.25) so that
the terms proportional to ‖v‖2

H1 cancel out. Finally, we can suitably increase the
right-hand side so that there exists a c > 0 with

dE

dt
≤ c(V 2 + V + 1)E,

where we have denoted E = ‖v‖2
L2 + γ2‖s‖2

L2. By assumption, E(0) = 0. Finally, we
apply Grönwall’s lemma to show that

E(t) = 0 almost everywhere in [0, T ].

This proves that the solution given by Theorem 1 is unique. More precisely, we have
shown the following.

Theorem 2. There exists a positive constant K such that if

‖b′‖L2(0,T ;H1)∩L2(0,T ;H−1) + ‖v0‖D(L) + ‖s0‖H2 ≤ K,

then Problem P admits at most one solution in the class of solutions (v, P, s) in the
spaces

v ∈ L2(0, T ;H3), v′ ∈ L2(0, T ;V ), ∇P ∈ L2(0, T ;H1),
s ∈ L∞(0, T ;H2), s′ ∈ L∞(0, T ;H1).

With this, we have shown the well-posedness of the systems arising from our
models for sufficiently small data.

65



Some well-posedness results

66



Chapter 4

Computational experiments

This Chapter is concerned with various aspects of numerics for mesoscale fibre sus-
pension models. The semiflexible fibre suspension model is considered in the first sec-
tion. Here the performance of two closures (polynomial closure and hybrid closure) is
compared by studying the behaviour of numerical solutions of the equations for a rep-
resentative choice of prescribed time-independent planar flow fields. The polynomial
closure is found to be more robust. In the rest of this Chapter we are dealing with
coupling the fibre orientation equations to the non-Newtonian flow equations for the
case of concentrated short fibre suspensions. The numerics and implementation are
briefly reviewed in Section 4.2. Numerical solutions for selected domains in two and
three dimensions with different parameter values are presented in the third section
along with a discussion of the results.

4.1 A study of closure approximations

In this section we study the influence of closure approximations on the solution be-
haviour of the equations (2.22-2.24) for given local values of the spatial derivatives of
the suspension velocity field κ and µ. In the Eulerian coordinates the model consists
of a system of transport equations of the form ∂s

∂t
+ v · ∇s = F(s, v), where F is the

model dependent source term. For stationary flow fields, the characteristics of this
hyperbolic system are the streamlines of the velocity field v(x).

Thus application of the method of characteristics to the transport equation is
equivalent to reformulation of the model in Lagrangian coordinates, where one follows
a volume element of the suspension travelling along a streamline, and computes the
fibre orientation evolution for this specific volume element. This reduces the transport
equation to a system of ordinary differential equations for each point of the suspension:

s′ = F(s, κ, µ). (4.1)

For an implementation of the 3-beads model coupled to suspension flow equations it
is important to have a robust closure approximation in the sense that for physically
meaningful data the solutions are physically meaningful. The invariance of the phys-
ically admissible subset of the phase space is a major aspect of the robustness. We
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start with a description of the admissible subset. Next we select a set of relevant flow
fields. For this, we perform a simple classification of locally incompressible two di-
mensional flow fields and choose a few representative examples for the tests. Finally,
we solve the moment equations numerically for the selected flow fields, and observe
the dependence of solution behaviour on the closure relation. Some representative
results are presented and conclusions are made.

4.1.1 Phase space

The following algebraic conditions for the components of the moments can be derived
from the definition of the mixed moments:

Tr(a(2,0)) =

∫ ∫
Tr(p⊗ p)ψ(p, q)dσ(p)dσ(q) = 1, (4.2)

〈w, a(2,0)w〉 ≥ 0 ∀w ∈ R
d, (4.3)

|〈w, a(1,1)w〉| ≤
∫ ∫

|w · p||w · q|ψ(p, q)dσ(p)dσ(q)

≤
∫ ∫

1

2
((w · p)2 + (w · q)2)ψ(p, q)dσ(p)dσ(q)

= 〈w, a(2,0)w〉 ∀w ∈ R
d, (4.4)

|a(1,0)| ≤ 1. (4.5)

The symmetric tensors a, b and the vector c have an interpretation as moments of a
probability distribution ψ only if the relations (4.2-4.5) hold. We define the space

Md :=
{
(a, b, c) : a ∈ R

d×d
sym, b ∈ R

d×d
sym , c ∈ R

d satisfying (∗)
}
,

where a triple (a, b, c) is said to satisfy the relation (∗) if and only if all of the following
conditions hold: a = a(2,0) satisfies (4.2-4.3), a and b = a(1,1) together satisfy (4.4)
and c = a(1,0) satisfies (4.5).

Due to the symmetry of a(2,0) and a(1,1) and the constraint (4.2), the phase space
M3 is a 14-dimensional manifold, and M2 is a 7-dimensional manifold. The triples
satisfying the equality in some of the inequalities (4.3-4.5) define the borders of the
admissible phase space manifolds.

The exact values of moments are in Md by definition, however, the solutions of
the equations (2.22-2.24) with a closure approximation may show different behaviour.
Clearly, it is desired that the closure approximations are such that the phase space
manifolds Md are stable with respect to the closed equations (2.22-2.24). In other
words, whenever the initial condition is in Md, the trajectory of the solution never
leaves Md. When the solutions are sought numerically, the stability of Md with
respect to discretization and round-off errors is another concern. We are focusing on
the impact of closure relations in this section, however, we note that additional care
must be taken to ensure the stability of the hyperplane defined by (4.2) with respect
to small perturbations, which can be achieved, e.g., by a technique of dynamic trace
stabilization, see [73].
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4.1.2 Space of local velocity fields

As an input for the 3-beads model, a local velocity field is specified by the point values
of the velocity gradient κ and curvature µ. Thus, for the purposes of this section,
local velocity fields are uniquely determined by pairs (κ, µ), with κ ∈ R

d×d satisfying

the incompressibility condition Tr(κ) = 0 and µ ∈ R
d×d×d satisfying µiik = ∂2vi

∂xi∂xk
= 0

for k = 1, . . . , d (incompressibility) and µijk = µikj (symmetry).
We restrict our attention to the two-dimensional case d = 2; the case d = 3

can be analyzed in a similar pattern. The equations exhibit rotational invariance,
namely, let R be a rotation matrix, then after the transformations pi → Rii′pi′ ,
κij → Rii′Rjj′κi′j′ and µijk → Rii′Rjj′Rkk′µ

i′

j′k′ an equation is obtained, whose solutions
are the corresponding rotations of the solutions of the original equation. Due to this
rotational invariance, the coordinate system can be chosen such that κ is in Jordan
normal form. By scaling the time variable, we find that there are three non-trivial
cases:

1. Shear flow: κ = γ̇

(
0 1
0 0

)

2. Elongational flow: κ = γ̇√
2

(
1 0
0 −1

)

3. Circulating flow: κ = γ̇√
2

(
0 1
−1 0

)

and the trivial case κ = 0. This finishes the classification of the linear parts of the
velocity fields. The linear parts are superposed by an arbitrary velocity curvature

tensor µ, which has four independent components: µx =

(
m1 −m3

−m3 m2

)
, and µy =

(
m4 −m1

−m1 m3

)
, where mi ∈ R. Thus the space of local velocity fields can be

described as a disjoint union of four instances of R
4.

