Learning and Clustering Plan Abstractions to Improve

Hierarchical Planning

Ralph Bergmann
German Research Center for Artificial Intelligence
Erwin-Schrodinger-Str. Bau 57
D-6750 Kaiserslautern, Germany
E-Mail: bergmann@informatik.uni-kl.de

Abstract

Hierachical planning can be improved
by explanation-based learning (EBL) of
abstract plans from detailed, success-
fully solved planning problems. Abstract
plans, expressed in well-established terms
of the domain, serve as useful prob-
lem decompositions which can drastically
reduce the planning complexity. The
learned plan abstraction must be valid
for a class of planning cases rather than
for a single case, to ensure their successful
application in a larger spectrum of new
A hierarchical organization
of the newly learned knowledge must be
archieved to overcome the utility problem

situations.

in EBL. This paper presents a new formal
model of shared plan abstraction and the
closely related explanation-based proce-
dure 5-PABS. Unlike other apporaches to
plan abstraction, our model allows a to-
tal different terminology to be introduced
at the abstract level. Finally, an unsu-
pervised incremental procedure for con-
structing a hierachy of shared abstract
plans is proposed, as a kind of concept
formation over explanations.

1 INTRODUCTION

Recently, a lot of approaches have been
proposed for improving planning by
the use of machine learning techniques.
Many approaches favor the analysis of
success cases of problem solutions to cre-
ate new amounts of knowledge which can
be additionally used by a planning sys-
tem. Planning improvement is usually
achieved through the shortening of the
problem solving process by the reuse of
earlier problem solving experience from
an expert or the planning system itself.
While in case-based reasoning [Kolodner,
1987] a large collection of very detailed
cases is organized for efficient retrieval
and modification, traditional learning ap-
proaches prefer the extraction of more
general knowledge from problem solu-
tions. With explanation-based learning
(EBL) [Mitchell et al., 1986] knowledge
about the problem domain can be incor-
porated to extract control rules [Minton
et al., 1989] macro-operators [Fikes et
al., 1972; Korf, 1985; Tadepalli, 1991] or
skeletal plans [Schmalhofer et al., 1991a;
Bergmann, 1992b] as generalizations of
successful (or failed) planning cases. Un-
fortunately, it shows that simply stor-
ing generalizations does not guarantee a
speed up effect in many situations. This
is because the search for applicable short-

cut rules and their matching can some-
times exceed the savings which their uti-
lization will cause [Minton, 1990]. To
overcome this so-called wutility problem,
Yoo and Fisher [Yoo and Fisher, 1991]
have recently proposed the construction
of a hierarchical classification tree to
store generalizations from multiple exam-
ples and to allow efficient retrieval of gen-
eralizations.

In an other line of research on plan-
ning, abstraction has been identified as
a powerful method to make planning
more tractable [Sacerdoti, 1974; Fried-
land and Iwasaki, 1985]. Korf [Korf,
1988] has shown that, under certain con-
ditions [Knoblock, 1989], abstraction can
reduce a planning problem which re-
quires a search in an exponential space
to a linear problem. Although Korf’s re-
quirements are very difficult to fulfill, es-
pecially for real world applications, the
introduction of abstract planning spaces
is generally assumed to be very useful for
improving planning performance. The
main computational advantage of having
a good abstract solution to a planning
problem is, that one large search space
of the complexity 5" (b is the branch-
ing factor and n the length of a solution
plan) can be decomposed into k smaller
search spaces in which the problem so-
lution requires a reduced complexity of
b i4b"2 4. 40" (ni+ng+...+ng = n).
As also identified by [Knoblock, 1989] it
is important to avoid backtracking across
abstraction levels as well as backtracking
across subproblems within an abstraction
level. Fairly independently solvable sub-
problems should be learned by an ab-
straction process. But this seems diffi-
cult to guarantee for real word domains
by employing general week methods [Un-
ruh and Rosenbloom, 1989] without do-
main specific abstraction knowledge.
From the results concerning the utility
problem in EBL and from the promissing

complexity reductions that can be theo-
retically achieved by abstraction the fol-
lowing requirements on a learning proce-
dure to reduce planning complexity are
derived:

1. A learning procedure should learn
from success cases and schould con-
struct abstract plans which serves as
useful decompositions of a planning
problem into several smaller prob-
lems.

2. The created abstractions should be
tailored to the application domain
and should use an established termi-
nology which has shown to lead to
independently solvable subproblems
in human problem solving.

3. Problem decompositions should be
learned that are shared by larger
class of planning cases rather than
only by a single case. Thereby, ab-
stractions can be selected which can
promise to be successfully applicable
in a larger spectrum of new situa-
tions.

4. The body of the learned knowledge
must be arranged in a memory or-
ganization structure which allows an
efficient retrieval of abstract plans.

This paper presents a new formal model
of plan abstraction and demonstrates
how explanation-based learning can be
applied with respect to the above men-
tioned requirements. In the next section,
a model of shared plan abstractions from
mutiple plans is introduced. In section
three, the five phase S-PABS (Shared
Plan Abstraction) procedure is presented
as a method which learns form a set
of plans and comes out with a shared
abstract plan. Section four shows how
methods of incremental concept forma-
tion can be utilized to construct a classi-
fication tree of the learned abstract plans.

The described approach is demonstrated
for the familiar *Towers of Hanoi’ do-
main. Finally, section five discusses per-
spectives and related work in connection
with the S-PABS approach.

2 FORMAL MODEL OF
PLAN ABSTRACT-
ION

Michalski and Kodratoff [Michalski and
Y .Kodratoff, 1990] have recently pointed
out that abstraction has to be distin-
guished from generalization. While gen-
eralization transforms a description along
a set-superset dimension, abstraction
transforms a description along a level-of-
detail dimension which usually involves
a change in the representation space
from the original into a simpler language
[Plaisted, 1981; Tenenberg, 1987; Gior-
dana et al., 1991; Mozetic and Holzbaur,
1991]. A plan is composed of operations
which are executed in a specific order and
thereby successively change the state of
a world. Within this planning model,
abstraction has two independent dimen-
sions: On the first dimension a change
in the level of detail for the representa-
tion of single states is described. On the
second dimension a change in the level of
detail is declared by reducing the number
of states contained in a plan. As a con-
sequence, a change of the representation
of the state description and a change of
the operations which describe the state
transitions is required. Both dimensions
of abstraction are essential to achieve a
reduction of the complexity for planning.

