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‘The whole problem with the world is that fools and fanatics are always so certain of
themselves, but wiser people so full of doubts.’

Bertrand Russell (1872 − 1970)
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Abstract

In the present contribution, a general framework for the completely consistent integration
of nonlinear dissipative dynamics is proposed, that essentially relies on Finite Element
methods in space and time. In this context, fully flexible structures as well as hybrid
systems which consist of rigid bodies and inelastic flexible parts are considered. Thereby,
special emphasis is placed on the resulting algorithmic fulfilment of fundamental balance
equations, and the excellent performance of the presented concepts is demonstrated by
means of several representative numerical examples, involving in particular finite elasto-
plastic deformations.

Keywords: computational dynamics, consistent integration, Galerkin methods, inelastic
multibody systems, finite elasto-plasticity

Zusammenfassung

In der vorliegenden Arbeit wird ein universelles Konzept zur vollständig konsisten-
ten Integration nichtlinearer dissipativer Dynamik entwickelt, welches im Wesentlichen
auf Finite-Element-Ansätzen in Raum und Zeit beruht. In diesem Zusammenhang
werden sowohl vollkommen flexible Strukturen als auch hybride Systeme bestehend
aus Starrkörpern und inelastischen flexiblen Anteilen betrachtet. Unter besonderer
Berücksichtigung der algorithmischen Erfüllung grundlegender Bilanzgleichungen wird
die Leistungsfähigkeit der vorgeschlagenen Verfahren anhand diverser numerischer Bei-
spiele demonstriert, wobei insbesondere finite elasto-plastische Deformationen näher un-
tersucht werden.

Schlagwörter: numerische Dynamik, konsistente Integration, Galerkin Verfahren, in-
elastische Mehrkörpersysteme, finite Elasto-Plastizität
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1. Introduction

In all disciplines of engineering, the application of modern simulation tools has dra-
matically increased in the last years. Enabled by today’s computer performance, this
trend is directly related to the virtual prototype scenario, which is essentially driven by
the permanent requirement to reduce the design and production costs. In this context,
the computational modelling of real technical systems often demands the incorporation
of dynamic effects, dealing for instance with ride and handling simulations in the au-
tomotive industry, virtual crash tests, or the numerical investigation of metal forming
processes. In each case, the first step consists of the transfer of the real system to an
appropriately simplified physical model which, in a second step, can be often described
mathematically by means of differential equations. Considering dynamical problems, at
least ordinary differential equations have to be handled, however, mostly partial differen-
tial equations come into play. Finally, the resulting equations must be solved adequately
in the actual simulation step. During the foregoing modelling and simulation procedure,
basically two crucial issues have to be tackled, namely:

• The physical model has to be as simple as possible, but also as accurate as needed
to represent all essential features of the considered real system.

• Moreover, usually numerical methods are required to simulate the system be-
haviour, since in most of the cases the resulting governing equations of the math-
ematical model can not be solved analytically.

Thereby, the applied methods should be chosen carefully with regard to the offered
numerical performance and also in view of the obtained quality of the results. In any
case, an increasing model complexity additionally requires more sophisticated numerical
techniques and, hence, an advancing knowledge in mechanical as well as mathematical
concepts.

Dealing in particular with the numerics of nonlinear dynamics, it is well-known that
especially the selection of proper time-integration algorithms represents a demanding
task. In this context, several time-stepping schemes are available, whereby most of
them have been originally designed for linear problems. Unfortunately, the majority of
these integrators can lead to strong numerical instabilities when nonlinear dynamical
systems are taken into account, so that an application in the nonlinear setting can not

1



1. Introduction

be recommended. Interestingly, it has turned out in this regard that the algorithmic
fulfilment of physically motivated conservation properties – like the balance of momen-
tum maps or the laws of thermodynamics – is of cardinal importance not only from
the theoretical but even from a practical point of view, being related to the robustness
of the considered time-stepping schemes. Motivated by this aspect, specific algorithms
have been specifically developed in the past for nonlinear applications, considering for
instance multibody systems or large strain elastodynamics. Apparently, the modelling
of dissipative systems poses further challenges compared to the conservative case due
to the higher complexity of the underlying physical and mathematical models. Never-
theless, the incorporation of dissipation is of fundamental relevance in many technical
applications, considering friction effects or inelastic material behaviour.

In the present contribution, an advanced concept concerning the time-integration of
nonlinear inelastic dynamics is developed for structural dynamics as well as for flexible
multibody systems, dealing in particular with finite elasto-plasticity. Hereby, the main
feature of the proposed algorithms is constituted by a completely consistent integration
which guarantees also in the discrete setting a numerically exact fulfilment of funda-
mental balance principles, relying essentially on the proper approximation of involved
time-integrals. In fact, it will be shown that the advocated methods offer a superior
numerical performance and perfectly reflect the underlying physics of the real system.

Literature Survey

Before considering an outline of this work, we present a short survey on relevant publi-
cations which are related to computational dynamics in general, the modelling of plastic
material behaviour, the simulation of elasto-plasto-dynamics, and the numerical treat-
ment of (elasto-plastic) multibody systems.

Computational dynamics: In the literature, there exist a multitude of different time-
stepping schemes for various applications, whereby initially the focus has been placed
on linear dynamical systems. One of the most famous and widespread algorithms for
structural dynamics is the well-known Newmark scheme which has originally been pro-
posed by Newmark [143] in the late fifties of the last century. Subsequently, various
authors have presented modifications of the Newmark scheme, whereby one of the main
issues was certainly the incorporation of optimised numerical dissipation. In this con-
text, a popular representative has been proposed by Hilber et al. [74], referred to as
‘HHT methods’, or by Chung and Hulbert [48], referred to as ‘generalized-α method’.
However, the performance of the Newmark-type algorithms is still strongly limited when
dealing with nonlinear dynamics. Consequently, several alternative methods have been
discussed in the past to improve the algorithmic properties with regard to robustness of
the schemes and veritableness of the results.

2



In this context, a typical concept is to design algorithms which inherit conservation
properties of the considered mechanical system, sometimes referred to as ‘mechanical
integrators’. As already mentioned, the conservation of the momentum maps and in
particular the algorithmic energy balance play a central role in the such investigations.
In the latter case, it can be basically distinguished between energy-conserving methods

and energy-dissipative schemes which additionally incorporate numerical high-frequency
damping. Early contributions related to energy-conserving time integrators can be found
in LaBudde and Greenspan [97, 98] or Hughes et al. [77]. Further notable work in
this area has been done more recently by Kuhl [91], Crisfield and Shi [49], and Krenk
[88, 89, 90]. In the last decade, substantial formulations have been proposed in par-
ticular by Simo et al. [165, 166, 167, 168, 170], Tarnow and Simo [173], and Gonzalez
[62, 63, 64], who has introduced a so-called ‘discrete gradient/derivative’ to guarantee al-
gorithmic energy conservation. The famous and often cited ‘energy-momentum method’
for elastodynamics dates back to Simo and Tarnow [165], investigating in particular a
constitutive model which bases on a quadratic form. Approximately ten years later, this
concept has been revised with regard to general hyperelastic models by Laursen and
Meng [101], solving iteratively an additional equation to determine an adequate Piola-
Kirchhoff stress tensor. Moreover, several authors compared energy-conserving with
energy-decaying/numerically dissipative methods taking care of high frequency modes,
see e.g. Armero and Romero [7, 8] or Kuhl and Crisfield [92] with application to the
dynamics of truss elements. An overview and a comparison of different schemes can
be found in Bottasso and Trainelli [40]. A further class of time-stepping algorithms
addresses specifically the (conserving) integration of shell or beam dynamics, see e.g.
Bottasso et al. [38], Ibrahimbegovic and Mamouri [83], Sansour [155], Sansour et al.
[156, 157, 158], Betsch and Steinmann [30], and Leyendecker et al. [110] favouring a
formulation based on director triads to avoid rotational degrees of freedom. Further-
more, we refer in this context to the ‘constraint energy momentum algorithm’ by Kuhl
and Ramm [94] who enforced energy as well as momentum conservation by means of
additional Lagrange multipliers on the global level, similarly to the concept by Hughes et
al. [77]. Moreover, the same authors apply the ‘generalized energy-momentum method’,
which has been originally proposed in Reference [92], to the nonlinear dynamics of shells
and combine this time-stepping scheme with an adaptive control of the time-step size,
see Reference [95].

All of the concepts listed above essentially rely on the philosophy that a control of
the algorithmic energy results in an improvement of the obtained performance of the
integrators. An alternative approach consists in the design of symplectic time-stepping

schemes based on a discrete variational principle which is motivated by the Hamilto-
nian structure. Symplecticity is hereby directly related to (geometric) properties of the
Hamiltonian flow, preserving in the conservative case a characteristic two-form on the
phase-space. A comprehensible introduction to this topic can be found for instance in

3



1. Introduction

the textbooks by Hairer et al. [70] or Leimkuhler and Reich [103], and detailed back-
ground informations are presented in Marsden et al. [116], Kane et al. [87], Marsden
and West [117], Lew et al. [106, 107], or West [176].

Beside the foregoing classification of the time-integration schemes with regard to the
offered conservation properties, a fundamental difference is represented by the under-
lying discretisation concept. In contrast to commonly used Finite Differences, which
represent the standard approach concerning the (time) discretisation of ordinary dif-
ferential equations, a very attractive alternative is given by Finite Elements in time,
providing a general framework to develop integration schemes with pre-defined algorith-
mic properties. Even if such time-FE methods or Galerkin-based schemes are not the
standard case in computational dynamics, however, they have been discussed in several
publications. Concerning an introduction and the investigations of basic aspects, the
textbook by Eriksson et al. [54] is highly recommended. Moreover, fundamental results
can be found for instance in Argyris and Scharpf [4], Hulme [80, 81], Hughes and Hulbert
[78], French and Schaeffer [57], Hulbert [79], or Estep and French [55] amongst others.
Especially during the last ten years, the concepts of Galerkin-based integrators have
been advanced significantly, dealing with various applications and highly nonlinear sys-
tems. To mention just a few, we refer to Bauchau and Joo [17], Hansbo [72], Runesson
et al. [152], Larsson et al. [99], Bui [43, 45, 46], Kuhl and Meschke [93], and Betsch and
Steinmann [24, 25, 26, 28]. Concerning geometrically nonlinear elastodynamics and the
resulting conservation properties, Reference [26] is of particular interest. Momentum
and energy conservation concepts proposed therein, have been extended and generalised
to higher-order approximations by Gross [67] and Gross et al. [68].

Computational plasticity: Nowadays, the concepts of computational plasticity are es-
tablished and well-documented in several publications, considering small as well as large
deformation continuum theory. In this context, we refer in particular to Simo and Hughes
[164] for an introduction, to Simo [162] for a detailed overview, and to Han and Reddy
[71] for mathematical aspects. Furthermore, basic concepts for the mechanical descrip-
tion of plastic material behaviour have been proposed by Lubliner [113] and Lee [102],
whereby the widespread approach for finite plasticity, which relies on a multiplicative

decomposition of the deformation gradient, dates back to the contribution by Lee. Con-
cerning large strain formulations and advanced material modelling, fundamental results
can be found in Eterovic and Bathe [56], Miehe and Stein [132], Ibrahimbegovic [82],
Miehe [130], Menzel [120], Menzel and Steinmann [124, 125], Menzel et al. [122], and
Ekh and Menzel [53]. One particular challenge in the context of computational plasticity
is the formulation of adequate algorithms to update the involved plastic variables. Sig-
nificant results concerning the numerical treatment of plasticity are once more discussed
by Simo and co-workers based on the so-called ‘return mapping’ concept, compare Refer-
ences [161, 162, 163, 164]. However, also other authors have successfully investigated the
integration of the plastic governing equations during the last decades, see e.g. Runesson
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et al. [153, 154], De Borst and Heeres [50], Büttner and Simeon [47], Miehe [128], Rosati
and Valoroso [151], and Artioli et al. [10, 11, 12, 13] amongst others. In this context,
it is quite obvious that the application of multiplicative kinematic assumptions in the
finite strain regime causes further challenges for the design of the local update. In con-
trast to the classical ‘Euler backward’ scheme which is typically applied in the case of
small defomations based on additive kinematics, an ‘exponential update’ represents the
mostly used concept when large deformations are taken into account. Interestingly, the
obtained algorithm is on particular conditions – like e.g. isotropic material behaviour
combined with a formulation of the elastic response in logarithmic strains – similar to
the classical return mapping procedure of the small strain theory.

Elasto-plasto-dynamics: In the context of computational dynamics, there are only few
approaches dealing with dissipative systems in general or elasto-plastic deformations in
particular, which focus on algorithmic conservation properties. The pioneer work con-
cerning the consistent time-integration of finite elasto-plasto-dynamics has been pub-
lished by Meng and Laursen [118, 119], dealing with additive as well as multiplicative
plasticity models. Furthermore, Noels et al. [144, 145, 146] have proposed an energy
momentum conserving algorithm for plasticity based on a hypoelastic model, whereas
Reference [147] deals with a corresponding scheme for visco-plasticity by applying an
incremental potential for the stress evaluation. Lately, the same authors have mod-
ified in Reference [148] the variational formulation to included numerical dissipation
with respect to high frequency modes, rendering a first-order energy-dissipative scheme.
Following the concepts by Meng and Laursen [118, 119], Love and Sulsky [112] have
discussed the consistent time-integration of dynamic finite deformation plasticity by in-
corporating a material-point method to solve the continuum equations. Recently, an
energy-dissipative momentum-conserving algorithm for finite strain multiplicative plas-
ticity has been presented by Armero [5, 9], whereby use of a non-standard local update
procedure has been made which additionally requires local iterations. All of the afore
mentioned approaches rely on one particular time discretisation based on Finite Dif-
ferences with one certain order of accuracy. Typically, the formulations start with the
second-order ‘energy-momentum method’ presented by Simo and Tarnow [165] and sup-
plement the scheme with a particularly designed ‘discrete gradient/derivative’ originally
proposed by Gonzalez [64] for hyperelasticity. To the contrary, the formulation by Mohr
et al. [134, 135, 136, 137, 139, 140, 141] bases conceptually on the general framework of
Finite Elements in time, and the actual time-stepping schemes are determined by select-
ing a specific polynomial degree for the time approximations and adequate quadrature
rules.

Multibody dynamics: The investigation of computational multibody dynamics rep-
resents until today an active field of research. For an introduction to this topic, we
refer to the textbooks by Schiehlen [159], Shabana [160], Angeles [3], Eich-Soellner and
Führer [52], and Geradin and Cardona [58]. A comparison of the literature discloses
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1. Introduction

that multibody formulations are subdivided into a multitude of different approaches
and concepts. In this context, fundamental differences occur especially with regard
to the chosen formulation of the equations of motion and also concerning the applied
discretisation procedure. It can be summarised that in particular the additional con-
straints, which are related to involved bearings or joints between rigid bodies, crucially
complicate the integration of the governing equations. Obviously, the incorporation of
flexible parts poses further challenges to the numerical concepts and demonstrates im-
pressively the limitations of many classical multibody formulations which traditionally
superimpose (small) deformations to large rigid body rotations. However, state of the art
formulations and advanced time-stepping schemes can be found for instance in Bauchau
et al. [14, 15, 16], Borri et al. [36, 39], Ibrahimbegovic et al. [84, 85], and Lens et
al. [105, 104]. Furthermore, the outstanding references by Betsch [20] and Betsch and
Steinmann [27, 28, 29] are mentionable, dealing with specific director formulations of the
rigid bodies kinematics. Hereby, the authors favour a direct integration of the obtained
set of differential algebraic equations, since this strategy is particularly well-suited to de-
sign algorithms which offer the claimed conservation properties. A further advantage of
this formulations is the straightforward incorporation of rigid bodies, flexible parts, and
several types of joints or bearings. Recently, the so-called ‘null space method’ has been
developed based on the forgoing concepts to reduce basically the number of unknowns,
see Betsch [21], Betsch and Leyendecker [23], Leyendecker et al. [111], and Betsch and
Uhlar [31] for further details.

Elasto-plastic multibody dynamics: Of particular interest for the present work are
furthermore the existing concepts to model elasto-plastic deformations within a multi-
body framework. However, there exist only few approaches in the literature concerning
this topic. From a classical multibody perspective, a straightforward formulation is
applied in Dias and Pereira [51], Ambrosio et al. [2], and Biakeu and Jezequel [33].
Therein, the authors circumvent the actual modelling of the constitutive behaviour by
incorporating so-called plastic hinges, modelled as additional joints and force/torque
elements between (linear elastic) flexible or rigid components. This approach is strongly
motivated by the fact that often plastic deformations only take place in small regions of
the structures. However, crucial tasks related to this concept are the identification of the
final position of the hinge and also the choice of the adequate (nonlinear) reaction char-
acteristic. Both have to be verified either in experiments or based on additional Finite
Element simulations. Moreover, the results are hardly transferable to different structures
or load cases, so that in our opinion the generality and also the physical quality of this
approach is quite questionable. A less phenomenological and more physical possibility to
incorporate plastic deformations within flexible multibody systems has been discussed
in Ambrosio and Nikravesh [1]. Therein, the authors propose an updated Lagrangian
formulation for the flexible parts and the elasto-plastic constitutive model relies on an
additive decomposition of the differential strain increment. However, the authors do
not address the essential integration of the resulting governing equations and, moreover,
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they do not present any numerical example. Further work concerning this topic has been
recently published by Gerstmayr [59, 60], Gerstmayr and Irschik [61], and Vetyukov et
al. [175]. Therein, the authors apply Runge-Kutta schemes for the time-integration
and the constitutive response bases on small strain assumptions combined with additive
elasto-plastic kinematics. Finally, the papers by Sugiyama and Shabana [171, 172] have
to be mentioned, using an ‘absolute nodal coordinate formulation’ in combination with a
Lagrangian description of the plasticity model to circumvent a conceptual limitation to
small strains. To the knowledge of the author, however, the consistent time-integration
of inelastic multibody dynamics in general and finite elasto-plastic multibody dynam-
ics in particular has not been addressed at all in the literature so far, aside from the
contribution by Mohr et al. [141].

Outline of the Present Work

In the following, a short summary of each chapter is presented to give the reader a better
overview of the underlying structure of the present work.

Chapter 2: In the second chapter, main aspects concerning the modelling and time-
integration of dissipative dynamics are discussed by means of a one-dimensional mechan-
ical system which consists of a mass, a spring, and a friction-element. In this context,
most of the essential issues, that are also relevant in subsequent chapters, can already
be investigated based on this fundamental example in a very comprehensible manner,
requiring only basic knowledge in physics and mathematics. In particular, the crucial
influence of nonlinearities on the numerical behaviour and the adequate approximation
of involved time-integrals are significant results.

Chapter 3: Subsequently to the introductory example, the scope is extended in the
third chapter to the nonlinear dynamics of inelastic structures. For this purpose, we
apply concepts of geometrically nonlinear continuum mechanics and Finite Elements in
space to receive a semidiscrete system of equations of motion. Concerning the focal ap-
proximation in time of the resulting semidiscrete system, again, a Finite Element method
– more precisely: a continuous Galerkin method – is used, whereby the decisive role of
required quadrature rules is investigated once more in detail. In this context, we intro-
duce an adequate non-standard quadrature rule derived from a constrained optimisation
problem, providing a general framework to design completely consistent time-stepping
schemes for inelastic continuum dynamics.

Chapter 4: In the first instance, the general concepts of Chapter 3 are restricted to the
non-dissipative hyperelastic case, and we consider in particular constitutive models for-
mulated in principal stretches. In the isotropic case, such eigenvalue-based constitutive
laws are very significant to model various types of elastic and even inelastic material
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1. Introduction

behaviour. However, it is shown that the efficient algorithmic treatment of principal
stretches based on a well-established perturbation approach requires, especially within
the context of specific conserving schemes, advanced techniques to circumvent numeri-
cal problems. Accordingly, we propose an adequate solution strategy to avoid potential
pitfalls which are directly related to numerical artefacts of the applied non-standard
quadrature rule. All relevant aspects are extensively demonstrated by means of several
numerical examples, considering a specific representative of the general time-FE meth-
ods of Chapter 3 which bases on linear approximations in time.

Chapter 5: In this chapter, the general concepts are specified to finite elasto-plasto-
dynamics, whereby the elastic response relies again on a formulation in principal stretches
and the plasticity model refers to a multiplicative decomposition of the deformation gra-
dient in elastic and plastic parts. Regarding the local time-integration of the plastic
evolution equations, we exemplarily discuss an approved exponential return map to
benefit from its several advantages: It is well-known that for specific models this update
conserves the simple structure of the infinitesimal theory and, moreover, it performs
very cost-efficiently. Using this benchmark update on the local level, special emphasis
is placed on the global time-integration, investigating once more specific time-stepping
schemes based on linear Finite Elements in time as a fundamental case. Since the applied
format of the local exponential update is only first-order accurate, the resulting (global)
order of accuracy will be reduced for this specific choice when plastic deformations are
involved, whereby the final convergence performance also depends crucially on the ap-
plied integration strategy to fit the local into the global scheme. Nevertheless, keep in
mind that also other local update algorithms could be incorporated instead, without
too much of additional effort, in consequence of a modular structure of the resulting
equations. Moreover, the time integrators for finite elasto-plasto-dynamics are analysed
regarding their conservation properties by means of several representative numerical ex-
amples. Thereby, the excellent performance of the completely consistent algorithm is
demonstrated for a wide range of material parameters, considering also a comparison to
well-established standard time-stepping schemes that are widespread in the literature
and implemented in several commercial software packages.

Chapter 6: Finally, we extend the foregoing concepts to constrained dissipative dy-
namics, dealing with inelastic multibody systems. In this context, the modelling of the
(inelastic) flexible parts relies on the same fully nonlinear continuum approach, which
has been extensively discussed in Chapter 3, and for the rigid body dynamics a rotation-
less formulation is preferred, resulting in a set of differential algebraic equations. Instead
of applying a reformulation, the obtained equations are integrated directly, whereby the
prior continuous Galerkin method of unconstrained systems is adequately generalised to
a mixed Galerkin method for the constrained case. Provided again that the resulting
time-integrals are appropriately approximated, a completely consistent time-integration
is obtained analogously to the unconstrained case, including this time additionally the
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fulfilment of the involved constraints. Once again, a particular scheme based on linear
time shape functions is considered in more detail and its numerical performance is ex-
haustively analysed by means of multiple numerical examples, using the elasto-plastic
constitutive model of Chapter 5.

Appendix A-C: The appendix consists of three independent parts. In Appendix A,
one essential aspect of the general concepts discussed in Chapter 3, which is related to
the claimed consistency properties of the integrators, is studied in more detail, focussing
on the algorithmic fulfilment of a discrete energy balance. In Appendix B, some related
aspects of visualisation are broached, whereby these aspects are directly motivated by
the desire to get a deeper insight into the functioning of the consistent non-standard
quadrature rule. For the sake of completeness, we have summarised in Appendix C all
fundamental equations of those standard integrators which are used in Chapter 5 for a
comparison to the proposed algorithms.
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Einleitung

In nahezu allen Disziplinen des Ingenieurwesens hat die Verwendung von modernen
Simulationstechniken stark zugenommen. Ermöglicht durch die enorme Rechenleistung
heutiger Computersysteme, ist diese Entwicklung unmittelbar mit dem Wunsch einer
möglichst virtuellen Produktentwicklung verbunden, um die entstehenden Kosten zu
reduzieren. In diesem Zusammenhang erfordert die Modellierung realer technischer Sys-
teme häufig die Berücksichtigung von dynamischen Effekten, wobei als typische An-
wendungen zum Beispiel die Komfort- und Fahrdynamiksimulationen der Automobilin-
dustrie, die virtuellen Crash-Tests oder auch die dynamische Modellierung von Me-
tallumformprozessen zu erwähnen sind. In jedem Fall muss das betrachtete reale Sys-
temverhalten in einem ersten Schritt durch ein entsprechendes physikalisches Modell
idealisiert werden. Anschließend wird in einem zweiten Schritt das physikalische Er-
satzmodell mathematisch beschrieben und so der eigentlichen Simulation zugänglich
gemacht. Meist ist hierbei die Lösung von gewöhnlichen, oftmals sogar von partiellen
Differentialgleichungen erforderlich. Im Laufe des zuvor beschriebenen Modellierungs-
und Simulationsprozesses müssen insbesondere die folgenden beiden Aspekte beachtet
werden:

• Das physikalische Modell soll so einfach wie möglich aber auch so genau wie nötig
sein, um alle wesentlichen Charakteristika des realen Systems abbilden zu können.

• Darüber hinaus müssen in der Regel numerische Methoden verwendet werden
um das Systemverhalten zu simulieren, da bereits bei vergleichsweise einfachen
physikalischen Modellen keine analytische Lösung gefunden werden kann.

In diesem Zusammenhang ist es von entscheidender Bedeutung, die verwendeten Metho-
den sorgfältig im Hinblick auf die zu erzielende numerische Leistung, aber auch speziell
hinsichtlich der erreichbaren Qualität der Ergebnisse auszuwählen. Generell kann man
sagen, dass eine steigende Modellkomplexität stets auch anspruchvollere numerische Ver-
fahren und somit ein tieferes Verständnis sowohl der mechanischen, als auch der mathe-
matischen Grundlagen unbedingt erfordert.
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1. Introduction

Betrachtet man nun speziell die Numerik nichtlinearer Dynamik so ist es wohlbekannt,
dass insbesondere die Auswahl eines geeigneten Zeitintegrationsalgorithmus eine ent-
scheidende, aber auch nicht-triviale Aufgabe darstellt. So sind zwar diverse Zeitschritt-
verfahren verfügbar, jedoch wurden die meisten von ihnen ursprünglich für lineare Pro-
blemstellungen entwickelt und führen, angewendet auf nichtlineare Systeme, oftmals
zu schwerwiegenden numerischen Instabilitäten. Aus diesem Grund kann die Anwen-
dung von solchen Algorithmen in einem nichtlinearen Kontext nur bedingt empfohlen
werden. Interessanterweise hat sich diesbezüglich herausgestellt, dass insbesondere die
algorithmische Erfüllung physikalisch motivierter Erhaltungseigenschaften – wie zum
Beispiel die Erhaltung der Impulsabbildungen oder die Berücksichtigung der Hauptsätze
der Thermodynamik – von essentieller Bedeutung ist. In der Tat wurde in diversen
Veröffentlichungen belegt, dass eine derartige Konsistenz der Algorithmen nicht nur von
theoretischem Interesse ist, sondern auch entscheidend die Robustheit der Verfahren be-
einflusst. Motiviert durch diese Ergebnisse wurden deshalb in der Vergangenheit spezielle
Integrationsverfahren für diverse nichtlineare Anwendungen entwickelt, wobei verstärkt
klassische Mehrkörpersysteme oder auch die nichtlineare Dynamik elastischer Strukturen
untersucht wurde. Bedingt durch die in der Regel höhere Modellkomplexität stellt die
Modellierung dissipativer Dynamik eine zusätzliche Schwierigkeit im Vergleich zur Dy-
namik konservativer Systeme dar. Nichtsdestotrotz ist eine Berücksichtigung dissipativer
Effekte, wie zum Beispiel Reibung oder inelastisches Materialverhalten, von grundlegen-
der Relevanz in vielen technischen Anwendungen.

In der vorliegenden Arbeit werden nun fortschrittliche Konzepte zur Zeitintegration

nichtlinearer inelastischer Dynamik entwickelt. Hierbei werden sowohl Fragestellungen
der Strukturdynamik als auch der flexiblen Mehrkörperdynamik untersucht, unter spe-
zieller Betrachtung finiter Elasto-Plastizität. Ein besonderes Merkmal der vorgeschlage-
nen Algorithmen ist in diesem Zusammenhang die Ermöglichung einer vollständig konsis-

tenten Integration. Bedingt durch die Wahl geeigneter Approximationen für bestimmte
Zeitintegrale wird somit auch im diskreten Kontext eine numerisch exakte Erfüllung
grundlegender Bilanzprinzipien garantiert. Dabei wird sich zeigen, dass die entsprechen-
den Verfahren nicht nur möglichst exakt die zu Grunde liegende Physik des betrachteten
realen Systems abbilden, sondern zudem eine überlegene numerische Leistungsfähigkeit
aufweisen. Nachfolgend wird eine kurze Zusammenfassung der einzelnen Kapitel präsen-
tiert, um dem Leser einen besseren Überblick hinsichtlich des Aufbaus der vorliegenden
Arbeit zu ermöglichen.

Kapitel 2: Im zweiten Kapitel werden grundlegende Aspekte der Modellierung und Zeit-
integration dissipativer Dynamik anhand eines einfachen mechanischen Modells – beste-
hend aus einer Masse, einer Feder und einem Reibelement – erörtert. In diesem Zusam-
menhang zeigt sich, dass man bereits basierend auf Grundlagenwissen in Physik und
Mathematik wesentliche Einflüsse, welche auch bei den nachfolgenden komplexeren Sys-
temen von Bedeutung sein werden, studieren kann. Insbesondere wird der Einfluss von
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Nichtlinearitäten auf das numerische Verhalten und eine angemessene Approximation
auftretender Zeitintegrale diskutiert.

Kapitel 3: Im Anschluss an das Einführungsbeispiel wird im dritten Kapitel das Blick-
feld erweitert und die nichtlineare Dynamik inelastischer Strukturen untersucht. Zu
diesem Zweck werden allgemeine Konzepte der geometrisch nichtlinearen Kontinuums-
mechanik verwendet, um mit Hilfe einer räumlichen Finite Element Diskretisierung die
semidiskreten Bewegungsgleichungen zu erhalten. Im Gegensatz zu den üblichen Algo-
rithmen basierend auf Finiten Differenzen wird in dieser Arbeit auch hinsichtlich der
Zeitdiskretisierung eine Finite Element Methode – genauer gesagt: eine kontinuier-

liche Galerkin Methode – verwendet. In diesem Zusammenhang wird vor allem der
entscheidende Einfluss verschiedener Quadraturregeln, welche zur numerischen Auswer-
tung bestimmter Zeitintegrale benötigt werden, aufgezeigt. Insbesondere wird ausgehend
von einem Optimierungsproblem mit Nebenbedingung eine geeignete Nichtstandard-
Quadratur hergeleitet. Diese garantiert die Erfüllung geforderter algorithmischer Erhal-
tungseigenschaften und ermöglicht somit die Formulierung eines allgemeinen Konzeptes
zur konsistenten Zeitintegration inelastischer Kontinuumsdynamik.

Kapitel 4: Zunächst wird das allgemeine Konzept aus Kapitel 3 auf den nicht-dissipati-
ven Fall der Hyperelastizität beschränkt, wobei speziell in Hauptstreckungen formulierte
Materialmodelle betrachtet werden. Im isotropen Fall sind solche Eigenwert-basierten
Formulierungen weit verbreitet, sowohl im Hinblick auf die Modellierung von elastischem
als auch von inelastischem Materialverhalten. Hinsichtlich einer effizienten numerischen
Umsetzung ist es vorteilhaft, einen so genannten Störansatz im Falle gleicher Eigen-
werte zu verwenden. Es wird sich allerdings zeigen, dass eine intuitive Verwendung
dieser Technik im Rahmen der hier betrachteten konsistenten Zeitintegration zu er-
heblichen algorithmischen Problemen führen kann, welche unmittelbar mit numerischen
Artefakten der verwendeten Nichtstandard-Quadratur in Beziehung stehen. Des Wei-
teren wird eine geeignete Lösungsstrategie zur Beseitigung dieser Probleme vorgeschla-
gen und deren Effektivität verifiziert. Alle relevanten Aspekte werden anhand diverser
Beispiele demonstriert und diskutiert, wobei ausgehend von den allgemeinen Konzepten
in Kapitel 3 ein spezielles Zeitschrittverfahren basierend auf linearen Zeitapproxima-
tionen betrachtet wird.

Kapitel 5: In diesem Kapitel wird die allgemeine Formulierung bezüglich der Mo-
dellierung finiter Elasto-Plasto-Dynamik spezifiziert. Hierbei basiert die elastische Ma-
terialantwort erneut auf einer Formulierung in Hauptstreckungen und die Kinematik
des Plastizitätsmodells beruht auf einer multiplikativen Zerlegung des Deformationsgra-
dienten in elastische und plastische Anteile. Hinsichtlich der lokalen Zeitintegration der
internen Variablen wird ein bewährter exponentieller Projektionsalgorithmus verwendet.
Für das hier betrachtete Materialmodell weist dieses Verfahren eine besonders einfache
Struktur, ähnlich der infinitesimalen Theorie, auf und ermöglicht zudem eine effiziente
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und robuste Berechnung. Unter Verwendung dieses Beispielalgorithmus auf der lokalen
Ebene wird vor allem die globale Zeitintegration näher untersucht, wobei wiederum
spezifische Verfahren basierend auf linearen Finiten Elementen in der Zeit verwendet
werden. Aufgrund des speziellen Formats der verwendeten exponentiellen Projektion,
welche lediglich eine Genauigkeit erster Ordnung aufweist, wird auch die Gesamtord-
nung des (globalen) Zeitschrittverfahrens im plastischen Fall reduziert. Es ist jedoch
wichtig zu betonen, dass aufgrund der modularen Struktur der entsprechenden Glei-
chungen auch ein anderer Algorithmus zur lokalen Integration verwendet werden kann,
ohne die vorgeschlagenen Grundkonzepte auf globaler Ebene ändern zu müssen. Ein
besonderes Augenmerk liegt in diesem Kapitel auf der Analyse der vorgestellten Zeitin-
tegrationsverfahren für finite Elasto-Plasto-Dynamik hinsichtlich der gebotenen Erhal-
tungseigenschaften anhand einer Vielzahl repräsentativer Beispielrechnungen. Hierbei
zeigt sich speziell im Vergleich zu Standardverfahren der Literatur, welche auch in di-
versen kommerziellen Software-Paketen verwendet werden, die hervorragende Leistungs-
fähigkeit der vorgeschlagenen Algorithmen.

Kapitel 6: In einem letzten Schritt werden nun die vorgestellten Verfahren auf dissi-
pative Systeme mit Zwangsbedingungen erweitert und inelastische Mehrkörpersysteme
betrachtet. Dabei beruht die Modellierung der (inelastischen) flexiblen Komponen-
ten auf den gleichen, vollkommen nichtlinearen Kontinuumskonzepten, welche bereits
ausführlich in Kapitel 3 diskutiert wurden. Hinsichtlich der Starrkörperbeschreibung
wird eine rotationsfreie Formulierung bevorzugt. Um das resultierende System differen-
tial-algebraischer Gleichungen direkt zu integrieren, wird eine gemischte Galerkin Me-

thode verwendet, welche eine geeignete Verallgemeinerung der zuvor betrachteten kon-
tinuierlichen Galerkin Methode im Hinblick auf Systeme mit Zwangsbedingungen dar-
stellt. Wiederum unter der Voraussetzung, dass die auftretenden Zeitintegrale geeignet
ausgewertet werden, ermöglicht dieses Konzept erneut eine vollständig konsistente In-
tegration, wobei nun zusätzlich die numerisch exakte Erfüllung der beteiligten Zwangs-
bedingungen ermöglicht wird. Auch in diesem Kapitel wird ein spezielles Verfahren
basierend auf linearen Zeitansätzen in Kombination mit dem elasto-plastischen Ma-
terialmodell aus Kapitel 5 näher untersucht und seine Leistungsfähigkeit mit Hilfe ver-
schiedener numerischer Beispiele belegt.

Anhang A-C: Der Anhang gliedert sich in drei unabhängige Teile: In Anhang A wird
ein ganz wesentlicher Aspekt der allgemeinen Konzepte aus Kapitel 3, nämlich die algo-
rithmische Erfüllung der diskreten Energiebilanz, aufgegriffen und detailiert hergeleitet.
In Anhang B werden auftretende Visualisierungsaspekte diskutiert, welche in unmittel-
barem Zusammenhang mit der Wirkungsweise der konsistenten Nichtstandard-Quadratur
stehen. Aus Gründen der Vollständigkeit sind abschließend in Anhang C alle wesentlichen
Gleichungen der in Kapitel 5 zum Vergleich herangezogenen Standardintegrationsver-
fahren zusammengestellt.
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2. Prolog – Motivation

Starting with a motivating example, we consider a one-dimensional model which con-
sists of a mass, a spring and a friction-element, referred to as friction-element oscillator.
Basically, the investigation of such a simple dynamical system makes sense for two fun-
damental reasons:

• On the one hand, essential issues concerning the time-integration of dissipative
systems in general can already be studied based on this basic system.

• On the other hand, the combination of a spring and a friction-element represents
indeed a perfect motivation for the underlying structure of elasto-plastic constitu-
tive models.

In fact, it will be shown in subsequent chapters that key aspects of the following inves-
tigations can be transferred one-to-one to a more complicated context.

2.1. Friction-Element Oscillator

In this section, the fundamental equations to describe the dynamical behaviour of the
friction-element oscillator will be summarised in a time-continuous format, starting with
the governing equations for the friction-element followed by the dynamics of the system.

2.1.1. Friction-element

We begin with the underlying kinematics of the friction-element oscillator. A sketch
of the mechanical model is pictured in Figure 2.1. Based on the considered serial ar-
rangement, an additive decomposition of the resulting position q of the mass m can be
motivated, rendering

q(t) = qe(t) + qp(t) (2.1)

corresponding to a geometrically linear theory 1. Herein, the position (plastic slip) of
the friction-element is denoted by qp, involving dissipation effects, and qe measures the

1As discussed extensively in Simo and Hughes [164], the ‘friction-element spring device’ represents also
an adequate approach to model elasto-plastic material behaviour in a small strain context, involving
an analogous kinematic assumption for the strain measure.
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Figure 2.1.: friction-element oscillator in a geometrically linear setting

change in length of the elastic spring, corresponding to reversible deformations. In this
context, the spring with the stiffness cS is supposed to have initially unit length l0 = 1,
being relaxed for qe = 0. Please note, that from a practical point of view only the position
of the mass q can be measured directly in the considered model. In contrast, the actual
position of the friction-element qp as well as the resulting elongation of the spring qe

are hidden and can not be determined with a simple ruler by an outstanding observer,
compare Figure 2.1. Basically, the friction-element limits the achievable magnitude of
the effective force in the spring F , resulting in

|F | ≤ Fmax
fric . (2.2)

In a next step, the so-called yield function

Φ := |F | − Fmax
fric (2.3)

is introduced, and consequently the admissible range for the spring force can be defined
as EF = {F ∈ R

∣∣|F | − Fmax
fric ≤ 0}. To describe the movement of the friction-element,

we specify the rate of qp via

q̇p(t) := γ̇(t) sign(F ) , (2.4)

wherein the direction of the slip has been formulated based on the ‘sign’-function with
sign(F ) := F/|F | for F 6= 0 and sign(0) = 0 2. Hence, the multiplier γ̇ is obviously
related to the amount of the rate of the irreversible slip, since |q̇p| = |γ̇| |sign(F )| = |γ̇|.
Moreover, the proper (un)loading procedure is governed by the conditions

γ̇ ≥ 0 , Φ ≤ 0 , γ̇ Φ = 0 , and γ̇ Φ̇ = 0 . (2.5)

For further details concerning the behaviour of the ‘friction-element spring device’, we
refer to Reference [164] and focus now on the formulation of the system dynamics.

2Representing a special case, the supposed evolution equation for the plastic slip can be reformulated
based on the yield function, leading to q̇p = γ̇ ∂F Φ.
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2.1. Friction-Element Oscillator

2.1.2. Dynamics

Analogously to the conservative (purely) elastic case, we introduce an energy function

V̂ (qe) = V (q; qp) which measures the stored energy in the spring, being related to the

resulting spring characteristic via |F (qe)| = |∂qe V̂ (qe)|. Furthermore, the sum of the
kinetic energy K and the stored energy V renders the so-called total energy of the
system H(q, p; qp) := K(p) + V (q; qp), wherein the definition of the linear momentum
p(t) := mv(t) with the velocity v(t) := q̇(t) has been incorporated. Consequently, we
obtain

H(q(t), p(t); qp(t)) =
1

2m
p(t)2 + V (q(t); qp(t)) . (2.6)

In this context, the entirely different character of the measurable quantities q, p, on the
one hand, and the hidden or internal variable qp, on the other hand, should be recalled
once more. Moreover, the involved dissipation D = F q̇p can be directly related to the
frictional force Fmax

fric by means of Equation (2.4), since γ̇ > 0 yields Φ = 0 and thus

D(t) = γ̇(t)Fmax
fric ≥ 0 . (2.7)

Following standard arguments of thermodynamics, we obtain the energy balance

Ḣ(t) = −D(t) , (2.8)

implying obviously a monotonic decrease of the total energy related to the second law of
thermodynamics. Regarding the subsequent discretisation procedure, we write the re-
sulting equation of motion of the mass as system of two first-order differential equations,
namely

q̇(t) =
1

m
p(t) = ∂pK(p(t))

ṗ(t) = −F (qe(t)) = −∂qe V̂ (qe(t)) = −∂qV (q(t); qp(t)) . (2.9)

Obviously, Equations (2.9) can also be derived from the function H by applying techni-
cally a Hamiltonian-type formalism with respect to the variables [q(t), p(t)] =: z(t). In
following chapters, a Hamiltonian-type formalism will be applied as well since it offers
a very compact notation, implying inherently a description of the dynamics from an
energy-based perspective. However, the classical Hamiltonian interpretation is of course
no longer valid for the non-conservative case, when dealing with dissipative systems.

Remark 2.1: Please note, that the here considered friction-element oscillator, and con-
sequently also elasto-plastic material behaviour, represents a particular kind of a dissipa-
tive system, since the dissipation effects might be switched on and off controlled by the
conditions (2.5), involving the yield function (2.3). Thus, the behaviour possibly changes
from conservative to non-conservative and vice versa, representing hence a partially or
temporarily Hamiltonian system, in contrast to permanent dissipative systems.
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2.2. Linear Spring Characteristic

Before considering the algorithmic treatment, the energy function V and the correspond-
ing spring characteristic has to be specified, determining the actual elastic response of
the spring. The simplest case represents in this context a linear force-elongation relation
given by

F (q(t); qp(t)) = cS [q(t) − qp(t)] , (2.10)

which is obviously related to the quadratic stored energy format

V (q(t); qp(t)) =
1

2
cS [q(t) − qp(t)]

2 . (2.11)

Based on these basic elastic relations, the proper constitutive behaviour of the ‘friction-
element spring device’ can be specified according to the fundamental relations that have
been discussed in Section 2.1.1. Next, the discretisation in time of the constitutive
equations is considered, followed by the time-integration of the equations of motion
(2.9) in the subsequent paragraph. In this context, we refer from an algorithmic point
of view to the equations of motion as global and to the constitutive equations as local
level, interpretable as algorithmic black box which is called by the global superordinate
time-stepping scheme.

