Herstellung hetero-substituierter Diazapyridinophanliganden und die Untersuchung des Einflusses der Aminsubstituenten auf die Eigenschaften der Liganden und Übergangsmetallkomplexe

Dem Fachbereich Chemie der Technischen Universität Kaiserslautern zur Erlangung des akademischen Grades "Doktor der Naturwissenschaften" genehmigte Dissertation. (D386)

vorgelegt von Dipl.-Chem. Christof Volker Huber

aus Petersberg

Betreuer der Arbeit: Prof. H.-J. Krüger, Ph.D.

Tag der wissenschaftlichen Aussprache 3.7.2008 Kaiserslautern 2008

Vom Fachbereich Chemie der Technischen Universität Kaiserslautern am 3.7.2008 als Disertation angenommen.

Dekan: Prof. Dr. W. Trommer

Prüfungskommission:

Vorsitzender: Prof. Dr. H.-G. Kuball1. Berichterstatter: Prof. H.-J. Krüger, Ph.D.

2. Berichterstatter: Prof. Dr. W. Thiel

Diese Arbeit wurde im Zeitraum vom Oktober 2003 bis September 2007 im Arbeitskreis von Prof. Krüger im Fachbereich Chemie der Technischen Universität Kaiserslautern angefertigt.

Ich möchte all denen Dank aussprechen, die zum Gelingen dieser Arbeit beigetragen haben.

Alles hat seine Stunde. Für jedes Geschehen unter dem Himmel gibt es eine bestimmte Zeit: Eine Zeit zum Gebären und eine Zeit zum Sterben, eine Zeit zum Pflanzen und eine Zeit zum Abernten der Pflanzen, eine Zeit zum Töten und eine Zeit zum Heilen, eine Zeit zum Niederreißen und eine Zeit zum Bauen, eine Zeit zum Weinen und eine Zeit für die Klage und eine Zeit für den Tanz; eine Zeit zum Steinewerfen und eine Zeit zum Steinesammeln, eine Zeit zum Umarmen und die Zeit, die Umarmung zu lösen, eine Zeit zum Suchen und eine Zeit zum Verlieren, eine Zeit zum Behalten und eine Zeit zum Wegwerfen, eine Zeit zum Zerreißen und eine Zeit zum Zusammennähen, eine Zeit zum Schweigen und eine Zeit zum Reden, eine Zeit zum Lieben und eine Zeit zum Hassen, eine Zeit für den Krieg und eine Zeit für den Frieden.

Kohelet 3,1-9

	Ľ
Innausverzeichnis	V
Abkürzungen	_ <i>VIII</i>
1 Einleitung	1
1.1 Allgemeine Aspekte der Koordinationschemie	1
1.2 Diazapyridinophan-Liganden	1
1.2.1 Koordinationsweise und Reaktivität des koordinierten Liganden	3
1.2.2 Synthese homo-substituierter Diazapyridinophane	4
1.3 Einführung einer Phenylgruppe als Aminsubstituent	6
1.3.1 Die Buchwald-Hartwig-Reaktion	7
1.3.3 Kupferkatalysierte C-N-Bindungsknüpfung	8
1.3.4 Weitere Variationen am Stickstoffatom	8
1.4 Hetero-substituierte Diazapyridinophane	9
1.5 Komplexierung mit Diazapyridinophan-Liganden	13
1.6 Bioanorganische Aspekte	14
2 Problemstellung	18
3 Eigene Ergebnisse und Diskussion	19
3.1 Herstellung der Liganden	19
3.1.1 Herstellung hetero-substituierter Diazapyridinophan-Liganden	19
3.1.2 Säurekatalysierte <i>tert</i> -Butylgruppenabspaltung	26
3.1.3 Einführung einer Methylgruppe nach Leuckart-Wallach	30
3.1.4 Herstellung des Liganden L-N ₄ HMe 21 durch Entfernen der <i>para</i> -Toluolsulfonatgruppe	32
3.1.5 NMR-spektroskopische Charakterisierung der Makrozyklen	33
3.1.5 Infrarotspektren hetero-substituierter Diazapyridinophane mit vier Donoratomen	38
3.1.6 Röntgenstrukturen der hetero-substituierten Liganden	38
3.1.7 Diazapyridinophane mit einem Phenolsubstituenten	44
3.1.8 Diazapyridinophane mit Arylsubstituenten	51
3.2 Übergangsmetallkomplexe mit hetero-substituierten Diazapyridino-phanliganden	57
3.2.1 Dihalogeno-Nickel(II)-Komplexe	57
3.2.2 Zink-Komplexe mit hetero-substituierten Diazapyridinophanen	73
3.2.3 Kobalt-Komplexe mit hetero-substituierten Diazapyridinophanliganden	79
3.2.4 Die Verbindung [Ni(L-N ₄ ['] BuTos)(H ₂ O)(EtCN)](ClO ₄) ₂ \cdot H ₂ O 69	83
3.2.5 Nickel-Komplexe des Liganden HL-N ₄ (^{<i>tt</i>} BzO)Me 45	86
3.2.6 Kupfer-Komplexe als Strukturanaloga der Galactose-Oxidase	98
3.2.7 Kupfer(I)-Komplexe mit Diazapyridinophanliganden	108

1 1 Zusammanfassung	11
4.1 Liganden	11
4.1.2 Komplexe	11
4.2 Ausblick	13
5 Fynerimenteller Teil	13
	13
5.1 Allgemeines	13
5.2 Synthese der Liganden	14
5.2.1 Synthese der Ausgangsstoffe	14
5.2.2. Synthese der <i>tert</i> -butylsubstituierten Diazapyridinophan-Liganden	14
5.2.3 Synthese der wasserstoffsubstituierten Spezies	15
5.2.4 Methylierungsreaktionen	
5.2.5 Herstellung von N-Methyl-2,11-diaza[3.3](2,6)pyridinophan L-N ₄ HMe 2	2 1 16
5.2.6 Herstellung von N-Methyl-N'-(2-hydroxy-3,5-di-tert-butyl-benzyl)-2,11-	-diaza[3.3](2,6)pyridinopha
HL-N ₄ ($^{''}$ BzO)Me 45	16
5.2.7 Synthese von <i>N</i> , <i>N</i> '-(Di-4-nitrophenyl)-2,11-diaza[3.3](2,6)pyridinophan	L-N ₄ (PhNO ₂) ₂ 4816
5.3 Darstellung der Komplexe	16
5.3.1 Nickel-Komplexe	16
5.3.2 Kupfer-Komplexe der Diazapyridinophanliganden	18
5.3.3 Zink-Komplexe mit hetero-substituierten Diazapyridinophanen	18
5.3.4 Synthese von [Co(L-N ₄ Ad ^{<i>t</i>} Bu)Cl ₂] 68	19
6 Literaturverzeichnis	19
7 Anhang	19
7.1 Analytik der Grundbausteine und Liganden	19
7.1.1 N ^{<i>t</i>} Bu(CH ₂ PyCH ₂ Cl) ₂ 12	19
7.1.2 AdN(CH ₂ PyCH ₂ Cl) ₂ 37	20
7.1.3 L-N ₄ Ad ₂ 39	20
7.1.4 L-N ₄ Ad'Bu 17	20
7.1.5 L-N ₄ ['] BuBz 16	21
7.1.6 L-N ₄ ['] BuTos 18	22
7.1.7 L-N ₄ AdH 41	22
7.1.8 L-N ₄ BzH 42	23
7.1.9 L-N₄HTos 19	24
7.1.10 L-N ₄ AdMe 43	24
7.1.11 L-N₄MeTos 20	25
7.1.12 L-N ₄ HMe 21	25
7.1.13 HL-N ₄ Ad([#] BzO) 47	25

7.1.14 HL-N ₄ (^{<i>tt</i>} BzO)Me 45	256
7.1.15 L-N ₄ (PhNO ₂) ₂ 52	267
7.2 Komplexe	276
7.2.1 Nickel-Komplexe	276
7.2.1.9.1 IR-Spektrum	339
7.2.1.11 [Ni(L-N ₄ (^{<i>tt</i>} BzO)Me)(ClO ₄)] 72	355
7.2.2 Zink-Komplexe	364
7.2.3 Kupfer-Komplexe	382
7.2.4 Kobalt-Komplexe	426
8 Lebenslauf	434

Abkürzungen

Reste

R	= Rest
Me	= Methyl
Et	= Ethyl
ⁱ Pr	= Isopropyl
Ph	= Phenyl
^t Bu	= <i>tert</i> -Butyl
Ad	= 1-Adamantyl
Bz	= Benzyl
Tos	= <i>para</i> -Toluolsulfonyl
Ру	= Pyridyl
^{tt} BzOH	= 2-hydroxy-3,5-di- <i>tert</i> -butyl-benzyl-
Cys	= Cystein
His	= Histidin
Tyr	= Tyrosin
Ac	= Acetat

Lösungsmittel

DMF	= <i>N</i> , <i>N</i> -Dimethylformamid
MeCN	= Acetonitril
EtOH	= Ethanol
МеОН	= Methanol
DMSO	= Dimethylsulfoxid
EtCN	= Propionitril
DEE	= Diethylether
THF	= Tetrahydrofuran
PE	= Petrolether

Substanzen

BCA	= <i>tert</i> -Butyl-bis-(6-chlormethyl-2-pyridyl-methyl)amin 12
BCAd	= 1-Adamantyl-bis-(6-chlormethyl-2-pyridyl-methyl)amin 37
GO	= Galactose-Oxidase

Abkürzungen	
-------------	--

TBAP	= Tetrabutylammoniumperchlorat
L-N ₆ TosHH	= N-Tosyl-2,11,20-triaza[3.3.3](2,6)pyridinophan
L-N ₆ Tos ₃	= N,N',N''-Tri-tosyl-2,11,20-triazagenehmigte(2,6)pyridinophan
BCP	= 2,6-Bis(chlormethyl)pyridin 1
L-N ₄ Tos ₂	= N,N '-Di-tosyl-2,11-diaza[3.3](2,6)pyridinophan 2
$L-N_4H_2$	= 2,11-Diaza[3.3](2,6)pyridinophan 3
$L-N_4Me_2$	= N, N'-Dimethyl-2,11-diaza[3.3](2,6)pyridinophan 4
$H_2L-N_4(^{tt}BzO)_2$	= N, N'-Di-(2-hydroxy-3,5-di- <i>tert</i> -butyl-benzyl)-2,11-diaza
	[3.3](2,6)pyridinophan 5
$L-N4^{t}Bu_{2}$	= <i>N</i> , <i>N</i> '-Di- <i>tert</i> -butyl-2,11-diaza[3.3](2,6)pyridinophan 8
$L-N_4^{i}Pr_2$	= N, N'-Di- <i>iso</i> -propyl-2,11-diaza[3.3](2,6)pyridinophan 9
L-N ₄ ^t Bu(^{tt} PhOMe)	= <i>N</i> -tert-Butyl- <i>N</i> '-(2-methoxy-4,5-di-tert-butylphenyl)-2,11-diaza
	[3.3](2,6)pyridinophan 13
HL-N ₄ ^t Bu(^{tt} PhO)	= N-tert-Butyl-N'-(2-hydroxy-4,5-di-tert-butylphenyl)-2,11-diaza[3.3]
	(2,6)pyridinophan 14
$L-N_4Ad^tBu$	= <i>N</i> -1-Adamantyl- <i>N'-tert</i> -butyl-2,11-diaza[3.3](2,6)pyridinophan 17
L-N ₄ ^t BuTos	= <i>N</i> -tert-Butyl- <i>N</i> '-tosyl-2,11-diaza[3.3](2,6)pyridinophan 18
L-N ₄ HTos	= N-Tosyl-2,11-diaza[3.3](2,6)pyridinophan 19
L-N ₄ MeTos	= N -Methyl- N' -tosyl-2,11-diaza[3.3](2,6)pyridinophan 20
L-N ₄ HMe	= <i>N</i> -Methyl-2,11-diaza[3.3](2,6)pyridinophan 21
L-N ₄ AdH	= N-1-Adamantyl-2,11-diaza[3.3](2,6)pyridinophan 41
L-N ₄ AdMe	= N -1-Adamantyl- N' -methyl-2,11-diaza[3.3](2,6)pyridinophan 43
HL-N ₄ ([#] BzO)Me	= <i>N</i> -Methyl- <i>N</i> '-(2-hydroxy-3,5-di- <i>tert</i> -butyl-benzyl)-2,11-diaza
	[3.3](2,6)pyridinophan 45
HL-N ₄ Ad(^{<i>tt</i>} BzO)	= <i>N</i> -1-Adamantyl- <i>N</i> '-(2-hydroxy-3,5-di- <i>tert</i> -butylbenzyl)-2,11-diaza
	[3.3](2,6)pyridinophan 47
L-N ₄ (PhNO ₂) ₂	= N,N' -(Di-4-nitrophenyl)-2,11-diaza[3.3](2,6)pyridinophan 48
HAc	= Essigsäure
М	= Metall bzw. Metallion

Spektroskopie

S	= Singulett
d	= Dublett
dd	= dublettiertes Dublett

t	= Triplett
m	= Multiplett
pt	= Pseudotriplett
ds	= dublettiertes Singulett
br	= breites Signal
J	= Kopplungskonstante
δ	= chemische Verschiebung
q	= Quartett
qud	= quintettiertes Dublett
tq	= triplettiertes Quartett

Arbeitsverfahren

ESI	= Elektronen Spray Ionisation
DEPT	= disortionless enhancement by polarisation transfer
Δ	= Erhitzen, meist unter Rückfluss
E _{Ox}	= Oxidationspotential
E _{Red}	= Reduktionspotential
E _{1/2}	= Halbstufenpotential
I _{pa}	= anodischer Peakstrom
I _{pc}	= kathodischer Peakstrom
N _{Amin}	= Aminstickstoffatom
RT	= Raumtemperatur
SCE.	= <i>engl</i> . saturated calomel electrode; gesättigte Kalomelelektrode
v	= Potentialänderungsgeschwindigkeit
VS.	= <i>lat</i> .versus; gegen

Zeiteinheiten

d	= Tag
h	= Stunde
S	= Sekunde

Naturkonstanten

$\mu_{ m B}$	= Bohrsches Magneton
--------------	----------------------

Maßeinheiten

1	= Liter	
ppm	= parts per million	(=10 ⁻⁶)
c	= centi	$(= 10^{-2})$
m	= milli	$(= 10^{-3})$
μ	= mikro	(= 10 ⁻⁶)
g	= Gramm	
m	= Meter	
Μ	= molar (mol/l)	

1 Einleitung

1.1 Allgemeine Aspekte der Koordinationschemie

In der Koordinationschemie werden häufig mehrzähnige Liganden eingesetzt, da sie aufgrund des Chelateffekts sehr stabile Koordinationsverbindungen bilden. Dieser ist bedingt durch eine Erhöhung der Entropie in einem System. Eine weitere Erhöhung der Stabilität kann durch die Verwendung von makrozyklischen Liganden erzielt werden, da diese zusätzlich den sogenannten Makrozykleneffekt einbringen. Dieser beruht nicht nur auf einer Entropiesteigerung, sondern auch auf einer Erhöhung der Enthalpie. In einem Makrozyklus kann durch die gewählte Ringgröße eine Anpassung an den Ionenradius des zu koordinierenden Zentralmetallions durchgeführt werden. Dadurch wird eine Ionenselektivität mancher Makrozyklen beobachtet.^[1]

Durch geeignete Wahl des Makrozyklus kann am Zentralatom die Koordinationsgeometrie festgelegt werden, da makrozyklische Verbindungen in ihrer Konformationsfreiheit eingeschränkt sind. So können Koordinationsverbindungen hergestellt werden, die über ein Metallzentrum mit definierter Umgebung verfügen. Als Donoratome bei makrozyklischen Liganden dienen Stickstoff-, Sauerstoff-, Phosphor-, Schwefel- und Kohlenstoffatome, wobei der Einsatz von Stickstoffdonatoren in makrozyklischen Liganden am weitesten verbreitet ist.^[1]

1.2 Diazapyridinophan-Liganden

In folgender Abbildung ist der Grundkörper der Diazapyridinophanliganden gezeigt:

Abbildung 1: Struktur der Diazapyridinophane

Die Liganden *N*-Alkyl(Aryl,Tosyl)-*N*'-Alkyl(Aryl,Tosyl)-2,11-diaza[3.3](2,6)pyridinophan werden durch das Akronym L-N₄R₁R₂ beschrieben. R₁ und R₂ sind die Substituenten der nicht aromatischen Stickstoffatome.^[1]

Bei den Diazapyridinophanen handelt es sich um vierzähnige, makrozyklische Liganden. Die gebildeten Koordinationsverbindungen sind besonders stabil, da sowohl der Chelateffekt, als auch der Makrozykleneffekt ausgenutzt wird. Weiterhin ist das Ligandgerüst starr und somit in Konformationsfreiheit stark eingeschränkt, wodurch seiner nur bestimmte Koordinationsgeometrien möglich werden. Durch Präorganisation entstehen Komplexe, deren Reaktivität auf bestimmte Koordinationsstellen am Metallatom beschränkt ist. Der zwölfgliedrige Makrozyklus des Liganden enthält vier Stickstoffdonoratome und acht Kohlenstoffatome. Zwei Stickstoffatome stellen die beiden Pyridinringe, bei den beiden anderen handelt es sich um sekundäre bzw. tertiäre Aminstickstoffatome.^[1]

Für eine Koordination eines Metallions müssen die freien Elektronenpaare in Richtung der Orbitale des Zentralions zeigen (Abbildung 2). Aus diesem Grund muss der Ligand in einer Wanne-Wanne-Konformation vorliegen.^[1]

Abbildung 2: Notwendige Orientierung der freien Elektronenpaare des Liganden L-N₄R₂ zur Komplexierung eines Metallions

In den Festkörperstrukturen der freien Liganden liegt allerdings nur bei L-N₄H₂ **3** diese Anordnung vor. Aufgrund von Wasserstoffbrückenbindungen wird dieses Konformer stabilisiert. Bei den substituierten Vertretern liegt im Festkörper eine Sessel-Sessel-Anordnung vor.^[1]

Theoretische Berechnungen zeigen: Konformer **B** (Abbildung 3) ist thermodynamisch stabiler und befindet sich in der *syn*-Sessel-Sessel-Anordnung. Im Laufe der sukzessiven Komplexierung des Metallions durch die Stickstoffatome wird das um 8,5 bis 20,5 kJ/mol energiereichere Konformer **A** gebildet, dessen freie Elektronenpaare an den Stickstoffatomen aufgrund der Wanne-Wanne-Konformation in Richtung der freien Koordinationsstelle am Metallion zeigen und somit die Bindung eines Zentralatoms begünstigen.^[1]

A B Abbildung 3: Dynamisches Gleichgewicht des freien Liganden L-N₄R₂

Die erforderliche Energie zur Rotation um die C-C-Einfachbindungen wird durch die entstehenden Stickstoff-Metall-Bindungen zurückgewonnen.^[1]

In Lösung kann mittels NMR-Spektroskopie nachgewiesen werden, dass bei tiefer Temperatur die beiden diastereotopen Protonen der Methylengruppe als AB-System auftreten. Bei höherer Temperatur wird nur ein Signal für die diastereotopen Wasserstoffatome gefunden. In schnellem Wechsel gehen die axialen und äquatorialen Wasserstoffatome der verbrückenden CH₂-Gruppen ineinander über. Bei zunehmender Größe der Substituenten wird die Dynamik dieses Gleichgewichts verlangsamt.^[1]

In der Literatur sind homo-substituierte Diazapyridinophane bekannt mit R = H 3, Me 4, ^{*i*}Pr 9, ^{*i*}Bu 8, CH₂CO₂H bzw. CH₂(C₆H₃)^{*i*}Bu₂OH 5. Ein weiterer Vorteil der Diazapyridinophanliganden ist, dass sie Metallionen in mehreren Oxidationsstufen stabilisieren können, wobei der komplexierte Ligand im Messbereich der Zyklovoltammetrie der üblichen Lösungsmittel selbst redoxinaktiv ist.^[1-5]

1.2.1 Koordinationsweise und Reaktivität des koordinierten Liganden

Im Fall der Diazapyridinophane sorgen die Pyridinringe für eine gewisse Starrheit des Makrozyklus, wodurch weniger Konformere möglich werden. Die Ringgröße bewirkt zusätzlich, dass ausschließlich *cis*-oktaedrische Koordinationsverbindungen (Abbildung 4) entstehen, das heißt, die Bindungsstellen des oktaedrischen Komplexes, die nicht vom Diazapyridinophan-Liganden besetzt werden, stehen *cis*-ständig zueinander.^[1]

Abbildung 4: Struktur des komplexierten Liganden L-N₄R₁R₂

Wenn ein Diazapyridinophanligand vierzähnig an ein Metallion gebunden ist, zeigen alle Protonenresonanzspektren der diamagnetischen Komplexe, dass der Ligand stets gebunden bleibt. Der Ligand kann als Schutzgruppe für vier der sechs Koordinationsstellen aufgefasst werden, das heißt, durch die Koordination des Liganden wird die Reaktionschemie am Zentralion auf die beiden *cis*-ständigen Koordinationsstellen beschränkt. Zusätzlich wird die Reaktivität des Komplexes durch den Einsatz sterisch aufwendiger Reste an den Aminstickstoffatomen beeinflusst, da sich diese oberhalb und unterhalb der beiden *cis*ständigen Koordinationsstellen befinden. Weiterhin kann durch voluminöse Reste an den beiden Amin-Stickstoffatomen die Ausbildung von zweikernigen Komplexen verhindert und die Reaktivität beeinflusst werden.^[1]

1.2.2 Synthese homo-substituierter Diazapyridinophane

Anfänglich wurde zur Synthese der Diazapyridinophanliganden das 2,6-Bis-(brommethyl)pyridin benutzt.^[6, 7] Heute gebräuchliche Herstellungsweisen nutzen das leichter handhabbare Chloranalogon 1.^[8, 9] Da der Ligandgrundkörper nicht durch eine Zyklisierung von 2,6-Di(chlormethyl)pyridin 1 mit Ammoniak gebildet werden kann, wird eine zweistufige Synthese verwendet. Hierbei dient als Zyklisierungsreagenz Natriumtosylamid, welches nicht nur als Nukleophil sondern auch als Base fungiert (Abbildung 5).^[10, 11]

Abbildung 5: Herstellung von L-N₄Tos₂ 2

Diese Reaktion verläuft nicht selektiv zum Zwölfring. Es wird in vergleichbaren Mengen der 18-gliedrige Ring L-N₄Tos₃ mit drei Pyridineinheiten und das Diazapyridinophan L-N₄Tos₂ **2** gebildet. Mit dem Zyklus L-N₄Tos₂ **2** konnten bislang keine Übergangsmetallkomplexe isoliert werden. Da die Reinigung der Verbindung sehr schwierig ist, erfolgt nach der Abspaltung der Tosylgruppe mit konzentrierter Schwefelsäure eine Isolierung des L-N₄H₂ **3** (Abbildung 6) von den Nebenprodukten.^[1]

Abbildung 6: Abspaltung der Tosylgruppe mit konzentrierter Schwefelsäure

Dieser Diazapyridinophangrundkörper (L-N₄H₂) **3** kann bereits als Komplexbildner verwendet werden und bietet gleichzeitig Möglichkeiten zu weiteren Derivatisierungen. Mit Hilfe einer Leukardt-Wallach-Reaktion können beide Aminfunktionen methyliert werden. So kann ein weiterer homo-substituierter Ligand **4** hergestellt werden (Abbildung 7).^[1]

Durch eine der Leukardt-Wallach-Reaktion ähnlichen Umsetzung (Abbildung 8) konnten funktionalisierte Benzylgruppen eingefügt werden. Der hierdurch erzeugte Ligand H₂L-N₄(^{*tt*}BzO)₂ (*N*,*N*'-Di-(2-hydroxy-3,5-di-*tert*-butylbenzyl)-2,11-diaza[3.3](2,6)pyridinophan) **5** ist ein Makrozyklus mit sechs potentiellen Donoratomen (Abbildung 9).^[3-5]

Abbildung 8: Einführung eines Phenolarmes mit Hilfe einer Variante der Leukardt-Wallach-Reaktion

5 Abbildung 9: *N,N*'-Di-(2-hydroxy-3,5-di-*tert*-butylbenzyl)-2,11-diaza[3.3](2,6)pyridinophan (H₂L-N₄([#]BzO)₂) 5

Ein alternativer Zugangsweg zur Gewinnung alkylsubstituierter Diazapyridinophane ist in Abbildung 10 gezeigt.

Hierbei wird zuerst das 2,6-Bis(chlormethyl)pyridin 1 mit primären Aminen zu den entsprechenden sekundären Diaminen 6 und 7 umgesetzt und anschließend mit einem weiteren Äquivalent 2,6-Bis(chlormethyl)pyridin 1 zu denentsprechenden makrozyklischen Liganden 4 und 8 zyklisiert.^[1]

Mit Hilfe dieser Variante können die Liganden $L-N_4{}^iPr_2$ 9, $L-N_4Me_2$ 4 und $L-N_4{}^tBu_2$ 8 gewonnen werden. Mit $L-N_4{}^tBu_2$ 8 ist ein Diazapyridinophanligand mit sterisch aufwendigen Alkylgruppen zugänglich.^[1]

1.3 Einführung einer Phenylgruppe als Aminsubstituent

Bisher gibt es noch kein diarylsubstituiertes Diazapyridinophan L-N₄Ar₂. Aus diesem Grund soll hier ein kurzer Überblick über die Herstellungsmethoden von Arylaminen gegeben werden.

1.3.1 Die Buchwald-Hartwig-Reaktion

Die Buchwald-Hartwig-Reaktion (Abbildung 11) ist eine palladiumkatalysierte Bindungsknüpfung zwischen einem Aromaten, der mit einer geeigneten Abgangsgruppe substituiert ist, und einem primären oder sekundären Amin. Die Bandbreite der umsetzbaren Substrate für die jeweiligen Palladiumkatalysatoren ist hierbei nicht sehr groß. Katalysatoren sind also meist nur für einzelne Verbindungen geeignet. Als Halogenide werden hauptsächlich Bromide und Iodide verwendet. Diese Reaktion funktioniert für Diazapyridinophansynthesen nicht, da der freie Ligand als potentieller Bindungsspartner für den Katalysator dienen kann.^[12-26]

Abbildung 11: Reaktionsschema der Buchwald-Hartwig Reaktion

Bolm et al. ist es gelungen, mittels palladiumkatalysierter Bindungsknüpfung an einem makrozyklischen, sekundären Amin **10** eine Phenylgruppe einzuführen (Abbildung 12).^[27]

Abbildung 12: Einführung der Phenylgruppe in einen Makrozyklus

Bei dieser Reaktion spielen die zwei Tosylgruppen eine entscheidende Rolle. Das Triamin mit zwei Tosylgruppen **10** kann in quantitativer Ausbeute aryliert werden. Ist nur eine Tosylgruppe vorhanden, dann sinkt die Ausbeute auf 17 %. Wurden statt der beiden Tosylgruppen zwei Methylgruppen als Substituenten an den beiden funktionalisierten Aminstickstoffatomen verwendet, konnte keine Reaktion mehr beobachtet werden.^[27]

1.3.3 Kupferkatalysierte C-N-Bindungsknüpfung

Eine weitere Bindungsknüpfung kann mit Kupferacetat durchgeführt werden. Hierbei dienen Boronsäuren als Edukte (Abbildung 13). Es können Diarylamine sowie Arylamine eingesetzt werden.^[28, 29]

Abbildung 13: Synthese aromatischer Amine über Kupferacetat

Für die Umsetzung an Diazapyridinophanen ist diese Methode allerdings nicht geeignet, da Kupferacetat durch den Liganden sofort der Reaktion entzogen werden würde.

1.3.4 Weitere Variationen am Stickstoffatom

Eine weitere Möglichkeit der Knüpfung einer C-N-Bindung ist die Umsetzung eines deprotonierten Amines (Amides) mit einem Halogenalkan. Das Problem bei den Diazapyridinophanen ist, dass die verbrückenden CH₂-Einheiten einen ähnlichen pK_s-Wert wie die sekundären Amine besitzen.^[30] Sekundäre Amine können nur mit sehr starken Basen wie Natriumhydrid, Butyllithium oder Natriumamid deprotoniert werden. Deshalb ist eine Vielzahl an Konkurrenz- und Nebenreaktionen zu beobachten.

1.4 Hetero-substituierte Diazapyridinophane

Zur Einführung einer weiteren Koordinationsstelle und feineren Abstimmung der Liganden für magnetische und biomimetische Eigenschaften wurde versucht, an die Amine, zwei unterschiedliche Substituenten einzuführen. Krüger et al. unternahmen erste Versuche, heterosubstituierte Diazapyridinophane L-N₄R₁R₂ herzustellen (Abbildung 14).^[3]

Abbildung 14: Hetero-substituierte Diazapyridinophan-Liganden (L-N₄R₁R₂)

Diese Versuche zeigen einen möglichen Weg zur Synthese eines hetero-substituierten Diazapyridinophanmakrozyklus, wecher Aryl- und Alkylsubstituenten enthält. Die Zielverbindung wird durch eine Substitutionsreaktion aus *tert*-Butyl-bis-(6-chlormethyl-2-pyridyl)amin und 2-Amino-4,5-di-*tert*-butylanisol gewonnen (Abbildung 15).^[3]

Abbildung 15: Herstellung des ersten bekannten N₄O-Liganden L-N₄^tBu(^{tt}PhOMe) 13

Durch Entschützung der Verbindung L- N_4 ^tBu(^{tt}PhOMe) **13** wurde das Phenolderivat HL- N_4 ^tBu(^{tt}PhO) **14** gewonnen. Mit dem Phenolliganden waren Komplexierungsveruche nicht erfolgreich. Vermutlich kann aufgrund der sterischen Eigenschaften des Phenolatsauerstoffatomes nicht die Koordinationsstelle des Metallions erreichen.^[3]

Angelehnt an die Synthesen der homo-substituierten Derivate konnten verschiedene heterosubstituierte Diazapyridinophane synthetisiert werden (Abbildung 16). In der Diplomarbeit Huber^[31] konnten bereits erste Erfolge zur Herstellung weiterer hetero-substituierter Diazapyridinophane erzielt werden. Zyklisierungen von primären Aminen (Abbildung 16) und Natriumtosylamid (Abbildung 17) mit BCA ((ClCH₂PyCH₂)₂N'Bu) **12** führten zwar zu hetero-substituierten Verbindungen, jedoch ist die Reinheit und Ausbeute an Diazapyridinophanliganden noch nicht zufriedenstellend. Es konnten auf diese Weise Reaktionen mit tert-Butylamin, 1-Adamantylaminhydrochlorid in relativ guter Ausbeute und Reinheit erzeugt werden. Die Umsetzung mit Benzylamin war schwieriger und mit dem noch kleineren Methylamin konnte kein Ligand isoliert werden. Es konnte lediglich gezeigt werden, dass grundsätzlich die erwartete Reaktivität zu beobachten ist (Abbildung 16 und 17).^[31]

Abbildung 16: Reaktionswege zur Zyklisierung mit Aminen

12

Abbildung 17: Herstellung von L-N₄^tBuTos 18

Aus L-N₄^{*t*}BuTos **18** kann durch saure Abspaltung der *tert*-Butylgruppe L-N₄HTos **19** hergestellt werden (Abbildung 18). Diese Verbindung besitzt nunmehr mit der sekundäten Amindfunktion ein Reaktionszentrum für Derivatisierungen.^[31]

Das Wasserstoffatom der Amingruppe kann durch Alkylreste ersetzt werden. Durch Entfernung der Tosylschutzgruppe entsteht der hetero-substituierter Diazapyridinophan-Ligand L-N₄HMe **21** (Abbildung 19).^[31]

Abbildung 19: Derivatisierungen von L-N₄HTos 19

Als weiterer Grundkörper zur Herstellung von hetero-substituierten Diazapyridinophan-Liganden kann 2-Brommethyl-6-hydroxymethylpyridin **22** dienen (Abbildung 20).^[9]

22 Abbildung 20: 2-Brommethyl-6-hydroxymethylpyridin 22

Über diese bekannte Verbindung könnten durch Substitutionsreaktionen mit Aminen zwölfgliedrige Diazapyridinophane aufgebaut werden (Abbildung 21).

Abbildung 21: Mögliche Reaktionswege zu hetero-substituierten Diazapyridinophanen aus 2-Brommethyl-6-hydroxymethyl-pyridin 22

Bei der bekannten Herstellung^[32] von Verbindung **22** tritt allerdings dieses nur als Nebenprodukt auf. Eine weitere bedenkliche Eigenschaft dieser Verbindung, wie auch die des bei der Herstellung ebenfalls entstehenden 2,6-Bis(brommethyl)pyridin **23** ist, dass diese Verbindungen starke Reizstoffe für Augen und Haut sind. Aus diesen Gründen wurde auf die Verwendung der Bromverbindung **22** als Edukt verzichtet.^[9]

Ein weiterer Zugang wäre die selektive Modifikation nur einer Aminfunktion entweder am 2,6-Bis(alkylaminomethyl)pyridin oder am homo-substituierten Diazapyridinophanliganden. Dieser Weg ist jedoch wahrscheinlich nicht zielführend. Ein Beispiel hierfür ist in Abbildung 22 gezeigt:

Bei den Versuchen zur Entschützung von $L-N_4{}^tBu_2$ mit Salzsäure wurde niemals $L-N_4{}^tBuH$ beobachtet. Es kann somit nicht selektiv nur eine einzelne *tert*-Butylgruppe abgespalten werden.^[31]

1.5 Komplexierung mit Diazapyridinophan-Liganden

Die homo-substituierten Diazapyridinophane binden mit 3d-Übergangsmetallionen über die vier Stickstoffatome. Die so erhaltenen Komplexe weisen eine *cis*-oktaedrische Koordinationsumgebung auf. Aufgrund dieser Koordinationsgeometrie beschränkt sich die Reaktionschemie auf die beiden *cis*-ständigen Koliganden am Metallzentrum. Durch die Wahl der Substituenten an den Aminstickstoffatomen kann die Reaktivität der entsprechenden Verbindungen gesteuert werden.^[1,5-7] So kann nach Krüger et al. im Falle eines Vanadiumkomplexes, ein *cis*-ständiger Oxoligand durch einen gebundenen Peroxoliganden ausgetauscht werden, der durch elektrochemische Oxidationsreaktionen in einen gebundenen Superoxokomplex umgewandelt werden kann.^[33] Auch Acetonitrilkomplexe von Vanadium(IV)-Ionen konnten aus Chlorooxovanadium(IV)-Komplexen durch Reaktion von Chloroliganden mit Ag(I)-Ionen hergestellt werden.^[29]

Allerdings können unter speziellen Bedingungen auch andere Koordinationsgeometrien erzwungen werden. Die Ionen Platin(II) und Palladium(II) bevorzugen eine quadratischplanare Koordinationsumgebung, daher nutzen diese nicht alle vier potentiellen Donoratome.^[33] Bei Komplexen der zweiten Übergangsmetallreihe wurden ebenso Komplexe mit achtfach koordiniertem Metallzentrum gefunden.^[34] Bei koordinierten Übergangsmetallcarbonylen (Mo(CO)₃) der 6. Gruppe wurde eine ^[30] dreizähnige Koordination festgestellt. Im Nickelkomplex [Ni(L-N₄H₂)₂]²⁺ ist ein Ligandmolekül vierfach und ein weiteres zweifach koordiniert. Es existieren eine Reihe von Komplexen anderer Übergangsmetalle, auf die im Rahmen dieser Arbeit nicht eingegangen werden soll.^[35]

Der Ligand H₂L-N₄(^{*tt*}BzO)₂ **5** stellt einen Spezialfall dar, da er neben den vier Stickstoffatomen mit den beiden phenolischen Hydroxylgruppen noch über zwei weitere exozyklische Donoratome verfügt. Durch geeignete Wahl einer Base können eine der zwei oder beide Hydroxylgruppen der Phenolsubstituenten deprotoniert werden, wodurch auch diese an ein Metallzentrum koordinieren und die Reaktivität weiter beeinflussen können. Somit ist der Ligand in der Lage, oktaedrische Komplexe zu bilden, bei denen das Zentralion koordinativ abgesättigt ist, wonach keine Substitutionsreaktionen am Metallzentrum mehr möglich sind. ^[3-5]

Von den hetero-substituierten Diazapyridinophanen L-N₄Ad^tBu **17**, L-N₄HMe **21** und L-N₄^tBuBz **16** konnten die entsprechenden Nickel-Komplexe gewonnen und teilweise charakterisiert werden. Die Reinheit und Ausbeute ist allerdings noch nicht zufriedenstellend.