4.1.3 Results

In order to compare the performance of homogeneous polynomial closure and hybrid
closure, we compare the behaviour of numerical solutions for a representative choice
of velocity gradient κ (characterizing shear flows, extensional flows and circulating
flows). We consider the velocity curvature µ as a perturbation of the linear part κ.
The study presented below does not aim at a full cartography of all possible classes
of the pairs (κ, µ). Instead, we have numerically solved the equations with several
choices of µ. The results show similar patterns for all choices of reasonably small
µ (in the sense that the fibre bending stiffness is large enough to prevent the fibres
from ”clipping”). For the sake of illustration, we present only the results for a single
typical value of µ, given by

m1 = 1, m2 = −1, m3 = −2, m4 = 1. (4.6)
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Shear flow. Let κ = 10 ·
(

0 1
0 0

)
; some streamlines of this flow field are shown

in Figure 4.1.
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Figure 4.1: Streamlines of a perturbed shear flow. The diameters of the circles
correspond to the length of fibres: green lB = 0.3, red: lB = 1, black: lB = 1.7

We use the fibre bending rigidity constant k = 3 and consider the initial conditions

a0 =

(
0.5 0.5
0.5 0.5

)
, b0 = −a0, c0 = 0, (4.7)

corresponding to a uniaxial distribution of straight fibres (this initial condition is on
the border of M2). The left part of Figure 4.2 shows the time-dependent functions
Tr(b) (showing the bending degree of the fibres; upper plot), a11 (middle plot) and c1
(lower plot), all for the polynomial closure. Observe that a steady state is reached.

The corresponding results for the hybrid closure are demonstrated in the right side
of Figure 4.2. Observe that here for a sufficiently small fibre length lB the solution is
periodic.

Elongation flow. Let κ = 5 ·
(

1 0
0 −1

)
and µ be given by (4.6). Some stream-

lines of this velocity field are shown in Figure 4.3.

Again we solve the equations with polynomial and hybrid closures for the initial
condition (4.7) lying on the border of M2. The results are shown in Figure 4.4; left
side: polynomial closure, right side: hybrid closure. As we see, both solutions show
a similar behaviour, reaching a steady orientation state, which characterizes slightly
bent fibres aligned in the direction of flow elongation.

Circulating flow. A fibre initially aligned in the plane of a circulating planar
flow never reaches a steady state. Thus, effects that remain small due to the short
transient phase from the initial state to a flow-aligned fibre orientation state, which
is characteristic for shear and elongational flows, are expected to become evident in
this case. Indeed, here the greatest variety of solution behaviour can be observed.
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Figure 4.2: Numerical solutions of the 3-beads model with polynomial closure (left)
and hybrid closure (right) in a shear flow. Components: Tr(b) (top), a11 (middle), c1
(bottom). Green curves: lB = 0.3, red: lB = 0.5, black: lB = 1.7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.3: Streamlines of a perturbed elongational flow. The diameters of the circles
correspond to the length of fibres: green lB = 0.3, red: lB = 1, black: lB = 1.7
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Figure 4.4: Numerical solutions of the 3-beads model with polynomial closure (left)
and hybrid closure (right) in an elongation flow. Components: Tr(b) (top), a11 (mid-
dle), c1 (bottom). Green curves: lB = 0.3, red: lB = 0.5, black: lB = 1.7
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Let κ = γ̇

(
0 1
−1 0

)
, and let µ be defined by (4.6). Some streamlines of the flow

field corresponding to γ̇ = 3 can be viewed in Figure 4.5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.5: Streamlines of a perturbed circulating flow. The diameters of the circles
correspond to the length of fibres: green lB = 0.3, red: lB = 1, black: lB = 1.7

We use the initial condition (4.7) in all computations. The a11 component of the
numerical solutions with γ̇ = 3 is shown in Figure 4.6. The value of bending constant
is k = 3 for the plots in left side and k = 0.3 for the plots in right side. The upper
plots are for polynomial closure and the lower plots - for hybrid closure.
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Figure 4.6: Circulating flow, γ̇ = 3. Left: k = 3, right: k = 0.3. Upper plots: a11 for
polynomial closure, lower plots: a11 for hybrid closure. Colours: green: lB = 0.3, red:
lB = 0.5, black: lB = 1.7

We observe that at sufficiently high bending stiffness k both closures yield similar
results. The decrease in amplitude of a11 is caused by the fibre bending. At lower
values of k the two closures yield different results. The hybrid closure causes a
”smear-out” of the fibre orientation distribution that is characteristic of type 1 linear
closure.
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An even more prominent difference is observed with a stronger flow perturbation,
with γ̇ = 1 and unchanged µ. We have chosen the bending stiffness k = 1. In the left
plot of Figure 4.7 we show the a11 for lB = 0.5 (green), lB = 1.5 (red) and lB = 1.7
(black line); again the polynomial closure is in the upper plot and the hybrid closure
is in the lower plot.
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Figure 4.7: Circulating flow, γ̇ = 1, k = 1. Left: a11 versus time for polynomial
closure (upper plot) and for hybrid closure (lower plot). Colours: green: lB = 0.5,
red: lB = 1.5, black: lB = 1.7. Right: Hybrid closure, Tr(b) (upper plot), a11 (middle
plot), c1 (lower plot)

Here we observe that the polynomial closure yields results with constant periods
and amplitude while for the hybrid closure, at a critical value of fibre length lB, the
fibre rotation periods increase until the oscillations die out and a steady solution is
reached.

Summary. We have seen that the solutions of (2.22-2.24) with polynomial clo-
sure reproduce the dynamics of a single fibre for all types of planar velocity fields and
for a wide range of parameter values. Both the type of the orbits (periodic or sta-
tionary) and the period of the orbits are reproduced with good accuracy. In contrary,
the equations with hybrid closure are more sensitive with respect to parameters like
bending stiffness k. The solutions exhibit such (unphysical) phenomena as oscillations
in a shear flow and steady-state solutions from uniaxial initial conditions for certain
circulating flows. This can be explained by the isotropic relaxation from a bent fibre
orientation state characteristic for the type 1 linear closure.