2.1 ABSTRACTION OF A
SINGLE PLAN

In the following, the formal model of
plan abstarction from a single plan
[Bergmann, 1992c| is introduced first.

The commonly used notation for the
description of worlds, states and plans
(e.g. [Fikes et al., 1972; Lifschitz, 1987;
Knoblock, 1989]) is further assumed:
Definition 1: A STRIPS world W is
a triple (R,T,0p) over a first-order lan-
guage L, where R is a set of essen-
tial sentences [Lifschitz, 1987] which de-
scribe the dynamic aspects of a state of
the world. T is a static theory which
allows to deduce additional properties
of a state in the world. Op is a set
of operators represented by descriptions
(Pa, Do, Aa)yeop, where Pa is the pre-
condition formula, Da is the delete list
and Aa is the add list [Fikes et al., 1972].
As usual, a state s of a world W is de-
scribed by a subset of the essential sen-
tences from R. The theory T is implicitly
assumed to be valid in all states of the
world. Let & = 2% be the set of all states
of the world.

A plan p in a world W is a sequence
(01,...,0,) of operators from Op. In a
world W an initial state s € S and a
plan p = (o1,...,0,) induce a sequence
of states 17 € § ,..., s, € S where
s$i1UT F P, and s; = (s;-1\D,,) U Ag,.

Two plans p = (o01,...,0,) and p' =
(0},...,0) are called equivalent iff in
every state sp = s; € S follows that

si = st,i € {1,...,n} for the states in-
duced by the plans.

In the following, we
the two world descriptions W. =
(R.,T,,0p.) (the concrete world) and
W, = (R4, T,,0pq) (the abstract world)
are given, as appropirate descriptions of
the planning domain (see requirement 2).
The problem of plan abstraction can now
be described as transforming a plan pc
from the concrete world W, into a plan
pa in the abstract world W,, with sev-
eral conditions being satisfied. In the
presented model, this transformation is
formally decomposed into two mappings,
a state abstraction mapping a, and a se-

assume that

Abstract @ @ E

space:

Sate

abstraetion | & a a
mapping:

space:

Sequence
abstraeting

mapping:

b(0) =0, b(1)=2, .., b(n)=m

Figure 1: Demonstration of the Plan Abstraction
Methodology

quence abstraction mapping b as follows:
Definition 2: A state absiraction map-
ping a: S. — S, is a mapping from 5,
the set of all states in the concrete world,
to Sg, the set of all states in the abstract
world, that satisfies the following condi-
tions:

a) If scUT, is consistent then a(sc) UT,
is consistent for all sc € S, (maintain
consistency).

b) If sc Usc’'U Tc is consistent then
a(sc U sc’) C a(sc)Ua(sc’) for all sc,
sc' €5, (monotony property).

The state abstraction mapping trans-
forms a concrete state description into
an abstract state description and thereby
changes the representation of a state
from concrete to abstract.

Definition 3: A sequence abstraction

mapping b: N — N relates an ab-
stract state sequence (sao,...,sa,) to a
concrete state sequence (sco, . .., S¢,) by

mapping the indices ¢ € {1,...,n} of
the abstract states sa; into the indices
Jj € {1,...,m} of the concrete states sc;,
so that the following properties hold:

a) b(0) = 0 and b(n) = m: The initial
state and the goal state of the ab-
stract sequence must correspond to

the initial and goal state of the re-
spective concrete state sequence.

b) b(u) < b(v)iff u<v: The order of the
states defined through the concrete
state sequence must be maintained
for the abstract state sequence.

Definition 4: A plan pais an abstrac-

tion of a plan pc if there exists a state ab-
straction mapping a: Sc¢ — Sa and a se-
quence abstraction mapping b: N — N,
so that: If pc and an initial state scg
induce the state sequence (scq,...,S¢y)
and sag = a(scp) and (sag, . . ., sa,) is the
state sequence which is induced by sag
and the abstract plan pa, then a(sc;(;)) =
sa; holds for all ¢ € {1,...,n}.
This definition of abstraction is demon-
strated by Figure 1. The concrete space
shows the sequence of m operations to-
gether with the induced state sequence.
Selected states induced by the concrete
plan (i.e. scq, scz, and sc,,) are mapped
by the state abstraction mapping «a into
states of the abstract space. The se-
quence abstraction mapping b maps the
indices of the abstract states to the cor-
responding states in the concrete world.
It becomes clear, that plan abstraction
is defined by a pair of abstraction map-
pings (a,b). This is because these map-
pings uniquely define an equivalence class
of abstract plans according to the defined
plan equivalence (if their exists an ab-
stract plan at all).

2.2 DOMAIN JUSTIFICA-
TION FOR STATE AB-
STRACTION MAPPINGS

For the construction of domain tailored
abstraction mappings (see requirement
2), a justification of the state abstraction
mappings by knowledge of the domain
is necessary. Otherwise, arbitrary map-
pings of concrete objects to abstract ob-
jects in the description of the states can-

not be avoided. Therefore, additional do-
main knowledge should state which kinds
of useful abstractions usually occur in a
domain, and how those abstractions can
So, the
construction of abstraction mappings is a
priori restricted to possibly useful ones.

Generic abstraction theories for seman-
tic abstraction, as introduced by Gior-
dana, Roverso and Saitta [Giordana et
al., 1991] relate atomic formulae of an ab-
stract language to terms of a correspond-
ing concrete language. In an adaption of
this idea, a generic state abstraction the-
ory T, in our model is defined as a set
of axioms of the form ¥ « D; V Dy V
...V D,, where V¥ is an essential sentence
of the abstract world and D, ..., D, are
conjunctions of sentences of the concrete
world. For a justified state abstraction
mapping a we can now require that: if
U ca(sc) then sce UTcUTg - ¥, Since
a minimal consistent state abstraction

be defined in concrete terms.

mapping (according to the D - relation)
should be reached, the reverse implica-
tion, namely that every essential sen-
tences ¥ for which scUTcUTg F W holds,
is an element of a(sc), is not demanded.

