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Abstract

Given a directed graphG = (N,A), a tensionis a function fromA to R which satisfies Kirchhoff’s
law for voltages. There are two well-known tension problemson graphs. In theminimum cost tension
problem (MCT), a cost vector is given and a tension satisfying lower and upper bounds is seeked such that
the total cost is minimum. In themaximum tension problem (MaxT), the graph contains 2 special nodes
and an arc between them. The aim is to find the maximum tension on this arc. In this study we assume
that both problems are feasible and have finite optimal solutions and analyze their inverse versions under
rectilinear and Chebyshev distances.

In the inverse minimum cost tension problem we adjust the cost parameter to make a given feasible
solution the optimum, whereas in inverse maximum tension problem the bounds of the arcs are modified.
We show, by extending the results of Ahuja and Orlin [3], thatthese inverse tension problems are in a way
”dual” to the inverse network flows. We prove that the inverseminimum cost tension problem under recti-
linear norm is equivalent to solving a minimum cost tension problem, while under unit weight Chebyshev
norm it can be solved by finding a minimum mean cost residual cut. Moreover, inverse maximum tension
problem under rectilinear norm can be solved as a maximum tension problem on the same graph with
new arc bounds. Finally, we provide a generalization of the inverse problems to monotropic programming
problems with linear costs.

Keywords: inverse problems, tension problems, cuts, monotropic programming

1 Introduction

Optimization problems with estimated problem parameters have lately drawn considerable attention from
researchers. For this kind of problems one often knows a priori an optimal solution based on observations
or experiments, but is interested in finding a set of parameters, such that the known solution is optimum (a)
and the deviation from the initial estimates is minimized (b). The problem of recalculating the parameters
satisfying (a) and (b) is known asinverse optimization problem.

Among several inverse optimization problems the inverse network flows havebeen intensely investigated.
Ahuja and Orlin [2] and Zhang and Liu [19, 20] study inverse linear programs and derive LP formulations
for several inverse network flow problems. In another paper Ahuja and Orlin [3] analyze the combinatorial
aspects of inverse minimum cost flow problem under unit weightL1 andL∞ norms. They show that the
optimum objective function value is for the former problem equal to the minimum cost of a collection of arc-
disjoint cycles in residual graph, whereas the latter problem can be reduced to finding a minimum mean cycle
in the residual graph. Yanget al. [18] study inverse maximum flow and minimum cut problems. A thorough
survey study on this topic has been done by Heuberger [9] analyzing several different types of inverse and
reverse problems that have been considered in the literature. As opposed to flow problems,tension problems,
which are duals of flow problems [1], and their inverse versions have vastly been neglected. Our aim in this
study is to fill this gap in the literature and extend the results of Ahuja and Orlin [3] for tensions to show
that the duality relation between tensions and flows is valid for their respective inverse problems, as well.
Moreover, we exploit monotropic programming (Rockafellar [14]) with linear cost functions to generalize
these combinatorial results for a larger set of inverse problems including the inverse problems of generalized
network flows (Ahujaet al. [1]).

Let G = (N, A) be a connected digraph with node setN containingn nodes and arc setA containingm
arcs, andaij represent an arc with tail nodei and head nodej. A tensionis a function fromA to R which

1The research has been partially supported by Deutsche Forschungsgemeinschaft (DFG), Grant HA 1737/7 ”Algorithmik großer
und komplexer Netzwerke” and by the Rhineland-Palatinate cluster of excellence ”Dependable adaptive systems and mathematical
modeling”.
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satisfies Kirchhoff’s law for voltages [12]. In other words, a vectorθ ∈ R
A is a tensionon graphG with

potentialπ ∈ R
N such that∀(i, j) ∈ A θij = πj − πi. The basic properties of the tensions are [14]:

• For all cyclesC,
∑

aij∈C+ θij−
∑

aij∈C− θij = 0, whereC+ andC− are the forward and the backward
arcs of the cycle, respectively.

• Any linear combination of tensions is a tension.

• A tension is orthogonal to any circulation.

Theminimum cost tension problem (MCT)is finding a tensionθ satisfying lower (tij ∈ R ∪ {−∞}) and
upper (Tij ∈ R ∪ {+∞}) bounds on each arc such that

∑

aij∈A cijθij is minimum. In themaximum tension
problem (MaxT), the graphG contains 2 special nodes,s andt, and an arcast ∈ A between these two nodes
with bounds(tst, Tst) = (−∞,∞). The maximum tension problem is finding the maximum tension on arc
ast ∈ A such that the tensions on all arcs satisfy the upper and lower bounds. Inthis study we assume that
both problems are feasible and have finite optimal solutions. Our aim is to analyze their inverse versions.

Given a feasible tension̂θ for an instance of MCT, thecost inverse minimum cost tension problem(IMCTc)
is perturbing the cost vector fromc to ĉ in a way thatθ̂ will become the optimum tension for the minimum
cost tension problem with the perturbed cost vector (MCT(ĉ)) while the perturbation‖c − ĉ‖ is minimized
according to some norm. On the other hand, ininverse maximum tension problem(IMaxT) we modify the
bound vectors fromT to T̂ and/or fromt to t̂ such thatθ̂st will become the maximum tension with the
perturbed bound vectors. We exploit rectilinear (L1) and Chebyshev (L∞) norms to measure the parameter
modifications.

