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Abstract

Given a directed grapti = (N, A), atensionis a function fromA to R which satisfies Kirchhoff’s
law for voltages. There are two well-known tension problemsgraphs. In theninimum cost tension
problem (MCT) a cost vector is given and a tension satisfying lower anéuppunds is seeked such that
the total cost is minimum. In theaximum tension problem (MaxThe graph contains 2 special nodes
and an arc between them. The aim is to find the maximum tensidhis arc. In this study we assume
that both problems are feasible and have finite optimal molatand analyze their inverse versions under
rectilinear and Chebyshev distances.

In the inverse minimum cost tension problem we adjust the gasameter to make a given feasible
solution the optimum, whereas in inverse maximum tensioblpm the bounds of the arcs are modified.
We show, by extending the results of Ahuja and Orlin [3], thafse inverse tension problems are in a way
"dual” to the inverse network flows. We prove that the invarseimum cost tension problem under recti-
linear norm is equivalent to solving a minimum cost tensiorbem, while under unit weight Chebyshev
norm it can be solved by finding a minimum mean cost residualiMoreover, inverse maximum tension
problem under rectilinear norm can be solved as a maximusiderproblem on the same graph with
new arc bounds. Finally, we provide a generalization of tivelise problems to monotropic programming
problems with linear costs.

Keywords: inverse problems, tension problems, cuts, monotropicraraging

1 Introduction

Optimization problems with estimated problem parameters have lately drawn catdédattention from
researchers. For this kind of problems one often knows a priori an dpsiohation based on observations
or experiments, but is interested in finding a set of parameters, such éhlatdivn solution is optimum (a)
and the deviation from the initial estimates is minimized (b). The problem of rdetitoy the parameters
satisfying (a) and (b) is known @sverse optimization problem

Among several inverse optimization problems the inverse network flowshiemreintensely investigated.
Ahuja and Orlin [2] and Zhang and Liu [19, 20] study inverse linear paots and derive LP formulations
for several inverse network flow problems. In another paper AhujaCuhin [3] analyze the combinatorial
aspects of inverse minimum cost flow problem under unit weightind L., norms. They show that the
optimum objective function value is for the former problem equal to the minimwhafa collection of arc-
disjoint cycles in residual graph, whereas the latter problem can begdda finding a minimum mean cycle
in the residual graph. Yangt al. [18] study inverse maximum flow and minimum cut problems. A thorough
survey study on this topic has been done by Heuberger [9] analyziuegasalifferent types of inverse and
reverse problems that have been considered in the literature. As dpjpdimv problemstension problems
which are duals of flow problems [1], and their inverse versions hastyaeen neglected. Our aim in this
study is to fill this gap in the literature and extend the results of Ahuja and Ofjlifof3ensions to show
that the duality relation between tensions and flows is valid for their respdairerse problems, as well.
Moreover, we exploit monotropic programming (Rockafellar [14]) with lineast functions to generalize
these combinatorial results for a larger set of inverse problems includérigubrse problems of generalized
network flows (Ahujaet al. [1]).

LetG = (N, A) be a connected digraph with node 8étontainingr nodes and arc set containingm
arcs, and;; represent an arc with tail nodeand head nodg. A tensionis a function fromA to R which

1The research has been partially supported by Deutsche Forscleumgjsgchaft (DFG), Grant HA 1737/7 "Algorithmik groRRer
und komplexer Netzwerke” and by the Rhineland-Palatinate cluster eflerce "Dependable adaptive systems and mathematical
modeling”.



satisfies Kirchhoff’s law for voltages [12]. In other words, a vedtoe R4 is atensionon graphG with
potentialr € RY such thatv(i,j) € A 6;; = 7j — ;. The basic properties of the tensions are [14]:

o ForallcyclesC, 3, cco 0ij—> ., cc- 0ij = 0, whereC™ andC'~ are the forward and the backward
arcs of the cycle, respectively.

e Any linear combination of tensions is a tension.

e Atension is orthogonal to any circulation.

Theminimum cost tension problem (MCig)finding a tensio satisfying lower {;; € R U {—o0}) and
upper (;; € RU {4o00}) bounds on each arc such t@t%eA ¢;j0;5 1s minimum. In themaximum tension
problem (MaxT)the graph contains 2 special nodesandt, and an ara; € A between these two nodes
with bounds(ts;, Ts;) = (—o0,00). The maximum tension problem is finding the maximum tension on arc
ast € A such that the tensions on all arcs satisfy the upper and lower bounttsis ktudy we assume that
both problems are feasible and have finite optimal solutions. Our aim is to artaliz inverse versions.