2.3 SHARED ABSTRAC-
TIONS FROM SEVERAL
PLANS

Since the definition of plan abstraction
according to definition 4 only describes
the abstraction of a single plan, the pre-
sented model must be extended to deal
with he formulation of one shared ab-
straction form a set of plans (see require-
ment 3). Intuitively, an abstract plan
which holds for a set of plans must be an
abstraction for each of the plans. So, for
each of the plans to be abstracted, a state
abstraction mapping and a sequence ab-
straction mapping must be found, so that
the same sequences of abstracted state
descriptions are created. This idea is cap-

tured in the next definition

Definition 5: Let P = {< pey,scoq >
seees < P, sco i >} be a set of k plans
pc, and belonging initial states ! scq,
and let (scoy, -+ 8C¢m, v)ve(1,...k} denote
the sequences of states which are induced
by P. A plan pa is a shared abstrac-
tion of a set of plans P if there exist k
state abstraction mappings a(l), e al®)
and k sequence abstraction mappings
bW,) 5o that: If sag := a(l)(SCOJ)
and (sag,...,say) is the state sequence
which is induced by sag and the abstract
plan pa, then a(l’)(sc[b(y)(i)]’l,) = sa; holds
for all ¢« € {0,...,n} and for all v €

{1,..., k).

2.4 AN EXAMPLE

To illustrate the formal model of shared
plan abstraction a small example is in-
troduced now. As a planning domain,
the familiar Tower-of-Hanoi (ToH) prob-
lem - a problem analyzed by several re-
searchers before (e.g. [Korf, 1985]) - is
used. The ToH-problem involves three
vertical pegs and a number of shaped
disks, all of different sizes. In the initial
state, all the disks are stacked on one peg
in decreasing order of size. The goal is to
stack the pegs in the same order on one
of the other pegs. The only legal action is
to move a single top disk on a peg to an-
other peg subject to the constraint, that
a larger disk may never be placed on a
smaller disk.

Figure 2 shows two example problem so-
lutions to the 2-disk and the 3-disk ToH
problem. In the top of this figure, the
plan pcqy for the 2-disk ToH-problem is
shown. In the initial state scp; the two
disks are stacked on the left most peg

!Note, that we use only one index to refer to
different states of a plan when only one plan is
involved. A second index (e. g. v) is added, if
it is necessary to differentiate between the state
sequences of different plans.

a. The other pegs b and ¢ are empty.
The stacked disks of the three pegs are
represented as three columns of natural
numbers, where the value of a number
reflects the sizes of the respective disks
(small numbers stand for small disks).
An empty peg is represented by the un-
derscore (_) symbol. The first operation
of the plan pcq is the move of the top
disk (1) on peg a to peg b. This oper-
ation is represented by the term m(a,b)
which denotes the application of the op-
erator move (abrivated by m) with the
two parameters source peg a and destina-
tion peg b. The second operation moves
the top disk from peg a to peg ¢ and the
third operation achieves the goal state in
which all pegs are correctly store on the
right most peg c¢. The bottom of Fig-
ure 2 shows the plan pcy as a solution to
the 3-disk ToH-problem. The three disks
(numbered 1,2,3) are moved with 7 legal
moves from peg a to peg c¢. The shared
abstraction which is derived according to
the model of plan abstraction is indicated
between the two concrete plans.

Here, the abstract world consists of a dif-
ferent terminology for the descriptions of
the states and operations than the con-
crete world. In the state descriptions,
the symbol ¢ is intoduced as an abstrac-
tion of a complete tower of all disks con-
tained in a problem. The symbol [stands
for the largest disk and s abbreviates a
small tower of disks, which is a tower that
does not contain the largest disk. The
generic abstraction theory which is re-
quired to allow justified abstraction map-
pings exactly defines these new abstract
objects (%, I, s) in terms of the concrete
disks. Additionally, new abstract opera-
tions which act on the changed state rep-
resentation are introduced. The opera-
tion split splits a complete tower ¢ into
the largest disk and the small remain-
ing tower s. The operation m’ moves a
single disk or any tower to a new loca-

> Concreteworld: 1. plan pc, *—

Lo1 m@b) |[*LY mao [F21 mpg |T31
1 . — — 1
- 21 12 2

\ | | T

\a@ |a® [a®
Y Y

sa) join(b,c)
I's

SCo2|| C1,2|[5%2,2|[SC 3,2|| S¢4,2|| C5,2|| C6,2|| € 7,2

2
(821|321 |132_ || _23|[123 [1_3|| __3
N AN A A A _A_A_A

m(ac) m(ab) m(cb) m(ac) m(b.a m(b,c) m(ac)
——» Concreteworld: 2. planpc, <*——

Figure 2: An Example for a Shared Abstraction for two
plans

Table 1. Example for Abstraction Mappings

Plan pci(4 Plan pc,

disks) (3 disks)

D17 = 1
State abstraction ngi i |s L@En=s .
mappings: @@ =1 d2(2]) =

a(l)([;]) .y (13D ([3])

bY@ =0 b*0)=0
Sequence abstractiory HY(1) =1 b3(1) =3
mappings: bY@ =2 b2Q2)=4

gY@)=3| b2@)=7

tion. The join operation stacks a small
tower on top of a large disk. Note that
all these abstract operations are not le-
gal elementary operations of the concrete
ToH-domain. The two state abstraction
mappings and the two sequence abstrac-
tion mappings which define the shared
abstraction of the 2-disk and the 3-disk
problem are listed in Table 12. a(!) maps

2To simplify the presentation, the shown state
abstraction mappings only note the mapping
of disk configurations, although they formally
map complete states, which are sets of essential

the concrete from the plan pcy onto the
abstract states and «(?) maps the con-
crete states which result from the plan
pcy onto the same sequence of abstract
states. The sequence abstraction map-
ping b(1) mirrors the fact, that each state
in the solution of the 2-disk problem is
mapped onto a respective abstract state,
while for the 3-disk problem only 4 of the
8 states have an abstract image according

to b(2),

3 EXPLANATION-
BASED LEARNING
OF ABSTRACTIONS

As described in section 2, the task of con-
structing a shared plan abstraction can
be seen as the problem of finding de-
ductively justified state abstraction map-
pings and sequence abstraction mappings
so that a related abstract plan - com-
posed of the operators of the abstract
world - exists. This section introduces
S-PABS ? (shared plan abstraction), an
EBL-procedure which consists of five dis-
tinct phases.