Deshalb war eine Zielsetzung der Doktorarbeit die Serie zu vervollständigen und abzuschließen.^[36]

Ein Zinkkomplex gleicher Art [Zn(L-N₄Ad'Bu)Cl₂] **29** konnte ebenfalls hergestellt werden.^[36]

1.6 Bioanorganische Aspekte

Diazapyridinophan-Liganden können zur Herstellung von biomimetischen Modellkomplexen verwendet werden. Zum Beispiel konnte in der Vergangenheit Eisen(III)-Katecholkomplexe isoliert werden, die als Modellverbindungen für die Enzymklasse der intradiol-spaltenden Katecholdioxygenasen Anwendung fanden.^[37]

In dieser Doktorarbeit soll der Ligand hergestellt werden, der für Galactose-Oxidase-Modellsysteme verwendet werden kann. In diesem Modellsystem ist die Herstellung von Kupfer(II)-Phenoxylradikalkomplexen eine zentrale Rolle. Bei der Galactose-Oxidase (GO) handelt es sich um ein Enzym aus parasitären Pilzen, wie z. B. Dactylium dendroides. Diese Spezies gehört zu den sogenannten "nicht-blauen" kupferhaltigen Oxidasen. Die Galaktose-Oxidase besteht aus einer Peptidkette mit einer Masse von 68 kDa und einem Kupferatom pro Molekül. Sie oxidiert die Galaktose **30** zu dem entsprechenden Aldehyd **31**, dabei wird molekularer Sauerstoff zu Wasserstoffperoxid reduziert.^[30] Als Substrate dienen in der Natur neben D-Galactose auch zahlreiche andere primäre Alkohole.^[38]

Das Enzym zeigt Stereo- und Regioselektivität (Abbildung 23). Ähnliche Zucker wie L-Galactose und D-Glucose sind keine geeigneten Substrate für dieses Enzym.

Das aktive Zentrum der Oxidase besteht aus einem fünffach-koordinierten Kupfer(II)-Ion in einer quadratisch pyramidalen Anordnung.^[39-43] Die äquatorialen Liganden sind Tyr272, His496, His581 und ein Molekül Wasser, als axialer Ligand dient Tyr495. Das Tyr272 ist durch eine kovalente C-S-Bindung mit Cys228 modifiziert. Das Redoxpotential von 400 mV für die Bildung eines Tyrosylradikals ist sehr niedrig (Abbildung 24, Abbildung 25).

Abbildung 24: Partiell oxidierte, inaktive Form des reaktiven Zentrums der Galactose-Oxidase

Abbildung 25: Vorgeschlagener Reaktionsmechanismus der Galactose-Oxidase

Die Reaktion läuft wie folgt ab: Der Alkohol bindet in einer oxidativen Addition an das Tyrosylradikal **32**. Diese Verbindung **33** reagiert unter Wasserstoffatomübertragung zum Tyrosin 495 zum Ketylradikal **34**. Das Tyrosylradikal ist für die katalytische Aktivität des Enzyms von entscheidender Bedeutung.^[44] Das entstandene gebundene Aldehyd **35** wird durch ein neues Alkoholmolekül ersetzt und die reduzierte Kupfer(I)-form **36** unter Wasserstoffperoxidbildung zum Kupfer(II)Phenoxylradikal-Komplex **33** oxidiert. Es ist mit diversen Metallionen gelungen, koordinierte Phenoxylradikale zu erzeugen und zu

charakterisieren.^[45, 46] Da ein hetero-substituierter Ligand mit einem Phenolarm eine freie Kopplungsstelle für ein Substrat am Metallion zulässt, sollte somit eine ideale Umgebung für eine Oxidation bestehen. Mit anderen Liganden existieren zahlreiche funktionelle Modellkomplexe für die Galactose-Oxidase mit verschiedenen Sauerstoff- und Stickstoffliganden. Ebenso wurden stabile Thioxylliganden mit schwefelhaltigen Liganden realisiert.^[47-69]

Kupfer(I)-Zwischenstufen treten nicht nur in der Galaktose-Oxidase auf, sondern auch in anderen biologischen Systemen. Durch eine Vielzahl von Anwendungen von Kupfer/Sauerstoff-Oxidationen im industriellen Bereich wurde auch ein Verständnis für biochemische Systeme geschaffen. In Metalloenzymen existieren Kupferionen in einkernigen oder mehrkernigen aktiven Zentren, die Sauerstoffaktivierung oder Substratoxidation ermöglichen. Nach Stand der Wissenschaft ist in biologischen Systemen nur der Einelektronenübergang von Kupfer(I) zu Kupfer(II) von Interesse. In vielen reduzierten Kupfer(I)-Enzymen wird eine trigonale Koordination mit Liganden wie Histidin oder Wasser aber auch Methionin oder Tyrosin gefunden. Durch die Art der Liganden wird die Reaktivität des Kupferzentrums bestimmt. Durch die d¹⁰-Elektronenkonfiguration hat das Kupfer(I)-Ion keine elektronische Bevorzugung eines Koordinationspolyeders. Da keine Ligandenfeldstabilisierungsenergie auftritt wird die Geometrie des Komplexes somit durch die sterischen Faktoren der verwendeten mehrzähnigen Liganden bestimmt.^[47-69]

Es wurde bereits eine erhebliche Anzahl von Kupfer(I)-Modellkomplexen mit Stickstoffdonorliganden beschrieben. Die Liganden, die für biomimetische Studien Verwendung finden, enthalten aromatische Stickstoffliganden. Diese Liganden enthalten vorwiegend Pyrazol-, Imidazol- und Pyridingruppen, wie in den natürlichen Vorbildern. ^[70, 71]

Durch die Reaktion der Kupfer(I)-Komplexe mit molekularem Sauerstoff können eine Vielzahl von Kupfer-Sauerstoffspezies, wie Superoxo- und Peroxoverbindungen, entstehen. In folgender Abbildung wird eine Übersicht über die möglichen Bindungsgeometrien der Reaktionsprodukte mit Sauerstoff gezeigt.^[70-73]

2 Problemstellung

Nun sollte die Variationsbreite der Reste an hetero-substituierten Diazapyridinophan-Liganden erweitert werden. Die Synthesen der bereits bekannten hetero-substituierten Vertreter sollten so weit verbessert werden, dass Ligandmengen in großem Maßstab und einer Reinheit, die reproduzierbare Komplexierungsreaktionen ermöglichen, zugänglich sind.

Ein besonderes Augenmerk sollte hierbei auf die Herstellung von Liganden des Types L-N₄RH liegen. Diese Makrozyklenklasse ermöglicht die Einführung von Substituenten, die ein weiteres Donoratom enthalten, wie beispielsweise Phenole, Thiophenole, Acetat- oder Phosphatreste.^[74] Da der Ligand HL-N₄^tBu(^{*t*}PhO) **14** nicht zu komplexieren war, bedurfte es einer strukturellen Variation.^[3] Der Phenolarm dieses Liganden sollte aus einer räumlichen Fixierung durch die zusätzliche Einführung einer Methylengruppierung zwischen dem Stickstoffatom des Makrozyklus und Phenolsubstituent gelöst werden. Das Syntheseprinzip bestünde darin, an einem monosubstituierten Diazapyridinophan L-N₄HR Substitutionsreaktionen zum fünfzähnigen Liganden durchzuführen (Abbildung 27).

Abbildung 27: Ligand HL-N₄R₁("BzO)

Von diesen Liganden sollten Nickel-Komplexe hergestellt werden und der Einfluss der Aminsubstituenten auf die Struktur und die elektronischen Eigenschaften untersucht werden. Vor allem Nickel-Komplexe sind von Interesse, da das Nickel-Ion eine oktaedrische Koordinationsumgebung bevorzugt. Wenn keine Nickel-Komplexe zugänglich sind, sollten die entsprechenden Zink-Komplexe hergestellt werden. Mit Zink-Komplexen können mit Hilfe der NMR-Spektroskopie ebenso Aussagen über die Koordination des Liganden am Zentralmetall in Lösung getroffen werden.

Kupfer(I)- und Kupfer(II)-Komplexe sind besonders wegen ihres Verhaltens gegenüber Sauerstoff im Hinblick auf eine Verwendung für biomimetische Modellkomplexe interessant.^[7, 30] Durch die Übertragung auf Komplexe mit nur einer Phenolgruppe kann eine bessere Annäherungsgeometrie für ein Substratmolekül angenommen werden.^[75-79]

3 Eigene Ergebnisse und Diskussion

3.1 Herstellung der Liganden

3.1.1 Herstellung hetero-substituierter Diazapyridinophan-Liganden

In der Arbeit von Fooken^[3] wurden hetero-substituierte Diazapyridinophanliganden durch eine Reaktion von Aminen mit der Verbindung BCA **12** erhalten. Diese Vorgehensweise lieferte auch in meiner Diplomarbeit Diazapyridinopanliganden.^[31] An diesen konnte das Substitutionsmuster der Aminstickstoffatome variiert werden.

Im Arbeitskreis konnte Fooken^[3] einen Syntheseweg für *tert*-Butyl-bis-(6-chlormethyl-2pyridyl-methyl)amin **12** ausarbeiten und dieses teilweise charakterisieren (Abbildung 28). Im Rahmen der vorliegenden Arbeit konnte das Herstellungsverfahren und insbesondere die Aufarbeitung weiterhin verbessert werden.

Abbildung 28: Herstellung von tert-Butyl-bis-(6-chlormethyl-2-pyridylmethyl)amin BCA 12

Das Produkt BCA **12** wird durch Sublimation von den Edukten befreit. Durch die Verwendung einer größeren Sublime als Alternative zur Kugelrohrdestille und der damit vorhandenen größeren Oberfläche konnte die Sublimationsdauer drastisch verkürzt werden. Durch die Verkürzung der Sublimationsdauer entstehen weniger Zersetzungsprodukte. Im Rückstand der Vakuumsublimation waren neben BCA **12** noch Verunreinigungen enthalten. Diese Verunreinigungen können nahezu vollständig durch eine Vakuumdestillation entfernt werden. Da diese Verbindungen keine erheblichen Probleme bei nachfolgenden Zyklisierungen erzeugen, wurde in späteren Präpärationen darauf verzichtet. Zur Vervollständigung der Analytik wurde nur ein Teil des Materials im Vakuum destilliert. Die Reinheit der destillierten Substanz wurde durch eine Elementaranalyse bestätigt, doch zeigt das ¹H-NMR-Spektrum eine Verbreiterung der Signale, die noch nicht verstanden ist.

Um die Palette an Ausgangsverbindungen für die Synthese von hetero-substituierten Diazapyridinophanliganden zu erweitern, wurden neben der Umsetzung von 2,6-Bis(chlormethyl)pyridin 1 mit *tert*-Butylamin (Abbildung 28) auch Umsetzungen mit anderen primären Aminen durchgeführt. Da der *tert*-Butylrest im Laufe der Derivatisierungsreaktionen abgespalten werden kann, ist insbesondere die Umsetzung mit Aminen mit stabilen und sterisch anspruchsvollen Resten von großem Interesse. Ein solches Amin könnte 1-Adamantylamin sein.

Die Abspaltung der 1-Adamantylgruppe sollte hier erheblich gehemmt sein. Der 1-Adamantylrest ist über ein Brückenkopfkohlenstoffatom an das Stickstoffatom gebunden, wodurch die Alkenbildung erschwert wird.

Eine Zyklisierung von 1-Adamantyl-bis-(6-chlormethyl-2-pyridylmethyl)amin (BCAd) **37** mit *tert*-Butylamin, 1-Adamantylamin oder Natriumtosylamid würde somit sterisch aufwändig substituierte Makrozyklen liefern. Schutzgruppen der Aminfunktionen, wie die Tosylgruppe oder die *tert*-Butylgruppe, können sauer abgespalten werden, ohne dass die 1-Adamantylgruppe entfernt wird.

Die Reaktionsbedingungen der Herstellung von BCA 12 konnten auf BCAd 37 nicht übertragen werden. Es wurde jedoch ein anderer Zugangsweg gefunden, um BCAd 37 in vergleichbarer Reinheit zu gewinnen. Dieser Herstellungsweg führte über eine Mikrowellenreaktion sehr viel schneller zum Produkt, als die nasschemische Reaktion. Es wurde hierbei das Amin mit 2,6-Bis(chlormethyl)pyridin 1 und Kaliumcarbonat in der Mikrowelle umgesetzt. Das Produkt wurde mit Dichlormethan extrahiert und mit Methanol aus dem Rohprodukt gelöst. So konnte die Reinsubstanz in 56 %iger Ausbeute gewonnen werden. Ein großer Vorteil dieser Reaktion ist die lösungsmittelfreie Gewinnung, die für BCA 12 bislang nicht gelang. Dort entweicht wahrscheinlich das Amin aus der Reaktionsmischung aufgrund seines tiefen Siedepunktes. Zyklisierungsreaktionen von BCAd 37 mit primären Aminen lieferten kaum den gewünschten Zwölfring. Da bei Umsetzungen mit BCA 12 sterisch aufwendige Amine sehr selektiv zum Diazapyridinophan reagierten, wurde auch 1-Adamantylamin zur Zyklisierung verwendet. Der homo-substituierte Ligand L-N₄Ad₂ 39 ließ sich nicht in analysenreiner Form herstellen. Ebenso konnte der alternative Syntheseweg analog zur Herstellung des homo-bisalkylsubstituierten Vertreters 38 auch nach Variation der eingesetzten Basen und Lösungsmittel nicht erfolgreich angewendet werden. Der

Reinheitsgrad an L-N₄Ad₂ **39** im erhaltenen Material war maximal 60 %. In den Protonenresonanzspektren dieser Verbindungen wurden neben der Zielsubstanz noch höhergliedrige Zyklen gefunden (Abbildung 29).^[80, 81]

Abbildung 29: Herstellung von L-N₄Ad₂ 39

Die in Abbildung 29 aufgezeigten Syntheserouten lieferten keinen reinen Liganden. Selbst der Versuch, den Liganden L-N₄Ad₂ **39** durch Komplexieren mit Metallsalzen zu reinigen, verlief ohne nennenswerten Erfolg, da sich keine Komplexe definierter Zusammensetzung isolieren ließen.^[80, 81]

Auch Umsetzungen von BCAd **37** mit *tert*-Butylamin und Benzylamin erbrachten keine Diazapyridinophan-Liganden deren Reinheit für Komplexierungen ausreichte.

Um die synthetische Bandbreite zu erhöhen wurden auch andere Zugangswege untersucht:

In einem Syntheseweg für die Herstellung von homo-substituierten Liganden (L-N₄^{*i*}Bu₂ **8** und L-N₄Me₂ **4**) wird von den jeweiligen homo-substituierten 2,6-Bis-(alkylamino-methyl)pyridinen **6** und **7** ausgegangen. Analog zu dieser Herstellungsweise sollten jetzt heterosubstituierte 2,6-Bis(alkylaminomethyl)pyridine als Ausgangsstoffe eingesetzt werden. Zur Synthese des 2-*tert*-Butylaminomethyl-6-methylaminomethyl-pyridin **40** wurde ein Überschuss an 2,6-Bis-chlormethylpyridin **1** mit einem Gemisches aus Methylamin und *tert*-Butylamin umgesetzt. (Abbildung 30). Da die Reaktivität des *tert*-Butylamins und Methylamins in der Reaktion in Acetonitril unterschiedlich sind, wurde ein Verhältnis von 9:1 verwendet. Die höhere Reaktivität des Methylamins sollte hierbei durch einen Überschuss an *tert*-Butylamin ausgeglichen werden. Im ¹H-NMR-Spektrum werden Signale gefunden, die dem 2-*tert*-Butylaminomethyl-6-methylaminomethyl-pyridin **40** zugeordnet werden könnten, doch werden noch eine Fülle anderer Produktsignale beobachtet. Aus diesem Produktgemisch gelang es nicht, das gewünschte hetero-substituierte 2-*tert*-Butylaminomethyl-6methylaminomethyl-pyridin **40** zu isolieren (Abbildung 30).^[80, 81]

Abbildung 30: Herstellung eines hetero-substituierten 2,6-Bis(alkylaminomethyl)pyridins 40

Aus den in der Einleitung beschriebenen Problemen bei den alternativen Synthesestrategien wurden diese nicht weiter verfolgt. Als bestes Edukt für die Synthese hetero-substituierter Diazapyridinophane hat sich das BCA **12** erwiesen. Aus diesem Grund wurde für die Herstellung von hetero-substituierten Diazapyridinophanliganden ausschließlich das BCA **12** verwendet.

3.1.1.1 Synthese der Makrozyklen L-N₄Ad^tBu 17, L-N₄^tBuBz 16 und L-N₄^tBuTos 18

Die Herstellung dieser Liganden wird im folgenden Reaktionsschema gezeigt (Abbildung 31).

Abbildung 31: Zyklisierungsreaktion zum Aufbau sterisch aufwendiger Diazapyridinophane

Mit dem Edukt BCA **12** wurden Zyklisierungsreaktionen mit Benzylamin^[8] und 1-Adamantylamin und deren Hydrochloride durchgeführt.^[31] Die Umsetzungen wurden in Acetonitril durchgeführt. Die Reaktionsdauer beträgt zwei bis drei Tage. Als Basen dienen pulverförmiges Natrium- oder Kaliumcarbonat. Dabei wurde das Amin mit einem großen

Überschuss an Base vorgelegt und hierzu BCA **12** in Acetonitril gelöst getropft. Eine Umkehrung der Reihenfolge im Zutropfen hat eine drastische Steigerung der Menge an Nebenprodukten zur Folge. Die Umsetzungen mit sterisch anspruchsvollen Aminen kann in konzentrierteren Lösungen durchgeführt werden. Alkylamine zeigen eine klare Reaktivitätstendenz: Je sterisch anspruchsvoller der Alkylrest des primären Amins ist, desto weniger Nebenprodukte bilden sich.

Die Verwendung von Methylamin führte jedoch kaum zur gewünschten zyklischen Verbindung L-N₄^tBuMe **15**. Im ¹H-Kernresonanzspektrum wurden die Signale des Diazapyridinophanes **15** nur in geringer Intensität gefunden.

Das Benzylamin ist bereits ein Amin mit einem etwas größeren sterischen Anspruch. Benzylamin wurde verwendet, da mannigfaltige Variationen des Liganden durch Einführung dieser Gruppe erhofft wurden.^[82] So könnte die Benzylgruppe als Schutzgruppe für N-H-Funktionen dienen und zu einem späteren Zeitpunkt abgespalten werden. Der Einbau von funktionalisierten Benzylgruppen könnte zu einer potentiell fünfzähnigen Ligandspezies führen. Die Reaktion mit Benzylamin war aber wenig selektiv (Abbildung 32). In Acetonitril fiel die Zielverbindung **16** mit undefinierten Nebenprodukten verunreinigt aus. Mit Chloroform oder Dichlormethan wurde ein farbloser Feststoff gewonnen. Dieser Feststoff enthielt jedoch nur zu etwa 60 % den Liganden L-N₄^tBuBz **16**. In der Mutterlauge verblieb zudem der gewünschte Makrozyklus **16**, wie ESI-Massenspektren belegten, jedoch war der Gehalt an Nebenprodukt sehr viel größer. Die Nebenprodukte konnten nach vielen Versuchen mit keinem gängigen Verfahren vollständig abgetrennt werden. Die erhaltene Reinheit genügte jedoch, um ihn in einer Komplexierungsreaktion zum reinen Komplex umzusetzen.

Wurde 1-Adamantylamin(-hydrochlorid) bzw. *tert*-Butylamin als Edukt eingesetzt, traten kaum Nebenreaktionen auf. Aus diesem Grunde ist es möglich, in einer konzentrierteren Lösung als bei der Umsetzung von Benzylamin mit BCA **12** zu arbeiten. Da die Umsetzung mit *tert*-Butylamin keinen hetero-substituierten Makrozyklus bildet, wurde auf eine Optimierung dieser Reaktion verzichtet. Außerdem konnte dieser Ligand durch die übliche

Synthese der homo-substituierten Diazapyridinophanliganden einfacher hergestellt werden. Der Makrozyklus L-N₄Ad^tBu ist in Methylenchlorid, Chloroform, Aceton und niederen Alkoholen sehr gut, in Acetonitril, Hexan und Ethylacetat schlecht löslich. In Säuren löst sich L-N₄Ad^tBu 17 unter Bildung des Hydrochlorids. Bei Erhöhung des pH-Wertes fällt der Ligand 17 im alkalischen Bereich aus.

In der Diplomarbeit konnte gezeigt werden^[31], dass Natriumtosylamid auch eine Ringschlussreaktion mit BCA 12 eingeht, dennoch konnte damals noch kein analysenreines Material synthetisiert werden (Abbildung 33). Diese Prozedur wurde im Rahmen der vorliegenden Arbeit verbessert.^[83]

Abbildung 33: Herstellung von L-N₄^tBuTos

In dieser Synthese dient Natriumtosylamid sowohl als Zyklisierungsreagenz als auch als Base. Da Natriumtosylamid in Acetonitril nahezu unlöslich ist, wird wie bei der Synthese des Makrozyklus L-N₄Tos₂ 2 das schwerflüchtige Dimethylformamid als Lösungsmittel verwendet. Die Menge des Natriumsalzes konnte im Vergleich zur bisherigen Reaktionsführung ^[31] von vier Äquivalenten auf zwei Äquivalente gesenkt werden. Das Hauptprodukt ist in DMF schlechter löslich als die Nebenprodukte. Wenn das Volumen des Dimethylformamids auf weniger als die Hälfte des Ursprungsvolumens eingeengt wird, fallen die Nebenprodukte mit aus. Ein Einengen auf die Hälfte lieferte analysenreines Material (18). Da die Mutterlauge noch reich an Produkt 18 war, musste ein Kompromiss zwischen Reinheit und Ausbeute geschlossen werden. Zur Gewinnung eines für Derivatisierungen geeigneten Materials konnte die Reaktionslösung auf maximal ein viertel des Ausgangsvolumens einreduziert werden. Dieser Niederschlag konnte nach der Aufreinigung ohne Probleme für weitere Reaktionen genutzt werden.^[84] Das farblose Pulver 18 konnte in einer Ausbeute von 54,5 % gewonnen werden.^[83]

In Tabelle 1 sind die verwendeten Edukte, Lösungsmittel Basen und Reinheiten zusammengefasst.

Amin/Amid	Base	Lösungsmittel	Ausbeute
Methylamin	Na ₂ CO ₃	Acetonitril	0 %
Benzylamin	Na ₂ CO ₃	Acetonitril	22 %
1-Adamantylaminhydrochlorid	K ₂ CO ₃	Acetonitril	62 %
Natriumtosylamid	Natriumtosylamid	Dimethylformamid	50 %

Tabelle 1:	Zyklisierungshedi	ngungen und	Ausbeuten de	er <i>tert-</i> butyl	substituierten l	Diazanyridinonhane
I abone It	L'inster ungsbeu	ngungen unu.	Lusseuten ut		Substituiti ten i	
				•		

3.1.1.2 Massenspektrometrische Untersuchungen der Liganden L-N₄Ad^tBu 17, L-N₄^tBuBz 16 und L-N₄^tBuTos 18

In den Massenspektren der Verbindungen wurden Fragmente gefunden, die der Molmasse der entsprechenden Liganden oder einer Spezies $(M \pm 1)^+$ zugeordnet werden können. Außerdem wurden die Diazapyridinophanfragmente gefunden, deren Substituenten an den Stickstoffatomen abgespalten wurden.

Bei den Liganden L-N₄Ad^tBu **17** wird der Molpeak gefunden, in den Makrozyklen und L-N₄^tBuBz **16** und L-N₄^tBuTos **18** wird statt des Molpeaks ein Massenfragment, das zusätzlich ein Wasserstoffatome enthält, gefunden. Im Liganden L-N₄^tBuBz **16** werden auch das Fragment der Abspaltung beider Alkylsubstituenten mit einem zusätzlichen Wasserstoffatom beobachtet.

Die charakteristischen Fragmente sind in den Übersichten Tabelle 2 bis Tabelle 4 gezeigt.

m/z	Intensität in %	Fragment
430	43,17	M^+
415	16,64	$(M-CH_3)^+$
373	100	$(M-^{t}Bu)^{+}$
295	60,25	$(M-Ad)^+$

Fabelle 2: Fragmentierung des Liganden L-N₄Ad'Bu 17 (E	ESI)
--	------

Tabelle 3:	Fragmentierung	des I	Liganden	L-N ⁴	BuBz 16	ESD
I abene et	I i uginenerer ung	aco i	Sunath		Dubl IV	Lor

m/z	Fragment
388	$(M+H)^{+}$
331	$(M-^{t}Bu+H)^{+}$
239	$(M-^{t}Bu-Bz+H)^{+}$

Tabelle 4: Fragmentierung des Liganden L-N₄^tBuTos 18 (ESI)

m/z	Fragment
451,9	$(M+H)^+$
396,3	$(M-C_4H_8)^+$
295,7	$(M-Tos-H)^+$
3.1.2 Säurekatalysierte tert-Butylgruppenabspaltung

In meiner Diplomarbeit^[31] wurde die selektive Entfernung der *tert*-Butylgruppe am Liganden L-N₄^{*t*}BuTos **18** mit Salzsäure beobachtet. Somit sollte die in der Literatur für andere tertiäre Amine bekannte *tert*-Butylgruppenentfernung an Aminfunktionen auf Diazapyridinophane übertragen werden. Bei dieser Reaktion bildet sich unter der Einwirkung von Protonensäuren Isobuten, das durch die Wärme aus dem Reaktionsmedium ausgetrieben wird.^[31, 85, 86] Im Rahmen der vorliegenden Promotionsarbeit konnte die Umsetzung von L-N₄^{*t*}Bu₂ **8** zu L-N₄H₂ **3** mit Erfolg durchgeführt werden. In dieser Bis*-tert*-butylverbindung **8** liegen keine weiteren säurelabilen Gruppen vor, so dass mit konzentrierter Säure gearbeitet werden kann. Durch die höhere Protonen-Konzentration konnte die Reaktionsdauer im Vergleich zur Reaktion der hetero-substituierten Tosylverbindung **18** deutlich gesenkt werden (Abbildung 34).

Abbildung 34: Säurekatalysierte Abspaltung der tert-Butylgruppe am homo-substituierten Liganden

Die Reaktion liefert mit 85 % eine relativ hohe Ausbeute. Die Ausbeute ist mit der etablierten Herstellungsweise durch saure Hydrolyse von L-N₄Tos₂ **2** vergleichbar,^[6] vorteilhaft erwies sich dabei eine Verringerung der Lösungsmittelabfallmengen bei gleich bleibend hohem Umsatz.^[4]

3.1.2.1 Synthese der Liganden L-N₄AdH 41, L-N₄BzH 42 und L-N₄HTos 19

Aufgrund der Säurelabilität der Tosylgruppe muss bei der Umsetzung mit L- N_4 ^{*t*}BuTos **18** eine geringere Säurekonzentration verwendet werden, als bei der Reaktion mit L- N_4 ^{*t*}Bu₂ **8**. Bei einer Säurekonzentration von ca. 3 mol/l und einer Reaktionsdauer von drei bis fünf Tagen kann in der Siedehitze die *tert*-Butylgruppe nahezu selektiv entfernt werden (Abbildung 35). Unter diesen Reaktionsbedingungen entsteht auch zu etwa 5 % Ligand L- N_4 H₂ **3**, der im Laufe der Aufarbeitung abgetrennt wird.

Nach dem Entfernen der Salzsäure wird das Hydrochlorid in Wasser aufgenommen und mit Natriumhydroxidplätzchen bis zur alkalischen Reaktion behandelt. Der ausgefallene Ligand **19** wird abfiltriert und mit Wasser und Diethylether gewaschen. Nach dem Trocknen wurden die organischen Bestandteile mit Dichlormethan extrahiert. Wenn eine größere Menge an L-N₄H₂ **3** im Rohprodukt enthalten ist, kann L-N₄HTos **19** mit heißem Wasser extrahiert werden. Die makrozyklische Substanz L-N₄HTos **19**, die in einer Ausbeute von 74 % analysenrein zu gewinnen ist, ist in niederen Alkoholen und Acetonitril gut löslich.^[83]

Aus den vereinten wässrigen Phasen (NaOH-Fraktion, Waschphase, Extraktionswasser) kann mit Methylenchlorid das Nebenprodukt L-N₄H₂ **3** analysenreinrein gewonnen werden. Dieses war in 1-5 % der Ausbeute entstanden.^[83]

Im Vergleich zu den Ergebnissen aus meiner Diplomarbeit konnte die Synthese des Liganden L-N₄HTos **19** nicht entscheidend verbessert werden, jedoch war durch die sehr viel höhere Qualität des Eduktes analysenreines Produkt darstellbar.^[83]

Bei der Umsetzung von L-N₄Ad^tBu **17** mit Salzsäure zeigte sich, dass bei geringen Konzentrationen der Säure und der deswegen langen Reaktionszeiten auch die 1-Adamantylgruppe abgespalten wurde. Eine Verkürzung der Reaktionszeit auf ein bis zwei Stunden und eine Erhöhung der Säurekonzentration auf 9 mol/l lieferten den gewünschten Liganden L-N₄AdH **41**, ohne nennenswerte Abspaltung der 1-Adamantylgruppe (Abbildung 36).^[87-89]

Abbildung 36: Entschützung zum N-1-Adamantyl-diaza[3.3](2,6)pyridinophan L-N₄AdH 41

Der Zyklus L-N₄AdH **41** ist in Ethanol, Methanol, Chloroform und Dichlormethan gut löslich. In Wasser ist er im neutralen und basischen schlecht, jedoch im sauren Milieu gut löslich. Fernerhin ist die Verbindung **41** in Acetonitril nahezu unlöslich, so dass Verunreinigungen mit Acetonitril leicht entfernt werden können. Es wurde ein farbloses Pulver zu 60,2 % Ausbeute gewonnen.

Die Synthese von L-N₄BzH **42** verläuft in weiten Teilen analog zur Herstellung von L-N₄AdH **41**. Da die Benzylgruppe nicht säurelabil ist, kann ebenfalls im stark sauren Bereich gearbeitet werden. Da das verwendete Edukt nicht sauber war, kann für die farblose Substanz keine Ausbeute angegeben werden.

3.1.2.2 Massenspektrometrische Untersuchungen der Diazapyridinophan-Liganden des Typs L-N₄HR

Auch bei den Diazapyridinophanen mit nur einer tertiären Aminfunktion wurden Fragmente, die mit Abspaltung der Alkylgruppe am tertiären Stickstoffatom erklärt werden können, in den entsprechenden Massenspektren gefunden. Bei den Liganden L-N₄AdH **41** und L-N₄HTos **19** wird der Molpeak gefunden. Im Liganden L-N₄BzH **42** werden lediglich ein Natriumaddukt und der vierfach protonierte Zyklus nachgewiesen. So werden sowohl die 1-Adamantyl- als auch die Tosylgruppe abgespalten. Es wurde im Liganden L-N₄HTos **19** sogar die Abspaltung eines Wasserstoffatomes gefunden. Lediglich bei der benzylsubstituierten Spezies **42** wurden keine N-H und N-Bz Bindungstrennung beobachtet. Ein Überblick über die erhaltenen Signale ist in den Tabellen Tabelle 5 bis Tabelle 7 gezeigt:

m/z	Intensität in %	Fragment
374	20	$(M)^+$
239	22	$(M-Ad)^+$

Tabelle 5: Fragmentierung des Liganden L-N₄AdH 41 (LC-MS)

Tabelle 6: L-N₄BzH 42 (LC-MS)

m/z	Fragment
340	$(MH_4)^+$
362	$(M+Na)^+$

Tabelle 7: Fragmentierung des Liganden L-NHTos 19 (ESI)

_m/z	Intensität in %	Fragment
394	13,04	$(M)^+$
393	51,37	$(M-H)^+$
239	95,63	$(M-Tos)^+$

3.1.3 Einführung einer Methylgruppe nach Leuckart-Wallach

3.1.3.1 Synthesen der Liganden L-N₄AdMe 43 und L-N₄MeTos 44

Die durch die säurekatalysierte Abspaltung der *tert*-Butylgruppe entstandenen Makrozyklen L-N₄HR (R = $Tos^{[31]}$ **19**, Ad **41**) konnten durch eine Leuckardt-Wallach-Reaktion zu den entsprechenden methylsubstituierten Derivaten L-N₄MeR (R = Ad **43**, Tos **44**) umgesetzt werden. Hierzu wird L-N₄HR, wie in Abbildung 37 gezeigt, mit Ameisensäure und Formaldehyd zur Reaktion gebracht.

Die Umsetzung dauert 24 Stunden und die Produkte können in guter Ausbeute gewonnen werden. Nach Entfernen des Lösungsmittels gestaltet sich die Aufarbeitung der beiden methylsubstituierten Liganden **43** und **44** unterschiedlich. Im Falle von L-N₄AdMe **43** wird der Rückstand in Wasser gelöst und bei 0 °C bis zur stark alkalischen Reaktion mit Natriumhydroxid versetzt. Der sich abscheidende Feststoff wird mit Wasser gewaschen. Rekristallisationen zuerst aus Acetonitril und danach aus Essigsäureethylester liefern farblose Kristalle. Diese Kristalle wurden für die Charakterisierung der Verbindung verwendet. L-N₄AdMe **43** ist in Säuren gut, Wasser und niederen Alkoholen begrenzt löslich und fällt im alkalischen Bereich aus. In den halogenierten Lösungsmitteln Methylenchlorid und Chloroform ist der Makrozyklus **43** sehr gut löslich. Auch niedere Alkohole und Aceton haben ein ausreichendes Lösungsvermögen.

Der makrozyklische Ligand L-N₄HTos **19** lässt sich zu L-N₄MeTos **44** umsetzen. Anders als der Ligand L-N₄AdMe **43** fällt der Ligand L-N₄MeTos **44** in Natronlauge nicht aus. Der Makrozyklus **44** muss mit Dichlormethan aus basischer Lösung extrahiert werden. Das so erhaltene Rohprodukt war zu 98 % rein und wurde für weitere Reaktionen eingesetzt. Eine Kristallisation eines Teiles der Substanz **44** aus siedendem Essigsäureethylester lieferte farbloses analysenreines Material. Die Verbindung **44** ist in Ethanol, Methanol, Aceton, Dichlormethan oder Chloroform löslich.^[83]

3.1.3.2 Massenspektrometrische Untersuchung methylsubstituierter Makrozyklen

Im ESI-Massenspektrum der methanolischen Lösung des Liganden L-N₄MeTos **43** wurde bei 431 die dem Natriumaddukt entsprechende Molmasse gefunden. Das Signal bei 253 konnte dem Teilchen $(M-Tos)^+$ zugeordnet werden (Tabelle 8).