The theory of monotropic programming was first established by Rockafellar[14] and extended mainly by
Tseng and Bertsekas [4, 15, 16, 17]. In Section 5, we provide a briefintroduction to monotropic programming
and refer to the book of Rockafellar [14] for details.

Monotropic programming deals with optimization problems that minimize a separable convex function
subject to linear constraints. Several optimization problems such as linear and piecewise linear programs,
quadratic and piecewise quadratic programs, network flows and tensionsare special cases of monotropic
programs. In this paper, we analyze inverse problems of monotropic programs with seperable linear cost
functions and show that the combinatorial solutions of Ahuja and Orlin [3] can be extended to these problems.

The rest of this paper is organized as follows: Section 2 describes the inverse minimum cost tension
problem underL1 norm in detail and gives a combinatorial formulation of the problem. Section 3 analyzes
the same problem underL∞ norm. In Section 4 we present a solution to the inverse maximum tension
problem under rectilinear norm. In Section 5, we introduce the theory of monotropic programming and study
the inverse problems of monotropic programs with separable linear cost functions underL1 andL∞ norms.
Finally, we conclude the paper by a summary of our results and a discussionof future work in this area.

2 Inverse Minimum Cost Tension Problem UnderL1 Norm

For the inverse minimum cost flow problem under unit weightL1 norm, i.e.,wij = 1 for all aij ∈ A,
Ahuja and Orlin [3] have shown that the optimum objective function value is equal to the minimum cost of
a collection of arc-disjoint cycles in residual graph. Since this collection defines a minimum cost circulation
in a unit capacity network, the inverse problem can be reduced to solving aminimum cost flow problem in a
unit capacity network. Similarly, by usingarc-disjoint residual cuts, we will show that the inverse minimum
cost tension problem under unit weight rectilinear norm reduces to solving a minimum cost tension problem
with unit upper and lower bounds on arcs. First, we need to define arc-disjoint residual cuts and present the
optimality conditions for minimum cost tensions.

A cut ω is calledresidual with respect to a tension̂θ if

∀ aij ∈ ω+ θ̂ij < Tij (1a)

∀ aij ∈ ω− θ̂ij > tij (1b)

Thecostof a cutω is
cost(ω) =

∑

aij∈ω+

cij −
∑

aij∈ω−

cij , (2)
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and itsmean-costis equal to the cost divided by its cardinality. We call the residual cutsω1 andω2 to be
arc-disjoint if ω+

1 ∩ ω+
2 = ∅ andω−

1 ∩ ω−
2 = ∅. Note that arc-disjoint residual cuts might have common arcs

such thataij ∈ ω+
1 ∩ ω−

2 or vice versa. In this case,tij < θ̂ij < Tij holds for these arcs.

Theorem 1. A tensionθ̂ is optimal if and only if all the residual cuts inG have nonnegative costs [8].

Tensions are duals of circulations. Hence, we can also characterize theoptimal tension to the minimum
cost tension problem using circulations [12]. A tensionθ̂ is optimal if there exists a circulationϕ such that

cij − ϕij ≥ 0 if θ̂ij = tij , (3a)

cij − ϕij = 0 if tij < θ̂ij < Tij , (3b)

cij − ϕij ≤ 0 if θ̂ij = Tij . (3c)

Theorem 2. SupposeΩ∗ = {ω∗
1, ω

∗
2, . . . , ω

∗
K} denotes a minimum cost collection of arc-disjoint residual

cuts inG and letCost(Ω∗) be its cost, which is equal to the total costs of the residual cuts inΩ∗. Then,
−Cost(Ω∗) is the optimal objective function value for the inverse minimum cost tension problem under unit
weight rectilinear norm.

Proof: Suppose thatΩ = {ω1, ω2, . . . , ωK} denotes any collection of arc-disjoint residual cuts with negative
costs inG and letc∗ denote the optimum cost vector for the inverse problem. First, we show that for the
common arcsaij of ωk ∈ Ω, c∗ij = cij holds.

We know that by Theorem 1, the costs of the arcs inωk ∈ Ω have to be changed so thatCost(ωk) ≥ 0.
Sincec∗ is the optimum modified cost vector, the following holds (otherwise we could finda cost vector̄c
with ‖c̄ − c‖1 ≤ ‖c∗ − c‖1).

c∗ij ≥ cij for aij ∈ ω+
k (4)

c∗ij ≤ cij for aij ∈ ω−
k (5)

For an arcaij with aij ∈ ω+
k1

, ω−
k2

, the inequalities (4) and (5) must hold with equality. By using this fact, we
can show that−Cost(Ω) is a lower bound on‖c∗ − c‖1.

‖c∗ − c‖1 =
∑

aij∈A

|c∗ij − cij | ≥
K

∑

k=1

∑

aij∈ωk

|c∗ij − cij | ≥ −
K

∑

k=1

Cost(ωk) = −Cost(Ω) (6)

Now, we will prove that this lower bound is actually achieved for the minimum cost collection of arc-disjoint
residual cutΩ∗ = {ω∗

1, ω
∗
2, . . . , ω

∗
K}. For this purpose, we need to show that there exists a circulationϕ for

G such that

cij − ϕij ≤ 0 for aij ∈ Ω∗+ cij − ϕij ≥ 0 for aij ∈ Ω∗− (7a)

cij − ϕij ≥ 0 for aij /∈ Ω∗ andθ̂ij < Tij cij − ϕij ≤ 0 for aij /∈ Ω∗ andθ̂ij > tij (7b)