Given a feasible tensidhfor an instance of MCT, theost inverse minimum cost tension probigmMCT )
is perturbing the cost vector fromto ¢ in a way thatd will become the optimum tension for the minimum
cost tension problem with the perturbed cost vector (M)Thile the perturbationjc — ¢|| is minimized
according to some norm. On the other handinverse maximum tension probldiiviaxT) we modify the
bound vectors fron?" to 7' and/or fromt to # such thatd,; will become the maximum tension with the
perturbed bound vectors. We exploit rectilineas Y and Chebyshevi{..,) norms to measure the parameter
modifications.

The theory of monotropic programming was first established by Rockafg#ihand extended mainly by
Tseng and Bertsekas [4, 15, 16, 17]. In Section 5, we provide aibtietiuction to monotropic programming
and refer to the book of Rockafellar [14] for detalils.

Monotropic programming deals with optimization problems that minimize a separamexcéunction
subject to linear constraints. Several optimization problems such as lineégriecewise linear programs,
guadratic and piecewise quadratic programs, network flows and tereierspecial cases of monotropic
programs. In this paper, we analyze inverse problems of monotropicgmsgwith seperable linear cost
functions and show that the combinatorial solutions of Ahuja and Orlin [8pesextended to these problems.

The rest of this paper is organized as follows: Section 2 describes tBesénminimum cost tension
problem under.; norm in detail and gives a combinatorial formulation of the problem. SectiameB/zes
the same problem unddr,, norm. In Section 4 we present a solution to the inverse maximum tension
problem under rectilinear norm. In Section 5, we introduce the theory obtnmpic programming and study
the inverse problems of monotropic programs with separable linear cagidng underl; and L., horms.
Finally, we conclude the paper by a summary of our results and a discudgignre work in this area.

2 Inverse Minimum Cost Tension Problem UnderZ; Norm

For the inverse minimum cost flow problem under unit weightnorm, i.e.,w;; = 1 for all a;; € A,
Ahuja and Orlin [3] have shown that the optimum objective function value isleip the minimum cost of
a collection of arc-disjoint cycles in residual graph. Since this collectidime®a minimum cost circulation
in a unit capacity network, the inverse problem can be reduced to solvirigimmum cost flow problem in a
unit capacity network. Similarly, by usirgyc-disjointresidual cuts, we will show that the inverse minimum
cost tension problem under unit weight rectilinear norm reduces to godvininimum cost tension problem
with unit upper and lower bounds on arcs. First, we need to defineigjaird residual cuts and present the
optimality conditions for minimum cost tensions.

A cutw is calledresidual with respectto a tensiohif

Va;j €w ém < T (1a)
Vaij cw éij > tij (1b)
Thecostof a cutw is
COS(LU) = Z Cij — Z Cijs (2)
ajjEwt a;jEW™



and itsmean-costs equal to the cost divided by its cardinality. We call the residual eytandws to be
arc-digoint if w; Nwy = 0 andw; Nw, = (. Note that arc-disjoint residual cuts might have common arcs
such that;; € w; Nw, or vice versa. In this case,; < 6;; < T;; holds for these arcs.

Theorem 1. A tensiord is optimal if and only if all the residual cuts i have nonnegative costs [8].

Tensions are duals of circulations. Hence, we can also characteripetih@l tension to the minimum
cost tension problem using circulations [12]. A tenstais optimal if there exists a circulatiop such that

—pi; =0 it 0y =ty (32)
cij —wij =0 if  ty <0y <Ty, (3b)
—pi; <0 if é =T (3c)
Theorem 2. Suppose?* = {wj,ws3,...,w}) } denotes a minimum cost collection of arc-disjoint residual

cuts inG and letCost(Q*) be its cost, which is equal to the total costs of the residual cufd*in Then,
—Cost(2¥) is the optimal objective function value for the inverse minimum cost tensiotepralnder unit
weight rectilinear norm.

Proof: Suppose tha® = {w1,ws,...,wk } denotes any collection of arc-disjoint residual cuts with negative
costs inG and letc* denote the optimum cost vector for the inverse problem. First, we showadhétd
common arcs;; of wy, € Q, ¢;; = ¢;; holds.

We know that by Theorem 1, the costs of the arcgjine 2 have to be changed so th@bst(wy) > 0.
Sincec* is the optimum modified cost vector, the following holds (otherwise we coulddindst vectog
with & — e}y < [l — ]).