Tabelle 8: Fragmentierungsmuster des Liganden L-N₄MeTos 43 (LC-MS)

m/z	Fragment
431	$(M+Na)^+$
253	$(M-Tos)^+$

3.1.4 Herstellung des Liganden L-N₄HMe **21** durch Entfernen der *para*-Toluolsulfonatgruppe

3.1.4.1 Synthese des Liganden L-N₄HMe 21

In Anlehnung an die Synthese von L-N₄H₂ **3** aus L-N₄Tos₂ **2** kann auch L-N₄HMe **21** durch säurekatalysierte Abspaltung der Tosylgruppe aus L-N₄MeTos **44** gewonnen werden^[6, 31]. Dazu wird L-N₄MeTos **44** in konzentrierter Schwefelsäure bei 85 °C für zweieinhalb Stunden erhitzt (Abbildung 38).^[83]

Eine längere Reaktionszeit begünstigt die Entstehung von Abbauprodukten, die nicht vollständig abgetrennt werden können. Es folgt die Abtrennung der Schwefelsäure durch Eingießen der Reaktionslösung in gekühlten Diethylether. Das in Wasser aufgenommene Material wird mit Natriumhydroxid alkalisch gestellt und mit Dichlormethan extrahiert. Der Ligand **21** wird in 96 % iger Ausbeute gewonnen, wobei zum Teil Probleme bei der Aufreinigung auftreten. Der makrozyklische Ligand L-N₄HMe **21** ist in niederen Alkoholen, Acetonitril und Ethylacetat gut, in Wasser sehr schlecht löslich.^[83]

Versuche der Entschützung mittels anderer Säuren, wie z. B. Salzsäure, Ameisensäure und Trifluoressigsäure, führten nicht zum gewünschten Produkt **21**. Auch andere Entschützungsmethoden, die in der Literatur beschrienen sind, ließen sich nicht übertragen.^{[90-97], [98]}

3.1.4.2 Massenspektrometrische Untersuchungen des Liganden L-N₄HMe 21

Im Massenspektrum der Substanz L-N₄HMe **21** konnte der Molpeak beobachtet werden. Es konnte nicht das Teilchen mit abgespaltener Methylgruppe gefunden werden. Im Gegensatz zu den Massenspektren der bisherigen Verbindungen wurden bei L-N₄HMe **21** neben dem Molekülpeak nur noch Zerfallprodukte gefunden werden (Tabelle 9).

m/z	Intensität in %	Fragment
255	3,07	$(M+H)^+$

Tabelle 9: Fragmentierung de	es Liganden L-N ₄ HMe 21 (GC-MS)
------------------------------	---------------------------------------	--------

3.1.5 NMR-spektroskopische Charakterisierung der Makrozyklen

Die synthetisierten Makrozyklen wurden mit Hilfe der NMR-Spektroskopie untersucht. Der Einfluss der unterschiedlichen Aminsubstituenten wird in folgender Tabelle gezeigt. Die hierzu verwendete Nummerierung wird in Abbildung 39 erklärt.

Abbildung 39: Die unterschiedlichen Kohlenstoffatome von BCA 12 und der Diazapyridinophanliganden

$R_{1,}R_{2}$	H(C4,4')	H(C3,3')	H(C5,5')	H(C1,1')	H(C7,7')
H, H ^[1]	7,06	6,47	6,47	3,92	3,92
Me, $Me^{[1]}$	7,12	6,76	6,76	3,83	3,83
$^{t}\mathrm{Bu}, ^{t}\mathrm{Bu}^{[1]}$	7,04	6,69	6,69	3,95	3,95
Tos,Tos ^[1]	7,1-7,4	7,1-7,4	7,1-7,4	4,48	4,48
Ad, ^t Bu	7,45	6,68(9)	6,68(9)	4,00	3,96
^t Bu,Tos	7,17	6,82	6,98	3,91	4,48
H, Tos	7,17	6,60	7,06	3,91	4,51
Me, Tos	7,17	6,80	7,03	3,75	4,49
H, Me	7,10	6,54	6,71	3,84	4,01
BCA	7,50	7,41	7,15	4,50	3,92
Ad, H	7,04	6,71	6,45	4,07	3,95
Ad,Me	6,74-7,08	6,74-7,08	6,74-7,08	4,04	3,82

Tabelle 10: ¹H-NMR-Signale von BCA 12 und der Diazapyridinophanliganden

Die aromatischen *meta-* und *para-*Protonen treten in das Ringstromfeld des jeweils anderen Pyridinringes. Die resultierenden Signale sind deshalb im Vergleich zu Verbindungen mit acyclischer Geometie hochfeldverschoben. Die Protonen der Pyridinringe liefern zwei unterschiedliche Signale. Ein Pseudotriplett, das von den *para-*ständigen Protonen der Pyridingruppen stammt, liegt beim unsubstituierten Grundkörper bei $\delta = 7,06$ ppm, beim L-N₄^{*t*}Bu₂ **8** bei $\delta = 7,04$ ppm und beim L-N₄Me₂ **4** bei $\delta = 7,12$ ppm. Beim L-N₄Tos₂ **2** konnte keine genaue Zuordnung getroffen werden, aber es werden Signale zwischen $\delta = 7,10$ ppm und $\delta = 7.40$ ppm beobachtet. Die *meta*-Protonen treten bei Werten unter $\delta = 7.00$ ppm in Resonanz. Dieses Signal kann als charakteristisch für die syn-Konformation der Diazapyridinophane angesehen werden. Die Verschiebung der meta-Protonen beim L-N₄H₂ **3** wurde bei $\delta = 6.47$ ppm als Pseudodublett gefunden. Die *meta*-Signale der homodialkylsubstituierten Diazapyridinophanliganden liegen bei $\delta = 6,76$ ppm (L-N₄Me₂ 4) und $\delta = 6,69$ ppm (L-N₄^tBu₂ 8). Im ditosylsubstituierten Diazapyridinophan 2 befindet sich das Pseudodublett zwischen $\delta = 7,10$ ppm bis $\delta = 7,40$ ppm. Für die Signale der Methylengruppen wird aufgrund der schnellen Inversionsreaktion am Aminstickstoff und der schnellen Rotation um die C-C- und C-N-Bindung nur ein Signal für die Protonen beobachtet. Die dynamischen Effekte wurden bereits bei den homo-substituierten Diazapyridinophanen untersucht. Die Signale der beiden Methylenbrückenprotonen im Liganden L-N₄H₂ $\mathbf{3}$ verschmilzt durch die schnelle Bewegung zu einem scharfen Signal bei $\delta = 3,92$ ppm. Bei sterisch aufwendig substituierten Liganden wird die Dynamik langsamer. Das führt zu einer spürbaren Verbreiterung der Signale der Methylenprotonen beim Diazapyridinophan L-N₄Me₂ 4, die beim L-N₄^tBu₂ 8 noch stärker wird. Die chemische Verschiebung ist bei den homo-substituierten Diazapyridinophanen L-N₄H₂**3**, L-N₄Me₂**4** und L-N₄[']Bu₂**8** sehr ähnlich (3,83 ppm $\leq \delta \leq$ 3,95 ppm). Durch die stark elektronenziehende Eigenschaft der Tosylgruppe wird im ditosylsubstituierten Diazapyridinophan 2 das Signal tieffeldverschoben. Es wird ein Singulett bei $\delta = 4,48$ ppm gefunden.^[1]

Die chemischen Verschiebungen der hetero-substituierten Diazapyridinophane sind denen der homo-substituierten Vertreter sehr ähnlich. Das AB₂-System der homo-substituierten Vertreter geht bei den hetero-substituierten Verbindungen in ein ABC-System über. Durch die unterschiedliche Substitution wird bei den Pyridinprotonen in *meta*-Position eine unterschiedliche chemische Verschiebung der resultierenden Pseudodubletts gefunden. Ebenso haben die verbrückenden Methylengruppen, je nachdem, wie der Substituent des gebundenen Stickstoffatomes beschaffen ist, bei unterschiedlicher Frequenz ihre Resonanz. Diese Resonanzen entsprechen ungefähr den chemischen Verschiebungen der heterosubstituierten Vertreter. Einen Einfluss auf die chemische Verschiebung übt auch die elektronische Natur des Aminsubstituenten aus: Bei stark elektronenziehenden Gruppen wie der Chloridgruppe in der offenen Verbindung BCA **12** oder der Tosylgruppe tritt eine Abschirmung der benachbarten Protonen auf.

Bei allen *tert*-butylsubstituierten Diazapyridinophanen wird keine Einschränkung der freien Rotation der *tert*-Butylgruppe beobachtet, da jeweils nur ein Signal im üblichen Verschiebungsbereich gefunden wurde. Wie bei den homo-substituierten Verbindungen wird beobachtet, dass durch große Substituenten die Dynamik der Beweglichkeit der Bindungen eingeschränkt wird. Dies äußert sich durch die verbreiterten Signale der Methylenprotonen.

Im ¹H-NMR-Spektrum werden die für die Diazapyridinophan-Liganden charakteristischen Pyridinsignale unter δ = 7,5 ppm gefunden. Wenn das Pyridinophan unterschiedlich substituiert ist, dann liegen die Signale im Bereich der jeweiligen homo-substituierten L-N₄R₂-Verbindungen.

Im Gegensatz zu den anderen hetero-substituierten Liganden L-N₄Ad⁴Bu **17** sind die Substituenten sowohl elektronisch als auch sterisch sehr ähnlich, weshalb hier die Änderungen der Signallagen der unterschiedlichen Protonen im ¹H-NMR-Spektrum sehr gering sind. Die chemische Verschiebung der Methylengruppe bei $\delta = 4,00$ ppm und $\delta = 3,91$ ppm entspricht der Verschiebung im L-N₄^{*t*}Bu₂ **8**^[1]. Aufgrund der hohen spektroskopischen Ähnlichkeit von 1-Adamantyl- und *tert*-Butylgruppe überlagern sich aufgrund des Kopplungsmusters die beiden Pseudodubletts der *meta*-ständigen Wasserstoffatome am Pyridinring. Im 400-MHz-¹H-NMR-Spektrum sind die beiden Dubletts nicht aufgelöst. Die unterschiedlichen Signale der verbrückenden Methylenprotonen werden als breites Singulett detektiert. Das aus diesem Grund aufgenommene 200-MHz-Spektrum bestätigt die unsymmetrische Substitution bei $\delta = 6,69$ ppm und $\delta = 6,68$ ppm für die Wasserstoffatome

Die Substituenten der Stickstoffatome haben ebenfalls charakteristische Verschiebungen, die von den Substituenten des anderen Stickstoffatomes im Wesentlichen nicht beeinflusst werden. In folgender Tabelle sind die chemischen Verschiebungen der Alkylsubstituenten angegeben.

Substituent	Verschiebung δ in ppm	Multiplizität
^t Bu	1,26-2,21	S
CH_2Ph	3,4-3,8	d
$\mathrm{CH}_2\mathbf{Ph}$	7,2-7,5	m
CHAd	2,17	S
CH ₂ Ad	2,04	S
CH ₂ Ad	1,69	S
Me-PhSO ₂	7,80	m
Me-PhSO ₂	7,38	m
Me-PhSO ₂	2,47	S
Me	2,71-2,76	S
Н	2,15	S

Tabelle 11: Chemische Verschiebungen der Alkylsubstituenten im ¹H-NMR

Die ¹³C-Resonanzen des makrozyklischen Ringes sind sehr ähnlich bei allen Diazapyridinophanliganden. Diese werden in folgender Tabelle gegenübergestellt. Die Bezifferung, die verwendet wurde, ist in der nächsten Abbildung angegeben.

Abbildung 40: Magnetisch-inäquivalente Kohlenstoffatome des Diazapyridinophangerüstes

	$\mathbf{R}_{1},\mathbf{R}_{2}$	1,1′	2, 2'	3, 3'	4, 4'	5, 5′	6, 6'	7,7′
A	Ad, ^t Bu	56,1	160,2	122,2	135,6	122,3	159,7	56,1
^t H	Bu, Tos	57,1	160,3	122,2	136,4	123,5	154,5	58,10
]	H, Tos	55,3	155,4	121,2	136,4	122,5	157,1	57,1
Ν	le, Tos	56,90	154,8	122,7	136,5	123,3	157,4	66,00
	Ad, H	56,6	160,9	122,1	135,1	119,5	158,0	55,8
A	Ad, Me	56,3	160,7	122,9	135,7	122,1	157,0	66,4

Tabelle 12: Chemische Verschiebungen der Diazapyridinophan-Kohlenstoffatome in ppm

Die chemischen Verschiebungen der endozyklischen Methylenprotonen variieren zwischen $\delta = 55,8$ ppm bezüglich der CH₂-Gruppe in der Nähe des unsubstituierten Amines und $\delta = 66,4$ ppm für die an das methyl-substituierten Stickstoffatom gebundene. Die Variationsbreite für die chemischen Verschiebungen der quartären Kohlenstoffatomen des Pyridins liegt bei $\delta = 154,5$ ppm für die Verbindung L-N₄HTos **19** und bei $\delta = 160,7$ ppm im

Falle des Liganden L-N₄AdMe **43**. Die aromatischen Kohlenstoffatome erscheinen im üblichen Bereich der substituierten Pyridine. Die Kohlenstoffatome in *ortho*-Position zum Pyridinstickstoffatom treten zwischen $\delta = 119,5$ ppm (L-N₄AdH **41**) und $\delta = 123,5$ ppm (L-N₄'BuTos **18**) in Resonanz. Die chemischen Verschiebungen der *para*-Kohlenstoffatome sind zwischen $\delta = 135,1$ ppm (L-N₄AdH **41**) und $\delta = 136,5$ ppm (L-N₄MeTos **44**) zu beobachten. Im den Kohlenstoffresonanzspektren ist ein Einfluss der Aminsubstituenten auf die Methylenkohlenstoffatome und die quartären Pyridinkohlenstoffatome zu beobachten. Die *meta*- und *para*-Kohlenstoffatome haben jeweils nahezu identische chemische Verschiebungen. Die entsprechenden Signale der Substituenten der Aminstickstoffatome ist in folgender Tabelle aufgezeigt.

Substituent	Verschiebung δ in ppm	Multiplizität
- ^t Bu	28	q
-C - ^{<i>t</i>} Bu	56	S
-C-Ad	56	S
-CHAd	30	d
-CH ₂ Ad	37	t
-CH ₂ Ad	40	t
Me-PhSO ₂ -	130 127 134 136	m m s s
Me-PhSO ₂ -	22	S

Tabelle 13: Chemische Verschiebungen im ¹³C-NMR-Spektrum der Substituenten am Stickstoffatom

Die Signale wurden aufgrund der chemischen Verschiebung, der Multiplizität des Signals und des Vorzeichens des Signals im DEPT(135)-Spektrum zugeordnet.

3.1.5 Infrarotspektren hetero-substituierter Diazapyridinophane mit vier Donoratomen

Durch die strukturelle Vergleichbarkeit des Ligandgrundgerüstes sind viele Schwingungsmoden sehr ähnlich. In folgender Tabelle werden die Gerüstschwingungen, die für die Diazapyridionphane charakteristisch sind, gegenübergestellt.

L-N ₄ Ad'Bu 17 KBr	L-N ₄ AdH 41 KBr	L-N ₄ AdMe 43 KBr	L-L ₄ ′BuBz 16 KBr	L-N₄HTos 19 KBr	L-N₄TosMe 20 KBr	L-N₄HMe 21 KBr
3428	3426	3464	3420	3396	3411	3446
2968	2930	2911	2968	2994	3061	2923
2898	2902	2848	2824	2842	2914	
1588	1598	1588	1591	1592	1591	1586
1448	1468	1452	1456	1456	1455	1459
1364	1368	1369	1363	1358	1347	1365
1096	1084	1098	1074	1094	1093	1096
926	916	921	932	912	911	894

Tabelle 14: Gemeinsame IR-Schwingungen hetero-substituierter Diazapyridinophan-Liganden in cm⁻¹

Bei den Alkyl-Aminsubstituenten treten keine charakteristischen Absorptionen auf. Lediglich im Fingerprintbereich können Unterschiede beobachtet werden. Diese Schwingungen können auch zum Teil in den Komplexen wiedergefunden werden. In den tosylsubstituierten Liganden konnten die Sulfonamidschwingung bei einer Wellenzahlen von $\tilde{\nu} = 1321 \text{ cm}^{-1}$ (L-N₄HTos **19**) und $\tilde{\nu} = 1324 \text{ cm}^{-1}$ (L-N₄TosMe **20**) gefunden werden.^[83] Aliphatischen N-H-Schwingungen konnten bei dieser Verbindungsklasse bei $\tilde{\nu} = 2900$ bis $\tilde{\nu} = 3000 \text{ cm}^{-1}$ beobachtet werden.

3.1.6 Röntgenstrukturen der hetero-substituierten Liganden

Es konnten von den Liganden L-N₄HTos **19**, L-N₄AdH **41**, L-N₄^{*t*}BuTos **18**, L-N₄Ad^{*t*}Bu **17**, L-N₄AdMe **43** Einkristalle für eine Strukturaufklärung gewonnen werden.

In Abbildung 41 bis Abbildung 45 werden die perspektivischen Ansichten der Strukturen der Liganden gezeigt.

C(11) Abbildung 42: Perspektivische Ansicht des Liganden L-N₄Ad'Bu 17

Abbildung 43: Perspektivische Ansicht des Liganden L-N₄HTos 19

Abbildung 44: Perspektivische Ansicht von L-N₄AdH 41

Abbildung 45: Perspektivische Ansicht des Liganden L-N₄AdMe 43

In folgender Tabelle werden die strukturell sehr ähnlichen Liganden L-N₄Ad'Bu **17** und L-N₄'Bu₂ **8**^[1] verglichen. Es zeigt sich, dass zwischen dem homo- und hetero-substituierten Liganden kaum ein Unterschied in den Bindungsparametern vorliegt. Hierbei wird die Bezifferung der Atome von Verbindung **17** verwendet.

Bindungslänge in Å	L-N ₄ Ad'Bu 17	L-N ₄ ^{<i>t</i>} Bu 8 ^[1]
N(4)-C(1)	1,484(3)	1,447(5)
N(4)-C(14)	1,479(2)	1,475(6)
N(3)-C(13)	1,340(2)	1,332(6)
N(3)-C(9)	1,340(2)	1,327(6)
C(1)-C(2)	1,519(3)	1,506(6)
C(13)-C(14)	1,517(3)	1,506(6)
N(2)-C(25)	1,506(2)	1,487(5)

Tabelle 15: Vergleich der Strukturparameter von L-N₄Ad⁴Bu 17 und L-N₄⁴Bu₂8^[1]

Bindungswinkel in °		
C(8)-N(2)-C(7)	110,6(2)	110,9(4)
C(9)-N(3)-C(13)	117,9(2)	117,8(4)
N(2)-C(8)-C(9)	113,3(2)	115,0(4)
N(3)-C(9)-C(8)	116,0(2)	114,5(4)
N(3)-C(13)-C(14)	116,3(2)	116,6(4)
N(2)-C(7)-C(6)	111,4(2)	112,6(4)
C(7)-N(2)-C(25)	113,8(2)	110,8(1)
C(8)-N(2)-C(25)	113,1(2)	113,4(3)

Wie auch bei den homo-substituierten Diazapyridinophan-Liganden orientieren sich die Pyridinringe aufeinander zu. Die Winkel zwischen den Pyridinringebenen in *syn*-Anordnung liegen zwischen 94,38° in L-N₄AdMe **43** und 107,22° in L-N₄HTos **20**. Die Aufspaltungswinkel der Pyridinringe liegen bei L-N₄HTos **19**, L-N₄AdH **41**, L-N₄^{*t*}BuTos **18** und L-N₄Ad^{*t*}Bu **17** in einem ähnlichen Bereich, L-N₄AdMe **43** hingegen hat einen sehr viel kleineren Winkel. Ein Maß hierfür sind die in Tabelle 16 angegebenen Winkel. Der Winkel ist gemessen zwischen den beiden Pyridinstickstoffatomen und einem *para*-ständigen Kohlenstoffatom eines Pyridinringes:

Tabelle 16: Winkel zwischen den beiden Pyridinstickstoffatomen und einem *para*-ständigen Kohlenstoffatom eines Pyridinringes in °

Ligand	Winkel
L-N ₄ HTos 19	107,22
L-N ₄ AdH 41	107,00
L-N ₄ ^t BuTos 18	102,33
L-N ₄ Ad ^t Bu 17	102,52
L-N ₄ AdMe 43	94,38

Die Liganden des Substitutionsmusters $L-N_4HR$ zeigen aufgrund von Wasserstoffbrückenbindungen eine *syn*-Sessel-Wanne-Konfiguration. Die bisalkyl- beziehungsweise alkyltosylsubstituierten makrozyklischen Liganden haben, wie die homo-substituierten Vertreter, eine *syn*-Sessel-Sessel-Konfiguration.

Die Bindungslängen der hetero-substituierten Diazapyridinophane sind sehr ähnlich. In den folgenden Tabellen sind einige ausgewählte Bindungslängen und –winkel verglichen.

Die alkyl- und tosylsubstituierten Stickstoffatome sind in einer tetraedrischen Koordination. In den tosylsubstituierten Makrozyklen sind die Bindungswinkel um das Tosylamidstickstoffatom gegenüber den alkylierten Stickstoffatomen aufgeweitet. Dies könnte auf Anteile einer Doppelbindung zwischen Stickstoff- und Schwefelatom hindeuten. Die gefundenen Winkel und Bindungslängen sind in Tabelle 17 bzw. Tabelle 18 angegeben.

Bindung	L-N4 ['] BuTos 18	L-N4HTos 19	L-N ₄ Ad'Bu 17	L-N ₄ AdH 41	L-N ₄ AdMe 43
N _{Tos} -C	1,472(2) 1,472(2)	1,479(3) 2,483(3)			
N _{tBu} -C	1,463(2) 1,463(2)		1,468(3) 1,471(3)		
N _H -C		1,481(3) 1,450(3)		1,463(2) 1,468(2)	
N _{Ad} -C			1,479(2) 1,484(3)	1,476(2) 1,478(1)	1,474(2) 1,475(2)
N _{Me} -C					1,470(2) 1,473(2)
N _{Py} -C	1,329(2) 1,333(2) 1,329(2) 1,333(2)	1,335(3) 1,353(3) 1,349(3) 1,338(3)	1,340(2) 1,340(2) 1,336(2) 1,338(3)	1,332(2) 1,346(2) 1,338(2) 1,345(2)	1,339(2) 1,342(2) 1,342(2) 1,344(2)
N-Tos	1,633(2)	1,611(2)			
N- ^t Bu	1,491(2)		1,506(2)		
N-H		0,911(17)		0,893(16)	
N-Me					1,460(2)
N-Ad			1,506(2)	1,494(1)	1,496(2)

Tabelle 17: Ausgewählte Bindungslängen der hetero-substituierten Diazapyridinophanliganden in Å

Winkel	L-N ₄ ^t BuTos 18	L-N4HTos 19	L- <i>N</i> ₄Ad ^t Bu 17	L-N ₄ AdH 41	L-N ₄ AdMe 43
$N_{tBu}\text{-}C_{Ring}\text{-}C_{Ring}$	109,84(19)		110,64(19)		
N_{tBu} - C_{Ring} - $C_{Substituent}$	114,24(10) 114,24(10)		113,09(16) 113,80(16)		
N_{tBu} - C_{Ring} - C_{Py}	111,89(13) 111,89(13)		113,29(17) 111,37(18)		
N_{Tos} - C_{Ring} - C_{Ring}	115,7(2)	118,05(19)			
N_{Tos} - C_{Ring} - $C_{Substituent}$	116,31(9) 116,31(9)	119,84(15) 119,84(15)			
N_{Tos} - C_{Ring} - C_{Py}	111,33(13) 111,33(13)	$112,0(2) \\ 110,8(2)$			
$N_{H}\text{-}C_{Ring}\text{-}C_{Ring}$		114,9(2)		115,49(10)	
N_{H} - C_{Ring} - $C_{Substituent}$		103,7(17) 108,2(17)		107,7(9) 106,5(9)	
N_{H} - C_{Ring} - C_{Py}		114,48(18) 122,0(2)		114,63(9) 116,74(10)	
N_{Ad} - C_{Ring} - C_{Ring}			109,32(18)	109,85(9)	109,81(12)
N_{Ad} - C_{Ring} - $C_{Substituent}$			113,83(14) 113,32(15)	115,62(9) 113,24(8)	113,08(10) 115,25(10)
$N_{Ad}\text{-}C_{Ring}\text{-}C_{Py}$			110,74(17) 113,13(16)	113,36(9) 111,47(9)	111,07(11) 113,10(11)
N_{Me} - C_{Ring} - C_{Ring}					112,85(10)
N_{Me} - C_{Ring} - $C_{Substituent}$					108,82(10) 108,78(10)
N_{Me} - C_{Ring} - C_{Py}					114,67(10) 112,68(11)

Die genauen Parameter befinden sich im Anhang auf den Seiten 210 ff. (L-N₄Ad^tBu), 223 ff. (L-N₄'BuTos), 243 ff. (L-N₄HTos) und 232 ff. (L-N₄AdH).

3.1.7 Diazapyridinophane mit einem Phenolsubstituenten

Durch die Kopplung einer Phenoleinheit an den Diazapyridinophangrundkörper entstehen Liganden mit einem weiteren Donoratom. Durch die dirigierenden Effekte der *tert*-Butylgruppen des 2,4-Di-*tert*-butylphenols wird eine Position für die Kopplung begünstigt und damit die Anzahl der entstehenden Liganden eingeschränkt.

3.1.7.1 Synthese des 2-hydroxy-benzyl-substituiertern Liganden HL-N₄(^{tt}BzO)Me 45

Die Einführung einer Phenolfunktionalität macht es notwendig, Diazapyridinophane mit einer sekundären Aminfunktion herzustellen. Diese N-H-Funktion kann über eine Leuckart-Wallach analoge Reaktion mit einem Phenol alkyliert werden (Abbildung 46).^[3]

Die Reaktion erfolgt analog zur Herstellung des homo-substituierten Diazapyridinophans H₂L-N₄(^{*tt*}BzO)₂**5**. Der Zyklus L-N₄HMe **21** wird mit Formaldehyd und 1,5 Äquivalenten 2,4-Di-*tert*-butylphenol in Methanol umgesetzt.^[3] Die Aufarbeitung des Liganden **45** gestaltet sich sehr viel schwieriger als beim entsprechenden homo-substituierten Diazapyridinophan **8**, da dort das Produkt aus der Reaktionsmischung ausfällt und nur noch gewaschen werden muss. Das 2,4-Di-*tert*-butylphenol ist in Salzsäure völlig unlöslich, wohingegen das hetero-substituierte Diazapyridinophan **45** als Hydrochlorid in Lösung geht. Somit kann das Produkt **45** mit Salzsäure extrahiert und mit Base wieder ausgefällt werden. Den Makrozyklus **45** zu kristallisieren, gestaltet sich schwierig, da er in allen gängigen organischen Lösungsmitteln gut löslich ist. Ein Versuch, den Liganden **45** aus siedendem Wasser zu rekristallisieren, führt lediglich zu einer Zersetzung der Substanz **45**, was die deutliche Farbveränderung der

ungelösten makrozyklischen Verbindung **45** von farblos nach braun belegt. Daher wird das Rohprodukt mit wenig Ethylalkohol aufgenommen und mit Eiswasser versetzt. Bei der Zugabe von ungekühltem Wasser liefert der Ligand **45** einen sehr feinen Niederschlag, der sich nicht mehr filtrieren lässt. Im Protonenresonanzspektrum können kaum noch Verunreinigungen gefunden werden. Die Qualität der Substanz **45** ist für Komplexierungen völlig ausreichend. Für die Komplettierung der analytischen Daten wurde aus einem Teil der Substanz **45** eine gesättigte Lösung in einem Gemisch aus Ethanol und Wasser (1:1 V:V) hergestellt. Hieraus wurde bei Raumtemperatur das Ethanol verdunstet. Es wurden hierbei Einkristalle gewonnen, doch für die Gewinnung großer Mengen an Ligand ist diese Methode zu langwierig.^[83]

Versuche ähnliche Umsetzungen mit den Makrozyklen L-N₄AdH **41** und L-N₄HTos **19** lieferten bislang kein brauchbares Material.

3.1.7.2 Massenspektrometrische Untersuchungen des Makrozyklus $HL-N_4({}^{tt}BzO)Me$ **45**

Der erhaltene Ligand HL-N₄(^{*t*}BzO)Me **45** wurde in Methanol aufgenommen und mit Hilfe eines ESI-Massenspektrometers vermessen. Gefunden wurde das Natriumaddukt (495,8) und das Kaliumaddukt als Peak mit kleiner Intensität (518,8). Der Molpeak kann nicht beobachtet werden, allerdings die protonierte Form bei 475,1 (MH₂)⁺. Eine Abspaltung des Phenolarmes wird bei der massenspektrometrischen Untersuchung nicht gefunden. In der folgenden Tabelle werden die Massenzahlen der Fragmente aufgeführt:

m/z	Fragment
518,8	$(M+K)^+$
495,8	$(M+Na)^+$
475.1	$(M+H_2)^+$

Tabelle 19: Fragmentierungsmuster des Liganden HL-N₄([#]BzO)Me 45 (LC-MS)

3.1.7.3 NMR-spektroskopische Untersuchungen der Liganden HL-N₄([#]BzO)Me 45

Die beobachteten chemischen Verschiebungen des Liganden HL-N₄(^{*tt*}BzO)Me **45** liegen bei vergleichbaren Werten wie die homo-substituierten Diazapyridinophane L-N₄Me₂ **4** und H₂L-N₄(^{*tt*}BzO)₂ **5**. Aus diesem Grund konnten über die Signallage dieser Verbindungen, die

Kopplungskonstanten und die Vorzeichen der Dept-NMR-Spektren die Signale der heterosubstituierten Verbindung zugeordnet werden.

Wie bei den alkylsubstituierten Diazapyridinophanliganden wurden aromatische Signale unterhalb $\delta = 7$ ppm detektiert. Der Ersatz eines Methyl-Protons durch die substituierte Phenolgruppe hat einen sehr geringen Einfluss auf die chemische Verschiebung der Wasserstoffatome am Pyridinring. Die *meta*-Protonen der Pyridineinheiten bilden hierbei ein gemeinsames Signal bei $\delta = 6,80$ ppm. Das Triplett der Pyridinprotonen in *para*-Position tritt bei $\delta = 7,18$ ppm in Erscheinung.^[83]

Die Signale der Methylengruppen wurden wie erwartet in einen Bereich um $\delta = 4$ ppm detektiert. Im selben Bereich tritt die benzylische Methyleneinheit in Resonanz, die das Makrozyklusgerüst mit dem Phenolring verbrückt.^[83]

Die aromatischen Protonen der Phenolgruppe erzeugen Signale bei $\delta = 6,97$ ppm und $\delta = 7,28$ ppm. Die Protonen der *tert*-Butylgruppen des Phenolrings von HL-N₄(^{*t*}BzO)Me **45** treten im ¹H-Spektrum bei $\delta = 1,31$ ppm und $\delta = 1,50$ ppm in Resonanz. Bei einer chemischen Verschiebung von $\delta = 2,72$ ppm ist das Signal der *N*-Methylgruppe zu finden. Auch bei den homo-substituierten Verbindungen L-N₄Me₂ **4** und H₂L-N₄(^{*t*}BzO)₂ **5** konnten ähnliche Verschiebungen gefunden werden. Durch eine ³J_{HH}-Kopplung von $\delta = 7,2$ Hz ließen sich die Dubletts bei $\delta = 6,97$ ppm und $\delta = 7,28$ ppm eindeutig den Protonen der Phenoleinheit zuordnen. Es werden wie anzunehmen zwei weitere aromatische Signale des Phenolrings gefunden. Stark tieffeldverschoben wurde ein breites Signal der OH-Gruppe detektiert. In folgender Tabelle bzw. Abbildung sind die chemischen Verschiebungen des Liganden angegeben.^[83]

Abbildung 47: Bezifferung der Kohlenstoffatome des Liganden HL-N₄([#]BzO)Me 45

	¹ H-NMR	¹³ C-NMR	DEPT(135)
	(CDCl ₃ ,	(CDCl ₃ ,	(CDCl ₃ ,
	400 MHz)	100,62 MHz)	100,62 MHz)
16	1,31 (s, 9H)	$30,1 (q, {}^{1}J(CH) = 125,8 Hz)$	30,1 (CH ₃)
18	1,50 (s, 9H)	$32,0 (q, {}^{1}J(CH) = 125,3 Hz)$	32,1 (CH ₃)
19	2,72 (s, 3H)	$49,4 (q, {}^{1}J(CH) = 132,8 Hz)$	49,5 (CH ₃)
1,1′	3,86 (s, 4H)	$63,8 (t, {}^{1}J(CH) = 135,5 Hz)$	63,8 (CH ₂)
7,7′	4,02 (s, 4H)	$64,7 (t, {}^{1}J(CH) = 135,9 Hz)$	64,7 (CH ₂)
8	4,10 (s, 2H)	$66,4 (t, {}^{1}J(CH) = 132,2 Hz)$	66,5 (CH ₂)
3,3′	$6,80 (d, 4H, {}^{3}J(HH) = 7,5 Hz)$	$122,8 (d, {}^{1}J(CH) = 161,6 Hz)$	122,9 (CH)
5, 5'	$6,97 (d, 1H, {}^{3}J(HH) = 2,1 Hz)$	$124,2 (d, {}^{1}J(CH) = 161,2 Hz)$	124,3 (CH)
4,4′	$7,18 (t, 2H, {}^{3}J(HH) = 7,5 Hz)$	$136,2 (d, {}^{1}J(CH) = 161,0 Hz)$	136,3 (CH)
12	$7,28 (d, 1H, {}^{3}J(HH) = 2,1 Hz)$	$123,7 (dd, {}^{1}J(CH) = 152,4 Hz {}^{3}J(CH) = 7,3 Hz)$	123,7 (CH)
O-H	10,96 (s, 1H)		
17		34,5 (s)	
15		35,3 (s)	
9		122,3 (s)	
14		$123,1 (d, {}^{1}J(CH) = 116,8 Hz)$	
11		136,4 (s)	
13		141,4 (s)	
10		154,2 (s)	
6,6′,2,2′		156,6 (s), 157,7 (s)	

Tabelle 20: Chemische Verschiebungen von HL-N₄([#]BzO)Me 45 in ppm

Im Gegensatz zum ¹H-NMR-Spektrum wurden im ¹³C-Spektrum getrennte Signale der unterschiedlichen *meta*-Kohlenstoffatome im Pyridinring gefunden. Das Resonanzsignal bei $\delta = 122,8$ ppm wurde dem der Phenolgruppe benachbarten *meta*-Kohlenstoffatom zugeordnet, da die Phenolgruppe eine entschirmende Wirkung auf den Ring ausübt. Folglich war die Resonanz bei $\delta = 124,2$ ppm der Position, die der Methylgruppe benachbart ist, im Pyridinring zuzuordnen. Das *para*-Pyridinkohlenstoffatom lieferte ein Signal bei $\delta = 136,4$ ppm. Diese Verschiebungen konnten dem Pyridinringsystem aufgrund ihrer ähnlichen Kopplungskonstanten zugeordnet werden. Die *ortho*-Kohlenstoffatome treten bei $\delta = 156,6$ ppm und $\delta = 157,7$ ppm in Resonanz. Dennoch ist hierbei die genaue Zuordnung schwierig, da sich die chemische Umgebung der beiden kaum unterscheidet. Die verbrückenden Methyleneinheiten traten bei $\delta = 63,8$ ppm und $\delta = 64,7$ ppm in Resonanz. In diesem Bereich tritt auch das Signal der benzylischen Methylengruppe auf ($\delta = 66,4$ ppm).^[83]

Im Kohlenstoffresonanzspektrum konnten die Methylsignale der *tert*-Butylgruppen bei $\delta = 30,1$ ppm und $\delta = 32,0$ ppm, sowie die quartären Kohlenstoffatome $\delta = 34,5$ ppm und $\delta = 35,3$ ppm zugeordnet werden. Die Signale bei $\delta = 122,8$ ppm und $\delta = 136,2$ ppm können den C-H-Gruppen der Phenolgruppe zugeordnet werden. Ein Signal bei $\delta = 49,4$ ppm war der *N*-Methylgruppe zuzuordnen. Die tertiären Kohlenstoffatome der Phenoleinheit haben chemische Verschiebungen von $\delta = 122,3$ ppm, $\delta = 136,4$ ppm, $\delta = 141,4$ ppm und $\delta = 154,2$ ppm.^[83]

3.1.7.4 IR-Spektroskopische Untersuchungen des Liganden HL-N₄([#]BzO)Me 45

Die Schwingungen sind ähnlich denen des bekannten homo-substituierten Vertreters $H_2L-N_4({}^{tt}BzO)_2$ 5. Der Einfluss der Methylgruppe ist offensichtlich nicht so entscheidend für die Schwingungen. Die beschriebenen typischen Frequenzen des Diazapyridinophangerüstes wurden auch hier bei ähnlichen Wellenzahlen gefunden. Als charakteristisch für die Kupplung des Phenolarms können die Peaks bei ca. 1390 und 1203 cm⁻¹ angesehen werden, denn weder im Makrozyklus L-N₄HMe 21 noch im Diazapyridinophan L-N₄Me₂ 4 ist dort ein Signal zu finden. In der folgenden Tabelle werden die Signale der Verbindungen mit denen seiner Vorgängerverbindungen und mit dem homo-substituierten Liganden H₂L-N₄(${}^{tt}BzO$)Me 45 verglichen:^[83]

Tabelle 21: Gemeinsame Signale der Infrarotspektren von HL-N₄([#]BzO)Me 45, H₂L-N₄([#]BzO)₂5, L-N₄HMe 21 und L-N₄Me₂ 4 in cm⁻¹

HL-N ₄ ("BzO)Me	$H_2L-N_4(^{tt}BzO)_2$	L-N ₄ HMe	L-N ₄ Me ₂
45	5	21	4 ⁽¹⁾
KBr	KBr	KBr	KBr
3396	3423	3446	3437
2955	2956	2923	2940
2905	2905		2916
2868	2868		2868
1592	1591	1586	1589
1578	1579		1576
1481	1480		1463
1458	1458	1459	1446
1391	1390		
1361	1362	1365	1365
1303	1301		1286
1237	1237		1230
1202	1203		
1158	1163		1162
1104	1108	1096	1083
978	972		967
882	880	894	875
820	822		816
759	758		758
724	727		731

3.1.7.5 Struktur des Makrozyklus HL-N₄(^{*t*}BzO)Me **45**

Es konnten Einkristalle aus einer Ethanol-Wasserlösung, aus der langsam Ethanol verdampfte, Die kubischen Kristalle gewonnen werden. konnten durch Röntgenstrukturanalyse charakterisiert werden. Wie bei den anderen Diazapyridinophanen liegt eine syn-Sessel-Sessel-Konformation vor. Die Bindungsparameter sind in den Liganden L-N₄Me₂ 4 HL-N₄(^{tt}BzO)Me 45 und H₂L-N₄(^{tt}BzO)₂ 5 sehr ähnlich.

