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Abstract

In this paper, we will develop a data-driven mixture of vector autoregressive
models with exogenous components. The process is assumed to change regimes
according to an underlying Markov process. In contrast to the hidden Markov
setup, we allow the transition probabilities of the underlying Markov process to
depend on past time series values and exogenous variables. Such processes have
potential applications to modeling brain signals. For example, brain activity at
time t (measured by electroencephalograms) will can be modeled as a function of
both its past values as well as exogenous variables (such as visual or somatosen-
sory stimuli). In this paper, we establish stationarity, geometric ergodicity and
the existence of moments for these processes under suitable conditions on the
parameters of the model. Such properties are important for understanding the
stability properties of the model as well as deriving the asymptotic behavior of
various statistics and model parameter estimators.

1 Introduction

In this paper, we develop a class of Markov switching models that are useful for mod-
eling time series that are marked by potentially sudden changes in certain features.
The motivation behind this work comes primarily from applications in neuroscience.
For example, let Yt be the electromagnetic activity at some location on the scalp of
a subject exposed to an external stimulus indexed by Ut. The objective is to model
brain activity at time t as a function of external stimuli Ut and past values Yt−1, Yt−2,

and so on. In the standard Markov switching model setup, the dynamics of the model
are assumed to change from one state to another as governed by an underlying Markov
chain Qt. Usually the number of states in the Markov chain is assumed known and
the probability transition matrix is either constant or a function of previous values of
the observations. In our case, we consider models in which the transition probabilities
are functions of both lagged values of the process and the applied stimulus Ut. This
adaptation allows for a more direct link between changes in the stimulus with the
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1 Introduction

changes in the underlying dynamics of the process Yt. We highlight the contributions
of this paper. We establish stationarity, geometric ergodicity and existence of moments
for these processes under suitable conditions on the parameters of the model. Such
properties are important for understanding stability properties of the model. Conse-
quently, we derive the asymptotic behavior of various statistics and the asymptotic
distribution of model parameter estimators.

For many time series, it is often found that linear and other stationary models do
not provide adequate description of some of the key features in the data. This has
spurred the development of new time series models that can capture a wider range
of dynamics from the mean structure to other forms of dependence functions. Often,
standard linear models serve as the building blocks in the specification of these new
models. For example, Prado et al (2000) and Davis et al (2007) use autoregressive (AR)
models in which the coefficients are piecewise constant. Priestley (1965) and Dahlhaus
(1997) developed locally stationary time series models which include, as special cases,
time-varying ARMA models. Other classes of non-stationary models use spectral
representations based on localized functions as stochastic building blocks. See, for
example, Nason, von Sachs and Kroisandt (1998) which used wavelets and Ombao, von
Sachs and Guo (2005) which used the SLEX (smooth localized complex exponentials).
Moreover, Chen and Tsay (1992) and Cai, Fan and Zhang (2002,2004) model ARMA-
type processes where the ARMA parameters are modeled as some general functionals
of time. In addition to the threshold autoregressive model (TAR) in Tong (1983) and
a number of its variants such as the SETAR, there are also some linear models with
Markov switching regimes, for example Smith and West (1983) as well as Gordon and
Smith (1990) on monitoring renal transplants. Hamilton (1989) adapted the Markov
switching models developed by Lindgren (1978) to detect changes between growth
periods in the economy. Tadjuidje (2005) gives an application of a Markov switching
model to financial data in the context of asset management and risk analysis where the
trend and volatility functions are estimated by single layer neural networks. Geometric
ergodicity was established for these models by Stockis, Tadjuidje, and Franke (2007).

As a starting point for the description of our model, consider the first-order vector
autoregression with an a exogenous variable [VARX(1)] for the bivariate time series
Yt = [Y1,t, Y2,t]

′ defined by

Y1,t = µ1 + α1Y1,t−1 + β1Y2,t−1 + γ1Ut−1 + ǫ1,t (1.1)

Y2,t = µ2 + α2Y1,t−1 + β2Y2,t−1 + γ2Ut−1 + ǫ2,t. (1.2)

The above can be compactly rewritten in a vector representation as

Yt = µ + MYt−1 + γUt−1 + ǫt (1.3)

where µ = (µ1, µ2)
′, M =

(
α1 β1

α2 β2

)

, γ = (γ1, γ2)
′, and ǫ(t) = (ǫ1(t), ǫ2(t))

′ is a

white noise sequence with mean 0 and covariance matrix Σ (written WN(0,Σ)). VARX
models are extensively used to model macro-economic data (details are reported in
Hannan and Deistler (1988)).

In this paper, we shall develop a process that is defined as a mixture of a finite number
of VARX processes. Each one of these VARX models completely describes a particular
dynamic for the mean and correlation structure and the effect of the exogenous process.
As time evolves, changes in the mean structure as well as the auto-correlation and
cross-correlation structures are governed by an underlying Markov “state” process Qt

with K states. At time t, only one VARX process is “activated” and that process is
determined by the value of Qt. One unique feature of our model is that, unlike other
similar formulations of these models, we model the transition probability matrix for
Qt as also dependent on t with entries that are functions of lagged observations and
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2 A mixture of Autoregressive Driven Processes

the exogenous process. The formal specification of our model is as follows:

Yt =

K∑

k=1

Stk(µk + MkYt−1 + γkUt−1) + ǫt with Stk =

{

1, if Q(t) = k,

0, otherwise,

where {ǫt} ∼ WN(0,Σ). The latent process Qt is the “hidden” process that is reflected
by the auxiliary variables Stk. This is similar to the setup described in Francq and
Zaköıan (2001), Stockis, Tadjuidje and Franke (2007).

There are similarities between the model described here and the one introduced in Lai
and Wong (2001) [LW]. Both our model and LW use the logistic function for the state
conditional probability. Whereas LW assumes stationarity and strong mixing of the
observed process and the exogenous processes, this paper establishes stationarity and
α-mixing under more general conditions on the conditional transition probability of
the state process.

The remainder of the paper is structured as follows. In Section 2, we give a more
complete description of our model without an exogenous component and describe some
of its properties. In particular, we show that under some restrictions on the model
parameters, the process is geometrically ergodic. In Section 3, the model is extended to
include an exogenous process U(t) follows a Markov switching AR processes. Section
4 contains results on the moment structure of these processes. Section 5 considers
estimation of the model parameters. A conditional likelihood approach is used and it
is shown that the resulting estimators are consistent and asymptotically normal. The
performance of these estimates are evaluated via a simulation study in Section 6.

2 A mixture of Autoregressive Driven Processes

For ease in presenting ideas, we shall consider a simplified model only for a univariate
response (although the theory and estimation methodology also apply to a multivariate
response) and without an exogenous variable. In this case the probability of the
response being in one regime depends only on some past realizations of the process.
This setting differs from some other approaches often considered in the literature by
the fact that we do not impose any particular structure to the hidden process, e.g., a
discrete stationary Markov structure such as those usually considered for HMM. For
this model, we will derive some probabilistic properties such as the stability of the
model, define the conditional likelihood and investigate the inference of the parameter
estimates. Prior to establishing these, we shall demonstrate in this section that the
proposed model is geometrically ergodic.

2.1 Model Definition and Basic Properties

We now study the model

Yt =
K∑

k=1

StkMk(Yt−1, · · · , Yt−p) + ǫ(t) with Stk =

{

1, if Qt = k,

0, otherwise,
(2.1)

where

P(Stk = 1 | Ft−1) = hk(Yt−1, · · · , Yt−r), (2.2)

whereby Ft−1 = σ{Ys : s ≤ t− 1} is the σ-algebra generated by the past observations
of the process up to the time t−1 and independent of ǫt. In the remainder of this paper
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2 A mixture of Autoregressive Driven Processes

we will consider without loss of generality p = r and define Yt−1 = (Yt−1, · · · , Yt−p)
′.