The phase space M2 is remarkably stable with respect to the equations with both
closure relations. However, a dynamical trace stabilization for a as in computations
with the Folgar-Tucker model (see [73]) is recommended in order to make the linear
manifold defined by (4.2) stable. We remark that the equations with linear closure
approximations violate the condition of positive semidefiniteness (4.3).

We recommend to use the polynomial closure approximation for implementations
of the 3-beads fibre orientation dynamics model due to the higher robustness and
lower computation costs for computing the source terms.
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4.2 Algorithm

Numerical methods of various types have been proposed for solving the coupled sys-
tem, using finite element methods (see e.g. [63], [64]), finite difference method, finite
volume method, boundary element method, spectral methods (see [35] and references
therein). In the framework of this thesis the fibre orientation models are implemented
in the CoRheoS (complex rheology solver) software platform, developed at the De-
partment Flow and Material Simulations of Fraunhofer ITWM. The solver is based
on a finite volume based spatial discretization using a collocated grid. The numerics
implemented for simulations of viscoelastic flows have been discussed in [54]. Let us
briefly review the parts of the algorithm that are relevant for fibre suspension flows,
and present the methods used for numerically solving the fibre orientation dynamics
equations.

The momentum conservation equation can be rewritten in the form

ρ
∂v

∂t
+ ρ(v · ∇)v = ρb−∇P + 2η∇ ·D + ∇ · T , (4.8)

where T = T (∇v, s), and the continuity equation is ∇ · v = 0. The coupled system
of transport equations for the components of s can be written as

∂si
∂t

+ (v · ∇)si = siFL,i + FN,i, (4.9)

where the source term F , which is polynomial in si, is seperated in a part depending
on si written as siFL,i and the rest FN,i, which does not depend on the component
si.

4.2.1 Time discretization

Equations (4.8) and (4.9) are strongly coupled through the deviatoric stress term
T = η(D : a(2))a(2). In the implementation used in this thesis the momentum equation
is decoupled from the fibre orientation equation by computing T using s from the
previous time step.

Let the time variable be discretized with a fixed time-step τ : tn = t0 +nτ , and let
the (approximated) values of variables at the time step tn be denoted by a superscript
n, e.g., vn ≈ v(tn). Suppose that the continuity, momentum and fibre orientation
equations are discretized in space. Let B be the discretization of the divergence
operator, B⊤ - the discretization of the gradient operator (using a discretization,
where the divergence and gradient operators are adjoint), let Cv be a discretization
of the convection operator, Dv a discretization of the viscous term 2∇ · (ηD) and Σ
the discretization of the deviatoric stress term. For the convection term we use the
Oseen linearization

((v · ∇)v)n+1 ≈ (vn · ∇)vn+1,

therefore Cv is computed by using the values of vn. This motivates the time-dependent
notation Cn

v . Similarly, we use the values of sn to compute Σ, this motivates the time-
dependent notation Σn.
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The discretized continuity and momentum equations are

Bvn+1 = 0, (4.10)

ρ
vn+1 − vn

τ
= Dvv

n+1 − Cn
v v

n+1 −B⊤P n+1 +BΣnvn+1. (4.11)

After these linear equations are solved for vn+1, we plug in these values into the
discretized FO equation using either an implicit method:

sn+1
i − sni
τ

+ Cn+1
v sn+1

i = sn+1
i FL(s

n, vn+1) + FN(sn, vn+1). (4.12)

or an explicit method:

sn+1
i − sni
τ

+ Cn+1
v sni = sni FL(s

n, vn+1) + FN(sn, vn+1).

Solving these equations for sn+1 finishes the time step.
Next we discuss the solution methods for the linear algebraic system (4.10-4.11).

4.2.2 Projection methods

The structure of the linear system is

(
A B⊤

B 0

)(
v
P

)
=

(
f
0

)
.

The projection type methods, alternatively known as pressure correction methods
and fractional time schemes, use the following approach. First, in the prediction
step, the momentum equation is solved using the pressure from the previous time
step. In the correction step, the velocity obtained in the first step is projected on the
divergence-free subspace by finding a pressure correction. For an overview see e.g.
[79], [21].

Solving the equations for pressure gives

BA−1B⊤P = BA−1f.

A preconditioned Richardson iteration can be used to solve the pressure equation,
leading to

P i+1 = P i +M−1BA−1(f − B⊤P i),

where M is an easily invertible matrix, spectrally close to BA−1B⊤. Typically, one
chooses M = BH−1B⊤, where H is a diagonal matrix, e.g., the Jacobi type precon-
ditioner H = diag(A). This choice leads to the well-known SIMPLE algorithm. The
pressure corection δP i := P i+1 − P i can be expressed in the form

MδP i = B(A−1f − A−1B⊤P i) = Bvi,
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where vi is the solution of the discretized momentum equation Avi+B⊤P i = f . Now
one completes the iteration step by the velocity correction

vi+1 = vi −H−1B⊤δP i.

This leads to the following time-stepping algorihm (adapted from [54]).

1. Define v0 = vn, P 0 = P n and set k = 0.

2. Compute vk+1
∗ from Avk+1

∗ = f − B⊤P k, using biconjugate gradient stabilized
algorithm (BiCGStab, [67]).

3. Solve the pressure correction equation MP ′ = Bvk+1
∗ .

4. Calculate the velocity correction v′ = −H−1B⊤P ′.

5. Correct the velocities vk+1 = vk+1
∗ + v′ and pressure P k+1 = P k + P ′.

6. If convergence reached, then set vn+1 = vk+1 and P n+1 = P k+1, otherwise set
k 7→ k + 1 and return to 2.

4.2.3 Finite volume spatial discretization

We present the discretization for the two-dimensional case; the extension to three
dimensions is straight-forward. The momentum equation (4.8) in divergence form
componentwise is

∂(ρvi)

∂t
+

∂

∂xj
(ρv∗j vi) −

∂

∂xj

(
η

(
∂vi
∂xj

+
∂vj
∂xi

))
= −∂P

∂xi
+ fi (4.13)

for i = 1, 2. Here fi = ∂
∂xj
Sij + bi, and we use the convention to sum over repeating

indices. We think of v∗ as an approximation to v satisfying incompressibility condition
∇ · (ρv∗) = 0, thus ∂

∂xj
(ρv∗j vi) = (ρv∗ · ∇)vi.

Although in our model the effective dimensionless viscosity η is assumed to be

constant, yielding the simplification ∂
∂xj

(
η
(
∂vi

∂xj
+

∂vj

∂xi

))
= η△vj, we allow the more

general case of variable viscosity η in (4.8) since the components of the momentum
equation are coupled through the mixed derivatives anyway because of the form of
the extra stress term.

Let us assume that the domain Ω is subdivided in rectangular control volumes
(CV). Let the axes of the coordinate system be parallel to the edges of the elements,
then we define East (x+

1 ), West (x−1 ), South (x−2 ) and North (x+
2 ) directions.