2.2.1. Constitutive update

First, we use a subdivision of the time interval of interest, rendering

[0, T ] =

N⋃

n=0

[tn, tn+1] . (2.12)

Concerning the local time-integration, it is accepted to apply a classical Euler-backward
Finite Differences scheme. Consequently, the involved evolution equation for the plastic
slip qp (2.4) reads in a discrete format

qn+1
p = qn

p + ∆γ sign(F n+1) . (2.13)

Moreover, the resulting discrete force F n+1 in the spring can be written based on the
elastic response (2.10), namely

F n+1 = cS [qn+1 − qn+1
p ] . (2.14)

In this context, the internal force F n+1 has to fulfil the yield condition

Φn+1 = |F n+1| − Fmax
fric ≤ 0 (2.15)
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2.2. Linear Spring Characteristic

and, additionally, it should also hold in the discrete setting

∆γ ≥ 0 and ∆γ Φn+1 = 0 (2.16)

based on the (un)loading conditions (2.5). Concerning the computation of the incre-
ment ∆γ, a two step approach is applied, representing a well-known predictor-corrector
procedure. In a first step, the so-called trial state is introduced based on a frozen plastic
slip, namely qtrial

p := qn
p . Herewith, we can calculate the trial force in the spring

F trial = cS [qn+1 − qtrial
p ] (2.17)

to check the fulfilment of the yield condition

Φtrial = |F trial| − Fmax
fric . (2.18)

At this stage, we have to distinguish between Φtrial ≤ 0, corresponding to an elastic step
with ∆γ = 0, and Φtrial > 0, representing a plastic step with ∆γ > 0. To compute in
such a plastic step the resulting increment ∆γ, the discrete yield function (2.15) can be
rewritten based on Equations (2.13), (2.14), (2.17) by means of sign(F n+1) = sign(F trial),
resulting in

Φn+1 = |F trial| − ∆γ cS − Fmax
fric

!
= 0 . (2.19)

Consequently, a straightforward manipulation yields

∆γ =
1

cS
Φtrial . (2.20)

Obviously, the increment ∆γ can be calculated explicitly for the model at hand, when
a linear spring characteristic is incorporated. However, it will be shown later on that
in the nonlinear case such a simple relation can not be derived anymore, requiring in
general an iterative solution procedure.

2.2.2. Time-stepping scheme

Now, the time-integration of the equations of motion (2.9) is investigated. For concep-
tual reasons, we transform in this case each physical sub-interval T := [tn, tn+1] to the
reference interval I := [0, 1] by means of the mapping

α(t) =
t− tn
hn

, (2.21)

wherein hn := tn+1 − tn denotes the applied time-step size. An illustration of this linear
mapping can be regarded in Figure 2.2. Based on the applied transformation and the
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t0 = 0 t1 tn tn+1 tN tN+1 = T

hn

α = 0 α = 1

α(t) t(α)

Figure 2.2.: mapping of the physical time interval T to the reference interval I via α(t)

linear interpolation zh(α) := [z2−z1]α+z1, we consider next a quite intuitive integration
of the equations of motion over the interval I, resulting in

q2 − q1 = hn

∫ 1

0

1

m
ph(α) dα

p2 − p1 = −hn

∫ 1

0

F (α) dα . (2.22)

Herein, we have introduced the notation [•]1 := [•](α = 0) and [•]2 := [•](α = 1) which
corresponds on the physical time interval to tn and tn+1 respectively. Moreover, the first
integral in Equations (2.22) can be integrated analytically and, consequently, we obtain

q2 − q1 −
hn

2

1

m
[p1 + p2] = 0

p2 − p1 + hn

∫ 1

0

F (α) dα = 0 . (2.23)

To define the actual time-stepping scheme, the approximation of the remaining integral,
which contains the internal force in the spring, has to be specified. A typical choice is
the application of a midpoint approximation, related to a standard Gauss quadrature
rule with only one integration point, rendering

∫ 1

0

F (α) dα ≈ F1/2 (2.24)

based on F1/2 := F (qh(1/2), qp1/2
) which is calculated by means of the constitutive

update of the previous section. Consequently, the final global integration scheme reads

q2 − q1 −
hn

2

1

m
[p1 + p2] = 0

p2 − p1 + hn F1/2 = 0 . (2.25)
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2.2. Linear Spring Characteristic

Next, some numerical results are presented based on the parameters m = 100, cS = 10,
Fmax

fric = 50.5, and hn ∈ {0.01, 0.1, 0.3, 0.4}. Furthermore, an external force F ext has
been applied to start the motion, acting directly on the mass m in the positive direction
of the coordinate q. Thereby, F ext increases linearly in time up to the maximum value
fmax = 200 and, subsequently, decreases again linearly to zero. After Tload = 2.0, the
system oscillates without excitation. Fundamental aspects of the dynamical behaviour
can be studied based on Figure 2.3 b) and Figure 2.4 a), showing the resulting position
of the mass and the phase-space portrait respectively. The obtained response of the
‘friction-element spring device’ is illustrated in Figure 2.3 a) based on a plot of the
internal force in the spring F , depending on the current position of the mass. In this
context, it can be clearly seen that an increase of the position q renders initially an
elastic elongation of the spring, characterised by a linear force-position relation. When
the admissible limit for the force in the friction-element is achieved, a plastic slip occurs
which results in a constant reaction force. The resulting plastic slip/displacement qp of
the friction element is pictured in Figure 2.4 b). Based on the fundamental relations
(2.7), (2.12), a time-integration and summation over the sub-intervals yields for the
discrete time t = tn+1 the so-called accumulated dissipation

Dn+1 :=
n∑

k=0

∫ tk+1

tk

γ̇(t)Fmax
fric dt , (2.26)

which is plotted in Figure 2.5 a). Particularly interesting in a discrete setting is further-
more the balance of the total energy H, since it is well-known in literature that especially
the algorithmic energy behaviour can strongly affect as well the resulting performance of
the integrator. Motivated by the time-continuous case, compare Equations (2.7), (2.8),
the total energy has to be conserved for elastic steps, and it should be characterised by
a monotonic decrease when the friction-element is active, corresponding to the second
law of thermodynamics. As can be seen in Figure 2.5 b), both features are captured
by the here considered time-stepping scheme, involving small as well as large time-step
sizes.
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Figure 2.3.: a) internal force in the spring F , b) position of the mass q
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Figure 2.4.: a) phase-space portrait of the mass m, b) plastic slip qp of the friction-element
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Figure 2.5.: a) accumulated dissipation D, b) total energy H
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2.3. Nonlinear Spring Characteristic

2.3. Nonlinear Spring Characteristic

As shown in the foregoing section, the basic midpoint evaluation of the time-integrated
internal force is already able to capture fundamental thermodynamical properties, when
a linear spring characteristic is applied. To study the potential influence of nonlinearities
on the numerical behaviour of the time-stepping scheme, we exemplarily apply

F (q(t); qp(t)) = cS [q(t) − qp(t)]
3 , (2.27)

involving the underlying energy function

V (q(t); qp(t)) =
1

4
cS [q(t) − qp(t)]

4 . (2.28)

Hence, the governing equations for the constitutive behaviour of the system presented
in Section 2.1.1 can be completed by Equation (2.27). Regarding a numerical imple-
mentation, we summarise next an adequate algorithmic treatment of the corresponding
equations, analogously to the linear case discussed previously.

2.3.1. Constitutive update

Since the fundamental ideas of the constitutive update are unchanged, we focus in the
present section basically on the modified aspects. For the discretisation of the evolution
equation again an Euler-backward scheme is used, as given by Equation (2.13), and also
the yield condition (2.15) and the discrete (un)loading conditions (2.16) are equivalent
to the linear case. Furthermore, the already discussed predictor-corrector approach has
been chosen once more as an appropriate algorithmic formulation. Consequently, we
have to check in the first step

Φtrial = |F trial| − Fmax
fric

{
≤ 0 , → ∆γ = 0
> 0 , → ∆γ > 0

(2.29)

based on the modified spring characteristic (2.27), yielding

F trial = cS [qn+1 − qn
p ]3 . (2.30)

However, the main difference to the linear case is represented by the computation of
the increment ∆γ, since an explicit solution, as given by Equation (2.19) and Equation
(2.19) respectively, is not feasible for the considered spring characteristic due to the
nonlinearity of the resulting internal force. Therefore, an additional (local) iteration
has to be applied to enforce the fulfilment of the yield condition, solving the coupled
nonlinear system of equations

|F n+1| − Fmax
fric = 0

F n+1 − cS [qn+1 − qn+1
p ]3 = 0

qn+1
p − qn

p − ∆γ sign(F n+1) = 0 (2.31)
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to compute the three unknowns {∆γ, qn+1
p , F n+1}. When additionally a directional

equivalence of the trial and the final state is supposed, involving sign(F n+1) = sign(F trial),
the set of Equations (2.31) can be reduced to the single requirement

Φn+1 =
∣∣cS [qn+1 − qn

p − ∆γ sign(F trial)]3| − Fmax
fric

!
= 0 , (2.32)

which has to be solved for the unknown increment ∆γ > 0. Consequently, the related
unknowns {qn+1

p , F n+1} can be updated based on Equations (2.31)2,3.

2.3.2. Time-stepping schemes

For the time-integration on the global level, the same approach as introduced in Section
2.2.2 is applied, resulting basically in the equations of motion (2.23). However, it will be
demonstrated in the following, that the adequate approximation of the time-integrated
internal force represents a challenging task in the nonlinear case, particularly when
fundamental physical principles shall be respected.

Standard quadrature rule

Motivated by the foregoing positive results, we start again with an approximation of
the relevant integral by means of a standard Gauss quadrature rule with one integration
point, compare Equation (2.24), resulting in Equations (2.25).
For the computation, we have incorporated the same parameters as for the linear case.
The results are shown in Figure 2.6-2.8. In particular, the nonlinearity of the spring
response as well as a distinct slip period can be seen in Figure 2.6 a). Moreover, the
occurring plastic slip/displacement in the friction-element is plotted in Figure 2.7 b),
causing evidently dissipation effects which are once more displayed in Figure 2.8 a) based
on the accumulated dissipation D. Furthermore, the resulting offset in the oscillating
position of the mass is pictured in Figure 2.6 b), involving as well a visible drift of
the corresponding phase-space portrait due to the movement of the friction-element as
shown in Figure 2.7 a). As already discussed, particularly interesting in the context
of dissipative dynamical systems is the discrete energy balance, that should reproduce
essential laws of thermodynamics. Concerning this aspect, crucial differences to the
prior linear case become obvious when a plot of the total energy is considered, see
Figure 2.8 b). Herein, it is shown that the requirement of a monotonic decrease of the
total energy based on a strictly positive (local) dissipation, corresponding to Equations
(2.7), (2.8), is not offered in general. Rather, the total energy is characterised by notable
oscillations accompanied by unphysical increasing periods, especially for larger time-step
sizes. In fact, the global energy behaviour of the algorithm differs quantitatively and
even qualitatively when the step size is increased. Aside from a doubtful physical quality
of the results, it is well-studied for the conservative case that a disregard of fundamental
balance principles by the time-stepping scheme can degrade appreciably the robustness
of the integrator, as also investigated in more detail in subsequent chapters.
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2.3. Nonlinear Spring Characteristic
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Figure 2.6.: a) internal force in the spring F , b) position of the mass q
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Figure 2.7.: a) phase-space portrait of the mass m, b) plastic slip qp of the friction-element
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Figure 2.8.: a) accumulated dissipation D, b) total energy H
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Non-standard quadrature rule I

As demonstrated above, the application of a midpoint approximation, related to a stan-
dard Gauss quadrature rule, does not render a satisfying algorithmic energy behaviour
of the resulting time-stepping scheme, when a nonlinear constitutive response of the
spring is taken into account. Consequently, the approximation of the time-integrated
internal force has to be modified. In this context, a widespread modification for classical
Hamiltonian dynamics dates back to Gonzalez [62, 64], involving explicitly the under-
lying potential of a considered conservative system. Due to the partially Hamiltonian
character of the present ‘friction-element spring device’, as noted in Remark 2.1, an ob-
vious ‘ad hoc’ approach could be the modification of the quadrature rule only when the
friction-element is inactive and, hence, the system is indeed (temporarily) conservative.
In this case, we introduce the non-standard quadrature rule

∫ 1

0

F (α) dα ≈ elF alg(1/2) (2.33)

based on the particularly designed algorithmic force for the elastic case elF alg. Thereby,
the so-called elastic-enhanced algorithmic force is given by

elF alg(1/2) = F1/2 +
Vα=1 − Vα=0 − F1/2 [q2 − q1]

|q2 − q1|2
[q2 − q1] , (2.34)

which can be accounted as an adequate algorithmic perturbation of the standard mid-
point approximation in the form elF alg(1/2) = F1/2 + elΩ [q2 − q1] with the scaling factor
elΩ 3. However, the midpoint approximation (2.24) is still used for time steps in which
the friction-element is active, caused by the involved dissipation effects which prohibit
a classical Hamiltonian interpretation.
The resulting influence on the algorithmic energy balance can be studied based on Figure
2.9 and Figure 2.10. In this context, a direct comparison with the standard quadrature
rule in Figure 2.9 illustrates obviously the notable upgrade in the quality of the algorith-
mic energy behaviour due to an application of the foregoing ‘ad hoc’ approach, dealing
with small as well as large time-step sizes. Moreover, the present example clearly demon-
strates that the unphysical increasing periods in the nonlinear case have been basically
affected by the lack of the standard quadrature rule concerning the required conservation
of the total energy during elastic periods. In fact, the shown monotonic decrease of the

3Please note, that Equation (2.34) could be simplified in the here considered one-dimensional case to

elF alg(1/2) =
Vα=1 − Vα=0

q2 − q1
, (2.35)

representing a kind of secant modulus. Nevertheless, we favour the extended version (2.34) for the
sake of generality, reflecting furthermore better the underlying structure of the enhanced algorithmic
quantity.
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2.3. Nonlinear Spring Characteristic

total energy seems to recapture qualitatively even the energy behaviour that has been
observed in the linear case, compare Figure 2.5 b) and Figure 2.10 a). Encouraged by
these positive results, we investigate the discrete energy balance in more detail. For this
purpose, a time-integration of Equation (2.8) over the physical interval T results in the
requirement

R := Hn+1 −Hn + ∆D
!
= 0 , (2.36)

wherein the dissipation increment

∆D :=

∫ tn+1

tn

γ̇(t)Fmax
fric dt = ∆γ Fmax

fric (2.37)

has been introduced based on Equation (2.7) with the increment ∆γ provided by the
(local) constitutive update. Conceptually, we aim at a fulfilment of Equation (2.36)
within the calculation accuracy influenced by the applied iteration tolerance to solve
the nonlinear equations of motion, compare Betsch and Steinmann [24]. A plot of
the residual R given by Equation (2.36) is pictured in Figure 2.10 b). Herein, it can
be seen that especially for large time-step sizes the residual is characterised by single
peaks, which are in the order of magnitude O(10−4). Since for the present example the
tolerance of the global iteration procedure has been set to 10−8, a rigorous fulfilment of
Equation (2.36) is obviously not guaranteed by means of the discussed concepts.

Non-standard quadrature rule II

In the previous paragraph, it has been shown that already the first non-standard quadra-
ture, which is applied solely for elastic steps, is apparently able to feature a notable im-
provement of the algorithmic performance concerning the required monotonic decrease
of the total energy in the dissipative case. Nevertheless, even this ‘ad hoc’ approach
based on the well-studied conservative case is not able to capture correctly the under-
lying energy balance of the dissipative system related to a conservation of the sum of
the total energy and the dissipation within the calculation accuracy, compare Equa-
tion (2.36). Evidently, the essential flaw is hereby the nonexistent modification of the
standard quadrature rule during dissipative steps. Consequently, the question is how to
adapt appropriately the foregoing non-standard quadrature rule, so that it is also valid
when the friction-element is active. For this purpose, we calculate the difference between
the kinetic energy at α = 1 and α = 0, yielding

K(p2) −K(p1) =
1

2m
[p2

2 − p2
1] =

1

m

p1 + p2

2
[p2 − p1] . (2.38)

By incorporating furthermore the equations of motion (2.25), Equation (2.38) can be
rewritten, resulting in

K(p2) −K(p1) =
1

m

[
m

hn
[q2 − q1]

]
(−1) hn F1/2 = −F1/2 [q2 − q1] . (2.39)
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Based on Equation (2.39), it follows directly that the approximation F1/2 has to fulfil
the condition

F1/2 [q2 − q1]
!
= Vα=1 − Vα=0 + ∆D (2.40)

to capture the correct energy balance (2.36) within the here considered reference interval
I. Since in general a fulfilment of condition (2.40) can not be guaranteed by means of
the standard approximation F1/2, we introduce the enhanced algorithmic force

F alg(1/2) = F1/2 + Ω [q2 − q1] , (2.41)

motivated by the ‘ad hoc’ approach based on the format (2.34). By inserting Equation
(2.41) into Equation (2.40), the involved scaling factor Ω of the perturbation can be
calculated straightforwardly, rendering

F alg(1/2) = F1/2 +
Vα=1 − Vα=0 + ∆D − F1/2 [q2 − q1]

|q2 − q1|2
[q2 − q1] . (2.42)

Obviously, Equation (2.42) represents the adequate generalisation of Equation (2.34) to
the dissipative case, leading to the second non-standard quadrature rule

∫ 1

0

F (α) dα ≈ F alg(1/2) (2.43)

which is also used when the friction-element is active. Please note, that for elastic steps
with ∆D = 0 both non-standard quadrature rules are identical.
The results can be regarded in Figure 2.11. Once more, the plot of the total energy in
Figure 2.11 a) shows the claimed monotonic decrease, being in analogy to the basic re-
sults of the linear case pictured in Figure 2.5 b). However, the main feature of the second
non-standard quadrature rule becomes obvious when the residual R given by Equation
(2.36) is investigated. Hereby, the corresponding plot in Figure 2.11 b) clearly confirms
that the discrete energy balance is indeed fulfilled within the calculation accuracy, using
small as well as large time-step sizes. For the present example, the resulting errors are
in the order of magnitude O(10−11) and O(10−13) respectively, demonstrating particu-
larly in comparison to Figure 2.10 b) the entire potential of the foregoing non-standard
quadrature rule (2.43) based on the specific enhanced algorithmic force (2.42).
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Figure 2.9.: total energy H (standard vs. non-standard quadrature rule I): a) hn = 0.01
and hn = 0.1, b) hn = 0.3 and hn = 0.4
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Figure 2.10.: non-standard quadrature rule I: a) total energy H, b) residual R
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Figure 2.11.: non-standard quadrature rule II: a) total energy H, b) residual R
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3. Fundamental Concepts

Previously, fundamental issues concerning the time-integration of nonlinear dissipa-
tive systems have been discussed by means of a simple one-dimensional friction-element
oscillator. However, it will be shown in subsequent chapters that quite similar effects
occur also in the context of nonlinear structural dynamics, involving large elastic and in-
elastic deformations. Thereby, the discrete format of the system dynamics is once more
prone to suffer from crucial violations of physically motivated balance laws analogously
to the introducing example, rendering potentially a degradation of the numerical perfor-
mance. Obviously, the modelling of continuous structures including finite deformations
requires a more advanced description based on geometrically nonlinear continuum me-
chanics. Therefore, we start in the following with the essential concepts of nonlinear
continuum dynamics, followed by the spatial discretisation of the continuous system us-
ing the Finite Element method. Finally, a general framework for the time-integration of
dissipative systems based on Finite Elements in time is proposed at the end of the present
chapter. Hereby, special emphasis will be placed on a physically correct representation
of related conservation properties.

3.1. Nonlinear Continuum Dynamics

To set the stage, basic concepts commonly used in geometrically nonlinear continuum
mechanics are summarised in this section. For further details and background informa-
tions, we refer to standard literature, like for instance References [69, 75].

3.1.1. Kinematics

First, the underlying kinematic assumptions of the applied geometrically nonlinear con-
tinuum theory are recapitulated. To describe the motion of a continuous body B includ-
ing finite deformations, the nonlinear deformation map

q := ϕ(X, t) (3.1)

is introduced as a mapping from the reference configuration B0 to a spatial configuration
Bt. Based on the definition (3.1), we obtain directly the physical velocity

q̇ = ϕ̇(X, t) =: v(X, t) (3.2)
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Figure 3.1.: resulting configurations of nonlinear continuum mechanics

and the linear tangent map

F = ∇Xϕ(X, t) (3.3)

which is well-known as deformation gradient, mapping line elements from the reference
tangent space TB0 to the spatial tangent space TBt. The foregoing kinematic relations
are also sketched in Figure 3.1.

3.1.2. Dissipative materials

In a next step, the constitutive behaviour of the deformable body B has to be con-
sidered, whereby we deal in this chapter with a general class of dissipative materials.
Specific types of material behaviour which are included within these concepts and their
detailed formulation will be discussed in subsequent chapters. Analogously to the purely
elastic case, the constitutive response is crucially influenced by the considered deforma-
tion state, represented by appropriate strain respectively deformation measures. In this
context, the so-called right Cauchy-Green tensor

C = F t · F (3.4)

is introduced based on the deformation gradient, representing a deformation measure
which is defined in the reference configuration B0. Similarly to the (elastic) potential of a
simple spring discussed in Chapter 2, a strain energy density ψ is introduced, referred to
as Helmholtz energy density respectively free energy density. Since we intend to consider
dissipative systems, additional internal variables enter into the Helmholtz energy density
to cover also inelastic effects. In the following, we assume that all relevant internal
variables are represented by the general quantity κ 1. By incorporating requirements on

1At this point, it is important to notice that several types of inelastic effects can be formulated by
means of the considered format based on internal variables, compare also Holzapfel [75] page 279:
‘The concept of internal variables serves as a profound basis for the development of constitutive
equations for dissipative materials studied in the following section.’
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3.1. Nonlinear Continuum Dynamics

objectivity, we obtain the representation ψ(C,κ). Following standard arguments based
on the Clausius-Planck inequality, the Piola-Kirchhoff stresses are given by

S := 2∇C ψ . (3.5)

Furthermore, it is accepted to introduce conjugated thermodynamical forces

β := −∇κ ψ (3.6)

which will become important for subsequently elaborated thermodynamical aspects,
compare also Reference [75, 162]. Referring to the second law of thermodynamics, it is
essentially assumed that the dissipation is strictly positive for the underlying constitutive
formulation, resulting in

D =
〈
β, κ̇

〉
≥ 0 . (3.7)

Therein, we have introduced the bracket product 〈•, •〉 which denotes a generalised
scalar product. Moreover, the rate of the internal variables κ̇ has to be defined via a
specific evolution equation, depending on the considered dissipative effect and on the
particular model of interest. The fulfilment of inequality (3.7) is an absolutely essential
modelling-feature which must also be guaranteed by the resulting time-stepping scheme
later on.

Remark 3.1: Often, the Helmholtz energy density is assumed to be additively decom-
posed into micro- and macroscopic parts respectively, rendering

ψ(C,κ) = ψmac(C,κmac) + ψmic(κmic) (3.8)

based on the partition of the internal variables κ = [κmac,κmic]. Furthermore, in several
constitutive models the strain-dependent part is additionally decoupled concerning the
volumetric and the isochoric response.

3.1.3. Balance laws – Conservation properties

In the following, the balance laws for a continuous system (cf. References [69, 73,
75, 149]) will be briefly considered, since we aim at a step-by-step inheritance of the
resulting conservation properties from the continuous case to the completely discrete
formulation. It will be shown that advanced numerical techniques are needed to satisfy
these requirements within the discrete setting. Introducing the mass-density ρ and the
definition of a linear momentum density p := ρ q̇, the linear momentum of the continuous
body reads I =

∫
B0

p dV . The resulting global balance of linear momentum can then
be written as

İ =

∫

∂B0

P · dA +

∫

B0

b dV . (3.9)
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In Equation (3.9), the volume force is denoted by b, while P = F · S characterises the
Piola stress tensor. In analogy to the linear momentum, an angular momentum density
l := q×p and the resulting angular momentum L =

∫
B0

l dV are defined. Consequently,
the global balance equation for a continuous body is given by

L̇ =

∫

∂B0

q × P · dA +

∫

B0

q × b dV . (3.10)

To investigate the energy balance, the free energy Ψ and the kinetic energy K – intro-
ducing the corresponding density k – must be taken into account, namely

Ψ =

∫

B0

ψ dV and K =

∫

B0

k dV . (3.11)

Dealing with dissipative systems, the global (accumulated) dissipation D – which is de-
fined by means of the local (time-integrated) dissipation d =

∫ t

0
D dt – must be included,

involving

D :=

∫

B0

d dV . (3.12)

Based on the classical Hamiltonian for the elastic case H := K + Ψ, which will also be
referred to as total energy, an augmented Hamiltonian H̃ := H +D is introduced, using
the global dissipation representation (3.12). Consequently, the energy balance for the
dissipative case can be written in the compact form

˙̃
H = P ext , (3.13)

wherein P ext denotes the power of external loads. In the case of vanishing external
loading, we obtain from Equations (3.9), (3.10), and (3.13) the conservation properties

İ = 0 L̇ = 0
˙̃
H = 0 (3.14)

for the continuous case. Obviously, the mechanical and thermodynamical conservation
properties claimed in Equations (3.14)1, 2, 3 should also be reflected by the subsequently
elaborated time-stepping schemes with regard to a physically correct integration.

3.2. Semidiscrete Dynamics

In contrast to the introductory example in Chapter 2 with only one degree of freedom, the
modelling of continuum dynamics results in an infinite-dimensional dynamical system,
requiring additionally a spatial discretisation procedure. Consequently, we perform next
the first discretisation step which leads to a reduction of the continuous to a semidiscrete
(finite-dimensional) system, whereby the maintenance of relevant conservation properties
should be guaranteed for the semidiscrete case as well.
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3.2.1. Spatial discretisation

We start with a standard Finite Element discretisation in space (cf. References [19,
177, 178]) of the reference configuration B0 ⊂ Rndim. In this context, we introduce the
dimension of the embedding Euclidian space ndim, the number of Finite Elements in
space nel and thereby obtain a partition of the continuum

B0 =

nel⋃

el=1

Bel
0 . (3.15)

Additionally, the global shape functions NI : B0 → R are introduced interpolating the
values qI : [0, T ] → Rndim which are referred to the spatial nodes I = 1, . . . , nnode.
The interval [0, T ] denotes the time period of interest and nnode refers to the global
number of nodes. Including these definitions, the spatial approximations of the nonlinear
deformation map ϕ and the spatial velocity v result in

ϕ(X, t) ≈

nnode∑

I=1

qI(t) NI(X) and v(X, t) ≈

nnode∑

I=1

q̇I(t) NI(X) (3.16)

respectively. Accordingly, the approximation in space of the right Cauchy-Green tensor
C can be formulated as

C(X, t) ≈

nnode∑

I,J=1

qI(t) · qJ(t) ∇XNI(X) ⊗∇XNJ(X) . (3.17)

To formulate the semidiscrete system of equations of motion in first-order format, a
Hamiltonian-type notation is next applied that enables technically the same compact
representation as in the purely elastic case, compare Reference [26].

3.2.2. Semidiscrete Hamiltonian-type formulation

As already mentioned, the general difference between the semidiscrete and the con-
tinuous case is manifested in the finite dimension of the resulting semidiscrete sys-
tem. Using a spatial FE discretisation, the system of interest can be characterised
by a vector of nodal coordinates q̄(t) = [q1(t), ..., qnnode

(t)]t ∈ Rndof 2 and a vector
of nodal velocities v̄(t) = [q̇1(t), ..., q̇nnode

(t)]t ∈ Rndof with the number of degrees of
freedom ndof = ndim nnode. According to Reference [26], the consistent mass matrix
M ∈ Rndof × Rndof of the semidiscrete system, which is constant in time, is introduced
and consists of diagonal sub-matrices

M IJ :=

∫

B0

ρNINJ dV Indim
(3.18)

2In the following, the notation ¯[•] denotes the vectorial collection of the values [•]I at the spatial nodes

I = 1, ..., nnode, namely ¯[•] :=
[
[•]1, ..., [•]nnode

]t
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for I, J = 1, . . . , nnode with the identity Indim
∈ Rndim ×Rndim . If we define additionally

a vector consisting of nodal generalised momenta p̄ = [p1, ...,pnnode
]t := M · v̄ ∈ Rndof ,

the kinetic energy for the semidiscrete case reads

K(p̄) =
1

2
p̄ · M

−1 · p̄ . (3.19)

Moreover, conservative external loads are assumed based on an external potential V ext,
so that a semidiscrete function

H(q̄, p̄; κ) =
1

2
p̄ · M

−1 · p̄ + Ψ(q̄; κ) + V ext(q̄) (3.20)

can be introduced analogously to the classical Hamiltonian for the hyperelastic case,
wherein the free energy of the semidiscrete system Ψ(q̄; κ) has been incorporated, com-
pare Equations (3.11)1, (3.17). As already discussed in Section 3.1.2, the quantity κ

collects internal variables which are not directly ‘visible’ on the global (nodal) level
of the equations of motion. Abbreviating the notation, a vector of nodal phase-space
variables z̄(t) = [q̄(t), p̄(t)]t ∈ R2ndof and the skew-symmetric (symplectic) matrix

J :=

[
0 I

−I 0

]
(3.21)

are introduced based on I ∈ Rndof ×Rndof and 0 ∈ Rndof ×Rndof . Pursuant to the purely
elastic case, the semidiscrete system of equations of motion can still be formulated in
the compact format

˙̄z(t) = J · ∇z̄ H(z̄(t); κ(t)) . (3.22)

It is important to emphasise once more that the application of a Hamiltonian-type setting
has been only used as a formalism of notation, being in analogy to the hyperelastic
case. Naturally, the conservative character of the system and, consequently, the classical
Hamiltonian interpretation gets lost when dissipation effects are involved. However, the
structure of the equations of motion remains indeed unchanged 3. If we use the definition
of the free energy Ψ and introduce the global vector of external loads F̄

ext
:= −∇q̄ V

ext,
the gradient ∇z̄ H can be specified via

∇z̄ H =

[
F̄

int
− F̄

ext

M−1 · p̄

]
, (3.24)

3Obviously, the resulting first-order format can also be derived directly from the semidiscrete balance
of momentum

M · ¨̄q + F̄
int

= F̄
ext

, (3.23)

which often represents the actual starting point for various standard time-stepping schemes based
on Finite Differences, as also discussed in Appendix C. However, by introducing p̄ := M · ˙̄q it follows

straightforwardly ˙̄p = F̄
ext

− F̄
int

, compare Equations (3.21), (3.22), (3.24).
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wherein additionally the internal load vector 4 has formally been introduced as

F̄
int

(S) = ∇q̄

∫

B0

ψ dV . (3.25)

Thereby, the global vector F̄
int

:= [F int
1 , ...,F int

nnode
]t ∈ Rndof consists of nodal internal

load vectors F int
I which are defined as

F int
I :=

nnode∑

J=1

[∫

B0

[∇XNI ⊗∇XNJ ] : S dV

]
qJ (3.26)

for I = 1, ..., nnode
5. Based on Equation (3.26), once more the fundamental charac-

ter of the applied internal variable formulation is reflected, since obviously the related
quantities κ influence the semidiscrete equations of motion (3.22) only implicitly via
the Piola-Kirchhoff stress tensor S(C,κ), whereas the global format is identical to the
hyperelastic case.

3.2.3. Conservation properties – Semidiscrete system

For the following investigations, absent external loads are assumed, implying F̄
ext

= 0.
Concerning conservation of total linear momentum I =

∑nnode

I=1 pI , we deduce by means
of the partition of unity property of the spatial shape functions NI and definition (3.26)
the expression

İ = −

nnode∑

I=1

F int
I = 0 . (3.27)

Conservation of total angular momentum L =
∑nnode

I=1 qI×pI for the semidiscrete system
can be shown, if the symmetries of M−1 and SIJ := ∇XNI · S · ∇XNJ are taken into
account in addition to the skew-symmetry of the vector product, rendering

L̇ =

nnode∑

I=1

[
q̇I × pI + F int

I × qI

]
= 0 . (3.28)

As demonstrated above, conservation of the momentum maps in the semidiscrete case
preserves the format of the well-studied hyperelastic case, discussed extensively in Ref-
erences [26, 67, 68]. This result is obtained as a direct consequence of the unchanged

4It is important to keep in mind, that the semidiscrete internal load vector could also be deduced
from a spatially weak formulation of the balance of momentum following standard derivation steps,
compare e.g. Reference [177].

5Please notice, that within an algorithmic implementation the involved spatial integrals are approxi-
mated by means of numerical quadrature rules, as discussed for instance in References [76, 178].
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global structure of the semidiscrete system of equations of motion. Considering the total
energy of the semidiscrete dissipative system H = K(p̄(t))+Ψ(q̄(t); κ(t)), we obtain by
using the chain rule

Ḣ = ∇p̄K · ˙̄p + ∇q̄ Ψ · ˙̄q + 〈∇κΨ, κ̇〉 . (3.29)

Including next the definition of the internal load vector F̄
int

introduced in Equation
(3.25), the conjugated thermodynamical forces β defined in Equation (3.6), and the free
energy of the semidiscrete system Ψ, we conclude

Ḣ = ˙̄p · M−1 · p̄ + F̄
int

· ˙̄q −

∫

B0

〈
β, κ̇

〉
dV . (3.30)

Based on the (local) dissipation defined in Equation (3.7), Equation (3.30) can be obvi-
ously reformulated as

Ḣ +

∫

B0

D dV = ˙̄p · M
−1 · p̄ + F̄

int
· ˙̄q . (3.31)

Using furthermore the semidiscrete equations (3.22) for the rate of the global (nodal)
variables q̄ and p̄ respectively, it follows together with Equation (3.24)

˙̄p · M
−1 · p̄ + F̄

int
· ˙̄q = 0 , (3.32)

accordingly to Reference [26]. Consequently, Equation (3.30) results in

Ḣ +

∫

B0

D dV = 0 . (3.33)

By incorporating moreover the previously introduced augmented Hamiltonian H̃ and
the definition of the global (accumulated) dissipation D, we obtain by means of the
local rate ḋ = D the relation

˙̃
H = 0 . (3.34)

In case that one of the abovementioned conservation properties (3.27), (3.28), and (3.34)
of the semidiscrete system is transferred to the completely discrete system, the resulting
time-stepping scheme will be referred to as consistent. Inspired by the results of Chapter
2, we will distinguish in the following paragraphs between

• mechanical consistency which includes the conservation of both momentum maps,

• thermodynamical consistency including the conservation of the total energy for
elastic deformations combined with a strictly positive (local) dissipation, and fi-
nally
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• energy-consistency that actually contains a conservation of the augmented Hamil-
tonian H̃ in general, representing a physically correct energy-dissipation balance
related to a constant sum of total energy and (strictly positive) dissipation. Con-
sequently, the demand of energy-consistency poses a stronger requirement on the
resulting time-stepping scheme as the claim of thermodynamical consistency.

If mechanical consistency as well as energy-consistency are both guaranteed by the spe-
cific time integrator, it will be referred to as completely consistent, respecting all of the
physically motivated balance principles that have been discussed in Section 3.1.3 for the
continuous system.

Remarks 3.2:

1. Based on the foregoing definitions, both non-standard quadrature rules that have
been used in Chapter 2 within the context of the friction-element oscillator can
be classified. Obviously, the first ‘ad hoc’ formulation has guaranteed the con-
servation of the total energy for elastic periods, so that in combination with the
strictly positive (local) dissipation of the friction-element an unphysical increase
of the total energy has been apparently circumvented. However, it has been shown
that a conservation of the sum consisting of the total energy and the dissipation
can not be guaranteed. Thus, the resulting integrator might be referred to as
thermodynamically consistent. To the contrary, the second non-standard quadra-
ture rule has featured indeed a conservation of the corresponding sum, even within
the calculation accuracy. Consequently, the resulting time-stepping scheme can be
labelled as energy-consistent.

2. Interestingly, Equation (3.32) represents the balance of kinetic energy respectively
the theorem of expended power in a semidiscrete format, see e.g. Holzapfel [75].
By using the (inverse) chain rule based on Equation (3.19), Equation (3.32) yields

K̇(p̄) = ˙̄p · M−1 · p̄ = −P int , (3.35)

wherein P int := F̄
int

· ˙̄q denotes the rate of internal mechanical work of the semidis-
crete system. Obviously, the theorem of expended power is directly related to the
underlying equations of motion, whereby it could also be obtained by multiplying
the semidiscrete balance of momentum (3.23) with the velocity vector ˙̄q or, alter-
natively, by inserting the velocity as admissible test function into a corresponding
weak form in space, as discussed for instance in References [9, 165].

3. Moreover, the step from Equation (3.29) to Equation (3.30) includes implicitly the
balance of free energy related to the total rate

Ψ̇(q̄; κ) = ∇q̄ Ψ · ˙̄q + 〈∇κΨ, κ̇〉 = P int −

∫

B0

D dV , (3.36)

using once more P int := F̄
int

· ˙̄q and the definition of the (local) dissipation (3.7).
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3.3. Time Discretisation

So far, the formulation of dissipative continuum dynamics as well as the corresponding
discretisation in space have been discussed, focussing on related conservation properties.
However, the fundamental step from the continuous to the completely discrete system,
that essentially determines the achievable consistency properties, is the application of
adequate approximations in time, analogously to the introductory one-dimensional ex-
ample.

3.3.1. Finite Elements in time – A general framework

In this section, the discretisation in time of the semidiscrete system of equations of mo-
tion, as represented by the canonical equations (3.22), will be performed. In accordance
with Chapter 2, we start again with a decomposition of the time interval of interest

[0, T ] =

N⋃

n=0

[tn, tn+1] (3.37)

and a mapping of each physical sub-interval T = [tn, tn+1] to the reference interval
I := [0, 1] by means of the function

α(t) =
t− tn
hn

, (3.38)

wherein hn = tn+1 − tn still refers to the time-step size, compare particularly Figure
2.2. In contrast to the quite intuitive approach in the prolog, once more a general Finite
Element method is taken into account for the approximations in time. More precisely,
a continuous Galerkin method – or short a ‘cG(k) method’ – will be applied, since its
underlying structure represents a perfect framework to design time-stepping schemes
with pre-defined consistency properties. Fundamental aspects can also be found in
References [20, 24, 25, 26, 54, 67, 68, 72]. In this context, the unknown (spatial) nodal
vector z̄ and the vector of test functions δz̄ are approximated by

z̄h =
k+1∑

i=1

Mi(α) z̄i and δz̄h =
k∑

i=1

M̃i(α) δz̄i (3.39)

respectively 6. According to References [26, 68], the continuous Galerkin approximation
in time is characterised by polynomialsMi(α) ∈ Pk : I → R of degree k and polynomials

M̃i(α) ∈ Pk−1 : I → R of degree k−1, whereby Pk and Pk−1 denote the related function

6The notation [•]h will also indicate subsequently the approximation in time of the quantity [•] which
consists of a linear combination of (time-)nodal values [•]i and time shape functions Mi, rendering

[•]h :=
∑k+1

i=1
Mi(α) [•]i. Hereby, time-nodes will be denoted by small indices, whereas spatial nodes

are still indicated by capital letters for the sake of clarity.
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spaces. Moreover, it is important to underline that the nodal shape functions fulfil the
condition Mi(αj) = δij. Consequently, the coefficients z̄i may be interpreted as the
values of the spatial nodes z̄ at the time node i. To obtain a completely discrete system
of equations of motion, a weak form in time of the canonical equations (3.22) renders

∫ 1

0

[
J · δz̄h

]
·

[
Dαz̄h − hn J · ∇z̄ H(z̄h; κ)

]
dα = 0 ∀ δz̄h ∈ Pk−1 , (3.40)

wherein Dα[•] denotes the derivative in time of [•] with respect to the reference-time
parameter α. Using the approximations (3.39), we directly obtain the discrete system
of equations

k+1∑

j=1

∫ 1

0

M̃iM
′

j dα q̄j − hn

∫ 1

0

M̃i ∇p̄K(p̄h) dα = 0

k+1∑

j=1

∫ 1

0

M̃iM
′

j dα p̄j + hn

∫ 1

0

M̃i F̄
int h

(S(α)) dα = 0 ∀ i = 1, ..., k . (3.41)

Hereby, Equations (3.41) represent a system of 2k equations for the 2k unknown vectors
q̄j, p̄j ∈ Rndof with j = 2, ..., k+1. The vectors at the time node j = 1 are already known
as a result of the previous time step. According to the time-continuous case (3.26), the

approximation in time of the global internal load vector F̄
int h

:= [F int h
1 , ...,F int h

nnode
]t can

be decomposed in time-approximated internal load vectors F int h
I at the spatial nodes

I = 1, ..., nnode, involving

F int h
I (S(α)) :=

nnode∑

J=1

[∫

B0

[∇XNI ⊗∇XNJ ] : S(α) dV

]
qh

J(α) . (3.42)

Defining the actual time-stepping scheme, the final step to the completely discrete set
of equations is discussed next, namely the calculation of the related time-integrals in
Equations (3.41). In this context, most of the time-integrals can be calculated analy-
tically, containing only polynomials formulated in the reference-time parameter α with
the maximum degree 2k − 1. However, in general the stress-dependent time-integral
of Equation (3.41)2 can not be integrated analytically and, consequently, an adequate
approximation has to be taken into account.

3.3.2. Approximation of time-integrals

As motivated by the simple one-dimensional example in the prolog, it has been shown
in Reference [26] for hyperelastic continuum dynamics that in fact the approximation of

the highly nonlinear time-integral, which includes the internal load vector F̄
int h

, plays a
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crucial role in view of the obtained conservation properties of the resulting time-stepping
schemes. Hence, the goal is to find an appropriate approximation F̄ i with

∫ 1

0

M̃iF̄
int h

(S(α)) dα ≈ F̄ i . (3.43)

Based on Equation (3.43), it is obvious that an evaluation in time of the Piola-Kirchhoff
stress tensor S(α) is sought. In this context, basically two options are possible concerning
a time-approximation of the involved deformation measure. On the one hand, we could
apply an approximation of the right Cauchy-Green tensor based on Equation (3.17) by
approximating the nodal coordinates via Equation (3.39), rendering

C(α) =

nnode∑

I,J=1

qh
I (α) · qh

J(α) ∇XNI ⊗∇XNJ . (3.44)

On the other hand, the needed time approximation can also be introduced by means
of an order-consistent Finite Element approximation of the deformation measure itself,
yielding

Ch(α) =
k+1∑

i=1

Mi(α) Ci . (3.45)

In this context, the approximation (3.45) will be referred to as assumed strain approxi-
mation in time, as suggested in References [26, 67, 68].

Standard quadrature rule

Based on the foregoing approximations in time of the right Cauchy-Green tensor, the
proper approximation of the time-integral in Equation (3.43) is next investigated. Start-
ing with the application of a standard Gauss quadrature rule and Equations (3.44),(3.45)
at hand, we obtain straightforwardly

F̄ i :=

ngpt∑

l=1

M̃i(ζl) F̄
int h

(S(C (h)(ζl),κl))wl , (3.46)

wherein the number of integration points in time is denoted by ngpt
and wl characterise

the weighting factors of the quadrature rule. Furthermore, κl represents the correspond-
ing value of the internal variables κ at the time ζl which has to be calculated by means of
an appropriate local integration procedure 7. Inserting the approximation (3.46) into the

7At this stage, the local time-integration procedure is not specified purposely to avoid a loss of general-
ity. In this context, an adequate choice crucially depends on the considered type of inelasticity and,
moreover, the internal variable format actually motivates a decoupled investigation of the global
framework. A specific example will be considered in Chapter 5 for the elasto-plastic model.
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system of equations (3.41) renders the resulting set of equations of motion, representing
a family of time-stepping schemes without imposing any conceptual order restriction.
Initially, the achievable approximation order for the global set of equations of motion
solely depends on the chosen polynomial degree k for the shape functions in time and
on the number of time integration points ngpt

respectively, even though it is of course
influenced also by the specific local time-integration. Concerning the resulting conser-
vation properties of the above family of higher-order time-stepping schemes, the chosen
number of integration points ngpt

(for given k) has also a crucial influence on the results,
related to the fundamental collocation property which is associated with k Gaussian
integration points in time for an approximation of the (global) time-integrals. For a
detailed proof as well as for basic investigations of conservative dynamical systems, we
refer to References [67, 68]. In this context, we intend to design time-stepping schemes
for dissipative dynamical systems which allow a completely consistent time-integration,
following the classification of Section 3.2.3. However, the combination of mechanical
and energy-consistency can not be achieved in general by the abovementioned standard
quadrature rule. Consequently, a non-standard formulation has to be incorporated once
more, whereby this time a general design concept will be used in contrast to the quite
intuitive approach of Chapter 2.