We can then derive the conditional expectation of Yt given Ft−1, i.e.,

E(Yt | Ft−1) =

K∑

k=1

hk(Yt−1)Mk(Yt−1) (2.3)

and the conditional density of Yt given Ft−1 is given by

f(Yt | Ft−1) =
K∑

k=1

hk(Yt−1)g(Yt − Mk(Yt−1)) (2.4)

where g is the density function of ǫt. Note that we have not yet specified the functions
hk, k = 1, · · · ,K. In general, to prove the geometric ergodic property of the observed
process, some regularity conditions on these functions will suffice.

An Example: A Mixture of First Order Autoregressive Processes. In this
example, we consider the model (defined in equation (2.1)) above, but now the Stk is
not state indicator of a hidden Markov process and instead defined by its conditional
probability given the σ-algebra Ft−1 as follows:

P(Stk = 1 | Ft−1) = hk(Ys, s ≤ t − 1)

=
ξk

1 + exp{α + γe2
t−1,k}

(2.5)

for some 0 < ξk < 1, ω > 0, γ ≤ 0 and where

e2
t,k = [Yt − Mk(Yt−1)]

2.

We then choose

Mk(Yt−1) =

p
∑

i=1

αkiYt−i,

i.e., the different regimes of the process can be regarded as linear autoregressive models
of order p. Thus, the observed process can be written as

Yt =

K∑

k=1

Stk(

p
∑

i=1

αkiYt−i) + ǫt,

with

P(Stk = 1 | Ft−1) = hk(Yt−1) = 1 −
∑

i6=k

hi(Yt−1).

Based on the model definition it is easy to see that Yt = (Yt, · · · , Yt−p+1)
′ is a first

order Markov chain for which we will establish geometric ergodicity. Usually, for
the investigation the asymptotic behavior of the parameter estimates (consistency or
asymptotic normality), e.g., of the log-likelihood function we require some moment
assumptions for the observed process to make use of the ergodic theorem or central
limit theorems for mixing processes.

That the above stochastic process defined in equation (2.1) satisfies e.g., β-mixing
conditions can be regarded as a consequence of the asymptotic stability of the model,
compare Davydov (1973) who establishes a closed relationship between the geometric
ergodic property of a given stochastic process and the β-mixing property of a given
stochastic process.
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2 A mixture of Autoregressive Driven Processes

2.2 Stability Conditions

The goal of this section is to provide a set of conditions under which the model satisfies
a geometric ergodic property. To achieve this goal, we apply some key results on the
stability of Markov chains, from Meyn and Tweedie(1993).

2.2.1 Model Assumption

A. 2.1. Assumption on the residuals
The ǫt are i.i.d. random variables, independent of Ft−1 and ǫt has a continuous positive
probability density function g that is positive on R. Furthermore, Eǫ2t < ∞.

A. 2.2. Assumption on the conditional probability functions

1) for each k ∈ {1, · · · ,K}, hk : R
p −→ [0, 1] is a continuous function.

2) There exist δL, δU such 0 < δL ≤ hk(Yt−1) ≤ δU < 1, k = 1, · · · ,K.

A. 2.3.

Mk(Y (t − 1), · · · , Y (t − p)) =

p
∑

i=1

αkiYt−i

and

δU

p
∑

i=1

∑

k



|αki|
p
∑

j=1

|αkj |



 < 1. (2.6)

2.2.2 Some Preliminary Results

Lemma 2.1. Let us assume A.2.1 and A.2.2, then Yt is a first order Markov chain,
additionally it is a Feller chain, i.e., for each bounded continuous function fbc : R

p →
R, the function of x given by E(fbc(Yt) | Yt−1 = x) is also bounded continuous.

The proof is given in 7.1.

Once we have established that Yt is a Feller chain, the topological considerations on
our space (Rp), compare Feigin and Tweedie (1985), imply that any compact set A

with φ(A) > 0 is a small set, whereby φ is the Lebesgue measure on R
p. We have now

defined a Markov chain for which we can use some stability results compare Meyn and
Tweedie (1993) to derive its geometric ergodic property.

In order to prove our main results, we need to show that the assumptions of the
following Theorem of Feigin and Tweedie (1985) hold.

Theorem 2.1. (Feigin and Tweedie(1985), Theorem 1) Suppose {Φt} is a Feller
Chain, that there exists a measure φ and a compact set A with φ(A) > 0 such that

i) {Φt} is φ-irreducible

ii) there exists a non-negative continuous function V : E → R satisfying

V (x) ≥ 1 forx ∈ A (2.7)

and for some β > 0

E[V (Φt) |Φt−1 = x] ≤ (1 − β)V (x) forx ∈ Ac. (2.8)

Then, {Φt} is geometrically ergodic.
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3 A Mixture of Autoregressive Driven Processes with Exogenous Components

2.2.3 Geometric Ergodicity

Theorem 2.2. Let A.2.1 - A.2.3 hold. Then, the Yt = (Yt, · · · , Yt−p−1)
′ is a geomet-

rically ergodic Markov process.

The theorem provides conditions for the existence of a unique strictly stationary er-
godic solution of the model defined by equation 2.1, it also implies that the process
converges to its stationary distribution at geometric rate even if it does not start from
the stationary state. However, some of the assumptions used here can be weakened.

For example, the assumption on g can be relaxed to consider density functions that
are only almost everywhere positive; we avoid this assumption here for sake of sim-
plicity. For the later considerations, one can refer to Bhattacharya and Lee(1995) who
present a proof in the autoregressive setting. Also, the moment condition Eǫ2t < ∞ can
be relaxed, compare Franke, Stockis and Tadjuidje (2007) who prove the geometric
ergodicity for CHARME models, a type of generalized (Hidden Markov) mixture of
nonlinear and non parametric AR-ARCH Models. Furthermore, the linearity assump-
tion of the Mk is relaxed in the latter paper where they assume that the Mk are not
linear but linearly dominated under some considerations. The technique of proof they
use can be adapted here with little modification.

Corollary 2.1. Under the assumption of Theorem 2.2

EπY 2
t < ∞. (2.9)

Moreover,

∫

Rp

π(dx)

∣
∣
∣
∣
E(Y 2

t | Y0 = x) −
∫

Rp

π(dy)y2

∣
∣
∣
∣
= O(ρt), t → ∞, (2.10)

where π is the stationary distribution of Yt and 0 < ρ < 1.

The corollary follows from Theorem 2 in Feigin and Tweedie (1985) and the definition
of the V function used in the proof of Theorem 2.2. It proves the existence of the
second moment for the observed process Yt and says that the E(Y 2

t | Y0 = x) converges
to
∫

Rp π(dy)y2 with a geometric rate. The corollary gives us a flavor of the existence
of moments. A full investigation of the existence of higher order moments is devoted
to a separate section. The proof is given in Section 7.2.

3 A Mixture of Autoregressive Driven Processes with

Exogenous Components

In this section we introduce the more general setting of our model, i.e., we consider the
model with exogenous components, which here is assumed to follow an autoregressive
model. However, we will not assume the exogenous variable to be stationary in all
regimes although the main result of this section will imply the asymptotic stationarity
of the observed series regarded as a mixture of processes. We now present the model
and derive its asymptotic stability.