We use a collocated grid, i.e., the degrees of freedom for vi, P and si are defined
in the center-points of the CVs. The discretization variables relative to a fixed CV
are indexed as follows.

Let an arbitrary CV be given. The center point of the CV is denoted by C. The
center points of the edges (also called walls of the CV) are denoted by the lower-
case letters e, w, s and n depending on the direction from the central point C. The
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center points of the neighbouring CVs that share a common edge with our CV are
denoted by the capital letters E, W , N and S. The neighbouring CVs that share a
single common point with our CV have center points denoted by NE, NW , SW , SE.
Finally, the center of the northern edge of the western neighbouring CV is denoted
by nW and so on. See Figure 4.8 for an illustration.

Figure 4.8: A representative control volume with the center point C, center points of
the neighbouring CVs (N, E, S, W and NE, SE, SW, NW), center points of the faces
(n, e, s, w) and the center points of the faces of neighbouring CVs (nE, nW etc.)

The area of the CV is denoted by SV , the equal length of the south and north
walls is denoted by hx, and the length of the east and west walls - by hy.

We integrate the equation (4.13) over a CV, use the Gauss divergence theorem
transforming the volume integrals of a divergence to surface integrals. Further, we
apply the midpoint integration rule. This yields a spatial ”semi”-discretization of the
momentum equation:

(
∂(ρv1)
∂t

)

C
SV + hy

{
ρev

∗
1,ev1,e − ρwv

∗
1,wv1,w − 2

[
ηe
(
∂v1
∂x

)
e
− ηw

(
∂v1
∂x

)
w

]}
+

hx

{
ρnv

∗
2,nv1,n − ρsv

∗
2,sv1,s −

[
ηn

(
∂v1
∂y

+ ∂v2
∂x

)

n
− ηs

(
∂v1
∂y

+ ∂v2
∂x

)

s

]}

= SV
[
ρb1 −

(
∂P
∂x

)
C

]
+ hx(S11,e − S11,w) + hy(S12,n − S12,s)

(4.14)

and a similar equation for the second component of (4.13).
Next we approximate (4.14) by a linear system for the values of vi at the centers

of the central and neighbouring CVs. The values of the variables at the walls are
approximated using the linear interpolation of the node values, e.g.,

ve = (1 − f)vC + fvE , f =
xe − xC
xE − xC

.

Of course, boundary conditions are applied whenever the wall is on the boundary.
If a Dirichlet condition is prescribed, then the value of ve is readily available. For
Neumann condition additional variable at the center of the wall is introduced.
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The convective part is discretized by an upwind difference scheme, for instance, the
following first-order scheme can be used to compute the term (ρhyv

∗
1,e)v1,e depending

on the direction of the convection velocity:

v1,e =

{
v1,C if v∗1,e > 0,
v1,E if v∗1,e < 0.

Should the eastern wall be a part of the Dirichlet boundary, the prescribed value of
v1,e is used.

The diffusive (viscous) terms are approximated by a central second-order difference
scheme, e.g., (

∂v1

∂x

)

e

≈ v1,E − v1,C

xe − xC
,

with the obvious modifications for a boundary wall.
Finally, the mixed derivatives of the type

(
∂v2
∂x

)
n

are discretized by using the
symmetric scheme (see also [82]). For an internal wall it is

(
∂v2

∂x

)

n

≈ 1

2

(
v2,NE − v2,NW

xNE − xNW
+
v2,E − v2,W

xE − xW

)
.

For a boundary wall we use an implicit discretization due to stability considerations
(see [54] and references therein):

(
∂v2

∂x

)

n

≈ 1

2

(
v2,nE−v2,nW

xNE − xNW
+
v2,E − v2,W

xE − xW

)
.

The value of Sij is computed using the orientation tensor from the previous time
step. Similarly, for v∗ in the convective part we use the velocity from the previous
time step. Thus, an implicit in time spatial discretization of the momentum equation
is obtained in the form of a linear system with dNCV unknowns, where d is the
dimension of the domain and NCV is the number of CVs.

FO equations. The equations can be written in the form

∂si
∂t

+ (v · ∇)si = siFL,i + FN,i, (4.15)

where in two dimensions for rigid fibre models i = 1, 2, 3, the unknowns being s1 =
a

(2)
11 , s2 = a

(2)
22 , s3 = a

(2)
12 = a

(2)
21 . The coefficients for the first component are given by

FL,1 = 2 [D11(1 − s1) −D22s2 − 2D12s3] − 2γ̇Ci+
U0γ̇(s1 − (s2

1 + s2
2 + 2s2

3)),
FN,1 = 2κ21s3 + γ̇Ci + γ̇U0s

2
3.

After integrating (4.15) over a CV and using Gauss divergence theorem and center
point integration rule, we obtain

(
∂si

∂t

)
C

+ hy [si,ev1,e − si,wv1,w] + hx [si,nv2,n − si,sv2,s]
= SV (siFL,i + FN,i)C .
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By using the values of si from the previous time step to compute the terms F and
an upwind approach to compute the convective terms, we arrive at an implicit dis-
cretization in the form of a linear system with 3NCV unknowns. The generalization
to three dimensions is straight-forward.

4.3 Short fibre suspension flows: computations on

2D and 3D domains

The fibre suspension is modelled as an incompressible fluid, governed by the incom-
pressibility condition ∇ · v = 0, the conservation of momentum equation (4.8), the
constitutive relations (3.3-3.4) and the fibre orientation dynamics equation for concen-
trated short fibre suspensions (2.3) with the quadratic closure relation a(4) ≈ a(2)⊗a(2).

In all computations presented in this Section we use the effective suspension vis-
cosity η = 1000Pa · s and suspension density ρ = 800kg/m3.