Suppose that there exists a residual cutω∗
k ∈ Ω∗ for which inequalities (7a) do not hold i.e.,cij − ϕij ≥

0 for aij ∈ ω∗+
k andcij − ϕij ≤ 0 for aij ∈ ω∗−

k . Then,

∑

aij∈ω∗+

(cij − ϕij) −
∑

aij∈ω∗−

(cij − ϕij) ≥ 0

If we rearrange the inequality as

∑

aij∈ω∗+

cij −
∑

aij∈ω∗−

cij −





∑

aij∈ω∗+

ϕij −
∑

aij∈ω∗−

ϕij





and use the fact that the sum of the flows on cuts is equal to 0, we come up witha contradiction that
∑

aij∈ω∗+ cij −
∑

aij∈ω∗− cij = Cost(ω∗) ≥ 0. Hence, a circulationϕ satisfying (7a - 7b) exists.
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Let c∗ij = ϕij for aij ∈ Ω∗ andc∗ij = cij otherwise. Clearly, this cost vector satisfies the optimality
conditions (3a - 3c), hence it is a feasible solution to the inverse problem. Moreover,

‖c∗ − c‖1 =
∑

aij∈Ω∗−

(cij − ϕij) −
∑

aij∈Ω∗+

(cij − ϕij)

=
K

∑

k=1

∑

aij∈ω∗−

k

(cij − ϕij) −
∑

aij∈ω∗+

k

(cij − ϕij)

= −
K

∑

k=1





∑

aij∈ω∗+

cij −
∑

aij∈ω∗−

cij



 = −Cost(Ω∗)

Thus, the result of the theorem follows.
�

We next show that the minimum cost collection of arc-disjoint residual cuts can be found by solving a
minimum cost tension problem by deriving a linear programming formulation of theinverse problem using
the ideas of Ahuja and Orlin [2]. Under unit weight rectilinear norm, the objective function of the inverse
problem would be

Minimize
∑

aij∈A

|cij − ĉij | (8)

and the constraints of the inverse problem are derived from the flow optimality conditions (3a), (3b) and (3c).
If we dualize the corresponding linear program, we obtain

Minimize
∑

aij∈A

cij(πj − πi) (9a)

subject to

−1 ≤ πj − πi ≤ 1 for aij ∈ K (9b)

0 ≤ πj − πi ≤ 1 for aij ∈ L (9c)

−1 ≤ πj − πi ≤ 0 for aij ∈ U (9d)

π ≷ 0

where

K := {aij ∈ A : tij < θ̂ij < Tij},

L := {aij ∈ A : θ̂ij = tij},

U := {aij ∈ A : θ̂ij = Tij}.

Obviously, this LP is actually the formulation of a minimum cost tension problem with lower and upper
bounds on the tensions given by the inequalities (9b), (9c) and (9d).

If we are given positive weightswij > 0 ∀aij ∈ A, the only change that occurs in the LP formulation of
inverse problem is the objective function (8), which now looks like

Minimize
∑

aij∈A

wij(|cij − ĉij |) (10)

This modification does not influence the outcome of the dualization of the inverse LP. The dual LP of the
inverse LP remains to be a minimum cost tension problem but with new bounds forthe tension. Hence, the
new bound inequalities are

−wij ≤ πj − πi ≤ wij for aij ∈ K

0 ≤ πj − πi ≤ wij for aij ∈ L

−wij ≤ πj − πi ≤ 0 for aij ∈ U
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3 Inverse Minimum Cost Tension Problem UnderL∞ Norm

Ahuja and Orlin [3] showed that the inverse minimum cost flow problem underunit weightL∞ norm can be
reduced to solving a minimum mean cycle problem in the residual graph. Similarly we will show that the
inverse minimum cost tension problem under Chebyshev norm reduces to solving a minimum mean residual
cut problem.

As mentioned in Section 2, a given tensionθ̂ is optimal if and only if the graph does not contain any
negative cost residual cuts with respect toθ̂. Since in the inverse problem we are given a non-optimal tension,
the graph contains residual cuts with negative costs. Our aim is to modify the cost vector of the arcsc to ĉ
such that none of the residual cuts have negative costs andmaxaij∈A |ĉij − cij | is minimum.

Let ω∗ be a minimum mean (cost) residual cut inG w.r.t. θ̂, i.e., ω∗ is a residual cut withµ∗ =
MCost(ω∗) = cost(ω∗)/|ω∗| is minimum among all residual cuts where|ω∗| denotes the number of arcs in
cut ω∗. We adopt an idea of Hadjiat and Maurras [7] who defineǫ-optimalityand show thatǫ = −µ∗ is the
smallest positive real number for whicĥθ is ǫ-optimal.

Definition 3. For anǫ ≥ 0, a tension̂θ is ǫ-optimal if there exists a circulationϕ such that

∀ aij ∈ A : [(θ̂ij < Tij) =⇒ (ϕij ≤ cij + ǫ)] and [(θ̂ij > tij) =⇒ (ϕij ≥ cij − ǫ)] (11)

Theorem 4. Tensionθ̂ is ǫ-optimal if and only if every cutω residual w.r.t.θ̂ satisfiesMCost(ω) ≥ −ǫ.

The definition ofǫ-optimality (11) and the given results imply the following property of the tensions.