3.1 Model Definition

Let us define,

{

Yt =
∑K

k=1 Stk(Mk(Yt−1) + Ut) + ǫt

Ut =
∑K

k=1 StkΓk(Ut−1) + ηt

with Stk =

{

1, if Qt = k,

0, otherwise,
(3.1)
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3 A Mixture of Autoregressive Driven Processes with Exogenous Components

where

P(Stk = 1 | Gt−1, ηt) = hk(Yt−1,Ut−1), (3.2)

Mk(Yt−1) =

p
∑

i=1

αkiYt−i, Γk(Ut−1) =

q
∑

r=1

akrUt−r (3.3)

and Yt−1 = (Yt−1, · · · , Yt−p)
′,Ut−1 = (Ut−1, · · · , Ut−q)

′ and ǫt and ηt are independent
of Gt−1 = σ{Ys, Us : s ≤ t−1}, the σ-algebra generated by the realizations of the joint
process (Ys,Us) up to the time t − 1. Ut is the exogenous component of the model,
which can be regarded, for example, as a stimulus in the neuroscience framework.
Another example is that of daily stock prices, for which the Ut can be regarded as the
opening value of a stock index to which the observed process does not belong.

Additionally, we need that the conditional probabilities for Qt depend on Gt−1 and
ηt (P(Stk = 1 | Gt−1, ηt) is not only conditioned on Gt−1 but also on ηt) as technical
assumption. This is different from the case of the mixture of autoregressive with-
out exogenous component treated previously, since there the conditional probability
functions are only conditioned on Zt−1.

Let us rewrite our model in the vector form, i.e.,

Zt =
∑

k

StkAkZt−1 + ζt (3.4)

where
Zt = (Yt, Yt−1, · · · , Yt−p+1, Ut, Ut−1, · · · , Ut−q+1)

′
,

ζt = (ǫt + ηt, 0, · · · , 0
︸ ︷︷ ︸

p−1

, ηt, 0, · · · , 0
︸ ︷︷ ︸

q−1

)′, Ak =

[
A1k A2k

A3k A4k

]

,

A1k(p∗p) =











αk1 · · · · · · · · · αkp

1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0











, A2k(p∗q) =











ak1 · · · · · · · · · akq

0 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 0 0











,

A3k(q∗p) =











0 · · · · · · · · · 0
0 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 0 0











, A4k(q∗q) =











ak1 · · · · · · · · · akq

1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0











.

Further, define

G = J ⊗ G̃ (3.5)

whereby G̃ = E(ζtζ
′
t) and J is the (p + q) × (p + q) matrix with the only non zero

element being a 1 at J(1, 1).

This vector representation of our model also covers the vector valued processes. The
(p, q)th order process with d-dimensional vector process Yt is defined as

{

Yt =
∑K

k=1 Stk(
∑p

i=1 ΛkiYt−1) + Ut + ǫt

Ut =
∑K

k=1 Stk(
∑q

r=1 ΓkrUt−1) + ηt

with Stk =

{

1, if Q(t) = k,

0, otherwise,
(3.6)
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3 A Mixture of Autoregressive Driven Processes with Exogenous Components

where for i = 1, · · · , p, r = 1, · · · , q, k = 1, · · · ,K the Λki,Γkr are d× d matrices, ǫt, ηt

are sequences of d-dimensional vector processes. In other words, in this setting we just
need to take

Zt = (Y ′
t , Y ′

t−1, · · · , Y ′
t−p+1, U

′
t , U

′
t−1, · · · , U ′

t−q+1)
′, (3.7)

Further, for the state matrices the component αki, akj , 1, resp. 0 of the state matrices
Ak are replaced by the matrices Λki,Γkr, Id×d, reps. 0d×d for i = 1, · · · , p, r = 1, · · · , q.
Whereby the Id×d resp. (0d×d) are the d-dimensional square identity resp. (Null)
matrices.
Analogously,

ζt = ((ǫt + ηt)
′, 0′d×1, · · · , 0′d×1
︸ ︷︷ ︸

p−1

, η′
t, 0

′
d×1, · · · , 0′d×1
︸ ︷︷ ︸

q−1

)′

with ǫt, ηt, d-dimensional random vectors and 0d×1 = (0, · · · , 0
︸ ︷︷ ︸

d

)′.

However, for the sake of simplicity proof we will deal one dimensional case, for the
observed process as well as the exogenous component, however the more general state-
ment can be obtained in a similar way.

3.1.1 Geometric Ergodicity and Existence of Moments of Higher Order

A. 3.1. ǫt and ηt are i.i.d. random variables with Eǫt = Eηt = 0, finite variances,
independent of each other and have continuous density functions gǫ and gη that are
positive on R.

A. 3.2. (a.) for each k ∈ {1, · · · ,K}, hk : R
p+q −→ R is a continuous function and

there exist δL, δU for which δL ≤ hk ≤ δU , k = 1, 2, · · · ,K;

(b.) the functions Mk and Γk, k = 1, · · · ,K, are defined as

Mk(Yt−1) =

p
∑

i=1

αkiYt−i and Γk(Ut−1) =

q
∑

i=1

akiUt−i respectively.

A. 3.3. δU

∑K
k=1 Ak ⊗ Ak have all eigenvalues with moduli less than one.

Theorem 3.1. If A.3.1 - A.3.3 hold, then the process Zt is a geometrically ergodic
Markov chain.

Proof of Theorem 3.1 is given in Section 7.3. All the comments on Theorem 2.2 remain
valid for the above theorem. In particular, Corollary 2.2.3 also holds, i.e., the existence
of the second order moment is a direct consequence of the above theorem.

Additionally, the choice of the drift function based on the moduli of the eigenvalues to
be less than one is quite similar to the choice made in Feigin and Tweedie 1985, choice
made for a class of random coefficients autoregressive models that does not include
the class of autoregressive driven models with exogenous component that is the object
of the current paper.

To illustrate its usefulness, we apply it to a simple example . Indeed, let us consider
the situation where p = q = 1, i.e.,

Ak =

[
αk ak

0 ak

]

.

Hence,

Ak ⊗ Ak =







α2
k αkak αkak a2

k

0 αkak 0 a2
k

0 0 αkak a2
k

0 0 0 a2
k







.
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4 Asymptotic of the Parameter estimates

We note that all eigenvalues of δU

∑

k Ak ⊗ Ak have moduli less than one if and only
if

δU

∑

k

α2
k < 1 (3.8)

δU |
∑

k

αkak| < 1 (3.9)

δU

∑

k

a2
k < 1 (3.10)

As one can observe this conditions can be easily checked. In particular, equations 3.8
and 3.10 are types of stability conditions for the processes Yt and Ut if we were to study
them separately, as one can derive from Theorem 2.2. Equation 3.9 has to be regarded
as a type of cross condition. However, for processes of higher order or dimension one
will rely on numerical estimation of the eigenvalues of the matrix δU

∑

k Ak ⊗ Ak,
hence, of their moduli.

Now, we provide sufficient conditions for the existence of higher order moments of
the process Zt (as defined in equation (3.4)) that are important for developing the
asymptotic normality of our model parameter estimators.

For a matrix A, we define A⊗n = A⊗A⊗· · ·⊗A (n terms), where ⊗ is the Kronecker
product operator of matrices.

Theorem 3.2. If A.3.1 and A.3.2 are satisfied and all the eigenvalues of

T̃ = δu

∑

k

A⊗2m
k (3.11)

have moduli less than one and E‖ζt‖2m < ∞ then

Eπ‖Zt‖2m < ∞. (3.12)

Additionally, any 2mth-order moment conditional on Z0 = z converges geometrically
to the corresponding moment with respect to Eπ, where π is the stationary distribution
of the process Zt.

The proof is given in Section 7.5.

4 Asymptotic of the Parameter estimates

Before we study the asymptotic behavior of the parameter given the conditional like-
lihood, let us first present the relationship between the likelihood and the weighted
least squares.