C:j > Cij for Qij € w; (4)

C:j < ¢j for ajj € wk_ (5)

For an araz;; with a;; € w,jl , Wy,» the inequalities (4) and (5) must hold with equality. By using this fact, we
can show that-Cost () is a lower bound otfjc* — ¢||;.

|l —¢|1 = Z |ci; — cijl >Z Z |ci; — cijl > — ZC’ost (wi) = —Cost(2) (6)

QA5 GA k=1 (7] Cwg

Now, we will prove that this lower bound is actually achieved for the minimunt colfection of arc-disjoint

residual cuY* = {w},w3,...,wj }. For this purpose, we need to show that there exists a circulation
G such that

Cij — pij < 0 for aij € QO Cij — Pij = 0 for Qi € Q- (7a)

— Yij > 0 for Qij ¢ QF andéij < Tlij Cij — Pij < 0 for Qij ¢ QF andéij > tij (7b)

Suppose that there exists a residual ofitc Q* for which inequalities (7a) do not hold i.ez;; — ¢;; >
0 for aij € wz+ andcij — Pij < 0 for ajj € w]:_. Then,

Yo (=)= Y (e —wiy) =0
aijEw*Jr ajjEW ™
If we rearrange the inequality as
2o X e | X vi— 2L %u
(J,Z‘J‘Eu.)*"r ajjEW*™ a¢j€w*+ ajjEW*T
and use the fact that the sum of the flows on cuts is equal to 0, we come um withtradiction that

Z%GWH Cij — Zaijew*_ ¢ij = Cost(w*) > 0. Hence, a circulation satisfying (7a - 7b) exists.

3



Letcj; = ¢ij for a;; € Q" andcj; = ¢;; otherwise. Clearly, this cost vector satisfies the optimality
conditions (3a - 3c), hence it is a feasible solution to the inverse problemedver,

les—clh = Y (ai—wg)— D>, (e — i)

aijEQ*_ aijEQ*+
K
= > Y (=)= Y (e — i)
k=1 az-]-ew;;_ aijew,:*'
K
= — E E C,‘j - E Cij = —COSt(Q*)
k=1 aijEW*Jr ajjEW* ™

Thus, the result of the theorem follows.

We next show that the minimum cost collection of arc-disjoint residual cutseafound by solving a
minimum cost tension problem by deriving a linear programming formulation oiinthe¥se problem using
the ideas of Ahuja and Orlin [2]. Under unit weight rectilinear norm, the ahje function of the inverse
problem would be

Minimize )" [ei; — ¢ (8)
a;;€EA
and the constraints of the inverse problem are derived from the flow dfgiroanditions (3a), (3b) and (3c).
If we dualize the corresponding linear program, we obtain

Minimize " cij(m; — ) (92)
a;;€A
subject to
—1§7Tj—7TZ‘§1 for aijEK (gb)
0<m—m<1 for a; €L (9¢)
—1<m—m <0 for a; €U (9d)
m20
where
K = {aj € Aty <0y < Ty},
L = {aj € A:0;=ty},
U = {aycA:by =Ty}

Obviously, this LP is actually the formulation of a minimum cost tension problem witledcand upper
bounds on the tensions given by the inequalities (9b), (9¢) and (9d).

If we are given positive weights;; > 0 Va;; € A, the only change that occurs in the LP formulation of
inverse problem is the objective function (8), which now looks like

Minimize Z wij(|cij — ¢5l) (10)
aijEA

This modification does not influence the outcome of the dualization of the endétsThe dual LP of the
inverse LP remains to be a minimum cost tension problem but with new bountieftension. Hence, the
new bound inequalities are

—W;j < T = T < Wij for ajj € K
Ogﬂ'j — mgwij— fOfCLz‘jEL
—W;; < T o= T <0 for ajj € U



3 Inverse Minimum Cost Tension Problem UnderL., Norm

Ahuja and Orlin [3] showed that the inverse minimum cost flow problem undiémweight L., horm can be
reduced to solving a minimum mean cycle problem in the residual graph. Similarlyilvshow that the
inverse minimum cost tension problem under Chebyshev norm reducelvittgsa minimum mean residual
cut problem.

As mentioned in Section 2, a given tensiéris optimal if and only if the graph does not contain any
negative cost residual cuts with respecft@ince in the inverse problem we are given a non-optimal tension,
the graph contains residual cuts with negative costs. Our aim is to modifyotterector of the arcsto ¢
such that none of the residual cuts have negative costsmang .c 4 |¢;; — c¢;;| is minimum.

A~

Let w* be a minimum mean (cost) residual cut@hw.rt. 6, i.e., w* is a residual cut withy* =
MCost(w*) = cost(w*)/|w*| is minimum among all residual cuts whetg'| denotes the number of arcs in
cutw*. We adopt an idea of Hadjiat and Maurras [7] who defiraptimality and show that = —u* is the
smallest positive real number for whiétis e-optimal.