Property 5. Letω∗ be a minimum mean residual cut inG w.r.t. θ̂ andµ∗ be the mean cost of it. There exists a
circulationϕ such thatcij − ϕij = µ∗ for the outgoing andcij − ϕij = −µ∗ for the incoming arcs of the cut
ω∗. The outgoing and incoming arcs of all other residual cuts satisfycij − ϕij ≥ µ∗ andcij − ϕij ≤ −µ∗,
respectively.

Theorem 6. Let µ∗ denote the mean cost of a minimum mean residual cut inG w.r.t. θ̂. Then, the optimal
objective function value for the inverse minimum cost tension problem underL∞ norm ismax(0,−µ∗).

Proof: We can solve the minimum mean residual cut problem inG w.r.t. θ̂ in strongly polynomial time by
using the method of Hadjiat and Maurras [7]. Moreover, we chooseϕ as in Property 5. Ifµ∗ ≥ 0, thenθ̂ is an
optimum tension and the theorem is true. Suppose thatµ∗ < 0 andω∗ is the minimum mean residual cut in
G w.r.t. θ̂. Let z∗ be the optimum solution to the inverse minimum tension problem under Chebyshev norm.
We first claim thatz∗ ≥ −µ∗. Recall

cost(ω∗) =
∑

aij∈ω∗+

cij −
∑

aij∈ω∗−

cij = |ω∗|µ∗

If z∗ < −µ∗, then, in order to makêθ the optimal solution, it would be sufficient to increase the costs of
aij ∈ ω∗+ by an amountz∗ and decrease the costs ofaij ∈ ω∗− by z∗. The resulting cost of the cutω∗ is
|ω∗|µ∗ + |ω∗|z∗ < 0, which is a contradiction to the optimality of̂θ. Hence,z∗ ≥ −µ∗.

Now we prove that there exists a vectorc∗ with ‖c∗− c‖ = −µ∗ such that̂θ is optimal w.r.t.c∗. Definec∗

as follows:

c∗ij =











cij − µ∗ if θ̂ij < Tij andcij − ϕij < 0

cij + µ∗ if θ̂ij > tij andcij − ϕij > 0

cij otherwise

(12)

It is obvious that‖c∗ − c‖ ≤ −µ∗. Moreover, by Property 5

c∗ij − ϕij = cij − µ∗ − ϕij ≥ µ∗ − µ∗ = 0 for θ̂ij < Tij

c∗ij − ϕij = cij + µ∗ − ϕij ≤ µ∗ − µ∗ = 0 for θ̂ij > tij

Hence,θ̂ satisfies the optimality conditions andc∗ is an optimal solution of the inverse minimum cost tension
problem under Chebyshev norm.
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Hadjias and Maurras [7] provide a Newton type algorithm to solve the minimum mean residual cut prob-
lem. Using their algorithm we can find an optimum solution for the inverse problemin strongly polynomial
time. McCormick and Ervolina [11] study max mean cuts and mention that a direct method of calculating
max mean cuts as Karp [10] does for minimum mean cycles has not yet been found. Radzik [13] improves
the best known running time bound of Newton’s method for maximum mean weightcut problem and proves
that Newton’s method runs in strongly polynomial number of iterations for all linear fractional optimization
problems. He also shows that the maximum mean weight cut problem,parametric flow problemandmini-
mum maximum arc cost flow problemare closely related to each other. Here, we revise Radzik’s result [13]to
include the inverse minimum cost tension problem under Chebyshev distance.

An instance of the parametric flow problem (PF) consists of a networkG with arc capacitiesu and sup-
plies/demands on nodes, and a weight functionw : A → R. The goal is to find minimum nonnegativeδ such
that Gu+wδ, networkG with capacity functionu + wδ, is feasible. Minimum maximum arc cost problem
(MMAC) is defined on a networkG with a nonnegative cost functionc : A → R. The goal is to find a flow
satisfying the demands on nodes while minimizing the maximum arc cost i.e., minimizingmaxaij∈A fijcij .
In the uniform versions of the problems all weights and costs equal to 1, respectively.

The relationship between IMCTc underL∞ norm and PF is more straightforward to justify. In IMCTc, we
are given a tension̂θ, which is feasible to MCT with cost vectorc but not optimal. Hence, the dual circulation
problem of the given MCT problem is infeasible, i.e., there does not exist acirculationϕ to satisfy (3a), (3b)
and (3c). Our aim is to find the minimum|µ| such that the circulation problem onG with arc capacitiesc + µ
is feasible.

In order to show the relationship between IMCTc underL∞ norm and MMAC problem we exploit LP du-
ality. We apply the linear programming methods of Ahuja and Orlin [2] to obtain the following LP formulation
for IMCTc underL∞ norm.

Minimize
∑

aij∈A

cij(πj − πi) (13)

subject to
∑

aij∈A

ηij = 1

−ηij ≤ πj − πi ≤ ηij for aij ∈ K

0 ≤ πj − πi ≤ ηij for aij ∈ L

−ηij ≤ πj − πi ≤ 0 for aij ∈ U

η ≥ 0 π ≷ 0

By Theorem 6 we know that (13) is the LP formulation for finding minimum mean cost residual cut inG with
respect tôθ. Let us consider its dual.