4.1 Likelihood versus Weighted Least Squares

Consider now the observations Y = (Y−p+1, · · · , Y1, · · · , Yn) and define the likelihood
function as follows,

L(θ,Y) =

n∏

t=1

f(Yt | Yt−1) (4.1)

with

f(Yt | Yt−1) =
∑

k

hk(βk,Yt−1)g(Yt − Mk(Yt−1))

9



4 Asymptotic of the Parameter estimates

whereby, Mk(Yt−1) = α′
kYt−1, hk = hk(βk,Yt−1), θ = (β1, α1, · · · , βK , αK) and recall

that

∑

k

hk(βk,Yt−1) = 1.

Jensen inequality yields

log f(Yt | Yt−1) ≥
∑

k

hk(Yt−1) log g(Yt − Mk(Yt−1)).

For sake of illustration, let us consider the example K = 2 and assume the residuals
are i.i.d. N (0, 1) random variables. Then it holds

log g(Yt − Mk(Yt−1)) ≈ − (Yt − Mk(Yt−1))
2

2

which implies

log f(Yt | Yt−1) ≥ −h1(β1,Yt−1)
(Yt − M1(Yt−1))

2

2
−(1−h1(β1,Yt−1))

(Yt − M2(Yt−1))
2

2
.

Therefore,

−
∑

t

log f(Yt | Yt−1) ≤
∑

t

(

h1(β1,Yt−1)
(Yt − M1(Yt−1))

2

2

+(1 − h1(β1,Yt−1))
(Yt − M2(Yt−1))

2

2

)

.

Hence, a weighted type least squares approximation for which the Gaussianity of the
residuals is implicitly assumed will almost always be sub-optimal(compared to the log-
likelihood approximation). However, it might be numerically more efficient to solve a
weighted least squares problem in some situations.

4.2 Conditional Likelihood Estimates

For sake of illustration we consider in this section the following model defined in
equation (2.1), i.e.,

Yt =
K∑

k=1

StkMk(Yt−1, · · · , Yt−p) + ǫ(t) with Stk =

{

1, if Qt = k,

0, otherwise,

where

P(Stk = 1 | Ft−1) = hk(Yt−1, · · · , Yt−q).

Given Yt−1 = (Yt−1, · · · , Yt−p) and Zt = (Yt, Yt−1, · · · , Yt−p), we introduce the nota-
tions

hk(θ, Yt−1) = hk(Yt−1, · · · , Yt−p) = hk(θk, Yt−1, · · · , Yt−p),

Mk(θ, Yt−1) = Mk(Yt−1, · · · , Yt−p) = Mk(αk, Yt−1, · · · , Yt−p),

where
θ = (α1, β1, · · · , αK , βK).

We now define
gk(θ, Zt) = g(Yt − Mk(θ, Yt−1))

10



4 Asymptotic of the Parameter estimates

and in turn

f(θ, Zt) = fθ(Yt |Yt−1, · · · , Yt−p)

=
∑

k

hk(θk, Yt−1, · · · , Yt−p)g(Yt − Mk(αk, Yt−1, · · · , Yt−p)).

The log-likelihood function is then defined as

ln(θ) =

n∑

t=1

log f(θ, Zt) =
∑

t

qt(θ).

Our goal is to study the asymptotic behavior of the maximum likelihood estimate. For
establishing consistency, we first introduce a Uniform Law of Large Numbers. Consider
B ⊆ R

d
1 a compact set and C(B, Rd2) the space of continuous functions on B with

values in R
d2). It is well known that C(B, Rd2) equipped with the supremum norm is

separable Banach space. Given this consideration we can make use of an almost sure
uniform ergodic theorem for separable Banach space as introduce in Ronga Rao (1962)
and for which a necessary condition as presented in Straumann and Mikosch (2006) is
summarized in the following theorem.

Theorem 4.1. Let vt(θ) be a stationary ergodic random sequence with value in C(B, Rd2)
satisfying

E sup
θ∈B

|v1(θ)| < ∞.

Then

sup
θ∈B

| 1
n

n∑

t=1

vt(θ) − v(θ)| −→ 0 a.s. as n −→ ∞. (4.2)

where v(θ) = Ev1(θ) for all θ ∈ B.

The proof is due to Ronga Rao (1962)

A. 4.1. 1. Consider Yt is the unique strictly stationary and ergodic solution of
(2.1)

2. For all k = 1, · · · ,K, the hk is twice continuously differentiable. Further, as-
sume that g the probability distribution density of ǫt is also twice continuously
differentiable.

A. 4.2. (Identifiability)

1. Let θ0, which lives in the interior of a compact support parameter set B, be the
unique minimizer of −E log f(θ, Z1) (where the expectation is taken with respect
to f(θ0, Z1).

2. Let Fθ(Y ) be the distribution of Y given θ. Then,

Fθ1
(Y ) = Fθ2

(Y ) iff θ1 = θ2

This assumption means that for two parameters θ and θ0, the stationary distributions
of Yt given those parameters will not coincide unless the parameters coincide

A. 4.3. (Moment Conditions)

1. E| log f(θ0, Z1)| < ∞

11



4 Asymptotic of the Parameter estimates

2. There exists Mh independent of θ, with EMh < ∞ such that for all i = 1, · · · , d

and all k = 1, · · · ,K

sup
θ∈B

∣
∣
∣
∣

∂hk(θ, Yt−1)

∂θi

1

hk(θ, Yt−1)

∣
∣
∣
∣
≤ Mh

3. There exists Mg independent of θ, with EMg < ∞ such that for all i = 1, · · · , d

and all k = 1, · · · ,K

sup
θ∈B

∣
∣
∣
∣

∂gk(θ, Zt)

∂θi

1

gk(θ, Zt)

∣
∣
∣
∣
≤ Mg

Theorem 4.2. Assume A.4.1 to A.4.3 hold and define

θ̂n = inf
θ∈B

− ln(θ)

n
.

Then θ̂n is strongly consistent, i.e.,

θ̂n −→ θ0 a.s.(n −→ ∞).

Before embarking on the proof, let us present some preliminaries,

∂f(θ, Zt)

∂θi

=
K∑

k

(
∂hk(θ, Yt−1)

∂θi

gk(θ, Zt) + hk(θ, Yt−1)
∂gk(θ, Zt)

∂θi

)

and
∂ log f(θ, Zt)

∂θi

=
∂f(θ, Zt)

∂θi

1

f(θ, Zt)
.

Proof: Since Yt is stationary and ergodic it easy to see that log f(θ, Zt) is also station-
ary and ergodic and to prove the ULLN it suffices to prove that

E sup
θ∈B

| log f(θ, Zt)| < ∞

Making use of a first order Taylor approximation, it follows

log f(θ, Zt) = log f(θ0, Zt) +

〈

θ − θ0,
∂f

∂θ
(θ∗, Zt)

1

f(θ∗, Zt)

〉

for some θ∗ such that ‖θ∗ − θ0‖ ≤ ‖θ̂n − θ0‖. Applying a Cauchy inequality, we have

∣
∣
∣
∣

〈

θ − θ0,
∂f

∂θ
(θ∗, Zt)

1

f(θ∗, Zt)

〉∣
∣
∣
∣

≤ ‖θ − θ0‖
∥
∥
∥
∥

∂f

∂θ
(θ∗, Zt)

1

f(θ∗, Zt)

∥
∥
∥
∥

.