The equation (2.3) depends on two parameters - the orientation diffusion constant
Ci and the Maier-Saupe constant U0. A qualitative understanding of the effects that
these constants have on the solution can be achieved by computing the stationary
solutions of (2.3) in stationary flow fields. We present a graph of the eigenvalues of the
stationary solution, which do not depend on the shear rate or directional information,
but only on the Jordan normal form of the gradient κ. For a two-dimensional shear
flow, Figure 4.9 shows the largest eigenvalue of the stationary solution versus the
variable U0 while Ci is kept constant at the value of Ci = 0.01 for the black curve,
Ci = 0.05 for the red curve and Ci = 0.1 for the green curve.
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Figure 4.9: Maximal eigenvalue of the stationary solution versus U0 for Ci = 0.01
(black curve), Ci = 0.05 (red curve) and Ci = 0.1 (green curve) for a simple planar
shear flow

The classification of velocity gradients κ for incompressible three-dimensional flows
leads to more qualitatively different cases than for planar flows, see [73]. A general
tendency can nevertheless be observed: for fixed values of (Ci, U0), the maximal eigen-
values of the stationary solution for three-dimensional case tend to be smaller than
for the two-dimensional case because of the additional dimension of fibre orientation
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diffusion. Figure 4.10 illustrates this tendency for a simultaneous shear flow in planes

y-z and x-z with κ =




0 0 1
0 0 1
0 0 0



.
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Figure 4.10: Maximal eigenvalue of the stationary solution versus U0 for Ci = 0.01
(black curve), Ci = 0.05 (red curve) and Ci = 0.1 (green curve) for a 3D shear flow
simulatanelusly in x-z and y-z directions

For the purposes of this thesis we find it sufficient to study the dependence on U0

since the dependence on Ci has been well understood in the context of Folgar-Tucker
model. Therefore we fix a typical value Ci = 0.05 (the red curve in Figures 4.9 and
4.10), which are used for all the simulations presented in this Section.

The extra stress term given by (3.4) also contains two constants - the particle
number Np and the shear number Ns. These constants origin from a theory by Dinh
and Armstrong [15]. The particle number represents the property of a suspended
fibre to resist stretching along its axis; the contribution of a single fibre to the stress
tensor is proportional to pipjpkplDkl. Here pkplDkl is interpreted as the elongation
rate parallel to the fibre axis ([78]). The shear number represents the orientation
dependent contribution to stress of a fibre in shear flows, namely, that the fibres
aligned in flow direction create more resistance to the shear flow than fibres aligned
in the vorticity direction.

The particle number increases with increasing concentration and aspect ratio.
However, as the aspect ratio increases, Np grows much faster as Ns, so that for
aspect ratios greater than 10 we may assume Ns ≪ Np (see e.g. [78]). Basing on
these considerations, we set Ns = 0 and vary the parameter Np as a measure of ”non-
Newtonicity” of the fluid. Since Np = 0 gives a Newtonian fluid, where the momentum
and continuity equations are decoupled from the fibre orientation equations, we start
with this case to isolate the effects of the constant U0 on the values of a(2). After that
we observe the back-coupling effects of U0 to the flow field.

We make the following choice of computation domains. In two dimensions: a
channel domain, where the flow gradient is mainly shear-like, and a 4:1 contraction
domain, featuring regions with shear flow, contraction/elongation flow and recircu-
lating flow in the corner vortices. In three dimensions: a pipe with square and
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rectangular cross section and a square-to-square contraction domain.
For the boundary conditions:

• at inflow : Dirichlet condition for velocity (with a Poiseuille profile), and Dirich-

let condition for a(2), more specifically, the isotropic condition a
(2)
inflow = 1

d
I.

• at outflow : homogeneous Dirichlet condition for pressure

• at walls : no-slip condition for velocity, homogeneous Neumann for a(2).

4.3.1 Planar channel flow

As the first example we consider a fibre suspension flow through a planar channel
geometry, corresponding to a laminar flow between parallel plates.

The computation domain is a rectangle Ω = {(x, y) ∈ R
2 : 0 < x < Lc, 0 <

y < dc} with the length Lc = 10m and the width dc = 4m. The boundaries are
described as follows. The boundary at x = 0 is inflow; here a Dirichlet condition is
prescribed for velocity with a parabolic velocity profile: v(0, y) = 4vmaxy(dc − y)ex,
where the maximal inflow velocity vmax = 0.1m/s (ex is the unit vector pointing in
the x-direction). The corresponding Reynolds number is Re = ρvmaxdc

η
= 0.024. The

fibre orientation at the inflow is assumed to be isotropic: a(2) = 1
2
I. The opposite

boundary at x = Lc is an outflow boundary, and the other parts at y = 0 and y = dc
are walls.

The domain is discretized using a regular mesh consisting of quadratic volume
elements with edge length h = 0.1m (the mesh contains 4000 elements).

We start with the Newtonian fluid case, Np = 0. In this case the momentum
equations are decoupled from the fibre orientation equations, and the velocity field
can be computed analytically:

v(x, y) = 4vmax
y(dc − y)

d2
c

ex.

The streamlines are parallel to the walls, hence this is a pure shear flow except on the
center-line x = 2, where the velocity gradient vanishes. Since the velocity gradient is
constant along a streamline, each infinitesimal fluid element experiences a constant
shear flow, thus far enough downstream the maximal eigenvalue of a(2) reaches the
value predicted by the red curve in Figure 4.9.

The tensor field a(2) in a volume element is visualized by an ellipsoid. The main
axes of the ellipsoid correspond to the eigenvectors of the matrix a(2), but the aspect
ration equals the ratio of the matrix eigenvalues. The orientation field for U0 = 0
(here the model is equivalent with the Folgar-Tucker model) is visualized in Figure
4.11. The background colour signifies the value of the maximal eigenvalue and the
blue ellipses represent the fibre orientation.

Following the streamlines from the inflow (left) to the outflow (right), we observe
that the fibres gradually reach a nearly uniaxial orientation state. Near the inflow
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the fibres form a characteristic ”fishbone” like pattern, but the angle that the fibres
form with the flow direction decreases until the fibres align in flow direction. A
qualitative understanding of the fibre orientation state over the domain is given by
the dimensionless quantity tγ̇, where t is the time that a fibre spends in the shear
flow. At the point (x, y) we have tγ̇ ∝ x|dc−2y|

y(dc−y) . For fixed x > 0 the quantity tγ̇ as a
function of y is maximal at the walls and minimal on the center line, explaining the
computed pattern of orientational degree.

Figure 4.11: Fibre orientation tensor field in a channel domain; Newtonian fluid with
Folgar-Tucker model (Np = 0, U0 = 0). Colour code: maximal eigenvalue of a(2).
The orientation ellipsoids (blue) represent the eigenvectors (pointing along the main
axes of the ellipsoids). The aspect ratio of the ellipsoids represents the ratio of the
corresponding eigenvalues.

An increase in U0 does not affect the velocity v, we only observe quantitative
changes in fibre orientation tensor field. For the value U0 = 1 the field is visualized
in Figure 4.12, and for the large value U0 = 100 the field is illustrated in Figure 4.13.
Due to the large ratio between the bigger and smaller eigenvalue of a(2), the aspect
ratio of the orientation ellipsoids is scaled to (9λmax+1)/(9λmin+1) in both pictures.
Note that the increase in maximal eigenvalue for larger values of U0 as well as the
shorter transition from the fishbone orientation pattern to a flow-aligned state.