Non-standard quadrature rule

To guarantee the conservation of both momentum maps as well as energy-consistency
in general, the non-standard approximation of the time-integral (3.43) reads

F̄ i :=

k∑

l=1

M̃i(ζl) F̄
int h

(Salg(ζl))wl , (3.47)

wherein a modified algorithmic stress tensor Salg has been introduced to generally guar-
antee energy-consistency. Please note, that this stress tensor does not represent any
additional physical stress measure in terms of the continuum formulation. In fact, it con-
stitutes only an appropriate numerical option to remove the approximation-lack of the
standard Gauss quadrature rule regarding the non-fulfilment of an energy-consistency
condition. For lower-order approximation schemes, discussed in later sections, the mod-
ified quadrature rule is similar to the so-called ‘discrete gradient’ or ‘discrete derivative’
terminology which has originally been proposed by Gonzalez [62, 64]. Nowadays, this
basic format is widespread in the context of time-stepping schemes based on Finite
Differences, compare for instance References [5, 9, 118, 119]. However, in this contribu-
tion we deal with a generalisation of the ‘discrete derivative/gradient’ concept based on
the ‘enhanced assumed gradient’ for hyperelasticity which leads to the so-called ‘eG(k)
method’ and has originally been developed in Gross [67] and Gross et al. [68] respec-
tively. This aspect is of cardinal importance, since any conceptual order-restriction of
the global time-stepping scheme shall be circumvented, as opposed to the ‘discrete gra-
dient/derivative’ methodology. Furthermore, within our approach the algorithmic stress
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tensor Salg is motivated and derived from a particular constrained optimisation problem
in analogy to the elastic case. To be specific, we start with the optimisation

F(Salg) =
1

2

∫ 1

0

||Salg(α) − S(α)||2 dα → MIN . (3.48)

Obviously, the minimisation of the functional F correlates with a minimised norm of
the difference between the original stress measure S of the continuum formulation and
the algorithmic stress tensor Salg. Moreover, the solution is constrained by a local
energy-consistency condition, represented by

E(Salg) = ψα=1 − ψα=0 +

∫ 1

0

D dα−

∫ 1

0

Salg :
1

2
DαC dα

!
= 0 . (3.49)

Consequently, the corresponding Lagrange functional L reads

L =
1

2

∫ 1

0

||Salg − S||2 dα + µ E (3.50)

with µ denoting the underlying Lagrange multiplier. Based on S(Ch,κ), the solution of
the minimisation problem defined in Equation (3.48) is the so-called energy-consistent-
enhanced algorithmic stress tensor

Salg(α) = S + 2

[
ψα=1 − ψα=0 +

∫ 1

0
D dα−

∫ 1

0
S : 1

2
DαC dα

∫ 1

0
DαCh : DαC dα

]
DαCh . (3.51)

Herein, the assumed strain approximation in time Ch corresponding to Equation (3.45)
and its time derivative DαCh have been applied in view of superimposed rigid body mo-
tions, inspired by its positive influence in the purely elastic case discussed in References
[67, 68]. Moreover, the mixed term in the denominator is a direct consequence of the
required energy-consistency. Further details and a complete derivation are highlighted in
Appendix A. Next, we demonstrate that the completely discrete system defined by Equa-
tions (3.41), Equation (3.47), and Equation (3.51) actually renders an energy-consistent
and mechanically consistent (continuous) Galerkin-based time integrator, abbreviated
by ‘ECMC-cG(k) method’.

Remark 3.3: Please note, that the numerator of the enhancement E(S) in Equation
(3.51) vanishes for the limit transition hn → 0, since both time-integrals in the con-
straint (3.49) can be rewritten due to the underlying format based on internal variables.
By means of the (inverse) chain rule, the fundamental theorem of calculus, and the fact
that in general the related integrals can not be integrated exactly, the application of a
numerical integration with the accuracy O(hp

n) renders
∫ 1

0

S :
1

2
DαC dα−

∫ 1

0

D dα =

∫ 1

0

Dαψ dα = ψα=1 − ψα=0 + O(hp
n) , (3.52)
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whereby the final order p is determined by the applied approximations of both integrals,
including the stresses and the dissipation as well. By inserting relation (3.52) into
Equation (3.51), it obviously follows for p ≥ 1 that E(S) → 0 and, consequently, Salg →
S for hn → 0. Thus, the proposed non-standard quadrature rule (3.47) converges
to the standard quadrature rule (3.46) for decreasing time-step sizes. Furthermore,
fundamental investigations concerning this matter will be discussed in Section 5.5 based
on linear Finite Elements in time.

3.3.3. Conservation properties – Completely discrete system

In the following, we investigate the obtained conservation properties of the proposed
Galerkin-based time-stepping schemes, depending on the applied quadrature rule. In
this context, we basically focus on the fundamental aspects and summarise only the key
equations 8. The application of a standard Gauss quadrature rule is already sufficient
to guarantee mechanical consistency, including the conservation of both momentum
maps for vanishing external loading. For this purpose, it is important to use exactly
k integration points in time corresponding to the required collocation property, when
applying a cG(k) method. It is well-known that the application of ngpt

= k Gaussian
integration points is already adequate to integrate polynomials of degree 2 k− 1 exactly.
The time-derivative of the linear momentum I is a polynomial of degree k−1 < 2 k−1.
Hence, the difference of the linear momentum for α = 1 and α = 0 can be rewritten
based on the fundamental theorem of calculus as

Iα=1 − Iα=0 =
k∑

l=1

DαI(ζl)wl . (3.53)

Since the total linear momentum is in the discrete case defined as the sum of the mo-
menta pI at the spatial nodes I = 1, ..., nnode and the equations of motion (3.22) are
fulfilled exactly at the integration points in time ζl due to the collocation property, it
consequently follows

Iα=1 − Iα=0 =
k∑

l=1

nnode∑

I=1

Dαph
I (ζl)wl = −

k∑

l=1

nnode∑

I=1

hn F int h
I (ζl)wl . (3.54)

Taking additionally the partition of unity property of the spatial shape functions into
account, we obtain

Iα=1 − Iα=0 = 0 , (3.55)

8Once more, further details regarding the conservation of the momentum maps can be found in Refer-
ences [26, 68] due to the unchanged global structure of the equations of motion. Moreover, we refer
to Appendix A for a more detailed investigation of the obtained algorithmic properties concerning
the modified energy balance of dissipative systems.
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similarly to the semidiscrete case (3.27). The time-derivative of the angular momentum
L is of order 2 k − 1. Consequently, the time-integral over the rate DαL can also be
integrated exactly with k Gauss points. By using the expression

L(α) =

nnode∑

I=1

qh
I (α) × ph

I (α) , (3.56)

the fundamental theorem of calculus and a Gauss quadrature rule render together with
the collocation property at hand

Lα=1 − Lα=0 =
k∑

l=1

nnode∑

I=1

[Dαqh
I (ζl) × ph

I (ζl) + hn F int h
I (ζl) × qh

I (ζl)]wl , (3.57)

according to References [67, 68]. The skew-symmetry of the vector product in combina-
tion with the symmetry of the mass matrix M and SIJ(α) := ∇XNI ·S(α) ·∇XNJ leads
to a conservation of the angular momentum, namely

Lα=1 − Lα=0 = 0 , (3.58)

being in complete analogy to the semidiscrete case (3.28) 9. To guarantee global energy-

consistency, which includes a conservation of the augmented Hamiltonian H̃ in general,
we have introduced the non-standard quadrature rule (3.47) based on enhanced algorith-
mic stresses Salg given by Equation (3.51). As shown in Section A.1, the characteristic
format of the discrete equations of motion (3.41) involves straightforwardly the relation

k+1∑

i=1

∫ 1

0

M
′

i F̄
int h

dα · q̄i +

∫ 1

0

M
′

i M
−1 · p̄h dα · p̄i = 0 . (3.59)

In analogy to the semidiscrete case discussed in Section 3.2.3, Equation (3.59) can be
directly related to the balance of total energy. Hereby, it is demonstrated in Section A.1
that the enforcement of global energy-consistency for the completely discrete system can
be reduced consequently to the requirement

k+1∑

i=1

∫ 1

0

M
′

i F̄
int h

dα · q̄i
!
= Ψα=1 − Ψα=0 + ∆D , (3.60)

representing an adequate criterion that has to be fulfilled by the involved quadrature
rule. As discussed in detail in Section A.2, this global condition can be particularised

9It is important to emphasise, that the foregoing investigations basically rely on structural properties
of the applied discretisations in space and time, like the inherent collocation or the fundamental
partition of unity property. The only aspect regarding the involved constitutive modelling has been
hereby the requirement of a symmetric stress tensor. Consequently, the corresponding conservation
properties hold for the stresses S as well as for the algorithmic stress tensor Salg .
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3.3. Time Discretisation

furthermore to a local energy-consistency statement for each spatial integration point,
namely

ψα=1 − ψα=0 +
k∑

l=1

D(ζl)wl
!
=

k∑

l=1

S(ζl) :
1

2
DαC(ζl)wl , (3.61)

representing obviously a fully discrete version of the constraint (3.49) for the algorithmic
stress tensor (3.51). In this context, the investigations in Section A.3 clearly confirm the
fulfilment of this local constraint by using the algorithmic stresses Salg. Consequently,
the related non-standard quadrature rule (3.47) respects indeed the global condition
(3.60) as well, and finally a combination of the foregoing results renders directly

H̃α=1 − H̃α=0 = 0 , (3.62)

following the argumentation discussed in Section A.2. Apparently, this relation repre-
sents a completely discrete formulation of the semidiscrete equation (3.34). Thus, it has
been conceptually demonstrated that the proposed framework enables indeed the design
of (completely) consistent Galerkin-based time-stepping schemes of arbitrary order for
nonlinear dissipative systems.

Remarks 3.4:

1. Please recall, that the applied integration of the dissipation integral also affects
the resulting (global) order of accuracy of the time-stepping scheme. To be order-
consistent, the accuracy of the (local) integration has to be characterised by O(h2k

n )
related to k (Gaussian) integration points in time, corresponding to a cG(k)-
method. However, the claimed energy-consistency is not strictly linked to an
application of k integration points in time for the approximation of the dissipation
integral, compare Appendix A.

2. Motivated by the semidiscrete case (3.32), Equation (3.59) can be regarded fur-
thermore as time-integrated format of the balance of kinetic energy. As discussed
in Section A.1, the second summand in Equation (3.59) can be reformulated based
on the fundamental theorem of calculus, rendering

∫ 1

0

DαK dα = Kα=1 −Kα=0 = −

k+1∑

i=1

∫ 1

0

M
′

i F̄
int h

dα · q̄i , (3.63)

compare Equation (3.35). Consequently, the integrated theorem of expended power
(3.63) results inherently from the applied Galerkin-based time discretisation of the
equations of motion. In this context, essential aspects are the underlying weak form
in time as well as the fact that the time-derivatives Dαz̄h and the test functions
δz̄h are included in the same function space Pk−1. One could even interpret the

47
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related continuous Galerkin scheme as the natural method of choice to respect a
time-integrated (discrete) format of the theorem of expended power, which can
also be recaptured directly from the weak form (in time) by incorporating Dαz̄h

as an admissible test function. Interestingly, this fact is in entire analogy to the
semidiscrete case when the point of departure for the discretisation is given by the
balance of momentum, as pointed out in Remark 3.2.2.

3. Analogously, the resulting global condition (3.60) can also be interpreted as a re-
quirement for the approximation of the time-integrated internal load vector to fulfil
the balance of free energy, compare Remark 3.2.3. Based on the fundamental the-
orem of calculus including the total rate of the free energy DαΨ, a straightforward
calculation yields

∫ 1

0

DαΨ(q̄h; κ) dα = Ψα=1 − Ψα=0 =

k+1∑

i=1

∫ 1

0

M
′

i F̄
int h

dα · q̄i − ∆D , (3.64)

representing furthermore the adequate global format of the local statement (3.52)
that has been discussed in Remark 3.3. Moreover, please note that Equation (3.64)
represents indeed a time-integrated version of the semidiscrete balance (3.36).

4. Basically, the previous investigations of the algorithmic energy balance have clearly
exposed the fundamental significance of the theorem of expended power and of the
balance of free energy. In fact, both relations have to be respected in the semi-
as well as in the completely discrete setting to permit a corresponding energy-
consistent time-integration. In this context, the (discrete) theorem of expended
power has been shown to be closely linked to an adequate discretisation of the
equations of motion, whereas the balance of free energy directly corresponds to
the appropriate approximation of related time-integrals.

5. Even if the focus will be placed on finite elasto-plasticity in this contribution,
it is important to emphasise once more that the general framework discussed in
the present chapter also covers other types of dissipative systems which can be
formulated based on an internal variable format, like for instance the modelling of
visco-elastic material behaviour or the incorporation of damage effects.
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4. Finite Elasticity

In the previous chapter, the basic ingredients to design completely consistent Galerkin-
based time-stepping schemes have been presented, dealing with dissipative material be-
haviour that essentially relies on an internal variable formulation of the Helmholtz energy
density. However, as a special case, this general framework will be temporarily reduced
to the well-studied hyperelastic case without dissipation, whereby the next considered
constitutive models will be formulated in principal stretches. Regarding the implemen-
tation of these constitutive laws, an efficient and general formulation in tensor bases
combined with a well-established perturbation technique will be suggested. The investi-
gation of such eigenvalue-based elastic formats is of particular interest for two reasons:

• On the one hand, the following concepts represent also an attractive basis for the
formulation of finite elasto-plastic material behaviour, as discussed in Chapter 5.

• On the other hand, it will be shown that the special structure of the involved
non-standard quadrature rule based on an enhanced algorithmic stress tensor of
type (3.51) can prohibit an intuitive application of the eigenvalue-based format
within a conserving time-integration scheme, especially if the conservation of the
total energy is claimed within the calculation accuracy.

In this context, the potential pitfalls are strongly related to the numerical limit behaviour
of a so-called ‘stress enhancement’, which is characterised by strong oscillations close to
zero. Such oscillations are numerical artefacts caused by calculation errors and occur,
for instance, if the considered limit transition is of the L’Hospital-type 0/0. A simple
motivating example is pictured in Figure 4.1 using the function

f(x) =
1 − cos(x)

x2
(4.1)

for the transition x → 0, compare Reference [150]. Basically, such numerical artefacts
are mentionable but non-crucial. However, it will be shown that the underlying oscillat-
ing limit behaviour of the ‘stress enhancement’ in combination with the recommended
perturbation-based evaluation of the constitutive model is able to render extensive diffi-
culties, also for the corresponding conserving time-stepping scheme. In the following, we
focus on the potential numerical pitfalls and propose an appropriate solution strategy
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Figure 4.1.: numerical behaviour of f(x) for the limit x→ 0: a) low & b) high resolution

which allows the efficient application of an eigenvalue-based constitutive model within
the related non-standard quadrature rule based on Equation (3.51), compare Mohr et al.
[138]. Thereby, we start our investigations on a local level, representing one spatial in-
tegration point, by means of a prescribed deformation to illustrate the essential aspects.
Subsequently, the resulting consequences on the numerical and mechanical performance
of the global time-integration scheme will be discussed in detail. Finally, the effective-
ness of the resulting integrator will be confirmed based on two numerical examples with
special emphasis on the required energy conservation.

4.1. Constitutive Modelling – Principal Stretches

One of the main aspects in this chapter is the adaption of conserving Galerkin-based
integrators, which have been proposed in References [26, 68] for finite elastodynamics
based on standard St.-Venant Kirchhoff or rather classical Neo-Hooke models, to a wide
class on elastic formats. Further details concerning the continuum modelling of general
elasticity have been extensively discussed in the literature, compare e.g. References
[66, 73, 115, 124, 149]. In this context, we focus on eigenvalue-based models, representing
one of the most significant formulations in the case of isotropic hyperelasticity.

4.1.1. Formulation

In the hyperelastic case, the stress response of the material is only a function of the cur-
rent strain state, independent from the deformation history, and consequently no internal
variables are involved. According to the representation theorem for isotropic tensor func-
tions, cf. References [73, 149], the Helmholtz energy density ψ(C) = Ψ(CJ1,

CJ2,
CJ3)
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4.1. Constitutive Modelling – Principal Stretches

can be formulated in the case of isotropy in terms of the principal invariants of the right
Cauchy-Green deformation tensor defined by

CJ1 := tr(C)

CJ2 :=
1

2
[CJ2

1 − tr(C2)]

CJ3 := det(C) , (4.2)

wherein tr([•]) := I : [•] denotes the trace operation. To obtain an eigenvalue-based
formulation of the Helmholtz energy density ψ, we consider the eigenvalue problem
represented by

C · CN i = Cλi
CN i for i = 1, 2, 3 , (4.3)

introducing the eigenvalues Cλi and the principal directions CN i of the right Cauchy-
Green tensor C. To obtain non-trivial solutions the condition

det (C − Cλi I) = 0 (4.4)

renders the characteristic polynomial

Cλ3
i −

CJ1
Cλ2

i + CJ2
Cλi −

CJ3 = 0 (4.5)

to compute the eigenvalues Cλi, whereby the eigenvalues of the right Cauchy-Green
tensor C are related to the principal stretches λi via Cλi = λ2

i . By means of the
eigenvalues and principal directions the resulting spectral decomposition of the strains
reads

C =

3∑

i=1

Cλi
CN i ⊗

CN i respectively C =

3∑

i=1

λ2
i M i , (4.6)

wherein the definition of the tensor bases M i := CN i ⊗
CN i has been incorporated,

as proposed e.g. in References [32, 126, 142, 169, 174]. Reformulating the principal
invariants CJi by means of the eigenvalues Cλi or rather the principal stretches λi leads
to the eigenvalue-based format of the Helmholtz energy density

Ψ(CJ1,
CJ2,

CJ3) = ψ(Cλ1,
Cλ2,

Cλ3) = ψ(λ2
1, λ

2
2, λ

2
3) . (4.7)

Accordingly, the spectral decomposition of the Piola-Kirchhoff stresses S yields for
isotropic hyperelasticity

S =
3∑

i=1

Sλi M i , introducing Sλi =
1

λi

∂ψ

∂λi

. (4.8)
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It is important to emphasise that constitutive formats of the type given in Equation
(4.7) are not only relevant for a few special cases. Constitutive laws based on prin-
cipal stretches are well-established for a wide range of elastic materials, as discussed
for instance in the textbooks [35, 73, 75]. Additionally, the modelling of inelastic ma-
terial behaviour within an isotropic or even anisotropic setting often relies also on an
eigenvalue-based approach; e.g. when generalised strain measures are applied, see Refer-
ence [121] and contributions cited therein. In this context, we refer for instance to com-
monly used formulations in finite plasticity (cf. e.g. References [82, 132, 162]) or to large
strain visco-elasticity, compare Reference [34]. For the subsequent numerical investiga-
tions, first, a classical Neo-Hooke model given by the expression ψ = 1

2
µ [CJ1−3]+U(J)

with the material parameter µ and the volumetric part U(J) = U(det(F )) = U(λ1λ2λ3)
will be reformulated based on principal stretches

ψ =
1

2
µ [λ2

1 + λ2
2 + λ2

3 − 3] + U(J) (4.9)

to demonstrate possible effects of an eigenvalue-based approach within the context of
a non-standard quadrature rule, involving a particular case of Equation (3.51). How-
ever, the formulation of a standard Neo-Hooke model in principal stretches is solely of
theoretical interest to illustrate the influences and potential consequences of a related
numerical treatment. From a practical point of view, an Ogden model based on the
Valanis-Landel hypothesis ψ =

∑3
i=1 ψi(λi) + U(J) using

ψi(λi) =

N∑

j=1

µj

αj
[λ

αj

i − 1] (4.10)

is, for instance, a more significant representative of eigenvalue-based constitutive mod-
els which is especially well-established for (compressible) rubberlike materials 1. In
Equation (4.10), the material parameters are denoted by αj, µj, compare Ogden [149].
A further popular eigenvalue-based constitutive law is represented by the logarithmic
Hencky model

ψ =
1

4
µ [ln2(λ2

1) + ln2(λ2
2) + ln2(λ2

3)] + U(J) , (4.11)

studied e.g. in Reference [42]. Additionally, the Hencky model is particularly wide-
spread in the context of isotropic multiplicative plasticity, as discussed for example in
References [35, 131, 161]. Moreover, we refer to Chapter 5 for further details, where the
logarithmic format (4.11) has also been incorporated for a specific plasticity model.

4.1.2. Algorithmic treatment

According to the general formulation of eigenvalue-based hyperelastic formats in Section
4.1.1, a particularly efficient implementation will be reviewed in this section. Referring

1Please note, that Equation (4.9) represents a special case of Equation (4.10).
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to Equation (4.5), the eigenvalues Cλi represent the solutions of a polynomial of degree 3
which can by solved by means of Cardano’s formula in closed form, compare References
[41, 114, 126]. Introducing the abbreviation

3 Γ = cos−1

(
2 CJ3

1 − 9 CJ1
CJ2 + 27 CJ3

2 [CJ2
1 − 3 CJ2]

3

2

)
+ 2πi with i = 1, 2, 3 , (4.12)

the relation to calculate the eigenvalue Cλi results in

Cλi =
1

3

[
CJ1 + 2[CJ2

1 − 3CJ2]
1

2 cos(Γ)

]
. (4.13)

Concerning the bases-representation, we conceptually follow a formulation in terms of
the second order tensors M i, compare Equation (4.6)2. This approach has also been
advocated by Miehe [126, 129] regarding isotropic tensor functions to avoid the costly
numerical computation of the eigenvectors CN i, compare e.g. References [35, 149, 162].
Supposing three distinct eigenvalues Cλi 6=

Cλj 6=
Cλk, the tensor bases can be computed

by

M i =
1

Di
[C2 − [CJ1 −

Cλi] C + Cλj
Cλk I] , (4.14)

using the abbreviation

Di := 2 Cλ2
i −

Cλi
CJ1 + Cλ−1

i
CJ3 . (4.15)

Furthermore, a (consistent) linearisation of the constitutive model formulated in prin-
cipal stretches is advantageous concerning the iterative solution procedure which is in-
volved regarding the resulting nonlinear system of equations (3.41)1,2. Based on the
derivative of the tensor bases 2

∇CM i =
λ2

i

Di

[
I −

CJ3

λ2
i

IC−1

]
+
λ2

i

Di

3∑

j=1

[
CJ3

λ2
i

− λ4
j

]
λ−4

j M j ⊗ M j (4.16)

the compact representation of the tangent modulus E for general eigenvalue-based con-
stitutive models yields

E = x1I + x2 IC
−1 +

3∑

i,j=1

xij λ
−2
i λ−2

j M i ⊗ M j . (4.17)

Therein, we have introduced the scalar-valued coefficients

x1 := 2
3∑

k=1

βk

Dk

respectively x2 := 2
3∑

k=1

βk

Dk λ
2
k

CJ3 (4.18)

2Herein, I and IC−1 denote the fourth order tensors [I]ijkl := 1

2
[δikδjl + δilδjk ] and [IC−1 ]ijkl :=

1

2
[C−1

ik C
−1

jl + C−1

il C−1

jk ] respectively.
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with the scaled principal stresses βk := Sλk λ
2
k (cf. Equation (4.8)) and the coefficient

matrix

xij := 2
∂βi

∂λ2
j

λ2
j − [2βi + x1λ

4
i − x2] δij (4.19)

which must be specified for the applied constitutive model. Apparently, distinct eigenval-
ues have been assumed for the derivations highlighted above. However, in the case of two
(Cλi = Cλj 6=

Cλk) or three (Cλi = Cλj = Cλk) coincident eigenvalues, a well-established
perturbation technique will be applied, as introduced by Simo [161] and Miehe [126, 127].
Further aspects and applications of the numerical perturbation approach can also be
found, for instance, in References [86, 151]. Controlled by the condition

|Cλi −
Cλj| < ∆δ max

{
|Cλi|, |

Cλj|, |
Cλk|

}
(4.20)

with the machine-dependent tolerance ∆δ, a numerical perturbation of the eigenvalues

λ̄i := [1 + δ ] Cλi , λ̄j := [1 − δ ] Cλj , and λ̄k :=
Cλk

[1 + δ ][1 − δ ]
(4.21)

shall be applied, incorporating the pre-defined perturbation size δ. Thus, the expressions
for the tensor bases (4.14) and the tangent modulus (4.17) remain basically unchanged
also in the case of two or three coincident eigenvalues. Accordingly, the outlined concept
avoids further distinctions within the implementation, in contrast to the analytical con-
sideration of equal eigenvalues which requires an explicit definition of different cases, as
depicted e.g. in References [149, 169]. Consequently, the favoured formulation based on
the tensor bases combined with the perturbation technique represents a general frame-
work which basically allows an efficient numerical treatment.

Remark 4.1: From a numerical point of view, an analytical distinction of coincident
eigenvalues also demands additional switching procedures between the different formu-
lations controlled again by a numerical tolerance. In this regard, it will be demonstrated
that especially within the context of the non-standard quadrature rule, involving differ-
ent evaluation points in time (cf. Equation (4.27)), any numerical tolerance and switch-
ing procedure can cause severe convergence problems as well as a loss of the required
energy conservation within the calculation accuracy, compare Section 4.5.

4.2. Conserving Time-Stepping Schemes

Based on the time-FE methods proposed in Section 3.3, we specify in this section the
particular time-stepping schemes that will be used for the following numerical investi-
gations. Since we have restricted ourselves in the present chapter on elastic constitutive
models formulated in principal stretches, the general framework, that also includes the
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incorporation of dissipation effects, results in the well-known conservative formulation,
involving the local dissipation D = 0. Consequently, the related time-integrated and
volume-integrated expressions, which have been introduced in Section 3.1.3, vanish also,
rendering d = 0 and D = 0 respectively. For a standard St.-Venant Kirchhoff and
a classical Neo-Hooke model, the resulting class of Galerkin-based integrators has al-
ready been discussed extensively in the context of finite elastodynamics by Betsch and
Steinmann [26] and by Gross et al. [68]. Nevertheless, it will be shown in the next
sections that an extension to eigenvalue-based hyperelastic models, using the efficient
perturbation technique, can lead to serious numerical problems that require a particular
evaluation strategy for the involved algorithmic stress tensor based on Equation (3.51).
Furthermore, the general case of arbitrary k will be specified in the following to the
linear case k = 1, capturing well-known integrators based on Finite Differences. In the
case of k = 1, the shape functions Mi ∈ P1 with i = 1, 2 are linear while the reduced
shape function M̃1 ∈ P0 is constant, so that

M1 = 1 − α, M2 = α, and M̃1 = 1 (4.22)

are obtained. Based on the general approximations (3.39), a linear approximation in
time results in

z̄h = [1 − α]z̄1 + αz̄2 and δz̄h = δz̄1 (4.23)

respectively, wherein the nodal values z̄1 are already known from the previous time step.
Consequently, solely one unknown vector z̄2 = [q̄2, p̄2]

t ∈ R2ndof remains when applying
linear shape functions in time. Inserting the shape functions (4.23) into Equations
(3.41)1,2, the discrete equations of motion read

q̄2 − q̄1 −
hn

2
M

−1 · [p̄1 + p̄2] = 0

p̄2 − p̄1 + hn

∫ 1

0

F̄
int h

(S(α)) dα = 0 , (4.24)

whereby in the here considered hyperelastic case the stresses are only a function of the
strain measure, as already mentioned. Consequently, the time-dependency of the stresses
is given by S(C(α)). In analogy to the general case, the crux of the matter concerning
resulting conservation properties consists in the approximation of the time-integrated
internal load vector.

4.2.1. Standard quadrature rule

Motivated by Equation (3.46), one option for the approximation of the time-integral in
Equation (4.24)2 is the application of a standard Gauss quadrature rule. Accounting the
desired collocation property, we apply only one integration point in time ngpt = 1 = k,
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4. Finite Elasticity

compare Reference [68]. The incorporation of Equation (3.42) renders the standard
approximation

∫ 1

0

F int h
I dα ≈

nnode∑

J=1

[∫

B0

[∇XNI ⊗∇XNJ ] : S(Ch(1/2)) dV

]
qh

J(1/2) . (4.25)

Taking additionally the discrete equations of motion (4.24)1,2 into account, the resulting
time integrator is equivalent to the well-known midpoint (difference) scheme, including
the linear assumed strain approximation in time Ch = [C2−C1]α+C1 as an additional
feature, see Reference [26]. As discussed in Chapter 3, the resulting time-stepping scheme
based on the approximation (4.25) enables the conservation of both momentum maps,
featuring a mechanically consistent integration. However, it is well-known that the
foregoing integrator is not able to guarantee the conservation of the total energy, aside
from the trivial case when the constitutive relation relies on a St.-Venant Kirchhoff
model, as pointed out in Reference [165].

4.2.2. Non-standard quadrature rule

Since we deal with highly-nonlinear stress-strain relations based on spectral represen-
tations, a non-standard quadrature rule is required to guarantee the conservation of
the total energy in general. Therefore, the general format (3.47) is specified next for
linear Finite Elements in time. Analogously to Equation (4.25), the application of one
integration point in time leads to the approximation

∫ 1

0

F int h
I dα ≈

nnode∑

J=1

[∫

B0

[∇XNI ⊗∇XNJ ] : Salg(1/2) dV

]
qh

J(1/2) . (4.26)

Setting D = 0, the (purely elastic) enhanced algorithmic stress tensor Salg (3.51) can
be written in the hyperelastic case as

Salg(1/2) := S1/2 +
2 [ψα=1 − ψα=0] − S1/2 : [C2 − C1]

||C2 − C1||2
[C2 − C1] , (4.27)

using the abbreviation S1/2 := S(Ch(1/2)). Obviously, the non-standard quadrature
rule introduced in Equations (3.47),(3.51) is for the hyperelastic case, using linear ap-
proximations in time, identical to the so-called ‘discrete gradient/derivative’ proposed
by Gonzalez [64]. Consequently, the general Galerkin-based approach favoured in this
contribution naturally recaptures well-established concepts for Finite Difference meth-
ods as special cases. Furthermore, it will be shown in Chapter 5 that such analogies can
also be established for the elasto-plastic case.
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Remark 4.2: At this point, it is important to emphasise once more that in addition
to the widespread modification (4.27) several alternative concepts have been discussed
in the literature to design energy conserving time-stepping schemes for elastodynamic
problems, compare for instance References [57, 101, 165]. Particularly interesting in
the context of Finite Elements in time is moreover the recent contribution by Bui [46]
in which various conserving integrators for elastodynamics are discussed based on the
midpoint and the trapezoidal scheme respectively, using scalar as well as vectorial en-
forcements to guarantee the required conservation properties.

4.3. Enhancement and Principal Stretches –

Pitfalls

On the one hand, essential steps required to design consistent Galerkin-based integra-
tors have been investigated in preceding sections. On the other hand, the efficient
numerical treatment for constitutive models formulated in principal stretches based on
a well-established perturbation technique has been reviewed, providing an excellent per-
formance in the context of the standard quadrature rule (4.25). However, we will demon-
strate in the following sections that a combination of the eigenvalue-based formulation
and the non-standard quadrature rule (4.26) can lead to serious numerical problems con-
cerning the numerical and, in particular, the mechanical performance of the resulting
time-stepping schemes. It will be shown that the numerical problems are directly related
to the numerical limit behaviour of the enhanced algorithmic stress tensor (4.27), which
is strongly influenced by the eigenvalue formulation.

4.3.1. Basic properties – Numerical limit transition

In the case of linear Finite Elements in time, the enhanced algorithmic stress tensor
(4.27) can be written in the compact form Salg(1/2) = S1/2 + Senh. Therein, the
‘stress enhancement’ Senh := Ω [C2 − C1] can be formulated by introducing a so-called
‘enhancement scaling factor’

Ω :=
2 [ψα=1 − ψα=0] − S1/2 : [C2 − C1]

||C2 − C1||2
. (4.28)

One essential property of the stress enhancement with regard to the conceptual consis-
tency is the following: it vanishs for the limit transition hn → 0, compare also Remark
3.3. For a decreasing time-step size the difference between the right Cauchy-Green de-
formation tensors, evaluated at α = 1 respectively α = 0, vanishes as well. By using the
abbreviation ∆C := C2 − C1, it should consequently hold for the limit transition

lim||∆C||→0

(
Ω

)
= 0 and lim||∆C||→0

(
||Senh||

)
= 0 , (4.29)
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4. Finite Elasticity

whereby especially the limit transition of the ‘enhancement scaling factor’ Ω is of the
classical L’Hospital-type 0/0. In the following steps, we focus on the numerical conse-
quences of this limit transition. We start with the investigation of the numerical limit
behaviour of the scaling factor Ω and the stress enhancement Senh on a local level, rep-
resenting a single Gaussian integration point in space. In this context, consider a fixed
initial deformation gradient F 1 and update this deformation gradient via

F 2 := F 1 + ξD (4.30)

based on a pre-defined deformation type represented by D and different values ξ within
the interval ξ ∈ [0, ξmax]. The difference between ξk and ξk+1 := ξk +∆ξ is prescribed by
the given step size ∆ξ, defining the resolution of the limit transition. A high resolution is
related to slight differences between the initial and the current strain state, correspond-
ing to small time-step sizes or mechanically stiff problems. First, the numerical limit
behaviour is analysed incorporating a classical Neo-Hooke model with the exemplary
choice

U(J) =
λ

2
ln2(J) − µ ln(J) . (4.31)

For the computations (2d, plane strain conditions)

F 1 ≡

[
1 0
0 1

]
, D ≡

[
1 0
0 0

]
(4.32)

and the material parameters λ = 10000, µ = 5000 have been applied. First results are
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Figure 4.2.: numerical limit behaviour of the ‘enhancement scaling factor’ Ω and the norm
of the ‘stress enhancement’ ||Senh|| for the limit transition ||∆C|| → 0: a) low & b) high
resolution
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4.3. Enhancement and Principal Stretches – Pitfalls

shown in Figure 4.2. Using a low resolution, the numerical limit behaviour of the norm
of the ‘stress enhancement’ as well as the behaviour of the ‘enhancement scaling factor’
offers the required asymptotic transition to zero, see Figure 4.2 a). However, the appli-
cation of a high resolution shows strong oscillations of the ‘enhancement scaling factor’
in the order of magnitude O(10−1), compare Figure 4.2 b). Analogously to the first
motivating example in the present chapter (cf. Figure 4.1), this effect is well-known in
the literature and a direct consequence of problems related to numerical limit transitions
that are influenced by the limited calculation accuracy in a computer code, particularly
when dealing with very small or huge numbers. Usually, these difficulties can be cir-
cumvented by switching from the numerical to an analytical limit within a pre-defined
tolerance. However, such a switching procedure does not represent an adequate option
in the case of the ‘stress enhancement’, since this approach would yield a loss of the re-
quired energy conservation within the calculation accuracy. Fortunately, the oscillations
in the norm of the ‘stress enhancement’ are only in the order of magnitude O(10−6), see
Figure 4.2 b). Consequently, a robust application of the ‘stress enhancement’ is in our
experience possible without any switching procedure, at least in the case of a classical
Neo-Hooke constitutive law. Thereby, the numerical oscillations are nearly independent
of the considered deformation type D, as shown in Figure 4.3. For these computations
we have used the initial deformation state

F 1 ≡

[
1.5 0
0.1 0.8

]
(4.33)

combined with the basic deformation types: compression, simple shear and a mixed
deformation, whereby these deformation types are represented by the three tensors

Dcomp ≡

[
0 0
0 −1

]
, Dshear ≡

[
0 1
0 0

]
, and Dmix ≡

[
0 1
0 −1

]
. (4.34)

Once more, the classical Neo-Hooke model of the previous calculation has been taken into
account, applying the material parameters λ = 10000, µ = 5000. Using a low resolution,
the numerical limit transition shows the claimed behaviour. Nevertheless, oscillations
occur for each type of deformation when the difference between two strain states is suffi-
ciently small, compare Figure 4.3 b). However, independent of the deformation type the
oscillations in the norm of the ‘stress enhancement’ are in the order of magnitude O(10−6)
and, in general, do not lead to further numerical difficulties. In contrast to the defor-
mation type, the stiffness plays an important role for the resulting numerical behaviour.
For these computations the foregoing classical Neo-Hooke model has been incorporated
once more, using three sets of material parameters [λ, µ] = [10000, 5000], [1000, 500],
and [100, 50] related to ‘stiffness 1-3’. The initial deformation state and the deformation
type can be specified by

F 1 ≡

[
1 0
0 1

]
and D ≡

[
0 0
0 1

]
. (4.35)
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4. Finite Elasticity

The influences on the numerical limit behaviour of the norm of the ‘stress enhance-
ment’ are pictured in Figure 4.4. Obviously, an increase of the stiffness leads to clearly
stronger oscillations which are, nevertheless, generally not crucial concerning a robust
implementation.
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Figure 4.3.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh|| for
different deformation types: a) low & b) high resolution
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Figure 4.4.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh|| for
different material parameters: a) low & b) high resolution
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So far, the described numerical artefacts are present but seem to be controllable, since in
general they have no influence on the performance of the resulting algorithm. However,
it will be shown in the following sections that the abovementioned numerical limit be-
haviour combined with a constitutive law formulated in principal stretches based on the
well-established perturbation technique can induce serious consequences for the numeri-
cal and the mechanical performance. Furthermore, it will be demonstrated that the sen-
sitivity of the enhancement with respect to the stiffness is of cardinal importance, when
dealing with eigenvalue-based constitutive models in the context of energy-conserving
Galerkin-based integrators.

4.3.2. Key properties – Principal stretches

We start once more with the consideration of a single Gaussian integration point in
space and prescribe

F 1 ≡

[
1.1 0

0 1

]
and D ≡

[
−1 0

0 1

]
. (4.36)

To demonstrate possible influences of an eigenvalue-based constitutive model on the nu-
merical limit behaviour of the ‘stress enhancement’, we rewrite the classical Neo-Hooke
model of the previous section by means of principal stretches, analogously to Equation
(4.9). In the case of coincident eigenvalues, the efficient well-established perturbation
technique has been applied, compare Section 4.1.2. Regarding the material parameters,
λ = 10000, µ = 5000 have been chosen. A comparison between the classical formulation
of the Neo-Hooke model and the reformulation based on principal stretches is pictured
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Figure 4.5.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh||
using a classical/reformulated Neo-Hooke model: a) low & b) high resolution
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Figure 4.6.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh||:
influence of the perturbation size

in Figure 4.5 and it demonstrates impressively the potential pitfalls if the ‘stress en-
hancement’ is combined with an eigenvalue-based constitutive model. In contrast to the
classical formulation, the eigenvalue-based formulation yields crucial numerical prob-
lems for the limit transition, even when we consider a low resolution, compare Figure
4.5 a). Thereby, the unphysical ‘singularity-like’ behaviour is strongly influenced by
the applied perturbation technique and leads already for ||∆C|| = O(10−2) to signifi-
cant errors which can no longer be neglected. On the one hand, such a numerical limit
behaviour is absolutely unacceptable concerning an application in the framework of a
robust time-stepping scheme. On the other hand, a switch-off of the ‘stress enhance-
ment’ within a range of ||∆C|| ≤ O(10−2) would completely destroy the required energy
conservation properties. A further crucial aspect is the significant sensitivity with re-
spect to the perturbation size, compare Figure 4.6. The errors range from the order of
magnitude O(10−4) to O(103) and increase drastically for stiffer material parameters.
For these computations, the ‘perturbation sizes 1-4’ δ = 10−7, 10−5, 10−4, 10−3, the ma-
terial parameters λ = 10000, µ = 5000, and the deformation parameters (4.36) have
been applied. Once more, the ‘singularity-like’ behaviour can be clearly seen for each
perturbation size, whereby in particular the application of larger sizes leads to immense
errors. Additionally, the numerical behaviour close to zero is dominated by an unphys-
ical ‘offset’ which also depends strongly on the applied perturbation size in the case of
coincident eigenvalues, compare Figure 4.6.
All these numerical artefacts result, together with the abovementioned oscillations, in
an interim disqualification of the perturbation-based evaluation of the eigenbases in the
context of the non-standard quadrature rule (4.26), since it will be shown that the nu-
merical limit behaviour has a direct influence on the obtained numerical and mechanical
performance of the resulting time-stepping scheme, especially in the case of mechanically
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stiff systems.

Remark 4.3: Please note, that the foregoing numerical artefacts are of entirely dif-
ferent nature compared to the ‘basic properties’ discussed in the previous section. In
fact, the numerical oscillations investigated in Section 4.3.1 are the direct consequence of
‘round-off’ errors which are always present when dealing with numerical manipulations,
independently whether the constitutive model is formulated in invariants or principal
stretches. However, these ‘spurious’ oscillations are in general uncritical regarding the
performance of corresponding time-stepping algorithms, as already mentioned. To the
contrary, the ‘key properties’ of this section, which represent the focal issue of the present
chapter, are directly caused by an inappropriate evaluation of the ‘stress enhancement’
when using the perturbation technique for the algorithmic treatment of eigenvalue-based
constitutive laws. Actually, the resulting numerical errors are several orders of magni-
tude higher and add to the basic round-off errors.

4.4. Enhancement and Principal Stretches –

Remedy

In Section 4.1.2, we have outlined the advantages of the well-established perturbation
technique for a constitutive law which is formulated in principal stretches. Unfortunately,
this approach has been disqualified in Section 4.3.2 concerning an application within the
concept of the ‘stress enhancement’, due to severe numerical difficulties. These are
strongly influenced, in general, by the applied stiffness and, in the case of coincident
eigenvalues, by the chosen perturbation size. In this section, an adequate solution of
the numerical problems – the remedy – will be presented that enables a robust and
efficient evaluation of the ‘stress enhancement’ based on the perturbation technique,
independently of the stiffness or the chosen perturbation size.