Recalling that hk(θ∗,Yt−1)gk(θ∗,Zt)
f(θ∗,Zt)

≤ 1 and applying A.4.3 yield

∥
∥
∥
∥

∂f

∂θ
(θ∗, Zt)

1

f(θ∗, Zt)

∥
∥
∥
∥

≤
∑

k

∑

i

∣
∣
∣
∣

∂hk(θ∗, Yt−1)

∂θi

gk(θ∗, Zt)
1

f(θ∗, Zt)

∣
∣
∣
∣

+
∑

k

∑

i

∣
∣
∣
∣
hk(θ∗, Yt−1)

∂gk(θ∗, Zt)

∂θi

∣
∣
∣
∣

1

f(θ∗, Zt)

≤
∑

k

∑

i

∣
∣
∣
∣

∂hk(θ∗, Yt−1)

∂θi

1

hk(θ∗, Yt−1)

hk(θ∗, Yt−1)gk(θ∗, Zt)

f(θ∗, Zt)

∣
∣
∣
∣

+
∑

k

∑

i

∣
∣
∣
∣

∂gk(θ∗, Zt)

∂θi

1

gk(θ∗, Zt)

∣
∣
∣
∣

hk(θ∗, Yt−1)gk(θ∗, Zt)

f(θ∗, Zt)

≤ d ∗ K(Mh + Mg)

12



4 Asymptotic of the Parameter estimates

and the claim follows since ‖θ − θ0‖ is bounded on B and E| log f(θ0, Z1)| < ∞ is
given.

The almost sure uniform law of large number and the Identifiability A.4.2 condition
will imply the almost sure consistency of the parameter estimate; this a direct appli-
cation of Lemma 3.1 of Pötscher and Prucha (1997).

4.2.1 Asymptotic Normality

In this section we establish the asymptotic normality of the parameter estimates under
suitable conditions.

A. 4.4. 1. There exists an Nh, with ENh < ∞ such that for all i, j = 1, · · · , d and
for all k = 1, · · · ,K

sup
θ∈B

∣
∣
∣
∣

∂2hk(θ, Yt−1)

∂θi∂θj

1

hk(θ, Yt−1)

∣
∣
∣
∣
≤ Nh

2. There exists Ng, with ENg < ∞ such that for all i, j = 1, · · · , d and all k =
1, · · · ,K

sup
θ∈B

∣
∣
∣
∣

∂2gk(θ, Zt)

∂θi∂θj

1

gk(θ, Zt)

∣
∣
∣
∣
≤ Ng

A. 4.5. Yt is α-mixing with exponential decreasing rate.

A. 4.6. The matrix (

−E
∂2 log f(θ0, Z1)

∂θi∂θj

)

1≤i,j≤d

is positive definite.

Since

∂2f(θ, Zt)

∂θi∂θi

=

K∑

k=1

(
∂2hk(θ, Yt−1)

∂θiθj

gk(θ, Zt) +
∂hk(θ, Yt−1)

∂θi

∂gk(θ, Zt)

∂θj

+
∂hk(θ, Yt−1)

∂θj

∂gk(θ, Zt)

∂θi

hk(θ, Yt−1)
∂2gk(θ, Zt)

∂θi∂θj

)

.

and

∂2 log f(θ, Zt)

∂θi∂θj

=
∂2f(θ, Zt)

∂θi∂θj

1

f(θ, Zt)
− ∂f(θ, Zt)

∂θi

1

f(θ, Zt)
+

∂f(θ, Zt)

∂θj

1

f(θ, Zt)
,

The stationarity and mixing properties of Zt imply that ∂f(θ,Zt)
∂θ

1
f(θ,Zt)

and ∂2f(θ,(Zt)

∂θ∂θ
′

1
f(θ,Zt)

are sequences of stationary sequences with value in C(B, Rd) and C(B, Rd×d), respec-
tively. Furthermore, these processes are α-mixing with the same rate as that of the
process Yt.

Using A.4.1 - A.4.3, for θ̂n = infθ∈B − ln(θ)
n

we have θ̂n
a.s.→ θ0, n −→ ∞. Additionally,

θ0 is an interior point of B and therefore for n large enough,

∂ln(θ̂n)

∂θ
= 0

=
∂ln(θ0)

∂θ
+

∂2ln(θ∗∗n )

∂θ∂θ
′

(θ̂n − θ0).

13



4 Asymptotic of the Parameter estimates

for some θ∗∗n satisfying ‖θ∗∗n − θ0‖ < ‖θ̂n − θ0‖. Hence,

∂2ln(θ∗∗n )

∂θ∂θ
′

(θ̂n − θ0) = −∂ln(θ0)

∂θ
.

Now, using CLT for α-mixing processes with geometric decreasing rate, see e.g. Doukhan
et al. (1994), we have

1√
n

∂ln(θ0)

∂θ

D→ N (0, V )

where

V = lim
n→

1

n
E

∂ln(θ0)

∂θ

∂ln(θ0)

∂θ
′

.

This limit exists by the assumption on the mixing rate but might be degenerate. On

the other hand, applying the ULLN on C(B, Rd×d) and since θ∗∗n

D→ θ0 one obtains

−∂2ln(θ∗∗n )

∂θ∂θ
′

a.s.→
(

−E
∂2 log f(θ0, Z1)

∂θi∂θj

)

1≤i,j≤d

.

We summarize the foregoing results in the following theorem.

Theorem 4.3. If A.4.3 to A.4.6 hold then

√
n(θ̂n − θ0)

D→ N (0,W ),

where

W =

(

−E
∂2 log f(θ0, Z1)

∂θ∂θ
′

)−1

V

(

−E
∂2 log f(θ0, Z1)

∂θ∂θ
′

)−1

.

4.2.2 An Application of the Asymptotic Results

To illustrate the asymptotic results, we consider the case K = 2 and define

Yt =

2∑

k=1

StkαkYt−1 + ǫt, (4.3)

where {ǫt} are i.i.d. N (0, σ2). The transition probability are defined via

P(St1 = 1 | Ft−1) = hk(Yt−1) =
γ

1 + exp(ω + β|Yt−1|)

for some 0 < γ < 1, ω > 0 and β ≤ 0. Further, define the model parameter as
θ = (α1, α2, ω, β, γ).

Corollary 4.1. Assuming the model parameter θ belongs to a compact set and and
the optimal parameter of the likelihood for the model defined in (4.3) is identifiable.
Then, √

n(θ̂n − θ0)
D→ N (0,W ).

Proof: Since the parameter of the model belongs to the interior of a compact set, the
h1 is bounded away from zero and 1, therefore we can find α1 and α such that our
model satisfies the condition of Theorem 2.2, i.e., the process Yt is strictly stationary
and geometric ergodic, hence α-mixing with geometric rate. In addition by an appli-
cation of Theorem 3.2 it follows the existence of the fourth moment of Yt. Finally,
applying Theorem 4.3, we have the consistency and asymptotic normality of the pa-
rameter estimates.

14



5 A Numerical Illustration

5 A Numerical Illustration

In this section we illustrate the performance of the conditional maximum likelihood
estimator for the model specified in Section 4.2.1. The values of the parameters for this
simulation are indicated in the table below. The maximum likelihood estimates were
computed for samples of size n = 500 and n = 5000. The summary of the performance
of the conditional maximum likelihood estimates is summarized in the table below.
The columns contain the mean and the standard deviation of the respective estimates
based on 10000 replications. The numerical solutions to the conditional likelihood
equation are obtained using fmincon from the Matlab optimization toolbox.

True Values α1 = −0.71 α2 = 1.55 ω = 1 β = −2 γ = 0.8 σ = 1

Estimators α̂1 α̂2 ω̂ β̂ γ̂ σ̂

n=500
Mean -0.6978 1.1475 1.1033 -2.1151 0.8206 0.9717

Standard Deviation 0.03 0.0616 0.8591 1.0945 0.0608 0.0387
n=5000
Mean -0.6997 1.1505 0.8287 -1.8101 0.8078 0.9739

Standard Deviation 0.01 0.02 0.3324 0.3524 0.0173 0.01

Table 5.1: Sumarry of results from a simulation study based on model given in 4.3.
Results are based on 10000 replications.