Maximize λ (14)

subject to




∑

j∈N,aij∈L

ϕ1
ij +

∑

j∈N,aij∈U

−ϕ2
ij +

∑

j∈N,aij∈K

(ϕ1
ij − ϕ2

ij)



 −





∑

j∈N,aji∈L

ϕ1
ji +

∑

j∈N,aji∈U

−ϕ2
ji +

∑

j∈N,aji∈K

(ϕ1
ji − ϕ2

ji)



 =
∑

j∈N

cji −
∑

j∈N

cij ∀i ∈ N

λ ≤ −(ϕ1
ij + ϕ2

ij) ∀aij ∈ A

ϕ1
ij , ϕ

2
ij ≥ 0

Obviously, (14) is an instance of the uniform MMAC problem on a graphG′ = (N, A′) with A′ := {aij :
aij ∈ A andaij ∈ L ∪ K} ∪ {aji : aij ∈ A andaij ∈ U ∪ K}. The demands/supplies on the nodes are
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∑

j∈N cji −
∑

j∈N cij = −Cost(ω(i)) ∀i ∈ N and the flow capacities of the arcs are[0,∞). This result
establishes the fact that IMCTc underL∞ norm and MMAC problems are dual to each other.

If we are given positive weightswij > 0 ∀aij ∈ A, the objective function of IMCTc under Chebyshev
distance would be

Minimize max
aij∈A

wij(|cij − ĉij |) (15)

In this case, the inverse problem reduces to finding a minimum mean-weight residual cut on graphG.

4 Inverse Maximum Tension Problem (IMaxT) under L1 Norm

Yanget al. [18] study inverse maximum flow problem and show that for unit weight case this problem can
be reduced to solving a maximum flow problem. In this section we will show a similar result for inverse
maximum tension problem underL1 norm.

Given a weight vectorw for changing the bounds of the arcs, the inverse maximum tension problem under
L1-norm is

min
∑

aij∈A

wij(|T̂ij − Tij | + |t̂ij − tij |)

subject to

t̂ij ≤ θ̂ij ≤ T̂ij ∀aij ∈ A (16)

θ̂st is the maximum tension

The maximum tension problem is the dual of the maximum flow problem, and so is the optimality condi-
tion [14].

Theorem 7. (Maximum Tension Minimum Path Theorem) Suppose there is at least one tension satisfying
the upper and lower bounds. Then, the maximum in max tension problem is equal to the minimum in min path
problem. Both of the problems are unbounded if there is ans− t cutω with an unlimited span i.e., all forward
arcs have infinite upper bounds and all backward arcs have infinite lower bounds.

By Theorem 7 we know that there exists a minimum path, which has a length equal to the maximum
tension. Moreover, for this minimum path the following property holds.

Property 8. If P denotes the minimum path betweens andt on graphG andP+ andP− are the correspond-
ing sets of forward and backward arcs inP , thenθ∗ij = Tij for all aij ∈ P+ andθ∗ij = tij for all aij ∈ P−

for the maximum tensionθ∗.

Lemma 9. If problem (16) has an optimal solution(t∗, T ∗) andP ∗ is the minimums − t path in network
G = (N, A, t∗, T ∗), then

1. T ∗ ≤ T andt∗ ≥ t

2. T ∗
ij = Tij andt∗ij = tij for each arcaij /∈ P ∗. Moreover,t∗ij = tij for arcsaij ∈ P ∗+ andT ∗

ij = Tij

for arcsaij ∈ P ∗−.

Proof:

1. As θ̂ is the maximum tension inG(t∗, T ∗), θ̂ij = T ∗
ij for aij ∈ P ∗+ and θ̂ij = t∗ij for aij ∈ P ∗− by

Property 8. If there is an arcakl ∈ A with T ∗
kl > Tkl (or t∗kl < tkl), then obviouslyakl /∈ P ∗ since

otherwiseθ̂ cannot be a feasible tension inG(t, T ). We define the new bound vectors as follows:

T̄ij =

{

T ∗
ij if aij 6= akl

Tij if aij = akl

t̄ij =

{

t∗ij if aij 6= akl

tij if aij = akl

By Property 8, it is easy to verify that̂θ is a maximum tension under(t̄, T̄ ). Moreover,
∑

aij∈A

wij(|T̄ij − Tij | + |t̄ij − tij |) <
∑

aij∈A

wij(|T
∗
ij − Tij | + |t∗ij − tij |)

which is a contradiction to the optimality of(t∗, T ∗). Hence, the result follows.
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2. Let us define the bound vectors(t̄, T̄ ) as follows:

T̄ij =

{

T ∗
ij if aij ∈ P ∗+

Tij otherwise
t̄ij =

{

t∗ij if aij ∈ P ∗−

tij otherwise

By Property 8,̂θ remains to be a maximum tension under(t̄, T̄ ). Since
∑

aij∈A

wij(|T̄ij − Tij | + |t̄ij − tij |) ≤
∑

aij∈A

wij(|T
∗
ij − Tij | + |t∗ij − tij |) (17)

and(t∗, T ∗) is an optimum solution of the inverse max tension problem, the inequality (17) holdswith
equality and the conclusion is true.

�

Recall that the tension̂θ, which we want to be maximum, is a feasible tension forG(t, T ), thusθ̂ < θ∗

whereθ∗ is the optimum tension forG(t, T ). By using this fact and Lemma 9 we can reformulate IMaxT as
follows.

Lemma 10. The inverse maximum tension problem underL1 norm is equivalent to finding a pathP from s
to t in G = (N, A) such that

∑

aij∈P+ wij(Tij − θ̂ij) +
∑

aij∈P− wij(θ̂ij − tij) is minimum.