4.4.1. Overall concept – Mixed strategy

To achieve a robust evaluation of the ‘stress enhancement’, its numerical limit behaviour
must be decoupled from the perturbation in the case of coincident eigenvalues. To
accomplish such a decoupling, a ‘mixed strategy’ is proposed for the evaluation of the
‘stress enhancement’ 3. This strategy implies a computation of some variables based
on perturbed and other variables based on the unperturbed eigenvalues. Specifically,
the stresses will be evaluated by means of perturbed eigenvalues, in contrast to the
Helmholtz energy density which should be calculated based on unperturbed principal

3Moreover, it will be demonstrated in Section 4.5 that the proposed ‘mixed strategy’ represents,
especially within a conserving time-stepping scheme, the only adequate evaluation concept regarding
the obtained numerical and mechanical performance respectively.
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stretches. Consequently, the enhanced algorithmic stress tensor is given by

Salg(1/2) := Sδ
1/2 +

2 [ψα=1 − ψα=0] − Sδ
1/2 : [C2 − C1]

||C2 − C1||2
[C2 − C1] , (4.37)

wherein the perturbation-based variables are denoted by [•]δ. Hereby, this strategy is
strongly motivated by the results of Section 4.3.2 which have clearly indicated that the
‘stress enhancement’ is very sensitive regarding the numerical evaluation of the scalar-
valued energy density ψ. In this context, the application of numerically perturbed
principal stretches within the Helmholtz energy density leads apparently to an artificial
value that does not match sufficiently with the actual stress state, being amplified in the
‘stress enhancement’ during the limit transition ||∆C|| → 0. To study the functioning of
the foregoing mixed evaluation concept for Equation (4.37) in more detail, the difference
between the results of a classical formulation in invariants and the reformulation based
on principal stretches is investigated next, isolating the decisive influence of the pertur-
bation on the numerical limit behaviour of the ‘stress enhancement’ 4. The results are
shown in Figure 4.7 and Figure 4.8, using a Neo-Hooke model with the same deformation
and material parameters as introduced in Section 4.3.2. Therein, it can be clearly seen
that indeed the evaluation of the Helmholtz energy densities with perturbed eigenvalues
results in an offset caused by the involved perturbation size, see Figure 4.8 a). Hereby,
not the magnitude of the offset itself, but the resulting influence on the numerical limit
behaviour of the ‘stress enhancement’ represents the actual issue. Considering the com-
ponents of Senh pictured in Figure 4.8 b), in fact, it renders strong deviations from the
classical formulation, being in the range of 101 for the present example. Please note,
that the corresponding numerical artefacts are obviously several orders of magnitude
higher than the uncritical differences within the continuum stresses or the related scalar
product, plotted in Figure 4.7 a) and Figure 4.7 b) respectively. However, this crucial
numerical behaviour can be completely removed, simply by evaluating the Helmholtz
energy density with unperturbed eigenvalues. In this case, the causing offset within the
energy densities vanishes and, consequently, the resulting aberrations in the components
of the ‘stress enhancement’ are resolved as well, as can be seen in Figure 4.8.
To demonstrate furthermore the effectiveness of the advocated concept concerning the
claimed decoupling of the numerical limit performance from the specific size of the ap-
plied perturbation, we consider once more the norm of the ‘stress enhancement’ and
recalculate the results of Section 4.3.2, shown in Figure 4.6, by using this time the
proposed ‘mixed strategy’. Analogously to this previous section, the perturbation sizes

4More precisely, we calculate for each quantity of interest
[
•

]
the difference

∆[•] := [•]principal − [•]classical (4.38)

as a function of ||C2 − C1||, considering separately the Piola-Kirchhoff stresses Sδ
1/2, the entire

‘stress enhancement’ Senh, the difference of the Helmholtz energy densities ψα=1 − ψα=0, and the
scalar product Sδ

1/2 : [C2 − C1] concerning the transition C2 → C1.
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Figure 4.7.: classical formulation vs. reformulation in principal stretches (Neo-Hooke
model): absolute value of the difference |∆
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]
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Figure 4.8.: classical formulation vs. reformulation in principal stretches (Neo-Hooke
model): absolute value of the difference |∆

[
•

]
| considering a) [•] := [ψα=1 − ψα=0], b)

components of the ‘stress enhancement’ [•] := [Senh]ij

δ = 10−7, 10−5, 10−4, 10−3 have been incorporated for these computations, relying on
Equation (4.36) and unchanged material parameters. The results for ‘perturbation size
1-4’ are shown in Figure 4.9. Primarily, it can be clearly seen that the sensitivity of the
numerical limit performance of the norm of the ‘stress enhancement’ is nearly remedied.
Furthermore, the numerical errors are conspicuously reduced and do not exceed the or-
der of magnitude O(10−4) in the worst case. For comparison, this limit is equivalent to
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Figure 4.9.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh||
calculated by means of the ‘mixed strategy’: influence of the perturbation size

the best result using exclusively the perturbed eigenvalues, see Figure 4.6. Moreover, it
is remarkable that for ‘perturbation size 2’ with δ = 10−5 the numerical performance of
the eigenvalue-based reformulation is absolutely competitive to the classical formulation
of the Neo-Hooke constitutive model and nearly no differences are visible. Addition-
ally, it is obvious that the ‘singularity-like’ behaviour has been basically caused by the
evaluation of the Helmholtz energy density based on perturbed eigenvalues. Neverthe-
less, some numerical artefacts, like the ‘offset’ close to zero, persist if the perturbation
size is too large. However, it will be subsequently shown that this remaining influence
of the perturbation size is insignificant for the application within the framework of a
time-stepping scheme. In fact, this influence does not pose further problems and, con-
sequently, the required decoupling is achieved.

Remark 4.4: When compressible material behaviour is considered, the function U(J)
is involved, compare Equations (4.9)-(4.11). Thereby, the evaluation of the determinant
J by means of perturbed eigenvalues is not crucial, since in the triple product of the
eigenvalues the perturbations erase themselves, compare Equations (4.21)1,2,3.

4.4.2. Assessment – Constitutive models

So far, a reformulated Neo-Hooke model served for our investigations to demonstrate the
potential pitfalls based on numerical artefacts and to propose an appropriate solution
strategy, illustrating directly the influence of the eigenvalue-based format in comparison
to the classical formulation. In this section, we extend these elaborations with respect
to other constitutive laws which are usually formulated in principal stretches, like the
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a) b)

Figure 4.10.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh||
using a Neo-Hooke model (perturbed/unperturbed evaluation of ψ): a) low & b) high
resolution

Ogden or the Hencky model, compare Equation (4.10) and Equation (4.11) respectively.
Thereby, the ‘mixed strategy’ will be applied for the abovementioned constitutive models
and directly assessed in comparison to a perturbed evaluation of the Helmholtz energy
density. We start once more with the reformulated Neo-Hooke model, incorporating the
material parameters λ = 10000 and µ = 5000. In this case, the local deformation process
can be specified by

F 1 ≡

[
1.1 0

0 1

]
and D ≡

[
−10 100

0 10

]
. (4.39)

The differences between the ‘mixed strategy’ and the (completely) perturbed evaluation
of the ‘stress enhancement’ are impressively displayed by the results shown in Figure
4.10. The naive evaluation of the Helmholtz energy density by means of perturbed
eigenvalues results again in a crucial ‘singularity-like’ behaviour for coincident eigenval-
ues, whereby it is important to emphasise that the deviations are already visible for
||∆C|| = O(10−2), compare Figure 4.10 a). Consequently, a switch-off of the ‘stress
enhancement’ to circumvent the numerical difficulties is absolutely out of the question
with regard to the required conservation properties. Furthermore, the ‘offset’ accompa-
nied by strong oscillations occurs close to zero, see Figure 4.10 b). Contrariwise, the
application of the proposed ‘mixed strategy’, related to an unperturbed evaluation of ψ,
renders the claimed numerical limit performance of the ‘stress enhancement’, unaffected
by possibly coinciding eigenvalues. For the next eigenvalue-based constitutive law, a
model of Ogden-type with the specific function

U(J) = −[µ1 + µ2 + µ3] ln(J) (4.40)
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Figure 4.11.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh||
using an Ogden model (perturbed/unperturbed evaluation of ψ): a) low & b) high
resolution
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Figure 4.12.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh||
using a Hencky model (perturbed/unperturbed evaluation of ψ): a) low & b) high
resolution

has been chosen, using the parameters µ1 = 10000, µ2 = 1000, µ3 = −1000 and α1 =
1.3, α2 = 4.0, α3 = −2.0. The initial deformation gradient and the deformation type for
the following calculations are given by

F 1 ≡

[
1.1 0

0 1

]
and D ≡

[
0 10
0 0

]
. (4.41)

Analogously to the reformulated Neo-Hooke model, the transition ||∆C|| → 0 is charac-
terised by an unphysical peak in the order of magnitude O(10−1) if a perturbed evalua-
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4.4. Enhancement and Principal Stretches – Remedy

tion of the Helmholtz energy density is applied, compare Figure 4.11. Additionally, the
norm of the ‘stress enhancement’ is superimposed by strong oscillations close to zero, but
in this case without a distinct numerical ‘offset’, see Figure 4.11 b). Again, the ‘mixed
strategy’ removes all these numerical artefacts and enables an excellent limit behaviour.
For the last constitutive model formulated in principal stretches, a Hencky model with

U(J) =
λ

2
ln2(J) (4.42)

shall be considered. Concerning the deformation process, we have used

F 1 ≡

[
1 0
0 1.2

]
and D ≡

[
0 1
0 −1

]
, (4.43)

whereby the applied material parameters are given by λ = 10000, µ = 5000. Consid-
ering Figure 4.12, the norm of the ‘stress enhancement’ calculated exclusively based on
perturbed eigenvalues shows once more severe numerical errors for the limit transition,
especially if ||∆C|| ∈ [10−3, 10−2]. Similarly to the Ogden model, the behaviour of the
norm of the ‘stress enhancement’ is dominated by substantial oscillations close to zero if
the perturbed eigenvalues are inserted in the Helmholtz energy density, see Figure 4.12
b). However, the ‘mixed strategy’ enables, even in the case of coincident eigenvalues, an
absolutely non-critical limit transition ||∆C|| → 0.
In this section, we have demonstrated that the potential numerical problems concern-
ing the limit behaviour of the enhancement, which basically rely on the combination
of the ‘stress enhancement’ and a perturbation-based evaluation of an eigenvalue-based
constitutive model, can be completely solved by using the ‘mixed strategy’, introduced
in Equation (4.37). This evaluation strategy enables the efficient application of the
general perturbation technique also in the context of the ‘stress enhancement’ without
additional numerical effort. Thereby, the effectiveness of the ‘mixed strategy’ has been
verified for different eigenvalue-based constitutive laws on a local level. Apart from these
investigations referring to the so-called local level, or rather homogeneous deformations,
we next address resulting consequences on the global time-integration when embedding
the proposed concept into a (conserving) Galerkin-based time-stepping scheme, compare
Equations (4.24)-(4.27).

Remark 4.5: Initially, the suggested ‘mixed strategy’ has been developed for the favoured
format (4.27). However, as already mentioned, there exist several other concepts or
divers modifications in literature to guarantee the fulfilment of required conservation
properties by the resulting time-stepping schemes. In this context, we suppose that also
alternative stress enhancements of type

Salg = S1/2 +
2 [ψα=1 − ψα=0] − S1/2 : [C2 − C1]

A : [C2 − C1]
A (4.44)
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4. Finite Elasticity

would benefit in general from the advocated strategy. Obviously, Equation (4.44) re-
captures also the preferred format (4.27) by setting A := [C2 − C1]. In this context,
a particularly interesting formulation has been recently discussed in Bui [46] for the
specific case A := S1/2, rendering

Salg = S1/2 +
2 [ψα=1 − ψα=0] − S1/2 : [C2 − C1]

S1/2 : [C2 − C1]
S1/2 . (4.45)

Interestingly, the particular enhancement used in Equation (4.45) preserves the principal
directions of S1/2 and can be interpreted as a modification of the integration weights of
the involved quadrature rule, as proposed by French and Schaeffer [57]. In the following,
we present exemplarily some basic investigations concerning the potential influence of
eigenvalue-based constitutive laws on the foregoing formulation (4.45). Regarding the
resulting numerical limit behaviour of the corresponding enhancement, the influence of
the applied evaluation strategy will be demonstrated analogously to Section 4.3.2, using
the same local deformation state and material parameters. Some results are shown in
Figure 4.13-4.16 5. Using a classical Neo-Hooke model formulated directly in C, the ba-
sic oscillations within the ‘enhancement scaling factor’, which is introduced analogously
to Equation (4.28), are significantly reduced in the ‘scaled stress’ case. Nevertheless,
the oscillations within the norm of the ‘stress enhancement’, which are more meaningful
regarding the overall behaviour of the enhancement, are in the same order of magni-
tude for both formulations, see Figure 4.13. As already discussed, the key issue is the
fundamental degradation of the numerical limit behaviour when perturbed eigenvalues
are, in addition to the stress computation, also used to calculate the Helmholtz energy
density. This effect is also present in the ‘scaled stress’ case, as demonstrated in Fig-
ure 4.14 based on a reformulation of the classical Neo-Hooke model by using principal
stretches. However, the proposed mixed evaluation strategy works effectively also for the
formulation (4.45) and avoids efficiently additional numerical artefacts, see Figure 4.15
regarding the ‘enhancement scaling factor’ and Figure 4.16 regarding the norm of the
‘stress enhancement’. The foregoing investigations confirm our initial guess, at least for
the here considered local example. Nevertheless, the actual numerical performance and,
particularly, the interaction with a global conserving time-stepping scheme would re-
quire further investigations. However, we suggest an application of the proposed ‘mixed
strategy’ in any case, since it requires only a simple modification without any additional
costs. In fact, the numerical behaviour of general ‘stress enhancements’ of type (4.44)
can only benefit from this remedy.

5In this context, the results of the calculations based on Equation (4.45) will be referred to as ‘scaled
stresses’, in contrast to the results of computations relying on the preferential formulation (4.27)
which are denoted as ‘scaled strains’.
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a) b)

Figure 4.13.: numerical limit behaviour (high resolution, classical Neo-Hooke model) of:
a) ‘enhancement scaling factor’ Ω, b) norm of the ‘stress enhancement’ ||Senh||
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Figure 4.14.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh||:
a) low & b) high resolution
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Figure 4.15.: numerical limit behaviour of the ‘enhancement scaling factor’ Ω (classical
vs. eigenvalue-based Neo-Hooke model (perturbed/mixed strategy)): a) low & b) high
resolution
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Figure 4.16.: numerical limit behaviour of the norm of the ‘stress enhancement’ ||Senh||
(classical vs. eigenvalue-based Neo-Hooke model (perturbed/mixed strategy)): a) low
& b) high resolution
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4.5. Enhancement and Principal Stretches –

Consequences

In the previous sections, the investigations have been restricted to a local level, repre-
senting one single integration point in space, based on particular prescribed deformation
states and different deformation types, see Equation (4.30). Thus, the described pit-
falls seem, at first glance, not to pose an actual problem concerning the implementation
within a mechanical integrator. To prove the contrary, the non-negligible influence of
the pitfalls and the effectiveness of the solution strategy, regarding the numerical as
well as the mechanical performance of the time-stepping scheme, will be presented in
this section. Moreover, it will be shown that the cruxes of the local considerations,
like stiffness or independency of the perturbation size, are also relevant on the global
time-integration level.
To demonstrate the resulting consequences, we consider the motion of a ‘Flying Frame’
calculated by a consistent Galerkin-based integrator (with k = 1), involving the non-
standard quadrature rule (4.26). The frame with the mass density ρ = 1.0 is discretised
in space (2d, plane strain conditions) using 48 isoparametric 4−node elements and ex-
hibits an initial velocity v̄0 in the horizontal direction with ||v̄0|| = 85. Furthermore,

some external shear loads F̄
ext

:= [F ext
1 , ...,F ext

nnode
]t have been applied, whereby the norm

of the external load ||F ext
I || = f(t) at the spatial node I increases linearly in time up

to the maximum value fmax and, subsequently, decreases again linearly to zero within
the loading period t ∈ [0, Tload], compare Figure 4.17 a). In the following examples, the
constitutive relation relies on a Helmholtz energy density ψ of the Hencky-type (com-
pare Equation (4.11)), using once more U(J) = λ

2
ln2(J). A characteristic sequence of
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Figure 4.17.: a) initial configuration B0 of the ‘Flying Frame’ with external loads and
loading history, b) characteristic sequence of the motion
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the motion of the ‘Flying Frame’, represented by three deformed configurations Bt, is
pictured in Figure 4.17 b).

4.5.1. Numerical performance

First, we focus on the consequences for the numerical performance of the resulting time
integrator. In this context, the number of iterations, which are required per time step,
seems to be a candid measure for the provided convergence properties. To investigate the
resulting numerical problems, which are directly related to the aforementioned pitfalls
on the local level, the proposed ‘mixed strategy’ will be compared with the ‘completely
perturbed’ and a ‘completely unperturbed’ evaluation of the ‘stress enhancement’. For
the first example, we have applied the parameters fmax = 10.0, Tload = 1.0, λ = 10000,
and µ = 5000. To confirm the correlation between the global numerical performance
and the local problems, the influence of the applied time-step size will be examined. A
reduction of the time-step size results (for given material parameters and loading con-
ditions) in a decreasing difference of two sequent deformation states and, consequently,
in a decrease of ||∆C||. As demonstrated on the local level, such a decrease can be ac-
companied by several numerical artefacts, especially, if an inappropriate strategy for the
evaluation of the ‘stress enhancement’ has been chosen. For the present computations,
the time-step sizes hn ∈ {0.2, 0.005, 0.0001} have been applied. The deformed configu-
ration at t = 20 calculated with hn = 0.2 can be seen in Figure 4.18 a). Figure 4.18 b)
shows for each time-step size hn the required iterations per time step for the case that the
stresses as well as the Helmholtz energy density are both computed based on unperturbed
eigenvalues (‘completely unperturbed strategy’). As expected, the performance strongly
depends on the applied time-step size and small time-step sizes obviously lead to signif-
icant convergence problems of the global iteration scheme. An evaluation of the stresses
and the Helmholtz energy density with perturbed eigenvalues (‘completely perturbed
strategy’) is not able to remove the difficulties. Moreover, this approach even degrades
the resulting numerical performance, especially for hn = 0.0001, and a calculation with
small time-step sizes is in this case almost impossible, compare Figure 4.19 a). Con-
trariwise, the application of the proposed ‘mixed strategy’, characterised by a perturbed
evaluation of the stresses combined with an unperturbed evaluation of the Helmholtz
energy density, remedies the convergence problems and enables an efficient calculation
that is (nearly) independent of the applied time-step size, as pictured in Figure 4.19 b).

As illustrated on the local level, the mechanical stiffness of the considered problem
is a further relevant parameter regarding the numerical limit behaviour of the ‘stress
enhancement’. Additionally, an increasing stiffness naturally implies smaller differences
∆C for given loading conditions. Consequently, the numerical performance of the global
time-integration might also be affected by the stiffness. To investigate the relevance of
the evaluation strategy, the ‘mixed strategy’ will be compared once more with the ‘com-
pletely (un)perturbed strategy’, incorporating the parameters fmax = 10.0, Tload = 1.0,
and hn = 0.1. Furthermore, ‘stiffness 1-3’ is related to [λ, µ] = [1000, 500], [10000, 5000],
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Figure 4.18.: a) deformed configuration Bt at t = 20 using hn = 0.2, b) number of iterations
per time step (influence of the time-step size): ‘completely unperturbed strategy’
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Figure 4.19.: number of iterations per time step (influence of the time-step size): a)
‘completely perturbed strategy’, b) ‘mixed strategy’

and [100000, 50000] respectively. The corresponding deformed configurations at the time
t = 10 are shown in Figure 4.20 a). An application of the ‘completely unperturbed strat-
egy’ results in a substantial lack of convergence for mechanically stiff problems, compare
Figure 4.20 b). If the ‘completely perturbed strategy’ is used, even a program abort 6

due to divergence of the global iteration scheme occurs for ‘stiffness 3’, as can be seen
in Figure 4.21 a). However, the ‘mixed strategy’ represents once more an adequate

6A program abort within the calculations related to numerical problems is pictured by means of a
vertical dashed line in the plots.
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Figure 4.20.: a) deformed configurations Bt at t = 10 for ‘stiffness 1-3’, b) number of
iterations per time step (influence of the stiffness): ‘completely unperturbed strategy’
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Figure 4.21.: number of iterations per time step (influence of the stiffness): a) ‘completely
perturbed strategy’, b) ‘mixed strategy’

remedy to circumvent numerical problems which are induced by the resulting sensitiv-
ity of the time-stepping scheme with respect to mechanical stiffness. In Figure 4.21
b), it is clearly shown that the proposed evaluation strategy enables, independently of
the applied stiffness, an efficient calculation. The presented results clearly confirm the
fact that an increasing stiffness amplifies the potential numerical artefacts of the ‘stress
enhancement’. This effect is already known from the investigations on the local level
(compare Figure 4.4) and can be completely tackled by the application of the ‘mixed
strategy’.
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Remark 4.6: The results presented in this section have clearly demonstrated that an
inadequate evaluation strategy can cause crucial numerical problems for the global time-
integration, especially, if small time-step sizes and mechanically stiff problems are taken
into account. Vice versa, non-stiff problems cover possible convergence problems. Con-
sequently, the motion of nearly rigid bodies poses the real challenge for conserving time-
stepping schemes which rely on the enhanced algorithmic stress tensor combined with
an eigenvalue-based constitutive law.

4.5.2. Mechanical performance

In this section, it will be shown that the numerical pitfalls can also considerably affect
the obtained mechanical performance of the resulting time integrator. Originally, the
introduction of a non-standard quadrature rule based on the ‘stress enhancement’ has
been motivated by desired energy conservation properties. Hereby, energy conservation
shall be assured within the calculation accuracy which is basically dominated by the cho-
sen tolerance of the global iteration scheme. Once more, the results of the recommended
‘mixed strategy’ will be compared with the results of the ‘completely (un)perturbed
strategy’, whereby a switching procedure 7 has been used in the following calculations,
incorporating the parameters fmax = 10.0, Tload = 1.0, hn = 0.1, λ = 10000, and
µ = 5000. The resulting deformed configuration Bt at t = 10 and the total energy H
are pictured in Figure 4.22. At first glance, the conservation of the total energy seems
to be unaffected by possible convergence problems induced by numerical artefacts of the
‘stress enhancement’. However, visible differences between the three evaluation strate-
gies become obvious when zooming-in. For the present examples, the application of
the ‘completely perturbed strategy’ leads to a critical increase of the total energy and
the ‘completely unperturbed strategy’ combined with the necessary switching procedure
results in an oscillating behaviour. Contrariwise, the total energy is conserved if the
‘mixed strategy’ is applied, as shown in Figure 4.22 b). Inspired by the one-dimensional
example in Chapter 2, compare Equation (2.36), we introduce for the purely elastic case
with Dn = Dn+1 = 0 the residual

Rel := Hn+1 −Hn
!
= 0 , (4.46)

which is of course covered inherently by the general balance (3.62) as a special case.
Solely based on Equation (4.46), the mechanical performance of the time-stepping scheme,
using the different evaluation strategies, can be fairly judged. The results are displayed
in Figure 4.23. The ‘completely unperturbed’ as well as the ‘completely perturbed strat-
egy’ do not allow a fulfilment of Equation (4.46) within the required tolerance. In fact,
these strategies severely suffer from the numerical artefacts and degrade the potential of

7The switching procedure includes a switch-off of the ‘stress enhancement’ if the global iteration scheme
does not converge within a pre-defined number of iterations.
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4. Finite Elasticity

the non-standard quadrature rule concerning the desired energy conservation, compare
Figure 4.23 a). The real potential of the ‘stress enhancement’ can be exclusively achieved
if the ‘mixed strategy’ is used and, consequently, the numerical problems are circum-
vented. For the discussed example, the application of the ‘mixed strategy’ enables
the fulfilment of Equation (4.46) within the order of magnitude O(10−11), as displayed
in Figure 4.23 b). Thus, the conservation of the total energy is guaranteed within the
calculation accuracy and the actual purpose of the enhanced algorithmic stress tensor
(4.27) is fulfilled.
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Figure 4.22.: a) deformed configuration Bt at t = 10, b) total energy H (zoom)
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Figure 4.23.: residual of energy conservation Rel: a) ‘completely (un)perturbed evaluation’
& ‘mixed strategy’, b) ‘mixed strategy’
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4.5.3. Perturbation vs. performance

In the following, the influence of the perturbation size on the global performance of the
time-stepping scheme will be investigated. In this context, the sensitivity of the nu-
merical behaviour of the ‘stress enhancement’ concerning the applied perturbation size
has been emphasised on the local level, compare Figure 4.6. Furthermore, the positive
effect of the proposed ‘mixed strategy’ has been highlighted in Section 4.4.1, whereby
the influence on the local numerical behaviour and the resulting decoupling from the
perturbation size have been illustrated in Figure 4.9. Moreover, this positive influence is
not locally restricted to a special prescribed deformation process, but it is also directly
noticeable on the global level. To demonstrate the beneficial effects, the motion of the
‘Flying Frame’ is considered once more, using the parameters fmax = 10.0, Tload = 1.0,
hn = 0.1, λ = 100000, and µ = 50000. The deformed configuration at t = 5 is pictured
in Figure 4.24 a) and the successful decoupling of the perturbation size and the numer-
ical performance of the (global) time integrator can be regarded in Figure 4.25. The
required total number of iterations is completely independent of the perturbation size if
the ‘mixed strategy’ is involved. An application of the ‘completely perturbed strategy’
yields a drastically increasing number of iterations which additionally depends on the
perturbation size, compare Figure 4.25 a). Furthermore, it can be directly seen that
the ‘completely perturbed strategy’ is not able at all to reach the performance of the
‘mixed strategy’, independently of the chosen perturbation size. Due to convergence
problems in the case of the ‘completely perturbed strategy’, the ‘stress enhancement’
has been switched off after a certain number of iterations within one time step. The
resulting number of steps without the ‘stress enhancement’ is displayed in Figure 4.25
b). Consequently, the simulation of such a mechanically stiff problem is nearly impossi-
ble applying the ‘stress enhancement’ combined with a completely perturbed evaluation.
However, the ‘mixed strategy’ enables, independently of the perturbation size, an excel-
lent numerical performance without any switch-off of the enhancement. Please recall,
that the involvement of switching procedures ruins the desired energy conservation of
the time integrator, as outlined in Section 4.5.2. Since the ‘stress enhancement’ is always
active in the case of the ‘mixed strategy’, it can be concluded from Figure 4.24 b) that
the residual of energy conservation Rel given by Equation (4.46) is equal to zero within
the calculation accuracy, again, absolutely unaffected by the applied perturbation size.
Thus, the consequences of the numerical pitfalls concerning the global time-integration
have been demonstrated in this section and, moreover, the effectiveness of the proposed
evaluation strategy, regarding the numerical as well as the mechanical performance of
the conserving time-stepping scheme, has been confirmed.
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Figure 4.24.: a) deformed configuration Bt at t = 5, b) residual Rel for ‘perturbation size
1-4’ (related to δ = 10−3, 10−4, 10−5, 10−6) using the ‘mixed strategy’
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Figure 4.25.: a) total number of iterations for different perturbation sizes, b) number of
time steps without the ‘stress enhancement’ for different perturbation sizes
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4.6. Numerical Examples – Spinning Wheel

4.6. Numerical Examples – Spinning Wheel

At the end of this chapter, we demonstrate extensively the excellent performance of the
resulting Galerkin-based time-stepping schemes by means of two numerical examples,
whereby a comparison between the standard and the non-standard quadrature rule will
be discussed in this section. Special emphasis is placed on the influence of the evaluation
strategy on the numerical and mechanical performance. The first example deals with a
‘quasi rigid motion’ of a ‘Spinning Wheel’ and the second example investigates a ‘mixed
stiffness motion’, incorporating (highly) stiff and non-stiff regions. In our point of view,
this is absolutely necessary to confirm the qualification of the developed integrators for
a wide range of problems without restrictions. The initial configuration B0 of the wheel
with the mass density ρ = 1.0 is discretised in space (2d, plane strain conditions) with
212 isoparametric 4−node elements. To start the motion, the wheel is equipped with
some external loads F̄

ext
on the circlet and an initial velocity v̄0, using ||v̄0|| = 415.

The norm of each external nodal-load F ext
I follows the same piecewise linear function in

time f(t) as for the ‘Flying Frame’, compare Figure 4.26 a). Following the formulations
in Section 4.2, the standard (4.25) respectively the non-standard quadrature rule (4.26)
based on the (purely elastic) enhanced algorithmic stress tensor (4.27) have been applied.
Hereby, the ‘stress enhancement’ has been evaluated by means of the proposed ‘mixed
strategy’ introduced in Equation (4.37) and the constitutive relation relies once more on
the Hencky model given by Equations (4.11), (4.42).

4.6.1. Quasi rigid motion

As highlighted in the previous sections, especially the motion of mechanically stiff sys-
tems constitutes an advanced challenge for time integrators that involve the ‘stress en-
hancement’ combined with an eigenvalue-based constitutive model, since the applied
evaluation strategy of the ‘stress enhancement’ becomes really essential for stiff prob-
lems. Consequently, for the first numerical example we have chosen a nearly rigid motion
of the ‘Spinning Wheel’, applying the parameters fmax = 20.0, Tload = 1.0, λ = 10000,
and µ = 5000. To expose the robustness of the time integrator with respect to variations
of the time-step size, we change the step sizes during the calculation several times, com-
pare Figure 4.26 b), involving hn ∈ {0.001, 0.01, 0.1, 0.2, 0.4}. The resulting deformed
configuration Bt at t = 30 and a sequence of the motion can be regarded in Figure
4.27 a). According to the applied material parameters, the rigid-body motion clearly
dominates the deformation. The non-standard as well as the standard quadrature rule
imply both a conservation of corresponding components of the linear and the angular
momentum, as shown in Figure 4.27 b) respectively Figure 4.28 a). Considering Figure
4.28 b), both integrators seem to be energy-conserving at first glance. Nevertheless, a
detailed consideration discloses an energy blow-up behaviour if a standard quadrature
is applied. For the purpose of further investigations concerning the energy conservation,
we refer to the residual Rel (4.46) which is pictured in Figure 4.29 for the relevant time
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4. Finite Elasticity

period without external loads. Therein, the differences between the standard and the
non-standard quadrature rule become even more obvious, characterised by distinct os-
cillations of the residual in the case of the standard quadrature rule. By contrast, the
non-standard quadrature rule based on the ‘stress enhancement’ guarantees indeed the
conservation of the total energy within the calculation accuracy.

Remark 4.7: However, the excellent results of the non-standard quadrature rule are
strictly linked to an appropriate evaluation strategy for the ‘stress enhancement’ to
exploit its full potential. Regarding the numerical performance, we compare here the
number of iterations required per time step for the standard and the non-standard
quadrature rule evaluated based on the ‘mixed’ and the ‘completely perturbed strat-
egy’. As discussed in Section 4.5, the ‘stress enhancement’ is switched off if the global
iteration scheme does not converge within a pre-defined number of iterations 8. The
results confirm impressively the significance and effectiveness of the proposed ‘mixed
strategy’, enabling a numerical performance which is absolutely competitive to the time-
stepping scheme based on the standard quadrature rule. Thereby, the maximum num-
ber of iterations per time step is equal to 5 for both quadrature rules. Contrariwise,
the ‘completely perturbed strategy’ involves crucial convergence problems, demanding
the switching procedure which induces for the present example 109 time steps without
‘stress enhancement’, compare Figure 4.30 a). Consequently, the conservation of energy
is only guaranteed at first glance. In Figure 4.30 b), it can be clearly seen by zooming-in
that the total energy increases not only for the standard quadrature rule, but also for the
non-standard quadrature rule if the ‘completely perturbed evaluation’ is chosen. Thus,
the ‘mixed strategy’ represents exclusively the proper method of choice.

8The allowed number of iterations per time step is pictured by means of a horizontal (dotted and
dashed) line in the plots.

82



4.6. Numerical Examples – Spinning Wheel

−10 −5 0 5 10 15 20

−10

−5

0

5

10

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

tim
e−

st
ep

 s
iz

e

PSfrag replacements

a) b)

F̄
ext

F̄
ext

v̄0

t

f(t)

Figure 4.26.: a) initial configuration B0 with external loads and loading history, b) change
of the time-step size
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Figure 4.27.: a) sequence of the motion and deformed configuration Bt at t = 30, b)
components of the linear momentum
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Figure 4.28.: a) component of the angular momentum (zoom), b) total energy H (zoom)
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Figure 4.29.: residual of energy conservation Rel (zoom): a) standard & non-standard
quadrature rule, b) non-standard quadrature rule
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Figure 4.30.: standard & non-standard quadrature rule (‘completely perturbed/mixed
strategy’): a) number of iterations per time step, b) total energy H (zoom)
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4.6.2. Mixed stiffness motion

The last example of the present chapter represents an exceedingly demanding challenge
for time integrators, involving ‘large strain’ as well as ‘nearly rigid parts’. Incorporat-
ing the loading parameters fmax = 20.0 and Tload = 2.0, the wheel is composed of stiff
and non-stiff regions to fortify the qualification and effectiveness of the recommended
concepts. For the spokes and the circlet, the material parameters λ1 = 200, µ1 = 100
have been applied. In contrast, stiff material properties have been used for the nave,
namely λ2 = 60000 and µ2 = 30000. Additionally, we have once more included changes
of the time-step size, involving hn ∈ {0.02, 0.1, 0.2, 0.3}, to demonstrate the capabil-
ity to handle small as well as large time steps, and to confirm the robustness of the
proposed Galerkin-based time integrator, compare Figure 4.31 b). The deformed con-
figuration subsequent to the loading period at t = 2 and some snapshots of the motion,
calculated with the non-standard quadrature rule, are pictured in Figure 4.31 a). We
observe comparatively large strains, especially within the circlet, and a quasi rigid nave.
The non-standard as well as the standard quadrature rule provide both a mechanically
consistent time-integration, as shown in Figure 4.32. However, the integrator based on
the standard quadrature rule features a critical energy blow-up behaviour which leads
to a break-off of the calculations (cf. dashed lines), whereas the proposed time-stepping
scheme based on the non-standard quadrature rule, involving the ‘mixed strategy’, offers
the required conservation of the total energy, as displayed in Figure 4.33 a). Moreover, it
is shown in Figure 4.34 b) that the application of a non-standard quadrature rule guar-
antees energy conservation within the order of magnitude O(10−10). Contrariwise, the
residual of energy conservation Rel (4.46) computed by means of a standard quadrature
rule exposes strong deviations from zero, as can be seen in Figure 4.33 b) and Figure
4.34 a) respectively.

Remark 4.8: Once more, the results of the non-standard quadrature rule are strongly
influenced by the applied evaluation strategy for the ‘stress enhancement’. Analogously
to the previous example, the application of the ‘completely perturbed strategy’ renders
unacceptable convergence problems, requiring the switch-off of the ‘stress enhancement’
for 52 time steps. Thereby, the numerical problems are not only restricted to small
time-step sizes, compare Figure 4.35 a). Naturally, this switching procedure entirely
destroys the energy conservation property of the time-stepping scheme, as illustrated in
Figure 4.35 b). Hereby, the corresponding plot shows an energy blow-up behaviour sim-
ilar to the standard quadrature rule, resulting in a program abort due to divergence at
t = 18.92. Moreover, it is pictured in Figure 4.36 that the residual of energy conservation
Rel clearly deviates from zero not only for the standard but also for the non-standard
quadrature rule combined with the ‘completely perturbed strategy’. Hence, exclusively
the combination of the non-standard quadrature rule and the ‘mixed strategy’ enables
a robust integration related to the claimed guarantee of energy conservation within the
calculation accuracy.
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Figure 4.31.: a) sequence of the motion and deformed configuration Bt at t = 2, b) change
of the time-step size
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Figure 4.32.: components of: a) linear momentum, b) angular momentum (zoom)

86



4.6. Numerical Examples – Spinning Wheel

0 2 4 6 8 10 12 14 16 18 20
6.2

6.25

6.3

6.35

x 10
4

time

to
ta

l e
ne

rg
y

4 6 8 10 12 14 16 18 20
6.343

6.344

6.345

6.346

6.347

6.348
x 10

4

time

zo
om

: t
ot

al
 e

ne
rg

y

standard quadrature

non−standard quadrature

standard quadrature

non−standard quadrature

0 2 4 6 8 10 12 14 16 18 20
−50

0

50

100

150

200

250

300

time

re
si

du
al

 o
f e

ne
rg

y 
 c

on
se

rv
at

io
n

standard quadrature

non−standard quadrature

PSfrag replacements

a) b)

Figure 4.33.: a) total energy H (zoom), b) residual of energy conservation Rel
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Figure 4.34.: residual of energy conservation Rel (zoom): a) standard & non-standard
quadrature rule, b) non-standard quadrature rule
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Figure 4.35.: standard & non-standard quadrature rule (‘completely perturbed/mixed
strategy’): a) number of iterations per time step, b) total energy H (zoom)
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Figure 4.36.: residual of energy conservation Rel for the standard & non-standard quadra-
ture rule (‘completely perturbed/mixed strategy’): a) time period t ∈ [4, 5], b) time
period t ∈ [2, 20]
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For the previous investigations, the general framework introduced in Chapter 3 has been
restricted to the well-established conservative case, developing an efficient strategy that
basically allows the incorporation of hyperelastic constitutive laws based on principal
stretches within the context of energy-conserving time-stepping schemes. Furthermore,
such eigenvalue-based formulations are also significant to describe finite inelasticity in
general, particularly to model elasto-plastic material behaviour in a geometrically non-
linear setting. The main issue of the present chapter is now the application of the general
concepts, that have been initially developed in Chapter 3 for arbitrary dissipative consti-
tutive laws based on an internal variable formulation, to the specific case of large strain
plasticity.

5.1. Constitutive Modelling – Multiplicative Plasticity

In contrast to small strain plasticity, an additive decomposition of the strain measure
into elastic and plastic parts is controversial within the context of finite deformations,
even if such additive formulations date back to Green and Naghdi [65] and have also been
discussed in recent publications by several authors, compare e.g. References [118, 131].
Nevertheless, in the following, we favour a well-established multiplicative decomposition
of the deformation gradient that perfectly fits into a configurational-based formulation
and interpretation of nonlinear continuum mechanics, referring for instance to Lee [102],
Simo [162], Miehe [130], or Menzel [121].

5.1.1. Formulation

Based on the fundamental kinematic relations of Section 3.1, the deformation gradient is
assumed to be multiplicatively decomposed into an elastic and a plastic part, as indicated
above. This assumption leads to the kinematic description

F
.
= F e · F p , (5.1)

that naturally implies a stressfree (incompatible) configuration – the so-called interme-

diate configuration – represented by its tangent space T B̂, as sketched in Figure 5.1. In
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Figure 5.1.: resulting configurations within the framework of finite multiplicative plasticity

analogy to the right Cauchy-Green deformation tensor of the reference configuration B0,
introduced in Equation (3.4), an elastic right Cauchy-Green tensor

Ĉe := F t
e · F e (5.2)

can be defined in the intermediate configuration, compare e.g. Reference [162]. As moti-
vated in Section 3.1.2, internal variables κ are included in the Helmholtz energy density
ψ = ψ(F ,κ). Restricting to isotropy and incorporating invariance under superposed
rigid body motions, the Helmholtz energy density can be formulated in terms of the
eigenvalues of the elastic right Cauchy-Green strains based on the spectral decomposi-
tion

Ĉe =

ndim∑

A=1

AλcCe
N̂A ⊗ N̂A , (5.3)

as discussed in detail in Section 4.1. According to the definition of the Piola-Kirchhoff
stress tensor in the reference configuration B0, one obtains its intermediate counterpart
Ŝ := 2∇bCe

ψ and the (transposed) Mandel stress tensor

M̂
t
= Ĉe · Ŝ . (5.4)

To distinguish between elastic and plastic deformation states, the yield function Φ ≤ 0
is introduced, defining the elastic range

Eβ := {β
∣∣ Φ(β; κ) < 0} (5.5)
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5.1. Constitutive Modelling – Multiplicative Plasticity

based on the conjugated quantities β given by Equation (3.6). To specify the evolution
of the internal variables κ, we apply the well-accepted postulate of maximum dissipation
based on a minimisation of the functional M = −D+γ̇ Φ, and obtain the local associated
evolution

κ̇ = γ̇∇βΦ . (5.6)

Analogously to Chapter 2, the actual loading/unloading process can be characterised by
the so-called Kuhn-Tucker conditions

γ̇ ≥ 0 Φ ≤ 0 γ̇ Φ = 0 (5.7)

and the consistency condition respectively, that is given by γ̇ Φ̇ = 0 for Φ = 0. Further
details are discussed in standard textbooks, like for instance in References [162, 164],
dealing with the mechanical modelling of plasticity from a computational point of view.

Remarks 5.1:

1. Interestingly, also the multiplicatively decomposed deformation gradient implies
an additive structure, namely an additive decomposition of the spatial velocity
gradient ∇qv := Ḟ · F−1 into elastic and plastic parts. By means of a pullback-
operation with respect to the intermediate configuration, we obtain furthermore
the format

L̂ := F−1
e · ∇qv · F e = L̂e + L̂p , (5.8)

wherein the elastic part L̂e := F−1
e · Ḟ e and the plastic part L̂p := Ḟ p · F

−1
p have

been introduced.

2. Using a plasticity model with isotropic hardening, the internal variables κ can
be specified as κ := [F p, κ]. Consequently, associated evolution equations can be
written in the form

Ḟ p = γ̇∇cM
tΦ · F p and κ̇ = γ̇∇βΦ , (5.9)

wherein the abovementioned definition of L̂p has been incorporated to formulate
the evolution of F p, compare e.g. Reference [132]. The integration in time of
the local evolution equations (5.9) will be discussed in the following based on an
exemplary return mapping scheme.

5.1.2. Return mapping algorithm

Since in the present contribution the focus has been placed on the Galerkin-based time-
discretisation on the global level, we exemplarily apply for the local integration a stan-
dard approach: the commonly adopted exponential update scheme, see e.g. References
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[118, 128, 161]. However, any other appropriate local update algorithm could be incor-
porated instead, whereby the exponential procedure has further significant advantages
in addition to its elementary structure:

• Firstly, the exponential update scheme is well-established for finite multiplicative
plasticity and it is able to preserve in combination with a logarithmic strain mea-
sure exactly the structure of the small strain theory.

• Furthermore, plastic incompressibility can be guaranteed for the following model
without any additional costs and the application of a ‘von Mises’-type yield func-
tion with a linear isotropic hardening part allows the computation of the incre-
mental plastic multiplier without local iterations.

Taking all these aspects into account, the classical exponential update scheme for finite
multiplicative plasticity performs well and cost-efficiently. Based on the continuous form
(5.9), the associated evolution equations at hand are integrated via

F n+1
p = exp(∆γ [∇

cM
t Φ]n+1) · F n

p (5.10)

and

κn+1 = κn + ∆γ [∇βΦ]n+1 (5.11)

respectively, whereby a classical Euler-backward scheme has been applied for the scalar-
valued hardening variable κ. The actual return mapping algorithm can be performed in
two steps: a trial step and a projection step, compare References [162, 164]. Regard-
ing the chosen dynamical framework introduced in Chapter 3, the local update scheme
should be formulated in terms of C and F p as driving variables, extending the hyper-
elastic case discussed in Chapter 4. Consequently, we introduce an intermediate trial
state [•]trial by means of given Cn+1 and frozen plastic deformations represented by F n

p

and κn, resulting in

Ĉ
trial

e = F n
p
−t · Cn+1 · F n

p
−1 and κtrial = κn . (5.12)

Assuming isotropy, the stresses Ŝ commute with the elastic right Cauchy-Green tensor
Ĉe and, hence, the Mandel stresses M̂ are symmetric. Based on Equation (5.10),
it follows consequently that the principal directions of the elastic right Cauchy-Green
tensor and the trial state are coaxial and we obtain the update

Ĉ
n+1

e = exp(−2∆γ [∇
cM

t Φ]n+1) · Ĉ
trial

e (5.13)

for the projection step. Based on a spectral decomposition of the trial state

Ĉ
trial

e =

ndim∑

A=1

[Aλtrial
e ]2 N̂

trial

A ⊗ N̂
trial

A , (5.14)
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the resulting updated elastic deformation tensor can be composed, rendering

Ĉ
n+1

e =

ndim∑

A=1

[Aλn+1
e ]2 N̂

trial

A ⊗ N̂
trial

A . (5.15)

Making use of the coaxiality relations, we obtain furthermore the Mandel stresses

M̂
t n+1

=

ndim∑

A=1

M̂ t n+1
A N̂

trial

A ⊗ N̂
trial

A . (5.16)

Bearing Equations (5.13)–(5.15) in mind and introducing logarithmic strains, we obtain
the update for the principal elastic stretches

ln(Aλn+1
e ) = ln(Aλtrial

e ) − ∆γ [∇cMt
A

Φ]n+1 . (5.17)

Please note, that the principal directions satisfy N̂A = N̂
trial

A , assuming fixed principal
axes for the return mapping procedure as discussed e.g. in Reference [162]. For conve-
nience of the reader, the complete structure of the local update algorithm is summarised
in Table 5.1. Therein, we have incorporated a specific Helmholtz energy density ψ based
on the macroscopic part

ψmac = µ [ln2(1λe) + ln2(2λe) + ln2(3λe)] +
λ

2
ln2(Je) with Je =

√
det(Ĉe) (5.18)

and a microscopic part related to linear isotropic hardening effects, namely

ψmic =
1

2
Hrdκ2 which renders β = −Hrd κ , (5.19)

compare Equation (3.8). Moreover, a yield function Φ of the ‘v. Mises’-type has been
chosen as a fundamental example.