Eine der tert-Butylgruppen ist über zwei Lagen fehlgeordnet. In Abbildung 48 wurde lediglich eine Anordnung gezeigt.^[83]

Abbildung 48: Perspektivische Ansicht des Liganden HL-N₄([#]BzO)Me 45

Das Diazapyridinophangerüst liegt in einer syn-Sessel-Sessel-Konformation vor. Der Winkel zwischen einem Pyridinring und dem Stickstoffatom des benachbarten Pyridinringes liegt, wie bei den alkylsubstituierten Diazapyridinophanen bei 100,55°. Der Phenolrest scheint im Kristallgefüge eine Wasserstoffbrückenbindung zwischen der Hydroxylgruppe des Phenols und dem Aminstickstoffatom N(3) auszubilden. Eine Folge hiervon ist, dass die Methylenprotonen des Phenolarms zur Seite der Pyridinstickstoffatome weisen. Der Phenolring ist in Richtung der Pyridinringe angeordnet. In Tabelle 22 ist ein Vergleich einiger repräsentativer Bindungsparameter des Liganden HL-N₄(^{*tt*}BzO)Me **45** und der homosubstituierten Liganden H₂L-N₄(^{*tt*}BzO)₂ **5** und L-N₄Me₂ **3** angegeben.^[83] Die ausführlichen Bindungsparameter sind im Anhang auf Seite 258 ff. zu finden.

Bindungslänge in Å	HL-N ₄ ("BzO) Me 45	$L-N_4Me_2 3^{[1]}$	H ₂ L-N ₄ ("BzO) ₂ 5 ^[5]
N(1)-C(1)	1,470(4)	1,467(2)	1,483(2)
N(1)-C(14)	1,461(3)	1,466(2)	1,480(2)
N(3)-C(7)	1,474(3)	1,466(2)	1,481(2)
N(3)-C(8)	1,480(3)	1,467(2)	1,475(2)
N(2)-C(2)	1,335(3)	1,340(2)	1,337(2)
N(2)-C(6)	1,336(3)	1,334(2)	1,3402(19)
C(1)-C(2)	1,509(3)	1,506(2)	1,512(2)
C(6)-C(7)	1,499(3)	1,513(2)	1,504(2)
Bindungswinkel in °			
C(1)-N(1)-C(14)	112,3(2)	113,3(1)	113,47(13)
C(1)-N(1)-C(15)	108,9(3)	108,9(1)	109,35(12)
C(14)-N(1)-C(15)	108,4(3)	110,8(1)	109,50(11)
N(1)-C(1)-C(2)	112,9(2)	112,5(1)	113,90(13)
N(1)-C(14)-C(13)	114,1(2)	-	111,94(12)
C(7)-N(3)-C(8)	113,09(19)	113,3(1)	113,47(12)
C(7)-N(3)-C(16)	108,7(2)	-	108,56(12)
C(8)-N(3)-C(16)	108,69(18)	-	109,81(13)
N(3)-C(7)-C(6)	112,4(2)	-	113,79(14)
N(3)-C(8)-C(9)	114,8(2)	-	113,01(13)
C(2)-N(2)-C(6)	118,3(2)	118,0(1)	118,20(15)
N(2)-C(2)-C(1)	116,4(2)	116,7(1)	115,90(15)
N(2)-C(6)-C(7)	116,4(2)	116,3(1)	116,30(15)

Tabelle 22: Vergleich ausgewählter Bindungslängen in HL-N₄([#]BzO)Me 45, L-N₄Me₂ 3^[1] und $H_2L-N_4(^{#}BzO)_2 5^{[5]}$

3.1.8 Diazapyridinophane mit Arylsubstituenten

3.1.8.1 Synthese des Liganden L-N₄(PhNO₂)₂ 48

Ein Ziel der Arbeit war es, auch eine Phenylgruppe in das Ligandsystem einzuführen. Die direkte Reaktion der Vorstufe BCA **12** mit Anilin führte zu keiner Reaktion. Weder mit Natriumcarbonat noch mit Kaliumcarbonat wurde eine Umsetzung erzielt, die beiden Edukte wurden unverändert aus der Reaktionsmischung zurückgewonnen. Die Nukleophilie des Anilins reicht offensichtlich nicht für eine Reaktion aus (Abbildung 49).^[31, 99]

Abbildung 49: Umsetzung von tert-Butyl-bis(6-chlormethyl-2-pyridyl-methyl)amin 12 mit Anilin

Um die Nukleophilie des Anilins zu erhöhen, sollte deprotoniertes Anilin eingesetzt werden. Auch dieser Versuch schlug fehl (Abbildung 50).

Abbildung 50: Versuch der Herstellung von L-N₄^tBuPh 50

Da die Einführung der Phenylgruppe mit einfachen Mitteln nicht zu bewerkstelligen war, sollte sie mittels einer metallkatalysierten Reaktion, z. B. der palladiumkatalysierten Buchwald-Hartwig-Reaktion eingeführt werden. Verschiedene Reaktionsführungen lieferten auch hier keine brauchbaren Ergebnisse. Dieses Verhalten deutet darauf hin, dass das zugegebene Palladium eine Komplexverbindung mit den Diazapyridinophanliganden eingegangen ist und somit für die Alkylierungsreaktion nicht mehr zur Verfügung steht. Auch die kupferanaloge Reaktion mit und ohne Phosphanligandzusatz (Abbildung 51) erbrachte nicht das Kupplungsprodukt, da bei diesen Reaktionen das Kupferion vom Diazapyridinophanliganden komplexiert wird und somit der Reaktion entzogen wird. Denn sowohl Palladium- als auch Kupferkomplexe der homo-substituierten Diazapyridinophane sind bekannt.^[2, 34, 100]

Eine weitere Möglichkeit, eine Bindung zwischen dem Stickstoffatom und der Phenylgruppe zu knüpfen, stellt die nukleophile Substitution am Aromatenring dar ^[103, 104]. Diese Reaktion funktioniert lediglich mit aktivierenden Gruppen in *ortho-* und oder *para-*Stellung.^[105-122] Hierbei dient Fluorid als gute Abgangsgruppe und die *para-*ständige Nitrogruppe als aktivierende Gruppe (Abbildung 52).

Der unsubstituierte Ligand L-N₄H₂ **3** wird hierzu in Dimethylsulfoxid mit *para*-Fluornitrobenzol und wasserfreiem Kaliumcarbonat zu L-N₄(PhNO₂)₂ **48** umgesetzt. Die

Verbindung **48** konnte jedoch nicht in das freie Amin überführt werden. Das Monohydrochlorid ist in fast allen organischen Lösungsmitteln unlöslich, was sich als vorteilhaft für die Reinigung erwies, da die Verunreinigungen weggewaschen werden können. Dennoch konnte auch anhaftendes Dimethylsulfoxid nicht vollständig entfernt werden. Dies äußert sich darin, dass die Elementaranalyse vom berechneten Wert abweicht. Die Substanz wurde als farblose Kristalle in einer Ausbeute von 3,3 % isoliert in einer Reinheit von 80 %. Im Rahmen dieser Arbeit konnten die Reaktions- und Aufreinigungsbedingungen nicht mehr optimiert werden.

3.1.8.2 Kernresonanzspektroskopie des Liganden L-N₄(PhNO₂)₂ 48

Im ¹H-NMR-Spektrum können die Signale eindeutig zugeordnet werden. Die Signale der Methylenprotonen wurden bei $\delta = 4,75$ ppm gefunden. Die Signale der Pyridineinheiten traten im aromatischen Bereich in Resonanz. Die *meta*-Protonen erscheinen als Dublett bei $\delta = 7,05$ ppm mit einer Kopplungskonstante ³J_{HH} von 7,63 Hz. Das Wasserstoffatom in *para*-Stellung zeigt eine chemische Verschiebung von $\delta = 7,48$ ppm und einer Kopplungskonstante ³J_{HH} von 7,63 Hz. Das AA'XX'-System der Nitrophenylgruppe zeigt bei $\delta = 6,55$ ppm und $\delta = 7,53$ ppm ein Signal mit einer ³J_{HH}-Kopplungskonstante von 9,39 Hz. Das Proton des Hydrochlorids wurde bei $\delta = 8,55$ ppm als schwaches Signal detektiert. Durch die Protonierung wurden die Signale im Vergleich zu den anderen Diazapyridinophanen tieffeldverschoben.

3.1.8.3 Infrarotspektroskopische Untersuchung des Liganden L-N₄(PhNO₂)₂ 48

Die für das Ligandgerüst typischen Schwingungsmoden treten beim diarylsubstituierten Diazapyridinophan **48** ebenfalls bei $\tilde{\nu} = 2952 \text{ cm}^{-1}$, $\tilde{\nu} = 2864 \text{ cm}^{-1}$, $\tilde{\nu} = 1584 \text{ cm}^{-1}$, $\tilde{\nu} = 1446 \text{ cm}^{-1}$, $\tilde{\nu} = 1362 \text{ cm}^{-1}$, $\tilde{\nu} = 1078 \text{ cm}^{-1}$ und $\tilde{\nu} = 923 \text{ cm}^{-1}$ auf. Die Bande bei $\tilde{\nu} = 1361 \text{ cm}^{-1}$ ist der Nitrogruppe zuzuordnen, die starken Absorptionen um $\tilde{\nu} = 3000 \text{ cm}^{-1}$ rühren von inkorporiertem Dimethylsulfoxid her (Tabelle 23).

L-L ₄ 'BuBz 16	L-N ₄ (PhNO ₂) ₂ 48
KBr	KBr
3420	3396
2968	2952
2824	2864
1591	1584
1456	1446
1363	1362
1074	1078
932	923

Tabelle 23: Infrarotsignale von L-N₄(PhNO₂)₂ 48

3.1.8.4 Röntgenstruktur des Makrozyklus L-N₄(PhNO₂)₂ 48

Dieses Diazapyridinophan unterscheidet sich grundlegend von den anderen bekannten Diazapyridinophanen. Hier liegt eine *syn*-Wannen-Wannen-Konformation vor. Der Winkel zwischen einem Pyridinring und dem benachbarten Pyridinstickstoffatom ist mit 168,5° sehr viel größer als bei den anderen Diazapyridinophanen. Zwar ist noch die *syn-syn*-Anordnung der Pyridinringe gegeben, doch ist der Winkel stark aufgeweitet. Ein Grund hierfür könnten Wasserstoffbrückenbindungen zwischen dem protonierten Pyridinstickstoffatom und dem benachbarten Pyridinstickstoffatom sein.

Die Nitrophenylgruppen orientieren sich in Richtung der Pyridinstickstoffatome, dabei richten sich die Phenylgruppen nahezu parallel aus (" π -stacking"). Aus den jeweiligen Aromatenebenen sind die Nitrogruppen herausgedreht. Eine genauere Untersuchung der Bindungslängen zeigt für die *para*-Nitrophenylamingruppe teilweise eine chinoide Grenzstruktur. In Abbildung 53 ist eine perspektivische Ansicht der Verbindung **48** gezeigt. Die Bindungslängen im Ligandgerüst sind denen der anderen Diazapyridinophane sehr ähnlich, als Vertreter wurden die Bindungsparameter in Tabelle 24 mit dem Liganden L-N₄^tBuTos **18** verglichen.

Abbildung 53: Perspektivische Darstellung von L-N₄(PhNO₂)₂HCl 48

Bindungslange in A	$L-N_4(PNNO_2)_2 48$	L-N ₄ Bulos 8
N(1)-C(1)	1,451(3)	1,463(2)
N(1)-C(14)	1,458(3)	1,463(2)
N(2)-C(6)	1,347(3)	1,329(2)
N(2)-C(2)	1,347(3)	1,333(2)
N(3)-C(7)	1,450(3)	1,472(2)
N(3)-C(8)	1,455(3)	1,472(2)
N(2)-H(2)	0,8800	
C(1)-C(2)	1,508(3)	1,509(2)
Bindungswinkel in °		
C(1)-N(1)-C(14)	118,51(18)	109,84(19)
C(14)-N(1)-C(13)	113,46(17)	114,24(10)
C(2)-N(2)-C(6)	123,72(18)	117,95(12)
C(7)-N(3)-C(8)	118,18(18)	115,7(2)
N(1)-C(1)-C(2)	114,64(18)	111,89(13)
N(2)-C(2)-C(1)	119,19(19)	116,38(13)

Tabelle 24: Strukturdatenvergleich zwischen L-N₄(PhNO₂)₂48 und L-N₄[']BuTos 18

Eine genaue Betrachtung der Bindungslängen in der para-Nitrophenylamineinheit zeigt, dass die Bindungslängen im Aromat unterschiedlich lang sind. Die Bindungswinkel um das Aminstickstoffatom liegen bei nahezu 120°. Somit liegt im Festkörper teilweise die planare Imin-Grenzstruktur vor. Aber die Aromat-Nitro-Bindung ist sehr viel länger als eine Doppelbindung und liegt eher im Bereich einer Einfachbindung. In Abbildung 54 werden die beiden möglichen Grenzstrukturen gezeigt. In Tabelle 25 sind die Bindungslängen der Nitrophenylgruppen aufgezeigt.

Abbildung 54: Bindungssituation der Nitrophenylgruppe

Bindungslänge in Å Position	Gruppe 1	Gruppe 2
А	1,458(3)	1,450(3)
В	1,382(3)	1,381(3)
С	1,400(3)	1,402(3)
D	1,361(3)	1,367(3)
Е	1,381(3)	1,386(3)
F	1,446(3)	1,447(3)
G	1,221(3)	1,229(2)
Н	1,234(3)	1,230(3)
Ι	1,385(3)	1,377(3)
J	1,361(3)	1,376(3)
K	1,361(3)	1,401(3)
L	1,411(3)	1,455(3)

Tabelle 25: Bindungslängen der Nitrophenylgruppen im Kristall 1 und 2:

Mit Hilfe dieser Festkörperstruktur kann der experimentelle Befund gedeutet werden, dass keine Komplexverbindungen dieses Liganden isoliert werden konnten. Für eine Metallbindung werden die freien Elektronenpaare der Stickstoffatome verwendet. In diesem Falle stehen aber keine freien Elektronenpaare mehr zur Verfügung. Die freien Elektronenpaare der Pyridinstickstoffatome werden für die Koordination des Protons verwendet. Die arylsubstituierten tertiären Stickstoffatome haben zumindest einen teilweisen Imincharakter und gehen somit ebenfalls keine weiteren Bindungen mehr ein. Die vollständigen Strukturdaten sind im Anhang ab Seite 267 abgedruckt.

3.2 Übergangsmetallkomplexe mit hetero-substituierten Diazapyridinophanliganden

3.2.1 Dihalogeno-Nickel(II)-Komplexe

3.2.1.1 Synthese der Dihalogeno-Nickel(II)-Komplexe mit tetradentaten Diazapyridinophanliganden

Mit den homo-substituierten Diazapyridinophanliganden konnten auf zwei Wegen die entsprechenden Dichloronickel-Komplexe gewonnen werden. Der jeweilig eingeschlagene Syntheseweg richtet sich hierbei nach der Löslichkeit der Komplexe. Bei den Liganden L-N₄^tBu₂ 8 und L-N₄Me₂ 3 wurde der Ligand in polaren Lösungsmitteln wie Ethanol, Methanol oder Acetonitril mit Nickelchloridhexahydrat umgesetzt. Aufgrund der schlechten Löslichkeit von [Ni(L-N₄H₂)Cl₂] 53 in Acetonitril wurde der Ligand L-N₄H₂ 3 mit Nickelperchlorathexahydrat in Acetonitril einer nachfolgenden umgesetzt. In Metathesereaktion mit Tertaethylammoniumchlorid konnte dann der Komplex 53 ausgefällt werden (Abbildung 55). Diese Synthesestrategie kann zwar ebenfalls für Komplexierungsreaktionen des hetero-substituierten Liganden L-N4MeH 20 verwendet werden, es wurde aber letztlich für alle Komplexe erstere Synthesevariante angewendet.^[1].

 $\begin{array}{rcl} \text{Ni}(\text{ClO}_4)_2 \cdot & 6 & \text{H}_2\text{O} + & 2 & \text{Et}_4\text{NCl} + & \text{L-N}_4\text{HMe} & \xrightarrow{\text{MeCN}} & [\text{Ni}(\text{L-N}_4\text{HMe})\text{Cl}_2] + 6 & \text{H}_2\text{O} \\ & & & & & \\ \hline & & & & & \\ \textbf{20} & & & & & \\ \textbf{Abbildung 55: Herstellung von [Ni(\text{L-N}_4\text{MeH})\text{Cl}_2] \text{ aus Nickelperchlorathexahydrat}} \end{array}$

Im Rahmen dieser Dissertation wurden sämtliche beschriebenen Nickel-Komplexe hergestellt (Abbildung 56), indem eine Lösung des Nickelchlorides in der Siedehitze zu einer Ligandlösung gegeben wurde. Als Lösungsmittel dienten dabei Methanol oder Ethanol. In der folgenden Tabelle werden die Lösungsmittel, Lösungsfarben und Ausbeuten gezeigt.

$$NiCl_2 \cdot 6 H_2O + L-N_4R_1R_2 \xrightarrow{Alkohol} [Ni(L-N_4R_1R_2)Cl_2] + 6 H_2O$$

Abbildung 56: Herstellung der Komplexe mit Nickelchloridhexahydrat als Edukt

Tabelle 26: Lösungsfarben der Nickel-Komplexe mit hetero-substituierten Diazapyridinophanliganden und deren kristalline Ausbeuten und Reinheiten

Komplex	Lösungsmittel	Farbe	Ausbeute	
[Ni(L-N ₄ HMe)Cl ₂] 54	MeOH	hellgrün	65 %	
[Ni(L-N ₄ Ad ^t Bu)Cl ₂] 55	EtOH	grün	29 %	
$[Ni(L-N_4^{\ t}BuBz)Cl_2] 56$	EtOH	grün	53 %	
[Ni(L-N ₄ AdH)Cl ₂] 57	MeOH	grün	30 %	
[Ni(L-N ₄ AdMe)Cl ₂] 58	EtOH	dunkelgrün	99 %	
[Ni(L-N ₄ BzH)Cl ₂] 59	MeOH	hellgrün	70 %	

Aufgrund der schlechten Ausbeute und der ungenügenden Reinheit des Nickel-Komplexes [Ni(L-N₄^tBuBz)Cl₂] **56** konnte nur eine Röntgenstruktur und ein IR-Spektrum angefertigt werden. Die Menge und Qualität des erhaltenen Materials reichte für weitere Untersuchungen nicht aus.

Die Aufreinigung der Komplexe [Ni(L-N₄AdH)Cl₂] **57**, [Ni(L-N₄BzH)Cl₂] **59** und [Ni(L-N₄HMe)Cl₂] **54** erfolgte durch eine langsame Diffusion von Diethylether in die Reaktionslösung. [Ni(L-N₄Ad⁷Bu)Cl₂] **55** konnte analysenrein durch Rekristallisation aus Ethanol als grüne Kristalle gewonnen werden. Bei dieser Verbindung **55** konnte eine starke Abhängigkeit der Lösungsfarbe vom Lösungsmittel beobachtet werden. Hierbei entstand in Acetonitril eine grüne und in DMF eine intensiv türkisfarbene Lösung. So wurden aus der DMF-Lösung grünblaue Kristalle gewonnen, die jedoch für eine Strukturaufklärung untauglich waren. Blaue Kristallfarben wurden bei den Nickel-Komplexen der sterisch wenig anspruchsvollen homo-substituierten Diazapyridinophane L-N₄Me₂ **4** und L-N₄H₂ **3** gefunden.^[1] Die Kristalle der Komplexe mit sterisch aufwändig homo-substituierten Liganden sind hingegen grün. Bei den Dihalogeno-Nickel(II)-Komplexen der hetero-substituierten Liganden wurden ausschließlich grüne Farbtöne beobachtet. Die Farbtöne der Lösungen der erhaltenen Komplexe in den Reaktionslösungsmitteln werden in Tabelle 26 angeführt. Ebenso werden die Ausbeuten und Reinheiten der erhaltenen Substanzen gezeigt.

Alle hier aufgeführten Komplexe sind in Methanol und Ethanol gut löslich, in Diethylether und Pentan jedoch unlöslich.

Aus koordinationschemischem Interesse wurde von mir die Frage gestellt, ob das Diazapyridinophan auch in der Lage ist, Phosphanliganden oder Halogenidliganden zu verdrängen. Hierbei diente der Komplex [NiBr₂(PPh₃)₂] **52** als Edukt für die Komplexierungsreaktion (Abbildung 57).

$$\begin{bmatrix} \text{NiBr}_2(\text{PPh}_3)_2 \end{bmatrix} + L - N_4 \text{Ad}^t \text{Bu} \xrightarrow{\text{EtOH}} \begin{bmatrix} \text{Ni}(\text{L-N}_4 \text{Ad}^t \text{Bu}) \text{Br}_2 \end{bmatrix} + 2 \text{ PPh}_3$$
52
52
60
Abbildung 57: Umsetzung eines Nickelphosphankomplexes zum Nickeldiazapyridinophankomplex 60

Zu einer Lösung von $[NiBr_2(PPh_3)_2]$ **52** in Ethanol wurde der Ligand langsam zugegeben. Bei der Zugabe änderte sich die anfänglich grüne Farbe der Lösung nach intensiv dunkelgrün. Aus einer Diffusion von Diethylether in eine methanolische Lösung konnten diffraktometertaugliche Kristalle von $[Ni(L-N_4Ad'Bu)Br_2]$ **60** in einer Ausbeute von 17 % gewonnen werden, die in den gängigen Alkoholen und Nitrilen löslich waren.

3.2.1.2 IR-spektroskopische Untersuchungen der hetero-substituierten Dihalogeno-Diazapyridinophan-Nickel(II)-Komplexe

Die Schwingungen der Dihalogeno-Nickel(II)-Komplexe mit homo- und hetero-substituierten Diazapyridinophanliganden werden bei ähnlichen Wellenzahlen beobachtet. Absorptionen bei ca. $\tilde{v} = 2900 \text{ cm}^{-1}$ und $\tilde{v} = 1450 \text{ cm}^{-1}$, die bei den freien Liganden beobachtet werden, werden auch in allen Komplexen wiedergefunden. Eine fundamentale Änderung der Banden beim Wechsel des Koliganden vom Chlorid zum Bromid tritt nicht auf. Bei den Komplexen mit Liganden mit wasserstoffsubstituierten Amingruppen, werden die charakteristischen N-H-Schwingungen gefunden (Tabelle 27).

Komplex	N-H-Schwingung		
[Ni(L-N ₄ AdH)Cl ₂] 57	3244		
[Ni(L-N ₄ BzH)Cl ₂] 59	3264		
$[Ni(L-N_4HMe)Cl_2]$ 54	3246		

Tabelle 27:Schwingungen der N-H-Funktion der Nickel-Komplexe in cm⁻¹

Ähnlich wie bei den freien Liganden wurden bei den Nickel-Komplexen charakteristische Schwingungsbanden gemessen, die bei allen bekannten Diazapyridinophankomplexen auftreten. In Tabelle 28 sind diese charakteristischen Schwingungen der Komplexe aufgeführt.

[Ni(L- N4'Bu2) Cl2] ^[1] 61 KBr	[Ni(L- N ₄ Ad'Bu) Br ₂] 60 KBr	[Ni(L- N ₄ AdH) Cl ₂] 57 KBr	[Ni(L- N ₄ AdMe) Cl ₂] 58 KBr	[Ni(L- N ₄ H ₂) Cl ₂] ^[1] 62 KBr	[Ni(L- N ₄ Me ₂) (H ₂ O)]Cl ^[1] 63 KBr	[Ni(L- N ₄ HMe) Cl ₂] 54 KBr	[Ni(L- N ₄ BzH) Cl ₂] 59 KBr
2908	2908	2900	2901	2904	2887	2898	2898
1602	1602	1598	1599	1603	1605	1602	1602
1582	1581	1582	1585	1586	1581	1584	1584
1466	1466	1468	1469	1473	1475	1472	1472
1436	1448	1434	1435	1437	1446	1438	1438
1156	1157		1162		1154	1154	

Tabelle 28: IR-Schwingungsfrequenzen der Nickel-Komplexe in cm⁻¹

3.2.1.3 Röntgenstrukturen der Nickel-Komplexe mit hetero-substituierten Diazapyridinophanliganden

Mit den homo-substituierten Diazapyridinophanliganden L-N₄/Bu₂ **8**, L-N₄Me₂ **4**, L-N₄^{*i*}Pr₂ **9** und L-N₄H₂ **3** sind die entsprechenden Dichloronickel(II)-Komplexe bereits hergestellt worden.^[1] Die strukturellen, elektronischen und physikalischen Eigenschaften dieser Komplexe wurden hierbei bereits intensiv untersucht. Hier soll der Einfluss unterschiedlicher Substituenten im Diazapyridinophan auf die Struktur der entsprechenden Nickel-Komplexe beschrieben werden. Bei allen Komplexen dieses Ligandtyps ist der Ligand vierzähnig an das Nickelzentralion gebunden. Der Ligand ist entlang der Aminstickstoff-Aminstickstoff-Achse gefaltet und die Chloridliganden sind *cis*-ständig angeordnet. Die Aminsubstituenten koordinieren so, dass sie zu den Chloroliganden maximalen Abstand erreichen. Im Komplex [Ni(L-N₄H₂)Cl₂] **53** liegt das Zentralion auf der Schnittgerade der beiden Pyridinringebenen. Wenn der dimethylsubstituierte Ligand an das Nickel-Ion koordiniert, liegt das Zentralion nicht mehr im Schnittpunkt der Pyridinringebenen. Im Komplex [Ni(L-N₄'Bu₂)Cl₂] **61** tritt aufgrund der Größe der Substituenten zusätzlich eine Verdrillung des Ligandgerüstes auf. Hierbei kommt jeweils eine Methylgruppe der *tert*-Butylgruppe über der Winkelhalbierenden des Halogenid-Nickel-Halogenid-Winkels zu liegen.^[1]

Die Kristalle für die Röntgenstrukturanalysen der Diazapyridinophan-Nickel(II)-Komplexe mit hetero-substituierten Diazapyridinophan-Liganden wurden auf unterschiedliche Weisen gewonnen. Der Komplex [Ni(L-N₄'BuBz)Cl₂] · CHCl₃ **56** konnte aus einer Überschichtung von einer Lösung des Komplexes in Chloroform mit Pentan kristallisiert werden. Der Komplex [Ni(L-N₄Ad'Bu)Br₂] **60** wurde durch nacheinander durchgeführte Diffusionen von Diethylether in Komplexlösungen mit den folgenden Lösungsmitteln: Dichlormethan, Benzonitril sowie Methanol als grüne Kristalle gewonnen.

Kristalle von $[Ni(L-N_4Ad'Bu)Cl_2]$ **55** konnten aus unterschiedlichen Lösungsmitteln isoliert werden. Eine Kristallisation aus heißem Ethanol lieferte zwar analysenreine Kristalle, deren Qualität jedoch nicht ausreichte, um die Struktur zu bestimmen. Kristalle aus einer Diffusion von Diethylether in eine Benzylalkohollösung des Komplexes **55** besaßen zwar ausreichende Qualität für eine Röntgenstruktur, verwittern allerdings schnell. Das qualitativ hochwertigste Material konnte aus einer Diethyletherdiffusion in eine Benzonitrillösung gewonnen werden, sodass anhand dieser Kristalle die Festkörperstruktur bestimmt werden konnte. Obwohl der Kristall $[Ni(L-N_4Ad'Bu)Cl_2] \cdot PhCN$ **55** Lösungsmittel inkorporiert hatte, waren dessen Kristalle ohne sichtbare Alterungsspuren lagerfähig.

[Ni(L-N₄AdH)Cl₂] **57**, [Ni(L-N₄HMe)Cl₂] **54** und [Ni(L-N₄AdMe)Cl₂] **58** wurden durch langsames Eindiffundieren von Diethylether in eine methanolische Komplexlösung als grüne Einkristalle gewonnen. Der Komplex [Ni(L-N₄BzH)Cl₂] **59** wurde auf ähnliche Weise durch Verwendung von *N*,*N*-Dimethylformamid als Lösungsmittel gewonnen.

In folgenden Tabellen sind die wichtigsten Bindungsparameter der Nickel-Komplexe angegeben. Die kompletten Datensätze sind im Anhang angegeben.

Tabelle 29: Vollständige Kristallstrukturdaten der beschriebenen Nickel-Komplexe

Komplex	Seite		
[Ni(L-N ₄ Ad ^t Bu)Cl ₂] PhCN 55	290 ff.		
$[Ni(L-N_4Ad'Bu)Br_2] 60$	274 ff.		
[Ni(L-N ₄ AdH)Cl ₂] 57	298 ff.		
$[Ni(L-N_4AdMe)Cl_2]$ 58	307 ff.		
[Ni(L-N ₄ BzH)Cl ₂] ·BzOH 59	318 ff.		

In den folgenden Abbildungen sind die perspektivischen Ansichten der Nickelkomplexstrukturen mit hetero-substituierten Diazapyridinophanliganden gezeigt. Die thermischen Schwingungsparaboloide wurden hierbei auf 50 % gesetzt.

Abbildung 58: Perspektivische Ansicht von [Ni(L-N₄^tBuBz)Cl₂] 56

Abbildung 60: Perspektivische Ansicht von [Ni(L-N₄HMe)Cl₂] 54

C(24) Abbildung 61: Perspektivische Ansicht von [Ni(L-N₄Ad'Bu)Cl₂] 55

Abbildung 62: Perspektivische Ansicht von [Ni(L-N₄AdH)Cl₂] 57

Abbildung 63: Perspektivische Ansicht von [Ni(L-N₄AdMe)Cl₂] 58

Auch die hetero-substituierten Liganden sind vierzähnig an das Metallion gebunden und erzeugen eine *cis*-oktaedrische Koordinationsumgebung am Metallion. Auch in diesen Komplexen sind die sterischen Wechselwirkungen zwischen den Aminsubstituenten und den *cis*-ständigen Chloroliganden deutlich zu erkennen. So ist die Phenylgruppe der Benzyleinheit in den Komplexen [Ni(L-N₄^{*t*}BuBz)Cl₂] • CHCl₃ **56** und [Ni(L-N₄BzH)Cl₂] **59** von den Chloridliganden weg abgewinkelt. Die 1-Adamantyl- beziehungsweise *tert*-Butylgruppe orientiert sich derart, dass ein Kohlenstoffatom über der Cl-NiCl-Winkelhalbierenden zu liegen kommt. Hierdurch kann der die sterische Hinderung der Gruppen minimiert werden. In folgender Tabelle werden einige charakteristische Bindungslängen miteinander verglichen (Tabelle 30).

Bindung	[Ni(L-	[Ni(L-	[Ni(L-	[Ni(L-	[Ni(L-	[Ni(L-	[Ni(L-	[Ni(L-	[Ni(L-
	$N_4'Bu2)$	N ₄ Ad'Bu)	N ₄ 'BuBz)	N ₄ AdH)	N ₄ AdMe)	N_4H_2)	N_4Me_2)	N ₄ HMe)	N ₄ BzH)
	Cl ₂]	Cl ₂]	Cl ₂]	Cl ₂]	Cl ₂]	$[Cl_2]^{[1]}$	$(H_2O)]Cl]^{[1]}[$	Cl ₂]	Cl ₂]
	· MeCN ^[1]	• PhCN							
	61	55	56	57	58	53	63	54	59
NE CI	2,365(1)	2,3616(6)	2.270(1)	2,3761(5)	2,3782(9)	2,4012(7)	2,383(1)	2,3645(8)	2,373(1)
MI-CI	2,371(1)	2,3900(7)	2,570(1)	2,3897(5)	2,4217(9)		2,128(4)	2,3752(8)	2,3771(6)
NE NI	1,998(3)	2,011(2)	2.041(4)	2,017(1)	2,010(3)	2,020(2)	2,019(4)	2,013(2)	2,019(1)
INI-IN _{py}	2,005(3)	2,004(2)	2,041(4)	2,038(1)	2,019(3)		2,023(4)	2,012(2)	2,036(1)
Ni N				21/(2)		2,193(2)		2 180(2)	2 166(1)
INI-INH				2,143(2)		2,203(3)		2,189(2)	2,100(1)
Ni-N _{Ad}		2,387(2)		2,413(1)	2,329(3)				
Ni-N _{Bz}			2,189(6)						2,240(1)
Ni N -	2,306(3)	2 323(2)	2 353(5)						
1 1 - 1 v _{tBu}	2,364(3)	2,323(2)	2,335(3)						
N; N					2.176(2)		2,019(4)	2.216(2)	
INI-IN _{Me}					2,170(3)		2,023(4)	2,210(2)	
CN		1,489(3)		1,490(2)	1,498(5)				
C-IN _{Ad}		1,487(3)		1,487(2)	1,514(5)				
CN				1,477(2)				1,460(4)	1,477(1)
C-IN _H				1,479(2)				1,469(4)	1,481(2)
CN									1,486(2)
C-IN _{Bz}									1,493(2)
CN		1,496(3)							
C-IN _{tBu}		1,489(3)							
CN					1,501(5)			1,473(4)	
C-IN _{Me}					1,512(4)			1,474(4)	

Tabelle 30: Vergleich ausgewählter Bindungslängen mit denen bekannter Nickel-Komplexe mit homo-

				_
substituierten	Diazan	vridino	nhanlig	anden
Substituter cen	Diazap	,	,	anach

Die Nickel-Chlorid-Bindungslänge liegt zwischen 2,3616 Å im Komplex [Ni(L-N₄Ad'Bu)Cl₂] • PhCN **55** und 2,4217 Å in Verbindung [Ni(L-N₄AdMe)Cl₂] **58**. Die kürzeste Nickel-Pyridin-Bindung wird mit 1,998 Å im [Ni(L-N₄'Bu₂)Cl₂] • MeCN **61**^[1] beobachtet und die längste mit 2,038 Å im [Ni(L-N₄AdH)Cl₂] **57**. Die Bindungen zwischen den sekundären Aminstickstoffatomen und dem Zentralion sind kürzer als die Bindungen zwischen den alkylsubstituierten Aminstickstoffatomen und dem Zentralatom. Die Abstände vom Nickel-Ion zu den jeweiligen Amin-Stickstoffatomen mit identischen Substituenten sind sehr ähnlich. Folgende Tabelle zeigt einen Vergleich ausgewählter Bindungswinkel:

Winkel	$[Ni(L-N_{4}'Bu_{2}) \\ Cl_{2}] \\ \cdot MeCN^{[1]}$	[Ni(L- N ₄ Ad ⁴ Bu) Cl ₂] • PhCN	[Ni(L- N ₄ 'BuBz) Cl ₂]	[Ni(L- N ₄ AdH) Cl ₂]	[Ni(L- N ₄ AdMe) Cl ₂]	$[Ni(L-N_4H_2) \\ Cl_2]^{[1]}$	[Ni(L- N_4Me_2) (H ₂ O)]Cl ^[1]	[Ni(L- N ₄ HMe) Cl ₂]	[Ni(L- N ₄ BzH) Cl ₂]
	61	55	56	57	58	53	63	54	59
Cl-Ni- Cl	94,12(4)	92,43(12)	98,53(7)	95,19(2)	95,41(3)	91,40(4)	99,18(11)	93,40(3)	94,84(3)
N _{Py} -Ni- N _{py}	86,89(11)	85,8(3)	80,0(2)	84,68(5)	86,64(11)	85,28(13)	82,58(14)	83,89(9)	83,39(5)
N _{Amin-} Ni- N _{Amin}	145,87(10)	143,3(3)	151,38(17)	148,59(5)	149,10(10)	151,40(12)	154,12(13)	151,44(9)	152,63(5)

Tabelle 31: Ausgewählte Bindungswinkel der Nickel-Komplexe in °

Eine zunehmende Größe der Substituenten an den Aminstickstoffatomen bewirkt eine Verkleinerung des N_{Amin} -Ni- N_{Amin} -Winkels, gleichermaßen verringert sich der Cl-Ni-Cl-Winkel.