Theorem 11. SupposeP ∗ is the minimum path corresponding to the maximum tension problem inG(t, T ).
The optimum solution of the inverse maximum tension problem w.r.t. unit weightL1-norm is

T ∗
ij =

{

θ̂ij if aij ∈ P ∗+

Tij otherwise
t∗ij =

{

θ̂ij if aij ∈ P ∗−

tij otherwise

Hence, solving the inverse problem is equivalent to solving a maximum tension problem onG(t, T ).

Proof: Result follows from Lemma 10 and the fact thatP ∗ is the minimum path in graphG(t, T ).

�

Theorem 12. The solution to the inverse maximum tension problem underL1 norm with a positive weight
functionw can be found by solving a maximum tension problem in graphG with respect to upper and lower
boundswij(Tij − θ̂ij) andwij(tij − θ̂ij) on arcsaij ∈ A\{ast}, respectively.

Proof: The maximum tension problem onG with upper boundswij(Tij−θ̂ij) and lower boundswij(tij−θ̂ij)

for aij ∈ A\{ast} is feasible sincewij(tij − θ̂ij) ≤ 0 ≤ wij(Tij − θ̂ij). Moreover, the length of the minimum
pathP is

∑

aij∈P+

wij(Tij − θ̂ij) −
∑

aij∈P−

wij(tij − θ̂ij) (18)

which is by Lemma 10 a solution to the inverse maximum tension problem.

5 Generalization to Monotropic Optimization

In this section, we generalize the results of inverse network flows and tensions to monotropic programs with
separable linear cost functions. First, we provide a brief introduction to monotropic programming.

Monotropic programming deals with optimization problems that minimize a separable convex function
subject to linear constraints written in the following form

Minimize Φ(x) =
∑

j∈J

fj(xj) (P)

yi =
∑

j∈J

e(i, j)xj = bi ∀i ∈ I

xj ∈ Cj ∀j ∈ J

8



Here,E = e(i, j) is an arbitrary real matrix expressed in terms of nonempty and finite index setsI andJ .
Eachfj : R → R ∪ {∞} is a closed, proper convex function andCj is the interval wherefj is finite. We call
(P) theprimal problem.

We denote the left and right derivatives offj at ξ with f−
j (ξ) andf+

j (ξ), respectively, and extend these
functions fromCj = [c−j , c+

j ] to R by defining

f−
j (ξ) = f+

j (ξ) = +∞ if ξ > c+
j and f+

j (ξ) = +∞ if ξ = c+
j

f−
j (ξ) = f+

j (ξ) = −∞ if ξ < c−j and f−
j (ξ) = −∞ if ξ = c−j

Thedual problemof (P) is of the form

Maximize Ψ(u) = −
∑

i∈I

biui −
∑

j∈J

gj(vj) (D)

vj = −
∑

i∈I

uie(i, j) ∀j ∈ J

vj ∈ Dj ∀j ∈ J

wheregj denotes the conjugate function offj , i.e.,

gj(vj) = sup
ξ∈R

{vjξ − fj(ξ)}

andDj is the interval in whichgj is finite. By definition, the respective subspaces of the primal and dual
problems,

C = {x : Ex = 0}

D = {v : ∃u with − uE = v},

are orthogonally complementary to each other. Graphically, this means that(xj , vj) is on thecharacteristic
curveΓj , i.e.,(xj , vj) ∈ Γj where

Γj = {(ξ, η) ∈ R
2 : f−

j (ξ) ≤ η ≤ f+
j (ξ)} ∀j ∈ J.

In this paper, we will assume that there exists a feasible solutionx to the primal problem (P), satisfying

f−
j (xj) < ∞ and f+

j (xj) > −∞ ∀j ∈ J.

Such anx is calledregularly feasible solutionof (P). Moreover, we will consider only the special case where
the cost function of (P) is separable linear, i.e.,

fj(xj) =

{

djxj if c−j ≤ xj ≤ c+
j

∞ otherwise
(20)

5.1 Inverse Primal Problem with Linear Costs underL1 Norm

In the inverse problem of (P), we are given a regularly feasible solutionx̃, which is not optimal. Our aim is to
modify the cost functionsfj such that the given solutioñx will be optimum for the new cost functions while
the perturbation of the cost is minimized according to some norm. Under the rectilinear norm, we would like
to perturbdj to d̃j for which x̃ is an optimum solution to (P) and

∑

j∈J |d̃j − dj | is minimum.
First of all, we repeat some of the basic definitions and results on the optimality of monotropic programs

where we refer again to Rockafellar [14] for details.

Definition 13. A signed subsetP of J is called asupport of C, or aprimal support, if there is a vectorx ∈ C
such that

P+ = {j ∈ J : xj > 0} and P− = {j ∈ J : xj < 0}.

9



A primal supportP is elementaryif it is nonempty and does not properly include any other primal support.
For an elementary supportP , we define anelementary vector eP to be the unique elementaryx ∈ C having
P as its support and satisfying

|eP (j)| ≤ 1. (21)

Hence,
∑

j∈P+

eP (j) −
∑

j∈P−

eP (j) ≤ |P |. (22)

Note that this definition of the elementary vectoreP is different from the definition given in Rockafellar [14]
where he normalizesx ∈ C to geteP such that the inequality (22) holds with equality. However, in this paper
we normalizex ∈ C to geteP such that (21) holds. This new normalization of elementary primal support
vector is necessary for the future discussions.