Definition 3. For ane > 0, a tensiord is e-optimal if there exists a circulatiop such that
Vag € A: [0 < Tyj) = (pij < cij+ )] and [0 > tij) = (055 > cij — )] (11)
Theorem 4. Tensiord is e-optimal if and only if every cut residual w.r.t.6 satisfiesM Cost(w) > —e.

The definition ofe-optimality (11) and the given results imply the following property of the tensions

Property 5. Letw* be a minimum mean residual cut@w.r.t. § and;* be the mean cost of it. There exists a
circulation ¢ such thaic;; — ¢;; = p* for the outgoing and;; — ;; = —u* for the incoming arcs of the cut
w*. The outgoing and incoming arcs of all other residual cuts satigfy- ¢;; > p* andc;; — p;; < —p*,
respectively.

Theorem 6. Let ;.* denote the mean cost of a minimum mean residual cGt wr.t. 0. Then, the optimal
objective function value for the inverse minimum cost tension problem underorm ismax(0, —p*).

Proof: We can solve the minimum mean residual cut probler&iw.r.t. § in strongly polynomial time by
using the method of Hadjiat and Maurras [7]. Moreover, we chgoag in Property 5. Ifi* > 0, thend is an
optimum tension and the theorem is true. Supposeithat 0 andw™ is the minimum mean residual cut in
G w.rt. 6. Let z* be the optimum solution to the inverse minimum tension problem under Chebystray n
We first claim that* > —u*. Recall

costw ) = > ej— Y. ey = |yt

a¢j€w*+ ajjEW ™

If z* < —u*, then, in order to maké the optimal solution, it would be sufficient to increase the costs of
ai; € w*T by an amount* and decrease the costs@f € w*~ by z*. The resulting cost of the cut* is
|w*|p* + |w*|z* < 0, which is a contradiction to the optimality 6f Hencez* > —p*.

Now we prove that there exists a vectowith ||¢* — ¢|| = —u* such tha# is optimal w.r.t.c*. Definec*
as follows: R
Cij — w* if 61‘]‘ < Tij andcij — Yij < 0
C:j =4¢G;+ ,u* if é,‘j > tij andcij — Pij > 0 (12)
Cij otherwise

It is obvious that|c* — ¢|| < —p*. Moreover, by Property 5
Ci—wy=cyj— W —pi; = pt—pt=0  foro; <Ty
Gi—wij=cijtp —wy < pt—pt=0  for; >t;

Hence satisfies the optimality conditions antlis an optimal solution of the inverse minimum cost tension
problem under Chebyshev norm.



Hadjias and Maurras [7] provide a Newton type algorithm to solve the minimunm mesidual cut prob-
lem. Using their algorithm we can find an optimum solution for the inverse probiestrongly polynomial
time. McCormick and Ervolina [11] study max mean cuts and mention that a direébbthef calculating
max mean cuts as Karp [10] does for minimum mean cycles has not yet hawh fRadzik [13] improves
the best known running time bound of Newton’s method for maximum mean waiglproblem and proves
that Newton’s method runs in strongly polynomial number of iterations for ahlirfractional optimization
problems. He also shows that the maximum mean weight cut prolplarametric flow problenand mini-
mum maximum arc cost flow probleme closely related to each other. Here, we revise Radzik's resultq13]
include the inverse minimum cost tension problem under Chebyshev distance

An instance of the parametric flow problem (PF) consists of a netwowkith arc capacities and sup-
plies/demands on nodes, and a weight functionA — R. The goal is to find minimum nonnegativesuch
that G, .5, NetworkG with capacity functionu + wé, is feasible. Minimum maximum arc cost problem
(MMAC) is defined on a networks with a nonnegative cost functian: A — R. The goal is to find a flow
satisfying the demands on nodes while minimizing the maximum arc cost i.e., minimizing . 4 fi;ci;-

In the uniform versions of the problems all weights and costs equal taigcéavely.

The relationship between IMCTunderL., norm and PF is more straightforward to justify. In IMGTve
are given a tensiof, which is feasible to MCT with cost vectarbut not optimal. Hence, the dual circulation
problem of the given MCT problem is infeasible, i.e., there does not existalationy to satisfy (3a), (3b)
and (3c). Our aim is to find the minimufn| such that the circulation problem @hwith arc capacities +
is feasible.

In order to show the relationship between IMQinderL ., norm and MMAC problem we exploit LP du-
ality. We apply the linear programming methods of Ahuja and Orlin [2] to obtaindl@ding LP formulation
for IMCT . underLs, norm.