In den Komplexen [Ni(L-N₄HMe)Cl₂] **54**, [Ni(L-N₄AdH)Cl₂] **57**, [Ni(L-N₄Ad'Bu)Cl₂] • PhCN **55** und [Ni(L-N₄AdMe)Cl₂] **58** liegt das Nickel-Ion wie im Komplex [Ni(L-N₄H₂)Cl₂] **53** in den jeweiligen Ebenen, die durch die Pyridinringe gebildet werden. Hierbei wurde der Winkel zwischen dem Zentralion, dem Pyridinstickstoffatom und dem *para*-ständigen Kohlenstoffatom gemessen. Im Komplex [Ni(L-N₄BzH)Cl₂] • BzOH **59** bildet das Nickelschweratom mit den Pyridinebenen einen Winkel von 174°. Im Komplex [Ni(L-N₄'BuBz)Cl₂] **56** ist die Abweichung dieses Winkel mit 171° vom 180°-Winkel sogar noch größer, was auf die Einführung der großen *tert*-Butylgruppe zurückzuführen ist.

In den Komplexen wird je nach Art der Aminsubstituenten eine unterschiedliche Torsion des Ligandrückgrates beobachtet. Als Maß hierfür wird der Winkel zwischen der N_{Amin}-M-N_{Amin}-Ebene und der Pyridinringebene bestimmt. Bei einem unverzerrten Liganden sind diese Ebenen nahezu parallel je größer die Verzerrung wird umso größer wird der eingeschlossene Winkel. In folgender Tabelle werden die gefundenen Scherwinkel aufgezeigt. Dieser Winkel wird im Laufe dieser Arbeit mit α bezeichnet. Ebenso wird der Scherwinkel zwischen der N_{Py}-M-N_{Py}-Ebene und der Pyridinringebene β genannt (Tabelle 32). Auch dieser Winkel ist ein Maß für die Verdrillung im Ligand. Dieser Winkel ist für den Fall keiner Verdrillung in dieser Raumrichtung 90°: Je weiter β von 90° abweicht, desto stärker ist der Ligand tordiert.

Komplex	α	β
[Ni(L-N ₄ Ad ^t Bu)Cl ₂] ·PhCN 55	47,56	76,25
$[Ni(L-N_4Ad'Bu)Br_2] 60$	58,35	74,15
$[Ni(L-N_4^tBuBz)Cl_2]$ 56	25,94	87,57
[Ni(L-N ₄ AdH)Cl ₂] 57	40,17	84,29
[Ni(L-N ₄ AdMe)Cl ₂] 58	52,66	79,96
$[Ni(L-N_4HMe)Cl_2]$ 54	30,08	88,64
[Ni(L-N ₄ BzH)Cl ₂] BzOH 59	27,43	87,44

Tabelle 32: Scherwinkel α und β der Nickel-Komplexe in °

Bei der Betrachtung der β -Werte ist eine klare Tendenz zu erkennen: Je größer der Substituent am Aminstickstoffatom wird, umso größer wird die Abweichung von 90 °, somit auch die Verzerrung.

Bei der Betrachtung der α -Werte der Komplexe wurde bei den Komplexen der Liganden mit kleinen Aminstickstoffsubstituenten eine abweichende Beobachtung gemacht: Im Gegensatz zu den homo-substituierten Diazapyridinophankomplexen [Ni(L-N₄H₂)Cl₂] **53**^[1] und [Ni(L-N₄Me₂)Cl₂] **63**^[1] wird schon im Komplex [Ni(L-N₄HMe)Cl₂] **54**^[1] eine leichte Torsion des Ligandrückgrates wie beim Komplex Ni(L-N₄[']Bu₂)Cl₂] **61**^[1] beobachtet, die bei den Komplexen [Ni(L-N₄AdH)Cl₂] **57**, [Ni(L-N₄Ad'Bu)Cl₂] • PhCN **55** und [Ni(L-N₄AdMe)Cl₂] **58** noch sehr viel stärker ausgeprägt ist. Im Gegensatz hierzu wird im Komplex [Ni(L-N₄BzH)Cl₂] • BzOH **59** und [Ni(L-N₄'BuBz)Cl₂] **56** keine merkliche Verzerrung des Ligandrückgrates beobachtet.

Da hier der Einfluss der Amin-Substituenten der Liganden auf die Festkörperstruktur untersucht wurde, wurde auch exemplarisch die strukturelle Auswirkung der Veränderung der Größe des *cis*-ständigen Liganden durch den Austausch von Chlorid- durch Bromidliganden im Falle des Komplexes [Ni(L-N₄Ad'Bu)Br₂] **60** gezeigt. Die Verbindung [Ni(L-N₄Ad'Bu)Br₂] **60** enthält zwei kristallographisch unabhängige Komplexmoleküle in der Elementarzelle. In folgender Tabelle bzw. Abbildung werden die Ergebnisse der Strukturaufklärung gezeigt.

Tabelle 33:Vergleich selektiver Strukturparameter von [Ni(L-N4Ad'Bu)Br2] · 2 CH2Cl260 und [Ni(L-N4Ad'Bu)Cl2] · PhCN 55

Bindungslänge in Å	[Ni(L-N ₄ Ad'Bu)Br ₂] · 2 CH ₂ Cl ₂	[Ni(L-N4Ad'Bu)Cl2] · PhCN
	60	55
Ni(1)-N(2)	1,999(3)	2,011(2)
Ni(1)-N(4)	2,006(2)	2,004(2)
Ni(1)-N(3)	2,365(3)	2,322(2)
Ni(1)-N(1)	2,352(2)	2,387(2)
Ni(1)-X(1)	2,5388(5)	2,3616(6)
Ni(1)-X(2)	2,5366(5)	2,3900(7)
N(1)-C(14)	1,507(4)	1,089(3)
N(1)-C(19)	1,519(4)	1,523(3)
N(1)-C(1)	1,492(4)	1,487(3)
N(2)-C(6)	1,346(4)	1,338(3)
N(2)-C(2)	1,333(4)	1,338(3)
N(3)-C(8)	1,478(4)	1,496(3)
N(3)-C(15)	1,522(4)	1,522(3)
N(3)-C(7)	1,495(5)	1,489(3)
N(4)-C(9)	1,353(4)	1,335(3)
N(4)-C(13)	1,331(4)	1,345(3)
Bindungswinkel in °		
N(2)-Ni(1)-N(4)	88,39(11)	86,35(8)
N(2)-Ni(1)-N(3)	79,19(11)	79,39(8)
N(4)-Ni(1)-N(3)	75,68(10)	76,88(6)
N(2)-Ni(1)-N(1)	75,22(10)	76,02(8)
N(4)-Ni(1)-N(1)	78,81(9)	78,88(7)
N(3)-Ni(1)-N(1)	144,09(9)	146,29(7)
N(2)-Ni(1)-X(1)	88,89(7)	89,92(6)
N(3)-Ni(1)-X(1)	106,53(7)	104,80(5)
N(1)-Ni(1)-X(1)	97,79(6)	97,91(5)
N(2)-Ni(1)-X(2)	176,93(8)	174,33(6)
N(4)-Ni(1)-X(2)	92,27(8)	88,40(6)
N(4)-Ni(1)-X(2)	92,27(8)	88,40(6)
N(3)-Ni(1)-X(2)	98,07(8)	97,35(6)
N(1)-Ni(1)-X(2)	107,85(6)	105,05(5)
X(1)-Ni(1)-X(2)	90,59(2)	108,3(2)

Wegen der größeren Ni-Br-Bindungslängen ist der Br-Ni-Br-Winkel sehr viel kleiner als der entsprechende Winkel im Komplex [Ni(L-N₄Ad^tBu)Cl₂] **55**. Die Bindungslängen und –winkel sind ansonsten sehr ähnlich. Allerdings wird eine Zunahme der Torsion des Diazapyridinophanrückgrates beobachtet. Die Torsion des Ligandrückgrates ist offensichtlich nicht nur von der Eigenschaft der Aminsubstituenten abhängig, sondern es sind vermutlich auch Packungseffekte mit involviert.

3.2.1.4 Magnetische Eigenschaften der Nickel-Komplexe

Bei den Nickel(II)-Komplexen der homo-substituierten Diazapyridionphan-Liganden wurde paramagnetisches Verhalten beobachtet. Es wurden magnetische Momente von 2,97-3,26 μ_B gemessen. Das liegt im typischen Bereich für oktaedrische Nickel(II)-Komplexe.^[1] Es wurde exemplarisch die Verbindung [Ni(L-N₄AdMe)Cl₂] **58**, als Komplex mit hetero-substituierten Liganden, ein magnetisches Moment von 3,11 μ_B bestimmt. Das magnetische Moment von [Ni(L-N₄AdMe)Cl₂] **58** liegt im typischen Bereich für oktaedrische Nickel(II)-Komplexe (Tabelle 34).

Komplex	Magnetisches Moment
$[Ni(L-N_4AdMe)Cl_2] 58$	3,11 μ _B
$[Ni(L-N_4H_2)Cl_2] \cdot 0,5 H_2O 53^{[1]}$	2,97 μ _B
$[Ni(L-N_4Me_2)(H_2O)Cl]Cl \cdot H_2O 63^{[1]}$	3,19 μ _B
$[Ni(L-N_4^{i}Pr_2)Cl_2]$ 64 ^[1]	3,10 μ _B
$[Ni(L-N_4^{t}Bu_2)Cl_2] \cdot MeCN 61^{[1]}$	3,26 μ _B

Tabelle 34: Übersicht über die magnetischen Momente der Nickeldiazapyridinophan-Komplexe

Auch für die Deuterochloroformlösung des Metallkomplexes [Ni(L-N₄Ad'Bu)Cl₂] **55** wird ein paramagnetisches Protonenresonanzspektrum beobachtet, wobei die Signale stark verbreitert sind.

3.2.1.5 UV-Vis-Spektren der Nickel(II)-komplexe mit hetero-substituierten Diazapyridinophanliganden

Bei den Komplexen mit homo-substituierten Diazapyridinophanliganden wurde festgestellt, dass die gelösten neutralen Komplexe Chloridliganden gegen Lösungsmittelmoleküle austauschen. Die so erhaltenen geladenen Teilchen erzeugen eine Leitfähigkeit der Lösungen. In Wasser wurde für die Komplexe eine Leitfähigkeit zwischen 209 und 221 Ω^{-1} mol⁻¹cm, in Methanol zwischen 90,2 und 129 Ω^{-1} mol⁻¹cm und in Acetonitril zwischen 87,0 und 110 Ω^{-1} mol⁻¹cm gefunden. Hieraus kann geschlossen werden, dass in Methanol und Acetonitril ein 1:1-Elektrolyt vorliegt. In Wasser hingegen werden beide Chloridionen abgespalten (1:2-Elektrolyt). Aufgrund der schlechten Löslichkeit der Komplexe [Ni(L-N₄AdH)Cl₂] **57** und [Ni(L-N₄HMe)Cl₂] **54** in Acetonitril und Wasser wurden keine Leitfähigkeiten für diese Substanzen bestimmt. Es wurden 1 mM Lösungen der Komplexe [Ni(L-N₄HMe)Cl₂] **54** und [Ni(L-N₄AdH)Cl₂] **57** in Methanol untersucht (Tabelle 35). Die Leitfähigkeiten liegen in dem Bereich, der für die Bildung von [Ni(L-N₄R₁R₂)(MeOH)Cl]⁺- Kationen in methanolischer Lösung spricht. Von den anderen Komplexen reichten die gewonnenen Mengen an Substanz für eine Untersuchung nicht aus.

Komplex	Leitfähigkeit in Methanol in Ω^{-1} mol $^{-1}$ cm
[Ni(L-N ₄ AdH)Cl ₂] 57	77,5
$[Ni(L-N_4HMe)Cl_2]$ 54	88,3
$[Ni(L-N_4H_2)Cl_2] \cdot 0,5 H_2O 53^{[1]}$	128
$[Ni(L-N_4Me_2)(H_2O)Cl]Cl \cdot H_2O 61^{[1]}$	90,2
$[Ni(L-N_4^{i}Pr_2)Cl_2]$ 64 ^[1]	91,6
$[Ni(L-N_4^{t}Bu_2)Cl_2] \cdot MeCN \ 61^{[1]}$	95,6

Tabelle 35: Vergleich der Leitfähigkeiten der Komplexlösungen

Die Elektronenanregungsspektren sind den Spektren der bekannten Nickel-Komplexe mit homo-substituierten Diazapyridinophanliganden sehr ähnlich. Zwischen 550 und 600 nm wird der Übergang vom ${}^{3}A_{2g}$ - zum ${}^{3}T_{1g}(F)$ -Termzustand gefunden. Durch die Verlängerung der Ni-N_{Amin}-Bindungen wird die oktaedrische Koordinationsumgebung in ihrer Symmetrie beeinträchtigt. Aufgrund des Übergangs in eine angenäherte D_{4h}-Ligandenfeldsymmetrie wird der angeregte T_{2g}-Zustand in einen ${}^{3}E$ -Term und einen ${}^{3}B_{2}$ -Term aufgespalten und deshalb die A_{2g}T_{2g}-Bande in zwei Banden separiert. Dies zeigt sich in der Form der Bande zwischen 900 und 1300 nm. Die Komplexe der Liganden L-N₄H₂ **3** und L-N₄Me₂ **4** zeigen eine einzige breite Bande an der eine Schulter zu erahnen ist. Wenn die Substituenten an den Aminstickstoffatomen größer werden und somit die N_{amin}-Nickel-N_{Amin}-Achse verlängert wird, treten eine schwächere Bande bei 900 nm und eine stärkere bei 1300 nm auf.^[1]

Dieses Verhalten ist vollständig auf die Nickel(II)-Komplexe der hetero-substituierten Diazapyridinophanliganden übertragbar. Es wird beobachtet, dass Absorptionsbanden $({}^{3}A_{2g} \rightarrow {}^{3}T_{2g})$ im Bereich von 900-1300 nm auftreten. Für Komplexe der Liganden mit kleinen Substituenten wird nur eine Bande detektiert. Mit zunehmender Verzerrung des Oktaeders, die durch die Größenzunahme der Substituenten verursacht wird, wird der Abstand der Absorptionsmaxima größer. Es werden nunmehr eine schwächere Bande bei ca. 900 nm und eine starke Bande bei ca. 1100 nm gefunden. In Tabelle 36 werden die charakteristischen Banden angegeben.^[1]

Übergang	[Ni(L-N ₄ HMe)Cl ₂] 54	[Ni(L-N ₄ AdH)Cl ₂] 57	[Ni(L-N ₄ AdMe)Cl ₂] 58	[Ni(L-N ₄ Ad ^r Bu)Cl ₂] 55
Charge Transfer	261 (4827)	261 (7653)	263 (785)	261 (7653)
Charge Transfer	449 (514,7)	347 (171,8)	340 (185,2)	349 (83,65)
$^{3}A_{2g} \rightarrow ^{3}T_{1g}(F)$	571 (215)	588 (32,2)	588 (8,7)	593 (5,13)
${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$	951 (504,6)	956 (93,4)	933,99 (16,3)	871 (67,3)
$^{3}A_{2g} \rightarrow ^{3}T_{2g}$	1012 (519,1)	1126 (139,9)	1165 (34,1)	1322 (283,8)

Tabelle 36: Absorptionsmaxima $\lambda(\varepsilon_M)$ in nm (in lmol⁻¹cm⁻¹) der Nickel-Komplexe mit heterosubstituierten Diazapyridinophanen

Die Absorptionen bei 571-593 nm und 871-1322 nm stammen von den bekannten d-d-Übergängen ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ und ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$ der Komplexe. Mit zunehmender Sperrigkeit der Amin-Substituenten werden die Absorptionsmaxima des zweiten stärkeren Übergangs zu höheren Wellenlängen verschoben. Ein hoher Absorptionskoeffizient von 261nm bis 263 nm bei den Nickel-Komplexen rührt von einem Charge-Transfer-Übergang. Die Bande zwischen 340 und 449 nm kann von einem Charge-Transfer-Übergang zwischen dem Zentralion und dem Chloridliganden, $\pi \rightarrow \pi^*$ oder $n \rightarrow \pi^*$ herrühren. In folgender Abbildung sind die Elektronenanregungsspektren im Bereich von 500-1300 nm gezeigt:

Abbildung 65: Elektronenanregungsspektren der Dichloronickel-Komplexe mit hetero-substituierten Diazapyridinophanliganden

3.2.1.6 Zyklische Voltammetrie der Nickel-Komplexe

Bei der elektrochemischen Untersuchung der Dichloronickel-Komplexe mit homosubstituierten Diazapyridinophanliganden wird lediglich eine reversible Oxidation bei 0,95 V vs. SCE. beobachtet. Nur beim Komplex [Ni(L-N₄Me₂)Cl(H₂O)]Cl • H₂O **63** wird ein nahezu ideal reversibler Kurvenverlauf beobachtet. Reversible Reduktionen werden nicht beobachtet.^[1] Auch bei den hetero-substituierten Vertretern wird kein reversibler Reduktionsvorgang beobachtet. Reversible Oxidationsvorgänge werden in einem ähnlichen Potentialbereich gefunden: Schon während meiner Diplomarbeit wurden erste Resultate für die Nickel-Komplexe hetero-substituierter Diazapyridinophane ermittelt: Bei den Komplexen [Ni(L-N₄Ad'Bu)Cl₂] **55** und [Ni(L-N₄HMe)Cl₂] **54** wird eine quasireversible Oxidation bei 0,939 V vs. SCE beobachtet.^[31]

In folgenden Abbildungen werden die reversiblen Oxidationen der Nickel-Komplexe gezeigt.

Abbildung 66: Zyklovoltammogramme von [Ni(L-N₄AdMe)Cl₂] 58 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

Abbildung 67: Zyklovoltammogramme von [Ni(L-N₄BzH)Cl₂] 59 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

Im Falle des Komplexes [Ni(L-N₄AdH)Cl₂] **57** konnte aufgrund der schlechten Löslichkeit der Verbindung in Acetonitril kein aussagekräftiges Zyklovoltammogramm erzeugt werden. Die elektrochemischen Untersuchungen des Komplexes [Ni(L-N₄AdMe)Cl₂] **58** zeigen eine quasireversible Oxidation bei 0,94 V. vs. SCE. Auch im Komplex [Ni(L-N₄BzH)Cl₂] **59** liegt eine quasireversible Oxidation im Bereich von 0,96 V vs. SCE. vor (Abbildung 67). Von den anderen Komplexen wurden aus Mangel an Material keine elektrochemischen Untersuchungen durchgeführt.

3.2.2 Zink-Komplexe mit hetero-substituierten Diazapyridinophanen

Da der Komplex [Ni(L-N₄^{*t*}BuBz)Cl₂] **56** nur in Spuren zugänglich ist, und der Komplex [Ni(L-N₄Ad^{*t*}Bu)Cl₂] **55** anfänglich nur als verzwillingte Kristalle gewonnen werden konnte, wurden die entsprechenden Liganden mit Zinkchlorid umgesetzt. Die Herstellung der Zink-Komplexe ergibt zudem den Vorteil, dass mit Hilfe der NMR-Spektroskopie untersucht werden kann, ob der Ligand auch in Lösung vierfach an das Zentralatom gebunden bleibt.

3.2.2.1 Synthese der Zink-Komplexe

Der Zink-Komplex [Zn(L-N₄Ad'Bu)Cl₂] **65** wurde analog zum Nickel-Komplex **55** hergestellt. Er wurde durch langsame Diffusion von Diethylether zuerst in eine heißgesättigte Acetonitril- und anschließend in eine Dimethylformamidlösung als farblose, mikrokristalline Substanz gewonnen. Die mikrokristalline Substanz **65** konnte in einer Ausbeute von 39,6 % gewonnen werden (Abbildung 68).

$$ZnCl_{2} + L-N_{4}Ad^{t}Bu \xrightarrow{EtOH} [Zn(L-N_{4}Ad^{t}Bu)Cl_{2}]$$

$$17 \qquad 65$$
Abbildung 68: Darstellung von [Zn(L-N_{4}Ad^{t}Bu)Cl_{2}] 65

Anders als der analoge Nickel-Komplex ist der Komplex $[Zn(L-N_4'BuBz)Cl_2] \cdot CH_3COCH_3$ 66 gut zugänglich. Obwohl der Ligand L-N₄'BuBz 16 nur in ungenügender Reinheit gewonnen werden konnte, konnte der reine Zink-Komplex 66 isoliert werden. Durch eine Komplexierung in Aceton konnte der NMR-analysenreine Komplex 66 in einer Ausbeute von 20 % gewonnen werden (Abbildung 69).

$$ZnCl_{2} + L-N_{4}^{t}BuBz \xrightarrow{CH_{3}COCH_{3}} [Zn(L-N_{4}^{t}BuBz)Cl_{2}] \cdot CH_{3}COCH_{3}$$

$$16 \qquad 56$$
Abbildung 69: Synthese von [Zn (L-N_{4}^{t}BuBz)Cl_{2}] \cdot CH_{3}COCH_{3}56

Ebenso bildete sich mit dem Liganden L- N_4 HMe **54** der entsprechende Zink-Komplex in Methanol. Eine Diethyletherdiffusion in diese Reaktionsmischung ergab Einkristalle, welche zur Bestimmung der Festkörperstruktur dienten. Es konnte jedoch kein analysenreines Material in größerer Menge gewonnen werden (Abbildung 70).

 $ZnCl_2 + L-N_4MeH \longrightarrow [Zn(L-N_4MeH)Cl_2]$ 54
67
Abbildung 70: Synthese von [Zn (L-N_4HMe)Cl_2] 67

3.2.2.2 IR-spektroskopische Untersuchungen der Zink-Komplexe mit heterosubstituierten Diazapyridinophanliganden

Von den erhaltenen Zink-Komplexen wurden Infrarotspektren aufgenommen (Tabelle 37):

$[Zn(L-N_4Ad^tBu)Cl_2] 65$	$[Zn(L-N_4^{\ t}BuBz)Cl_2] 66$	[Zn(L-N ₄ HMe)Cl ₂] 67
3076	3062	3072
2970	2968	2968
1646	1636	1627
1603	1600	1601
1580	1582	1584
1465	1466	1472
1436	1436	1442
1164	1158	1165
1076	1084	1088

Tabelle 37: Gemeinsame IR-Banden der Zinkkomplexe in cm⁻¹

Im Zink-Komplex des Liganden L-N₄Ad^tBu **17** wird bei 1580 cm⁻¹ eine starke Absorption gefunden, die auf das Vorhandensein von DMF im Kristallgitter hindeutet. Die N-H-Schwingung kann bei 3252 cm⁻¹ im Komplex [Zn(L-N₄HMe)Cl₂] **67** beobachtet werden. Im Vergleich zu den Daten der analogen Nickelverbindung werden sehr ähnliche Signale gefunden, die auch in den entsprechenden Nickel-Komplexen zu finden sind.

3.2.2.3 Röntgenstrukturen der Zink-Komplexe

Die durch Diffusionen von Diethylether in die Komplexlösungen gewonnenen Zink-Komplexe $[Zn(L-N_4^tBuBz)Cl_2] \cdot CH_3COCH_3$ **66** und $[Zn(L-N_4HMe)Cl_2]$ **67** bilden *cis*oktaedrische Komplexe. In den folgenden Abbildungen werden die perspektivischen Ansichten abgebildet. Ein Vergleich der Bindungsparameter ist in den nachfolgenden Tabellen gegeben:

C(18) Abbildung 71: Perspektivische Ansicht von [Zn(L-N₄^tBuBz)Cl₂] 66

Abbildung 72: Perspektivische Ansicht von [Zn(L-N₄HMe)Cl₂] 67

Bindungslänge in Å	[Ni(L-N ₄ ^t BuBz)Cl ₂] 55	[Zn(L-N ₄ ^t BuBz)Cl ₂] · CH ₃ COCH ₃ 66
M(1)-N(2)	2,041(4)	2,173(6)
M(1)-N(4)	2,041(4)	2,190(7)
M(1)-N(3)	2,189(6)	2,340(7)
M(1)-N(1)	2,353(5)	2,448(8)
M(1)-Cl(1)	2,370(1)	2,352(2)
M(1)-Cl(2)	2,370(1)	2,332(2)
N(1)-C(14)	1,477(6)	1,457(9)
N(1)-C(1)	1,477(6)	1,460(9)
N(2)-C(6)	1,333(6)	1,288(11)
N(2)-C(2)	1,333(5)	1,278(9)
N(3)-C(8)	1,478(5)	1,472(10)
N(3)-C(19)	1,499(7)	1,450(10)
N(3)-C(7)	1,478(5)	1,518(9)
N(4)-C(9)	1,333(6)	1,292(11)
N(4)-C(13)	1,333(5)	1,255(9)
Bindungswinkel in °		
N(2)-M(1)-N(4)	80,0(2)	75,2(3)
N(2)-M(1)-N(3)	79,86(14)	76,5(2)
N(4)-M(1)-N(3)	79,86(14)	76,3(2)
N(2)-M(1)-N(1)	78,31(14)	75,4(2)
N(4)-M(1)-N(1)	78,31(14)	75,6(2)
N(3)-M(1)-N(1)	151,38(17)	144,3(3)
N(2)-M(1)-Cl(1)	90,60(10)	91,40(19)
N(2)-M(1)-Cl(2)	169,91(11)	165,46(19)
N(3)-M(1)-Cl(1)	94,99(9)	96,64(16)
N(1)-M(1)-Cl(1)	103,50(8)	105,61(15)
N(2)-M(1)-Cl(2)	169,91(11)	165,46(19)
N(4)-M(1)-Cl(2)	90,60(10)	91,0(2)
N(3)-M(1)-Cl(2)	94,99(9)	95,83(16)
N(1)-M(1)-Cl(2)	103,50(8)	106,21(15)
Cl(1)-M(1)-Cl(2)	98,53(7)	101,87(8)

Tabelle 38: Vergleich der Strukturen der Komplexe des Liganden L-N₄'BuBz 16 mit Nickel- und Zinkzentralion

 Tabelle 39: Vergleich Winkel und Abstände der einfachsten hetero-substituierten Nickel- und Zink-Diazapyridinophankomplexe.

Bindungslänge in Å	[Ni(L-N ₄ HMe)Cl ₂] 54	[Zn(L-N ₄ HMe)Cl ₂] 67
M(1)-Cl(1)	2,3645	2,3569(3)
M(1)-Cl(2)	2,3752	2,3522(3)
M(1)-N(1)	2,216	2,340(1)
M(1)-N(2)	2,012	2,150(1)
M(1)-N(3)	2,189	2,258(1)
M(1)-N(4)	2,013	2,149(1)
Bindungswinkel in °		
Cl(1)-M(1)-Cl(2)	93,40	96,06(1)
N(1)-M(1)-N(3)	151,44	143,54(4)
N(2)-M(1)-N(4)	83,89	78,84(4)

Die Koordinationsoktaeder der Zink-Komplexe werden aufgespannt von den vier Donorstickstoffatomen und den Chloroliganden. Wie die Röntgenstrukturanalyse zeigt, liegt im Komplex [Zn(L-N₄[']BuBz)Cl₂] **66**, anders als bei der bekannten Verbindung $[Ni(L-N_4^{t}BuBz)Cl_2]$ 56, keine kristallographisch bedingte Spiegelebene vor, sondern eine Verzerrung des Ligandgerüstes wird beobachtet. Die Bindungen zu den Amin-Stickstoffdonoratomen und Pyridin-Stickstoffdonoratomen sind in den Zink-Komplexen länger als in den entsprechenden Nickel-Komplexen. Das Zink(II)-Ion ist in Verbindung [Zn(L-N₄^tBuBz)Cl₂] 66 sehr viel weiter aus den Pyridinebenen ausgelenkt als das Nickel(II)-Komplex $[Ni(L-N_4^tBuBz)Cl_2]$ 56. Dies konnte Ion beim auch im Komplex [Zn(L-N₄HMe)Cl₂] 67 beobachtet werden. Auch hier liegt ein Winkel von 168° vor, was eine signifikant größere Abweichung als im analogen Nickel-Komplex ist.

In folgender Tabelle werden die Scherwinkel der Pyridinebene und der Metall-Aminstickstoff-Ebene gezeigt.

Komplex	α	β
$[Zn(L-N_4^tBuBz)Cl_2]$ 65	18,16	83,43
$[Zn(L-N_4HMe)Cl_2]$ 67	26,10	85,32

Tabelle 40: Scherwinkel α und β der Zink(II)-Komplexe in °

Die Verzerrungen der Pyridinebenen zur Ebene des Metalls und der beiden Aminstickstoffatome sind geringfügig kleiner als in den entsprechenden Nickel-Komplexen. Aber die Torsion in zwischen der Pyridinebene und der Metall- N_{Py} - N_{Py} -Ebene sind relativ groß und sehr viel größer als in den Nickel-Komplexen.Die ausführlichen Daten der Strukturaufklärung befinden sich im Anhang auf Seite 362 ff. ([Zn(L-N₄^tBuBz)Cl₂] **65**) und 373 ([Zn(L-N₄HMe)Cl₂] **67**).

3.2.2.4 NMR-spektroskopische Charakterisierung der Zink-Diazapyridinophankomplexe

Da die Zink-Komplexe diamagnetisch sind, können Protonenresonanzspektren aufgenommen werden. Das ¹H-NMR-Spektrum zeigt, dass der Ligand in Lösung vierzähnig gebunden ist. Im freien Diazapyridinophan sind Signale der Methylengruppen nur als Singuletts zu beobachten. Im vorliegenden Komplex hingegen ist eine Inversion des Amins und eine freie Rotation um die C-C-Bindung nicht mehr möglich, weshalb die Protonen als AB-System in Resonanz treten. Die Signale der Substituenten werden durch die Koordination des Liganden kaum beeinflusst. Die Signale der Pyridinprotonen werden zu tieferem Feld verschoben. Im Spektrum von [Zn(L-N₄Ad'Bu)Cl₂] **65** befinden sich außerdem noch die Signale von Dimethylformamid und Acetonitril, die selbst durch langes Evakuieren und Waschen mit Isopropanol nicht zu entfernen waren (Abbildung 73, Tabelle 41).

Abbildung 73: Bezifferung der unterschiedlichen Kohlenstoffatome im Ligandgerüst

Verbindung	H(C4,4')	H(C3,3')	H(C5,5')	H(C1,1')	H(C7,7')
$[Zn(L-N_4Ad^tBu)Cl_2] 65$	7,80	7,42	7,42	4,68	3,57
L-N ₄ Ad ^t Bu 17	7,45	6,68(9)	6,68(9)	4,00	3,96
$[Zn(L-N_4^tBuBz)Cl_2]$ 66	7,36	6,69	6,85	3,45	4,48
$L-N_4^{t}BuBz$ 16	6,79-7,28	6,79-7,28	6,79-7,28	4,14	3,86

Tabelle 41: ¹H-NMR-Signale der freien Liganden und Zinkkomplexe in ppm

3.2.3 Kobalt-Komplexe mit hetero-substituierten Diazapyridinophanliganden

3.2.3.1 Synthese der Kobalt-Komplexe

Wegen der schon beschriebenen Probleme der Zwillingskristalle des Komplexes [Ni(L-N₄Ad'Bu)Cl₂] **68** wurde nicht nur Zinkchlorid, sondern auch Kobaltchlorid mit dem Liganden L-N₄Ad'Bu **17** umgesetzt. Das Kobalt(II)-Ion ist in chemischem Verhalten, Ionenradius und Elektronenkonfiguration dem Nickel(II)-Ion sehr viel ähnlicher als das Zink(II)-Ion. Somit soll ein weiterer oktaedrischer Komplex gewonnen werden.

Ebenso wurden die Kobaltkomplexe $[Co(L-N_4HR)Cl_2]$ mit R = Ad **69**, Me **70** untersucht (Abbildung 74).

$$CoCl_2 \cdot 6 H_2O + L-N_4HR \longrightarrow [Co(L-N_4HR)Cl_2] + 6 H_2O$$

$$R = Ad \ 41 \qquad R = Ad \ 69$$
Me \ 21 Me \ 70
Abbildung 74: Herstellung der Komplexe des Types [Co(L-N_4HR)Cl_2] mit R = Ad \ 69, Me \ 70

Die Synthese an Luft zeigte, dass die Komplexe [Co(L-N₄HR)Cl₂] (R = Ad **69**, Me **70**) nicht sauerstoffbeständig waren. Die zunächst lachsfarbene Lösung verfärbte sich braun. Unter Schutzgasatmosphäre konnte lediglich ein rosarotes Öl isoliert werden. Mit dem Liganden L-N₄Ad'Bu **17** hingegen konnte analysenreines kristallines Material isoliert werden. Der Einsatz des Liganden L-N₄Ad'Bu **17** führte aufgrund seiner großen Substituenten zu einer

Stabilitätszunahme und Zunahme der Kristallisationstendenz des Komplexes. Die aus der Reaktionslösung erhaltenen Kristalle sind über lange Zeit luftstabil (Abbildung 75).

$$CoCl_{2} \cdot 6 H_{2}O + L-N_{4}Ad'Bu \xrightarrow{EtOH} [Co(L-N_{4}Ad'Bu)Cl_{2}] + 6 H_{2}O$$

$$17 \qquad 68$$
Abbildung 75: Herstellung von [Co(L-N_{4}Ad'Bu)Cl_{2}] 68

Zur Synthese des Komplexes [Co(L-N₄Ad^{*t*}Bu)Cl₂] **68** wurde eine tiefblaue Lösung von Kobaltchloridhexahydrat in Ethanol zu L-N₄Ad^{*t*}Bu **17** in Ethanol getropft. Beim Abkühlen schieden sich tiefviolette Kristalle ab, die das analysenreine Material der Verbindung **68** widerspiegelten. Der Komplex ist in Nitrilen sehr schlecht, in niederen Alkoholen und Dimethylformamid hingegen sehr gut löslich.

An einer 0,001 molaren Lösung des Komplexes [Co(L-N₄Ad^tBu)Cl₂] **68** wurde eine molare Leitfähigkeit von 88,1 Ω^{-1} mol⁻¹cm ermittelt. Somit kann auch hier von einem 1:1-Elektrolyten ausgegangen werden.

3.2.3.2 Kristallstruktur von [Co(L-N₄Ad^tBu)Cl₂] · PhCN 68

Der Kobalt-Komplex 68 lieferte luftstabile Kristalle, die mit einem Molekül Benzonitril im Kristallgitter analysenrein darstellbar sind. Die Abbildung der Struktur und ein Vergleich der Strukturen des Nickel- und des Kobaltkomplexes sind nachfolgend abgebildet.