Non-Newtonian case. For positive values of Np the suspension is a non-
Newtonian fluid because of the coupling of the momentum equation to the fibre
orientation field through the stress term. However, the extra stress term S (see (3.4))
vanishes if a(2) : D = 0. For the isotropic fibre orientation state a(2) = 1

d
I the

incompressibility condition implies S = 0.
This observation is important for constructing consistent boundary conditions at

the inflow. If isotropic fibre orientation state is prescribed at the inflow, then the inlet
velocity should be prescribed as for a Newtonian fluid. For the channel geometry this
means a parabolic inlet velocity profile. Due to non-Newtonian nature of the flow,
the velocity profile is expected to change in other cross-sections of the channel.

Experiments and simulations ([62], [64]) suggest that the velocity profile tends
to ”flatten out”. If a parabolic velocity profile is prescribed at the inlet, then a

82



Computational experiments

Figure 4.12: Fibre orientation tensor field in a channel domain. Np = 0, U0 = 1.
Color codes the maximal eigenvalue. The aspect ratio of orientation ellipsoids is
scaled to (9λmax + 1)/(9λmin + 1) for better visualization.

Figure 4.13: Fibre orientation tensor field in a channel domain. Np = 0, U0 = 100.
Color codes the maximal eigenvalue. The aspect ratio of orientation ellipsoids is
scaled to (9λmax + 1)/(9λmin + 1).

83



Computational experiments

divergence of the streamlines from the central parts to the lateral parts of the channel
can be observed in regions where the velocity profile is changing. The divergence of
streamlines is illustrated by Figure 4.14. Here the parameters are Np = 50, U0 = 1.
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Figure 4.14: Diverging streamlines in a channel domain; Np = 50, U0 = 1. The flow
is from the left to the right

The dependence of the velocity profile at the outlet x = 10 on the particle number
Np is demonstrated in Figure 4.15. The red curve shows the well-known parabolic
velocity profile for the Newtonian case Np = 0. The green curve is the velocity
profile computed with Np = 5, the black curve with Np = 20 and the blue curve with
Np = 100. We observe the progressive flattening of the velocity profile with growing
Np. The results are in good agreement with the ones reported in [64].
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Figure 4.15: The profile of the flow velocity component v1 at the outlet. Np = 0
(red), Np = 5 (green), Np = 20 (black) and Np = 100 (blue). U0 = 0.

In Figure 4.14 we observe a central region near the inlet, where the streamlines
diverge (i.e., the distance between two neighbouring streamlines increases). In such
regions the flow is expanding (extension in the y-direction), thus the fibres tend to
align in perpendicular direction to the flow.

This phenomenon is illustrated in Figure 4.16, where the parameters are Np = 50,

U0 = 1. The background color visualizes a
(2)
1,1, which is the averaged squared cosine

of the angle that the fibres form with the flow direction. Observe the central core
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region, where the fibres show a prefered alignment direction perpendicular to the flow
direction. For Newtonian flow Np = 0, the minimal value of a

(2)
1,1 for the stationary

solution in the channel domain is 0.5. For Np = 5 the minimum is 0.4311, while for
Np = 50 the minimum is 0.2807, cf. Figure 4.16.

Due to the flat velocity profile, the shear rate γ̇ decreases in the central region of
the channel. Hence, the transient effects such as the fishbone orientation pattern are
preserved for longer distances from the inlet.

Figure 4.16: Np = 50, U0 = 1. Colour: a
(2)
11 .

4.3.2 Planar contraction flow

Experimental and numerical studies of suspension flows through channel geometries
with abrupt contraction or expansion have been published in scientific literature, see
e.g. [48], [64] (contraction domains), [9], [86] (expansion domains). The contraction
and expansion domains are examples of relatively simple geometries featuring different
flow types such as shear, contraction, expansion and recirculating flows in a single
domain, hence such domains are important benchmark cases.

The computational domain is sketched in Figure 4.17. It is a union of two rect-
angular domains Ω = Ω1 ∪ Ω2, where Ω1 = {(x, y) ∈ R

2 : x ∈ (0, 5), y ∈ (0, 4)}
and Ω2 = {(x, y) ∈ R

2 : x ∈ [5, 10), y ∈ (1.5, 2.5)}. The boundary at x = 0 is
inlet, and at the oposite end x = 10 we define the outlet. The remaining boundaries
are treated as walls. The discretization is similar as for the planar channel flow, the
volume elements are squares with side length h = 0.1 (coarse mesh) and h = 1

30
(fine

mesh).
Newtonian case. First we present the results with Np = 0. The Reynolds

number calculated for the narrower part of the contraction domain satisfies Re < 1,
therefore the flow is laminar. Some streamlines are visualized in Figure 4.18. Observe
the regions with recirculating flow near the corners at x = 5. These regions are
sometimes called corner vortices.

The fibre orientation field for U0 = 0 is visualized in Figure 4.19. Since the velocity
field is decoupled from the fibre orientation, a variation of the value of U0 influences
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Figure 4.17: Planar contraction domain. Left boundary: inlet, right: outlet.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.18: Streamlines for a Newtonian fluid in contraction domain. Np = 0
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only the fibre orientation state, namely, the aspect ratio of the orientation ellipsoids
increases with increasing U0.

Figure 4.19: Fibre orientation in contraction domain. Np = 0, U0 = 0

The fibre orientation field near a corner vortex is visualized in Figure 4.20 (U0 =
1). Note that the fibres show a preferred orientation parallel to the flow, hence we
conclude that the flow in a vertex is locally shear-like and that the velocity is small
enough so that the fibres can align with the flow.

Figure 4.20: A close-up view on the fibre orientation in a corner vortex for a contrac-
tion domain, Np = 0, U0 = 1

Non-Newtonian case. Experimental evidence (see [48]) shows that the corner
vortex size increases with the fibre concentration (i.e., with the particle number Np)
and that the size of the vortex is independent on the flow rate as long as the Reynolds
number remains small. We can confirm these results. For the particle number Np = 5
some streamlines are visualized in Figure 4.21. The data for the left picture were
computed using U0 = 1 and for the right picture using U0 = 100. Note the growth
of the corner vortices compared to Figure 4.18, and also that no visible difference
between the flows with different values of U0 can be observed.

Comparing the experimental results from [48] with the simulations shows a good
agreement. Figure 4.22 shows the comparison for the Newtonian case (left: ex-
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Figure 4.21: Streamlines, Np = 5. Left: U0 = 1, right: U0 = 100

perimental, right: simulation), and Figure 4.23 shows the comparison for the non-
Newtonian case.

Figure 4.22: Comparison of the streamlines for a fibre suspension flow: experimental
results from [48] in the Newtonian flow regime (left) and simulation with Np = 0,
U0 = 0 (right)

Increasing the particle number leads to a further growth of the corner vortices.
Some streamlines computed for Np = 50 are visualized in Figure 4.24.