Figure 1 and 2 illustrate the histogram of the parameter estimates for the sample size
n = 500 and n = 5000 respectively .
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Figure 1: 500 Observations and 10000 Replications

One can observe that the estimates of α1, α2, γ and σ perform reasonably well. appear
to be reasonable. The estimation of ω, however, can still be improved. From the
figures, we also see that the sampling distributions (especially for γ̂) appear more
normally distributed for n = 5000.
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Figure 2: 5000 Observations and 10000 Replications

6 Conclusion and Future Work

We developed a process Yt that is defined as a mixture of a finite number of VARX
processes. Each one of these VARX models completely describes a particular dynamic
for the mean and correlation structure and the effect of the exogenous process. How-
ever, as time evolves, changes in the mean structure as well as the auto-correlation
and cross-correlation structures are governed by an underlying Markov “state” process
Qt, having K states so that at time t there is only one “active” VARX process which
is determined by the value of Qt. One unique feature of our model is that the tran-
sition probability matrix for Qt is also dependent on t with entries that are functions
of lagged observations and an exogenous process Ut. A conditional likelihood estima-
tion procedure is used and it is shown that the resulting estimators are consistent and
asymptotically normal. There are other several challenges as we further investigate the
model and its applications. One issue is the choice of the number of states K - which
often times need to be selected via information-based procedures (Akaike Information
criterion, Bayesian-Schwarz information criterion). Moreover, for a selected value K,
it is implicit that there are indeed K distinct and identifiable VARX mixtures present
in the data. This leads to the second issue which is that of mixture identifiability,
which is for example addressed for the hidden Markov mixture of Neural networks in
Stockis, Tadjuidje, and Franke (2008). One approach to studying this problem is by
adapting, e.g., the the conditions of irreducibility in Fariñas et al (2004) or Hwang and
Ding (1997) to our model.
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Fariñas, M.S., Pedreira, C.E., Medeiros, M.C. (2004), Local Global Neural
Networks: A New Approach for Nonlinear time Series modeling, J. Amer. Statist.
Assoc. 99, 1092-1107.

Feigin, P.D. and Tweedie, R.L. (1985). Random Coefficient Autoregressive Pro-
cesses: A Markov Chain Analysis of stationarity and Finiteness of Moments. Journal
of Time Series Analysis,6, 1-14.
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7 Appendix: Proofs

7.1 Proof of Lemma 2.1

We will proceed in three steps for the proof of this Lemma. For sake of clarity we will
first present the conditional density, derive the Markov property of our chain and finally
its Feller property. Proof: It is easy to show that Yt = (Yt, · · · , Yt−p+1) is a Markov
chain and for a given Borel set, P(Yt ∈ A | Yt−1 = x), (x = (xt−1, · · · , xt−p)

′) for a
given Borel set A. Without loss of generality, we consider A = Ap × Ap−1 × · · · × A1.
If there exists an i ∈ {1, · · · , p − 1} such that xt−i 6∈ Ap−i, it trivially follows that

P(Yt ∈ A | Yt−1 = x) = 0. (7.1)

Therefore, in the remaining we consider only the Borel set for which xt−i ∈ Ap−i, for all i ∈
{1, · · · , p−1}. In this setting P(Yt ∈ A | Yt−1 = x) is reduced to P(Yt ∈ Ap | Yt−1 = x).
Furthermore, without loss of generality we only consider the Borel sets of the form
defined previously with Ap = (−∞, yp). Under these considerations

P(Yt ∈ Ap | Yt−1 = x) =
K∑

k=1

hk(x)G(yp − Mk(x)),

where G is the cumulative distribution function of the residuals ǫt. Hence, the condi-
tional probability kernel is defined as

p(y |x) =

K∑

k=1

hk(x)g(yp − Mk(x)),

where g is the density function of ǫt.

Finally, that Yt is a Feller chain follows directly from the assumptions made on the
density of ǫt, hk and mk, k ∈ {1, · · · ,K}. More precisely, if we consider a bounded
continuous function fbc : R

p −→ R, then

E(fbc(Yt) | Yt−1 = x) =
∑

k

hk(x)

∫

fbc(y, x∗)g(y − Mk(x))dy (7.2)

(x = (x1, · · · , xp), x
∗ = (x1, · · · , xp−1)), which is obviously bounded and continuous.

Thus, Yt fulfills the Feller property.

7.2 Proof of Theorem 2.2

Proof: We have already shown that Yt is a first order Markov chain that has the Feller
property. Now, we need to show that under our assumptions this chain satisfies the
conditions of Theorem 2.1.

We prove that it is λ-irreducibility with λ = Lebesgue, it suffices to show that for any
Borel set A ∈ Bp with positive Lebesgue measure, i.e., λ(A) > 0 implies, P 2(Y0, A) >

0. By definition, one has

P 2(Y0, A) = P(Y2 ∈ A | Y0)

=

∫∫

A

q(Y2, Y1 |Y0, Y−1)dY1dY2

=

∫∫

A

r(Y2, Y1, Y0, Y−1)

g(Y0, Y−1)
dY1dY2)

=

∫∫

A

f(Y2 |Y1, Y0)s(Y1, Y0, Y−1)

g(Y0, Y−1)
dY1dY2

=

∫∫

A

f(Y2 |Y1, Y0)f(Y1 |Y0, Y−1))dY1dY2
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with
f(Y2 |Y1, Y0) =

∑

k

hk(Y1)g(Y2 − Mk(Y1))

and
f(Y (1) |Y0, Y−1)) =

∑

k

hk(Y0)g(Y1 − Mk(Y0)).

Recall that there exists δL > 0 such that hk ≥ δL. Consequently we derive

P 2(Y0, A) ≥ δ2
L

∫∫

A

(
∑

k

g(Y2 − Mk(Y1))

)(
∑

k

g(Y1 − Mk(Y0))

)

dY1dY2

Since g is positive everywhere it follows P(Y2 ∈ A | Y0) > 0,∀Y0 and this implies Yt is
λ-irreducible.

Next we find a function V : R
p → [0,∞), that satisfies the conditions (ii) of Theorem

2.1. Consider

V (Yt) = 1 + Y 2
t + b1Y

2
t−1 + · · · + bp−1Y

2
t−p+1 (7.3)

and recall that

Mk(Y (t − 1), · · · , Y (t − q)) =

p
∑

i=1

αkiYt−i. (7.4)

It follows by the definition of Yt that

V (Yt) = 1 +
∑

k

Stk(

p
∑

i=1

αkiYt−i)
2 + ǫ2t

+2ǫt

∑

k

Stk(

p
∑

i=1

αkiYt−i) + b1Y
2
t−1 + · · · + bp−1Y

2
t−p+1. (7.5)

and yet,

(

p
∑

i=1

αkiYt−i)
2 =

p
∑

i=1

α2
kiY

2
t−i +

∑

i,j,i 6=j

αkiαkjYt−iYt−j

≤
p
∑

i=1

α2
kiY

2
t−i +

∑

i,j,i 6=j

|αki||αkj |(Y 2
t−i + Y 2

t−j),

since 2ab ≤ a2 + b2. Thus,

(

p
∑

i=1

αkiYt−i)
2 ≤

p
∑

i=1

(|αki|
p
∑

j=1

|αkj |)Y 2
t−i. (7.6)

It follows that

K∑

k=1

Stk(

p
∑

i=1

αkiYt−i))
2 ≤

K∑

k=1

Stk(

p
∑

i=1

(|αki|
p
∑

j=1

|αkj |)Y 2
t−i), (7.7)

and hence,

V (Yt) ≤ 1 +

K∑

k=1

Stk





p−1
∑

i=1

(|αki|
p
∑

j=1

|αkj | + bi)Y
2
t−i



+ ǫ2t

+
K∑

k=1

Stk



|αkp|
p
∑

j=1

|αkj |



Y 2
t−p + 2ǫt

∑

k

Stk

(
p
∑

i=1

αkiYt−i)

)

. (7.8)
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Since

E

(

ǫt

∑

k

Stk

(
p
∑

i=1

αkiYt−i)

)

| Yt−1 = x

)

= 0, (7.9)

it follows that

E(V (Yt) | Yt−1 = x) ≤ 1 +

K∑

k=1

hk(x)





p−1
∑

i=1

(|αki|
p
∑

j=1

|αkj | + bi)x
2
t−i





+

K∑

k=1

hk(x)



|αkp|
p
∑

j=1

|αkj |



x2
t−p + σ2

≤ 1 +

p−1
∑

i=1



δU





K∑

k=1

(|αki|
p
∑

j=1

|αkj |



+ bi



x2
t−i

+



δU

K∑

k=1



|αkp|
p
∑

j=1

|αkj |







x2
t−p + σ2.