3.1 EXPLANATION STRUC-
TURES

Traditonal EBL has the property, that
the knowledge which is derived from an
example as operational generalization is
already a consequence of the incorpo-
rated domain theory. No knowledge can
be acquired which is more general than
the theory used for explanation, or more
precisely, no rules can be derived which
are more general than the rules which
are used to explain the examples. To
allow EBL to come out with described

sentences.
3S-PABS is an extension of the PABS-

procedure, proposed in [Bergmann, 1992c].

type of plan abstractions, the explana-
tions which are constructed must ex-
plain the example plans in terms of the
abstract world description. Therefore
our domain theory must not only con-
tain the concrete world description, but
also the abstract world description and
the generic abstraction theory. Such ad-
ditional knowledge is not necessary for
other approaches for learning general-
izations of plans [Minton et al., 1989;
Bergmann, 1992b].

Moreover, the construction of shared ab-
stractions on possibly different levels of
abstraction necessitates the derivation of
several alternative explanations (in the
abstract world), for each plan involved.
The most specifc explanation in the ab-
stract world which is valid for all plans
may then be selected as the common ex-
planation. This explanation is complete
in the sense, that all operations of the
plan are explained, but in a less detailed
way. This is in constrast to the kind
of shared explanations which are con-
structed by Induction over Ezplanations
IOE [Flann and Dietterich, 1989] or the
EXOR system [Yoo and Fisher, 1991].
In these two approaches, the common
subexplanation is not anymore complete
for all examples.

3.2 THE S-PABS PROCE-
DURE

The S-PABS learning procedure is de-
composed into five distinct phases in
which the different types of knowledge
is used to infer an appropriate explana-
tion structure, from which an abstract
plan can be derived. The first three
phases are executed separately for each
of plans {pecq,...,pc,}. Phase-IV super-
imposes the candidate abstract explana-
tions yielding a set of shared plans, which
are further variabilized in phase-V. In the
following the five phases are explained in

detail.

3.2.1 Phase-I: Plan Simulation
(Application of Concrete

World Knowledge)

By simulating the execution of the
concrete plan pc, the state sequence
(sc1,...,5¢,) which is induced by the
plan pc and a given initial state scg
is computed (see Figure 1). During
this simulation, the definition of the op-
erators Op. and the static theory 7,
are applied to derive all those essen-
tial sentences which holds in the respec-
tive states. The proofs that exist for
the applicability of each operator can
now be seen as a concrete-level expla-
nation for the effects caused by the op-
erations. Such a kind of explanation is
also constructed in EBL-procedures for
plan generalisations [Fikes et al., 1972;
Chien, 1989; Schmalhofer et al., 1991a;
Bergmann, 1992b] and for constructing
programming schemes from verified pro-
grams [Bergmann, 1992a). For the 3-
disk ToH-problem the computed state
sequence scg,...,5C72 is shown in the
lower section of Figure 2.

3.2.2 Phase-II: Constructing
State Abstractions (Applica-
tion of the Generic Abstrac-
tion Theory)

The second phase performs a prerequi-
site for the composition of the deduc-
tively justified state abstraction map-
ping. With the generic state abstraction
theory T}, an abstract

state description sa’ is derived for each
state sc; which was computed in the first
step. Essential sentences ¥ € R, of
the abstract world description W, are
checked, whether they can be inferred
from sc; UT. UT,. If s¢c; UT.UT, -V
holds, then ¥ is included into the state

abstraction sal. Although, each of the
concrete states is transformed with the
guidance of the generic abstraction the-
ory into abstract descriptions, not every
state has a meaningful abstract interpre-
tation. For which states the abstraction
turns out to be useful, can ultimately
be answered in phase-1V. For the 3-disk
ToH-problem, some of the abstract essen-
tial sentences which are derived from the
states scq 2, SC3,2, 84,2, SC7 2 are shown in
the centre of Figure 2 and also in Figure

3.

3.2.3 Phase III: Constructing Ab-
stract State Transitions (Ap-
plication of Abstract World

Knowledge)

The goal of the third phase is to identify
candidate abstract operations for an ab-
stract plan. For each pair of abstracted
states (sal,, sal) with u < v, it is checked,
if there exists an abstract operation O, €
Op, described by < P,, D,, A, > which
is applicable in sa!, and which transforms
sal, into sal,. If sal, UT, b P, and if ev-
ery sentence of A, is contained in sa! and
none of the sentences of D, is contained
in sa!, then the operation O, is noted to
be a candidate for the abstract plan. A
directed graph is constructed, where the
nodes of the graph are built by the ab-
stract states sa’ and where links between
the states are introduced for those op-
erations that are candidates for achiev-
ing the respective state transitions. The
proofs that exist for the validation of P,
in sal are stored together with the cor-
responding operation. A fraction of the
complete graph of the candidate abstract
operations is shown Figure 3. For some
of the abstract states, the description de-
rived in phase II is shown. In addition to
the disk abstraction symbols ¢,/,s which
have already been introduced in section
2.4, the symbol n represents the second

Figure 3: Graph of Candidate Abstract Operations from 3 and 4-disk ToH-problem and Indicated Consistent Paths <a,3,y>

largest disk and the symbol u represents
any tower (complete or partial) which
does not contain the largest or the second
largest disk. The presented graph can be
derived from the 3-disk ToH-problem as
well as for then 4-disk ToH-problem.