Definition 14. An elementary primal supportP gives anelementary direction of descent at x̃ if and only if

Cost(P ) =
∑

j∈P+

f+
j (x̃j)eP (j) +

∑

j∈P−

f−
j (x̃j)eP (j) < 0. (23)

Theorem 15. A feasible solutioñx to the primal problem is optimal if and only if there is no elementary
direction of descent forΦ at x̃ (Rockafellar [14]).

In the primal problem, the given regularly feasible solutionx̃ is not optimum. Hence, there exists at least
one elementary direction of descent forΦ at x̃. By using the definition offj (20) and the existence conditions
of left and right derivatives offj , we can conclude that there exists an elementary vectoreP such that

for j ∈ P+ ⇒ x̃j < c+
j and forj ∈ P− ⇒ x̃j > c−j (24)

and Cost(P ) =
∑

j∈P

djeP (j) < 0. (25)

Following the denotations of previous sections, we call two elementary primal supportsP1 andP2 disjoint
if P+

1 ∪ P+
2 = ∅ andP−

1 ∪ P−
2 = ∅.

Theorem 16. LetP = {P1, . . . , PK} be a minimum cost collection of disjoint elementary primal supports
defining descent direction at̃x. The objective function value of the inverse primal problem under unit weight
L1 norm is−Cost(P) = −

∑K
k=1 Cost(Pk).

Proof: First of all, we will show that−Cost(P) is a lower bound on the objective function value. By the
definition ofeP , we know that

for j ∈ P+

{

eP (j)dj ≤ dj if dj ≥ 0
eP (j)dj ≥ dj if dj ≤ 0

, for j ∈ P−

{

eP (j)dj ≥ −dj if dj ≥ 0
eP (j)dj ≤ −dj if dj ≤ 0

(26)

Then,

∑

j∈J

|d̃j − dj | ≥
K

∑

k=1

∑

j∈Pk

|d̃j − dj | =
K

∑

k=1







∑

j∈P+

k

(d̃j − dj)(+1) +
∑

j∈P−

k

(d̃j − dj)(−1)







≥
K

∑

k=1







∑

j∈P+

k

(d̃j − dj)(eP (j)) +
∑

j∈P−

k

(d̃j − dj)(eP (j))







≥
K

∑

k=1

−Cost(Pk) = −Cost(P)

Here, the first inequality holds because the elementary primal supports aredisjoint and the second inequality
holds by (26).
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In order to complete the proof, we need to show that this lower bound is indeed achievable. Rockafellar
[14] mentions that solving the primal optimality problem is equivalent to solving thedual feasibility problem
with respect to the dual spansDx(j) = [d−x (j), d+

x (j)] where

d+
x (j) = f+

j (x̃j) =

{

∞ if x̃j = c+
j

dj if x̃j < c+
j

, d−x (j) = f−
j (x̃j) =

{

dj if x̃j > c−j
−∞ if x̃j = c−j

(27)

for the linear cost functionfj(xj) defined by (20). According to our assumptionx̃ is a feasible nonoptimal
solution. Hence, the dual problem with respect to the spansDx(j) for j ∈ J is infeasible and the following
property holds.

Property 17. For the elementary primal supports inP there exists av ∈ D such that

For j ∈ P

{

vj ≥ dj if j ∈ P+

vj ≤ dj if j ∈ P− , and forj /∈ P

{

vj ≤ dj if x̃j < c+
j

vj ≥ dj if x̃j > c−j

Moreover, we can find av for which the Property 17 holds andvj = dj for all |eP (j)| 6= 1. Here, we will
not prove the Property 17 since it is a straightforward extension of flow and tension cases. We will show only
that the last claim is true.

Suppose that there exists aPk ∈ P for which the claim does not hold, i.e., there does not existv such
that for j ∈ Pk with |ePk

(j)| 6= 1 the equalityvj = dj holds. Assume without loss of generality that
0 < ePk

(j) < 1 anddj is nonnegative. Sincev ∈ D,

Sum =
∑

l∈{t∈Pk:|ePk
(t)|6=1}

ePk
(l)dl +

∑

l∈{t∈Pk:|ePk
(t)|=1}

ePk
(l)vl + ePk

(j)vj = 0

andvj > dj by Property 17. Suppose we setvj = dj . As the elementary primal supports are disjoint, the
effect of this change will only be onSum, i.e.,Sum < 0. In order to achieveSum = 0, we need to increase
eithervl for l ∈ {j ∈ Pk : ePk

(j) = 1} or decreasevl for l ∈ {j ∈ Pk : ePk
(j) = −1}. In either case the

newv satisfiesv ∈ D and the Property 17 holds withvj = dj for all |eP (j)| 6= 1. Hence, the claim is true.
Now we are ready to define our new cost functiond̃. We setd̃j = vj for all j ∈ P andd̃j = dj otherwise.

Then,

‖d̃ − d‖1 =
∑

j∈J

|d̃j − dj | =
∑

j∈P

vj − dj

= −







K
∑

k=1

∑

j∈P+

k

(dj − vj)(+1) +
∑

j∈P−

k

(dj − vj)(−1)







= −







K
∑

k=1

∑

j∈P+

k

(dj − vj)(ePk
(j)) +

∑

j∈P−

k

(dj − vj)(ePk
(j))







= −Cost(P)

Here, the third equality holds sincevj = dj holds forj ∈ P and|eP (j)| 6= 1 as shown previously. Hence, the
proof of the theorem is complete.