Remarks 5.2:

1. The outlined local update relies substantially on a formulation of the constitutive
behaviour based on principal stretches, involving spectral decompositions of the
deformation measure and the related stresses. Once more, the algorithmic treat-
ment rests upon the concepts that have been already discussed in Section 4.1.2 for
the hyperelastic case, featuring an efficient numerical implementation.

2. Please keep in mind, that the particular format of the applied exponential-based
local update discussed in this section is only first-order accurate in time. The
influence on the (global) order of accuracy of the resulting time-stepping scheme
will be investigated in Section 5.5.
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Table 5.1.: exponential update (& Euler-backward) algorithm for isotropic finite multi-
plicative plasticity with isotropic hardening formulated with respect to the intermediate
configuration

• elastic predictor step: trial state

Ĉ
trial

e = F n
p
−t · Cn+1 · F n

p
−1 and κtrial = κn

Ĉ
trial

e =

3∑

A=1

[Aλtrial
e ]2 N̂

trial

A ⊗ N̂
trial

A

devM̂ t trial
A = 2µ [ln(Aλtrial

e ) −
1

3
ln(1λtrial

e
2λtrial

e
3λtrial

e )]

• check yield condition: ‘v. Mises’-type with linear isotropic hardening

Φtrial = ||devM̂
t trial

|| −

√
2

3
[Y0 +Hrdκtrial]

IF Φtrial > 0: radial return

∆γ =
Φtrial

2µ+ 2
3
Hrd

> 0

ELSE: [•]n+1 = [•]trial ∆γ = 0

• update:

κn+1 = κtrial + ∆γ [∇β Φ]n+1

F n+1
p =

[ 3∑

A=1

exp
(
∆γ [∇dev cMt

A
Φ]trial

)
N̂

trial

A ⊗ N̂
trial

A

]
· F n

p

ln(Aλn+1
e ) = ln(Aλtrial

e ) − ∆γ [∇dev cMt
A

Φ]trial

devM̂ t n+1
A = devM̂ t trial

A − 2µ∆γ [∇dev cMt
A

Φ]trial

• compute stresses in B0:

M t n+1 = F n+1
p

t
· M̂

t n+1
· F n+1

p
−t

Sn+1 = Cn+1−1
· M t n+1
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5.2. Consistent Time-Stepping Schemes

Analogously to the hyperelastic case discussed in Section 4.2, next, specific time-stepping
schemes will be outlined with regard to following numerical investigations. For this
purpose, the general format of consistent time-FE methods for dissipative material
behaviour, developed in Section 3.3, will be specified in this section to finite elasto-
plasticity, whereby the particular plasticity model and the exemplarily applied local
update have been summarised in Table 5.1. In the following, the local scheme will be
treated as a constitutive ‘black box’, emphasising that also other plasticity models or
local update schemes could be incorporated without changing the main concepts on
the global level 1. Once more, linear Finite Elements in time with k = 1 are chosen
for the following steps, rendering on the global level basically the same equations that
have been already discussed in Section 4.2 for the hyperelastic case, compare Equations
(4.24). Nevertheless, in the here considered plastic case, the approximation of the crucial
time-integrated internal load vector has to be modified properly in comparison to the
purely elastic formulation, involving the time-dependence S(C(α),κ(α)).

5.2.1. Standard quadrature rule

Once more, we start with the application of standard Gauss quadrature rule. Thereby,
the number of integration points in time ngpt

is initially arbitrary to study in Section 5.3.1
its influence on the resulting consistency of the integrators, since in the context finite
elasto-plasto-dynamics Galerkin-based integrators have not been investigated concerning
this matter in literature. Referring to Equation (3.46), we introduce the approximation

∫ 1

0

F int h
I dα ≈

ngpt∑

l=1

[ nnode∑

J=1

∫

B0

[∇XNI ⊗∇XNJ ] : S(C(ζl),κζl
) dV qh

J(ζl)

]
wl (5.20)

for I = 1, ..., nnode. Please note, that in Equation (5.20) the time approximation of the
right Cauchy-Green tensor relies indeed on a standard cG-approximation of the positions.
As stated afore, we have exemplarily chosen one of the simplest and most established
update procedures for the local evolution equations. To fit the return mapping procedure
into the standard quadrature rule (5.20), the exponential update is applied for ngpt

+ 1
integration steps, related to ngpt

intermediate stages represented by

{F n
p , κ

n} −→ {Sn+ζl,F n+ζl
p , κn+ζl} , (5.21)

1In this context, the most important difference between plasticity and the modelling of other dissipative
material behaviour based on an internal variable formulation, like for instance visco-elasticity, is
basically the required fulfilment of the yield condition. Thereby, the efficient numerical treatment
of the related inequality constraint is usually based on a predictor/corrector formulation of the local
update, as outlined in Section 5.1.2. However, from a computational point of view, this additional
constraint poses further challenges concerning the embedding into the global scheme, particularly
within a dynamical framework. One crucial issue in this context is for instance the question, at
which time the resulting stress state should be enforced to fulfil the yield condition.
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Figure 5.2.: local level: integration strategy (standard quadrature rule)

which are followed by the final projection

{F n
p , κ

n} −→ {Sn+1,F n+1
p , κn+1} (5.22)

driven by Cn+ζl and Cn+1 respectively, as illustrated in Figure 5.2 2. On the one hand,
the foregoing update procedure allows the embedding of the exponential-based local
integration into the standard quadrature rule in a quite intuitive way and, moreover, it
guarantees on the other hand the fulfilment of the yield condition not only at the final
state, but also for the involved intermediate stages. The influence of this basic projection
strategy on the resulting (global) order of accuracy of the time-stepping scheme as well
as an alternative approach will be discussed in Section 5.5. For the particular choice of
one Gaussian integration point in time, the standard cG(1) method is equivalent to the
classical midpoint (difference) scheme, involving

∫ 1

0

F int h
I dα ≈

nnode∑

J=1

[∫

B0

[∇XNI ⊗∇XNJ ] : S(C(1/2),κ1/2) dV

]
qh

J(1/2) . (5.23)

Since in the hyperelastic case the positive influence of an assumed strain approximation
is well-known, we apply also in the plastic case the linear approximation Ch(α) =
[C2 − C1]α + C1 based on Equation (3.45) and obtain the alternative representation

∫ 1

0

F int h
I dα ≈

nnode∑

J=1

[ ∫

B0

[∇XNI ⊗∇XNJ ] : S(Ch(1/2),κ1/2) dV

]
qh

J(1/2) . (5.24)

Equation (5.24) represents the extension of Equation (4.25) to the elasto-plastic case
and defines in combination with Equations (4.24) a modified midpoint scheme, incor-
porating an approximation of the right Cauchy-Green tensor as an additional feature.

2Hereby, the local integration is pictured based on the physical time interval T = [tn, tn+1] for the sake
of conceptual clarity. However, keep in mind that the global integration is actually performed based
on a mapping to the reference time interval I = [0, 1], as discussed in Section 2.2.2 and Section
3.3.1.
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As discussed in Chapter 3 for the general case of arbitrary k, both integrators – the
classical as well as the modified scheme defined by the approximations (5.23) and (5.24)
respectively – feature the conservation of the momentum maps and can be consequently
referred to as mechanically consistent, as classified in Section 3.2.3.

5.2.2. Non-standard quadrature rule

In general, the involvement of dissipation effects represents in the context of nonlinear
dynamics a further challenge regarding the claimed fulfilment of a discrete energy bal-
ance. Particularly the modelling of finite elasto-plasto-dynamics leads to an increasing
nonlinearity of the internal load vector in comparison to elasto-dynamics. Consequently,
the application of a non-standard quadrature rule is once more required, since in general
the related time-integrals can not be integrated exactly by a standard approximation.
To guarantee energy-consistency in general, a non-standard quadrature rule for the time-
integrated internal load vector is introduced based on Equation (3.47). Using once more
one integration point in time, Equation (3.42) yields

∫ 1

0

F int h
I dα ≈

nnode∑

J=1

[∫

B0

[∇XNI ⊗∇XNJ ] : Salg(1/2) dV

]
qh

J(1/2) . (5.25)

By defining S1/2 := S(Ch(1/2),κ1/2), the elasto-plastic enhanced algorithmic stress
tensor Salg follows directly from Equation (3.51), resulting in

Salg(1/2) := S1/2 +
2 [ψα=1 − ψα=0 + ∆d ] − S1/2 : [C2 − C1]

||C2 − C1||2
[C2 − C1] . (5.26)

Therein, the local dissipation increment ∆d must be provided by the local update algo-
rithm.

Remark 5.3: Based on Equation (5.26), it can be clearly seen that the general algorith-
mic stresses Salg (3.51) result for linear Finite Elements in time in the same formulation
that has been proposed by Meng and Laursen [118, 119]. However, the applicability of
the ‘discrete’ concept is strictly bounded to a specific (second-order accurate) integra-
tion of the global equations of motion based on Finite Differences. To the contrary, the
general format (3.51) represents the appropriate generalisation against the background
of Finite Elements in time, whereby especially the non-standard quadrature rule (3.47),
including related collocation properties, turns out to be essential concerning the step
from a commonly used ‘discrete’ concept to a time FE framework.

To fit the return mapping procedure into the non-standard quadrature rule (5.25), we
apply basically the same procedure as for the standard quadrature rule, given by Equa-
tion (5.21) and Equation (5.22). In the particular case, the exponential update is applied
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for two integration steps, namely for tn → tn+ 1

2

and tn → tn+1, which can be represented
by

{F n
p , κ

n} −→ {Sn+ 1

2 ,F
n+ 1

2
p , κn+ 1

2} (5.27)

and

{F n
p , κ

n} −→ {Sn+1,F n+1
p , κn+1;ψn+1,∆d} , (5.28)

as pictured in Figure 5.3. In contrast to the standard quadrature rule, the additional
computation of the Helmholtz energy density ψn+1 and the (local) dissipation increment
∆d is required within each iteration step. For the applied plasticity model discussed in
Section 5.1.2, the dissipation increment is given by

∆d = ∆γ

√
2

3
Y0 , (5.29)

wherein Y0 denotes the initial yield stress, compare Table 5.1. At this point, we empha-
sise once more that due to the specific formulation of the local update both integration

steps (5.27), (5.28) are driven by Cn+ 1

2 and Cn+1 respectively. Furthermore, the fulfil-
ment of the yield condition by the physical stress measure of the continuum formulation
is consequently guaranteed at the quadrature point in time, related to the midpoint
configuration at t = tn+ 1

2

, as well as at the current time t = tn+1. In view of the re-
sulting consistency properties of the particular integrator, it can be straightforwardly
verified based on the general investigations in Chapter 3 that the chosen approximation
in combination with Equation (5.26) fulfils the approximated local energy-consistency
condition (3.49) which reads for linear Finite Elements in time

ψα=1 − ψα=0 + ∆d−
1

2
Salg(1/2) : [C2 − C1] = 0 , (5.30)
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as demonstrated more detailed in Section A.3. Moreover, the fundamental global con-
dition for energy-consistency (3.60) yields

F̄
int h

(1/2) · [q̄2 − q̄1]
!
= Ψα=1 − Ψα=0 + ∆D (5.31)

for the particular case k = 1. Following the same arguments as discussed in Section 3.3.3
respectively Appendix A, Equation (5.31) is fulfilled by the here considered time-stepping
scheme, rendering a ‘mechanically’ as well as ‘energy-consistent’ time-integration 3. In-
terestingly, the condition (5.31) is equivalent to a relation advocated by Noels et al.
[144] for hypoelastic constitutive formats, which should be verified for the applied inter-
nal load vector. Furthermore, a similar approach has been proposed in Reference [147]
by the same authors in the context of an energy momentum conserving algorithm for
visco-plasticity based on a variational formulation. Consequently, the Galerkin-based
approach proposed in this contribution recaptures once more well-established concepts
for Finite Difference methods as special cases.

Remarks 5.4:

1. Please note, that in contrast to Armero [5, 9] a fulfilment of the yield condition
by the algorithmic stress tensor is not enforced in this contribution (analogously
to Meng and Laursen [118, 119]) since, in our opinion, its physical meaning is not
obvious and, hence, the interpretation is quite problematic. Instead, we account
for Salg solely as a numerical modification of the quadrature rule based on the
physically motivated stresses of the continuum model which are enforced to fulfil
the yield condition not only at the current time but also at the intermediate stages
related to the quadrature points.

2. In Meng and Laursen [118, 119], the global time-stepping scheme rests upon the
energy-momentum algorithm proposed by Simo and Tarnow [165] combined with
the concept of a ‘discrete gradient/derivative’, including an additional dissipation
part. Concerning local time-integration, Meng and Laursen suggest also an expo-
nential update, being second-order accurate. As shown above, the special case of
linear time elements combined with one integration point in time results – by using
the general non-standard quadrature rule (3.47) – basically in the same equations,
even if the conceptual approach of Finite Differences and Finite Elements in time is
fundamentally different. However, both formulations are similar but not identical,
even not for k = 1. In fact, we have formulated purposely the local update with
respect to the intermediate configuration instead of the classical spatial represen-
tation that has been used by Meng and Laursen. Consequently, in our approach
the interpolation of the (relative) deformation gradient is not required and the

3Using an abbreviatory notation, the final scheme will be denoted as ‘ECMC-cG(1) method’, in ac-
cordance with Section 3.3.2.
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update can be formulated solely based on the assumed strain approximation in
time Ch, inspired by the hyperelastic case discussed in Chapter 4. This concept
avoids a potential coupling of strains and rotations affected by superimposed rigid
body motions and renders a very robust integration including mechanically stiff
problems, see also References [67, 68]. Moreover, in this contribution the physical
stresses of the continuum model are projected to the yield surface at the quadrature
point and at the current time as well, compare Equations (5.27), (5.28).

3. Recently, an energy-dissipative momentum-conserving time-stepping algorithm for
finite plastodynamics has been proposed by Armero [5], inspired by earlier publi-
cations of Armero and Romero [7, 8]. Once more, the so-called ‘EDMC-scheme’
bases on the ‘discrete gradient/derivative’ concept by Gonzalez [62, 64], incorpo-
rating an additional numerical dissipation part. Thereby, the gradient has been
completely formulated in terms of Ĉe in the intermediate configuration, requiring
pull-back operations via F p. Moreover, a main difference to the here proposed con-
cept consists in the limitation on elastic parts in the ‘discrete gradient/derivative’
which has been supplemented in Armero and Zambrana-Rojas [9] with a special
metric, enforcing volumetric properties of the plastic flow. Furthermore, in sharp
contrast to our formulation which actually allows the application of the local up-
date in a modular way, the formulation of Armero [5, 9] rests upon a monolithic
treatment of the global and local time-integration, involving necessarily a partic-
ularly designed non-standard update procedure for the plastic variables. Even if
this specific update is second-order accurate, it additionally requires (staggered)
local iterations in any case, accompanied by a crucially increasing implementation
effort.

4. As investigated extensively in Chapter 4 for the non-dissipative case, an enhanced
algorithmic stress tensor of type (5.26) can suffer from serious numerical pit-
falls, when eigenvalue-based constitutive models in combination with the well-
established perturbation technique are involved. In this context, a mixed evalua-
tion strategy has been proposed in Section 4.4 as an appropriate remedy. Further-
more, also the specific formulation of isotropic plasticity, that has been chosen as
a fundamental example, relies essentially on spectral representations, as shown in
Section 5.1.2. In particular, the underlying Helmholtz energy density of the ex-
emplary elasto-plastic model considered in this contribution is of the Hencky-type
(4.11), compare Equation (5.18). Consequently, a mixed evaluation strategy has
also been chosen for the dissipative case, rendering

Salg(1/2) := Sδ
1/2 +

2 [ψα=1 − ψα=0 + ∆d ] − Sδ
1/2 : [C2 − C1]

||C2 − C1||2
[C2 − C1] , (5.32)

wherein a perturbed evaluation of the stresses is combined once more with an
unperturbed evaluation of the Helmholtz energy density, compare Equation (4.37).
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5.3. Numerical Examples – Fundamental Results

To demonstrate the excellent numerical performance and to investigate fundamental
properties of the proposed time-stepping schemes, three representative examples (2d,
plane strain conditions) are presented next, based on the specific algorithms outlined
in Section 5.2. Already in this basic case the crucial properties of the time integrators
can be shown. Nevertheless, please recall that the general Galerkin-based framework
proposed in Section 3.3 conceptually allows the application of arbitrary polynomial de-
grees k. In the following, special emphasis will be placed on the claimed consistency
properties. Analogously to Equation (4.46) for non-dissipative dynamics, we introduce
in the dissipative case the residual

R := H̃n+1 − H̃n
!
= 0 (5.33)

to investigate the fulfilment of the balance of the augmented Hamiltonian (3.62) in detail,
representing a true measure for global energy-consistency. In the following numerical
examples, the constitutive behaviour relies on a Helmholtz energy density of Hencky-type
in combination with a ‘v. Mises’-type yield function including linear isotropic hardening
effects, as introduced in Section 5.1.2.

5.3.1. Flying Frame

The first example in this context deals with the free motion of the ‘Flying Frame’ intro-
duced in Section 4.5, whereby the initial setup of the frame is pictured in Figure 4.17
a) 4. The following computations have been performed with the constant time-step size
hn = 0.1, using the parameters ρ = 3.0, ||v̄0|| = 85, fmax = 30, Tload = 0.5, λ = 1000,
µ = 500, Y0 = 50, and Hrd = 100. The main issue of the present example is the investi-
gation of the influence of the applied number of integration points in time ngpt

regarding
the obtained conservation properties. Therefore, the standard approximation (5.20) has
been chosen regarding the evaluation of the related time-integrated internal load vector,
whereby the standard case of one integration point in time ngpt

= 1 (indicated by ‘1
GP’), rendering the classical midpoint scheme, is exemplarily compared with the choice
ngpt

= 2 (referred to as ‘2 GP’). The results are shown in Figure 5.4 and Figure 5.5 re-
spectively. Thereby, Figure 5.5 confirms once more the well-known fact that the resulting
(midpoint) scheme based on a standard Gauss quadrature rule with ngpt

= 1 features a

4In this and also in all following examples, a standard displacement-based formulation is still used
for the FE discretisation in space, focussing on the actual time-integration. However, also a mixed
formulation could by adapted appropriately to avoid volumetric locking effects related to (plastic)
incompressibility, as discussed in Gonzalez [64] for the conserving integration of incompressible
elastodynamics. Furthermore, an overview of different FE strategies to prevent locking in the context
of conserving/decaying schemes can be found in Kuhl and Ramm [96] with special emphasis on shell
dynamics. Moreover, adequate assumed strain formulations based on the so-called ‘B-bar operator’
have been recently investigated by Armero [6] in the context of dynamics.
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Figure 5.4.: influence of ngpt
: a) total energy H, b) global energy-consistency based on R
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Figure 5.5.: influence of ngpt
: a) components of the linear momentum, b) component of

the angular momentum (zoom)

mechanically consistent integration also in the plastic case, including the conservation of
the linear as well as the angular momentum. Nevertheless, such a standard quadrature
rule combined with one Gaussian integration point in time suffers crucially from oscil-
lations of the total energy, as shown in Figure 5.4 a), and violates clearly the claimed
monotonic decrease of the total energy due to a (strictly) positive plastic dissipation.
Consequently, the scheme is neither thermodynamically nor energy-consistent, compare
also Figure 5.4 b). Please recall, that this inconsistency is caused by approximation
errors of the used quadrature rule, since the highly nonlinear time integral including
the internal load vector can not be integrated exactly. At first glance, one appropriate
remedy could be an intuitive increase of the applied number of time-integration points.
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As shown in Figure 5.4 a), the required monotonic decrease of the total energy seems
to be featured for the resulting scheme based on ngpt

= 2 and also the error within the
residual R is visibly reduced, even if energy-consistency is still not guaranteed within
the calculation accuracy. However, an increasing number of time-integration points does
not represent an adequate solution, since in this case the better performance regarding
the energy balance is gained at the expense of the conservation of the angular momen-
tum, as shown in Figure 5.5 b). Therefore, mechanical consistency is not guaranteed
anymore influenced by the violated collocation property. Moreover, it is well-known in
literature that the conservation of the angular momentum might have a crucial influence
on the quality of the results. Consequently, the standard quadrature rule (5.20) seems
to be an improper choice in view of a completely consistent time-integration of finite
elasto-plasto-dynamics, analogously to the well-studied hyperelastic case.

5.3.2. Oscillating Bar

The second example deals with an oscillating bar consisting of 27 isoparametric 4-node
elements in space. The bar is fixed at its left side and excited due to some external
loads F̄

ext
(t) := [F ext

1 (t), ...,F ext
nnode

(t)]t at the right end. In this regard, the norm of the
external nodal-load ||F ext

I || at the loaded (spatial) node I increases once more linearly
in time up to a maximum value fmax = 600. Subsequently, it decreases again linearly
to zero, compare Figure 5.6 a). After a loading period of Tload = 1.0, the bar oscillates
without excitation. For these computations a large time step hn = 0.1 has been used
in combination with the mass density ρ = 3.0. Exceedingly stiff material properties
have been applied for the oscillating bar, namely λ = 300 000, µ = 100 000, Y0 = 2000,
and Hrd = 1. Such a high stiffness has been chosen for two reasons: On the one
hand, it is well-known that computations with stiff material properties can cause in
general significant numerical problems in the context of computational dynamics due
to involved high-frequency modes. On the other hand, it has been demonstrated in
Chapter 4 that potential pitfalls, which are related to the specific type of the involved
stress enhancement, might be exposed by an increase of the stiffness. To compare the
resulting performance, three different Galerkin-based time-stepping schemes have been
applied for the present example:

• A mechanically consistent cG(1) method based on the approximation (5.23) that
renders the classical midpoint scheme.

• A mechanically consistent cG(1) scheme based on the approximation (5.24), in-
cluding an assumed strain approximation in time as an additional feature. The
resulting scheme represents a modified midpoint scheme and will be denoted in
this and the following example as ‘midpoint+’ scheme.

• An ‘ECMC-cG(1) method’ based on the elasto-plastic enhanced algorithmic stress
tensor (5.26).
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5. Finite Elasto-Plasticity

In Figure 5.6, a large deflection of the bar can be seen as well as a huge plastic dissipa-
tion, which is in the range of 90% of the total energy. At first glance, the results of the
three integrators regarding the total energy H are quite similar. However, the differences
can be clearly seen in Figure 5.6 b), when zooming-in. In this context, the midpoint
scheme renders once more an increase of the total energy, for instance at t = 2.2, that
is obviously related to a strong violation of the energy-consistency. Considering the
residual of global energy-consistency given by Equation (5.33), the differences between
the three Galerkin-based schemes are serious. As displayed in Figure 5.7, global energy-
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Figure 5.6.: a) undeformed/deformed configuration B0/Bt with external loads including
loading history, b) total energy H (zoom) computed with different quadrature rules
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Figure 5.7.: a) global energy-consistency based on the residual R for different quadrature
rules, b) zoom: global energy-consistency based on R for the ‘ECMC-cG(1) method’
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5.3. Numerical Examples – Fundamental Results

consistency can be guaranteed solely by using the ‘ECMC-cG(1) method’. Moreover,
the performance of the ‘midpoint+’ scheme concerning this matter is superior compared
to the performance of the standard midpoint scheme. Consequently, the ‘midpoint+’
scheme will be preferred for the following benchmark computations. Hereby, it is impor-
tant to emphasise once more that by incorporating the ‘ECMC-cG(1) method’ global
energy-consistency is indeed guaranteed in a ‘numerically exact manner’, although the
dissipation is immense. In fact, it can be seen in Figure 5.7 b) that the fulfilment of
Equation (5.33) is guaranteed within the order of magnitude O(10−10).

5.3.3. Spinning Wheel

The third representative numerical example shows the motion of the ‘Spinning Wheel’,
involving plastic deformations. In this context, the initial configuration of the wheel is
equivalent to the hyperelastic case discussed in Section 4.6, using ρ = 3.0 and ||v̄0|| = 83.

Again, external loads F̄
ext

act on the circlet, whereby in contrast to the hyperelastic case
the norm of each external nodal-load ||F ext

I || is prescribed by a sinusoidal load function
in time incorporating the amplitude fmax = 10 and the loading period Tload = 2.5, as
shown in Figure 5.8 a). Analogously to the ‘mixed stiffness motion’ of the hyperelastic
case considered in Section 4.6.2, the wheel is composed of stiff and non-stiff regions to
fortify the capability of the proposed Galerkin-based time-stepping schemes also in the
elasto-plastic context. For the spokes the parameters λ1 = 1000, µ1 = 500, Y0, 1 = 50,
and Hrd

1 = 50 have been incorporated. In contrast, stiff material properties have been
used for the nave and the circlet, namely λ2 = 90 000, µ2 = 30 000, and Y0, 2 = ∞.
Consequently, the plastic deformations will take place solely within the spokes, as can
be regarded in Figure 5.10 based on a contour plot of the hardening variable κ. In the
present case, two Galerkin-based schemes have been used for the computation of the
motion, namely

• the ‘midpoint+’ scheme involving the approximation (5.24) and

• the ‘ECMC-cG(1) method’ based on the non-standard quadrature rule defined in
Equation (5.25).

A further challenge for the applied time integrators is the change of the time-step size
from hn = 0.1 to hn = 0.2 subsequent to a simulation time of t = 3.5, as illustrated in Fig-
ure 5.8 b). The deformed configuration at t = 80 and a sequence of the motion, including
four particular configurations corresponding to t = 0.1, 3.5, 30.5, 80, are displayed in
Figure 5.9. As expected, we observe comparatively large strains within the spokes and a
nearly rigid nave. In Figure 5.11, it is confirmed that mechanical consistency, implying
the conservation of related components of linear and angular momentum, is enabled by
the ‘midpoint+’ scheme as well as by the ‘ECMC-cG(1) method’. Nevertheless, this
example demonstrates impressively the advantages of the ‘ECMC-cG(1) method’ and
the positive influence of algorithmic energy-consistency concerning the robustness of the
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5. Finite Elasto-Plasticity

resulting time-stepping scheme. Exclusively, the completely consistent scheme enables
a simulation until t = 80 for the chosen time-step size. In sharp contrast, a calculation
by means of the ‘midpoint+’ scheme stops at t = 30.5 due to an energy blow-up, com-
pare Figure 5.12 a). However, the ‘ECMC-cG(1) method’ guarantees a conservation of
the augmented Hamiltonian (see Figure 5.12 b)) in spite of an accumulated dissipation
(compare Figure 5.13), which contains nearly 20% of the total energy. Furthermore,
the differences between both integrators become obvious by comparing the obtained
global energy-consistency based on Equation (5.33), see Figure 5.14. The application
of the ‘midpoint+’ scheme yields strong oscillations in the order of magnitude O(100),
whereas the ‘ECMC-cG(1) method’ guarantees (global) energy-consistency unaffected
by a doubling of the time-step size.
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Figure 5.8.: a) sinusoidal loading history, b) change of the time-step size for t > 3.5
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Figure 5.9.: a) sequence of the motion, b) deformed configuration Bt at t = 80
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Figure 5.10.: contour plot of the hardening variable κ: a) t = 2, b) t = 36.3

10 20 30 40 50 60 70 80
2989.1828

2989.1828

2989.1828

2989.1828

2989.1828

2989.1828

time

lin
ea

r 
m

om
en

tu
m

: I
x

10 20 30 40 50 60 70 80
−0.01

−0.005

0

0.005

0.01

time

lin
ea

r 
m

om
en

tu
m

: I
y

ECMC−cG method
’midpoint+’

ECMC−cG method
’midpoint+’

0 10 20 30 40 50 60 70 80
−15000

−10000

−5000

0

5000

time

an
gu

la
r 

m
om

en
tu

m

5 10 15 20 25 30 35 40 45 50
−1.118

−1.117

−1.116

−1.115

−1.114

x 10
4

time

zo
om

: a
ng

ul
ar

 m
om

en
tu

m

ECMC−cG method
’midpoint+’

ECMC−cG method
’midpoint+’

PSfrag replacements

a) b)

Figure 5.11.: a) components of the linear momentum, b) component of the angular mo-
mentum (zoom)
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Figure 5.12.: a) total energy H (zoom), b) augmented Hamiltonian H̃ (zoom)

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

time

ac
cu

m
ul

at
ed

 d
is

si
pa

tio
n

ECMC−cG method
’midpoint+’

5 10 15 20 25 30

2500

2550

2600

2650

2700

2750

time

ac
cu

m
ul

at
ed

 d
is

si
pa

tio
n

ECMC−cG method
’midpoint+’

PSfrag replacements

a)
b)

a) b)

Figure 5.13.: a) accumulated dissipation D, b) zoom: accumulated dissipation D
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Figure 5.14.: a) global energy-consistency based on the residual R, b) zoom: global energy-
consistency
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5.4. Influence of the Predictor Strategy

5.4. Influence of the Predictor Strategy

In the previous section, several representative numerical examples have been presented,
that have clearly demonstrated the excellent numerical performance of the Galerkin-
based integrators, particularly of the ‘ECMC-cG(1) method’. In this context, it has
been shown that global energy-consistency can be guaranteed within the calculation
accuracy even if huge plastic deformations are involved, rendering a robust integration.
However, one aspect that has not been addressed so far is the application of an adequate
predictor strategy to achieve the optimal performance of the integrator. In fact, it is
quite obvious that, especially in the elasto-plastic case, an appropriate predictor step
might be helpful concerning the convergence of the involved iteration scheme, which is
needed to solve the global set of nonlinear equations of motion (4.24). In particular, it
is demonstrated in this section that the realisable plastic deformations crucially depend
on the chosen predictor strategy, since otherwise the limited radius of convergence of
the underlying (standard) Newton-Raphson scheme prohibits a numerical calculation,
especially if energy-consistency is additionally enforced. For this purpose, we consider
once more the ‘Oscillating Bar’ introduced in Section 5.3.2 and reduce successively the
initial yield stress Y0 as long as a subsequent calculation is still possible for the time
period t ∈ [0, 4]. By repeating this procedure for different time-step sizes hn, we obtain
the resulting map of the minimal achievable yield stress that is pictured in Figure 5.15
a). On the one hand, the ‘ECMC-cG(1) method’ combined with the standard predictor
strategy 5

q̄
pre
2 = q̄1 + hn M

−1 · p̄1 (5.35)

has been compared with a computation without any specific predictor step, meaning

q̄
pre
2 = q̄1 . (5.36)

On the other hand, we propose a very powerful ‘cG predictor strategy’, that contains
a pre-solution of the equations of motion based on the standard approximation (5.24),
followed by the actual solution procedure relying on the non-standard quadrature rule
(5.25). Formally, this predictor step can also be included directly in the ‘ECMC-cG(1)
method’ by introducing a parameter χ into the elasto-plastic enhanced algorithmic stress
tensor, resulting in

Salg(1/2) := S1/2 + χ
2 [ψα=1 − ψα=0 + ∆d ] − S1/2 : [C2 − C1]

||C2 − C1||2
[C2 − C1] . (5.37)

5Taking additionally the external load vector into account, an alternative formulation is represented
by

q̄
pre
2 = q̄1 + hn M

−1 · p̄1 +
1

2
h2

n M
−1 · F̄

ext
, (5.34)

whereby, in our experience, the foregoing predictor step works particularly effective for free motion
problems. However, for the here considered example Equation (5.34) has not performed sufficiently
well and consequently Equation (5.35) has been preferred for this study.
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Figure 5.15.: a) minimal achievable yield limit Y0 for different predictor strategies, b)
accumulated dissipation D for hn = 0.01
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Figure 5.16.: accumulated dissipation D for: a) hn = 0.05, b) hn = 0.1

Thereby, the parameter is initialised as χ = 0. After a first convergence of the Newton
scheme, we set χ = 1 and iterate until the iteration scheme reaches the tolerance a sec-
ond time. Even if this approach is, in general, more expensive than a standard predictor
step, it allows in most of the cases the incorporation of immense plastic deformations,
as shown in Figure 5.15 a). The corresponding plot clearly demonstrates that the ‘cG
predictor strategy’ allows for all considered time-step sizes a simulation with the minimal
initial yield stress Y0. Thereby, the applicable yield limit is nearly independent from the
chosen time-step size, rendering perfect convergence of the involved iteration scheme.
Contrariwise, the standard predictor is only for small time-step sizes competitive, and
requires particularly for hn ≥ 0.1 fundamentally higher yield limits. Actually, a calcula-
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tion of the present example using the standard predictor (5.35) is only possible for the
purely elastic case, when hn = 0.2 is chosen. Otherwise, the global iteration scheme stops
after a certain number of time steps due to convergence problems. For large step sizes,
even the ‘ECMC-cG(1) method’ without specific predictor step performs better. The
differences concerning the resulting dissipation, that are related to the realisable yield
limit, are indeed significant, as shown exemplarily for three time-step sizes in Figure
5.15 b) and Figure 5.16 respectively. For instance, the feasible accumulated dissipation
is nearly three times higher for hn = 0.1 when the ‘cG predictor strategy’ is taken into
account, see Figure 5.16 b).

Remarks 5.5:

1. Please notice, that the best choice for the predictor step also depends on the con-
sidered example, influenced for instance by the initial as well as by the boundary
conditions. Consequently, the applied strategy has to be attuned to the specific
case. Nevertheless, the here proposed ‘cG predictor strategy’ represents an attrac-
tive alternative, facilitating the incorporation of huge plastic deformations for a
wide range of time-step sizes.

2. The described procedure of the ‘cG predictor step’ can also be interpreted as a
special projection technique, whereby the initially mechanically consistent solution
of the standard quadrature rule (5.24) is finally projected to fulfil additionally the
constraint of energy-consistency. A similar interpretation has also been proposed
by French and Schaeffer [57] for their dynamical integration approach.

5.5. Aspects of Convergence

The superior performance of the time-stepping scheme based on the non-standard quadra-
ture rule (5.25) concerning the obtained consistency properties has been impressively
demonstrated in Section 5.3, rendering a notably robust time-integration. However, one
important aspect that has not been addressed so far is the convergence behaviour of the
considered ‘ECMC-cG(1) method’. In this context, essential issues are

• the mathematical consistency of the underlying non-standard quadrature rule
(5.25),

• the related fundamental convergence of the final scheme, especially in the plastic
case, and moreover

• the resulting (global) order of accuracy of the integrator in the plastic case, bearing
in mind that for the local integration exemplarily a first-order format of the well-
accepted exponential update has been chosen, as discussed in Section 5.1.2.
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Figure 5.17.: a) sequence of the motion, b) deformed configuration Bt at t = 1

In the following, we investigate the offered convergence performance by means of various
characteristic indicators, taking relative as well as integral error measures into account.
As a representative numerical example, once more, the free flight of the ‘Flying Frame’
introduced in Section 4.5 is considered, incorporating the parameters ρ = 3.0, ||v̄0|| =
85, fmax = 30, and Tload = 0.5. Analogously to previous examples, the constitutive
modelling relies on a Helmholtz energy density based on logarithmic strains combined
with a ‘v. Mises’-type yield function, using λ = 1000, µ = 500, Y0 = 50 and Hrd = 100.

5.5.1. Basic scheme

We start our investigations with the initial setup of the ‘ECMC-cG(1) method’ that
relies on the non-standard quadrature rule (5.25) based on the elasto-plastic enhanced
algorithmic stress tensor (5.26), applying the standard integration strategy which has
been introduced in Equations (5.27), (5.28) 6. The deformed configuration of the frame
at t = 1 and some snapshots of the motion are pictured in Figure 5.17. Obviously, the
plastic deformations are substantial and render a significant decrease of the total energy
H, as can be seen in Figure 5.18 a). To assess the offered convergence performance of
the ‘basic scheme’, firstly, we introduce the relative global error in the positions q̄h at
time T given by

eq̄h(T ) =
||q̄h(T ) − q̄h

ref(T )||

||q̄h
ref(T )||

. (5.38)

6With regard to a compact notation, the resulting scheme will be referred to as ‘basic scheme’ in the
subsequent discussions.
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Figure 5.18.: a) total energy H & global energy-consistency based on the residual R
(hn = 0.1), b) relative global error eq̄h(T ) of the ‘ECMC-cG method’ at T = 1.0

In this context, the reference solution q̄h
ref has been calculated by means of the rather

small time-step size hn = 10−4. In Figure 5.18 b), the fundamental convergence of the
integrator is shown at T = 1.0 for the plastic as well as for the well-studied purely
elastic case, defining a kind of benchmark case. In the purely elastic case, the obtained
(global) order of accuracy clearly confirms the results of the literature, being second-
order accurate in time when linear time shape functions are incorporated. However,
as expected, the combination of linear Finite Elements in time on the global level and
the basic exponential update for the local integration leads to a loss of accuracy when
plastic deformations are involved. Figure 5.18 b) clearly shows that, in comparison to the
elastic case, the global order of accuracy is reduced in the plastic case. Additionally, this
result is confirmed in Figure 5.19 a) for further evaluation times, using T ∈ {0.1, 0.5, 1.0}.
Nevertheless, from a practical point of view the differences are not crucial in this example,
even for a non-negligible dissipation. Moreover, special emphasis is placed in this work on
the claimed global energy-consistency which is guaranteed by the ‘ECMC-cG(1) method’
(see also Figure 5.18) unaffected by the order of accuracy of the local update, compare
also Remark 3.4.1. Alternatively to the relative (global) error in the positions eq̄h(T )

introduced in Equation (5.38), the relative (global) error in the momenta

ep̄h(T ) =
||p̄h(T ) − p̄h

ref(T )||

||p̄h
ref(T )||

(5.39)

has been considered for the present example. Thereby, also this second error measure
fortifies the foregoing results, referring to Figure 5.20 a) for a comparison to the purely
elastic motion and to Figure 5.20 b), respectively, for a comparison between two different
evaluation times T . So far, the convergence properties of the ‘ECMC-cG(1) method’ have
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5. Finite Elasto-Plasticity

been investigated by means of error measures which involve only one certain evaluation
time T . In addition to such discrete indicators, the mean-square norm of the error in
the positions eL2

(q̄h) defined by

eL2
(q̄h) =

[∫ tb

ta

nnode∑

I=1

[
qh

I (t) − qh
ref,I(t)

]2
dt

] 1

2

(5.40)

has been calculated, involving the entire evolution of the deformation during the time
period [ta, tb]. The resulting convergence behaviour is pictured in Figure 5.19 b), in-
corporating the interval [ta, tb] = [0.5, 1.0] which covers the major part of the plastic
deformation process, compare Figure 5.18 a). Once more, the order reduction in the
plastic case becomes obvious. In the foregoing investigations, the convergence of the in-
tegrator has been illustrated by means of various error measures based on fundamental
variables of the global formulation, like positions or momenta. Next, special emphasis
will be placed on characteristic parameters related to the global energy balance which
are essentially influenced by the local update procedure. In this context, the accumu-
lated dissipation D and the augmented Hamiltonian H̃ are investigated more detailed
concerning their convergence behaviour. In Figure 5.21, the accumulated dissipation as
well as the augmented Hamiltonian, which is exactly conserved within the calculation
accuracy independently from the applied time-step size hn, are pictured. Analogously
to the relative error in the vector-valued positions respectively momenta, we introduce
the relative error in the accumulated dissipation eD(T ) and the relative error in the
augmented Hamiltonian e eH(T ), given by

eD(T ) =
|D(T ) −Dref(T )|

|Dref(T )|
and e eH(T ) =

|H̃(T ) − H̃ref(T )|

|H̃ref(T )|
(5.41)

respectively. As shown in Figure 5.22 a) for T ∈ {1.0, 1.5}, the relative error in the
accumulated dissipation decreases monotonically when the time-step size is reduced.
The same statement holds also for the relative error in the augmented Hamiltonian,
as plotted in Figure 5.22 b) for T ∈ {0.2, 1.0}. Moreover, it can be seen that for the
here considered evaluation times the relation Tj > Ti renders in both cases eD/ eH(Tj) >

eD/ eH(Ti), analogously to the previous results based on eq̄h and ep̄h . Finally, the results

of the ‘ECMC-cG(1) method’ will be compared

• with results of the modified midpoint scheme, referred to as ‘midpoint+’ scheme,
and furthermore

• with the results of a standard Newmark scheme 7. In this context, the charac-

7The Newmark integration scheme dates back to Newmark [143] and represents until today one of the
most-established time-stepping schemes at all. Originally designed for linear dynamical systems,
the scheme has been addressed during the last decades in many contributions, recently for instance
in References [44, 87, 88]. Even if this integrator is well-documented in nearly each textbook on
numerical dynamics, like e.g. References [18, 76, 177], the fundamental equations of the Newmark
scheme are summarised in Appendix C for the sake of completeness.
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Figure 5.19.: a) relative global error eq̄h(T ) for T ∈ {0.1, 0.5, 1.0}, b) integral error eL2
(q̄h)

for the purely elastic/plastic case
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Figure 5.20.: relative global error ep̄h(T ): a) at T = 0.5 for the purely elastic/plastic case,

b) for T ∈ {0.1, 1.0}

teristic parameters γ = 0.5 and β = 0.25 have been used, rendering the classical
trapezoidal format.