3.2.4 Phase IV: Establishing
Shared Consistent Paths

From the constructed graph, complete
and consistent paths from the initial ab-
stract state saj to the final state sal,
are searched, where each path determines
a complete abstract explanation. The
consistency requirement for such a path
pa = (01,...,0,)(0; € Op,) expresses,
that every essential sentence which guar-
antees the applicability of the operator
0i+1(saiUT, F P,)is created by a preced-
ing operation (through the add-list) and
is protected until o;41 is applied, or the
essential sentence is already true in the
initial state and is protected until 0;41 is
applied. This condition assures that the
plan represented by the path pa is indeed
applicable, which means that the precon-
ditions for all operations are satisfied in
the states in which they are executed.
This consistency requirement can be veri-
fied by analyzing the dependencies of the
involved operations. The graph shown
in Figure 3 consists of five paths from
the initial to the final abstract state, but
only three paths, marked < a >, < 8 >,
and < v > fulfill the introduced consis-

m’(b,a) m’(b,c) m’(a,c)

<V>>O <V>>O <y

tency requirement. Although two states
(and one operation) are shared by the
paths < 8 > and < 7 >, the crossing
of them does not represent a consistent
path. This is because the operations in
path < § > work on the disk abstractions
noted by the symbols t,1,s, whereas the
operations in path < v > rely on a more
detailed view on the disk-configuration
represented by the symbols [,n,u.

The modules of the S-PABS procedure
reported so far, does not take the con-
struction of shared explanations into ac-
count. So they are be executed sep-
arately for each of the available plans.
The determined set of consistent paths
can then easily be superimposed to se-
lect only those paths which are shared
by all of the example plans. For judging
if some paths are shared, it is important
to take the intermediate states induced
by the plans into consideration too (refer
to definition 5). In the example graph
from Figure 3, we can identify that the
path < a > is shared by the plans for
the 1,2,3 and 4-disk ToH-problem. Path
< [> represents an explanation for the
2,3 and 4-disk problem, while path < v >
only holds for the 3 and the 4-disk prob-
lem. From this example we can also see,
that possibly more then one path can sur-
vive the process of intersection. So all
three paths < a >, < 8 >, and < v >
are shared consistent paths for the 3 and
the 4-disk ToH-problem. In this case S-

PABS will come out with several plan ab-
stractions from which some may be se-
lected for further usage. Although this
may seem to be a problem, it can also be
used as a guidance for a clustering pro-
cess, as it will be pointed out in section
4.

3.2.5 PhaseV: Constructing the
Final Abstract Plan Repre-

sentation

From a shared abstract path and the
dependency network which justifies its
consistency, a variabilization of the ab-
stracted plan can be established. With
the dependency network, which functions
as an explanation structure, explanation-
based generalization can be applied to
compute the least subexplanation which
justifies all operations of the abstract
path. The proofs that correspond to
the justification of the abstract states
by the generic abstraction theory are
pruned Thereby, the boundary of oper-
ationality [Braverman and Russel, 1988]
for the learned concept is determined
by the essential sentences and the op-
erators available in the abstract world
and by the set of examples from which
the shared abstractions are generated.
Within this subexplanation, the remain-
ing derivations are generalized by stan-
dard goal regression as used by Mitchell,
Keller and Kedar-Cabelli [Mitchell et al.,
1986]. Thereby, constants are turned into
variables. The final generalized explana-
tion thus only contains relations which
describe the generalized operations to-
gether with a generalized specification of
the application conditions for the opera-
tor sequence. As an example, the vari-
abilized abstract plan which results from
path < B > is shown in Figure 4. Note
that the capital letters X, Z, Y now in-
dicate variables which stand for the pegs
of ToH.

3.3 DETERMIMATION OF
STATE AND SEQUENCE
ABSTRACTION MAP-
PINGS

As demonstrated, the described five-
phase-procedure computes shared plan
abstractions. Now we want to briefly
elaborate the relation between the S-
PABS procedure and the formal model
described in section 2.

As pointed out in definition 5, a shared
abstract plan which is vaild for a set of
k concrete plans is described by k state
abstraction mappings and k sequence ab-
straction mappings. These mappings are
implicitly defined during the first four
phases of the procedure. For each source
plan pc, the sequence abstraction map-
pings b(*) is defined through the selection
of a consistent path:

Application Condition:

- initia state: on_peg(X,t), on_peg(Y,_), on_peg(Z,.)
- goal state: on_peg(X,_), on_peg(Y.,t), on_peg(Z,)
- constraints: X2Y, X #Z,Y#Z

Operator Seguence: split(X,Z), m'(X,Y), join(Z,Y)

Figure 4: Variabilized Abstract Plan as Result of path <p>

b¥)(i) == j iff the i-th operation of
the shared consistent path pa connects
state saj , with sa’ , where these states
are derived from the concrete states scj ,
and sc;-J, induced by the plan pc,.
Additionally, the shared path defines
a corresponding sequence of minimal
abstract state descriptions saq,...,sa,
with SaEb(”)(i)],u D sa; . These minimal
abstract states contain exactly those sen-
tences which are necessary to guarantee
the applicability of the operations in the
path. For each source plan pe, a state
abstraction mapping a”) can now be de-
fined through:
a(s¢) = {¥|se UT.UT, F ¥ and
i € {1,...,n} such that ¥ € sa; and

]»3- So S-PABS produces
indeed shared plan abstractions accord-
ing to the proposed model. For the ab-
stract plan from path < § > (Figure 4)
the abstraction mappings have already
been presented in Table 1.

sc C sc [6(») (i

4 CLASSIFICATION OF
PLAN ABSTRACT-
IONS

Since now, this paper has presented an
approach for speeding up planning by
learning shared abstractions from suc-
cessful planning cases. Thereby, the in-
troduced speedup requirements 1,2 and 3
are satisified. This section deals with ap-
proaches to an efficient organization and
utilization of the learned abstract plans
to achieve the fourth requirement.