Minimize Z Cij(ﬂj — 7Ti) (13)
aijEA
subject to

I
—

Z Nij

aqijA
—Mij < Tj — T Nij for ajj € K
OS’]Tj—ﬂ'Z' Nij foraijeL

0 for aij € U

IN A IA

—nijgwj—m
n>0 w20

By Theorem 6 we know that (13) is the LP formulation for finding minimum mea sidual cut iz with
respect t@. Let us consider its dual.

Maximize A (14)
subject to
1 2 1 2

doownt Y ekt Y, (el -
JjEN,a;;€L JjEN,a;;€U JjEN,a;;€K

Dot DL et XL (i) | = Dgi— ) e VieN
jEN,a;€L jEN,a;,€U jENa; €K jEN jEN

A _(902‘1]' + 9012]') Vaij € A

<
12
ey = 0

Obviously, (14) is an instance of the uniform MMAC problem on a gréph= (N, A") with A" := {a;; :
a;j € Aanda;; € LUK} U {aj; : a;; € A anda;; € U U K}. The demands/supplies on the nodes are



2_jen i — 2ojen Cij = —Cost(w(i)) Vi € N and the flow capacities of the arcs dleoc). This result
establishes the fact that IMCTinderL., norm and MMAC problems are dual to each other.
If we are given positive weights;; > 0 Va;; € A, the objective function of IMCT under Chebyshev
distance would be
Minimize max wij(|c,-j — ézg‘) (15)
a;; €A

In this case, the inverse problem reduces to finding a minimum mean-wesighiaécut on grapld-.

4 Inverse Maximum Tension Problem (IMaxT) under L; Norm

Yanget al. [18] study inverse maximum flow problem and show that for unit weighé ¢as problem can
be reduced to solving a maximum flow problem. In this section we will show a singfultrfor inverse
maximum tension problem undés norm.

Given a weight vectow for changing the bounds of the arcs, the inverse maximum tension problgen u
Li-norm is

min > wii(|Ty; — Tij| + [£i — ti5])
aij€A
subject to
tij <0;; <Tyj Vag €A (16)
O isthe maximum tension
The maximum tension problem is the dual of the maximum flow problem, and so igtineadity condi-
tion [14].

Theorem 7. (Maximum Tension Minimum Path Theorem) Suppose there is at least one tension satisfying
the upper and lower bounds. Then, the maximum in max tension probleunaikte the minimum in min path
problem. Both of the problems are unbounded if there is ar cutw with an unlimited span i.e., all forward
arcs have infinite upper bounds and all backward arcs have infiniterloaends.

By Theorem 7 we know that there exists a minimum path, which has a length tegile maximum
tension. Moreover, for this minimum path the following property holds.

Property 8. If P denotes the minimum path betweeandt on graphG and P and P~ are the correspond-
ing sets of forward and backward arcs in, then@;“j = T;; for all a;; € P™ and 9;‘]- = t;; forall a;; € P~
for the maximum tensiofi'.

Lemma 9. If problem (16) has an optimal solutioft*, 7*) and P* is the minimuns — ¢ path in network
G = (N, A, t*,T%), then

1. T*<Tandt* >t
2. T}, = T;j andt; = t;; for each arca;; ¢ P*. Moreovert;; = t;; for arcsa;; € P** andT}; = Ty
forarcsa;; € P*~.
Proof:

1. As 0 is the maximum tension iG(t*, %), 0;; = T}; for a;; € P** andf;; = t; for a;; € P*~ by
Property 8. If there is an arg,; € A with T}, > Ty, (or ¢}, < ti), then obviouslya; ¢ P* since
otherwised cannot be a feasible tension@(¢, 7). We define the new bound vectors as follows:

= T;; if Qi 7é al T t;(j if Q5 7é Al
T;; = tij =

T%‘ if Ai5 = Qg tij if Ai5 = Al

By Property 8, it is easy to verify thdtis a maximum tension undét, T'). Moreover,

> wii(1Tyy = Tyl + g — tig]) < Y wig (T35 — Tigl + [£5; — tis))
a;;€A a;j €A

which is a contradiction to the optimality ¢f*, 7). Hence, the result follows.

7



2. Let us define the bound vectdrsT') as follows:

_ {T:} if Qij € Pt 7 {t;} if a;; € P*~

Ti; = . ij = .
T;; otherwise ti; otherwise

By Property 8/ remains to be a maximum tension und&rT’). Since

> wi (1T = Tyl + [ty — i) < D wi (T35 — Tl + [£5; — tis]) (17)
(lijGA (Li]'GA

and(t*, T*) is an optimum solution of the inverse max tension problem, the inequality (17) \vittls
equality and the conclusion is true.