[abelle 42: Vergleich der Röntgenstrukturen der Komplexe [Co(L-N ₄ Ad'Bu)Cl ₂] · PhCN 68 und
[Ni(L-N ₄ Ad'Bu)Cl ₂] · PhCN 55

Bindungslänge in Å	[Co(L-N ₄ Ad ^t Bu)Cl ₂] · PhCN 68	[Ni(L-N ₄ Ad'Bu)Cl ₂] · PhCN 55
M(1)-N(2)	2,093(1)	2,011(2)
M(1)-N(4)	2,084(1)	2,004(2)
M(1)-N(3)	2,401(1)	2,322(2)
M(1)-N(1)	2,413(1)	2,387(2)
M(1)-Cl(1)	2,3603(4)	2,3616(6)
M(1)-Cl(2)	2,3866(4)	2,3900(7)
N(1)-C(14)	1,491(2)	1,489(3)
N(1)-C(19)	1,522(1)	1,523(3)
N(1)-C(1)	1,493(2)	1,487(3)
N(2)-C(6)	1,336(2)	1,338(3)
N(2)-C(2)	1,342(2)	1,338(3)
N(3)-C(8)	1,494(2)	1,496(3)
N(3)-C(15)	1,525(2)	1,522(3)
N(3)-C(7)	1,492(2)	1,489(3)
N(4)-C(9)	1,344(1)	1,335(3)
N(4)-C(13)	1,341(2)	1,345(3)

Bindungswinkel in °		_
N(2)-M(1)-N(4)	82,02(4)	86,35(8)
N(2)-M(1)-N(3)	76,42(4)	79,39(8)
N(4)-M(1)-N(3)	75,15(3)	76,88(6)
N(2)-M(1)-N(1)	74,19(4)	76,02(8)
N(4)-M(1)-N(1)	76,54(4)	78,88(7)
N(3)-M(1)-N(1)	141,44(4)	146,29(7)
N(2)-M(1)-Cl(1)	88,49(3)	89,92(6)
N(3)-M(1)-Cl(1)	104,99(3)	104,80(5)
N(1)-M(1)-Cl(1)	98,65(3)	97,91(5)
N(2)-M(1)-Cl(2)	174,44(3)	174,33(6)
N(4)-M(1)-Cl(2)	91,12(3)	88,40(6)
N(3)-M(1)-Cl(2)	98,80(3)	97,35(6)
N(1)-M(1)-Cl(2)	107,41(3)	105,05(5)
Cl(1)-M(1)-Cl(2)	98,485(14)	108,3(2)

Da Kobalt und Nickel ähnliche Ionenradien aufweisen, sind die Bindungslängen des Ligandgerüstes in den Komplexen nahezu identisch. Sowohl der Winkel zwischen dem Zentralion und den Pyridinstickstoffatomen als auch den Amin-Stickstoffatomen ist gegenüber der Nickelverbindung **55** aufgeweitet. Im Kobalt-Komplex **68** ist das Ligandrückgrat (Scherwinkel $\alpha = 39,96^{\circ}$ und $\beta = 78,10^{\circ}$) weniger verzerrt als im entsprechenden Nickel-Komplex **55**. Es ist somit auch das Zentralion für die Torsion des Ligandgerüstes von Bedeutung. Ab Seite 424 sind die genauen Parameter der Festkörperstruktur aufgeführt.

3.2.3.3 Zyklische Voltammetrie an [Co(L-N₄Ad^tBu)Cl₂] 68

Der [Co(L-N₄Ad'Bu)Cl₂]-Komplex **68** wurde zyklovoltammetrisch untersucht. Es konnten keine reversiblen Redoxvorgänge beobachtet werden.

3.2.4 Die Verbindung [Ni(L-N₄^tBuTos)(H₂O)(EtCN)](ClO₄)₂ \cdot H₂O 69

3.2.4.1 Synthese von $[Ni(L-N_4^{t}BuTos)(H_2O)(EtCN)](ClO_4)_2 \cdot H_2O$ 69

Zu einer siedenden Lösung des Liganden L-N₄^{*t*}BuTos **18** in Propionitril wurde tropfenweise eine Lösung von Nickelperchlorathexahydrat in Propionitril zugegeben. Bei der Zugabe färbte sich die Lösung von grün nach violett. In diese Lösung wurde langsam eine Mischung aus Diethylether und Pentan diffundiert. Die erhaltenen Kristalle konnten für eine Strukturbestimmung verwendet werden. Umsetzungen in anderen Lösungsmitteln lieferten kein Material definierter Zusammensetzung. Umsetzungen mit Nickelchloridhexahydrat führten nicht zum entsprechenden Komplex (Abbildung 89).

$$\begin{array}{r} \text{Ni}(\text{ClO}_4)_2 \cdot 6 \ \text{H}_2\text{O} + \text{L-N}_4{}^t\text{BuTos} \xrightarrow{\text{EtCN}} [\text{Ni}(\text{L-N}_4{}^t\text{BuTos})(\text{H}_2\text{O})(\text{EtCN})](\text{ClO}_4)_2 \cdot \text{H}_2\text{O} \\ \hline 18 \ 68 \\ \text{Abbildung 77: Herstellung des [Ni(\text{L-N4}{}^t\text{BuTos})(\text{H}_2\text{O})(\text{EtCN})](\text{ClO}_4)_2 \cdot \text{H}_2\text{O} \end{array}$$

Die violetten Kristalle konnten in einer Ausbeute von 14,4 % isoliert werden. Die Beobachtung war, dass die Kristalle sehr schnell verwittern, was vermutlich auf der Abgabe von im Kristallgefüge enthaltenem Lösungsmittel beruht. Dies könnte erklären, dass der Kohlenstoff-Gehalt der angefertigten Elementaranalyse um 0,9 % abweicht.

3.2.4.2 IR-Spektroskopie an [Ni(L-N₄^tBuTos)(EtCN)(H₂O)](ClO₄)₂ · H₂O 69

Die Schwingungsbanden bei $\tilde{\nu} = 1605 \text{ cm}^{-1} \text{ und } \tilde{\nu} = 1164 \text{ cm}^{-1}$ liegen in den Bereichen der Diazapyridinophan-Komplexe. Bei einer Wellenzahl von $\tilde{\nu} = 1435 \text{ cm}^{-1}$ ist die Valenzschwingung der SO₂-Gruppe zu beobachten. Die Schwingungen der aromatischen Tosylgruppe werden überlagert von den Schwingungen der Pyridingruppen. Die O-H-Schwingung des Wassers konnte bei $\tilde{\nu} = 3422 \text{ cm}^{-1}$ gefunden werden. Eine Perchloratbande bei $\tilde{\nu} = 1118 \text{ cm}^{-1}$ wurde ebenfalls detektiert. Ebenfalls wurden ähnliche Gerüstschwingungen wie bei den Nickel-Diazapyridinophan-Komplexen gefunden. Schwingungen bei $\tilde{\nu}$ ca. 2900 cm⁻¹, $\tilde{\nu}$ ca. 1600 cm⁻¹, $\tilde{\nu}$ ca. 2900 cm⁻¹ und $\tilde{\nu}$ ca. 1160 cm⁻¹ sprechen also für eine Koordination des Liganden. Ebenfalls wurden Banden zwischen $\tilde{\nu} = 1430 \text{ cm}^{-1}$ und $\tilde{\nu} = 1470 \text{ cm}^{-1}$ gefunden, die nahezu identisch zu den Schwingungen des freien Liganden sind. Tabelle 43 gibt einen Überblick über gemeinsame Schwingungen des Komplexes und des freien Liganden.

[Ni(L-N ₄ ^t BuTos)(EtCN)(H ₂ O)](ClO ₄) ₂]·H ₂ O 69	L-N ₄ ^t BuTos 18
2898	2918
2876	2832
1605	1593
1470	1487
1435	1458
1354	1350
1164	1160
902	907
802	816
756	786
750	756
717	729
620	630
555	548

Tabelle 43: Gemeinsame IR-Banden des Komplexes 69 und des Liganden 18 in cm⁻¹

3.2.4.3 Röntgenstruktur von [Ni(L-N₄^tBuTos)(EtCN)(H₂O)](ClO₄)₂ · H₂O 69

Durch eine Diffusion von Pentan und Diethylether in die Reaktionslösung konnten Einkristalle von $[Ni(L-N_4'BuTos)(EtCN)(H_2O)](ClO_4)_2 \cdot H_2O$ 69 gewonnen werden. Die erhaltenen Kristalle waren von ausreichender Qualität für eine Röntgenstrukturanalyse. Die Elementarzelle beinhaltet neben dem Komplexkation ein unkoordiniertes Wassermolekül und zwei Perchlorationen, wobei eines der Anionen fehlgeordnet ist (Abbildung 78).

Abbildung 78: Perspektivische Ansichten des Komplexkations von 69

Der Ligand ist auch hier vierzähnig gebunden. Es liegt eine verzerrt oktaedrische Koordinationsumgebung am Nickel-Ion vor. Als *cis*-ständige Koliganden dienen ein Molekül Propionitril und ein Molekül Wasser. Die Bindung des Tosylamidstickstoffatoms zum Nickel-Ion ist mit 2,398 Å relativ lang, daraus folgt, die Bindung ist also eher schwach. Der Abstand zwischen dem Metallion und dem Aminstickstoffatom ist kürzer als die entsprechenden Abstände in den anderen Nickel(II)-Diazapyridinophan-Komplexen mit *tert*-butyl-alkyl- oder *tert*-butyl-tosylsubstituierten Liganden. Die Bindungslängen vom Nickel-Ion zu den Pyridinstickstoffatomen liegen im Bereich der Diazapyridinophan-Komplexe mit heterosubstituierten Liganden. Der aromatische Rest der Tosylgruppe ist in Richtung der Pyridinringe abgewinkelt. Durch die Komplexierung wird die Bindung zwischen Schwefel-und Stickstoffatom der Tosylgruppe im koordinierten Liganden verlängert. Im Ligandrückgrat liegt eine sehr starke Verdrillung des Liganden vor (Scherwinkel $\alpha = 46,27^{\circ}$ und $\beta = 80,02^{\circ}$). In folgender Tabelle ist ein Vergleich der Strukturdaten des freien Liganden und des Komplexes angegeben.

Bindungslänge inÅ	[Ni(L-N ₄ ^t BuTos)(MeCN)(H ₂ O)] (ClO ₄) ₂ · H ₂ O 69	L-N4 [′] BuTos 18
Ni(1)-N(1)	2,153(3)	
Ni(1)-N(2)	1,986(2)	
Ni(1)-N(3)	2,398(2)	
Ni(1)-N(4)	2,005(2)	
Ni(1)-N(5)	2,034(3)	
Ni(1)-O(3)	2,037(2)	
N(3)-S(1)	1.685(3)	1,633(2)
N(1)-C(1)	1,500(4)	1,463(2)
N(1)-C(14)	1,503(4)	1,463(2)
N(1)-C(15)	1,539(3)	1,491(2)
N(3)-C(7)	1,501(4)	1,472(2)
N(3)-C(8)	1,500(4)	1,472(2)
C(1)-C(2)	1,509(4)	1,509(2)

Tabelle 44: Vergleich der Bindungslängen von [Ni(L-N₄'BuTos)(MeCN)(H₂O)](ClO₄)₂ · H₂O 69 und L-N₄'BuTos 18

Die ausführlichen Daten sind im Anhang ab Seite 327 niedergeschrieben.

3.2.5 Nickel-Komplexe des Liganden HL-N₄(^{*tt*}BzO)Me **45**

3.2.5.1 Synthese der Nickel-Komplexe des Liganden HL-N₄(^{*t*}BzO)Me 45

Bei Umsetzungen mit dem Liganden HL-N₄(^{*tt*}BzO)Me **45** mit Nickelsalzen konnten je nach Reaktionsbedingungen und verwendetem Gegenion drei unterschiedliche Verbindungen isoliert werden.

Nach der Umsetzung des Liganden mit Nickelperchlorathexahydrat in Acetonitril ohne Basenzusatz wurde das Lösungsmittel entfernt und zur Aufreinigung Diethylether in eine Methanollösung des violetten Rohprodukts **70** diffundiert. Die erhaltenen fliederfarbenen Kristalle dienten zur Charakterisierung der Verbindung **70** (Abbildung 79).

$$Ni(ClQ_4)_2 \cdot 6 H_2O + HL \cdot N_4({}^{tt}BzO)Me \xrightarrow{2. MeOH/DEE} [Ni(HL \cdot N_4({}^{tt}BzO)Me)(MeCN)_2](ClQ_4)_2 \cdot MeCN \cdot 0,25 MeOH + 6 H_2O$$
45
70

Abbildung 79: Synthese von [Ni(HL-N₄(^{tt}BzO)Me)(MeCN)₂](ClO₄)₂ · MeCN · 0,25 MeOH 70

Die erhaltenen rotvioletten Kristalle haben die Zusammensetzung [Ni(HL-N₄(^{*tt*}BzO)Me) (MeCN)₂](ClO₄)₂ · MeCN · 0,25 MeOH **70**. Die Kristalle konnten in einer Ausbeute von

74,2 % isoliert werden, jedoch traten bei der Reproduktion Probleme bei der Aufreinigung auf.

Die Umsetzung des Liganden **45** mit Nickelchlorid ohne Basenzugabe führte zu keinem isolierbaren Material. Da der Ligand **45** nicht quantitativ mit Triethylamin deprotoniert werden konnte, mussten alkoholische Lösungen von Alkalihydroxiden verwendet werden.

Die Komplexsynthese von [Ni(L-N₄^{*u*}BzOMe)(EtOH)]Cl · 2 EtOH **71** wurde in Anlehnung an die Synthese der Komplexe des Diazapyridinophanliganden H₂L-N₄(^{*u*}BzO)₂ **5** in entgastem Methanol durchgeführt^[3-5]. Der Ligand **45** wurde zunächst mit Kaliumhydroxid deprotoniert und anschließend mit Nickelchlorid umgesetzt. Bei dieser Reaktion färbte sich das Gemisch intensiv dunkelgrün. Nach einem Lösungsmittelwechsel zu Acetonitril wurde das unlösliche Kaliumchlorid abgetrennt. Eine Kristallisation aus einer heißgesättigten Ethanollösung lieferte die grünen Kristalle bei –60 °C in einer Ausbeute von 54,7 % (Abbildung 80).

$$\operatorname{NiCl}_{2} \cdot 6 \operatorname{H}_{2}O + \operatorname{HL-N}_{4}(^{tt}BzO)\operatorname{Me} \xrightarrow{+ \operatorname{KOH} + \operatorname{EtOH} + \operatorname{EtOH}} [\operatorname{Ni}(\operatorname{L-N}_{4}(^{tt}BzO)\operatorname{Me})(\operatorname{EtOH})]\operatorname{Cl} \cdot 2 \operatorname{EtOH}$$

$$45 - \operatorname{H}_{2}O - \operatorname{KCl} 71$$

$$Abbildung 80: \operatorname{Herstellung von} [\operatorname{Ni}(\operatorname{L-N}_{4}^{tt}BzOMe)(\operatorname{EtOH})]\operatorname{Cl} \cdot 2 \operatorname{EtOH} 71$$

Die durchgeführte Elementaranalyse bestätigte die Zusammensetzung, die aufgrund der Röntgenstruktur angenommen wurde.

Da der Phenolatkomplex mit Chlorid als Gegenion 71 zugänglich war, wurde ebenfalls Nickelperchlorathexahydrat als Edukt für die Synthese eingesetzt:

Zu dem deprotonierten Liganden **45** wurde eine Lösung von Nickelperchlorathexahydrat zugetropft. Um das entstandene Natriumperchlorat abtrennen zu können, wurde das Lösungsmittel entfernt und der Komplex **72** mit Acetonitril aus dem Reaktionsgemisch extrahiert (Abbildung 81).

$$Ni(ClO_4)_2 \cdot 6 H_2O + HL - N_4({}^{tt}BzO)Me \xrightarrow{+ NaOH} [Ni(L-N_4({}^{tt}BzO)Me)](ClO_4) + 7 H_2O$$
45
45
45
72
Abbildung 81: Direktsynthese von [Ni(L-N_4({}^{tt}BzO)Me)](ClO_4) 72

Da aus der acetonitrilischen Lösung kein reines Material zu gewinnen war, wurde das Lösungsmittel wieder ausgetauscht. Aus einer methanolischen Lösung, in die Diethylether diffundiert wurde, fielen grüne Kristallkuben aus, deren Ausbeute 35,4 % betrug. Mit Hilfe

dieser Kristalle konnte die Struktur bestimmt werden. Die Analysenreinheit der Verbindung **72** konnte ebenfalls bei einigen Wiederholungen nicht mehr erreicht werden.

Als alternativer Zugangsweg zum Komplex $[Ni(L-N_4({}^{tt}BzO)Me)](ClO_4)$ 72 sollte die Deprotonierung des komplexierten Phenolliganden dienen. Der Acetonitrilkomplex $[Ni(HL-N_4({}^{tt}BzO)Me)(MeCN)_2](ClO_4)_2 \cdot MeCN \cdot 0,25 MeOH 70$ sollte durch eine Base in den Phenolatkomplex zu überführen sein (Abbildung 82).

$$[\text{Ni}(\text{HL-N}_4(^{tt}\text{BzO})\text{Me})(\text{MeCN})_2](\text{ClO}_4)_2 \xrightarrow{+\text{Base}} [\text{Ni}(\text{L-N}_4(^{tt}\text{BzO})\text{Me})](\text{ClO}_4)_2$$

$$70 \qquad -\text{HBase} \qquad 72$$
Abbildung 82: Umsetzung des Nickelphenolkomplexes zum [Ni(L-N_4(^{tt}\text{BzO})\text{Me})](\text{ClO}_4) 72

Es konnte jedoch mit Triethylamin nur ein braunes Öl gewonnen werden. Die Hydroxide des Kaliumions, Natriumions, und Tetraethylammoniumions waren ebenfalls nicht in der Lage, den koordinierten Liganden zu deprotonieren und eine Metall-Sauerstoffbindung zu knüpfen.

3.2.5.2 IR-spektroskopische Untersuchungen der Komplexe des Liganden $HL-N_4$ ^{(*tt*}BzO)Me **45**

Die Substanzen wurden als KBr-Pressling gemessen und lieferten die typischen Banden wie bei den anderen beschriebenen Nickel-Diazapyridinophankomplexen.

In folgender Tabelle werden die Nickel-Komplexe der homo- und hetero-substituierten Komplexe der Liganden mit Methyl- und Phenolarmsubstituenten am Aminstickstoffatom verglichen. Die Werte sind in Tabelle 45gegenübergestellt.

[Ni(L-N ₄	[Ni(L-N ₄	[Ni(HL-N ₄	[Ni(L-N ₄	[Ni(HL-N ₄	$[Ni(H_2L-N_4)]$	[Ni(L-N ₄	[Ni(L-N ₄
("BzO)Me) EtOH]•Cl	("BzO)Me) •ClO ₄	("BzO)Me) (MeCN) ₂]	$(^{n}BzO)_{2}) _{[5]}$	("BzO) ₂) ClO ₄ ^[5]	("BzO) ₂) (MeCN) ₂](ClO ₄) ₂	Me ₂) (H ₂ O)]Cl ^[5]	HMe)Cl ₂
		•(ClO ₄) ₂		- ·	[5]		- <i>i</i>
71 KBr	72 KBr	70 KBr	73 KBr	74 KBr	75 KBr	63 KBr	54 KBr
KDI	KDI	KDI	MDI	3628	KDI	NDI	KDI
				3546		3514	
		3446	3430	3437	3429	3446	
							3242
						3218	
						3067	3064
						3045	
2958	2956	2972		2991			3006
			2950	2958	2959		
2924	2927	2915	2001		2000	2932	2926
20((20((2901	29/7	2908	2916	2898
2866	2866	2220	2868	2867	2871	2887	
		2320					
		1635					
1603	1604	1600	1601	1605	1606	1605	1602
1583	1584	1582	1580	1582	1586	1581	1584
1474	1475	1467	1465	1475	1478	1575	1472
				1458	1461	1459	
1436	1439	1435	1436	1439	1443	1446	1438
		1401	1412				
1380	1389		1384			1382	
1359	1361	1364	1360	1362	1363		1378
							1324
		1306	1302				
1000		1258	1259	100-			1262
1239	1238		1235	1237	1017		1010
		1102	1200	1200	1217		1212
1160	1162	1193	1200	1200	1202		1154
1100	1105	1138	1100	1103			1134
	1118	1114	1113	1104	1107		
1082	1080	1090	1085	1 I U T	1107	1082	1090
1002	1000	1070	1000			1002	1068
1027	1030			1031		1023	1026
973	978					983	
		931					922
		907					892
883	883					880	
		862	871	884		872	
02.1	000	847	000			017	
834	823		829	700		817	007
/93	/98	770	707	/99		805	806
742	720	//8	/8/				/90
/43	137	706	/30				
		623		624	624		
532	530	020			021		

Tabelle 45: IR-Schwingungsfrequenzen der Nickel-Komplexe mit Phenol- bzw. Phenolatliganden in cm⁻¹

Die IR-Spektren zeigen eine erwartungsgemäß hohe Übereinstimmung, da sich die Liganden nur wenig unterscheiden. Aus dem Schwingungsspektrum alleine können keine Aussagen darüber gemacht werden, ob ein Phenolat-Komplex vorliegt. Die Banden von im Kristall enthaltenem Wasser und Ethanol überlagern den Bereich der Phenolbande. Auffällig ist, dass bei den beiden Phenolat-Komplexen, des Liganden L-N₄(^{*u*}BzO)Me, **71** und **72** keine Schwingungen über 3000 cm⁻¹ auftreten. In den Komplexen die Perchlorat enthalten, werden entsprechende Absorptionen zwischen 1104 und 1118 cm⁻¹ beobachtet. Aber auch in dem bekannten Nickel-Komplex [Ni(L-N₄(^{*u*}BzO)₂] **73**^[3-5] wird eine Schwingungsbande in demselben Bereich detektiert.

3.2.5.3 Röntgenstrukturen der Nickel-Komplexe des Liganden HL-N₄([#]BzO)Me **45**

Von allen drei Nickelverbindungen konnten Einkristalle für eine Strukturaufklärung gewonnen werden.

Die rotvioletten Kristalle von $[Ni(HL-N_4({}^{tt}BzO)Me)(MeCN)_2](ClO_4)_2 \cdot MeCN \cdot 0,25 MeOH$ **70** $, die aus einer Methanol-Diethylether-Diffusion erhalten wurden, bestehen aus dem Komplexkation <math>[Ni(HL-N_4({}^{tt}BzO)Me)(MeCN)_2]^{2+}$ und zwei nicht gebundenen Perchloratanionen.

Die Einkristalle des Komplexes [Ni(L-N₄(^{*t*}BzO)Me)(EtOH)]Cl · 2 EtOH **71** wurden durch langsames Entfernen des Lösungsmittels hergestellt. Das Ethanol wurde langsam mit im Vakuum ausgeheizten Gummistücken entfernt. Die erhaltenen grünen, quaderförmigen Kristalle dienten zur Anfertigung einer Röntgenstrukturanalyse des Komplexes [Ni(L-N₄(^{*t*}BzO)Me)(EtOH)]Cl · 2 EtOH **71**. Die Kristalle werden nach einiger Zeit trübe und verlieren Lösungsmittel. Sowohl das Chloridion als auch das inkorporierte Ethanolmolekül weisen in der Struktur eine Fehlordnung auf.^[83]

Der Komplex [Ni(L-N₄(^{*t*}BzO)Me)ClO₄] **72** kristallisiert im Gegensatz zur Verbindung [Ni(L-N₄(^{*t*}BzO)Me)(EtOH)]Cl **71** ohne Lösungsmittelmoleküle, obwohl man erwartet hätte, dass auch hier Lösungsmittelmoleküle am Schweratom gebunden sind, da Perchloratanionen aufgrund ihres größeren Ionenradius im allgemeinen ein schwächeres Koordinationsvermögen als Chloridionen besitzen. Hier ist jedoch das fehlgeordnete Perchloration wie das Phenolat am Nickelzentralion gebunden.

In folgenden Abbildungen werden die perspektivischen Darstellungen der Komplexe gezeigt.

Im Komplex $[Ni(HL-N_4(^{tt}BzO)Me)(MeCN)_2](ClO_4)_2$ **70** existiert eine Spiegelebene zwischen Aminstickstoffatomen. Aus diesem Grund existieren es zwei mögliche Anordnungen für die Phenolgruppe. In der Abbildung wird eine der beiden möglichen Anordnungen gezeigt.

C(3) Abbildung 84: Perspektivische Ansicht von [Ni(HL-N₄([#]BzO)Me(MeCN)₂](ClO₄)₂70

Abbildung 85: Perspektivische Ansicht von [Ni(L-N₄(^{tt}BzO)Me)](ClO₄)] 72

In Tabelle 46 und 47 sind die wichtigsten Bindungslängen und -winkel mit jenen bekannter Verbindungen verglichen.

 Tabelle 46: Vergleich ausgewählter Bindungslängen und –winkel von [Ni(L-N₄([#]BzO)Me)(EtOH)]Cl 71,

 [Ni(L-N₄([#]BzO)Me)](ClO₄) 72, [Ni(HL-N₄([#]BzO)Me) (MeCN)₂](ClO₄)₂ 70, [Ni(HL-N₄([#]BzO)₂](ClO₄) 74 und

 [Ni(L-N₄([#]BzO)Cl(H₂O)]Cl 63, [Ni(L-N₄BzH)Cl₂] 59

Bindungslänge in Å	[Ni(L-N ₄ ("BzO)Me) (EtOH)]Cl	[Ni(L-N ₄ ([#] BzO)Me)] (ClO ₄)	[Ni(HL-N ₄ ("BZO)Me) (MeCN) ₂](ClO ₄) ₂	[Ni(HL-N ₄ ("BzO) ₂] (ClO ₄) ^[5] .	[Ni(L-N ₄ Me ₂) Cl(H ₂ O)] Cl	[Ni(L- N4BzH)Cl2]
	71	72	70	74	63	59
Ni(1)-O(1)	1,934(2)	1,923(1)	-	1,978(1)	-	
Ni(1)-O(2)	2,137(2)		-	2,197(2)	-	
Ni(1)-N(1)	2,217(2)	2,164(1)	2,213(1)	2,128(2)	2,195(3)	2,166(1)
Ni(1)-N(2)	2,000(3)	2,003(1)	2,006(1)	1,975(2)	2,019(4)	2,019(1)
Ni(1)-N(3)	2,138(2)	2,121(1)	2,196(2)	2,107(2)	2,203(3)	2,240(1)
Ni(1)-N(4)	2,023(2)	1,973(1)	2,041(1)	1,978(1)	2,023(4)	2,036(1)
Bindungswinkel						
in °						
N(1)-Ni(1)-N(3)	153,54(9)	155,76(5)	155,06(7)	157,79(7)	154,12(13)	152,63(5)

Tabelle 47: Vergleich der Bindungswinkel des Phenolrings ans Ligandgerüst von [Ni(L-N₄([#]BzO)Me)EtOH]Cl 71, [Ni(HL-N₄([#]BzO)Me) (MeCN)₂](ClO₄)₂ 70 und HL-N4(^{tt}BzO)Me 45

Bindungswinkel	[Ni(L-N ₄ ("BzO)Me)(EtOH)]Cl	[Ni(HL-N ₄ ("BzO)Me)	HL-N ₄ ([#] BzO)Me
in°	71	(MeCN) ₂](ClO ₄) ₂ · BzOH 70	45
O(1)-C(18)-C(17)	121.7(3)	114.7(2)	119.5(2)

Das Diazapyridinophangerüst bindet das Nickel-Ion bei den Komplexen des Liganden $HL-N_4(^{tt}BzO)Me$ **45** über die Stickstoffatome in üblicher Weise. Das Nickelzentralmetall besitzt eine verzerrt oktaedrische Koordinationsumgebung, wobei die vier Stickstoffatome so

gebunden sind, dass zwei *cis*-ständige Koordinationsstellen am Nickelatom je nach Komplex unterschiedlich besetzt sind. Die *cis*-ständigen Bindungsstellen werden im Falle des Phenol-Komplexes [Ni(HL-N₄(${}^{tt}BzO$)Me)(MeCN)₂](ClO₄)₂ • MeCN • 0,25 MeOH **70** von Acetonitrilmolekülen besetzt. Im Komplex [Ni(L-N₄(${}^{tt}BzO$)Me)EtOH]Cl **71**, koordiniert ein Ethanolmolekül und das Phenolatsauerstoffatom. Das Phenolatsauerstoffatom ist zusammen mit einem fehlgeordneten Perchloratanion an den nicht durch Stickstoffdonoratomen besetzten *cis*-Positionen des Komplexes [Ni(L-N₄(${}^{tt}BzO$)Me)]ClO₄ **72** gebunden.

Die Bindungslängen zwischen Nickelatom und den Stickstoffatomen liegen in vergleichbaren Größenordnungen zu jenen der Komplexe $[Ni(HL-N_4({}^{tt}BzO)_2)]ClO_4\cdot74^{[3-5]}$ und $[Ni(L-N_4Me_2)Cl(H_2O)]Cl 63^{[1]} [Ni(L-N_4BzH)]Cl_2 59$. Der Abstand vom Nickelzentralion zu einem Stickstoffatom, an dem ein Phenolarm gebunden ist, ist gegenüber den Komplexen mit alkylsubstituenten oder benzylsubstituenten Liganden verkürzt.

Die Bindung zum Phenolat-Sauerstoffatom ist beim Phenol-Phenolatkomplex 74 des homosubstituierten Liganden $H_2L-N_4({}^{tt}BzO)_2$ 45^[3-5] länger als im Komplex [Ni(L-N₄(${}^{tt}BzO)Me$)EtOH]Cl 71. Diese beiden Komplexe enthalten am Metall gebundene alkoholische Sauerstoffatome. Dabei ist diese Metall-Sauerstoffbindung in Verbindung [Ni(L-N₄(${}^{tt}BzO$)Me)EtOH]Cl 71 kürzer als im Komplex [Ni(HL-N₄(${}^{tt}BzO)_2$]ClO₄ 74^[3-5]. In der Perchlorat-Phenolat-Verbindung 74^[3-5] ist die Phenolat-Sauerstoffatom-Nickelbindung noch kürzer als im Komplex [Ni(L-N₄(${}^{tt}BzO$)Me)(EtOH)]Cl 71.

Auch der Bindungswinkel zwischen den Aminstickstoffatomen liegt im Bereich der alkylsubstituierten Diazapyridinophan-Komplexe. Der Phenolat-Phenolat-Komplex **74** weißt einen sehr viel größeren Winkel auf. Der Winkel zwischen dem Ligandgerüst und der Phenoleinheit ist beim Phenol-Komplex **70** am kleinsten. Im koordinierten Fall ist der Winkel in einer ähnlichen Größenordnung wie im freien Liganden **45**. Auch bei diesem Komplextyp wurde der Scherwinkel bestimmt zwischen der N_{Amin}-M-N_{Amin}-Ebene und der Pyridinringebene. Das Ergebnis ist in Tabelle 48 zusammengefasst.

Tabelle 48: Scherwinkel zwischen der N_{Amin}-M-N_{Amin}-Ebene und der Pyridinringebene der Nickel-Komplexe des Liganden HL-N₄([#]BzO)Me 45 in °

Komplex	α	β
[Ni(L-N ₄ ([#] BzO)Me)(ClO ₄)] 72	40,26	86,22
[Ni(L-N ₄ (^{<i>t</i>} BzO)Me)(EtOH)]Cl 71	27,86	88,81
$[Ni(HL-N_4(^{tt}BzO)Me)(MeCN)_2](ClO_4)_2 70$	28,72	89,94

Im Komplex $[Ni(L-N_4(^{tt}BzO)Me)(ClO_4)]$ 72 tritt eine sehr starke Torsion des Ligandrückgrates im Verhältnis zur N_{Amin} -Ni- N_{Amin} -Ebene auf. Bei den anderen beiden

Komplexen hingegen tritt nahezu keine Verdrillung auf. Die Verdrillung zur N_{Py} -Ni- N_{Py} -Ebene ist bei allen drei Komplexen sehr gering. Die genauen Daten befinden sich ab Seite 337 ([Ni(HL-N₄(^{*tt*}BzO)Me)(MeCN)₂](ClO₄)₂ **70**), 345 ([Ni(L-N₄(^{*tt*}BzO)Me)(EtOH)]Cl **71**) und 353 (([Ni(L-N₄(^{*tt*}BzO)Me)(ClO₄)] **72**).

3.2.5.4 Zyklovoltammetrie der Nickel-Komplexe des Liganden HL-N₄(^{tt}BzO)Me 45

Von Frau Werle wurden im Rahmen ihrer Diplomarbeit^[5] Nickel-Komplexe des homosubstituierten Liganden $H_2L-N_4({}^{tt}BzO)_2$ 5 untersucht. In den folgenden Abbildungen werden die gefundenen quasireversiblen Elektronenübergänge der neuen Komplexe veranschaulicht.

Abbildung 86: Elektrochemische Oxidation der Verbindung [Ni(HL-N₄([#]BzO)Me)(MeCN)₂](ClO₄)₂ 70

Abbildung 87: Elektrochemische Oxidation von [Ni(L-N4(ttBzO)(EtOH)]Cl 71

Abbildung 88: Elektrochemische Reduktion von [Ni(L-N₄([#]BzO)Me(EtOH)]Cl 71

Abbildung 89: Elektrochemische Oxidation von [Ni(L-N₄("BzO)Me)ClO₄] 72 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

Abbildung 90: Elektrochemische Reduktion von [Ni(L-N₄([#]BzO)Me)(ClO₄)] 72 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

Unter denselben Bedingungen wie bei den anderen besprochenen Nickel-Komplexen wurden auch die im Rahmen dieser Arbeit hergestellten neuen Nickel-Komplexe des Liganden (HL- $N_4({}^{tt}BzO)Me)$ 45 untersucht.

Im Nickel-Phenolkomplex $[Ni(HL-N_4({}^{tt}BzO)Me)(MeCN)_2](ClO_4)_2$ **70** wird wie bei den Nickel-Komplexen der alkylsubstituierten Diazapyridinonophanliganden nur eine reversible Oxidation beobachtet. Dieser Übergang liegt jedoch nicht mehr bei 0,95 V vs. SCE., sondern schon bei 0,54 V vs. SCE.

Dieses Potential ist sehr ähnlich zu dem Potential von 0,625 V vs. SCE., das beobachtet wird bei der elektrochemischen Oxidation von $[Ni(H_2L-N_4({}^{tt}BzO)_2(MeCN)_2](ClO_4)_2$ 75. Auch die Verbindung $[Ni(HL-N_4({}^{tt}BzO)_2](ClO_4)$ 74 zeigt in diesem Bereich einen Elektronenübergang (0,607 V vs. SCE.). ^[5]

Die elektrochemische Oxidation des Komplexes [Ni(L-N₄(${}^{tt}BzO$)Me)(EtOH)]Cl **71** lässt eine Oxidation bei 431 mV vs. SCE. beobachten. Das erhaltene Halbstufenpotential liegt zwischen dem Wert für die Verbindung [Ni(HL-N₄(${}^{tt}BzO$)₂)]ClO₄ **74** bei 607 mV und [Ni(L-N₄(${}^{tt}BzO$)₂] **73** bei 302 mV vs. SCE.^[5]

Beim Phenolat-Komplex $[Ni(L-N_4(^{tt}BzO)Me)]ClO_4$ 72 wurde eigentlich ein identisches elektrochemisches Verhalten erwartet. Das Halbstufenpotential der Oxidation des Komplexes $[Ni(L-N_4(^{tt}BzO)]ClO_4$ 72 beträgt im Mittel 78,8 mV vs. SCE. Das Potential ist hier sehr viel kleiner als bei allen anderen Oxidationen der Nickel-Komplexe.

Anders als bei den anderen Nickel-Diazapyridinophankomplexen werden bei den Phenolat-Komplexen 71 und 72 auch jeweils eine reversible Reduktion beobachtet. Das Halbstufenpotential liegt in den Komplexen bei -1,56 V vs. SCE.