5.2 Inverse Primal Problem with Linear Costs underL∞ Norm

Under Chebyshev norm, we would like to perturbdj to d̃j for which x̃ is an optimum solution to (P) and
maxj∈J |d̃j − dj | is minimum.

Following Tseng and Bertsekas [15], we say that anx ∈ R
|J | and av ∈ R

|J | satisfyǫ-complementary
slackness, whereǫ is any positive scalar, if

fj(xj) < ∞ and f−
j (xj) − ǫ ≤ vj ≤ f+

j (xj) + ǫ, for j ∈ J. (28)

Graphically, this means that(xj , vj) is within ǫ vertical distance of the characteristic curveΓj . We callx an
ǫ-optimal solutionif x satisfies theǫ-complementary slackness conditions (28).
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Theorem 18.A given feasible solutioñx to (P) is anǫ-optimal solution if and only if all the elementary primal
supports defining a descent direction with respect tox̃ have a mean cost (MCost(P )), which is greater than
−ǫ, i.e.,

MCost(P ) =
Cost(P )

|P |
=

∑

j∈P+ f+
j (x̃j)eP (j) +

∑

j∈P− f−
j (x̃j)eP (j)

|P |
≥ −ǫ

Proof: ”⇒” Suppose that the given feasible solutionx̃ is anǫ-optimal solution but there exists an elementary
primal supportP defining a descent direction atx̃ with MCost < −ǫ. Without loss of generality we consider
the worst case, i.e., the most negative cost case wheref+

j (x̃j) < 0 for j ∈ P+ andf−
j (x̃j) > 0 for j ∈ P−.

SinceeP v = 0 for v ∈ D, the following holds.

Cost(P ) = Cost(P ) − eP v

=
∑

j∈P+

f+
j (x̃j)eP (j) +

∑

j∈P−

f−
j (x̃j)eP (j) −

∑

j∈P

eP (j)vj

=
∑

j∈P+

(f+
j (x̃j) − vj)eP (j) +

∑

j∈P−

(f−
j (x̃j) − vj)eP (j)

≥
∑

j∈P+

(f+
j (x̃j) − vj)(+1) +

∑

j∈P−

(f−
j (x̃j) − vj)(−1)

≥ −ǫ|P |

Here, the first inequality holds by the definition of the elementary vectoreP and by (26). The second in-
equality holds byǫ-complementary slackness (28). As it can be concludedMCost(P ) ≥ −ǫ, and we get a
contradiction to the assumption.
”⇐” Suppose that all the elementary primal supports haveMCost(P ) ≥ −ǫ but the solutioñx is not ǫ-
optimal,i.e.,f−

j (xj) − vj > ǫ andf+
j (xj) − vj < −ǫ for j ∈ J . Then,

Cost(P ) = Cost(P ) − eP v

=
∑

j∈P+

(f+
j (x̃j) − vj)eP (j) +

∑

j∈P−

(f−
j (x̃j) − vj)eP (j)

< −ǫ|P |

which is a contradiction.

�

Theorem 19. LetP ∗ be the minimum mean cost elementary primal support defining a descentdirection atx̃
andµ∗ be its mean cost. The optimum objective function value of inverse primal problem with linear costs
under unit weight Chebyshev norm ismax (0,−µ∗).

Proof: By using similar arguments as in Theorem 6, it is easy to show that−µ∗ is a lower bound on the
optimal objective function value. Moreover, by Theorem 18, we know that there existsv ∈ D satisfying the
ǫ-complementary slackness conditions (28) withǫ = −µ∗. Thus, we define the new cost function to be

fj(xj) =

{

d∗jxj if c−j ≤ xj ≤ c+
j

∞ otherwise

where

d∗j =







dj − µ∗
j if xj < c+

j anddj − vj < 0

dj + µ∗
j if xj > c−j anddj − vj > 0

dj otherwise
(29)

Obviously, d∗ is the optimum solution to the inverse primal problem with linear costs under unit weight
Chebyshev norm.
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6 Conclusion and Future Work

For the inverse minimum cost and maximum value tension problems under rectilinear and Chebyshev norms
we showed that the results of Ahuja and Orlin [3] and Yanget al. [18] for inverse network flows can be
extended. We proved that the inverse minimum cost tension problem under rectilinear norm is equivalent to
solving a minimum cost tension problem, while under unit weight Chebyshev norm it can be solved by finding
a minimum mean cost residual cut. Moreover, inverse maximum tension problemunder rectilinear norm can
be solved as a maximum tension problem on the same graph with new arc bounds.

In this paper we also presented a generalization of the inverse problems for monotropic programming
with linear costs. This generalization certifies the validity of the given combinatorial results for network flows
and tensions even if they do not possess totally unimodularity, i.e., generalized flows and tensions. Another
generalization of inverse network flows and tensions would be inverse flows in regular matroids [5], which is
currently investigated.

In Güler and Hamacher [6], we have studied the capacity inverse minimum cost flow problem and shown
that underL1 norm this problem is NP-Hard. A similar problem in tensions is the bound inverse minimum
cost tension problem where we perturb the upper and lower bounds instead of costs. Analyzing this problem
would complete the comparison of inverse network flow and tension problems.Moreover, it seems that inverse
tension problems may have potential for practical applications, especially in scheduling problems. These are
currently explored, as well.
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