In the following, the integrators will be compared based on the global accumulated dis-
sipation D which is calculated by using three different time-step sizes, namely hn ∈
{0.001, 0.01, 0.1}. The obtained dissipation plots are pictured in Figure 5.23. To in-
vestigate the convergence behaviour more detailed, the difference between the resulting
accumulated dissipations of the integrators has been evaluated at T ∈ {0.4, 1.0, 1.5} for
the abovementioned time-step sizes, and the results are displayed in Figure 5.24. Start-
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5. Finite Elasto-Plasticity

ing with a comparison between the ‘ECMC-cG(1) method’ based on the elasto-plastic
enhanced algorithmic stress tensor (5.26) and the ‘midpoint+’ scheme, the results con-
firm one essential property of the corresponding non-standard quadrature rule: Since
it holds Salg(1/2) → S(Ch(1/2),κ1/2) for hn → 0, the non-standard quadrature (5.25)
converges to the midpoint approximation (5.24), compare Figure 5.24 a). This fun-
damental property has been already pointed out for the general case of arbitrary k
in Remark 3.3. A comparison between the ‘ECMC-cG(1) method’ and the Newmark
scheme shows that in this case the differences between the accumulated dissipations are
in the order of magnitude O(101) higher, due to the fundamentally distinct character of
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Figure 5.21.: a) accumulated dissipation D (zoom), b) augmented Hamiltonian H̃ (zoom)
calculated with the ‘ECMC-cG(1) method’
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Figure 5.22.: a) relative error eD(T ) for T ∈ {1.0, 1.5}, b) relative error e eH(T ) for T ∈
{0.2, 1.0}
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5.5. Aspects of Convergence

both integrators. Nevertheless, as required, the differences decrease monotonically for
all of the here considered evaluation times, when the time-step size is reduced. Conse-
quently, both integrators converge to the same solution for hn → 0, as clearly indicated
by Figure 5.24 b).
In the present section, the convergence behaviour of the favoured ‘ECMC-cG(1) method’
has been investigated in detail. In this context, on the one hand, the fundamental con-
vergence of this completely consistent scheme has been confirmed by using several error
measures. Moreover, it has been shown based on the global accumulated dissipation
that the results converge indeed to those which have been calculated by means of well-
accepted standard time-stepping schemes, when the time-step size is reduced. On the
other hand, it has also been demonstrated that the incorporation of the basic first-order
format of the widespread exponential update leads to a reduction of the global order of
accuracy, as expected. However, in our opinion, the resulting degradation is absolutely
acceptable in the present example. Nevertheless, please keep in mind that the applied
local update has been chosen solely as a fundamental example. In fact, the foregoing
drawback could be directly circumvented by modifying the local time-integration. Such
a modification is basically possible without changing the fundamental concepts on the
global level, since the global framework indeed allows the application of a local return
mapping procedure in a modular way. Consequently, any appropriate local update at
hand could be incorporated instead.
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5. Finite Elasto-Plasticity
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Figure 5.23.: accumulated dissipation D using hn ∈ {0.001, 0.01, 0.1}: a) ‘ECMC-cG(1)
method’ vs. ‘midpoint+’ scheme, b) ‘ECMC-cG(1) method’ vs. Newmark scheme
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Figure 5.24.: difference between accumulated dissipations at T ∈ {0.4, 1.0, 1.5}: a)
‘ECMC-cG(1) method’ vs. ‘midpoint+’ scheme, b) ‘ECMC-cG(1) method’ vs. New-
mark scheme
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5.5.2. Modified schemes

In the previous section, the fundamental convergence properties of the ‘ECMC-cG(1)
method’ have been discussed extensively. Thereby, we have seen that the global order of
accuracy is reduced when plastic deformations are involved due to the applied first-order
format of the exponential update. As already mentioned, this effect can be diminished,
respectively even circumvented, by modifying the local update procedure. In this con-
text, two options are theoretically conceivable to reduce the error in the plastic case,
namely:

• The application of higher-order local integration schemes, that completely circum-
vent any order reduction: In the present case of linear Finite Elements in time,
for instance, the application of a second-order midpoint format of the exponential
update, as discussed in References [118, 119, 162], certainly represents a possible
alternative. However, especially in the case of arbitrary k a further increase of
the local accuracy might be required. In this regard, Runge-Kutta methods have
been proposed for instance by Büttner and Simeon [47] or in a nonlinear defor-
mation context by Menzel [120], and Menzel and Steinmann [123]. Moreover, a
time discretisation of the local evolution equations based on (dis)continuous Finite
Elements in time could represent an attractive approach, being in accordance to
the global time discretisation. In the small strain case, such a dG method has
been proposed e.g. in Larsson et al. [100] for the integration of (visco)plastic evo-
lution equations. Concerning the relation between classical Runge-Kutta schemes
and time FE methods we refer to References [80, 81]. However, in any case the
implementation effort increases and additional aspects, like for instance the en-
forcement of plastic incompressibility, have to be addressed when a non-standard
local update procedure is chosen.

• A modification of the applied integration strategy, enabling a considerable reduc-
tion of the error in the plastic case: In the foregoing investigations the ‘basic
scheme’, relying on the standard integration procedure given by Equations (5.27),
(5.28), has been used. Since in the favoured approach the global and the local
time-integration have been purposely decoupled in a sense, a change of the local
time-step size is possible in the same framework without affecting the global level.
Consequently, a reduction of the local time-step size, involving more intermediate
stages, could also be applied potentially with regard to an error reduction.

Of course, also a combination of both options is possible to optimise the convergence
performance in the plastic case. However, since in the present work the focus has been
placed on the global time-integration, the local update is considered as a type of con-
stitutive ‘black box’, as already mentioned. Therefore, the exemplarily chosen standard
return map will be retained, and in the following the influence of the local integration
strategy will be investigated. One characteristic property of the basic strategy is that

119



5. Finite Elasto-Plasticity

PSfrag replacements

tn tn+1

Sn+ 1

2

tn+ 1

2

{F n
p , κ

n}

Sn+ 1

2

{F n+1
p , κn+1}

{ψn+1, ∆d}ψn

∆d|
tj
ti ∆d|

tj
ti

{F ti
p , κ

ti} {F ti
p , κ

ti}

Figure 5.25.: local level: modified integration strategy (non-standard quadrature rule)

each projection step incorporates the values at t = tn, compare Figure 5.2 and Figure
5.3 respectively. Contrariwise, the projection steps can also be performed sequently via
the update

{F ti
p , κ

ti} −→ {Stj ,F tj
p , κ

tj ;ψtj ,∆d
∣∣tj
ti
} (5.42)

driven by Ch(tj) with tj = ti +∆t 8. In Equation (5.42), the first step is initialised with
ti = tn. Each subsequent stage is then defined by the update ti = tj. This procedure
is repeated until tj = tn+1 = tn + hn, compare Figure 5.25 for a sketch of the modified
integration strategy. The resulting (local) dissipation increment, which is needed for
the computation of the elasto-plastic enhanced algorithmic stress tensor (5.26), can be
consequently calculated via the accumulation

∆d =
nst+1∑

s=1

∆ds , (5.43)

wherein nst denotes the number of intermediate stages and the partial dissipation incre-
ment for the s-th step has been defined as

∆ds := ∆d
∣∣tsj
tsi
. (5.44)

Motivated by the ‘basic scheme’, we start our investigations with one intermediate stage
at t = tn+ 1

2

, involving nst = 1 and ∆t = hn/2. The resulting ‘ECMC-cG(1) method’
will be referred to as ‘modified scheme 1’. The results are shown in Figure 5.26 based
on the relative error in the positions eq̄h(T ) and the relative error in the accumulated

dissipation eD(T ) respectively, in both cases evaluated at T = 1.0. The corresponding
plots clearly confirm the expected reduction of the numerical error in the plastic case,
due to the application of the modified integration strategy.

8Please note, that also in the case of the modified integration strategy (5.42) the stresses of the
continuum model indeed fulfil the yield condition at each intermediate stage since for every step a
projection by means of the return map is applied, instead of a simple interpolation.
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Figure 5.26.: ‘modified scheme 1’ vs. ‘basic scheme’: a) relative error eq̄h(T ) at T = 1.0,

b) relative error eD(T ) at T = 1.0

In a next step, three equidistant intermediate stages have been applied, yielding nst = 3
and ∆t = hn/4. As pictured in Figure 5.27, the resulting ‘ECMC-cG(1) method’ – la-
belled as ‘modified scheme 2’ – features a further decrease of the numerical error, which
has been once more investigated based on the relative measures eq̄h(T ) and eD(T ) us-

ing the evaluation time T = 1.0. Due to this significant error reduction, the obtained
convergence performance is indeed even competitive to the purely elastic case and the
deviations are more of theoretical than of practical interest, compare Figure 5.27 a).
Moreover, it is pictured in Figure 5.28 that algorithmic energy-consistency is actually
guaranteed within the order of magnitude O(10−11) for each of the applied local inte-
gration procedures.

Remarks 5.6:

1. In Simo [161], the author also compares different projection strategies in the con-
text of dynamic plasticity, dealing only with mechanically consistent time-stepping
schemes. Therein, it is distinguished between a ‘shifted backward-Euler scheme’, a
‘generalized mid-point rule’, and a so-called ‘product formula algorithm’, whereby
the last concept has been particularly recommended 9. Please note, that our ‘modi-
fied scheme 1’ obviously corresponds to the product formula concept discussed also
in Reference [162].

2. Furthermore, it is important to notice that based on the involved exponential up-
date even schemes which are strictly second-order accurate might be constructed,

9Simo [161], page 98: ‘Amongst the three return mapping strategies considered the product formula
algorithm is the best performer with regard to both accuracy and robustness. The lack of significant
degradation in accuracy exhibited by the product formula algorithm suggests that the choice of time
step should be dictated by the convergence of the global solution scheme’.
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5. Finite Elasto-Plasticity

compare Simo [162]. In this regard, the underlying integration strategy is once
more quite similar to the proposed ‘modified scheme 1’, whereby the essential dif-
ference to the here considered approach is represented by a modified trial state for
the second projection step. Hereby, the corresponding trial state incorporates not
only the updated solution but also the initial trial state of the first (local) inte-
gration step. However, the author still favours the prior ‘shifted backward-Euler
scheme’ and ‘product formula algorithm’ 10.

3. Although we have only addressed some basic effects in the foregoing investigations
of this section, the results have clearly demonstrated that a reduction of the local
time-step size also represents an appropriate concept to reduce the global error of
the time-stepping scheme in the plastic case. Consequently, the proposed approach
could be potentially useful concerning the design of an adaptive projection strategy,
reducing the increase of the computational costs related to additional intermediate
stages.

10Simo [162], page 416: ‘On the other hand, extensive numerical experiments conducted with the two
alternative strategies outlined above, some of which are reported below, support their excellent
performance in spite of being only first-order accurate. Preliminary numerical experiments also
suggest that the second-order accurate projected scheme described in Section 53 does not appear to
exhibit a performance nearly as robust as these two, nominally less accurate, update schemes.’
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Figure 5.27.: ‘modified scheme 2’ vs. ‘modified scheme 1’ vs. ‘basic scheme’: a) relative
error eq̄h(T ) at T = 1.0, b) relative error eD(T ) at T = 1.0
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Figure 5.28.: residual R: a) ‘modified scheme 1’, b) ‘modified scheme 2’
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5.6. Assessment of Integrators

At the beginning of this chapter, the general concepts to design completely consistent
Galerkin-based time-stepping schemes for dissipative systems have been specified to lin-
ear Finite Elements in time, incorporating finite elasto-plastic deformations. Moreover,
fundamental properties of the resulting integrators have been already exposed based on
first numerical examples. In this context, several important aspects, like the fundamen-
tal convergence behaviour or the influence of the underlying (local) integration strategy,
have been addressed in previous sections. In the last section of this chapter, we present
finally an extensive assessment of the advocated Galerkin-based integrators by means
of a multitude of numerical examples, whereby free motion problems have been chosen
to assess in detail the achievable performance of the time-stepping schemes. In this
context, once more the benchmark-type return mapping procedure discussed in Section
5.1.2 has been applied exemplarily for all integrators and the local update is fitted into
the global frame via the standard integration strategy of Section 5.2.2.

5.6.1. Standard vs. non-standard quadrature rule

We start with a systematic comparison between different quadrature rules that are re-
quired for the approximation of related time integrals, referring to Sections 3.3.2 and
5.2 for the general and the specific case respectively. In this context, the resulting con-
sistency properties will be investigated more detailed based on elastic and plastic runs,
classifying the resulting integrators and disclosing the frontiers of each quadrature rule.
Hereby, we address in addition to the already discussed formulations, namely

• the mechanically consistent cG(1) scheme based on the approximation (5.24) 11

and

• the ‘ECMC-cG(1) method’ based on the elasto-plastic enhanced algorithmic stress
tensor (5.26),

a further option concerning the applied quadrature rule, which is constructed as follows:
In the prolog, the standard and the energy-conserving quadrature rule, that has been
originally designed for the purely elastic case, have been combined intuitively to a first
non-standard quadrature rule for the dissipative (elasto-plastic) case. Inspired by this
‘ad hoc’ formulation and motivated by the corresponding results in Chapter 2, we adopt
the idea of the elastic enhancement to finite elasto-plasto-dynamics, defining a locally
and temporally selective non-standard quadrature rule. Analogously to the motivating

11Since in the further investigations the alternative approximation (5.23) will not be considered any-
more, a distinction between the classical midpoint and the so-called ‘midpoint+’ scheme is no longer
required. Consequently, the resulting scheme will be simply denoted by ‘cG method’ in the following
examples.

124



5.6. Assessment of Integrators

one-dimensional example, this approach involves a modification of the standard quadra-
ture rule only if the deformation is elastic, otherwise the integration is performed based
on a standard approximation of the related time integrals 12. Consequently, this concept
represents a straightforward extension of the conservative, hyperelastic case discussed
in Chapter 4 to the dissipative case of elasto-plasticity considered in the present chap-
ter. Based on the resulting conservation properties for elastic deformations combined
with the positive (local) dissipation in the plastic case, the scheme will be referred to as
thermodynamically consistent, motivated on the one hand by the classification discussed
in Section 3.2.3 and encouraged on the other hand by the positive results of Chapter
2. Featuring still mechanical consistency, the final integrator will be abbreviated by
‘TCMC-cG(1) method’. If the foregoing ‘ad hoc’ approach indeed affects positively the
algorithmic conservation properties in the case of finite elasto-plasto-dynamics will be
investigated by means of the following numerical examples.

Remarks 5.7:

1. Regarding the implementation of the non-standard quadrature rule (5.45), once
more the proposed mixed strategy introduced in Section 4.4 has been applied to
evaluate the elastic-enhanced algorithmic stress tensor (5.46).

2. Within a Finite Element code, the stresses have to be computed at each integration
point in space required to approximate spatial integrals, compare Section 3.2.
Consequently, also the decision related to the formulation (5.46) – if the standard
quadrature rule has to be modified within a particular time step – is made for
each spatial integration point separately, selecting those in which temporarily the
deformation is elastic.

3. Please note, that the hybrid quadrature rule (5.45) basically prevents a violation

12Formally, the resulting non-standard quadrature rule can also be cast in a compact notation by
introducing the approximation

∫ 1

0

F int h
I dα ≈

nnode∑

J=1

[ ∫

B0

[∇XNI ⊗∇XNJ ] : elSalg(1/2) dV

]
qh

J(1/2) , (5.45)

using the so-called elastic-enhanced algorithmic stress tensor

elSalg(1/2) := S1/2 + χ
2 [ψα=1 − ψα=0] − S1/2 : [C2 − C1]

||C2 − C1||2
[C2 − C1] , (5.46)

wherein the selection parameter χ is equal to one for elastic deformations and equal to zero for
the plastic case. Nevertheless, keep in mind that, in contrast to the purely elastic case (4.27),
internal variables have to be considered in Equation (5.46), yielding S1/2 := S(Ch(1/2),κ1/2) and

ψα(Ch(α),κα) respectively. Thereby, for the sake of conceptual clarity, the local integration strategy
relies once more on Equations (5.27), (5.28), being in accordance with the ‘basic scheme’ discussed
in Section 5.5.1.
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5. Finite Elasto-Plasticity

of the (local) energy-consistency condition (3.49) during elastic (un)loading peri-
ods, see also Appendix A. In the plastic case, the quadrature rule remains actually
unconstrained, even if a fulfilment of the dissipation inequality is of course guaran-
teed locally by the applied return mapping scheme. However, it will be shown that
the resulting integrator features also in the plastic case an improved performance
regarding the global energy balance, analogously to the introducing example of
Chapter 2.

Flying Conrod

The first example in this section deals with the free motion of a ‘Flying Conrod’ 13,
using 128 isoparametric 4-node elements for the spatial discretisation (2d, plain strain
conditions) and the mass density ρ = 3.0. The initial configuration can be regarded
in Figure 5.29 a). Starting the motion by an initial velocity in the horizontal direc-
tion with ||v̄0|| = 258, additionally external loads have been applied on the bushings,
whereby once more a piecewise linear function with fmax = 20 and Tload = 1.0 has
been incorporated. Furthermore, the time-step size has been increased from hn = 0.05
to hn = 0.2 at the time t = 3.0 and, subsequently, reduced again to hn = 0.1 for
t > 6.0. Moreover, two sets of material parameters have been applied for different re-
gions of the conrod, namely λ = 1000, µ = 500, Y0 = 300, Hrd = 300 for the shaft
and λ = 10000, µ = 5000, Y0 → ∞ for both circlets. Consequently, only the shaft
will be deformed plastically. The main purpose of the present example is to illustrate
the obtained consistency properties of the ‘TCMC-cG(1) method’ which relies on the
‘ad hoc’ formulation (5.45). To investigate the algorithmic performance in detail, the
plastic motion of the conrod is compared with the purely elastic case, whereby then the
underlying constitutive model recaptures the hyperelastic Hencky-type model (4.11),
building a bridge to Chapter 4. A sequence of the motion is pictured in Figure 5.29
b), showing the plastic motion. Furthermore, Figure 5.30 allows a direct comparison
between the purely elastic and the plastic motion based on the resulting configuration
at t = 8. As expected, the global accumulated dissipation D is equal to zero for each
of the considered Galerkin-based integrators if the deformations are purely elastic, and
it is (strictly) positive if plastic deformations are involved due to the application of an
adequate local update algorithm for the plastic variables, as pictured in Figure 5.32.
Furthermore, Figure 5.31 confirms once more that mechanical consistency, including a
conservation of both momentum maps, can be guaranteed not only by time-stepping
schemes which base on non-standard quadrature rules, but also by the classical ‘cG(1)
method’, as already demonstrated in previous sections. More interesting in this context
is the influence of the applied quadrature rule on the discrete energy balance. Firstly,
we compare the performance of each Galerkin-based scheme based on a plot of the total

13In this context, the notion ‘conrod’ is the widespread abbreviation for connection rod which is part
of a slider-crank mechanism and connects the piston with the crankshaft, for instance within a
combustion engine.
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Figure 5.29.: a) initial configuration B0, b) sequence of the motion (plastic case)

energy H, compare Figure 5.33. In the purely elastic case, the balance of the total energy
is visibly violated by the standard ‘cG(1) method’, referring to the results of Chapter
4. To the contrary, the integrators based on a non-standard quadrature rule guarantee
by design the conservation of the total energy. Obviously, a distinction between ther-
modynamical and energy-consistency is not meaningful for purely elastic deformations
rendering in both cases Hn+1 − Hn = 0, compare also Equation (4.46). In fact, the
‘TCMC-cG(1) method’ and the ‘ECMC-cG(1) method’ are completely identical in the
conservative case and result both in the approximation (4.26) based on the widespread
format (4.27), that has been extensively studied in Chapter 4 based on the present con-
stitutive format. However, in the plastic case both integrators based on non-standard
quadrature rules are no longer identical and differences occur, compare Figure 5.33 b).
Regarding the corresponding plots of the total energy, it can be seen that also in the
present example the ‘cG(1) method’ features an unphysical increase of the total energy,
whereas not only the plot of ‘ECMC-cG(1) method’ but also the plot of the ‘TCMC-
cG(1) method’ is characterised by the claimed monotonic decrease caused by the plastic
deformations, confirming the positive results of Chapter 2. Apparently, already this
‘ad hoc’ formulation, which basically controls the discrete energy balance for elastic de-
formations, leads to a substantial upgrade concerning the algorithmic energy balance,
even in the plastic case. Nevertheless, the rigorous algorithmic fulfilment of a physically
correct energy balance is only possible by means of an energy-consistent integrator, that
controls additionally the energy decrease respectively dissipation increase in the plastic
case. As already discussed in previous examples, the consequences can be studied based
on the augmented Hamiltonian plotted in Figure 5.34 and, in more detail, based on the
residual R pictured in Figure 5.35. Both figures illustrate unmistakably the advantage of
the ‘ECMC-cG(1) method’ which captures exclusively a conservation of the augmented
Hamiltonian, satisfying the discrete energy balance (5.33) within the order of magnitude
O(10−10). Consequently, solely the ‘ECMC-cG(1) method’ offers a completely consistent
time-integration.
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Figure 5.30.: deformed configuration at t = 8: a) purely elastic case, b) plastic case
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Figure 5.31.: a) linear momentum (elastic case), b) angular momentum (plastic case)
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Figure 5.32.: accumulated dissipation D: a) purely elastic case, b) plastic case (zoom)
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Figure 5.33.: total energy H: a) purely elastic case, b) plastic case
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Figure 5.34.: augmented Hamiltonian H̃: a) purely elastic case, b) plastic case
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Figure 5.35.: residual R: a) purely elastic case, b) plastic case

129



5. Finite Elasto-Plasticity

Flying L

Finally, a three-dimensional example is considered, dealing with the spatial motion of
the popular ‘Flying L’ 14. Hereby, the discrete body consists of 117 isoparametric 8-node
elements in space and is equipped with an initial velocity, as illustrated in Figure 5.36
a). Furthermore, external loads have been incorporated, following the same piecewise
linear function as in previous examples. For the computations, the quite large time-step
size hn = 0.1 has been applied, incorporating the parameters ρ = 12.0, ||v̄0|| = 26,
fmax = 180, Tload = 1.0, λ = 9000, µ = 3000, Y0 = 1200, and Hrd = 300. Analogously
to the previous example, the purely elastic motion with Y0 → ∞ is compared with the
plastic case, whereby once more the foregoing Galerkin-based integrators have been ap-
plied, featuring different consistency properties. An exemplary sequence of the motion is
shown in Figure 5.36 b) and a direct comparison between the elastic and the plastic case
is possible based on Figure 5.42 and Figure 5.43 respectively, where in both cases the de-
formed configurations are plotted after an identical number of time steps. Obviously, the
resulting configurations clearly differ when the deformations are purely elastic, whereby
a significant stretch of the ‘Flying L’ occurs particularly in the plastic case, compare
t = 9.0. As pictured in Figure 5.37, each of the considered Galerkin-based integrators
guarantees a mechanically consistent time-integration. Moreover, it is shown in Figure
5.38 that the results of the involved schemes concerning the accumulated dissipation are
qualitatively identical, even for the here applied large time-step size. However, the plot
of the total energy in Figure 5.39 exposes again the limitation of the ‘cG(1) method’.
Once more, the standard scheme suffers not only from oscillations of the total energy in
the purely elastic case, but also from an unphysical increasing behaviour in the plastic
case. Contrariwise, both integrators based on non-standard quadrature rules feature
a conservation of the total energy when the deformations are elastic and a monotonic
decrease when plastic deformations take place, so that the results of the foregoing ex-
ample are confirmed. In a next step, the algorithmic energy balance is investigated
more detailed based on a plot of the augmented Hamiltonian, compare Figure 5.40. In
this context, the performance for the purely elastic case with H̃ = H has been already
discussed based on Figure 5.39. Therefore, special emphasis is placed on the plastic
case, whereby the present results confirm once more that a conservation of the aug-
mented Hamiltonian can only be guaranteed by means of the ‘ECMC-cG(1) method’.
To demonstrate also for the present example the entire potential of the ‘ECMC-cG(1)
method’ in this regard, the residual of global energy-consistency is taken into account.
Considering Figure 5.41, it can be seen that global energy-consistency is guaranteed
within the order of magnitude O(10−11). To the contrary, not only the ‘cG(1) method’
but also the ‘TCMC-cG(1) method’ violates the discrete balance (5.33) in the plastic
case, representing an intermediate stage between no and full energy control.

14Indeed, the free motion of a L-shaped block represents a widespread benchmark problem in the
context of (conserving) time-stepping schemes, compare for instance Simo and Tarnow [165], Betsch
and Steinmann [26], Meng and Laursen [118], Armero and Zambrana [9], and Noels et al. [148].
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Figure 5.37.: a) linear momentum (elastic case), b) angular momentum (plastic case)
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Figure 5.38.: accumulated dissipation D: a) purely elastic case, b) plastic case (zoom)
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Figure 5.39.: total energy H: a) purely elastic case, b) plastic case
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Figure 5.40.: augmented Hamiltonian H̃: a) purely elastic case, b) plastic case
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Figure 5.41.: residual R: a) purely elastic case, b) plastic case
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Figure 5.42.: deformed configurations Bt at selected times t (elastic motion)
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5.6. Assessment of Integrators

5.6.2. Standard vs. non-standard integrator

In the previous section, the resulting performance of specific Galerkin-based time-step-
ping schemes, which rely on different quadrature rules, has been discussed in detail,
fo-cusing on the resulting consistency properties. In this context, particularly the supe-
rior performance of the ‘ECMC-cG(1) method’ concerning the fulfilment of physically
motivated balance laws has been clearly confirmed, enabling exclusively a completely
consistent time-integration. Nevertheless, one fundamental aspect that should be defi-
nitely addressed is a final competition between the developed integrators and popular
time-stepping schemes which are not only well-accepted in the computational dynamics
community, but also widespread in commercial simulation software. Consequently, the
performance of the proposed time FE methods, represented by the favoured ‘ECMC-
cG(1) method’, will be compared with the performance of well-established standard
integrators 15.

Flying Frame

For a first detailed comparison, we have exemplarily chosen two of the most-established
integrators at all, namely

• the classical Newmark scheme using the parameters γ = 0.5, β = 0.25 and

• the Hilber-Hughes-Taylor method (abbreviated by ‘HHT method’) with the pa-
rameters γ = 0.8, β = 0.422, and α = −0.30, as proposed in Reference [76].

Both standard integrators have been developed originally for linear dynamical systems.
For the chosen parameters the Newmark scheme is related to the (undamped) trapezoidal
rule, as already mentioned in Section 5.5.1, and the ‘HHT method’ has been specifically
designed to provide a numerically dissipative behaviour. For the following computations,
once more the ‘Flying Frame’ has been used, whereby the initial setup remains un-
changed and is pictured in Figure 4.17 a). Concerning the involved parameters, we have
incorporated λ = 500, µ = 250, Y0 = 40, Hrd = 100, ρ = 3.0, ||v̄0|| = 85, fmax = 20,
and Tload = 1.0. To assess fairly the offered performance of the different time-stepping
schemes, small as well as large time-step sizes have been applied for the simulation.
Additionally, the time-step sizes have been changed during the calculation, namely from
hn = 0.02 to hn = 0.06 respectively from hn = 0.1 to hn = 0.3 after t = 2.2, to check
the robustness of the integrators. A sequence of the motion, including contour plots of
the hardening variable, can be regarded in Figure 5.44 and the local evolution of the
hardening parameter is pictured exemplarily for two points of the frame in Figure 5.45.
However, in the following, special emphasis is placed on the resulting consistency prop-
erties. Considering Figure 5.46, the accumulated dissipation D is, once more, (strictly)

15Please keep in mind, that the essential equations of the considered standard integration schemes are
also summarised in Appendix C.
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Figure 5.44.: contour plot of the hardening parameter (large time-step size): a) t ∈
{0.1, 0.8, 2, 4}, b) t ∈ {58.3, 59.2, 60.1, 61.3}
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Figure 5.45.: evolution of the hardening parameter (large time-step size) in: a) point 1,
b) point 2

non-negative due to the local integration and the results of the different integrators are
qualitatively similar, especially for small time-step sizes. Nevertheless, the results differ
quantitatively, in particular if the ‘HHT method’ is incorporated. Hereby, its application
results in the lowest physical dissipation, which seems to be significantly underestimated
when dealing with large time-step sizes. Moreover, the obtained quality of the calculated
total energy H is degraded impressively, when the classical integrators are used instead
of the Galerkin-based ‘ECMC-cG(1) method’, compare Figure 5.47. It can be clearly
seen that the standard integrators are not able at all to feature a physically correct
monotonic decrease of the total energy. Rather, both classical integration schemes suffer
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5.6. Assessment of Integrators

from oscillations in the total energy which increase drastically for large time-step sizes,
especially if the widespread Newmark method is applied. One might think that such
aspects are only of theoretical interest, but in fact a physically correct time-integration is
essential for a qualitatively correct simulation of the dynamical behaviour and, moreover,
the evolution of the total energy is directly related to the robustness of the integrators,
as already demonstrated in foregoing examples. This accepted fact is also confirmed by
the present example, since the application of the Newmark method results in a critical
energy blow-up when large time-step sizes are taken into account 16, compare Figure
5.47 b). Contrariwise, the ‘HHT method’ offers an unphysical decrease of the total en-
ergy caused by its numerically dissipative character. Please note furthermore, that this
strong decrease of the total energy is not accompanied by a high physical dissipation
D, as discussed above. To investigate the relation between the decrease of the total en-
ergy and the increase of the accumulated (physical) dissipation in detail, the augmented

Hamiltonian H̃ is plotted in Figure 5.48. Once more, the results of both standard in-
tegrators show an unphysical behaviour which is characterised by oscillations and an
increase respectively decrease of the augmented Hamiltonian. Solely, the ‘ECMC-cG(1)
method’ captures the conservation of the augmented Hamiltonian, as also confirmed by
Figure 5.50 based on Equation (5.33). Furthermore, the standard integrators violate the
conservation of angular momentum, whereas the Galerkin-based scheme features me-
chanical consistency, as pictured in Figure 5.49. It is important to emphasise again that
the abovementioned consistency properties of the ‘ECMC-cG(1) method’ are obtained
indeed for small as well as for large time-step sizes, unaffected by changes of the step size
during the calculation. Contrariwise, the numerical performance of the here considered
Newmark scheme as well as of the ‘HHT method’ crucially depends even qualitatively
on the applied time-step size.

Remark 5.8: In Section 5.5, it has been demonstrated based on the accumulated dissipa-
tion that the differences between the ‘ECMC-cG(1) method’ and the Newmark scheme
indeed decrease when the time-step size is reduced, converging to the same solution for
hn → 0. Furthermore, the present example has shown that even for the large time-step
size the Newmark scheme seems to be shadowed by the energy-consistent Galerkin-based
integrator concerning the order of magnitude of the results, whereby the favoured time
FE method features additionally the fulfilment of a complete set of algorithmic conser-
vation properties, as discussed above.

16Analogously to previous examples, a program abort within the calculations is displayed by means of
a vertical dashed line in the plots.
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Figure 5.46.: accumulated dissipation D: a) small time-step size, b) large time-step size
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Figure 5.47.: total energy H: a) small time-step size, b) large time-step size
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Figure 5.48.: augmented Hamiltonian H̃: a) small time-step size, b) large time-step size
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Figure 5.49.: component of the angular momentum: a) small time-step size, b) large
time-step size
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Figure 5.50.: residual R: a) small time-step size, b) large time-step size
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5. Finite Elasto-Plasticity

Flying Conrod

The last example in this chapter deals with the spatial motion of a ‘Flying Conrod’,
whereby the applied Finite Element mesh consists of 128 isoparametric 8-node elements
in space, compare Figure 5.52 a). The motion of the conrod with the mass density
ρ = 9.0 is initiated by an initial velocity, using ||v̄0|| = 183. Moreover, external loads
act on the conrod during the loading period Tload = 1.0, whereby once more a hat
function with fmax = 15 has been chosen concerning the loading history. Analogously to
the 2d case investigated in Section 5.6, different material properties have been applied for
both circlets and the shaft, namely λ = 30 000, µ = 10 000, Y0 → ∞ for the circlets and
λ = 9000, µ = 3000, Y0 = 800, Hrd = 2000 for the shaft respectively. Evaluating the
resulting performance, the ‘ECMC-cG(1) method’ is compared in the present example
with

• a general Collocation method using the parameters 17 γ = 0.5, β = 0.18, and
θ = 1.287301,

• the specific Wilson method with γ = 0.5, β = 1/6, θ = 1.4, and once more

• the classical Newmark scheme in the trapezoidal format.

The calculations have been performed with the constant time-step size hn = 0.1. To
illustrate the free flight, a sequence of the motion is displayed in Figure 5.51. More-
over, some selected snapshots of the deformation are presented in Figure 5.52 b) and
Figure 5.57 respectively, wherein quite large deformations of the conrod, particularly
at t = 7.0, can be seen. As expected, a conservation of the corresponding components
of the angular momentum is exclusively offered by the ‘ECMC-cG(1) method’, whereas
the conservation of the linear momentum is even obtained when the abovementioned
standard integration schemes are used, compare Figure 5.53. Moreover, Figure 5.54
demonstrates impressively that solely the ‘ECMC-cG(1) method’ is able to capture a
thermodynamically motivated monotonic decrease of the total energy during the free mo-
tion, caused by the plastic deformations. In contrast, the standard integration schemes
feature also unphysical increasing periods, whereby especially the Wilson and the Collo-
cation method are characterised by the largest decrease of the total energy caused by a
high numerical dissipation. Similar to the ‘HHT method’ in the previous example, the
dominant numerical dissipation also yields a significant underestimation of the physical
dissipation, as shown in Figure 5.55 a). In the present example, the classical Newmark
scheme seems to be the most competitive standard integrator, whereby once more the
calculation has stopped after a certain time period due to convergence problems of the
involved iteration scheme. However, only the ‘ECMC-cG(1) method’ is able to guarantee
a physically correct conservation of the augmented Hamiltonian, as pictured in Figure
5.55 b). Moreover, it can be seen in Figure 5.56 that the applied standard integrators

17In this context, all of the incorporated parameters have been taken from Reference [76].
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5.6. Assessment of Integrators

strongly violate the discrete balance (5.33), even in the order of magnitude O(102).
Contrariwise, the Galerkin-based scheme guarantees the fulfilment of the fundamental
equation (3.62) also in the present example within the order of magnitude O(10−11).

Remark 5.9: Based on the foregoing numerical examples, the superior performance
of the ‘ECMC-cG(1) method’ in comparison to widespread standard integrators has
been confirmed impressively, focussing on the algorithmic conservation properties. In
this context, it is important to emphasise once more that such a rigorous investigation
of the fulfilment of physically motivated balance laws is initially of conceptual interest,
since for smaller time-step sizes also the differences decrease. Nevertheless, the related
robustness of such consistent integrators, which has been shown to be unaffected by
changes of the time-step size, is also beneficial from a practical point of view, even if the
computational costs are slightly higher.
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Figure 5.51.: sequence of the motion t < 5 (rear view)
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Figure 5.54.: a) total energy H, b) zoom: total energy H
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Figure 5.55.: a) accumulated dissipation D, b) augmented Hamiltonian H̃
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Figure 5.56.: residual R: a) comparison between integrators, b) ‘ECMC-cG(1) method’
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6. Finite Elasto-Plastic Multibody

Dynamics

So far, a general framework for dissipative dynamical systems has been developed
to integrate the related governing equations in a consistent manner, rendering not only
a physical correct time-integration but also robust algorithms. Specifically, the funda-
mental concepts have been applied in the previous section to the modelling of finite
elasto-plasto-dynamics, dealing with completely flexible inelastic structures based on a
standard Finite Element discretisation in space. In a last step, we extend the proposed
concepts to constrained dissipative dynamics, since from a practical point of view most
of the technically relevant dynamical systems are subject to fulfil additional constraints
during their motion.

6.1. Constrained Dissipative Dynamics

For the following investigations, we consider a finite-dimensional dynamical system char-
acterised by the phase-space variables z̄(t) = [q̄(t), p̄(t)]t which is constrained by the
general function

ḡ(z̄(t))
!
= 0 . (6.1)

The specification of the (global) vector z̄ ∈ R2 n as well as the particular format of the
involved constraints ḡ : R2 n → Rm will be discussed in the next sections. Analogously
to the unconstrained case discussed in Chapter 3, we cast technically the formulation of
the global dynamics in a Hamiltonian-type setting, enabling a particularly compact rep-
resentation and a straightforward incorporation of the additional constraints. Therefore,
we introduce an extended function

H(z̄, µ̄; κ) = H(z̄; κ) + µ̄ · ḡ(z̄) , (6.2)

wherein the vector of Lagrange multipliers µ̄ ∈ Rm has been incorporated. Consequently,
the resulting (semidiscrete) system of equations of motion results in

˙̄z(t) = J · ∇z̄ H(z̄(t), µ̄(t); κ(t))

0 = ḡ(z̄(t)) , (6.3)
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6. Finite Elasto-Plastic Multibody Dynamics

using once more the skew-symmetric matrix J given by Equation (3.21). Hereby, the
system (6.3) represents a set of differential algebraic equations – or short a set of ‘DAEs’ –
which will be directly integrated in time instead of applying a reformulation. Concerning
the time discretisation, the cG(k) method of the unconstrained case will be extended
to the constrained formulation, following the approach by Betsch and Steinmann [28].
In this context, we apply once more the decomposition of the considered time interval
(3.37) and a map of the physical sub-interval T to the reference interval I by means of
the mapping (3.38). In addition to the unchanged approximations for the global phase-
space variables z̄h ∈ Pk and the corresponding test functions δz̄h ∈ Pk−1, compare
Equation (3.39), the approximations

µ̄h =

k∑

i=1

M̃i(α) µ̄i and δµ̄h =

k∑

i=1

M̃i(α) δµ̄i (6.4)

are introduced. Please note, that the resulting approximations of the (unknown) trial
functions of the Lagrange multipliers µ̄h ∈ Pk−1 as well as the approximated test func-
tions δµ̄h ∈ Pk−1 belong to the same function space. In general, the corresponding weak
forms in time of the global governing equations (6.3) read

∫ 1

0

[
J · δz̄h

]
·

[
Dαz̄h − hn J · ∇z̄ H(z̄h, µ̄h; κ)

]
dα = 0

∫ 1

0

δµ̄h · G(z̄h) · Dαz̄h dα = 0 , (6.5)

wherein the constraint Jacobian

G(z̄h) := ∇z̄ ḡ(z̄h) (6.6)

has been introduced. The resulting scheme can be classified as a mixed Galerkin method,
abbreviated by ‘mG(k) method’. By inserting the time approximations (3.39), (6.4) in
Equations (6.5), we obtain for arbitrary polynomial degree k the system of equations

k+1∑

j=1

∫ 1

0

M̃iM
′

j dα z̄j − hn J ·

∫ 1

0

M̃i

[
∇z̄ H(z̄h; κ) + µ̄h · G(z̄h)

]
dα = 0

k+1∑

j=1

∫ 1

0

M̃iM
′

j G(z̄h) dα · z̄j = 0 (6.7)

for i = 1, ..., k. Analogously to the unconstrained case, the remaining task is to evaluate
the related time-integrals, whereby the applied option directly influences the resulting
conservation properties of the integrator, depending crucially on the specific format of
the underlying function H and the involved constraints ḡ respectively. For fundamen-
tal aspects concerning the obtained conservation properties of the general family of
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6.1. Constrained Dissipative Dynamics

time-stepping schemes (6.7), we refer to Betsch [20], Betsch and Steinmann [28], and
references cited therein since, once again, the global structure of the equations of motion
is formally identical to the well-studied conservative case.

Remarks 6.1:

1. With regard to mechanical consistency, the equivalence of the mG(k) method and a
k-stage Gauss Runge-Kutta method, being related to k Gaussian integration points
for the approximation of the second (global) time-integral in Equation (6.7)1, has
turned out to be helpful, as discussed in detail in References [20, 28].

2. Concerning energy-consistency, we can follow the same argumentation as for the
unconstrained case that has been extensively described in Appendix A. Based on
Equation (6.7)1, however, we obtain additionally

k∑

i,j=1

µ̄j ·

∫ 1

0

M̃iM̃j G(z̄h) dα · ˜̄zi =
k∑

i=1

µ̄i ·
k+1∑

j=1

∫ 1

0

M̃iM
′

j G(z̄h) dα · z̄j = 0 , (6.8)

compare Betsch and Steinmann [28]. Obviously, Equation (6.8) corresponds to
Equation (6.7)2 and, hence, it can be related to the second weak form in time (6.5)2

via the approximations (3.39), (6.4). Interestingly, the left-hand side of Equation
(6.8) might be also interpreted as a time-integrated and time-approximated gener-
alisation of the classical d’Alembert statement that constraint forces are workless.
Regarding the mentioned relation to the weak formulation of the constraints (6.5)2,
basically the following two properties of the applied time discretisation procedure
are essential:

• Firstly, the fact that the time-derivatives Dαz̄h and the test functions δz̄h be-
long to the same function space Pk−1 has been involved, as already discussed
in Remark 3.4.2 for the unconstrained case.

• Secondly, the application of approximated Lagrange multipliers µ̄h which are
included in the same function space Pk−1 as the corresponding test functions
δµ̄h is obviously a further significant aspect in this context, compare Equation
(6.5)2 with the right-hand side of Equation (6.8).

Consequently, the chosen mG(k) method could even be regarded as the proper
method of choice to transfer a (generalised) workless condition from the time-
continuous to the time-discrete case.

3. Since we deal in the present chapter with constrained dynamical systems, a fur-
ther requirement for the resulting integrators is the fulfilment of the underlying
constraints, referred to as kinematic consistency. Starting with the fundamental
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6. Finite Elasto-Plastic Multibody Dynamics

theorem of calculus and using the partition of unity property of the reduced shape
functions in time, namely

∑k
i=1 M̃i = 1, renders

ḡα=1 − ḡα=0 =

∫ 1

0

Dα ḡ(z̄h) dα =

k+1∑

j=1

∫ 1

0

[ k∑

i=1

M̃i

]
M

′

j G(z̄h) dα · z̄j . (6.9)

Obviously, the right-hand side of Equation (6.9) can be reformulated by changing
integration and summation, so that Equation (6.7)2 directly implies

k∑

i=1

k+1∑

j=1

∫ 1

0

M̃iM
′

j G(z̄h) dα · z̄j = 0 . (6.10)

Hence, considering Equations (6.9), (6.10), Equation (6.7)2 yields as well the ful-
filment of the discrete balance

ḡα=1 − ḡα=0 = 0 , (6.11)

when the involved time-integrals are calculated exactly. Assuming consistent initial
values for the constraints at t = 0, Equation (6.11) leads straightforwardly to the
fulfilment of the constraints at t = tn+1, being related to α = 1 via Equation
(3.38).

The foregoing discussion has clearly shown that in fact the applied mG(k) method rep-
resents the adequate generalisation of the cG(k) method in the here considered context,
providing a universal framework to design consistent time-stepping schemes for general
constrained dynamical systems. Dealing in particular with inelastic multibody dynam-
ics, the general format of the constraint vector (6.1) has to be specified next, whereby
we basically distinguish between

• internal constraints that are caused by underlying assumptions of the chosen rigid
body description,

• external constraints which are related to kinematic restrictions of the involved
bearings and joints, and finally

• coupling constraints that correspond to the coupling of rigid and (inelastic) flexible
parts.

6.1.1. Internal constraints – Rigid body dynamics

In contrast to standard approaches in the multibody community, which usually rely on
the classical Euler equations or on local coordinates for the special orthogonal group
SO(3) respectively, in this work a rotationless formulation is preferred to describe the
rigid body kinematics, as advocated for instance in References [27, 29, 31]. The main
advantages of such a description are:
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• First of all, the chosen formulation exhibits, independently if planar or spatial mo-
tions are considered, a quite simple structure of the resulting equations of motion,
avoiding any numerical difficulties associated with the incorporation of rotational
parameters.

• Moreover, it directly results in a set of DAEs with holonomic constraints which
perfectly fits into the foregoing Galerkin-based time-integration framework. Hence,
the favoured approach to describe the motion of rigid bodies is particularly well-
suited regarding the claimed consistent time-integration.