3.2.5.5 UV-Vis-Spektroskopie an Nickelphenol- und Nickelphenolat-Komplexen

Es konnte nur von der Verbindung [Ni(LN₄(^{*tt*}BzO)Me)(EtOH)]Cl **71** genügend reines Material gewonnen werden, um ein UV-Vis-Spektrum anzufertigen. Da auch hier ein Nickel(II)-Ion oktaedrisch umgeben ist, sind ähnliche Anregungsenergien zu erwarten wie bei den Komplexen der alkylsubstituierten Diazapyridinophanliganden (Tabelle 49, Abbildung 91).

Tabelle 49: Vergleich der Elektronenanregungsspektren der Nickel-Komplexe mit Phenoleinheiten

Übergang	[Ni(L-N ₄ ([#] BzO)Me)(EtOH]]Cl 71	[Ni(HL-N ₄ ("BzO) ₂)](ClO ₄) ^[5] 74
d-d	949 (57)	942 (57)
d-d	608 (24)	566 (23)
d-d		375 (9101)
Charge Transfer	297 (4332)	299 (4753)
Charge Transfer	246 (166639)	244 (19271)

Abbildung 91: UV-Vis-Spektrum von [Ni(L-N₄([#]BzO)Me)(EtOH)]Cl 71 in Methanol
Im Arbeitskreis wurde von Frau Werle bereits ein Nickelkomplex ([Ni(HL- $N_4(^{tt}BzO)_2$](ClO₄)) **74** mit einem koordinierten Phenolarm UV-Vis-spektroskopisch untersucht.^[5] Durch den Wechsel des einen Phenolsubstituenten am Stickstoffdonoratom zum Methylsubstituenten ändert sich das Elektronenanregungsspektrum:

Statt eines Überganges bei 260 nm für die Charge-Transfer Anregung wird eine Anregung unterhalb dieser Energie bei einer Wellenlänge von 246 nm und einem molaren Extinktionskoeffizienten von 166639 lmol⁻¹cm⁻¹ gefunden, sowie eine Anregung oberhalb 297 nm mit einer molaren Extinktonskoeffizienten 4332 lmol⁻¹cm⁻¹. Da jedoch die Charge-Transfer-Banden sehr unspezifisch sind, werden diesen Absorptionsbanden keine Übergänge zugeordnet. Als Schulter bei 356 nm mit einem molaren Extinktionskoeffizienten von 1509 lmol⁻¹cm⁻¹ wird vermutlich ein weiterer Charge-Transfer-Übergang detektiert. Bei 608 nm Wellenlänge mit einem molaren Extinktionskoeffizienten von 24,4 lmol⁻¹cm⁻¹ ist der Übergang vom ${}^{3}A_{2g}$ - zum ${}^{3}T_{2g}$ -Zustand zu beobachten.

Dieser Übergang liegt in dem Bereich der entsprechenden Übergänge der Nickel(II)-Komplexe mit homo- und hetero-alkylsubstituierten Diazapyridinophanliganden. Für den Elekronenübergang ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(F)$ hingegen wird im vorliegenden Komplex **71**, wie bei den Nickel-Komplexen mit kleinen Substituenten am Diazapyridinophangerüst, nur eine breite Bande gefunden. Hierbei ist die Wellenlänge geringer als beim Komplex [Ni(L-N₄HMe)Cl₂] **54**. Es wurde ein Wert von 949 nm mit einem molaren Extinktionskoeffizienten von 56,86 lmol⁻¹cm⁻¹ festgestellt

3.2.6 Kupfer-Komplexe als Strukturanaloga der Galactose-Oxidase

In der Literatur sind Komplexe des Kupfers in den Oxidationsstufen +II und +III bekannt.^[123, 124] Besonders im Hinblick auf die Struktur des aktiven Zentrums der Galactose-Oxidase konnten Phenoxylradikal-Komplexe des Kupfers charakterisiert werden.^[125-127]. Die Übertragung auf Diazapyridinophan-Komplexe, die aufgrund ihrer Struktur *cis*-oktaedrische Koordinationsumgebungen in räumlicher Nähe eines potentiell oxidierbaren Substrates zu dem Phenoxylradikal gewährleisten, stellte ein weiteres Ziel der vorliegenden Arbeit dar.

3.2.6.1. Synthese der Kupfer-Komplexe des Liganden HL-N₄([#]BzO)Me 45

Mit dem homo-substituierten Liganden $H_2L-N_4(^{tt}BzO)_2$ 5 wurden mit den Metallionen Eisen, Kupfer, Nickel und Zink Komplexe isoliert, die über eine oder zwei Bindungen zwischen Metallion und den Phenolateinheiten verfügen.^[3-5] Um eine Bindungsstelle am Metallion für ein mögliches Substrat zu erhalten, wurde im Rahmen dieser Arbeit ein Ligand mit nur einer Phenolgruppe synthetisiert. Der Kupferphenol-Komplex **76** wurde, wie Abbildung 92 zeigt, im Rahmen dieser Arbeit hergestellt.

$$Cu(ClO_4)_2 \cdot 6 H_2O + HL-N_4({}^{tt}BzO)Me \xrightarrow{MeCN} [Cu(HL-N_4({}^{tt}BzO)Me)(MeCN)_2](ClO_4)_2 + 6 H_2O$$

$$45 \qquad 76$$
Abbildung 92: Herstellung von [Cu(HL-N4({}^{tt}BzO)Me)(MeCN2)](ClO4)2 76

Der neutrale Ligand **45** wurde in Acetonitril vorgelegt, erwärmt und tropfenweise mit der blauen Lösung von Kupferperchlorathexahydrat in Acetonitril ohne Zugabe von Base versetzt. Dabei konnte ein Farbumschlag der Reaktionsmischung grün nach violett beobachtet werden. Die violettfarbene Lösung wurde zur Vervollständigung der Umsetzung zwei Stunden unter Rückfluss gekocht, in dessen Verlauf sich die Farbe der Lösung von einer violetten Farbe über eine fast schwarze Lösung in ein sehr dunkles Grün veränderte. Diese Farbveränderungen basieren vermutlich auf Änderungen der Koordinationssphären, denn eine Reaktion mit entgasten Lösungsmitteln unter Luftausschluss liefert das gleiche Ergebnis. Somit konnte eine Reaktion mit Sauerstoff ausgeschlossen werden. In der Kälte färbt sich die Komplexlösung langsam violett. Nachdem in diese Lösung langsam Pentan eindiffundiert wurde, fielen in der Kälte wiederum grüne Komplexkristalle aus. Die Ausbeute belief sich auf 25,3 %. Eine Elementaranalyse bestätigte die angenommene Zusammensetzung.

Analog zur Herstellung des Nickelphenolat-Komplexes **72** wurde der mit Natriumhydroxid deprotonierte Ligand mit Kupferperchlorathexahydrat in Ethanol umgesetzt. Mit der Zugabe des Metallsalzes entstand eine tief weinrote Lösung (Abbildung 93). Zur Abtrennung des ebenfalls entstandenen Natriumperchlorats wurde das Reaktionsmedium entfernt. Der violette Feststoff wurde mit Acetonitril maziert. Durch Abkühlen der gesättigten Lösung konnten violette Kristalle gewonnen werden.

$$Cu(ClO_4)_2 \cdot 6 H_2O + HL-N_4(^{tt}BzO)Me \xrightarrow{\text{EtOH} + NaOH} [Cu(L-N_4(^{tt}BzO)Me)]ClO_4 + 7 H_2O$$

$$45 \qquad 77$$
Abbildung 93: Synthese von [Cu(L-N_4(^{tt}BzO)Me)](ClO_4) 77

Der Kupfer-(II)-Phenoxylradikal-Komplex enthält ein Elektron weniger als der Phenolat-Komplex.^[30] Eine ein Elektronen-Oxidation ist ein weit verbreiteter Weg zur Herstellung eines Phenoxylradikals.

Da auch Kupfer(I)-Verbindungen aufgrund ihres Redoxverhaltens interessant sind, wurde der Phenolligand ebenfalls mit Kupfer(I)-Salzen umgesetzt:

Das einwertige Kupfersalz *tetrakis*-(Acetonitril)-Kupfertetrafluoroborat wurde zusammen mit dem deprotonierten Liganden **45** in Ethanol erhitzt und um ein besseres Kristallisationsverhalten zu erzeugen, mit Natriumperchlorat versetzt. Auch hier wurde eine violette Lösung beobachtet, die auf den Phenolatkomplex [Cu(L-N₄(^{tt}BzO)Me)](ClO₄) 76 hindeutete. Es gelang offensichtlich nicht die Substanz absolut frei von Sauerstoff zu halten. Dieser Kupfer(II)-Phenolat-Komplex 77 konnte durch eine Diffusion von Diethylether in die Lösung analysenrein gewonnen werden. Bei einer Umsetzung ohne Base wurde zunächst die gelbe Farbe des Kupfer(I)-Komplexes beobachtet, diese ging nach zwölf Stunden in das bekannte violett des Phenolat-Komplexes 77 über(Abbildung 94)

 $[Cu(MeCN)_{4}](BF_{4}) + HL-N_{4}(^{tt}BzO)Me \xrightarrow[-NaBF_{4}]{-NaBF_{4}} [Cu(L-N_{4}(^{tt}BzO)Me)](ClO_{4})$ $45 - KClO_{4} - KClO_{4} - 77$ Abbildung 94: Herstellung von [Cu(L-N_{4}(^{tt}BzO)Me)](ClO_{4}) 77

3.2.6.2 IR-spektroskopische Untersuchungen der Kupfer-Komplexe

In folgender Tabelle werden die Banden der Kupfer- und Nickel-Komplexe verglichen:

rabene 50. m-Danden der Rupter- und Nekker-Rompiexe							
[Cu(L-	[Ni(L-	[Cu(HL-	Ni(HL-	[Cu(L-	[Ni(L-	[Ni(HL-	[Ni(H ₂ L-
N ₄ (^{<i>it</i>} BzO)Me)	N ₄ ([#] BzO)Me)]	N ₄ (^{<i>tt</i>} BzO)Me)	$N_4(^{tt}BzO)Me)$	$N_4(^{tt}BzO)_2)$	$N_{4}(^{tt}BzO)_{2})$	$N_4(^{tt}BzO)_2)$	$N_4(^{tt}BzO)_2$
ClO ₄]	·ClO ₄	(MeCN) ₂]	(MeCN) ₂]	, , , , , , , , , , , , , , , , , , ,		ClO ₄	(MeCN) ₂]
		·(ClO ₄) ₂	·(ClO ₄) ₂				$(ClO_4)_2$
77	72	76	70	78 ^[5]	73 ^[5]	74 ^[5]	75 ^[5]
KBr	KBr	KBr	KBr	KBr	KBr	KBr	KBr
						3628	
						3546	
3457		3446	3446	3430	3430	3437	3429
			2972			2991	
2964	2956	2958		2950	2950	2958	2959
	2927		2915				
				2901	2901		2908
	2866			2868	2868	2867	2871
			2320				
			2290				
1632			1635				
	1604	1605	1600	1601	1601	1605	1606
1582	1584	1583	1582	1580	1580	1582	1586
	1475	1474	1467	1465	1465	1475	1478
						1458	1461
1445	1439	1449	1435	1436	1436	1439	1443
1414			1401	1412	1412		
	1389			1384	1384		
	1361	1362	1364	1360	1360	1362	1363
	1001	1002	1001	1000	1200	1002	1000
		1300	1306	1302	1302		
1261		1500	1258	1259	1259		
1201	1238		1250	1235	1235	1237	
	1250			1255	1235	1237	1217
			1193	1200	1200	1200	1202
	1163		1158	1160	1160	1165	1202
	1105		1150	1136	1136	1105	
1097	1118	1114	1114	1113	1113	1104	1107
1077	1080	1088	1000	1085	1085	1104	1107
1021	1030	1000	1090	1085	1085	1031	
073	078					1051	
715	710	Q/1	931				
		941	907				
	883		907				
966	885	860	862	971	971	001	
800		809	802	0/1	0/1	004	
	<u>872</u>		047	820	820		
800	023 709	704		029	029	700	
800	/98	/90	770	707	707	/ 99	
		750	//0	/0/	/0/		
	720	/ 39		720	720		
702	/ 39		704	/38	/38		
/02		607	/00			624	671
	520	027	023			024	024
102	550						
46.2	1	1		1	1	1	

Tabelle 50: IR-Banden der Kupfer- und Nickel-Komplexe

Es zeigt sich, dass die Infrarotspektren der Kupfer-Komplexe zu denen der Nickel-Komplexe sehr viele Gemeinsamkeiten aufweisen. Um 1100 cm⁻¹ können die charakteristischen Schwingungen des Perchlorats gefunden werden. Auch werden die charakteristischen Banden der Diazapyridinophan-Komplexe beobachtet.

3.2.6.3 Röntgenstrukturen der Kupfer-Komplexe des Liganden HL-N₄(^{*tt*}BzO)Me 45

Der Komplex [Cu(L-N₄(${}^{tt}BzO$)Me)](ClO₄) 77 kristallisierte aus dem Reaktionsansatz von [Cu(MeCN)₄](ClO₄) mit dem Liganden HL-N₄(${}^{tt}BzO$)Me **45** ohne Basenzusatz, in den Diethylether eindiffundiert wurde. [Cu(HL-N₄(${}^{tt}BzO$)Me)(MeCN)₂](ClO₄)₂ 76 kristallisiert aus einer Acetonitrilreaktionslösung in die Pentan eindiffundiert wurde. In folgenden Abbildungen werden die perspektivischen Darstellungen der Röntgenstrukturanalyse und in den Tabellen ein Vergleich der Bindungsparameter gezeigt.

Abbildung 95: Perspektivische Ansicht von [Cu(HL-N₄([#]BzO)Me)(MeCN)₂]²⁺76

Abbildung Q6. Parsnaktivischa	Ansicht des Kunfer	nhanolatkomnlavkati	ne [Cu(I_N.(t	\mathbf{R}_{7} (Ma)1 ⁺ 77
ADDituting 90. 1 cl spektivische	Ansient des Kupter	рпепотаскотріелкано	JIIS [Cu(L-114(DZUJNICJ 11

Tabelle 51:Vergleich der Strukturparameter von [Cu(HL-N4("BzO)Me)(MeCN)2](ClO4)2 76 und	
[Ni(HL-N ₄ ([#] BzO)Me)(MeCN) ₂](ClO ₄) ₂ 74	

Bindungslänge inÅ	[Cu(HL-N ₄ ("BzO)Me) (MeCN) ₂](ClO ₄) ₂ 76	[Ni(HL-N ₄ ("BzO)Me) (MeCN) ₂](ClO ₄) ₂ 74
M(1)-N(1)	2,331(3)	2,213(1)
M(1)-N(2)	2,019(3)	2,006(1)
M(1)-N(3)	2,354(3)	2,196(2)
M(1)-N(4)	2,008(3)	2,041(1)
Bindungswinkel in °		
N(1)-M(1)-N(2)	79,83(9)	80,97(5)
N(1)-M(1)-N(3)	151,83(13)	155,06(7)
N(1)-M(1)-N(4)	99,29(10)	80,97(5)
N(2)-M(1)-N(3)	78,98(9)	80,57(5)
N(2)-M(1)-N(4)	92,46(11)	84,01(7)
N(3)-M(1)-N(4)	99,96(10)	80,57(5)

Bindungslänge in Å	[Cu(L-N ₄ ("BzO)Me](ClO ₄) 77	[Ni(HL-N ₄ ([#] BzO)Me)(ClO ₄)] 72
M(1)-O(1)	1,864(2)	1,923(1)
M(1)-N(1)	2,175(3)	2,164(1)
M(1)-N(2)	2,173(3)	2,003(1)
M(1)-N(3)	2,103(3)	2,121(1)
M(1)-N(4)	1,946(3)	1,973(1)
Bindungswinkel in °		
O(1)-M(1)-N(1)	103,52(11)	102,93(5)
O(1)-M(1)-N(2)	107,96(12)	103,69(5)
O(1)-M(1)-N(3)	97,32(11)	96,86(5)
O(1)-M(1)-N(4)	165,34(12)	169,02(5)
N(1)-M(1)-N(2)	79,14(13)	80,74(5)
N(1)-M(1)-N(3)	154,17(12)	155,76(5)
N(1)-M(1)-N(4)	80,95(12)	81,20(6)
N(2)-M(1)-N(3)	80,05(13)	81,09(5)
N(2)-M(1)-N(4)	86,54(13)	86,95(5)
N(3)-M(1)-N(4)	82,69(13)	81,94(5)

Tabelle 52: Strukturvergleich des Nickel- und Kupfer-Phenolatkomplexes des Liganden HL-N₄([#]BzO)Me

45

Während am Acetonitril-Komplex **76** eine *cis*-oktaedrische Koordinationsumgebung vorliegt, ist im Phenolat-Komplex **77** das Kupfer(II)-Ion von einer verzerrten quadratischen Pyramide umgeben. Bei beiden Komplexen sind die Perchlorationen nicht an die entsprechenden Komplexkationen gebunden.

Im Komplex [Cu(HL-N₄(^{*tt*}BzO)Me)(MeCN)₂](ClO₄)₂ **76** liegt eine Spiegelebene in der Ebene, die durch das Kupfer-Ion und die beiden Aminstickstoffatome aufgespannt wird. Die Bindungslängen des Metall(II)-Ions zu den Stickstoffdonoratomen der Komplexe sind für die Kupfer-Komplexe größer als die der entsprechenden Nickel-Komplexe, was auf eine Jahn-Teller-Verzerrung durch das Kupfer-Ion hindeutet. Eine Ausnahme bildet lediglich eine N_{py}-Metallion-Bindung im Phenolat-Komplex **77**, die im Nickel-Komplex **72** etwas größer ist. Auch ist die Verdrillung des Ligandrückgrates der Kupfer(II)-Komplexe geringer als bei den Nickel(II)-Komplexen.

Ein Vergleich der Phenol-Komplexe des Kupfer(II)-ions 74 und des Nickel(II)-ions 70 ergibt folgende Unterschiede: Der N_{Py} -M- N_{py} -Winkel ist für den Kupfer-Komplex [Cu(HL- $N_4(^{tt}BzO)Me$) (MeCN)₂](ClO₄)₂ 76 aufgeweitet. Im Gegenzug ist der N_{Amin} -M- N_{Amin} kleiner als beim Nickel-Komplex.

Der Hauptunterschied zwischen den Phenolat-Komplexen ist, dass am Nickel-Ion eine Koordinationszahl von 6 und am Kupfer-Ion eine Koordinationszahl von 5 vorherrscht. Für die Bestimmung des Koorinationspolyeders wurde ein τ -Wert bestimmt. Hierzu wurde die

Differenz der beiden größten Winkel gebildet und diese durch 60 geteilt. Bei einem Wert der nahe bei 0 ist, liegt eine quadratische Pyramide und bei einem Wert von 1 eine trigonale Bipyramide vor.^[128]

In diesem Komplex 77 liegt also mit einem τ -Wert von 0,19 eine verzerrte quadratische Pyramide vor. Anders als beim Bisacetonitrilkupfer-Komplex 76 sind die Abstände zwischen dem Zentralion und den Stickstoffdonoren nahezu identisch zwischen dem Nickel- 72 und dem Kupfer-Komplex 78. Die Bindungslänge vom Zentralion zum Phenolatsauerstoffatom ist kleiner als im entsprechenden Nickel-Komplex 72. Durch die Fünffachkoordination von Komplex [Cu(L-N₄(^{*tt*}BzO)Me)](ClO₄) 78 sind die Winkel des Zentralions zu den Donoratomen mit denen des oktaedrischen [Ni(HL-N₄(^{*tt*}BzO)₂](ClO₄) 72 nahezu identisch (Tabelle 53).

Bindungswinkel in °	[Cu(L-N ₄ ([#] BzO)Me)] (ClO ₄) 77	[Cu(HL-N ₄ ([#] BzO)Me) (MeCN) ₂](ClO ₄) ₂ 76	HL-N ₄ ([#] BzO)Me 45
C(1)-N(1)-C(14)	111,6(3)	111.57(18)	112,3(2)
C(1)-N(1)-C(15)	110,3(3)	109.63(12)	108.9(2)
C(14)-N(1)-C(15)	109,0(3)	109.63(12)	108.4(3)
C(7)-N(3)-C(8)	111,5(3)	110.38(18)	113.09(19)
C(7)-N(3)-C(16)	112,2(3)	110.53(12)	108.7(2)
C(8)-N(3)-C(16)	110,4(3)	110.53(12)	108.69(18)
N(2)-C(2)-C(1)	112,8(3)	114.97(13)	116.4(2)
N(2)-C(6)-C(7)	112,9(3)	114.01(14)	116.4(2)
C(5)-C(6)-C(7)	125,4(4)	125.02(16)	121.7(2)
N(3)-C(7)-C(6)	109,7(4)	113.05(15)	112.4(2)
N(3)-C(8)-C(9)	111,1(3)	113.05(15)	114.8(2)
N(4)-C(9)-C(10)	120,0(4)	120.92(15)	121.7(2)
N(4)-C(13)-C(14)	114,4(3)	114.97(13)	115.9(3)
C(12)-C(13)-C(14)	125,3(4)	124.65(15)	122.1(3)
N(1)-C(14)-C(13)	110,9(3)	113.01(15)	114.1(2)
N(3)-C(16)-C(17)	114,2(3)	115.7(2)	112.64(19)

Tabelle 53: Vergleich der Strukturen der Komplexe 76 und 77 mit dem Liganden 45

Die Torsion des Ligandrückgrates wurde wie bei den vorher besprochenen Komplexen bestimmt (Tabelle 54).

Tabelle 54: Scherwinkel zwischen der N_{Amin}-M-N_{Amin}-Ebene und der Pyridinringebene der Kupfer(II)-Komplexe des Liganden HL-N₄([#]BzO)Me 45 in °

Komplex	α	β
$[Cu(L-N_4(^{tt}BzO)Me)](ClO_4)$ 77	43,26	88,11
$[Cu(HL-N_4(^{tt}BzO)Me)(MeCN)_2](ClO_4)_2 76$	28,76	89,86

Die Torsion bezüglich der α -Werte des Ligandrückgrates ist in den Kupfer-Komplexen geringfügig größer als in den entsprechenden Nickel-Komplexen. Aufgrund der für β bestimmten Werte tritt in beiden Komplexen nahezu keine Torsion auf. Die genauen Strukturdaten sind im Anhang ab Seite 380 ([Cu(L-N₄(^{*tt*}BzO)Me)(MeCN)₂](ClO₄)₂ **76**) und 387 ([Cu(L-N₄(^{*tt*}BzO)Me)](ClO₄) **77**).

3.2.6.4 Zyklische Voltammetrie der Kupfer-Komplexe des Liganden HL-N₄(^{*tt*}BzO)Me **45**

Auch von den Kupfer-Komplexen wurde das elektrochemische Verhalten untersucht. In folgenden Abbildungen werden die gefundenen elektrochemischen Vorgänge gezeigt.

Abbildung 97: Elektrochemische Oxidation von [Cu(L-N₄(^{*n*}BzO)Me)](ClO₄) 77 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

Abbildung 98: Elektrochemische Reduktion von [Cu(L-N₄([#]BzO)Me)](ClO₄) 77 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

Abbildung 99: Elektrochemische Oxidation von [Cu(HL-N₄([#]BzO)Me)(MeCN)₂](ClO₄)₂ 76 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

Der Kupfer-Phenolat-Komplex [Cu(L-N₄(${}^{tt}BzO$)Me)](ClO₄) 77 zeigt eine reversible Reduktion bei -1,3 V vs. SCE. die von einer irreversiblen Reduktion bei -1,63 V vs. SCE. gefolgt wird. Außerdem wird bei 0,44 V vs. SCE. eine quasireversibler Oxidation gefunden. Anders als erwartet wird beim Kupferphenol-Komplex 77 keine Reduktion gefunden, die eigentlich zu erwarten wäre. Die elektrochemische Oxidation liegt bei 0,55 V vs. SCE.

3.2.7 Kupfer(I)-Komplexe mit Diazapyridinophanliganden

Die Kupfer(I)-Komplexe des Liganden HL-N4(^{*t*}BZO)Me **45** konnten nicht isoliert werden. Es fand vermutlich eine Oxidation zum Kupfer(II)-Phenolat-Komplex **77** durch eindringenden Sauerstoff während der Etherdiffusion statt. Hierbei wurde bei Unterdruck gearbeitet, so dass eventuell Spuren von Sauerstoff in die Reaktionslösung diffundieren konnten. Doch auch durch Verwendung von Argon als Schutzgas konnte nicht die Kupfer(I)-Spezies gewonnen werden. Da im postulierten Katalysezyklus der Galaktoseoxidase eine Kupfer(I)-Zwischenstufe durchlaufen wird, sind dennoch Kupfer(I)-Verbindungen von Interesse. So sollte für eine Modellchemie Kupfer(I)-Diazapyridinophan-Komplexe hergestellt werden. Wenn somit erste Erkenntnisse über Reaktivitäten bekannt wären, sollten diese Erkenntnisse auf Komplexe mit Phenolarmen übertragen werden. Als Edukte wurden hierbei das *tetrakis*-(Acetonitril)-Kupfer(I)-Kation mit unterschiedlichen Anionen verwendet.^[129, 130] Kupfer(I)-Komplexe können durch koordinierende Donorsubstituenten wie Acetonitril stabilisiert werden. Diese Verbindungen reagieren mit Sauerstoff und zu entsprechenden Verbindungen des zweiwertigen Kupfers.^[39, 70, 71, 73, 131-135]

3.2.7.1 Synthese der Kupfer(I)-Komplexe

Mit den Liganden L-N₄Ad^tBu **17** und L-N₄^tBu₂ **8**, die sterisch anspruchsvolle Reste an den Aminstickstoffatomen tragen, konnten die entsprechenden Komplexe gewonnen werden. Die Elementaranalyse zeigte, dass ein Äquivalent Acetonitril inkorporiert war.

In sauerstofffreiem Acetonitril wurde unter Stickstoffatmosphäre *tetrakis*-(Acetonitril)-Kupfer(I)-perchlorat mit einem Äquivalent Ligand in der Siedehitze umgesetzt. Schon bei der Zugabe trat eine deutliche Gelbfärbung ein. Kristallines Material konnte durch eine Diethyletherdiffusion in das Reaktionsgemisch isoliert werden. Zur Reinigung wurden die Kristalle mit entgastem Propionitril gewaschen. In folgender Abbildung ist die Herstellung der Komplexe gezeigt:

 $[Cu(MeCN)_{4}](ClO_{4}) + L-N_{4}^{t}BuR \xrightarrow{MeCN} [Cu(L-N_{4}^{t}BuR)(MeCN)](ClO_{4})$ $R = Ad \ 17 \qquad R = Ad \ 79$ ${}^{t}Bu \ 80$ Abbildung 100: Synthese der Kupfer(I)-Diazapyridinophankomplexe

Der Komplex [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) **79** war in einer Ausbeute von 41,8 % und der Komplex [Cu(L-N₄^tBu₂)(MeCN)](ClO₄) **80** in einer Ausbeute von 41,9 % zugänglich, wobei die Qualität des kristallinen Materials ausreichend war, eine Röntgenstrukturanalyse anzufertigen.

Eine Umsetzung von L-N₄Me₂ $63^{[1]}$ mit *tetrakis*-(Acetonitril)-Kupfer(I)-hexafluorophosphat und -perchlorat führte zu keinem isolierbaren Komplex. Bei den Reaktionen trat eine deutliche Gelbfärbung ein. Die gelben Kristalle konnten jedoch nicht isoliert werden. Durch Spuren von Sauerstoff bei der Isolierung war ein grünes Material entstanden.

3.2.7.2 NMR- und IR-spektroskopische Untersuchungen der Kupfer(I)-Komplexe

Auch bei den Kupfer(I)-Komplexen treten die charakteristischen Schwingungen des Diazapyridinophanligandgerüstes auf (Tabelle 55).

[Cu(L-N ₄ Ad'Bu)(MeCN)](ClO ₄) 79 KBr	[Cu(L-N ₄ 'Bu ₂)(MeCN)](ClO ₄) 80 KBr
3446	3438
2971	2924
2899	2887
1599	1598
1577	1575
1448	1441
1397	1396
1368	1372
1360	1366
1242	1247
1198	1196
1103	1092
1010	998
940	941
921	928
864	856
797	797
765	755
622	623

Tabelle 55: IR-spektroskopische Daten von [Cu(L-N₄Ad'Bu)(MeCN)](ClO₄) 79 und [Cu(L-N₄'Bu₂)(MeCN)](ClO₄) 80

Hierbei sind die Schwingungsspektren der beiden Verbindungen sehr ähnlich, was aufgrund der Ähnlichkeit der Liganden zu erwarten war. Die Perchloratbande der Verbindungen wird bei Wellenzahlen von 1103 und 1092 cm⁻¹ beobachtet. Die typische C≡N-Bande des gebundenen Acetonitrilmoleküls bei ca. 2200 cm⁻¹ wird nicht gefunden.

Aufgrund der Sauerstoffempfindlichkeit der Lösungen der Komplexe konnten keine sauberen Kernresonanzspektren gewonnen werden.

3.2.7.3 Röntgenstrukturen der Kupfer(I)-Komplexe

In den Röntgenstrukturen der durch Etherdiffusion gewonnen Kristalle konnten die Zusammensetzungen $[Cu(L-N_4Ad^tBu)(MeCN)](ClO_4)$ 79 und $[Cu(L-N_4^tBu_2)(MeCN)](ClO_4)$ 80 bestätigt werden. In folgenden Abbildungen werden die perspektivischen Ansichten und in der folgenden Tabelle ein Vergleich einiger ausgewählter Bindungsparameter gezeigt. Hierbei werden nur für die in der Literatur^[100] angegebenen Parameter die Fehler angegeben, die anderen Parameter wurden berechnet.

Abbildung 101: Perspektivische Ansicht von [C(4) (MeCN)]⁺-Kations von79

Abbildung 102: Perspektivische Ansicht des [Cu(L-N₄^tBu₂)(MeCN)]⁺-Kations von 80

Tabelle 56: Strukturdaten des Kupferkomplexe	[Cu(L-N ₄ Ad ^t Bu)(MeCN)](ClO ₄) 79 und
--	---

[Cu(L-N₄^tBu₂) (MeCN)](ClO₄) 80

Bindungslänge in Å	[Cu(L-N ₄ Ad'Bu)(MeCN)](ClO ₄) 79	[Cu(L-N ₄ Bu ₂)(MeCN)](ClO ₄) 80	$[Cu(L-N_4^{t}Bu_2)Cl_2]\cdot H_2O$ 81 ^[100]
Cu(I)-N(1)	2,389(1)	2,446(2)	2,52(2)
Cu(I)-N(2)	2,061(1)	2,083(2)	2,083(2)
Cu(I)-N(3)	2,600(1)	2,436(1)	2,46(2)
Cu(I)-N(4)	2,084(1)	2,088(2)	2,07(2)
Cu(I)-N(5)	1,873(1)	1,886(2)	
N(1)-C(1)	1,473(2)	1,469(3)	1,49(3)
N(1)-C(14)	1,474(2)	1,469(3)	1,55(3)
N(3)-C(8)	1,467(2)	1,486(2)	1,468
N(3)-C(7)	1,480(2)	1,478(2)	1,517
C(1)-C(2)	1,507(2)	1,511(3)	1,53(3)
C(13)-C(14)	1,505(2)	1,520(3)	1,50(3)
N(2)-C(2)	1,339(2)	1,337(2)	1,37(3)
Bindungswinkel in °			
C(8)-N(3)-C(9)	116,46(13)	112,64(16)	112,45
C(9)-N(4)-C(10)	121,62(14)	121,53(18)	124,72
N(3)-C(8)-C(9)	116,46(13)	112,64(16)	111,41
N(4)-C(9)-C(8)	120,04(13)	117,04(17)	119,31
N(4)-C(13)-C(14)	116,33(14)	116,59(17)	116,77
N(2)-C(7)-C(6)	116,30(14)	118,21(16)	110,95
C(1)-N(1)-C(14)	109,84(13)	110,03(18)	126,66
N(5)-Cu(1)-N(2)	139,99(6)	143,88(7)	
N(5)-Cu(1)-N(4)	138,04(6)	135,52(7)	
N(4)-Cu(1)-N(2)	79,53(5)	80,60(6)	81,9(7)
N(5)-Cu(1)-N(1)	115,00(5)	105,01(6)	

Die hier nicht angegebenen Parameter werden auf den Seiten 460 ([Cu(L-N₄Ad'Bu) (MeCN)](ClO₄) **79**) und 471 ([Cu(L-N₄^tBu₂)(MeCN)](ClO₄) **80**) gezeigt

In beiden Komplexen (**79** und **80**) ist ein Acetonitril als Donorligand am Kupfer(I)-Ion gebunden. Das Gegenion Perchlorat ist bei beiden Komplexen nicht am Zentralion gebunden.

In beiden Komplexen sind die Bindungen vom Kupferion zu den Aminstickstoffatomen wesentlich länger als zu den Pyridinstickstoffatomen, wobei beim Komplex [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) **79** die Bindung zum N_{Ad} sehr lang ist. Da aber die N-Cu-N-Winkel in beiden Komplexen sehr ähnlich sind kann in beiden Verbindungen 79, 80 von einer verzerrt quadratisch-pyramidalen Koordinationsumgebung ausgegangen werden. Hierbei ist aufgrund der langen Cu-N_{Ad}-Bindung im Komplex [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) 79 $(\tau = 0.03)$ in diesem Komplex das Koordinationspolyeder weniger stark verzerrt als in Verbindung [Cu(L-N₄^{*t*}Bu₂)(MeCN)](ClO₄) **80** ($\tau = 0,08$). In beiden Kupfer-Komplexen ist das Ligandrückgrat verzerrt, aber weniger stark wie in den entsprechenden Dihalogeno-Nickel(II)-Komplexen. Auch bei den Kupfer(I)-Komplexen liegt das Zentralion um 163,9° im [Cu(L-N₄^tBu₂)(MeCN)](ClO₄) **80** und 165,1° im [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) **79** außerhalb der Pyridinringebene.

Im Kupfer(II)-Komplex $[Cu(L-N_4{}^tBu_2)Cl_2](H_2O)$ **81** liegen, obwohl der Ligand verzerrt oktaedrisch koordiniert ist, ähnliche Bindungslängen und –winkel vor.

Die Torsion des Ligandrückgrates wurde wie bei den vorher besprochenen Komplexen bestimmt (Tabelle 57).

Tabelle 57: Scherwinkel α und β der Kupfer(I)-Komplexe in $^{\circ}$

Komplex	α	β
[Cu(L-N ₄ Ad'Bu)(MeCN)](ClO ₄) 80	14,19	85,49
$[Cu(L-N_4^tBu_2)(MeCN)](ClO_4)$ 81	20,12	78,10

Die Torsion, die durch den Winkel α bestimmt wird, zeigt eine sehr geringe Verzerrung der Komplexe. Bei der Verdrillung, die durch den β -Wert errechnet wird, tritt eine relativ starke Verzerrung auf. Die genauen Parameter sind im Anhang für [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) **80** ab Seite 400 und für [Cu(L-N₄^tBu₂)(MeCN)](ClO₄) **81** ab Seite 407.

3.2.7.4 UV-Vis-Spektren von [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) **80** unter Stickstoffatmosphäre

Die Lösung der Substanz [Cu(L-N₄Ad^{*t*}Bu)(MeCN)](ClO₄) **80** zeigte sich als sehr luftempfindlich, da sich die gelbe Lösung grün färbte. Die Reaktionsdauer war je nach Lösungsmittel verschieden. In Dichlormethan verlief die Reaktion innerhalb von Sekunden, in Acetonitril, das auch für die Präparation des Komplexes verwendet wurde, dauerte der Farbumschlag 15 Minuten. In Dimethylformamid wurde eine grüne Lösung erst nach 20

erhalten. Stickstoffatmosphäre Verbindung Minuten Unter wurde von der $[Cu(L-N_4Ad^tBu)(MeCN)](ClO_4)$ 80 ein UV-Vis-Spektrum in Dimethylsulfoxid aufgenommen. In Abbildung 103 ist das Spektrum angegeben, in dem die schwächeren Übergänge zu erkennen sind.