As already proposed by Yoo and Fisher
[Yoo and Fisher, 1991],
mation over explanations is a method

concept for-
that combines the explanation-based
paradigm with the paradigm of concept
formation [Gennari et al., 1989] to re-
sult in a method which can automatically
create a hierarchical classification tree of
shared explanations.

4.1 FUNDAMENTALS FOR
THE HIERARCHY CON-
STRUCTION

The basic idea is to construct a classifica-
tion hierarchy, in which each node in the
hierarchy reflects the shared abstraction
of a set of planning cases. The abstract
plan which can be stored at a node, is
then valid for all of the node’s descen-
dents. To construct such a classification
hierarchy, one important property of S-
PABS can be utilized.

If we look at S-PABS as a learning
function £ which maps a set of concrele
plans onto a set of abstract plans, we

no shared abstraction
{1 LA2%..5%

—— {1234} —— {2*34*5*} =
:I Eo_pqﬂtlons.) (U u ;:ll:; m (ba m’(c,a) j
==l {234} —— :I {4*5’} ==
T]
[n 7°_pe_fﬂt_'°15 nJ
I IV g

Figure 5: Classification Hierachy of Plan
Abstractions

/—\

=

can easiliy see that the following inclu-
sion holds:
L(P1) C L(P2)if P2C P1

This statement expresses the obvious
property, that abstractions learned from
a set of concrete plans are also valid ab-
stractions for any subset. On the other
hand, it is clear that extending the set of
plans from which abstractions are to be
constructed may reduce the set of result-
ing shared abstractions. A classification
of abstract plans can be build on the ba-
sis of a classification of the concrete ex-
ample plans. If C; is a node in the classifi-
cation hierarchy, then let EFC; denote the
set of the concrete example plans which
belong to that class. If C; is a subclass
of C; in the hierarchy, then EC; C EC;
holds and therefore L(EC;) C L(EC)
is also true. An abstract plan pac, can
be associated with each class C;, where
pac, € L(EC;).

A typical representative abstract plan for
a class C; should be chosen in a way
that it differs from the abstract plans
which have been selected for the super-
classes of (/;. To achieve this condi-
tion, pac, can be designated as follows:
pac, € (L(EC;) \ L(EC))) if C; is su-
perclass of C;. The application domain
as well as the classification hierarchy has

21 1 1([3 1|3 3
43_||a32|[432 [|4a 2 |[a12]]|a1

A WNPRE

A A A A A
m(ac) m(b,c) m(@ab) m(cb) mca m(b,a)

Figure 6: The 4-Disk Merge Problem 4*

an important impact on the size of the
space of candidates (L(EC;) \ L(EC)))
from which to select an abstract plan for
a class. A perfect hierarchy should be
constructed in a way, that for each class
the space of candidates contains only one
item. In this case the set of abstract
plans which is constructed for a set of
example plans FC; is distributed over all
the nodes along the path from the root
node of the hierarchy to the class Cj.

An example of such a classification hi-
erarchy for the ToH domain is demon-
strated in Figure 5, where 8 different
problems are classified. As the first four
problems (noted as 1,2,3,4) the tradi-
tional 1,2,3 and 4-disk ToH-problem (see
section 2.4) are concerned. The other
four problems 2% 3* 4% 5* represent a
variation of the typical ToH-problems.
These problems deal with the merging of
two fragmented towers on the pegs a and
b into one complete tower located on peg
a. The 4-disk merge problem (4*) and its
concrete solution is briefely illustrated in
Figure 6. In the hierarchy shown in Fig-
ure 5, the abstract plans for the differ-
ent classes and the set of problems from
which they are derived by S-PABS are
shown. This hierarchy is constructed so,
that each class can be characterized by
a sole plan since |[L(EC;) \ L(EC;)| =
1. Only the root node of the hierarchy
does not contain an abstract plan be-
cause no shared abstractions between the
traditional ToH-problems and the merge
problems can be found.

4.2 INCREMENTAL CON-
STRUCTION OF THE HI-
ERARCHY

For an incremental construction of such a
classification hierarchy, a newly observed
solution to a planning problem E must
be incorporated into an existing hierar-
chy. For that purpose, S-PABS computes
L(EC;),L({L}) and L(EC; U {L}) for
a class C; of the hierarchy (initially the
root). When the three sets of resulting
abstractions are compared, three differ-
ent situations are distinguished:

a) If L(EC; UA{F}) = L(EC;) =
L({E}) then the new example is
simply discarded and not incorpo-
rated, because all of the examples
abstractions are already contained
in a class of the hierarchy.

b) If it shows that L(EC; U {E}) =
L(EC;) but L(EC;) # L({£}) then
F. becomes a member of the class
C; and the classification proceeds to
the descendants of C;. One subclass
C; is chosen in which E fits best.
This selection is guided by a crite-
rion that can be rated by [L(EC;)|—
|L(EC; U {E})|, the number of ab-
stractions of the class C'; which are
not shared by E. (If no subclass can
be chosen according to this criterion,
then the subclass which contains the
largest number of abstract plans is
selected). If C; is a leaf node of the
hierarchy, then a new subclass C’; is
created, which exactly contains the
example plan E.

c) f L(EC;U{E})# L(EC;) then the
new example does not completely
fall in the scope class C; (which is
the best selection as guaranteed in
case b). Therefore, a new class node
called C}, is created and inserted be-
tween C; and its father. This new

class is initialized with the exam-
ple plans of C; supplemented by the
example E (ECy := EC; U {E}).
Additionally, if L(ECY) # L({E})
a new child of C} is created, which
contains only the example plan E.

With this procedure the classification hi-
erarchy shown in Figure 5 can be in-
crementally constructed from the eight
ToH-problems.

5 DISCUSSION AND
RELATED WORK

In this paper, four key requirements
for speeding up hierarchical planning by
learning abstract plans were derived from
recent machine learning and planning lit-
erature. A new formal model of shared
plan abstraction and the explanation-
based S-PABS procedure were intro-
duced to fulfill the first three require-
ments. According to the last require-
ment, an adaption of the idea of concept
formation over explanations was further
outlined as a method to incrementally
construct a hierarchical classification of
the abstract plans.