For the following investigations, a representative rigid body Br ⊂ R3 with the mass
density ρr is considered. Moreover, let X =

∑3
τ=1X

τ eτ ∈ R3 denote the placement of
a material point of the body in the corresponding reference configuration Br

0, whereby
we assume for the sake of simplicity that the centre of mass of Br

0 coincides with the
origin of the space-fixed orthonormal frame {eτ}. Consequently, the current placement
in the spatial configuration Br

t can be formulated by means of the mapping

q(X, t) = %(t) +

3∑

τ=1

Xτ dτ (t) , (6.12)

as sketched in Figure 6.1. Herein, the vector %(t) : R+ → R3 refers to the position
of the centre of mass and X(t) := R(t) · X =

∑3
τ=1X

τ dτ (t) with the rotation matrix
R ∈ S0(3) denotes the (relative) placement with respect to the director triad {dτ (t)}.
Hereby, the directors constitute a right-handed body-fixed frame which is assumed to
be aligned with the principal axes of the rigid body. Hence, the current configuration
Br

t might be specified by the vector

qr(t) := [%(t), d1(t), d2(t), d3(t)]t ∈ R
12 , (6.13)

including a set of redundant coordinates. Additionally, six orthonormality conditions
dτ · dβ = δτβ, which reflect the requirement of rigidity, have to be taken into account,
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6. Finite Elasto-Plastic Multibody Dynamics

rendering the vector of internal constraints

gint(qr) =




1
2
[d1 · d1 − 1]

1
2
[d2 · d2 − 1]

1
2
[d3 · d3 − 1]

d1 · d2

d1 · d3

d2 · d3



. (6.14)

According to Equation (6.6), we obtain furthermore the corresponding constraint Jaco-
bian of the internal constraints Gint := ∇qr gint ∈ R6 × R12, resulting in

G
int =




0
t d1t

0
t

0
t

0
t

0
t d2t

0
t

0
t

0
t

0
t d3t

0
t d2t

d1t
0

t

0
t d3t

0
t d1t

0
t

0
t d3t

d2t




(6.15)

with the zero vector 0 ∈ R3. Next, the constant mass matrix of the rigid body Mr ∈
R12 × R12 is introduced as

M
r =




MI 0 0 0

0 E1 I 0 0

0 0 E2 I 0

0 0 0 E3 I


 , (6.16)

wherein we have incorporated the identity and zero matrices I, 0 ∈ R3 × R3, the total
mass M , as well as the principal values of the convected Euler tensor Eτ which are given
by

M =

∫

Br
0

ρr(X) dV and Eτ =

∫

Br
0

[Xτ ]2 ρr(X) dV (6.17)

respectively. Moreover, time-differentiation of Equation (6.13) yields

q̇r(t) = [%̇(t), ḋ1(t), ḋ2(t), ḋ3(t)]t =: vr(t) , (6.18)

so that the corresponding vector of momenta of the rigid body pr(t) := Mr ·vr(t) ∈ R12

can be defined. Therewith, the classical Hamiltonian for one rigid body might be written
as

Hr(qr,pr) :=
1

2
pr · M

r−1 · pr + V ext(qr) . (6.19)

Consequently, the general format of a mixed Galerkin time-integration of constrained
(dissipative) systems, given by Equations (6.7), can be specified straightforwardly to
rigid body dynamics with z̄ = [qr,pr]t ∈ R24 by setting H = Hr and G = [Gint

0] ∈
R6 × R24, using the zero matrix 0 ∈ R6 × R12.
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Figure 6.2.: lower kinematic pairs
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6.1.2. External constraints – Kinematic pairs

In the previous section, a rotationless formulation to model rigid body dynamics has
been presented, focussing initially on the description of one rigid part. In a next step,
a dynamical system which consists of two rigid bodies Br

1,2 is considered, whereby each
body is characterised by the vector of internal constraints gint

τ and the mass matrix Mr
τ

for τ = 1, 2, given by Equation (6.14) and Equation (6.16) respectively. By introducing
the mass matrix of the system

M
r
12 =

[
Mr

1 0

0 Mr
2

]
, (6.20)

with 0 ∈ R12 × R12, the classical Hamiltonian reads

Hr
12(q̄, p̄) :=

1

2
p̄ · Mr

12
−1 · p̄ + V ext(q̄) , (6.21)

wherein the system vectors q̄ := [qr
1, q

r
2]

t ∈ R24 and p̄ := [pr
1,p

r
2]

t ∈ R24 have been
introduced based on

qr
τ = [%τ , d1

τ , d2
τ , d3

τ ]
t and pr

τ = [pτ , p1
τ , p2

τ , p3
τ ]

t . (6.22)

Furthermore, the vector of internal constraints

gint
12 (q̄) := [gint

1 (qr
1), gint

2 (qr
2)]

t (6.23)

with gint
τ (qr

τ ) ∈ R6 has to be taken into account for the two body system under con-
sideration. Consequently, the constraint Jacobian Gint

12 := ∇q̄ gint
12 ∈ R12 × R24 results

in

G
int
12 =

[
Gint

1 0

0 Gint
2

]
, (6.24)

using Gint
τ given by Equation (6.15) and 0 ∈ R6 ×R12. Dealing with multibody systems,

in particular the interconnection of the involved rigid bodies via kinematic pairs is es-
sential. For fundamental aspects and detailed background informations concerning this
topic, we refer for instance to the textbooks [3, 58, 159] and references cited therein.
Basically, it is accepted to distinguish between six so-called lower kinematic pairs. As
sketched in Figure 6.2, we differ between

• planar

• prismatic

• spherical

• cylindrical

• screw

• revolute

pairs. Obviously, each of these pairs only allows a specific relative motion between the
connected bodies, or with other words each joint blocks a certain number of (relative)
degrees of freedom, referred to as mext. Taking these additional kinematic restrictions
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into account, a vector of external constraints and the corresponding constraint Jacobian,
given by

gext
12 (qr

1, q
r
2) ∈ R

mext

and G
ext
12 := ∇q̄ gext

12 ∈ R
mext

× R
24 , (6.25)

adds to the foregoing internal constraints 1. Regarding the specific format of the external
constraints in case of different kinematic pairs, we refer to the detailed investigations in
Betsch and Leyendecker [23] and Leyendecker [108] 2. In general, we finally obtain the

1Please note, that the chosen formulation to model joints between rigid bodies completely avoids the
introduction of relative degrees of freedom and, in fact, it fits perfectly into the favoured DAE
framework.

2Here, solely the formulation of a revolute pair with mext = 5 is demonstrated exemplarily, since
this joint will play a central role in one of the following numerical examples, compare Section 6.3.4.
Considering Figure 6.3, the corresponding vector of external constraints can be written as

grev
12 =




%2 + η2 − %1 − η1

n1 · d
1
2 − θ1

n1 · d
2

2 − θ2


 , (6.26)

wherein the normalised axis of rotation n1 =
∑3

τ=1
nτ

1dτ
1 , the projection of the director dτ

2 on this

axis θτ , as well as the vectors ηω =
∑3

τ=1
ητ

ωdτ
ω have been introduced. Consequently, the constraint

Jacobian reads

G
rev
12 =




−I −η1
1I −η2

1I −η3
1I I η1

2I η2
2I η3

2I

0
t n1

1d
1 t

2 n2
1d

1 t

2 n3
1d

1 t

2 0
t nt

1 0
t

0
t

0
t n1

1d
2 t

2 n2
1d

2 t

2 n3
1d

2 t

2 0
t

0
t nt

1 0
t


 , (6.27)

using 0 ∈ R3 and I ∈ R3 × R3.
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resulting constraints and constraint Jacobian of the system given by

ḡ(q̄) = [gint
12 , gext

12 ]t ∈ R
12+mext

and G =

[
Gint

12 01

Gext
12 02

]
∈ R

12+mext

× R
48 (6.28)

with the zero matrices 01 ∈ R12×R24 and 02 ∈ Rmext
×R24, so that by means of H = Hr

12

and z̄ = [qr
1, q

r
2,p

r
1,p

r
2]

t ∈ R48 the time-integration scheme (6.7) is determined for the
two body system at hand.

6.1.3. Coupling constraints – Flexible parts

To model inelastic multibody systems, the final but essential step is the investigation of
the coupling between flexible parts, which have been discussed exhaustively in Chapter
3, and rigid bodies, that have been addressed in the previous sections. In the following,
we consider a partitioned solid body

B = Br ∪ Bf , (6.29)

consisting of two rigid parts Br =
⋃2

ω=1 B
r
ω which are connected with a semidiscrete

flexible structure Bf =
⋃nel

el=1 Bel. In entire analogy to Chapter 3, the dynamics of
the flexible part (nnode spatial nodes, ndof degrees of freedom) is formulated by means
of a vector of nodal coordinates and a vector of nodal momenta which are denoted in
this context by qf := [q1(t), ..., qnnode

]t ∈ Rndof and pf := [p1(t), ...,pnnode
]t ∈ Rndof

respectively. Using furthermore the zero matrices 01 ∈ R12 × R12 and 02 ∈ R12 × Rndof ,
the mass matrix of the system

M
rf
12 =




Mr
1 01 02

01 Mr
2 02

0
t
2 0

t
2 Mf


 ∈ R

24+ndof × R
24+ndof (6.30)

can be assembled, wherein Mf denotes the already known mass matrix of the flexible
part according to Equation (3.18). Moreover, we introduce the system vectors q̄ :=
[qr

1, q
r
2, q

f ]t ∈ R24+ndof and p̄ := [pr
1,p

r
2,p

f ]t ∈ R24+ndof based on Equation (6.22), so
that the function

Hrf
12 (q̄, p̄; κ) :=

1

2
p̄ · M

rf
12

−1
· p̄ + Ψ(qf ; κ) + V ext(q̄) (6.31)

can be defined, combining Equation (3.20) with Equation (6.21). As sketched in Figure
6.4, the actual coupling between the rigid body Br

ω and a spatial node I of the deformable
part can be formulated by incorporating the so-called (nodal) coupling constraints

gcou
I (q̄) = %ω(t) +

3∑

τ=1

Xτ
I dτ

ω(t) − qI(t) (6.32)
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with ω = 1, 2 chosen adequately, depending on the fact if the considered node I is
coupled to rigid body 1 or rigid body 2. Consequently, the corresponding constraint
Jacobian Gcou

I := ∇q̄ gcou
I ∈ R3 × R24+ndof reads

G
cou
I = [I X1

I I X2
I I X3

I I 01 02 02 . . . − I . . . 02] (6.33)

for the case ω = 1 and

G
cou
I = [01 I X1

I I X2
I I X3

I I 02 02 . . . − I . . . 02] (6.34)

for ω = 2 respectively, involving the matrices 01 ∈ R3×R12 and 02, I ∈ R3×R3. Hence,
for a system with nc coupled FE-nodes the (global) vector of coupling constraints and
the resulting constraint Jacobian are given by

gcou
12 := [gcou

1 , ..., gcou
nc

]t ∈ R
3 nc and G

cou
12 := [Gcou

1 , ...,Gcou
nc

]t ∈ R
3 nc × R

24+ndof . (6.35)

Finally, the Galerkin-based time-stepping scheme (6.7) can be specified for the system
under investigation with z̄ = [qr

1, q
r
2, q

f ,pr
1,p

r
2,p

f ]t ∈ R48+2 ndof and H = Hrf
12 by setting

ḡ(q̄) = [gint
12 , gcou

12 ]t ∈ R
12+3 nc and G =

[
Gint

12 01

Gcou
12 02

]
∈ R

12+3 nc × R
48+2 ndof (6.36)

based on Equation (6.24), applying this time the zero matrices 01 ∈ R12 ×R24+2 ndof and
02 ∈ R3 nc × R24+ndof .
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6.2. Consistent Time-Stepping Scheme

In the previous sections, all essential components to model inelastic multibody systems
have been investigated step-by-step, considering the fundamental case that two rigid
bodies are connected via joints or flexible structures. In the following, we consider an
arbitrary multibody system with

B = Br ∪ Bf , (6.37)

consisting of nr rigid parts Br =
⋃nr

τ=1 B
r
τ and nf flexible structures Bf =

⋃nf

ω=1 Bf
ω.

Moreover, each flexible structure Bf
ω is discretised in space with nω

el elements and nω
node

nodes, rendering Bf
ω =

⋃nω
el

el=1 Bel
ω . Consequently, the phase-space vector of the system

z̄ = [q̄, p̄]t ∈ R
2 [12 nr+3 nnode] (6.38)

with nnode =
∑nf

ω=1 n
ω
node can be introduced based on the vectors

q̄ := [qr
1, . . . , q

r
nr
, qf

1 , . . . , q
f
nf

]t and p̄ := [pr
1, . . . ,p

r
nr
,pf

1 , . . . ,p
f
nf

]t , (6.39)

referring to Section 6.1.2 and 6.1.3 for the definition of the components qr, pr and qf , pf

respectively. Furthermore, the mass matrix Mrf ∈ R12 nr+3 nnode × R12 nr+3 nnode can be
written for the general system at hand as

M
rf =




Mr
1 0r . . . 0r 0rf,1 0rf,2 . . . 0rf,nf

0r Mr
2 . . . 0r 0rf,1 0rf,2 . . . 0rf,nf

...
...

. . .
...

...
...

. . .
...

0r 0r . . . Mr
nr

0rf,1 0rf,2 . . . 0rf,nf

0
t
rf,1 0

t
rf,1 . . . 0

t
rf,1 M

f
1 0f,12 . . . 0f,1nf

0
t
rf,2 0

t
rf,2 . . . 0

t
rf,2 0

t
f,21 M

f
2 . . . 0f,2nf

...
...

. . .
...

...
...

. . .
...

0
t
rf,nf

0
t
rf,nf

. . . 0
t
rf,nf

0
t
f,1nf

0
t
f,2nf

. . . Mf
nf




, (6.40)

wherein several different zero matrices with adequate dimensions have been applied,
namely: 0r ∈ R12 × R12, 0rf,τ ∈ R12 × R3 nτ

node, and 0f,τω ∈ R3 nτ
node × R3 nω

node. Based on
Equation (6.40), hence, we obtain the function

Hrf(q̄, p̄; κ) :=
1

2
p̄ · M

rf−1
· p̄ +

nf∑

ω=1

Ψω(qf
ω; κ) + V ext(q̄) , (6.41)

incorporating optionally a separate free energy function Ψω for each flexible part Bf
ω.

Due to the applied rotationless formulation of the rigid body dynamics, once more, the
related internal constraints have to be taken into account, introducing for each rigid
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body Br
τ the constraint vector gint

τ (qr
τ ) ∈ R6 given by Equation (6.14). Consequently,

the here considered case of nr rigid bodies involves

gint := [gint
1 , . . . , gint

nr
]t ∈ R

6 nr and G
int := ∇q̄ gint ∈ R

6 nr × R
12 nr+3 nnode . (6.42)

Hereby, the constraint Jacobian Gint can be assembled for general systems based on
Equation (6.15), resulting in

G
int =




Gint
1 01 . . . 01 02

01 Gint
2 . . . 01 02

...
...

. . .
... 02

01 01 . . . Gint
nr

02


 (6.43)

with 01 ∈ R6 × R12 and 02 ∈ R6 × R3 nnode . In addition to the foregoing internal
constraints, also next external constraints are assumed to be involved in the multibody
system of interest, as discussed in Section 6.1.2. In this context, external constraints
of type gext

τ := gext
κω(qr

κ
, qr

ω) ∈ Rmext
τ – acting between the rigid bodies Br

κ
and Br

ω (see
Equation (6.25)) – are collected in one vector, rendering

gext := [gext
1 , . . . , gext

next
]t ∈ R

mext

and G
ext := ∇q̄ gext ∈ R

mext

× R
12 nr+3 nnode (6.44)

with mext =
∑next

τ=1 m
ext
τ . Dealing with nf flexible parts, we have to consider additionally

the corresponding coupling constraints, see Section 6.1.3 for further details. Basically,
the connection of the rigid part Br

τ respectively Br
ω with the flexible structure Bf

κ
results

in the coupling constraints gcou
κ

:= gcou
τω (qr

τ , q
r
ω, q

f
κ
) ∈ R3 nκ

c (compare Equation (6.35)),
so that for the entire system follows

gcou := [gcou
1 , . . . , gcou

nf
]t ∈ R

3 nc and G
cou := ∇q̄ gcou ∈ R

3 nc × R
12 nr+3 nnode , (6.45)

using the total number of coupled FE nodes nc =
∑nf

κ=1 n
κ

c . Based on Equations
(6.42)-(6.45), the constraint vector of the general multibody system as well as the
final constraint Jacobian can be composed. By introducing the abbreviation m =
6nr +mext + 3nc, it follows straightforwardly

ḡ(q̄) = [gint, gext, gcou]t ∈ R
m and G =




Gint

Gext

Gcou


 ∈ R

m × R
12 nr+3 nnode , (6.46)

wherein the general case (6.6) has been specified to G := ∇q̄ g since the constraints
(6.46)1 are only a function of the configuration vector of the system, compare also
Remark 6.2.2. Analogously to Section 4.2 and Section 5.2, we consider next a specific
representative of the general family of time-stepping schemes (6.7) and apply once again
linear Finite Elements in time, using the corresponding shape functions for k = 1 given
by Equations (4.22). When we set H = Hrf and bear in mind that ḡ is only a function
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of q̄, as already mentioned above, the resulting scheme can be written in the case of
absent external loads as

q̄2 − q̄1 −
hn

2
M

rf−1
· [p̄1 + p̄2] = 0

p̄2 − p̄1 + hn

∫ 1

0

F̄
sysh

(α) dα + hn

∫ 1

0

µ̄ · G(α) dα = 0

∫ 1

0

G(α) · [q̄2 − q̄1] dα = 0 , (6.47)

wherein the time-approximated system load vector F̄
sys h

has been introduced and the
vector µ̄ ∈ Rm includes the piecewise constant Lagrange multipliers. Supposing that no
additional potential – for instance related to supplemental springs – acts between the
involved rigid bodies, we obtain

F̄
sysh

(α) =
[
01, . . . , 0nr ,F

f h
1 (S(α)), . . . ,F f h

nf
(S(α))

]t
∈ R

12 nr+3 nnode , (6.48)

using the zero vectors 0ω ∈ R12 and for each flexible part Bf
κ

the vectorial collection
F f h

κ
:= [F int h

1 , ...,F int h
nκ

node
]t ∈ R3 nκ

node . In this context, the components F int h
I refer once

more to the time-approximated internal load vectors at the spatial nodes I given by
Equation (3.42). In entire analogy to the previous cases, the crucial step regarding
the offered consistency properties is to find adequate approximations for the remaining
time-integrals in Equations (6.47). Since in the here considered cases the constraints
ḡ(q̄) are at most quadratic in the configuration vector, the time-integrals which include
the corresponding constraint Jacobian G can already be calculated exactly with one
Gaussian integration point in time, involving

G(1/2) := G

(
q̄1 + q̄2

2

)
. (6.49)

In contrast, the integration of the system load vector results in general in a highly
nonlinear time-integral, as discussed in detail in the foregoing chapters. However, the
application of the proposed non-standard quadrature rule (5.25) renders

∫ 1

0

F̄
sysh

(α) dα ≈ F̄ (1/2) (6.50)

with

F̄ (1/2) =
[
01, . . . , 0nr ,F

f h
1 (Salg(1/2)), . . . ,F f h

nf
(Salg(1/2))

]t
(6.51)

based on the algorithmic stress tensor (5.26). Consequently, the final time-stepping
scheme reads

q̄2 − q̄1 −
hn

2
M

rf−1
· [p̄1 + p̄2] = 0

p̄2 − p̄1 + hn F̄ (1/2) + hn G
t(1/2) · µ̄ = 0

ḡ(q̄2) = 0 , (6.52)
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whereby additionally the results of Remark 6.1.3 based on Equation (6.9) have been
utilised in combination with the consistent initial values ḡ(t = 0) = 0, compare Equa-
tion (6.47)3 with Equation (6.52)3. Following the argumentation in Remark 6.1, the
integrator (6.52) allows a completely consistent time-integration of constrained dissipa-
tive dynamics, dealing in particular with elasto-plastic multibody systems.

Remarks 6.2:

1. Please note, that the governing equations for the rigid and the flexible parts can
be separated due to the specific structure of the involved matrices in Equations
(6.52). In fact, both sets of equations are only coupled via the corresponding sub-
matrix of the constraint Jacobian G which is related to the coupling constraints
gcou.

2. In the foregoing cases, all considered constraints have been of specific type: They
have been holonomic and only a function of the configuration vector of the system,
being at most quadratic in q̄. However, also other types of constraints could be
handled in a quite similar way. In this context, we refer to

• Betsch [22] regarding the incorporation of non-holonomic constraints, which
are relevant for instance to model rolling motions, to

• Betsch and Uhlar [31] concerning an example for highly nonlinear constraints,
applying for the corresponding constraint Jacobian a so-called ‘G−equivariant’
version of the discrete derivative by Gonzalez [62, 63], and to

• Betsch and Steinmann [28] for the case that the constraint vector depends
also on the momenta respectively the velocities of the system, enforcing the
so-called ‘secondary ’ or ‘hidden constraints’. However, a violation of these
constraints, which address additionally the requirement ˙̄g(q̄) = 0, has been
judged to be uncrucial in most of the cases, see e.g. References [28, 63, 108].
Hence, the focus is placed in this work on the enforcement of the constraints
on the configuration level.

3. The proposed formulation basically suffers from two disadvantages: Firstly, the
condition number of the global iteration matrix is of the order O(h−3

n ), see Leyen-
decker et al. [108, 109] and references cited therein. However, this drawback could
be resolved by means of adequate pre-conditioning techniques, as proposed for in-
stance by Bottasso et al. [37]. Secondly, the present formulation is characterised by
a comparatively large number of unknowns, namely 2n+m with n = 12nr+3nnode

instead of n−m independent configurational degrees of freedom. In a first step the
unknown momenta in Equation (6.52)2 can be eliminated once more by means of
Equation (6.52)1, so that we obtain n+m unknowns. Next, a further reduction of
the system size can be achieved by applying the concept of a (discrete) ‘null space
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6. Finite Elasto-Plastic Multibody Dynamics

matrix’, whose columns span the null space of the involved constraint Jacobian. By
pre-multiplying Equation (6.52)2 with this matrix, hence, the Lagrange multipliers
are removed, resulting in a system with only n unknowns. Finally, an appropriate
reparametrisation accomplishes the reduction, and we indeed end up with n −m
unknowns, representing the actual number of degrees of freedom. Moreover, this
approach leads to an iteration matrix which is independent from the time-step
size. Thus, the abovementioned conditioning problems vanish automatically by
using such a reformulation based on the integration scheme (6.52). A detailed
introduction as well as further numerical aspects of the ‘null space method’ can be
found in References [21, 23, 111].

6.3. Numerical Examples

In the previous section, a general framework to extend the concepts of Chapter 3 to
constrained dissipative dynamics as well as a specific time-stepping scheme based on lin-
ear Finite Elements in time has been been presented, dealing with inelastic multibody
systems. In this section, we demonstrate the achievable performance of the integrator
(6.52) in the context of finite elasto-plastic multibody dynamics, whereby the constitu-
tive model relies once more on a Helmholtz energy of Hencky-type in combination with
a ‘v. Mises’-type yield function including linear isotropic hardening effects. Regarding
the local integration of the plastic evolution equations, the exponential update combined
with the standard integration strategy has been applied again. For further details, we
refer to Section 5.1.2 and Section 5.2.2 respectively.

6.3.1. Flying Frame

Once again, the first example in this context picks up the motion of the ‘Flying Frame’
(2d, plane strain conditions), representing a kind of benchmark example also in the
previous chapters. This time, however, the frame is decomposed into two rigid parts
Br

1,2 – the upper and lower joist – which are connected via two flexible structures Bf
1,2,

see Figure 6.5 a) for an illustration. For the following computations with hn = 0.05, we
have used ρ = 8.0, λ = 10000, µ = 5000, Y0 = 500, Hrd = 500 for the flexible parts and
the inertial parameters which are summarised in Table 6.1 for the rigid bodies. To start

Table 6.1.: inertial parameters of the involved rigid bodies

Rigid body M E1 E2

Lower joist RB 1 30 160 10
Upper joist RB 2 30 160 10
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the motion, an initial velocity with the norm ||v̄0|| = 6 is applied, compare v̄ = Mrf−1
· p̄

based on Equations (6.39), (6.40). Moreover, external forces act on the centre of mass of
each rigid body, whereby we have applied F ext r

1 = f(t) [1, 0]t = 5 F ext r
2 . Analogously to

several previous examples, the function f(t) is prescribed in time by a hat function with
fmax = 3500 and Tload = 1.0, as sketched in Figure 6.5 a). A sequence of the motion is
pictured in Figure 6.5 b) and the resulting trajectories of the centres of mass are shown
in Figure 6.12 a). Regarding mechanical consistency, we refer to Figure 6.6, wherein
the conservation of the linear as well as of the angular momentum can be regarded.
Furthermore, the accumulated dissipation is pictured in Figure 6.7 a) and the claimed
monotonic decrease of the total energy can be seen in Figure 6.7 b). Thereby, the
decrease of the total energy is strictly related to the increase of the plastic dissipation,
resulting in a conservation of the augmented Hamiltonian plotted in Figure 6.8 a). In
analogy to Equation (5.33), we introduce also for coupled systems a residual R to assess
more rigorously the fulfilment of the discrete balance of the augmented Hamiltonian.
As expected, Figure 6.8 b) clearly confirms that even for the constrained case energy-
consistency is guaranteed in a numerically exact manner. So far, the integrator (6.52)
offers the same consistency properties which have already been discussed extensively
in Chapter 5. Next, we demonstrate in detail that also the included constraints are
fulfilled exactly. In the present example, only internal and coupling constraints are
involved. More precisely, we have to deal in the here considered 2d case with 6 internal
constraints and 12 coupled FE-nodes, resulting in the constraint vector ḡ ∈ R30. The
fulfilment of the coupling constraints is guaranteed at least within the order of magnitude
O(10−14), as displayed in Figure 6.9 and Figure 6.10 for the coupling of the flexible
parts to rigid body 1 (RB 1) and rigid body 2 (RB 2) respectively. Moreover, it can be
seen in Figure 6.11 that also the internal constraints, which are related to the favoured
rotationless formulation of the rigid body kinematics, are fulfilled within the calculation
accuracy, so that kinematic consistency is indeed offered additionally by applying the
discussed concepts. Finally, we compare the plastic motion with the purely elastic case,
using identical material parameters but Y0 → ∞. The influence on the deformation of
the frame can be studied in Figure 6.13 b) based on the configuration Bt at t = 1.0.
Obviously, the plastic deformations basically take place within two spatial elements and
result in a permanent stretch of the distance between both rigid bodies, as pictured in
Figure 6.13 a). Furthermore, the exemplarily considered trajectory of the centre of mass
of rigid body 1 is characterised in the plastic case by reduced maximum values of the
y-coordinates and a visible phase shift, compare Figure 6.12 b).
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Figure 6.8.: a) augmented Hamiltonian H̃, b) residual R
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Figure 6.12.: trajectory of the centre of mass: a) RB 1 vs. RB 2, b) elastic vs. plastic
motion (RB 1)
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6.3.2. Flying Conrod

Also the second example of this chapter refers to a specific solid body which has already
been investigated previously in a fully flexible version, dealing once more with the spatial
motion of a ‘Flying Conrod’. However, in contrast to Section 5.6.2 the here considered
conrod consists of rigid circlets Br

1,2 which are connected via a flexible shaft Bf , using
for the inelastic structure the parameters ρ = 3.0, λ = 3000, µ = 1000, Y0 = 300,
Hrd = 300 and for the rigid bodies the inertial parameters listed in Table 6.2. Thereby,
the shaft is coupled to each circlet via 10 FE-nodes, see Figure 6.14 a) for a sketch of the
initial configuration. Thus, the constraint vector of the 3d system is given by ḡ ∈ R72,
including internal as well as coupling constraints. Again, the well-known hat function
f(t) with fmax = 4000 and Tload = 1.0 has been chosen to scale the external loads
F ext r

1 = f(t) [1, 0, 0]t = 5 F ext r
2 , acting on rigid body 1 and rigid body 2 respectively.

Table 6.2.: inertial parameters of the involved rigid bodies

Rigid body M E1 E2 E3

Large circlet RB 1 65.9734 412.3340 412.3340 5.4978
Small circlet RB 2 28.2743 35.3429 35.3429 2.3562

The free flight of the conrod and in particular the deformations of the flexible part can
be regarded in Figure 6.21 based on some snapshots of the motion 3, using the constant
time-step size hn = 0.02. Since the applied time-stepping scheme (6.52) offers a me-
chanically consistent time-integration, the linear and the angular momentum are both
conserved in the present example, as shown in Figure 6.16. Similarly to the foregoing
example, the plastic deformations lead to a notable stretch of the shaft, as can be seen in
Figure 6.14 b) based on a plot of the distance between both circlets. Hereby, the resulting
accumulated dissipation as well as the monotonically decreasing total energy reflect fun-
damental principles of thermodynamics, compare Figure 6.15. Moreover, it is displayed
in Figure 6.17 that the applied non-standard quadrature rule (5.25) indeed enables a con-
servation of the augmented Hamiltonian, even within the order of magnitude O(10−10).
Dealing with constrained dynamical systems, the focus is placed next on the algorithmic
fulfilment of the involved constraints. Starting with the internal constraints of the rigid
body description, the fulfilment and also the corresponding Lagrange multipliers can be
considered in Figure 6.18, whereby a pseudo time-continuous plot of the multipliers has
been preferred for the purpose of visual clarity. Nevertheless, please recall that from
the time-FE point of view the Lagrange multipliers are actually constant within each
time interval when linear shape functions in time are used, resulting in discontinuities

3To provide a more sophisticated presentation of the results, the body has been remodelled and
rendered with the open-source tool ‘POV-Ray’, enabling a nearly photo-realistic visualisation of the
motion.
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over the interval boundaries. Analogously, the Lagrange multipliers for the coupling
constraints are pictured in Figure 6.19, wherein the coupling to rigid body 1 and rigid
body 2 is investigated separately. To handle efficiently the large number of coupling con-
straints, we introduce next for a given constraint vector g(t) = [g1(t), . . . , gm(t)]t ∈ Rm

the maximum absolute value of its components

maxg(ti) := MAX

{
| g1(ti) |, . . . , | gm(ti) |

}
, (6.53)

filtering for the considered constraints at each discrete time t = ti the maximum de-
viation from zero. Consequently, we obtain based on Equation (6.53) a representative
upper bound for the numerical violation of the constraints under investigation. Firstly,
the coupling constraints are partitioned for the following investigations concerning the
coupled rigid body and the corresponding coordinates respectively. Then, the maximum
value is selected for each subset by means of Equation (6.53). In Figure 6.20, it can be
clearly seen that in the worst case the coupling constraints are violated in the size of
10−14, so that kinematic consistency of the integrator has also been confirmed for the
present example.
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Figure 6.15.: a) accumulated dissipation D, b) total energy H
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Figure 6.16.: components of: a) linear momentum, b) angular momentum
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Figure 6.17.: a) augmented Hamiltonian H̃, b) residual R
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Figure 6.18.: a) internal constraints (RB 1 & RB 2), b) Lagrange multipliers for the
internal constraints (RB 1 & RB 2)
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Figure 6.19.: Lagrange multipliers for the coupling between the flexible part Bf and: a)
the rigid body Br

1, b) the rigid body Br
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Figure 6.20.: maximum absolute values (coupling constraints): a) RB 1, b) RB 2
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6. Finite Elasto-Plastic Multibody Dynamics

6.3.3. Shaking Frame

In both foregoing examples, the free flight of a solid body which consists of rigid as well
as flexible parts has been considered, demonstrating in particular the conservation prop-
erties of the integrator. Now, we investigate a 3d frame which can be decomposed into
3 rigid floors Br

1,2,3 and 8 flexible columns Bf
1,...,8, whereby each flexible structure Bf

i is
coupled to the corresponding rigid parts by means of 8 FE-nodes. Moreover, the ground
floor is fixed in space and only 2 translational degrees of freedom remain, representing
a two-directional sliding bearing which involves additionally 4 external constraints. Fi-
nally, the constraint vector of the system results in ḡ ∈ R214. A sketch of the system
can be regarded in Figure 6.22 a) and the applied intertial parameters of the involved
rigid parts can be found in Table 6.3.

Table 6.3.: inertial parameters of the involved rigid bodies

Rigid body M E1 E2 E3

Ground floor RB 1 20 666.6667 666.6667 0.4167
First floor RB 2 1500 12500 12500 31.2500
Second floor RB 3 1500 12500 12500 31.2500

The computations have been performed with the constant time-step size hn = 0.1, using
for Bf

1,...,4 the parameters ρ1 = 12.0, λ1 = 300 000, µ1 = 100 000, Y0, 1 → ∞, and for

Bf
5,...,8 the parameters ρ2 = 12.0, λ2 = 30000, µ2 = 10000, Y0, 2 = 300, Hrd

2 = 3000.
Motivated by the load case of an earthquake, the external forces F ext r

1,j = 5 fj(t) [1, 0, 0]t

with j = 1, 2, 3 act on the centre of mass of rigid body 1, wherein the scaling factors fj(t)
correspond to the sinusoidal ‘load signals 1-3’ plotted in Figure 6.22 b). In the following
discussion, special emphasis will be placed on a comparison between the plastic and the
purely elastic case, involving additionally Y0, 2 → ∞. To get an idea of the deformation
of the system, we refer to Figure 6.32, Figure 6.33, and Figure 6.34, showing deformed
configurations of the frame for the elastic as well as for the plastic motion. Therein, it
can be clearly seen that the purely elastic case is characterised by notable relative mo-
tions between RB 2 and RB 3 during the entire time period. In contrast, the occurrence
of plastic deformations in Bf

5,...,8 leads to significantly reduced deflections accompanied
by an increasing plastic dissipation, which is pictured in Figure 6.25 a). This result also
becomes obvious when the trajectory of the centre of mass of RB 3 or the correspond-
ing phase-space portrait is considered, as shown in Figure 6.23. In fact, the dissipation
effects enable conspicuously lower levels of total, free, and especially of kinetic energy,
whereby the reduced kinetic energy is also directly related to a decrease of the corre-
sponding components of the momenta, see Figure 6.24 and Figure 6.26. Moreover, it is
displayed in Figure 6.31 b) that in particular the reaction forces on RB 3 in z-direction,
which are related to the coupling constraints between Bf

5,...,8 and Br
3, are visibly reduced

in the plastic case. Analogously, this effect can be observed in Figure 6.30 b) based
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on a plot of the bearing reaction force, which acts on the centre of mass of RB 1 in
z-direction. Contrariwise, the reaction forces on RB 1 in x-direction, being related to
the coupling between Bf

1,...,4 and Br
1, are not influenced substantially when plastic de-

formations are involved, compare Figure 6.31 a). Next, the consistency properties of
the integrator will be demonstrated once more. In this context, the conservation of the
augmented Hamiltonian can be regarded in Figure 6.25 b) for t ∈ [2, 4], representing the
only time interval without external loading. More precisely, it is shown in Figure 6.27
that energy-consistency is guaranteed within the order of magnitude O(10−10) for the
elastic as well as for the plastic motion. To investigate the fulfilment of the coupling and
the internal constraints, the maximum deviation approach based on Equation (6.53) has
been applied once more, enabling a particularly compact representation. As confirmed
by the results in Figure 6.28 and Figure 6.29 a), both types of constraints are fulfilled
within the calculation accuracy, whereby the maximum violation lies in the range of
10−12. Finally, each of the 4 additional external constraints is plotted in Figure 6.29 b)
and Figure 6.30 a) respectively, wherein an exact fulfilment can be seen.
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Figure 6.23.: RB 3: a) trajectory of the centre of mass, b) phase-space portraits
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Figure 6.24.: a) total energy H, b) total energy H & energy components K, Ψ
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Figure 6.26.: component(s) of: a) linear momentum, b) angular momentum
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Figure 6.27.: a) residual of global energy-consistency R, b) zoom: residual R
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Figure 6.28.: maximum absolute values (coupling & internal constraints): a) RB 1, b) RB
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Figure 6.29.: a) maximum absolute values (coupling & internal constraints): RB 3, b)
external constraint 1 & external constraint 2 (RB 1)

176



6.3. Numerical Examples

0 5 10 15

−0.5

0

0.5

x 10
−23

time

co
ns

tr
ai

nt
 3

External Constraints

0 5 10 15
−4

−2

0

2

4
x 10

−24

time

co
ns

tr
ai

nt
 4

elastic case
plastic case

elastic case
plastic case

0 5 10 15

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
4

re
ac

tio
n 

fo
rc

es
 o

f e
xt

er
na

l c
on

st
ra

in
ts

: R
B

 1

time

z−direction (elastic case)
z−direction (plastic case)

PSfrag replacements

a) b)

Figure 6.30.: a) external constraint 3 & external constraint 4 (RB 1), b) reaction forces
related to the external constraints acting on RB 1 (z-direction)
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Figure 6.31.: reaction forces related to the coupling constraints acting on: a) RB 1 (x-
direction), b) RB 3 (z-direction)
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Figure 6.32.: deformed configurations Bt at t ∈ {1.0, 3.0, 5.0}: a) elastic motion, b) plastic
motion
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Figure 6.33.: deformed configurations Bt at t ∈ {5.5, 7.0, 8.0}: a) elastic motion, b) plastic
motion
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Figure 6.34.: deformed configurations Bt at t ∈ {8.5, 12.0, 15.0}: a) elastic motion, b)
plastic motion
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6.3.4. Slider-Crank Mechanism

So far, we have basically investigated the case that the rigid parts are coupled with each
other via flexible structures. However, in most of the technically relevant multibody
systems additional joints between pairs of rigid bodies have to be taken into account.
For this purpose, we consider finally a 3d ‘Slider-Crank Mechanism’ which transforms a
translational into a rotational motion, see Figure 6.35 for an illustration. Obviously, the
piston, the conrod, the rim of the wheel, as well as the nave have been modelled as rigid
parts Br

1,...,4 with the inertial parameters summarised in Table 6.4, whereas the spokes

of the wheel Bf
1,...,4 are flexible, using ρ = 10.0, λ = 100 000, µ = 50 000, Y0 = 1000,

Hrd = 5000. In this context, the each flexible part is coupled to the rim and the nave
via 12 FE-nodes. Furthermore, the nave of the wheel is fixed in space with a bearing
of revolute-type, the rim of the wheel is connected with the conrod via a revolute pair,
analogously to the coupling between the conrod and the piston, and the piston by itself
is fixed in space by means of a cylindrical bearing, referred to as ‘External Constraint
A-D’. Hence, the system vector of the foregoing constraints reads ḡ ∈ R187, incorporat-
ing additionally the internal constraints related to the rigid body description.

Table 6.4.: inertial parameters of the involved rigid bodies

Rigid body M E1 E2 E3

Nave RB 1 565.4867 2827.4334 2827.4334 106.0288
Wheel rim RB 2 1130.9734 46369.9076 46369.9076 94.2478
Conrod RB 3 56.0000 18.6667 3658.6667 0.0467
Piston RB 4 1280.0000 6826.6667 27306.6667 106.6667

To start the motion, we have used once more a hat function f(t) for the loading his-
tory with fmax = 300 and Tload = 1.0, whereby this time the external force F ext r

4 =
f(t) [0, 1, 0]t acts on RB 4 and additionally the external nodal loads F ext

A = f(t) [0, 1, 0]t,
F ext

B = f(t) [1, 0, 0]t act on the flexible spokes. The following results have been calcu-
lated by means of the constant time-step size hn = 0.05. Four snapshots of the motion
are pictured in Figure 6.46 and Figure 6.47, wherein especially the large plastic defor-
mations of the spokes are mentionable. In addition to the deformation of the spokes, the
motion of the conrod (RB 3) might be of particular interesting: Hereby, the trajectory
as well as the phase-space portrait are both characterised by a circle-like pattern related
to its periodic motion, see Figure 6.44 a) and Figure 6.36 a) respectively. Furthermore,
we refer in this context to the typical shape of the so-called herpolhode in Figure 6.36
b), representing the trajectory of the instantaneous centre of rotation. To get a better
idea of the obtained reaction forces acting on the corresponding rigid bodies, Figure
6.39 shows exemplarily some components of the reactions caused by the revolute pair
(‘External Constraint B’) and by the coupling with the flexible spokes. Herein, the
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6. Finite Elasto-Plastic Multibody Dynamics

observable high-frequency oscillations are directly affected by the vibration modes of
the flexible parts, whereas the long-time periodicity is related to the rotational motion
of the ‘Slider-Crank Mechanism’. Once more, the accumulated dissipation plotted in
Figure 6.37 b) leads to the claimed monotonic decrease of the total energy displayed
in Figure 6.37 a), whereby Figure 6.38 shows additionally the conservation of the aug-
mented Hamiltonian as well as the rigorous fulfilment of energy-consistency in the size
of 10−10. Dealing with constrained dynamics, the fulfilment of the involved constraints
will be demonstrated in detail also for this last example. For this purpose, maximum
absolute values are selected at the end of each time step based on Equation (6.53). The
results for the coupling and the internal constraints can be regarded in Figure 6.40 and
Figure 6.41 respectively, showing that the maximum violation of the constraints lies in
the range of 10−15. Furthermore, external constraints, which are denoted by ‘External
Constraint A-D’, are used in this model, as already mentioned above. The corresponding
components are plotted in Figure 6.42 and Figure 6.43, wherein it can be clearly seen
that also these constraints are fulfilled in a numerically exact manner. Hence, the results
have confirmed once again that kinematic consistency is indeed offered by the applied
time-integration scheme (6.52). Finally, the plastic motion is compared with the purely
elastic case based on Y0 → ∞. As can be seen in Figure 6.48, there are nearly no visible
deformations of the spokes in the purely elastic case due to the applied stiff material
parameters. In contrast, the plastic case is characterised by a notable twist between
the nave and the rim, compare Figure 6.45 a). Furthermore, this twist leads – similarly
to Example 6.3.1 – to a phase shift in the y-coordinate of the piston as well as in the
x-coordinate of an exemplarily considered FE-node, as pictured in Figure 6.44 b) and
Figure 6.45 b) respectively.
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Figure 6.36.: RB 3: a) phase-space portrait, b) herpolhode
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Figure 6.37.: a) total energy H, b) accumulated dissipation D
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Figure 6.38.: a) augmented Hamiltonian H̃, b) residual R
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Figure 6.39.: a) reaction forces related to revolute pair (RB 2/RB 3), b) reactions related
to coupling constraints (RB 1/RB 2)
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Figure 6.40.: maximum absolute values (coupling constraints): a) RB 1, b) RB 2
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Figure 6.41.: maximum absolute values (internal constraints): a) RB1 & RB 2, b) RB 3
& RB 4
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Figure 6.42.: external constraints applied: a) to RB 1 (revolute-type), b) between RB
2/RB 3 (revolute pair)
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Figure 6.43.: external constraints applied: a) between RB 3/RB 4 (revolute pair), b) to
RB 4 (cylindrical-type)
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Figure 6.44.: a) trajectory of the centre of mass (RB 3), b) elastic vs. plastic motion:
y-coordinate of the centre of mass (RB 4)
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Figure 6.45.: elastic vs. plastic motion: a) difference angle (RB 1/RB 2), b) coordinates
of a FE-node
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Figure 6.46.: deformed configurations Bt at t ∈ {0.05, 6.0, 14.0}: a) overall view, b) zoom:
spokes
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Figure 6.47.: deformed configuration Bt at t = 19.5: a) overall view, b) zoom: spokes
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Figure 6.48.: deformed spokes Bf
t at t = 1.2: elastic (blue) vs. plastic (red) case
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7. Epilog – Discussion

In this chapter, on the one hand, the main results of the present work will be sum-
marised and discussed and, on the other hand, a brief outlook will be presented, showing
potential issues that could be addressed in future investigations.