For moderate values of U0 the orientation fields show a similar pattern as seen in
Figure 4.19, with the corner regions associated with the vortices growing with Np.
The magnitude of U0 influences the fibre orientation state, in particular, the extreme
values of aspect ratio of orientation ellipsoids. For higher values of U0 nearly uniaxial
fibre orientation state is reached closer to the inflow. An extreme case with U0 = 100
(Np = 5) is presented in Figure 4.25. Observe the prominent core region near the
inflow, where the fibre orientation direction is perpendicular to the flow direction.
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Figure 4.23: Comparison of the streamlines for a fibre suspension flow: experimental
results from [48] in the non-Newtonian flow regime (left) and simulation with Np = 5,
U0 = 1 (right)
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Figure 4.24: Streamlines. Np = 50, U0 = 1

Figure 4.25: Orientation field. Np = 5, U0 = 100
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4.3.3 Flow in a pipe with square cross section

As a first example of a three-dimensional domain we choose a pipe with square cross
section. The computational domain is a rectangular box defined by 0 < x < 10,
0 < y, z < 4. The domain is discretized in cubic elements with edge length h = 0.1.
The inlet is positioned at x = 0, the outlet is at x = 10. At the inlet we prescribe
Dirichlet boundary conditions for the velocity

vx(0, y, z) = 16vmax
y(dy − y)

d2
y

z(dz − z)

d2
z

, vy = vz = 0, for x = 0,

where dy = dz = 4, vmax = 0.05 and for orientation distribution a(2) = 1
3
I (isotropic

distribution).
At the given inlet velocities, the flow Reynolds number is low (less than 1), there-

fore the flow is laminar. The velocity profile depends on the concentration. For
Np = 0 we observe a Poiseuille velocity profile in all cross-sections perpendicular to
the flow direction. With increasing values of Np the velocity profile changes from
Poiseuille at the inlet to a flatter velocity profile at the outlet.

In Figure 4.26 we visualize the velocity profile, i.e., the magnitude of the x-
component of the velocity vx as a function of y and z at the outlet x = 10 for different
values of Np. The left picture shows the profile for the Newtonian flow Np = 0, the
middle one is the computed velocity profile for Np = 5 and the right one for Np = 50.
The colour code is the same for all pictures. Observe the transition from a Poiseuille
like flow to a plug like flow.

Figure 4.26: Velocity profiles at the outlet for Np = 0 (left), Np = 5 (middle) and
Np = 50 (right)

Next we present results for the orientation field. The orientation in cross-sections
perpendicular to the flow field at different distances from the inlet (x = const) are
visualized in Figure 4.27 for the case Np = 5, U0 = 0. The results are consistent with
the two-dimensional case, e.g., one can observe that the size of the core region, where
the fibres exhibit low orientation alignment in the flow direction, is decreasing. The
magnitude of the maximal eigenvalue of a(2) as a function of U0 can be estimated
from the graph in Figure 4.10.

Fibre orientation in cross sections y = const is demonstrated in Figure 4.28. The
upper picture is a cross-section through the centerline of the domain and shows a
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Figure 4.27: Fibre orientation in a square pipe domain. Cross-sections at x = 1
(upper left), x = 3 (upper right), x = 6 (lower left) and x = 9 (lower right). Np = 5,
U0 = 0.
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similar orientation pattern as in the two dimensional simulations. The lower picture
shows a cross-section near the boundary. Here the fibre orientation is highly aligned
in the flow direction, as expected due to the higher shear rate.

Figure 4.28: Fibre orientation in a square pipe domain. Cross sections at y = 2
(upper) and y = 0.5 (lower picture). The flow is from left to right; the upper boundary
is the wall z = 0 and the lower line is the center-line z = 2.

For a higher fibre concentration Np = 50 the orientation is visualized in Figure
4.29. Observe that the core region where the fibres are not completely flow aligned
is preserved longer due to lower shear rate associated with the flatter velocity profile
in the core region.

4.3.4 Flow in a pipe with rectangular cross section

We consider the rectangular computational domain defined by 0 < x < 10, 0 < y < 4,
0 < z < 1, i.e., a pipe with rectangular cross-section with the relative dimensions 4×1.
Again, the domain is discretized in cubic volume elements with edge length h = 0.1,
the inlet is positoned at x = 0 and the outlet at x = 10. At the inlet we prescribe
isotropic orientation distribution and a quadratic inlet velocity profile similar as for
the previous geometry.

The fibre orientation field for Np = 5 and U0 = 10 is shown in Figure 4.30. Again
we observe a non-Newtonian flow and the formation of a core region near the inlet,
where the fibres tend to turn away from the flow direction. Note however, that in
the core region the fibres tend to orient in the direction of the maximal shear (z-
direction) rather than the vorticity direction (y-direction), what has been observed
in suspensions with a non-Newtonian matrix, see e.g. [20].
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Figure 4.29: Fibre orientation in a square pipe domain. Cross-sections at x = 1
(upper left), x = 3 (upper right), x = 6 (lower left) and x = 9 (lower right). Np = 50,
U0 = 0.

Figure 4.30: Fibre orientation in a pipe of rectangular cross-section. We see a cut-out
for 0 ≤ y ≤ 2 and 0 ≤ z ≤ 0.5. The flow is from right to left.

93



Computational experiments

Flow in a square-to-square contraction domain

The domain is union of two rectangular domains Ω1 defined by 0 < x < 0.5, 0 <
y, z < 0.64 and Ω2, defined by 0.5 ≤ x < 1, 0.24 < y, z < 0.4, see Figure 4.31. The
inflow is at x = 0, the outflow is at x = 1. At the inlet we prescribe isotropic Dirichlet
condition for a(2) and a Dirichlet velocity condition with parabolic vx profile.

The streamlines for Np = 0 and Np = 5 are demonstrated in Figure 4.32. As in
the two-dimensional case, we observe growing corner vortices. The fibre orientation
in central (z = 0.32) and lateral (z = 0.08) cross sections is illustrated in Figure 4.33.

Figure 4.31: Contraction domain.

Figure 4.32: Streamlines. Np = 0 (left one), Np = 5 (right one)

4.3.5 Concluding remarks

On modelling. The presented numerical results with various parameter values allow
to assess the influence of the excluded volume effect on the behaviour of solutions.
We have observed that the computed orientation state depends on the value U0;
for sufficiently small values U0 ≤ 1 the change is only of qualitative nature. For
sufficiently small values of Np and U0 the flow velocity field is observed to be much
more sensitive with respect to Np than to U0. However, if both Np and U0 are of the

94



Computational experiments

Figure 4.33: Fibre orientation at the centerline z = 0.32 (left) and near the wall
z = 0.08 (right)

order of magnitude 10 or larger, instabilities in the velocity field appear, see e.g. the
streamlines near the wall in the outlet pipe in the right picture of Figure 4.21.