Recall that the tensioé\, which we want to be maximum, is a feasible tensionGar, T'), thusf < 6*
whered* is the optimum tension fo (¢, 7'). By using this fact and Lemma 9 we can reformulate IMaxT as
follows.

Lemma 10. The inverse maximum tension problem unéiemorm is equivalent to finding a path from s

totinG = (N, A) such thatzaijelw wl](TZ — élj) + ZOLUGP’ wij(éij — tij) IS minimum.
Theorem 11. Suppose&’* is the minimum path corresponding to the maximum tension probler{tiri).
The optimum solution of the inverse maximum tension problem w.r.t. unit weigihdrm is

T éij if ajj € Pt o éij if aij € P*~
" T,; otherwise & t;; otherwise

Hence, solving the inverse problem is equivalent to solving a maximumrneprsiolem onG (¢, T').

Proof: Result follows from Lemma 10 and the fact ttfat is the minimum path in grap&'(t, T').

Theorem 12. The solution to the inverse maximum tension problem urdenorm with a positive weight
functionw can be found by solving a maximum tension problem in gi@ptith respect to upper and lower

boundsw;;(T;; — 0;;) andw;;(t;; — 6;;) on arcsa;; € A\{as }, respectively.

~

Proof: The maximum tension problem @hwith upper bounds;; (T;; —6;;) and lower boundsy;; (;; —0;;)
fora;; € A\{a} is feasible sincev;;(t;; —éij) <0 < wi(Ty; —él-j). Moreover, the length of the minimum
pathP is

> wi(Ty —0) — Y wij(tyy — 0y) (18)

aij€P+ a;; €EP~

which is by Lemma 10 a solution to the inverse maximum tension problem.

5 Generalization to Monotropic Optimization

In this section, we generalize the results of inverse network flows anisn® monotropic programs with
separable linear cost functions. First, we provide a brief introduction twotnapic programming.

Monotropic programming deals with optimization problems that minimize a separamexcéunction
subject to linear constraints written in the following form

Minimize ®(z) =) _ f;(x;) P)
jel
Yi = Ze(i,j)mj =b Viel
jer

l‘jGCj VjiedJ



Here, E' = e(i, ) is an arbitrary real matrix expressed in terms of nonempty and finite indeX sets./.
Eachf; : R — RU {oo} is a closed, proper convex function afigis the interval wherg; is finite. We call
(P) theprimal problem

We denote the left and right derivatives ffat £ with fj*(g) and fj(g), respectively, and extend these

functions fromC; = [c;, ¢;'] to R by defining

SO =f(©) =400 ifE>ch and ff () =400 ifE=cF
7@ =1 =-00 ifé<c and f7(§)=—o0 if&=c;

Thedual problemof (P) is of the form

Maximize V(u)= — Zbiui - Zgj(vj) (D)
il jeJ
vj = —Zuie(i,j) VjeJ
iel

vjeD; Vjeld
whereg; denotes the conjugate function gf i.e.,

g;(v;) = sup{v;€ — f;(€)}
EeR

and D; is the interval in whichy; is finite. By definition, the respective subspaces of the primal and dual
problems,

C={x:FEx=0}
D = {v:3Juwith —uE = v},

are orthogonally complementary to each other. Graphically, this meang&ethat) is on thecharacteristic
curvel';, i.e.,(z;,v;) € I'; where

Di={EmeR: ff)<n< (O} Viel

In this paper, we will assume that there exists a feasible solutiorthe primal problem (P), satisfying
fi(xj) <oco and f;(z;) > —o0 Vje

Such ane is calledregularly feasible solutionf (P). Moreover, we will consider only the special case where
the cost function of (P) is separable linear, i.e.,

o . +
d;x; Ifcj <zj <

00 otherwise (20)

filxs) = {

5.1 Inverse Primal Problem with Linear Costs underL; Norm

In the inverse problem of (P), we are given a regularly feasible soldatiavhich is not optimal. Our aim is to
modify the cost functiong; such that the given solutionwill be optimum for the new cost functions while
the perturbation of the cost is minimized according to some norm. Under the reatiliorm, we would like
to perturbd; to d; for which 7 is an optimum solution to (P) and ;. ; |d; — d;| is minimum.

First of all, we repeat some of the basic definitions and results on the optimititgreotropic programs
where we refer again to Rockafellar [14] for details.

Definition 13. A signed subseP of J is called asupport of C, or aprimal support if there is a vector € C
such that
Pt={jeJ:z;>0} and P~ ={jeJ:z; <0}



A primal supportP is elementaryf it is nonempty and does not properly include any other primal support.
For an elementary suppaRt, we define arelementary vector ep to be the unique elementasyc C having
P as its support and satisfying

lep(j)| < 1. (21)
Hence,
D ep(i) = > er(h) < IPI. (22)
jepPt jepP—

Note that this definition of the elementary vectgris different from the definition given in Rockafellar [14]
where he normalizes € C to getep such that the inequality (22) holds with equality. However, in this paper
we normalizer € C to getep such that (21) holds. This new normalization of elementary primal support
vector is necessary for the future discussions.