(7.10)

Finally we need to find a small set for which the drift criterion defined in Theorem 2.1
is satisfied. We will proceed here with a two stage constructive proof. Let us first find
conditions on the b′is such that

x2
t−1 + b1x

2
t−2 + · · · + bp−1x

2
t−p ≥

p−1
∑

i=1



δU





K∑

k=1

(|αki|
p
∑

j=1

|αkj |



+ bi



x2
t−i

+



δU

K∑

k=1



|αkp|
p
∑

j=1

|αkj |







x2
t−p.

(7.11)

This inequality is satisfied if, for example,

δU (

K∑

k=1

(|αk1|
p
∑

j=1

|αkj |) + b1 < 1

δU (

K∑

k=1

(|αk2|
p
∑

j=1

|αkj |) + b2 < b1

...

δU (

K∑

k=1

(|αk(p−1)|
p
∑

j=1

|αkj |) + bp−1 < bp−2

δU

K∑

k=1

(|αkp|
p
∑

j=1

|αkj |) < bp−1.

Under the constraint

δU

p
∑

i=1

∑

k

(|αki|
p
∑

j=1

|αkj |) < 1, (7.12)

we can then find bi’s satisfying equation (7.11) so that

E(V (Yt) | Yt−1 = x) ≤ K1V (x) + σ2 for some K1 < 1. (7.13)
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Now, we need to find at least for a compact set with positive measure C, a K2 satisfying
0 < K1 < K2 < 1 and

E(V (Yt) | Yt−1 = x) ≤ K1V (x) + σ2 < K2V (x), ∀ x ∈ C. (7.14)

This inequality is satisfied if

V (x) >
σ2

K2 − K1
.

Choosing,

C =

{

x : V (x) ≤ σ2

K2 − K1

}

,

and any K2 that satisfies 0 < K1 < K2 < 1, (7.14) follows, which completes the proof
.

7.3 Proof of Theorem 3.1

Proof:

The Markov Property of Zt can be derived similarly to that of Yt in Lemma 2.1 to
show that Zt is a Markov chain. For its Feller property, let us consider a bounded
continuous function fbc : R

p+q −→ R and compute

E(fbc(Zt) |Zt−1 = x) =

∫

fbc(Zt)p(Zt |Zt−1 = x)dZt

=

∫

fbc(Zt)p(Yt |Ut, Zt−1 = x)p(Ut |Zt−1 = x)dZt

whereby

p(Yt |Ut, Zt−1 = x) = p(Yt | ηt, Zt−1 = x)

=

K∑

k=1

hk(Zt−1)gǫ(Yt − Mk(Yt−1) − Ut) (7.15)

and

p(Ut |Zt−1 = x) =

K∑

k=1

hk(Zt−1)gη(Ut − Γk(Ut−1)). (7.16)

Hence, E(fbc(Zt) |Zt−1 = x) is bounded continuous by the continuity assumptions
on the gǫ, gη, boundedness and continuity assumptions on the hk, k = 1, · · · ,K, and
consequently the Feller property follows.

Following the proof presented for the case without exogenous component we once
more consider for the sake of simplicity the case where p = q = 2. Thus, Zt =
(Yt, Yt−1, Ut, Ut−1)

′. We then need to investigate the strict positivity of, e.g., P 2(A, x)
for any given Borel set A with with positive Lebesgue measure λ(A) > 0. By definition,

P 2(A, x) = P(Z2 ∈ A |Z0 = x)

=

∫

A

p(Z2 |Z0 = x)dZ2

=

∫

A

(p(Y2 |U2,U1,Y1)p(U2 | Y1,U1)) (p(Y1 |U1,U0,Y0)p(U1 | Y0,U0)) dZ2

=

∫

A

C × DdZ2
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whereby

C =

(
K∑

k=1

hk(Z1)gǫ(Y2 − MkY1 − U2)

)(
K∑

k=1

hk(Z1)gη(U2 − Γk(U1))

)

and

D =

(
K∑

k=1

hk(Z0)gǫ(Y1 − MkY0 − U1)

)(
K∑

k=1

hk(Z0)gη(U1 − Γk(U0))

)

.

By the positivity of the densities function gǫ, gη and the lower bound assumption on
the hk, k = 1, · · · ,K, it follows that P 2(A, x) > 0, hence, the irreducibility of the
Markov chain Zt.

Consider a positive definite matrix V of the form defined in the previous lemma and
define

g(x) = 1 + x′V x. (7.17)

It follows that

Z ′
tV Zt =

∑

k

StkZ ′
t−1A

′
kV AkZt−1 + ζ ′tV ζt + 2

∑

k

StkZ ′
t−1A

′
kV ζt. (7.18)

Since
E(
∑

k

StkZ ′
t−1A

′
kV ζt |Zt−1 = x) = 0,

we derive

1 + E(Z ′
tV Zt |Zt−1 = x) = 1 +

∑

k

hk(x)x′A′
kV Akx + Eζ ′tV ζt (7.19)

≤ 1 + δU

∑

k

x′A′
kV Akx + Eζ ′tV ζt

≤ 1 + x′V x − x′Wx + Eζ ′tV ζt

≤ g(x)

(

1 − x′Wx − Eζ ′tV ζt

g(x)

)

.

For some K > 1 define the compact set

C = {x ∈ R
q : x′V x ≤ K}.

It then follows for every x ∈ Cc

g(x) ≤ K

K + 1
x′V x ≤ 2x′V x (7.20)

hence, after straightforward computations, we obtain

x′Wx − Eζ ′tV ζt

g(x)
=

x′Wx

1 + x′V x
− Eζ ′tV ζt

1 + x′V x

≥ x′Wx

2x′V x
− Eζ ′tV ζt

1 + K

≥ x′xλ1(W )

2x′xλq(V )
− Eζ ′tV ζt

K

≥ λ1(W )

2λq(V )
− Eζ ′tV ζt

K

≥ ǫ, (7.21)
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where λ1(W ) is the smallest eigenvalue of W and λq(V ) is the largest eigenvalue of V (
W and V are positive definite).
Given

0 < ǫ <
1

2

λ1(W )

λq(V )
,

one can finally choose

K ≥ K(ǫ) = Eζ ′tV ζt

[
1

2

λ1(W )

λq(V )
− ǫ

]−1

and conclude that

E(g(Zt) |Zt−1 = x) ≤ (1 − ǫ)g(x) for allx ∈ Cc.

Consequently, the drift conditions are satisfied.

7.4 Proof of Lemma 7.1

In this section we present a lemma that establishes the link between a given positive
definite matrix and the drift function we need it for the proof of the geometric ergod-
icity. This lemma will be used to prove Theorem 3.2. Indeed, we make use of the
connection between the scalar product, the Kronecker product and the vectorization.

Lemma 7.1. Suppose W is q × q positive definite matrix and the eigenvalues of

δU

∑

k=1

Ak ⊗ Ak (7.22)

have moduli less than the unity.