Unlike other well known techniques for
learning search control rules for plan-
ning (PRODIGY) by explanation-based
learning [Minton et al., 1989] or in-
ductive learning [Leckie and Zucker-
mann, 1991], S-PABS can acquire do-
main oriented problem decompositions
rather then more or less restricted opera-
tor selection rules. Search control rules
can guide the search in a single prob-
lem space but cannot reduce planning
complexity by switching to an abstract
problem description. On the other hand
PRODIGY is able to learn from failed
solution tracks which actually cannot be
preformed by S-PABS.

Learning macro-operators has shown to

speedup planning if the problem domain
is serially decomposable [Korf, 1985] or
satisfies the sparse solution space bias
[Tadepalli, 1991]. For domains, that does
not satisly these requirements, learning
and storing macro-operators can lead to
the utility problem [Minton, 1990] due
to the specificity and the limited ap-
plicability of learned knowledge. Ab-
stract plans tend to overcome this prob-
lem since the knowledge representation
is simplified through abstraction and the
scope of utilization is increased.
Recently, a few approaches to plan
abstraction have been proposed. In
Knoblock’s method for learning abstract
planning spaces [Knoblock, 1989], ab-
straction always occurs by dropping sen-
tences of the concrete world. This kind
of abstraction is only a special case of
the type of abstractions we allow. This
restrictions can be characterized by lim-
iting state abstraction mappings those,
where a(s) C s is satisfied. The major
advantage of our model is, that it allows a
totally different terminology to be intro-
duced. Thereby it permits the construc-
tion of real domain oriented abstractions
which require a shift of the representa-
tion language.

Plan abstractions how they are de-
rived by PLANEREUS [Anderson and
Farly, 1988] or by Tenenberg’s approach
[Tenenberg, 1986] can also be shown
to be a special type of the abstrac-
tion created by S-PABS. The former sys-
tems use a taxonomic hierarchy of op-
erations (which is learned in the case of
PLANEREUS) to construct an abstract
plan from a concrete plan. Plan abstrac-
tion occures by generalizing each oper-
ator according to the hierarchy. There-
fore, the number of operations contained
in the resulting abstract plan is not re-
duced. In our model, this type of ab-
straction can be described by the special
sequence abstraction mapping b(7) := <.

Within the Soar framework, Unruh and
Rosenbloom [Unruh and Rosenbloom,
1989] have proposed an abstraction tech-
nique which can be characterized as gen-
eral weak method, in that it uses no
domain-specific knowledge about how to
perform abstractions.
strast to our approach, since we want to

This is in con-

draw power from the knowledge about
useful domain specific abstractions which
have been proven successful in human
problem solving. The knowledge needs
of our method demand for the devel-
opment of special knowledge acquisition
methods to transform expert experience
into a formal descriptions of an abstract
world and a generic abstraction the-
ory. Case-oriented knowledge acquisition
tools for planning domains [Schmalhofer
el al., 1991b; Bergmann and Schmal-
hofer, 1991; Schmidt and Schmalhofer,
1990] can help to fulfil these requirements
of S-PABS.

Acknowledgements

I would like to thank Franz Schmalhofer
and Stefan Boschert for helpful discus-
sions and comments on the topic of plan
abstraction. Andreas Dannenmann and
Wolfgang Wilke provided very helpful
comments on early versions of this paper.
This research was supported by grant
Schm 648/1 from ”Deutsche Forschungs-
gemeinschaft”.

References

[Anderson and Farly, 1988] J. S. Ander-
son and A. M. Farly. Plan abstrac-
tion based on operator generalization.
In Proceedings of the 7th International
Conference on Artifical Intelligence,
pages 100-104, San Mateo, 1988. Mor-
gan Kaufmann.

[Bergmann and Schmalhofer, 1991]
R. Bergmann and F. Schmalhofer. Ce-

cos: A case experience combination
system for knowledge acquisition for
expert systems. Behavior Research
Methods, Instruments and Computers,
23:142-148, 1991.

[Bergmann, 1992a] R. Bergmann.
Explanation-based learning for the au-
tomated reuse of programs. In Pro-
ceedings of the IEFE-Conference on
Computer Systems and Software FEn-
gineering, COMPEURQO92. To appear,
1992. (in press).

[Bergmann, 1992b]
R. Bergmann. Knowledge acquisi-
tion by generating skeletal plans. In
F. Schmalhofer, G. Strube, and Th.
Wetter, editors, Contemporary Knowl-
edge Fngineering and Cognition, Hei-
delberg, 1992. Springer. (in press).

[Bergmann, 1992c]

R. Bergmann. Learning plan ab-
In GWAI-92 16th Ger-
man Workshop on Artificial Intelli-
gence, page in press. Springer-Verlag,
1992.

stractions.

[Braverman and Russel, 1988] M. S.
Braverman and S. J. Russel. Bound-
aries of operationality. In J. Laird, ed-
itor, Proceedings of the Fifth Interna-
tional Conference on Machine Learn-
ing, pages 221-234, San Mateo, CA,
1988. Morgan Kaufmann.

[Chien, 1989] S. A. Chien. Using and
refining simplifications: Explanation-
based learning of plans in intractable
domains. In Proceedings of the Inter-
national Joint Conference on Artificial
Intelligence-89, volume 1, pages 590-
595, Detroit, MI, 1989. Morgan Kauf-

mann.

[Fikes et al., 1972] R. E. Fikes, P. E.
Hart, and N. J. Nilsson. Learning and

executing generalized robot plans. Ar-
tificial Intelligence, 3:251-288, 1972.

[Flann and Dietterich, 1989] N.S. Flann
and T.G. Dietterich. A study of
explanation-based methods for induc-

tive learning. Machine Learning,
4(2):187-226, 1989.

[Friedland and Iwasaki, 1985]
P. E. Friedland and Y. Iwasaki. The
concept and implementation of skele-
tal plans. Journal of Automatled Rea-
soning, pages 161-208, 1985.