Definition 14. An elementary primal suppoR gives anelementary direction of descent at  if and only if
Cost(P) = Y f(&)ep() + D> f; (#5)ep(i) <O0. (23)
JEPT jEP™

Theorem 15. A feasible solutior to the primal problem is optimal if and only if there is no elementary
direction of descent fob at z (Rockafellar [14]).

In the primal problem, the given regularly feasible solutiois not optimum. Hence, there exists at least
one elementary direction of descent fbat . By using the definition of; (20) and the existence conditions
of left and right derivatives of;, we can conclude that there exists an elementary vegtsuch that

forje P"=i;<c¢f and forjeP™ =i;>c (24)
and Cost(P) =Y _ djep(j) < 0. (25)
jeP

Following the denotations of previous sections, we call two elementary pruppbstsP; and P, disjoint
if PPUP =0andP; UP, =0.

Theorem 16. LetP = {P,..., Px} be a minimum cost collection of disjoint elementary primal supports
defining descent direction @ The objective function value of the inverse primal problem under unithweig
Li normis—Cost(P) = — Zszl Cost(Py).

Proof: First of all, we will show that-Cost(P) is a lower bound on the objective function value. By the
definition ofep, we know that

ep(j)dj < dj if dj >0
€p(j)dj Z dj if Clj S 0 ’

ep(j)dj Z —dj If dj Z 0

ep(j)dj § —dj if dj S 0 (26)

forjeP+{ forjeP‘{

Then,

M=

>y —dy)(+1) + ) (dj —dj) (1)

JEP, JjeEP,

K
Sl —dil >0 ldy—dy| =
jed k=1 jeP;

i
I

> (dj—di)ep(i) + Y (dj —dj)(ep(s))

jery jer;

Vv

M= 10

> —Cost(Py) = —Cost(P)

B
Il
—

Here, the first inequality holds because the elementary primal suppodsspriat and the second inequality
holds by (26).
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In order to complete the proof, we need to show that this lower bound isdratdeevable. Rockafellar
[14] mentions that solving the primal optimality problem is equivalent to solvingltla feasibility problem
with respect to the dual spads,(j) = [d, (j), d} (j)] where

NS B ifjj:c;r e d; if 2; >c.
d:c(.j)_f] (xj)_{ dj ifi’j<C;_ ’ dx(])_fj (x])_
for the linear cost functiorf;(z;) defined by (20). According to our assumptidns a feasible nonoptimal

solution. Hence, the dual problem with respect to the sgang) for j € J is infeasible and the following
property holds.

—o0 if 2= ¢ (27)

Property 17. For the elementary primal supports athere exists a € D such that

v >d; ifjePpt
v; < d; if j e P™

P +
vj < dj Iij<cj

FOI']EP{ UjZdj if(fj>cj_

, andforj ¢ P {
Moreover, we can find a for which the Property 17 holds and = d; for all [ep(j)| # 1. Here, we will
not prove the Property 17 since it is a straightforward extension of flmiension cases. We will show only

that the last claim is true.

Suppose that there existsia € P for which the claim does not hold, i.e., there does not existich
that forj € P, with |ep,(j)| # 1 the equalityv; = d; holds. Assume without loss of generality that
0 < ep,(j) < 1 andd; is nonnegative. Since € D,

Sum = Z ep, (1)d; + Z ep, (v +ep (j)v; =0
Le{tePy:lep, (1)|#1} le{tePy:lep, (t)|=1}

andv; > d; by Property 17. Suppose we 3gt= d;. As the elementary primal supports are disjoint, the
effect of this change will only be ofum, i.e.,Sum < 0. In order to achiev&um = 0, we need to increase
eitherv, forl € {j € P : ep,(j) = 1} or decrease; forl € {j € P, : ep_(j) = —1}. In either case the
neww satisfiess € D and the Property 17 holds with = d; for all [ep(j)| # 1. Hence, the claim is true.

Now we are ready to define our new cost functibrWe setd; = v; for all j € P andd; = d; otherwise.
Then,

ld—dlly = 1d; —djl =) v; —d;

jeJ JjEP

K

== D). D i —vp)(+D) + D (dj —v)(=1)

k=1jepf JEP;

K
=D > dj—v)lenN)+ Y (d—vj)len(h))
k=1jept JEP;

= —Cost(P)
Here, the third equality holds sinee = d; holds forj € P and|ep(j)| # 1 as shown previously. Hence, the
proof of the theorem is complete.