(i) If V is defined by

vec(V ) =

(

I − δU

∑

k=1

A′
k ⊗ A′

k

)−1

vec(W ) (7.23)

then V is also positive definite.

(ii) For any x,

δU

∑

k

x′A′
kV Akx = x′V x − x′Wx (7.24)

Proof: The result in i) follows as in Feigin and Tweedie(1985) from the identity

vec(V ) =
∞∑

j=0

(

I − δU

∑

k=1

A′
k ⊗ A′

k

)j

vec(W ). (7.25)

For the results in ii) let us first recall the following identity that connects the Kronecker
product ⊗ and the vectorization and present some other properties of the Kronecker
product.

vec(ABC) = (C ′ ⊗ A)vec(B) (7.26)

(A ⊗ B)′ = A′ ⊗ B′ (7.27)
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and for suitable matrices

(A ⊗ B)(C ⊗ D) = AC ⊗ BD (7.28)

From Lemma 7.1 i) it follows that

vec(V ) − vec(W ) = δU

∑

k

A′
k ⊗ A′

kvec(V ) (7.29)

we then derive for every x

x′V x − x′Wx = x′ ⊗ x′(vec(V ) − vec(W ))

= x′ ⊗ x′δU

K∑

k=1

A′
k ⊗ A′

kvec(V )

(7.30)

after some intermediate steps, which completes the proof.

7.5 Proof of Theorem 3.2

Proof: We present only the proof for the existence of the fourth moments, the other
cases being a straightforward adaptation. Recall that for matrices A,B and V , with
V symmetric and for vectors X,Y we have the following properties

‖AX‖ ≤ K‖X‖ for some positive K, (7.31)

X ′V Y = Y ′V X ≤ λ1(V )‖X‖‖Y ‖, (7.32)

with λ1(V ) being the largest eigenvalue of a symmetric positive definite matrix V .
Hence,

X ′A′V BY ≤ λ1(V )K‖X‖‖Y ‖ (7.33)

and

‖X ⊗ Y ‖ = ‖X‖‖Y ‖. (7.34)

Consider,

Z̃t = Zt ⊗ Zt =

[
∑

k

StkAkZt−1 + ζt

]

⊗
[
∑

k

StkAkZt−1 + ζt

]

=
∑

k

Stk(AkZt−1) ⊗ (AkZt−1) +
∑

k

Stk(AkZt−1) ⊗ ζt

+
∑

k

Stk(ζt ⊗ (AkZt−1)) + ζt ⊗ ζt,

which can be rewritten as

Z̃t =
∑

k

Stk(Ak ⊗ Ak)(Zt−1 ⊗ Zt−1) +
∑

k

Stk(Ak ⊗ Ip+q)(Zt−1 ⊗ ζt)

+
∑

k

Stk(Ip+q ⊗ Ak)(ζt ⊗ Zt−1) + ζt ⊗ ζt

= A + B + C + D.
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By assumption, all the eigenvalues of T̃ = δu

∑

k [(Ak ⊗ Ak)]⊗[(Ak ⊗ Ak)] have moduli

less than one and in Lemma 7.1 one can define a positive definite matrix W̃ such that

vec(Ṽ ) = (I − T̃ )−1vec(W̃ ).

Hence,

T̃ vec(Ṽ ) = vec(Ṽ ) − vec(W̃ ). (7.35)

Considering a positive definite matrix Ṽ satisfying the above conditions, with

T̃ = δu

∑

k

[(Ak ⊗ Ak)] ⊗ [(Ak ⊗ Ak)] (7.36)

and defining z̃ = z ⊗ z, it follows from an application of Lemma 7.1 that

E(A′Ṽ A |Zt−1 = z)

≤ δU

∑

k

Z̃ ′
t−1 [(Ak ⊗ Ak) ⊗ (Ak ⊗ Ak))]

′
Ṽ [(Ak ⊗ Ak) ⊗ (Ak ⊗ Ak))] Z̃t−1

= z̃′Ṽ z̃ − z̃′W̃ z̃. (7.37)

We can also trivially prove E(A′Ṽ B |Zt−1 = z) = 0 and analogously

E(B′Ṽ A |Zt−1 = z) = E(A′Ṽ C |Zt−1 = z) = E(C ′Ṽ A |Zt−1 = z) = 0.

Now, using the matrix calculations presented at the beginning of this section, it can
be shown that there exist positive constants K1 and K2 such that

E(B′Ṽ B |Zt−1 = z) ≤ λ1(Ṽ )K1‖z‖2
E‖ζt‖2,

E(C ′Ṽ C |Zt−1 = z) ≤ λ1(Ṽ )K2‖z‖2
E‖ζt‖2,

and

E(D′Ṽ D |Zt−1 = z) ≤ λ1(Ṽ )E‖ζt‖4.

Similarly, there exist positive constant K4, . . . ,K9 such that

E(A′Ṽ B |Zt−1 = z) = E(B′Ṽ A |Zt−1 = z) ≤ λ1(Ṽ )K4‖z‖3
E‖ζt‖,

E(A′Ṽ C |Zt−1 = z) = E(C ′Ṽ A |Zt−1 = z) ≤ λ1(Ṽ )K5‖z‖3
E‖ζt‖,

E(A′Ṽ D |Zt−1 = z) = E(D′Ṽ A |Zt−1 = z) ≤ λ1(Ṽ )K6‖z‖2
E‖ζt‖2,

B′Ṽ C |Zt−1 = z) = E(C ′Ṽ B |Zt−1 = z) ≤ λ1(Ṽ )K7‖z‖2
E‖ζt‖2,

E(B′Ṽ D |Zt−1 = z) = E(D′Ṽ B |Zt−1 = z) ≤ λ1(Ṽ )K8‖z‖E‖ζt‖3,

and

E(C ′Ṽ D |Zt−1 = z) = E(D′Ṽ C |Zt−1 = z) ≤ λ1(Ṽ )K9‖z‖E‖ζt‖3.
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Therefore, taking g(Z̃t) = 1 + Z̃ ′
tṼ Z̃t, we obtain

E(g(Z̃t) |Zt−1 = z) ≤ 1 + z̃′Ṽ z̃ − z̃′W̃ z̃

+ ρ1(Ṽ )(C1‖z‖3
E‖ζt‖ + C2‖z‖2

E‖ζt‖2

+C3‖z‖E‖ζt‖3 + E‖ζt‖4),

where C1 = K5 + K4, C2 = K1 + K2 + K6 + K7 and C3 = K8 + K9. Now, Letting

s(z, ζt) = ρ1(Ṽ )(C1‖z‖3
E‖ζt‖ + C2‖z‖2

E‖ζt‖2 + C3‖z‖E‖ζt‖3),

we have

E(g(Z̃t) |Zt−1 = z) ≤ g(z̃)

(

1 − z̃′W̃ z̃ − s(z, ζt) − ρ1(Ṽ )E‖ζt‖4

1 + z̃′Ṽ z̃

)

. (7.38)

Using the techniques in deriving equation (7.20) for the proof of geometric ergodicity,
we observe that

z̃′W̃ z̃ − s(z, ζt)

1 + z̃′Ṽ z̃
≥ λmin(W̃ )‖z̃‖2 − s(z, ζt)

λmax(Ṽ )‖z̃‖2
− ρmax(Ṽ )E‖ζt‖4

K
> ǫ (7.39)

and for K(ǫ) sufficiently large and large values of ‖z‖4 = ‖z̃‖2 ( the dominating term
in the above equation), one can conclude

E(g(Z̃t) |Zt−1 = z) ≤ g(z̃)(1 − ǫ). (7.40)

The existence of the of 4th-order moment follows.
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