[Gennari et al., 1989] J. H. Gennari,
P. Langley, and D. Fisher. Models of
incremental concept formation. Artifi-
cial Intelligence, 40:11-61, 1989.

[Giordana et al., 1991] A. Giordana,
D. Roverso, and L. Saitta. Abstract-
ing background knowledge for concept
learning. In Y. Kodratoff, editor, Lec-
ture Notes in Artificial Intelligence:
Machine Learning-FWSL-91, pages 1—
13, Berlin, 1991. Springer.

[Knoblock, 1989] C. A. Knoblock. A
theory of abstraction for hierachical
planning. In Proceedings of the Work-
shop on Change of Representalion and
Inductive Bias, pages 81-104, Boston,
MA, 1989. Kluwer.

[Kolodner, 1987] J. L. Kolodner. FEx-
tending problem solver capabilities
through case-based inference. In Mor-
gan Kaufmann, editor, Proceedings
of the 4th International Workshop
on Machine Learning, pages 167-178,
Irvine, Ca, 1987.

[Korf, 1985] R. E. Korf.
operators: A weak method fr learning.
Artifical Intelligence, 26:35-77, 1985.

Macro-

[Korf, 1988] R.E. Korf. Optimal path-
finding algorithms. In V. Kumar
L. Kanal, editor, Search in Artificial

Intelligence, pages 223-267. Springer,
New York, 1988.

[Leckie and Zuckermann, 1991]

C. Leckie and I. Zuckermann. Learn-
ing search control ruels for planning:
An inductive apporach. In L. Birn-
baum and G. Collins, editors, Machine
Learning, Proceedings of the 8th In-
ternational Workshop (ML91), pages
422-426, San Mateo, CA, 1991. Mor-
gan Kaufmann.

[Lifschitz, 1987] V. Lifschitz. On the se-
mantics of strips. In Reasoning about
Actions and Plans: Proceedings of the
1986 Workshop, pages 1-9, Timber-
line, Oregon, 1987.

[Michalski and Y.Kodratoff, 1990] R. S.
Michalski and Y.Kodratoff. Research
in machine learning: Recent progress,
classification of methods, and future
directions. In Y. Kodratoff and R. S.
Michalski, editors, Machine learning:
An artificial intelligence approach, vol-
ume 3, chapter 1, pages 3-30. Morgan
Kaufmann, San Mateo, CA, 1990.

[Minton et al., 1989] S. Minton, J. G.
Carbonell, C.A. Knoblock, D. R.
Kuokka, O. FEtzioni, and Y. Gil.
Explanation-based learning:a problem

solving perspective. Artificial Intelli-
gence, 40:63-118, 1989.

[Minton, 1990] S. Minton. Quantita-
tiv results concerning the utility of

explanation-based learning. Artifical
Intelligence, 42:363-391, 1990.

[Mitchell et al., 1986] T. M. Mitchell,
R. M. Keller, and S. T. Kedar-Cabelli.
Explanation-based generalization: A
unifying view.
1(1):47-80, 1986.

Machine Learning,

[Mozetic and Holzbaur, 1991] I. Mozetic
and

C. Holzbaur. Extending explanation-
based generalization by abstraction
operators. In Y. Kodratoff, edi-
tor, Lecture Notes in Artificial Intel-
ligence: Machine Learning-FWSL-91,
pages 282-297, Berlin, 1991. Springer.

[Plaisted, 1981] D. Plaisted. Theorem
proving with abstraction. Artifical In-
telligence, 16:47-108, 1981.

[Sacerdoti, 1974] E.D. Sacerdoti. Plan-
ning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5:115-
135, 1974.

[Schmalhofer et al., 1991a] F. Schmal-
hofer, R. Bergmann, O. Kiihn, and
G. Schmidt. Using integrated knowl-
edge acquisition to prepare sophis-
ticated expert plans for their re-
use in novel situations. In Thomas
Christaller, editor, GWAI-91 15th
German Workshop on Artificial Intel-
ligence, pages 62-71. Springer-Verlag,
1991.

[Schmalhofer et al., 1991b] F. Schmal-
hofer, O. Kihn, and G. Schmidt.
Integrated knowledge aquisition from
text, previously solved cases and ex-
pert memories. Applied Artificial In-
telligence, 5:311-337, 1991.

[Schmidt and Schmalhofer, 1990]

G. Schmidt and F. Schmalhofer. Case-
oriented knowledge acquisition from
texts. In B. Wielinga, J. Boose,
B. Gaines, G. Schreiber, and M. van
Someren, editors, Current Trends in
Knowledge Acquisition, pages 302-312,
Amsterdam, May 1990. IOS Press.

[Tadepalli, 1991] P. Tadepalli. A formal-
ization of explanation-based macro-
operator learning. In Morgan Kauf-
mann, editor, Proceedings of the Inter-

national Join Conference on Artifical
Intelligence-91, pages 616-622, 1991.

[Tenenberg, 1986] J. Tenenberg. Pre-
serving consistency across abstraction
mappings. In MCdermott, editor, Pro-
ceedings of the 6th International Con-
ference on Artifical Intelligence, pages

76-80, Philadelphia, PA, 1986.

[Tenenberg, 1987] J. Tenenberg. Pre-
serving consistency across abstraction
mappings. In J. McDermott, editor,
Proceedings of the 10th International
Conference on Artifical Intelligence,
pages 1011-1014, Los Altos, CA, 1987.
Morgan Kaufmann.

[Unruh and Rosenbloom, 1989] A. Un-
ruh and P.S Rosenbloom. Abstraction
in problem solving and learning. In
Proceedings of the International Join
Conference on Artifical Intelligence-
89, pages 590-595, Detroit, MI, 1989.
Morgan Kaufmann.

[Yoo and Fisher, 1991] J. Yoo
and D. Fisher. Concept formation over
explanations and problem-solving ex-
perience. In J. Mylopoulos and R. Re-
iter, editors, Proceedings of the Twelfth
International Conference on Artificial
Intelligence, volume 2, pages 630-637,
San Mateo, CA, 1991. Morgan Kauf-

mann.