On validation. For the Folgar-Tucker limit, the simulation results have been vali-
dated against the simulation results published in [64] and experimental results from
[48]. For the concentrated fibre suspension model only a qualitative validation in
terms of the ratio between maximal and minimal eigenvalue of the orientation tensor
can be performed due to lack of experimental data.

On numerics. The finite volume method used in this work has been tested for
several domains in two and three dimensions. A rigorous study of convergence of the
algorithms with respect to the mesh size is beyond the scope of this thesis, however,
the comparison of the results computed with different mesh sizes (refinement from
h to h/3) shows that the sensitivity of numerical solutions with respect to the mesh
size is low.
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Chapter 5

Conclusions

This thesis is devoted to studies of mesoscale based fibre suspension flow models. The
modelling of fibre suspension flow was extended to two industrially important classes
of fibre suspensions, namely, the concentrated regime for short fibre suspensions and
dilute regime for long semi-flexible fibre supensions. The contribution to the modelling
of short fibre suspension flows is the model (2.3) describing the fibre orientation
dynamics in the concentrated regime, which extends the Folgar-Tucker model by
improving the treatment of the fibre-fibre interaction. The proposed model accounts
for the excluded volume effect, using a phenomenological Maier-Saupe potential with
the strength U0.

A novel way of description of the fibre orientation state in semi-flexible fibre sus-
pensions has been proposed, based on low order statistical moments of a probability
distribution function defined on the Cartesian product of two unit spheres. A model
for the evolution of these orientation state variables has been proposed, accounting for
the fibre bending in velocity fields, where the macroscopic velocity gradient changes
considerably along the fibre. Furthermore, several closure approximations have been
proposed in Section 2.4 and analyzed in the Section 4.1, where the homogeneous
polynomial closure was found to be sufficiently robust and reliable to be used in
implementations.

The modelling techniques developed in Chapter 2 can be extended further to derive
mesoscale models based on different physical assumptions about flow driven fibre
orientation dynamics and fibre-fibre interactions. Moment based mesoscale models
share a common mathematical structure, namely, the fibre orientation equations form
a hyperbolic system of linear first order partial differential equations and depend on
algebraic closure relations.

The common structure allows a unified mathematical analysis of well-posedness
of the system describing fibre suspension flows, which was performed in Chapter
3. The existence of a unique solution in a Sobolev space for a sufficiently small
time interval and for sufficiently small input data (initial conditions and external
forces) was demonstrated. The meaning of ”sufficiently small” depends on the source
terms in the fibre orientation model and the constitutive relations as well as on the
domain. If the source terms of the fibre orientation equations are non-linear in the
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velocity gradient or depend on higher spatial derivatives of the fluid velocity field,
then the model must be regularized in order to apply the well-posedness results. Since
the averaging process is at the very core of mesoscale models, such regularization is
consistent with the modelling.

The implementation of the models was performed in the framework of CoRheoS,
which is a complex rheology solver developed at the department Flow and Material
Simulation (SMS) of the Fraunhofer ITWM. The contribution of this thesis is the
implementation of the hyperbolic system for the fibre orientation state variables and
the constitutive relation for calculating the extra stress term. Numerical experiments
on two and three dimensional domains show that the decoupling approach presented
in Section 4.2 provides a good enough approximation, however, the time step should
be chosen small enough. Convergence with respect to time step τ and mesh size h
was observed in two dimensional case. The code is robust in the parameter range
Np < 100, U0 < 10. The simulation results were validated for the Folgar-Tucker limit
U0 = 0 against experimental data and simulation results published in literature.

Due to the common mathematical structure of the mathematical models, a unified
structure for description of mesoscale based suspension flow models can be envisioned,
ranging from the modelling steps to the implemention and mathematical analysis.
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Appendix A

List of notation

Vector and tensor operations

A d-dimensional tensor of rank n is defined by its components ai1,...,in for all possible
combinations of indices ij ∈ {1, . . . , d}. If the indices represent the coordinates in
the physical space, then we sometimes identify the coordinates (1, 2, 3) with (x, y, z).
We use the summation convention over repeating indices and use coordinate free
notation where possible, for example, the definition of the dot-product of two vectors
can be written as a ·b = aibi =

∑
i aibi and the contraction of two second rank tensors

a : b = aijbij =
∑

ij aijbij . The trace of a second order tensor is defined as Tr(a) := aii.
Tensor product is denoted by ⊗.

Domains and spaces

Ω ⊂ R
d - the domain of the flow with the dimension d

∂Ω - boundary of Ω
x ∈ Ω - position vector
Br(x) = {y : |x− y| ≤ r} - closed ball with center x and radius r
Sd−1 = {x ∈ R

d : |x| = 1} - unit sphere
p, q ∈ Sd−1 - unit vectors

Operators

∇ = ∇x - gradient with respect to the variable x
∂u
∂xi

= ∂xi
u = u,i - partial derivative of u

PHW - Helmholtz-Weyl projection operator
ȧ - time derivative of a
L = −PHW∇ · ∇ - Stokes operator
D
Dt

= ∂
∂t

+ v · ∇ - material derivative
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∇p - gradient on the unit sphere with respect to the variable p
Rp = p×∇p - a differential operator on Sd−1

I - unit operator, unit matrix

Functions

v, P - fluid velocity field and pressure field
κij = ∂vi

∂xj
, µijk = ∂2vi

∂xj∂xk
- velocity gradient and velocity curvature

D = 1
2
(κ+ κ⊤), W = 1

2
(κ− κ⊤) - rate of deformation tensor and vorticity tensor

γ̇, γ̇ǫ - velocity shear rate and its regularization
M - effective velocity gradient in Jeffery’s equation
ψ - probability distribution function
a(n), a(n,m) - moments of ψ
s : Ω → R

d2 - function characterizing fibre orientation field
ξ : Ω → R

d3 - regularized part of the fibre orientation models
T - stress tensor
S = T - additional stress due to presence of fibres
F - source term in fibre orientation equations
v̄, s̄ - given velocity and fibre orientation fields

Parameters

η - dynamic viscosity
Np, Ns - particle number and shear number
Re - Reynolds number
Ci, Dr, U0, - Folgar-Tucker constant, orientation diffusivity and Maier-Saupe constant
lf , df , ra - fibre length, diameter and aspect ratio
lB, χ - connector length of a semiflexible fibre and flexibility coefficient
nf , φf - fibre number density and volume fraction
ζ - Stokes drag coefficient

Discrete operators

B,B⊤ - discrete divergence and gradient operators
Cv - discrete convection operator
Dv - discretization operator for the viscous term
Σ - discretization operator for the extra stress term
τ, h - time step and edge length of a volume element
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