Essential Results

In the present work, the completely consistent time-integration of nonlinear dissipative
dynamics, focussing on elasto-plastic deformations, has been investigated extensively. In
this context, time FE methods represent a particularly well-suited framework to develop
time-stepping schemes which offer pre-defined conservation properties, analogously to
the underlying physical model. More precisely, the favoured integrators are able to
capture

• the numerically exact fulfilment of involved constraints related to bearings and
joints labelled as kinematic consistency,

• the algorithmic conservation of the linear as well as of the angular momentum
referred to as mechanical consistency,

• a conservation of the total energy for elastic deformations respectively a strictly
positive dissipation – corresponding to the second law of thermodynamics – in
combination with a monotonic decrease of the total energy in the plastic case
related to thermodynamical consistency,

• and finally a conservation of the sum consisting of the total energy and the (strictly
positive) dissipation motivated by the first law of thermodynamics and classified
as energy-consistency.

Please note, that hereby all essential consistency properties are guaranteed not only at
first glance, but even within the calculation accuracy. In fact, it has been demonstrated
by means of several representative numerical examples, dealing with structural as well as
flexible multibody dynamics, that the favoured concepts render a superior performance
compared to standard integration schemes with regard to the physical quality of the
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results and also concerning the robustness of the algorithms. In particular, the referred
properties qualify the proposed completely consistent integration schemes for long-time
simulations. In the following, the essential results of different chapters will be discussed
separately.

Friction-element oscillator: Presenting numerical aspects of nonlinear dynamics in
a nutshell, the notable influence of (material) nonlinearities on the algorithmic perfor-
mance of time-stepping schemes has been demonstrated based on a friction-element os-
cillator. Hereby, the importance of an adequate approximation of involved time-integrals
has been pointed out and the performance of different quadrature rules has been dis-
cussed.

Fundamental concepts: In the third chapter, a general framework for the consistent
time-integration of inelastic continuum dynamics has been presented, using a fully non-
linear theory and an internal variable formulation to model the constitutive behaviour.
The discretisation in space as well as in time rely both on a Finite Element approach,
whereby concerning the time-integration a continuous Galerkin method has been applied.
Analogously to Chapter 2, standard and non-standard quadrature rules have been dis-
cussed in detail with regard to the achievable conservation properties. To guarantee
mechanical as well as energy-consistency, a specifically designed non-standard quadra-
ture has been introduced based on an ‘enhanced algorithmic stress tensor’ which can be
derived from a constrained optimisation problem. Thereby, it is important to keep in
mind that all presented concepts are actually general enough to include also higher-order
schemes and to cover various types of inelastic effects.

Elastodynamics: In this chapter, the general concepts of Chapter 3 have been specified
to hyperelasticity formulated in principal stretches, using linear Finite Elements in time.
Concerning the evaluation of the eigenvalue-based constitutive laws, a well-established
and efficient perturbation technique has been applied. Regarding the implementation,
several pitfalls occur which have been shown to be directly related to numerical arte-
facts of the ‘stress enhancement’, including the oscillating numerical limit transition in
general and the coupling of the numerical behaviour and the applied perturbation size
in particular. Furthermore, it has been demonstrated that these effects can significantly
influence the numerical as well as the mechanical performance of the resulting time
integrator, especially, when dealing with small time-step sizes and mechanically stiff
problems. Moreover, we have presented the ‘mixed strategy’ for the evaluation of the
‘enhanced algorithmic stresses’ as an appropriate remedy for the numerical problems,
whereby the effectiveness of the proposed approach has been verified on the local as well
as on the global level. Finally, the suggested concept has been tested by means of two
representative numerical examples. In this context, it has been shown that the devel-
oped strategy allows the claimed efficient and robust time-integration for a wide range
of problems, rendering mechanical consistency as well as an algorithmic conservation of
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the total energy within the calculation accuracy.

Elasto-plasto-dynamics: Next, the Galerkin-based time-integration of finite elasto-
plasto-dynamics has been considered, whereby a multiplicative formulation of large
strain plasticity and an eigenvalue-based elastic response have been incorporated. Based
on linear time approximations and different quadrature rules, the resulting time-stepping
schemes have been combined, as a fundamental example, with a well-established first-
order accurate exponential update for finite plasticity, which has been formulated with
respect to the intermediate configuration. However, also other local update schemes
could be embedded instead without affecting the basic ideas, since we conceptually
favour a separate treatment of global and local time-integration. In this context, we
have investigated furthermore different integration strategies how to fit the local update
into the global framework and the resulting convergence performance of each option
has been discussed as well. To demonstrate the excellent performance of the proposed
algorithms, several numerical examples have been presented, including a comparison to
selected customary integrators that have been originally designed for linear structural
dynamics. Thereby, it has been clearly confirmed that especially the completely con-
sistent scheme based on the so-called elasto-plastic enhanced algorithmic stress tensor
– referred to as ‘ECMC-cG method’ – is particularly well-suited to simulate stiff and
non-stiff problems, dealing even with huge plastic deformations. In fact, global energy-
consistency is guaranteed by the proposed method in a ‘numerically exact manner’ which
implies a fulfilment of the discrete balance of the augmented Hamiltonian in the range
of the calculation accuracy. In total, the advocated scheme is able to manage systems
with different mechanical stiffnesses, it is robust concerning changes of the time-step
size, and it respects fundamental principles of the underlying physical model.

Elasto-plastic multibody dynamics: In a last step, the scope has been extended to
constrained dissipative dynamics in general and elasto-plastic multibody systems in par-
ticular. In contrast to classical approaches in the multibody dynamics community, the
modelling of the inelastic flexible parts relies hereby on a fully nonlinear continuum the-
ory and a subsequent Finite Element discretisation in space, as discussed in Chapter 3.
Moreover, the actual constitutive modelling of the elasto-plastic material behaviour is
identical to the concepts of Chapter 5, so that the present approach is indeed able to
cover finite deformations as well as large strains. Even if the formulation of the flexi-
ble parts has already been discussed extensively in other chapters, the incorporation of
constraints leads to various additional issues, resulting in a set of differential algebraic
equations. To integrate this system consistently in time, the previously discussed con-
tinuous Galerkin method of the unconstrained case has been adequately extended to the
mixed Galerkin method for constrained systems, using a formulation based on Lagrange
multipliers. To model multibody systems, rigid bodies have been taken into account,
whereby we have favoured a rotationless formulation which is beneficial with regard to
the claimed consistent integration but additionally involves internal constraints due to
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requirements of rigidity. In addition to these internal constraints, the coupling of rigid
and flexible parts as well as the modelling of bearings and joints has given rise to further
constraints, referred to as coupling and external constraints respectively. Once more,
the general concepts have been specified finally to one particular time-stepping for finite
elasto-plastic multibody dynamics, using on the global level linear shape functions in
time combined with properly chosen quadrature rules. For the local integration, we have
applied again the exponential update as a kind of benchmark example. Finally, the per-
formance of the algorithm has been investigated by means of four numerical examples,
considering free flight as well as bounded motions. In all cases, it has been shown that
the resulting integrator indeed guarantees a completely consistent time-integration which
includes: the numerically exact fulfilment of all involved constraints, the conservation
of both momentum maps, a strictly positive dissipation as well as the corresponding
monotonic decrease of the total energy, and also the conservation of the augmented
Hamiltonian.

Future Perspectives

In the following, we briefly address some issues that might be of interest for future in-
vestigations. In this context, the open aspects have been classified in three categories
which represent essential steps during a typical simulation process, namely: modelling,
discretisation, and evaluation.

Modelling: In the present contribution, a widespread isotropic plasticity model has
been applied, focussing on the time-integration of the obtained equations of motion.
However, the conceptual uncoupling between global and local level also allows to incor-
porate other types of plasticity, considering for instance non-associated or anisotropic
plasticity models. Even other dissipation effects that rely on an internal variable concept
– like e.g. visco-elasticity, visco-plasticity, or fatigue effects – could be treated similarly
due to the generality of the proposed formulation.

Discretisation: Without question, one of the most important tasks for future work
is the consideration of higher-order local update algorithms to circumvent any order re-
duction of the global scheme in the plastic case. In fact, the entire potential of the here
presented framework for a consistent time-integration can only be exploited, when also
local schemes of theoretically arbitrary order are available. Possibly, one interesting ap-
proach could be for instance the design of Galerkin-based local updates, dealing however
with inequality constraints. A further important issue could be the option to include ad-
ditionally a controllable type of numerical dissipation, which might be useful for certain
applications. Please note, that a completely consistent algorithm also represents for this
case an optimal point of departure. Moreover, the numerical treatment of plastic incom-

pressibility should be addressed in following projects to avoid locking effects, whereby
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the applied formulation should be chosen carefully and potential consequences for the
consistency of the time-integration scheme have to be taken into account. Finally, the
investigation of adequate concepts to adapt the time-step size – on the global or possibly
on the local level corresponding to the discussed ‘modified integration strategy’ – seems
to be an interesting aspect, especially with regard to computational efficiency.

Evaluation: In each chapter of the present contribution, special emphasis has been
placed on the validation of the proposed algorithms by means of several numerical exam-
ples which have clearly confirmed the excellent performance of the advocated integration
schemes. Nevertheless, there are still important aspects that should be investigated in
more detail. At first, the computational costs, which are slightly higher for the consistent
scheme in comparison to standard integrators, should be fairly evaluated based on some
benchmark computations. Secondly, it would be certainly interesting to investigate in a
next step the benefit of the proposed concepts based on real-world applications, where
also experimental data are available.
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A. Energy-Consistency

In the following, a detailed investigation of the algorithmic energy-consistency proper-
ties of the proposed Galerkin-based integrators for nonlinear dynamics will be presented,
covering a huge family of dissipative models that essentially rely on a formulation based
on internal variables. In this context, the fundamental equations of Section 3.3.3 will be
derived step by step, including various additional aspects. The present chapter is hereby
structured as follows:

• Firstly, a global condition for energy-consistency is derived in Section A.1, re-
ferring directly to results of the semidiscrete case. Thereby, the resulting global
condition (3.60) basically represents a restriction for the approximation of the time-
integrated internal load vector, motivating the design of adequate non-standard
quadrature rules.

• Subsequently, this global condition is transferred in Section A.2 to the equivalent
local statement (3.61) which has to be satisfied by the involved (time-integrated)
stresses, encouraging the introduction of the specific non-standard quadrature rule
(3.47) based on an appropriate algorithmic modification of the stress tensor.

• Finally, it is demonstrated in Section A.3 that the abovementioned local condition
for energy-consistency is indeed satisfied by means of the particularly designed
enhanced algorithmic stress tensor (3.51).

Consequently, the present chapter confirms in detail the qualification of the proposed
non-standard quadrature rule (3.47) based on the enhanced algorithmic stress tensor
(3.51) concerning the guarantee of algorithmic energy-consistency related to Equation
(3.62).

A.1. Global Condition

For the purpose of a completely consistent time-integration, the developed time FE
methods have to fulfil a global energy-consistency condition related to the conserva-
tion of the augmented Hamiltonian H̃, according to the semidiscrete case (3.34). As
mentioned above, we start with the development of this global condition, representing
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a criterion for the approximation of a corresponding time-integral. According to the
procedure proposed in Betsch and Steinmann [26] for elastic material behaviour, the
point of departure is constituted by the general form of discrete equations of motion as
given in Equation (3.41). Additionally, the vectors ˜̄zi for i = 1, ..., k are introduced,
consisting of linear combinations of the known vectors z̄j = [q̄j, p̄j]

t at the time nodes

j = 1, ..., k + 1. After scalar-multiplication with J · ˜̄zi and subsequent summation over
i = 1, ..., k, we obtain

k∑

i=1

k+1∑

j=1

∫ 1

0

M̃iM
′

j dα z̄j ·
[
J · ˜̄zi

]
− hn

∫ 1

0

M̃i ∇z̄ H(z̄h; κ) dα ·
[
J

t · J
]
· ˜̄zi = 0 . (A.1)

Taking additionally the equivalence relation
∑k

i=1 M̃i ˜̄zi =
∑k+1

i=1 M
′

i z̄i into account,
Equation (A.1) can be reformulated as

k+1∑

i,j=1

∫ 1

0

M
′

iM
′

j dα z̄j ·
[
J · z̄i

]
− hn

∫ 1

0

M
′

i ∇z̄ H(z̄h; κ) dα ·
[
J

t · J
]
· z̄i = 0 . (A.2)

Next, by making use of the skew-symmetry of J defined in Equation (3.21) and the
time-approximations of z̄h corresponding to Equation (3.39), the first part of Equation
(A.2) results in

k+1∑

i,j=1

∫ 1

0

M
′

iM
′

j dα z̄j ·
[
J · z̄i

]
=

∫ 1

0

Dαz̄h · J · Dαz̄h dα = 0 . (A.3)

Moreover, orthogonality of the (symplectic) matrix Jt = J−1 yields for the second part
of Equation (A.2)

k+1∑

i=1

∫ 1

0

M
′

i ∇z̄ H(z̄h; κ) dα · z̄i = 0 . (A.4)

It is important to emphasise that Equation (A.4) is naturally given by the applied time
discretisation procedure of the semidiscrete system of equations by means of a cG(k)-
method. According to Equations (3.41), Equation (A.4) can be specified via

k+1∑

i=1

∫ 1

0

M
′

i F̄
int h

dα · q̄i +

∫ 1

0

M
′

i M
−1 · p̄h dα · p̄i = 0 , (A.5)

representing the time-integrated and time-approximated version of the semidiscrete
Equation (3.32). So far, the investigations are technically identical to the purely elastic
case due to the unchanged global structure of the underlying equations of motion, which
have been used as starting point for the foregoing derivation. Nevertheless, dissipation
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effects come inherently into play when Equation (A.5) is next linked to the correspond-
ing (total) energy balance based on the semidiscrete Equation (3.31). Once more, a
time-integration of Equation (3.31) and the incorporation of the approximations (3.39)
renders straightforwardly the related time-approximated statement

Hα=1 −Hα=0 + ∆D
!
=

k+1∑

i=1

∫ 1

0

M
′

i F̄
int h

dα · q̄i +

∫ 1

0

M
′

i M
−1 · p̄h dα · p̄i , (A.6)

wherein the calculation of the involved time-integrals still has to be specified. However,
please keep in mind that the discrete energy balance (A.6) solely holds if each integral
is calculated exactly. By using the fundamental theorem of calculus and taking the
(inverse) chain rule into account, we obtain

k+1∑

i=1

∫ 1

0

M
′

i M
−1 · p̄h dα · p̄i =

∫ 1

0

DαK dα = Kα=1 −Kα=0 (A.7)

based on the derivative Dαp̄h =
∑k+1

i=1 M
′

i p̄i. Thus, the last part in Equation (A.6)
captures indeed the correct increment of the kinetic energy K. Nevertheless, the time
integral which includes the internal load vector has to be approximated by an appropriate
quadrature rule, as already discussed in Section 3.3.2. By inserting Equation (A.7) into
Equation (A.6), we obtain directly the (reduced) global condition

k+1∑

i=1

∫ 1

0

M
′

i F̄
int h

dα · q̄i
!
= Ψα=1 − Ψα=0 + ∆D , (A.8)

which has to be fulfilled by the applied quadrature rule concerning the guarantee of
energy-consistency in the completely discrete setting. Since in general the condition
(A.8) will not be satisfied by a standard quadrature rule, however, it defines a proper
criterion for the design of adequate non-standard quadrature rules.

A.2. Global vs. Local Condition

In this section, the global condition (A.8) will be reduced to a local statement which
has to be fulfilled by means of the involved (time-integrated) stresses, involving some
derivation-steps from the overall requirement to a demand for each spatial integration
point. In this context, it will be shown that the resulting local condition actually rep-
resents a discrete version of the constraint (3.49) that has been used to design the
energy-consistent-enhanced algorithmic stress tensor (3.51). Based on the definition of

the global vectors F̄
int h

:= [F int h
1 , ...,F int h

nnode
]t and q̄i := [qi

1, ..., q
i
nnode

]t respectively,
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Equation (A.8) can, together with Equation (3.42), be represented as

nnode∑

I,J=1

∫ 1

0

[ ∫

B0

[∇XNI ⊗∇XNJ ] : S(α) dV qh
J(α)

]
·

k+1∑

i=1

M
′

i (α) qi
I dα

!
= Ψα=1 − Ψα=0 + ∆D , (A.9)

wherein the time-derivatives of the shape functions M
′

i (α) as well as the time-approxima-
ted coordinate-vector qh

J(α) at the spatial node J are only functions of the (reference-)
time α. Hence, Equation (A.9) can be rewritten by changing summation and integration,
yielding

∫ 1

0

∫

B0

nnode∑

I,J=1

[∇XNI ⊗∇XNJ ] : S(α)

[
qh

J(α) ·
k+1∑

i=1

M
′

i (α) qi
I

]
dV dα

!
= Ψα=1 − Ψα=0 + ∆D . (A.10)

Using furthermore the free energy Ψ and the (global) accumulated dissipation D results
in

∫

B0

∫ 1

0

nnode∑

I,J=1

[∇XNI ⊗∇XNJ ] : S(α)

[
qh

J(α) ·
k+1∑

i=1

M
′

i (α) qi
I

]
dα dV

!
=

∫

B0

[
ψα=1 − ψα=0 +

∫ 1

0

D dα

]
dV . (A.11)

Applying a quadrature rule in space and enforcing condition (A.11) at the corresponding
integration points, we directly obtain the condition in a local format

∫ 1

0

nnode∑

I,J=1

[∇XNI ⊗∇XNJ ] : S(α)

[
qh

J(α) ·

k+1∑

i=1

M
′

i (α) qi
I

]
dα

!
= ψα=1 − ψα=0 +

∫ 1

0

D dα , (A.12)

which has to be fulfilled at each spatial Gaussian integration point. Incorporating ad-
ditionally an adequate quadrature rule for each time-integral in Equation (A.12) yields,
together with Dαqh

I (α) =
∑k+1

i=1 M
′

i (α) qi
I, the relation

ngpt1∑

l=1

S(ζl) :

nnode∑

I,J=1

[∇XNI ⊗∇XNJ ] [qh
J(ζl) · Dαqh

I (ζl)]wl

!
= ψα=1 − ψα=0 +

ngpt2∑

m=1

D(ζm)wm (A.13)
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with an adequate number of integration points in time ngpt1
and ngpt2

respectively. If
the approximation of the right Cauchy-Green tensor C given by Equation (3.44) and
the (inverse) chain rule are taken into account, Equation (A.13) renders

ψα=1 − ψα=0 +

ngpt2∑

m=1

D(ζm)wm
!
=

ngpt1∑

l=1

S(ζl) :
1

2
DαC(ζl)wl , (A.14)

that can be interpreted as a local condition for energy-consistency which must be fulfilled
at each spatial integration point. Hereby, Equation (A.14) represents obviously a fully
discrete version of the constraint (3.49) that has been used in Section 3.3.2 to obtain
the enhanced algorithmic stress tensor (3.51). Consequently, the local condition (A.14)
is indeed fulfilled by design when the algorithmic stresses Salg are incorporated, as
demonstrated more detailed in Section A.3. Consequently, the global condition for
energy-consistency (A.8) holds as well, when the internal load vector is calculated based
on Salg, defining exactly the non-standard quadrature rule (3.47). Including additionally
Equation (A.7), it hence follows based on Equation (A.5) the relation

Kα=1 −Kα=0 + Ψα=1 − Ψα=0 + ∆D = 0 , (A.15)

according to the above derivation. Based on the definition of the augmented Hamiltonian
H̃, one finally gets the (global) energy-consistency for the completely discrete system

H̃α=1 − H̃α=0 = 0 (A.16)

in analogy to the semidiscrete case (3.34).

Remark A.1: For the foregoing derivation, the number of integration points in time
ngpti

has initially not been restricted. Nevertheless, please recall that the respective
number of time integration points is directly influenced by the demanded collocation
property of the cG(k)-method, involving ngpt1

= k. Basically, the approximation of the
dissipation integral is independent from the global level due to the local character of the
underlying internal variable formulation, being linked to the equations of motion only
implicitly via the stresses. Consequently, the corresponding number of integration points
ngpt2

is allowed to differ from ngpt1
, even if order-consistency requires ngpt1

= k = ngpt2
,

compare also Remark 3.4.

A.3. Local Condition

In Equation (3.51), the so-called energy-consistent-enhanced algorithmic stress tensor
Salg has been introduced, being in accordance with the constraint (3.49). Moreover, it
has been discussed in Section A.2 that the fulfilment of the local condition (A.14), related
to a discrete format of the constraint (3.49), renders indeed the desired global energy-
consistency of the Galerkin-based time-stepping schemes. Finally, we demonstrate more
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detailed in the following that the proposed enhanced algorithmic stress tensor Salg fulfils
indeed this prior constraint, independently of the applied polynomial degree.

General case

First, the general case based on a cG(k)-method with an arbitrary polynomial degree k
for the involved time-approximations is considered. Starting with the discrete constraint
(3.49), equivalent to the local condition (A.14), it should hold

ψα=1 − ψα=0 +

ngpt2∑

m=1

D(ζm)wm −

ngpt1∑

l=1

Salg(ζl) :
1

2
DαC(ζl)wl

!
= 0 (A.17)

based on the particularly designed algorithmic stress tensor, wherein once more the
integration points for the underlying one-dimensional time-domain are denoted by ζl, ζm
and wl, wm represent the corresponding weights of the quadrature rule. It is important
to highlight the difference between the assumed strain approximation in time Ch(α)
introduced in Equation (3.45) and a cG-approximation of the right Cauchy-Green tensor
C(α) based on Equation (3.44), involving time approximations of the nodal coordinates
q̄h := [qh

1 , ..., q
h
nnode

]t. Consequently, it has to be distinguished as well between a time-

derivative of the assumed strain approximation DαCh, rendering

Ch(α) =
k+1∑

i=1

Mi(α) Ci ⇒ DαCh = DαCh(M
′

i (α),Ci) (A.18)

and a time-derivative of the cG-approximation DαC, involving

C(α) =

nnode∑

I,J=1

qh
I (α) · qh

J(α) ∇XNI ⊗∇XNJ

⇒ DαC = DαC(qh
I,J(α),Dαqh

I,J(α)) . (A.19)

For subsequent elaborations, it is absolutely necessary to apply the appropriate approxi-
mation in time of the right Cauchy-Green tensor. As already mentioned in Section 3.3.2,
an assumed strain approximation Ch(α) should be used with respect to objectivity re-
quirements for stress evaluations as well as for the directional part of Salg. Regarding
other approximations, use of the cG-approximation C(α) has to be made regarding the
essential step from the global to a local condition for energy-consistency, represented by
Equation (A.13) and Equation (A.14) respectively. Consequently, this approximation
strategy involves also a mixed term in the denominator of the scalar-valued scaling fac-
tor of Salg. Inserting the algorithmic stress tensor (3.51) – including a quadrature rule
for the involved time-integrals – in Equation (A.17), it follows together with Equations
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(A.18), (A.19)

ψα=1 − ψα=0 +

ngpt2∑

m=1

D(ζm)wm −

ngpt1∑

l=1

[
S(Ch(ζl),κl) :

1

2
DαC(ζl)

]
wl

−

ngpt1∑

l=1

[
2

ψα=1 − ψα=0 +
∑ngpt2

n=1 D(ζn)wn∑ngpt1
p=1 [

∑k+1
c=1 M

′

c(ζp)Cc] : DαC(ζp)wp

k+1∑

e=1

M
′

e(ζl)Ce :
1

2
DαC(ζl)

]
wl

+

ngpt1∑

l=1

[
2

∑ngpt1
o=1 [S(Ch(ζo),κo) : 1

2
DαC(ζo)]wo∑ngpt1

p=1 [
∑k+1

c=1 M
′

c(ζp)Cc] : DαC(ζp)wp

k+1∑

e=1

M
′

e(ζl)Ce :
1

2
DαC(ζl)

]
wl

!
= 0 .

(A.20)

Obviously, Equation (A.20) can be reduced to

ψα=1 − ψα=0 +

ngpt2∑

m=1

D(ζm)wm −

ngpt1∑

l=1

[
S(Ch(ζl),κl) :

1

2
DαC(ζl)

]
wl

− ψα=1 + ψα=0 −

ngpt2∑

n=1

D(ζn)wn +

ngpt1∑

o=1

[
S(Ch(ζo),κo) :

1

2
DαC(ζo)

]
wo = 0 .

(A.21)

As demonstrated above, the constraint (3.49), related to the local energy-consistency
condition (A.14), is fulfilled in general by making use of the energy-consistent-enhanced
algorithmic stress tensor Salg, demanding a consistent approximation in time of C and
adequate quadrature rules.

Linear case

Since especially linear time approximations are of particular significance, the foregoing
general equations will be specified in this section to linear Finite Elements in time
corresponding to k = 1, involving one Gaussian integration point in time with ζ = 1/2
and w = 1. Consequently, the general condition (A.17) can be written as

ψα=1 − ψα=0 + ∆d−
1

2
Salg(1/2) : [C2 − C1]

!
= 0 , (A.22)

wherein this time the local dissipation increment has been abbreviated by ∆d, corre-
sponding also to Equation (5.30). Once more, the distinction between the assumed
strain approximation in time

Ch(α) = [C2 − C1]α + C1 (A.23)

and the cG(1)-approximation of the right Cauchy-Green tensor

C(α) =

nnode∑

I,J=1

[
[q2

I − q1
I ]α + q1

I

]
·

[
[q2

J − q1
J ]α + q1

J

]
∇XNI ⊗∇XNJ (A.24)
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is taken into account. Introducing the difference ∆qI := q2
I − q1

I between the position
of a spatial node I at the time nodes 1 (α = 0) and 2 (α = 1), the time-derivatives of
the approximations (A.23), (A.24) yield

DαCh = C2 − C1 (A.25)

DαC = 2 I
sym :

nnode∑

I,J=1

∇XNI ⊗∇XNJ [qh
J · ∆qI ] . (A.26)

When additionally evaluating Equation (A.26) at the midpoint in time α = 1/2, corre-
sponding to one Gaussian integration point, it follows directly

DαCh(1/2) = C2 − C1 = DαC(1/2) . (A.27)

Consequently, there is no difference between both time-derivatives DαCh and DαC,
respectively, if linear Finite Elements in time are applied and DαC(α) is evaluated at
the midpoint. Reducing the general relation (A.20) to the linear case renders

ψα=1 − ψα=0 + ∆d− S(Ch(1/2),κ1/2) :
1

2
[C2 − C1]

−
ψα=1 − ψα=0 + ∆d

[C2 − C1] : [C2 − C1]
[C2 − C1] : [C2 − C1]

+
S(Ch(1/2),κ1/2) : 1

2
[C2 − C1]

[C2 − C1] : [C2 − C1]
[C2 − C1] : [C2 − C1]

!
= 0 . (A.28)

Obviously, Equation (A.28) also follows directly from the local energy-consistency con-
dition (A.22) by inserting Salg of the linear case, compare also Equation (5.26). By
straightforward calculation, we finally obtain

ψα=1 − ψα=0 + ∆d− S(Ch(1/2),κ1/2) :
1

2
[C2 − C1]

− ψα=1 + ψα=0 − ∆d+ S(Ch(1/2),κ1/2) :
1

2
[C2 − C1] = 0 (A.29)

and, hence, it has been shown also for the special case k = 1 that the fulfilment of
the local energy-consistency condition is indeed guaranteed by means of the energy-
consistent-enhanced algorithmic stress tensor Salg.
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In the foregoing chapters, all essential ingredients for a completely consistent time-
integration have been presented in detail and investigated extensively. Next, we demon-
strate that the applied numerical concepts involve furthermore interesting visualisation
tasks, enabling possibly a better understanding of the specific algorithms 1.

B.1. Motivation

To obtain a completely consistent time-integration, the essential step has been the intro-
duction of adequate non-standard quadrature rules which basically enable the algorith-
mic fulfilment of the physically motivated energy balance. In this context, the crucial
difference between the standard Gauss and the more sophisticated non-standard quadra-
ture rule is directly related to the tensor-valued difference between the standard stresses
of the continuum model and the algorithmic stresses used in the discrete setting. Hereby,
a very interesting aspect is the spatial distribution of the corresponding difference tensor
field. Indeed, such a comparison between both tensor fields could probably provide a
deeper insight into the numerical behaviour of the related time-stepping schemes. In this
regard, important issues are for instance: the correlation between the corrections and
the underlying deformation, the influence of the time-step size and the material proper-
ties, the evolution of the corrections in time, or the existence of characteristic patterns
within the difference tensor field. Dealing with two different tensor fields and possibly
a large number of time steps, a satisfying visualisation is in general a non-trivial task.
Moreover, an additional difficulty for the specific problem at hand is constituted by the
fact that a direct physical interpretation of the stress enhancement and the algorithmic
stress tensor, respectively, is not valid, compare also Remark 5.4.1. Focussing on the
purely elastic case discussed in Chapter 4 and applying linear Finite Elements in time,
we aim in the following at a visualisation of the differences between the algorithmic
stress tensor Salg(1/2) given by Equation (4.27) and the continuum stress field S(1/2)
to investigate the nature of the corrections, as also discussed in Mohr et al. [134].

1The presented results are part of an interdisciplinary collaboration with the ‘Computer Graphics
Group’ of the University of Kaiserslautern within the International Research Training Group 1131
‘Visualisation of Large and Unstructured Data Sets. Applications in Geospatial Planning, Modeling,
and Engineering’ founded by the German Research Foundation DFG, see Mohr et al. [133].
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B.2. Comparative Tensor Visualisation

To generate a benchmark data set, the motion of a ‘Flying L’ based on 36 4-node
Finite Elements in space (2d, plane strain conditions) is considered, compare Betsch
and Steinmann [26]. The specific constitutive behaviour relies on a Hencky law given by
Equation (4.11), using the parameters ρ = 1.0, λ = 10000, and µ = 5000. Once more, an
initial velocity with ||v̄0|| = 50 has been incorporated and the applied external loads are
prescribed in time by a piecewise linear hat function with fmax = 50.0, Tload = 3.0. The
initial configuration B0 as well as a sequence of the motion, which has been calculated
with the time-step size hn = 0.4, can be regarded in Figure B.1. Our goal is to provide
multiple different visualisation tools to support the understanding of both the spatial
distribution of the algorithmic enhancement terms as well as their effect on the stress
field, entering the equations of motion. Therefore, we examine the data in a spatial
context from different points of view and combine basic visualisation techniques such
as colour coding, transparency effects, and scaling in order to provide the most helpful
tools, distinguishing between:

• Component-based approach: We start with an investigation based on the stress
components Sij and Salg

ij . Taking the symmetry properties of both tensor fields
into account, the three independent components are collected in 3d vectors

s := [S11, S22, S12]
t and salg := [Salg

11 , S
alg
22 , S

alg
12 ]t (B.1)

respectively, being motivated by the classical Voigt notation. Next, the difference
of both vectors ∆s := salg −s is calculated and the resulting vectors are plotted in
the corresponding Gauss points of the reference configuration B0. By connecting
these vectors, quad-patches can be created for each element in space. Even if the
resulting patches are indeed 3d, the visualisation has been simplified by considering
only their 2d projection. Based on this visualisation, the loss of one dimension has
been compensated by adding circles at each Gauss point whose radii correspond
to the Euclidean norm of the difference vectors. The results can be regarded in
Figure B.2 a), using linear scaling to avoid overlapping 2. Therein, it is clearly
demonstrated that the proposed approach is well-suited to highlight regions of the
body in which large corrections occur. However, the results are hard to interpret,
since this approach obviously lacks in physical meaning.

• Invariant-based technique: Another approach consists of visualising the differ-
ence in the tensor invariants as ellipsoids which are given by the components’
basis

(x, y, z) =

(
∆J1,∆J2,

∆J1 + ∆J2

2

)
, (B.2)

2In this context, the applied transfer functions as well as the resulting redistributions are plotted in
the top-right corners of the corresponding figures.
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where ∆Ji denote the differences between the principal invariants represented by
the trace and the determinant of both tensor fields, compare Equations (4.2) for
the 3d case. To investigate a potential correlation between the deformation and
the corrections, the norm of the assumed strain approximation in time of the right
Cauchy-Green tensor ||Ch(1/2)|| has been additionally incorporated. Hereby, the
following colour-coding has been used: from blue to red for an increasing norm of
the deformation measure. Please note, that a logarithmic scaling has been applied
in the present case, since the occurring differences are much greater than in the
foregoing approach. In comparison to the previous visualisation based on the stress
components, the corresponding plot provides a slightly better view on the spatial
distribution of the corrections, since the regions with extremely large corrections
are not so dominant due to the mentioned logarithmic scaling, see Figure B.2 b).
However, an interpretation of the pictured glyphs is still difficult.

• Spectral-based concepts: Next, we turn our attention to changes in measures
which rely on a spectral decomposition of the tensors under investigation. Fol-
lowing the approach discussed in Section 4.1, the decomposed continuum and
algorithmic stresses result in

Salg =
2∑

i=1

Sλalg
i

SN
alg
i ⊗ SN

alg
i and S =

2∑

i=1

Sλi
SN i ⊗

SN i (B.3)

respectively. Since the actual goal is to show how the stresses are modified by the
algorithmic correction term, the rotation of the principal stress directions SN i

and changes in the principal stresses Sλi are considered, whereby particularly the
rotation seems to be an interesting issue in this context. As seen in Figure B.3 a),
the difference in the angle between the eigenvectors SN i (blue) and SN

alg
i (red)

is too small for direct visualisation purposes.
Therefore, we propose in a first step an amplified display based on wedges that
indicate the direction of the rotation with a colour sweep. The visualisation in Fig-
ure B.3 b) employs a uniform scaling of the major eigenvectors and the computed
angles are equalised this time based on an appropriate nonlinear transfer function.
Since the main objective is to indicate rotation, the change in the magnitude of
eigenvalues has been mapped linearly to the radii of the circles, being least dis-
tracting from the main visualisation goal. In Figure B.3 b), it can be seen that in
some elements large modifications of the angle are combined with small changes in
the eigenvalues and vice versa. A particularly interesting aspect of this approach
is the incorporation of both principal directions, enabling a quite intuitive visu-
alisation. Nevertheless, the wedge-based concept obviously lacks in clarity due to
the small size of the glyphs.
Hence, we consider in a second step a simple yet very effective visualisation of sign
and magnitude of the rotation based on colour-coding, where blue indicates neg-
ative rotation in the mathematical sense and red positive. Again, an equalisation
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of the value range is necessary to address nuances in the angle distribution close
to zero. Analogously to the wedge-based technique, the differences in the tensor
eigenvalues are included by means of scaled radii. Hereby, the applied transfer
function plays once more a decisive role concerning the offered informations. As
can be seen in Figure B.4 a), a linear scaling of the eigenvalues only allows to dis-
close regions of large corrections. In contrast, a nonlinear transfer function shows
more subtle details and, hence, it allows to identify even the occurring patterns
within the spatial distribution, compare Figure B.4 b).

• Level-of-detail visualisation: The last approach bases on a multiresolution para-
digm which provides qualitative informations at a global scale, while allowing also
to investigate in detail the local behaviour at an adequate zoom level. The large
scale visualisation in Figure B.5 illustrates the differences in eigenvalues via the
circle diameters and the angle as well as the direction of rotation via the circle
colours. The detail level depicts the magnitude and angle modification as a sweep
between the individual representations of S and Salg. Hereby, the employed glyphs
are created in the following way: Each pair of principal directions [SN i,

SN
alg
i ]

is scaled by the eigenvalues [Sλi,
Sλalg

i ] and gives rise to a cross of two orthogonal
lines. Furthermore, the eigenvalues are the radii of an ellipse aligned with the
principal directions. If different colours are assigned for the continuum and the
algorithmic stresses respectively, the linear sweep between both crosses and ellipses
renders the complex glyph visualisation pictured in Figure B.5. This visualisation
tool indeed incorporates most of the advantages of the different methods that have
been discussed before. It allows, on the one hand, an excellent detection of regions
in which large modifications occur. On the other hand, a detailed physical-based
insight can be obtained by zooming-in, offering informations both on magnitude
and rotation.

In the present section, several concepts to visualise the differences between the contin-
uum and the algorithmic stress tensor field have been broached to understand better the
influence and the functioning of the underlying non-standard quadrature rule. Eventu-
ally, we can summarise that for the present task a nested visualisation which involves
different basic techniques seems to be the most promising approach, since one single
method is usually not capable of giving sufficient insight into all interesting aspects. In
this context, especially the application of spectral-based concepts has turned out to be a
convenient tool concerning a comparison of both tensor fields, even if the presented basic
investigations are not yet sufficient to come to a final decision. However, the here con-
sidered fundamental aspects represent an encouraging point of departure to investigate
in future work the actual behaviour of the algorithmic stress modification. Hereby, in
particular the influence of the time-step size and the stiffness, the spatial distribution as
well as the evolution in time should be studied in detail based on different data sets, ad-
dressing for instance the question of time and space continuity of the stress modification.
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Figure B.1.: a) initial configuration B0, b) sequence of the elastic motion
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Figure B.2.: comparison of the tensor fields S(1/2) and Salg(1/2) for time-step 11, using:
a) a component-based approach, b) an invariant-based technique
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Figure B.3.: comparison of the tensor fields S(1/2) and Salg(1/2) for time-step 11, using
spectral-based concepts: a) plot of the principal directions (angle unscaled), b) visuali-
sation based on wedges (nonlinearly scaled angle)
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Figure B.4.: comparison of the tensor fields S(1/2) and Salg(1/2) for time-step 11, using
spectral-based concepts: a) colour-coded discs (linearly scaled eigenvalues), b) colour-
coded discs (nonlinearly scaled eigenvalues)
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Figure B.5.: level-of-detail visualisation, showing more qualitative facts at a large scale
while depicting specific details after an appropriate zoom
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C. Standard Time Integrators

In this paragraph, we summarise briefly the essential equations of some standard time-
stepping schemes based on Finite Differences that are involved in Section 5.5.1 and
Section 5.6.2 for the purpose of a comparison to the proposed time FE methods.

C.1. Newmark Scheme

Probably, the Newmark scheme represents the most commonly used time-stepping scheme
in computational dynamics at all, compare for instance References [18, 19, 76, 143, 162,
177]. Firstly, we introduce the standard format of approximations

ūn+1 = ūn + hn v̄n +
h2

n

2

[
[1 − 2 β] ān + 2 β ān+1

]

v̄n+1 = v̄n + hn

[
[1 − γ] ān + γ ān+1

]
, (C.1)

involving the two parameters β 1 and γ. Furthermore, the semidiscrete vector of
nodal accelerations ā(t) = [a1(t), ...,annode

(t)]t := ˙̄v(t) and nodal displacements ū(t) =
[u1(t), ...,unnode

(t)]t := q̄(t)−X̄, respectively, have been incorporated in Equation (C.1),
whereby X̄ = [X1, ...,Xnnode

]t denotes the global vector of nodal placements in the ref-
erence configuration. A reformulation of Equations (C.1) renders straightforwardly the
alternative representations in displacement form

ān+1 = α1 [ūn+1 − ūn] − α2 v̄n − α3 ān

v̄n+1 = α4 [ūn+1 − ūn] + α5 v̄n + α6 ān (C.2)

with the unknown vector ūn+1. Therein, the coefficients αi can be computed by

α1 =
1

β h2
n

, α2 =
1

β hn
, α3 =

1

2 β
− 1 ,

α4 =
γ

β hn
, α5 = 1 −

γ

β
, α6 = hn −

γ

2 β
hn . (C.3)

1Please do not confuse the classical notation of the parameter β with the (scalar-valued) conjugated
thermodynamical force of the plasticity formulation, introduced in Equation (5.9)2.
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Enforcing the semidiscrete balance of momentum at time tn+1 yields

M · ān+1 + F̄
int

(ūn+1) = F̄
ext
n+1 , (C.4)

analogously to Equation (3.23) 2. Inserting furthermore the approximations (C.2) in
Equation (C.4) leads to a set of nonlinear equations formulated in the displacement
vector. Finally, both parameters β and γ have to be chosen to obtain a specific repre-
sentative of the Newmark time-stepping family. In this context, a popular choice for the
parameters is β = 0.25 and γ = 0.5, resulting in the so-called trapezoidal rule which is
known to be energy-conserving for linear dynamical systems. However, in the context
of nonlinear dynamics the foregoing scheme is neither energy-conserving/consistent nor
mechanically consistent. Further details can also be found in the textbooks [18, 76, 177]
and references cited therein.

C.2. HHT Methods

In the literature, several concepts, which often base on the Newmark scheme, have
been proposed to incorporate numerical dissipation without losing accuracy, unlike the
classical Newmark algorithm with γ > 0.5. A widespread formulation has been suggested
for instance by Hilber, Hughes, and Taylor [74] for linear dynamical systems, the so-
called ‘HHT methods’ or ‘α-methods’. In a linear context, the resulting scheme has also
been discussed extensively in Hughes [76], whereby the extension to nonlinear dynamics
renders

M · ān+1 + F̄
int

(ūn+1+α) = F̄
ext

(tn+1+α) . (C.5)

Herein, the evaluation time tn+1+α := [1 + α] tn+1 − α tn and the modified displacement
vector

ūn+1+α := [1 + α] ūn+1 − α ūn (C.6)

have been incorporated in addition to the fundamental formulas of the Newmark scheme
given by Equations (C.1), that are still valid. Obviously, for α = 0 the classical Newmark
family is recaptured and, consequently, Equation (C.5) coincides with Equation (C.4).
Furthermore, a reduction of the parameter α leads to an increasing numerical dissipation.
Motivated by stability properties in the linear case, a typical choice is given by α ∈
[−1/3, 0] in combination with β = [1 − α]2/4 and γ = [1 − 2α]/2, as advocated also in
Reference [76].

2Although there is no damping matrix involved in Equation (C.4), damping effects can also be included
implicitly by means of a corresponding constitutive model, like for instance visco-elasticity.
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C.3. Collocation Methods

A further generalisation of the Newmark scheme is represented by the family of Col-
location methods, offering numerical dissipation for high-frequency modes as well. In
contrast to the foregoing ‘HHT methods’, where the acceleration vector at tn+1 enters
into the balance of momentum, the Collocation methods base on a unified evaluation
time for the accelerations, the displacements, and the external loads, yielding in the
nonlinear case

M · ān+θ + F̄
int

(ūn+θ) = F̄
ext
n+θ . (C.7)

Herein, on the one hand, the vectors

ān+θ = [1 − θ] ān + θ ān+1

F̄
ext
n+θ = [1 − θ] F̄

ext
n + θ F̄

ext
n+1 (C.8)

have been incorporated and, on the other hand, the formulas of the classical Newmark
scheme (C.1) have been altered, involving

ūn+θ = ūn + θ hn v̄n +
[θ hn]2

2

[
[1 − 2 β] ān + 2 β ān+θ

]

v̄n+θ = v̄n + θ hn

[
[1 − γ] ān + γ ān+θ

]
(C.9)

related to tn+θ = tn +θ hn. Once more, the classical Newmark scheme is included within
the general family of Collocation methods and can be recovered by incorporating θ = 1.
Concerning further details and fundamental investigations in the context of linear struc-
tural dynamics, we refer again to the textbooks [18, 76].

Remark C.1: Please notice, that even the Wilson-θ-methods (or short: Wilson meth-
ods), which have been used as well in Section 5.6.2 for a comparison to the favoured
time FE scheme, are contained in the class of Collocation methods discussed above. In
fact, they can be easily regained by setting β = 1/6 and γ = 0.5.
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