5.2 Inverse Primal Problem with Linear Costs under L., Norm

Under Chebyshev norm, we would like to pertutpto Jj for which z is an optimum solution to (P) and
maxje s |dj — dj| is minimum.
Following Tseng and Bertsekas [15], we say thatrag R’! and av € RIY| satisfy e-complementary
slackness, wheree is any positive scalar, if
fj(xj) < oo and fj_(.fj) —e< Vj < f;“(x]) + ¢, fOFj e J (28)

Graphically, this means that;, v;) is within e vertical distance of the characteristic cuive We callz an
e-optimal solutionif = satisfies the-complementary slackness conditions (28).
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Theorem 18. A given feasible solutiof to (P) is ane-optimal solution if and only if all the elementary primal
supports defining a descent direction with respect tve a mean cosi\{ C'ost(P)), which is greater than
—e, e,

_ Cost(P) Zjep+ f;_(jj)eP(j) + ZjeP* fj_(i’j)eP(j)

MCost(P) = = > —¢
1P| 1P|

Proof: "=" Suppose that the given feasible solutibis ane-optimal solution but there exists an elementary
primal supportP defining a descent direction awith M Cost < —e. Without loss of generality we consider
the worst case, i.e., the most negative cost case Mje(réj) < 0forje P* andf; (z;) > 0forj e P~.
Sinceepv = 0 for v € D, the following holds.

Cost(P) = Cost(P) — epv
= > @er()+ D f @epi) = > er(i)v

JjeEPT JeEP~ jep

= > (@) —ver() + Y (£ (@) —vj)ep(j)
jEPT JEP—

> (@) =)D+ D (7 (F) — ) (—1)
jep+ jeEP—

> —¢|P|

Here, the first inequality holds by the definition of the elementary vegtoand by (26). The second in-
equality holds by-complementary slackness (28). As it can be conclutgdost(P) > —e¢, and we get a
contradiction to the assumption.

"<" Suppose that all the elementary primal supports h&€ost(P) > —e but the solutionz is not e-
optimal,i.e.,.f; (x;) — v; > eandf;" (z;) — v; < —eforj € J. Then,

Cost(P) = Cost(P) — epv
= > (@) —ver() + D (£ (&) —vi)ep(j)
jePt jeEP—
< —€|P]
which is a contradiction.

Theorem 19. Let P* be the minimum mean cost elementary primal support defining a deficestton atz
and p* be its mean cost. The optimum objective function value of inverse primdeprokith linear costs
under unit weight Chebyshev normuigix (0, —p*).

Proof: By using similar arguments as in Theorem 6, it is easy to show-thétis a lower bound on the
optimal objective function value. Moreover, by Theorem 18, we knowtthere exists) € D satisfying the
e-complementary slackness conditions (28) wita —u.*. Thus, we define the new cost function to be

T A ) +
fi(z;) = djaj Wej <zj<c
o0 otherwise

where
dj—,u;f ifa:j<c;randdj—vj<0
dy =19 dj+p; ifxz;>c;andd; —v; >0 (29)
d; otherwise

Obviously, d* is the optimum solution to the inverse primal problem with linear costs under umghtve
Chebyshev norm.
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6 Conclusion and Future Work

For the inverse minimum cost and maximum value tension problems under rectdimt&hebyshev norms
we showed that the results of Ahuja and Orlin [3] and Yat@l. [18] for inverse network flows can be
extended. We proved that the inverse minimum cost tension problem wew#inear norm is equivalent to
solving a minimum cost tension problem, while under unit weight Chebyshaw itcan be solved by finding
a minimum mean cost residual cut. Moreover, inverse maximum tension proipléen rectilinear norm can
be solved as a maximum tension problem on the same graph with new arc bounds.

In this paper we also presented a generalization of the inverse problemwfmtropic programming
with linear costs. This generalization certifies the validity of the given combiiaatesults for network flows
and tensions even if they do not possess totally unimodularity, i.e., gendrfitnes and tensions. Another
generalization of inverse network flows and tensions would be inverss fforegular matroids [5], which is
currently investigated.

In Guler and Hamacher [6], we have studied the capacity inverse minimum ocagtritddolem and shown
that underL; norm this problem is NP-Hard. A similar problem in tensions is the bound ieveisimum
cost tension problem where we perturb the upper and lower boundadnsteosts. Analyzing this problem
would complete the comparison of inverse network flow and tension probMorgover, it seems that inverse
tension problems may have potential for practical applications, especialih@usling problems. These are
currently explored, as well.
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