Abbildung 103: Elektronenanregungsspektrum von [Cu(L-N₄Ad'Bu) (MeCN)](ClO₄) 80

Die Verbindung **80** hat eine Charge Transferbande bei 271 nm mit einer molaren Extinktion von 12500 lmol⁻¹cm⁻¹. Ein breiter Übergang wird bei 620 nm mit einer molaren Extinktion von 71,5 lmol⁻¹cm⁻¹ beobachtet.

Um zu beobachten, ob die Superoxostufe bei der Reaktion mit Sauerstoff durchlaufen wird, wurde die Reaktionstemperatur abgesenkt. In einem mit flüssigem Stickstoff angereicherten Ethanolbad konnte eine Blaufärbung beobachtet werden, die jedoch nicht reproduziert werden konnte. Deshalb wurde eine Reaktionskontrolle mit einem Diodenarray-UV-Vis-Spektrometer vorgenommen. Damit Kohlendioxid als potentieller Reaktionspartner ausgeschlossen werden konnte, wurde in entgastem Dimethylformamid und reiner Sauerstoffatmosphäre gearbeitet. Hierbei tritt ein isobestischer Punkt auf, was zeigt, dass eine klare Stöchiometrie zwischen Edukten und Produkten bestehen muss. Mit zunehmender Reaktionszeit mit Sauerstoff tritt eine Bande bei 500 nm auf. Die Sauerstoffadukte zeigen zwischen 580 und 620 nm Absorptionen.^[70] Es können somit Superoxo- oder Peroxoverbindungen entstanden sein. Die Verbindungen konnte jedoch nicht kristallin gewonnen werden, damit weitere Untersuchungen über die Zusammensetzung gemacht werden konnten. Die Reaktion war

innerhalb von 20 Minuten vollständig abgeschlossen. Folgende Abbildung zeigt den zeitlichen Verlauf der Reaktion.

Abbildung 104: Reaktion von [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) 80 mit Sauerstoff

Da keine Oxidationsprodukte isoliert werden konnten, wurde versucht durch eine chemische Oxidation mit Kaliumsuperoxid Kupfer-Sauerstoffverbindungen herzustellen. Der Versuch, den Komplex gezielt mit Kaliumsuperoxid KO₂ zu oxidieren, führte nicht zum Erfolg. Selbst in siedendem Acetonitril wurde die erwartete Farbänderung nicht beobachtet (Abbildung 105).

Es konnten also mit Diazapyridinophanliganden mit großen Substituenten an den Aminstickstoffatomen Kupfer(I)-Diazapyridinophan-Komplexe hergestellt werden. Diese reagieren mit molekularem Sauerstoff aber nicht mit Kaliumsuperoxid. Die Umsetzung mit Sauerstoff scheint zwar definierte Produkte zu liefern, sie waren jedoch bis jetzt nicht zu charakterisieren und zu isolieren.

4. Zusammenfassung und Ausblick

4.1 Zusammenfassung

Diese Dissertation beschäftigt sich mit der Herstellung und Charakterisierung von heterosubstituierten Diazapyridinophanliganden und deren Koordinationschemie.

4.1.1 Liganden

Das Ziel dieser Arbeit war die Herstellung von hetero-substituierten Diazapyridinophanliganden in geeigneter Reinheit und Menge für spätere interessante Koordinationsverbindungen. Hierbei wurden bereits die in der Diplomarbeit gemachten Erkenntnisse für weitere Derivatisierungen verwertet.

Im Rahmen dieser Arbeit ist es gelungen, eine Reihe von nicht trivialen Schlüsselverbindungen, in angemessener Ausbeute und Reinheit, für die Variation unterschiedlicher Aminsubstituenten am Diazapyridinophangrundkörper zu gewinnen. Die erste Schlüsselverbindungsgruppe hierfür sind Alkyl-bis-(6-chlormethyl-2-pyridylmethyl)amine (Abbildung 106) die als Ausgangsverbindung für Zyklisierungsreaktionen dienen.

R = Ad 37^tBu 12

Abbildung 106: Alkyl-bis-(6-chlormethyl-2-pyridyl-methyl)amine BCA 12 und BCAd 37

Hiervon konnten das *tert*-Butyl- **12** und das 1-Adamantylderivat **37** hergestellt und charakterisiert werden.

Eine weitere Gruppe von Schlüsselverbindungen sind die nur einseitig aminsubstituierten Diazapyridinophanliganden L-N₄AdH **41**, L-N₄BzH **42**, L-N₄HMe **21**, L-N₄HTos **19**. Diese Gruppe wurde durch Schlüsselreaktionen, die selektive Abspaltung von Schutzgruppen ermöglichen, hergestellt. Diese Substanzen ermöglichen weitere Derivatisierungsreaktionen, wie die Einführung von Alkyl- oder Arylgruppen, wie auch die Einführung weiterer funktioneller Gruppen. Hierbei konnten ein Vertreter mit sterisch anspruchsvollem Substituenten am Aminstickstoffatom (L-N₄AdH **41**) und einer mit wenig sterisch anspruchsvollen Methylgruppen am Aminstickstoffatom (L-N₄HMe **21**) hergestellt werden (Abbildung 107).

Durch die Einführung eines Phenolarmes durch eine variierte Leuckart-Wallach-Reaktion können potentiell fünfzähnige Liganden synthetisiert werden. Als erster Vertreter für diese Schlüsselverbindungsgruppe (Abbildung 108) ist der Ligand H-L-N₄(^{*tt*}BzO)Me **45** zu sehen.

R = Me 45 Abbildung 108: Der Ligandtyp HL-N₄([#]BzO)R

Für die generelle Herstellung von arylsubstituierten Diazapyridinophanliganden nimmt der Ligand L-N₄(PhNO₂)₂ **48** eine Schlüsselposition ein, da sich aus ihm weitere arylsubstituierte Derivate hergestellt lassen. Es sind bislang, so weit mir bekannt ist, keine Diazapyridinophanliganden mit zwei Arylsubstituenten veröffentlicht. Es konnte ein diarylsubstituiertes Ligandsystem erzeugt werden, bei denen der Phenylring mit einer Nitrogruppe substituiert ist (Abbildung 109).

Abbildung 109: Beispiel eines diarylsubstituierten Liganden 48

Nun möchte ich die eigentlichen Synthesestrategien zu den Schlüsselverbindungen zusammenfassen:

Für die Synthese von hetero-substituierten Diazapyridinophanliganden ist die Herstellung von Alkyl-bis-(6-chlormethyl-2-pyridyl-methyl)aminen von zentraler Bedeutung. Im Rahmen der vorliegenden Arbeit konnten zwei Vertreter hergestellt werden (Abbildung 110).

Abbildung 110: Herstellung der Edukte der hetero-substituierten Diazapyridinophan-Liganden

Mit der Verbindung BCA **12** gelang es, verschiedene *tert*-butylsubstituierte Diazapyridinophan-Liganden zu gewinnen, wie in folgender Abbildung zu sehen ist. Es zeigte sich jedoch, dass unter analogen Reaktionsbedingungen das 1-Adamantylsubstituierte Edukt sich bislang nicht für Zyklisierungsreaktionen eignet (Abbildung 111).

Abbildung 111: Herstellung der Liganden des Typs L-N₄[']BuR

Primäre Amine mit großen Alkylgruppen, z. B. 1-Adamantylamin, und Natriumtosylamid lieferten in den Zyklisierungsreaktionen die Reinsubstanzen L-N₄Ad⁷Bu 17 oder L-N₄⁴BuTos 18 in Ausbeuten von 62 % bzw. 50 %. Die Umsetzung mit dem sterisch wenig anspruchsvollen Benzylamin erbrachte zwar das gewünschte Zyklisierungsprodukt, welches aber nicht vollständig aufgereinigt werden konnte. Die Reaktion mit Methylamin lieferte kein isolierbares Produkt. Anscheinend nehmen die Nebenreaktionen zu, je kleiner der Alkyrest der Amine ist.

Diese drei hetero-substituierten Liganden (L-N₄Ad^{*t*}Bu 17, L-N₄^{*t*}BuTos 18 und L-N₄^{*t*}BuBz 16) dienten als Ausgangsstoffe für weitere Derivatisierungen, wobei die Erkenntnis aus der Diplomarbeit, dass die *tert*-Butylgruppe säurelabil ist, von zentraler Bedeutung ist. Durch die Umsetzung mit Salzsäure konnten selektiv monoalkyl- oder monotosylsubstituierte Diazapyridinophanliganden isoliert werden. Die Ausbeuten der Reinsubstanzen liegen für L-N₄HTos 19 bei 74 % und für L-N₄AdH 41 bei 60 %. Für die Verbindung L-N₄BzH 42 kann wegen der geringen Reinheit des eingesetzten L-N₄^{*t*}BuBz 16 die Ausbeute nicht bestimmt werden (Abbildung 112).

Durch die Präsenz eines sekundären Amines lassen sich selektiv an diesen sekundären Aminfunktionen Substituenten einführen. So konnten Liganden des Typs L-N₄HR in einer Leuckart-Wallach-Reaktion (Abbildung 113) methyliert werden.

Eine weitere Derivatisierungsreaktion des Liganden L-N₄MeTos **44** führt zum Diazapyridinophan L-N₄HMe **21**. Diese Reaktion ist in Abbildung 114 abgebildet.

Abbildung 114: Abspaltung der Tosylgruppe zum L-N₄HMe 21

Die Makrozyklen wurden im Rahmen dieser Promotionsarbeit mit Massenspektrometrie, Kernresonanzspektroskopie und Infrarotspektroskopie charakterisiert. Des Weiteren konnten die Festkörperstrukturen der Liganden L-N₄^tBuTos **18**, L-N₄HTos **19**, L-N₄Ad^tBu **17**, L-N₄AdH **41** und L-N₄AdMe **43** mit Hilfe der Röntgenstrukturanalyse bestimmt werden. Die Protonenresonanzspektren der hetero-substituierten Diazapyridinophane sind denen der homo-substituierten in ihren chemischen Verschiebungen sehr ähnlich. Die Signale der Pyridinprotonen treten jedoch aufgrund der unterschiedlichen Aminsubstituenten als ABC-System auf. Ebenso erscheinen zwei Signale für die unterschiedlichen Methylengruppenprotonen in den entsprechenden NMR-Spektren. Die sterisch aufwendigen Substituenten bewirken eine Hinderung der Inversions- und Rotationsbewegungen, so tritt bei großen Substituenten eine Verbreiterung der Signale für die Methylenprotonen auf.

In den ¹³C-NMR-Spektren ist ein Einfluss der Substituenten der Amingruppen auf die Signale der Methylenkohlenstoffatome und der quartären *ortho*-Pyridinkohlenstoffatome zu beobachten. Die *meta-* und *para-* Kohlenstoffatome von verschiedenen Diazapyridinophanliganden liefern nahezu identische chemische Verschiebungen.

Die Infrarotspektroskopie zeigte, dass das Ligandgerüst über charakteristische Schwingungsmoden verfügt, die weitestgehend unabhängig von den Substituenten der Aminstickstoffatome sind.

Wie bei den homo-substituierten Diazapyridinophanliganden treten im Festkörper je nach Substitution der Aminstickstoffatome zwei Konformere auf. Die homo-alkylsubstituierten Diazapyridinophane zeigen im Feststoff eine *syn*-Sessel-Sessel-Konformation. Die Verbindung L-N₄H₂ **3** zeigt aufgrund von Wasserstoffbrückenbindungen eine *syn*-Wanne-Wanne-Konformation. Das Verhalten der jeweiligen homo-substituierten Liganden wird jeweils in den Ligandhälften der hetero-substituierten Liganden beobachtet. Die heteroalkylsubstituierten Liganden haben die entsprechende Konformation der entsprechenden homo-substituierten Vertreter. Die Liganden L-N₄HTos **19** und L-N₄AdH **41**, zeigen aufgrund von Wasserstoffbrückenbindungen eine *syn*-Sessel-Wanne-Konformation.

Ein neuer Vertreter von Diazapyridinophanmolekülen konnte mit dem Liganden $L-N_4(PhNO_2)_2$ **48** realisiert werden. Die Synthese von arylsubstituierten Diazapyridinophan-Liganden verläuft zwar bislang mit geringen Ausbeuten, aber erlaubt einen Zugang zu weiteren arylsubstituierten Diazapyridinophanliganden (Abbildung 115).

Abbildung 115: Herstellung eines diarylsubstituierten Liganden 48

Die Verbindung **48** wurde als Hydrochlorid isoliert. Dieses konnte IR- und NMRspektroskopisch nachgewiesen werden. Im NMR-Spektrum sind deshalb die Pyridinsignale und Methylensignale tieffeldverschoben.

Die Röntgenstrukturanalyse zeigt eine starke van der Waals-Wechselwirkung zwischen den Phenylgruppen. Es liegt eine nahezu parallele Anordnung der Phenylringe vor. Durch diese Wechselwirkung der Phenylringe und die Koordination eines Protons zwischen den Pyridinstickstoffatomen wird der Winkel zwischen den Pyridinringen stark aufgeweitet. Es zeigt sich, dass in der Nitroanilingruppe eine teilweise chinonanaloge Bindungssituation besteht (Abbildung 116).

Abbildung 116: Bindungssituation am Aromaten

Mit dem Liganden HL-N₄(^{*tt*}BzO)Me **45** konnte ein potentiell pentadentater Ligand analysenrein hergestellt werden (Abbildung 117).

Diese Verbindung 45 konnte mittels Massenspektrometrie, Kernresonanzund Infrarotspektroskopie und Röntgenstrukturanalyse charakterisiert werden. Die Röntgenstruktur zeigt die typische Diazapyridinophanfaltung zu einer Sessel-Sessel-Konfiguration. Der Phenolrest scheint im Kristallgefüge eine Wasserstoffbrückenbindung zwischen der Hydroxylgruppe der Phenoleinheit und einem Aminstickstoffatom auszubilden.

4.1.2 Komplexe

Mit den hetero-substituierten Liganden wurden Nickel-Komplexe hergestellt, um den strukturellen und elektronischen Einfluss der Substituenten auf die Komplexe zu untersuchen. Aus Reaktionen der entsprechenden Liganden mit Nickelchloridhexahydrat in Ethanol oder Methanol konnten folgende Komplexe synthetisiert werden: $[Ni(L-N_4BzH)Cl_2]$ **59** (70 % Ausbeute), $[Ni(L-N_4Ad'Bu)Cl_2]$ **55** (29 % Ausbeute), $[Ni(L-N_4AdH)Cl_2]$ **57** (30 % Ausbeute), $[Ni(L-N_4HMe)Cl_2]$ **54** (65 % Ausbeute). $[Ni(L-N_4'BuBz)Cl_2]$ **56** konnte nur in so geringer Ausbeute hergestellt werden, so dass lediglich eine Röntgenstruktur und ein Infrarotspektrum angefertigt werden konnten. Mit Hilfe von $[NiBr_2(PPh_3)_2]$ **52** und L-N_4Ad'Bu **17** in Ethanol konnte $[Ni(L-N_4Ad'Bu)Br_2]$ **60** (17 % Ausbeute) synthetisiert werden.

In den Infrarotspektren lagen auch bei diesen Komplexen die charakteristischen Schwingungsbanden des Makrozyklengerüstes vor.

Bei allen Komplexen dieses Ligandtyps ist der Ligand vierfach an das Nickel(II)-Ion gebunden und die Halogenidliganden sind cis-ständig angeordnet. Die Liganden koordinieren so, dass die Aminsubstituenten zu den Halogenidliganden maximalen Abstand einnehmen. Die Phenylgruppe der Benzyleinheit wird in den Komplexen [Ni(L-N₄^tBuBz)Cl₂] • CHCl₃ 56 und [Ni(L-N₄BzH)Cl₂] **59** zur Minimierung der sterischen Hinderung von den Chloridliganden weg abgewinkelt. Aus dem gleichen Grund orientieren sich die 1beziehungsweise *tert*-Butylgruppen dass Methylen-Adamantylso, ein bzw. Methylkohlenstoffatom oberhalb der Winkelhalbierenden des Cl-Ni-Cl-Bindungswinkels zum Liegen kommt. Bindungslängen sind den Komplexen der homo-substituierten Liganden sehr ähnlich. Die Bindungen zwischen den sekundären Aminstickstoffatomen und dem Nickel-Ion sind kürzer als die Bindungen zwischen den alkylsubstituierten Aminstickstoffatomen und dem Nickel-Ion. Die Abstände vom Nickel-Ion zu den Amin-Stickstoffatomen mit jeweilig gleichem Substituent sind in den unterschiedlichen Nickel-Komplexen der heterosubstituierten Diazapyridinophanliganden sehr ähnlich. Eine zunehmende Größe der Substituenten an den Aminstickstoffatomen bewirkt eine Zunahme der Ni-NAmin-Bindung und $N_{Amin}\mbox{-}Ni\mbox{-}Ni\mbox{-}Namin\mbox{-}Bindungs winkels$ eine Verkleinerung des und des Cl-Ni-Cl-Bindungswinkels. In folgender Abbildung werden die Ergebnisse der Strukturaufklärung aufgezeigt.

Abbildung 118: Strukturen der Komplexe der hetero-alkylsubstituierten Liganden

In den Komplexen $[Ni(L-N_4HMe)Cl_2]$ 54, $[Ni(L-N_4AdH)Cl_2]$ 57, $[Ni(L-N_4Ad'Bu)Cl_2]$ • PhCN 55 und $[Ni(L-N_4AdMe)Cl_2]$ 58 liegt das Nickel-Ion wie im Komplex $[Ni(L-N_4H_2)Cl_2]$ **53**^[1] in den jeweiligen Pyridinringebenen. Im Komplex [Ni(L-N₄BzH)Cl₂] • BzOH **59** bildet die Ni-N_{Py}-Bindung mit den Pyridinebenen einen Winkel von 174°. Im Komplex [Ni(L-N₄^{*t*}BuBz)Cl₂] **56** ist dieser Winkel mit 171° sogar noch kleiner, was auf die Einführung der großen *tert*-Butylgruppe zurückzuführen ist. Bei der Betrachtung der β-Werte (Winkel zwischen Pyridinringebenen und der Ebene N_{py}-M-N_{Py}-Ebene) zeigt sich, dass die Verdrillung in dieser Raumrichtung mit der Größe der Substituenten der Aminstickstoffatome zunimmt.

Wenn der Scherwinkel zwischen den Pyridinringebenen und den N-_{Amin}-M-N_{Amin}-Ebene beobachtet wird, fällt bei den Komplexen der Liganden mit sterisch kleinen Substituenten eine Besonderheit auf: Im Gegensatz zu den homo-substituierten Diazapyridinophan-Komplexen [Ni(L-N₄H₂)Cl₂] **53**^[1] und [Ni(L-N₄Me₂)Cl₂] **63**^[1]wird schon im Komplex [Ni(L-N₄HMe)Cl₂] **54** eine leichte Torsion des Ligandrückgrats wie beim Komplex Ni(L-N₄[']Bu₂)Cl₂] **61**^[1] beobachtet, die bei den Komplexen [Ni(L-N₄AdH)Cl₂] **57**, [Ni(L-N₄Ad[']Bu)Cl₂] • PhCN **55** und [Ni(L-N₄AdMe)Cl₂] **58** noch sehr viel stärker ausgeprägt ist. Im Gegensatz hierzu wird im Komplex [Ni(L-N₄BzH)Cl₂] • BzOH **59** und [Ni(L-N₄[']BuBz)Cl₂] **56** keine merkliche Verzerrung des Ligandrückgrates beobachtet.

Es wurde ebenfalls der Einfluss der *cis*-ständigen Liganden auf die Festkörperstruktur untersucht. Wegen der größeren Ni-Br-Bindungslängen ist der Br-Ni-Br-Winkel sehr viel kleiner als der entsprechende Cl-Ni-Cl-Winkel im Komplex [Ni(L-N₄Ad'Bu)Cl₂] **55** Die sonstigen Bindungslängen und –winkel sind sehr ähnlich. Allerdings wird eine Zunahme der Torsion des Diazapyridinophanrückgrates beobachtet. Die Torsion des Ligandrückgrates ist offensichtlich nicht nur von der Größe der Aminsubstituenten, sondern auch von den Halogenidliganden abhängig. Packungseffekte lassen sich ebenfalls als mögliche Ursache für die Verdrillung des Ligandgerüstes nicht ausschließen.

Von einigen der erhaltenen Nickel-Komplexe wurden auch magnetische und elektronische Eigenschaften untersucht:

Es wurde exemplarisch für alle Dichloronickel-Komplexe mit hetero-substituierten Liganden das magnetische Moment der Verbindung [Ni(L-N₄AdMe)Cl₂] **58** bestimmt. Das magnetische Moment von 3,11 μ_B für [Ni(L-N₄AdMe)Cl₂] **58** liegt im typischen Bereich für oktaedrische Nickel(II)-Komplexe.

In Lösung wird bei den Nickeldichlorid-Komplexen der hetero-substituierten Diazapyridinophane ein Halogenid durch ein Lösungsmittelmolekül ausgetauscht. Dieses Verhalten tritt ebenfalls bei den Komplexen der homo-substituierten Liganden auf, was durch Leitfähigkeitsmessungen einiger Verbindungen bestätigt werden konnte. Von einigen dieser Nickelverbindungen wurden Elektronenanregungsspektren aufgenommen.

Zwischen 550 und 600 nm wird ein Übergang vom ${}^{3}A_{2g}$ - zum ${}^{3}T_{1g}(F)$ -Term gefunden. Durch die Verlängerung der Ni-N_{Amin}-Bindungen wird die Oktaedersymmetrie reduziert. Aufgrund des Vorliegens einer tetragonal verzerrten oktaedrischen Ligandenfeldsymmetrie (idealisiert D_{4h}-Symmetrie), wird der angeregte T_{2g}-Zustand in einen ${}^{3}E$ - und einen ${}^{3}B_{2}$ -Term und die A_{2g}-T_{2g}-Bande daher in zwei Banden aufgespalten. Dies zeigt sich in der Form der Bande zwischen 900 und 1300 nm. Die Komplexe der Liganden L-N₄H₂ **3** und L-N₄Me₂ **4** zeigen eine einzige breite Bande, an der eine Schulter nur zu erahnen ist. Wenn die Substituenten an den Aminstickstoffatomen größer werden und somit sich die N_{amin}-Nickel-Bindungen verlängern, treten ein kleinere Bande bei 900 nm und eine größere bei 1300 nm auf.

In den Zyklovoltammogrammen der Nickel-Komplexe der hetero-substituierten Diazapyridinophanliganden wird kein reversibler Reduktionsvorgang beobachtet. quasireversible Oxidationsvorgänge werden bei ca. 0,94 V vs. SCE. gefunden. Das Oxidationspotential ist nahezu unabhängig von der Natur der Aminsubstituenten des koordinierten Diazapyridinophanliganden.

Da die Nickel(II)-Komplexe paramagnetisch sind, wurden für kernresonanzspektroskopische Untersuchungen die hetero-substituierten Diazapyridinophanliganden mit Zink(II)-chlorid umgesetzt. Die Zink-Komplexe konnten nicht in vergleichbarer Reinheit wie die Nickel-Komplexe isoliert werden. Die Infrarotspektren zeigen ähnliche Schwingungsmoden wie die entsprechenden Nickel(II)-Diazapyridinophan-Komplexe.

Von diesen drei untersuchten Verbindungen konnten von $[Zn(L-N_4'BuBz)Cl_2] \cdot CH_3COCH_3$ 66 und $[Zn(L-N_4HMe)Cl_2]$ 67 die Festkörperstrukturen bestimmt werden (Abbildung 119).

Abbildung 119: Strukturen der Diazapyridinophan-Zink(II)-Komplexe 66 und 67

 $[Zn(L-N_4^{t}BuBz)Cl_2] \cdot CH_3COCH_3$ 66 und $[Zn(L-N_4HMe)Cl_2]$ 67 bilden *cis*-oktaedrische Komplexe. Im Komplex $[Zn(L-N_4^{t}BuBz)Cl_2]$ 66 liegt, anders als bei der bekannten

Verbindung [Ni(L-N₄'BuBz)Cl₂] **56**, keine kristallographisch bedingte Spiegelebene vor. Zudem wird eine Verzerrung des Ligandgerüstes beobachtet. Die Bindungen zu den Amin-Stickstoffdonoratomen und Pyridin-Stickstoffdonoratomen sind in den Zink-Komplexen länger als in den entsprechenden Nickel-Komplexen. Das Zink(II)-Ion ist in der Verbindung [Zn(L-N₄'BuBz)Cl₂] **66** sehr viel weiter aus den Pyridinebenen ausgelenkt als das Nickel-Ion beim Komplex [Ni(L-N₄'BuBz)Cl₂] **56**. Dies konnte auch im Komplex [Zn(L-N₄HMe)Cl₂] **67** beobachtet werden. Auch hier liegt ein Auslenkungswinkel des Zink-Ions aus den Pyridinebenen von 168° vor, was signifikant kleiner als im analogen Nickel-Komplex **54** ist.

Die Verzerrungen der Pyridinebenen zur Ebene des Metalls und der beiden Aminstickstoffatome sind geringfügig kleiner als in den entsprechenden Nickel-Komplexen. Aber die Torsion in zwischen der Pyridinebene und der Metall-N_{Py}-N_{Py}-Ebene sind relativ groß und sehr viel größer als in den Nickel-Komplexen.

Im freien Diazapyridinophanliganden sind die Signale der diastereotopen Methylengruppen nur als Singuletts zu beobachten. In den vorliegenden Zink(II)-Komplexen hingegen ist eine Inversion am Aminstickstoffatom und die freie Rotation um die C-C-Bindungen nicht mehr gegeben, weshalb die Protonen als AB-System in Resonanz treten. Die Signale der Aminsubstituenten werden durch die Koordination des Liganden kaum beeinflusst. Die ¹H-NMR-Signale der Pyridinprotonen werden zu tieferem Feld verschoben.

Es konnte mit Verbindung [Ni(L-N₄[']BuTos)(EtCN)(H₂O)](ClO₄)₂ **69** zum ersten mal ein Komplex hergestellt werden, an dem ein Metall an ein Tosylamidstickstoffatom gebunden ist. Die Bindung ist sehr viel schwächer als die Metallbindungen zu alkylsubstituierten Stickstoffatome. Aufgrund der schnellen Verwitterung der Kristalle, durch das verschwinden von inkorporiertem Lösungsmittel, wurde keine stimmige Elementaranalyse erhalten. Die infrarotspektroskopischen Daten waren denen der diaminhaltigen Diazapyridinophan-Komplexe sehr ähnlich.</sup>

Die Elementarzelle beinhaltet neben dem Komplexkation ein Wassermolekül und zwei Perchlorationen, wobei eines der Anionen zusätzlich fehlgeordnet ist. In der folgenden Abbildung wird lediglich das Komplexkation gezeigt:

Abbildung 120: Festkörperstruktur des [Ni(L-N₄^tBuTos)(EtCN)(H₂O)]-Kations 69

Im Komplexkation sind an den *cis*-ständigen Koordinationsstellen des Nickel-Ions jeweils das Stickstoffatom eines Propionitril- und das Sauerstoffatom und eines Wassermoleküls gebunden. Die Bindung des Tosylamidstickstoffatoms zum Nickel-Ion ist mit 2,398 Å relativ lang. Die Bindung ist also eher schwach. Der aromatische Rest der Tosylgruppe zeigt in Richtung der Pyridinringe. Im Ligandrückgrat liegt ebenfalls eine Verdrillung des Liganden vor. Durch die Komplexierung wird die Bindung zwischen Schwefel- und Stickstoffatom der Tosylgruppe im koordinierten Liganden verlängert.

Auch mit dem potentiell pentadendaten Liganden HL-N₄(^{*tt*}BzO)Me **45** konnten drei Nickel(II)-Komplexe gewonnen werden. Hierbei handelt es sich um zwei Komplexe einer Bindung der Phenolatgruppe an das Zentralatom und einen Phenol-Komplex.

Bei der Umsetzung des deprotonierten Liganden **45** mit Nickelchloridhexahydrat und Nickelperchlorathexahydrat gelang die Isolierung der entsprechenden Komplexe, in denen das Phenolatsauerstoffatom koordiniert vorliegt. In diesem Komplextyp wird Perchloration in Verbindung [Ni(L-N₄(^{*u*}BzO)Me](ClO₄) **72** koordiniert, das Chloridion wird im Komplex [Ni(L-N₄(^{*u*}BzO)Me(EtOH)]Cl • 2 EtOH **71** gegen ein Ethanolmolekül ausgetauscht (Abbildung 121).

$$\operatorname{NiCl}_{2} \cdot 6 \operatorname{H}_{2}O + \operatorname{HL-N}_{4}(^{tt}BzO)\operatorname{Me} \xrightarrow{+ \operatorname{KOH} + \operatorname{EtOH} - \operatorname{H}_{2}O - \operatorname{KCl}} [\operatorname{Ni}(\operatorname{L-N}_{4}(^{tt}BzO)\operatorname{Me})(\operatorname{EtOH})]\operatorname{Cl} \cdot 2 \operatorname{EtOH}$$

$$45 \quad 71 \quad 71$$

$$\operatorname{Ni}(\operatorname{ClO}_{4})_{2} \cdot 6 \operatorname{H}_{2}O + \operatorname{HL-N}_{4}(^{tt}BzO)\operatorname{Me} \xrightarrow{+ \operatorname{NaOH} - \operatorname{NaClO}_{4}} [\operatorname{Ni}(\operatorname{L-N}_{4}(^{tt}BzO)\operatorname{Me})](\operatorname{ClO}_{4}) + 7 \operatorname{H}_{2}O \quad 72$$

Abbildung 121: Herstellung der Nickelphenolatkomplexe 71 und 72

Durch die Umsetzung des Liganden mit Nickelperchlorat in Acetonitril entsteht der Nickel-Komplex, in dem der potentiell fünfzähnige Ligand **45** nur vierzähnig gebunden ist. Die Phenoleinheit ist nicht deprotoniert und koordiniert nicht am Metall. Ebenso koordinieren die Perchlorationen nicht, stattdessen sind zwei Acetonitrilmoleküle *cis*-ständig gebunden (Abbildung 122).

$$Ni(ClO_4)_2 \cdot 6 H_2O + HL-N_4({}^{tt}BzO)Me \xrightarrow{2. MeOH/DEE} [Ni(HL-N_4({}^{tt}BzO)Me)(MeCN)_2](ClO_4)_2 \cdot MeCN \cdot 0,25 MeOH + 6 H_2O$$

$$45 70$$

Abbildung 122: Herstellung von [Ni(HL-N4^{tt}BzOMe)(MeCN)₂](ClO₄)₂ 70

Die Infrarotspektren der Komplexe sind denen der Komplexe des homo-substituierten Liganden H₂L-N₄(^{*tt*}BzO)₂ **5** sehr ähnlich. Aus dem Schwingungsspektrum alleine können noch keine Aussagen darüber gemacht werden, ob Phenol gebunden vorliegt, da die Banden von Wasser und Ethanol den Bereich der Phenolbande überlagern. Wie zu erwarten treten bei den beiden Phenolat-Komplexen des Liganden HL-N₄(^{*tt*}BzO)Me **45** keine Schwingungen über 3000 cm⁻¹ auf, was zeigt, dass Phenolat-Komplexe vorliegen.

In folgender Abbildung sind die Strukturen der Nickel-Komplexe des Liganden $HL-N_4(^{tt}BzO)Me$ 45 aufgezeigt.

Abbildung 123: Nickel-Komplexe des Liganden HL-N₄([#]BzO)Me 45

Die Bindungslänge Ni-O_{Phenol} ist deutlich kürzer als im Komplex mit dem symmetrischsubstituierten Liganden [Ni(HL-N₄(${}^{tt}BzO)_2(ClO_4)$]**72**. Fernerhin ist die Bindung Ni(1)-N(3) im Vergleich zur Verbindung [Ni(H₂L-N₄ ${}^{tt}BzOMe)(MeCN)_2$](ClO₄)₂ **70** ebenfalls deutlich verkürzt, wohingegen die Bindungslängen zu den übrigen Stickstoffatomen nahezu gleich bleiben. Im Komplex [Ni(L-N₄(${}^{tt}BzO$)Me)(ClO₄)] **72** tritt eine sehr starke Torsion des Ligandrückgrates im Verhältnis zur N_{Amin}-Ni-N_{Amin}-Ebene auf. Bei den anderen beiden Komplexen hingegen tritt nahezu keine Verdrillung auf. Die Verdrillung zur N_{Py}-Ni-N_{Py}-Ebene ist bei allen drei Komplexen sehr gering.

In den Nickel-Komplexen des Liganden HL-N₄(^{*t*}BzO)Me **45** wird bei sehr viel niedrigeren Potentialen als bei den Nickel-Komplexen der alkylsubstituierten Diazapyridinophankomplexe eine elektrochemische Oxidation beobachtet. Der Bereich ist jedoch ähnlich zu den Komplexen des Liganden H₂L-N₄(^{*t*}BzO)₂ **5**. In der folgenden Tabelle wird hierüber eine Übersicht gegeben.

Komplex	Potential in mV vs SCE.
$[Ni(HL-N_4(^{tt}BzO)Me)(MeCN)_2](ClO_4)_2$ 70	540
$[Ni(H_2L-N_4(^{tt}BzO)_2)(MeCN)_2](ClO_4)_2 75^{[5]}$	625
[Ni(HL-N ₄ ([#] BzO) ₂)](ClO ₄) 74 ^[5]	607
[Ni(L-N ₄ (^{<i>n</i>} BzO)Me)(EtOH)]Cl 71	431
$[Ni(L-N_4(^{tt}BzO)_2]$ 73 ^[5]	302
[Ni(L-N ₄ (^{<i>tt</i>} BzO)Me)ClO ₄] 72	78,8

Tabelle 58: Potentiale der Oxidationen der Nickel-Komplexe des Liganden HL-N₄([#]BzO)Me 45

Beim Phenolat-Komplex $[Ni(L-N_4({}^{tt}BzO)Me)(ClO_4)]$ 72 wurde eigentlich ein identisches elektrochemisches Verhalten wie beim Komplex $[Ni(L-N_4({}^{tt}BzO)Me)(EtOH)]Cl$ 71 erwartet. Das Halbstufenpotential der Oxidation des Komplexes $[Ni(L-N_4({}^{tt}BzO)Me)(ClO_4)]$ 72 beträgt 78,8 mV vs. SCE. Das Potential ist hier erheblich kleiner als die Oxidationspotentiale der anderen Nickel-Komplexe mit Diazapyridinophanliganden.

Anders als bei den Dichloro-Nickel(II)-Komplexen mit Diazapyridinophanliganden wird bei den Phenolat-Komplexen **71**, **72** auch jeweils eine reversible Reduktion beobachtet. Das Halbstufenpotential liegt in den Komplexen bei -1,56 V vs. SCE.

Es konnte nur von der Verbindung [Ni(L-N₄(${}^{tt}BzO$)Me)(EtOH)]Cl **71** genügend reines Material gewonnen werden, um ein UV-Vis-Spektrum anzufertigen. Es werden ähnliche Anregungsenergien wie im bekannten Komplex [Ni(HL-N₄(${}^{tt}BzO$)₂)](ClO₄) **72**^[5] (Tabelle 47) beobachtet.

Übergang	[Ni(L-N ₄ ("BzO)Me)(EtOH]]Cl 71	[Ni(HL-N ₄ (^{<i>tt</i>} BzO) ₂) (MeCN) ₂](ClO ₄) 70 ^[5]
d-d	949(57)	942 (57)
d-d	608(24)	566 (23)
d-d		375 (9101)
Charge Transfer	297 (4332)	299 (4753)
Charge Transfer	246 (166639)	244 (19271)

Tabelle 59: Vergleich der Elektronenanregungsspektren der Nickel-Komplexe mit Phenoleinheiten

Im Hinblick auf den Einsatz der Diazapyridinophan-Komplexe als Modellkomplexe für die Galactoseoxidase wurden die Diazapyridinophanliganden mit einem Phenolarm mit Kupfersalzen umgesetzt. So konnte auch bei Abwesenheit von Base mit Kupfer(II)-perchlorathexahydrat ein grüner Komplex mit ungebundenem Phenolarm und zwei *cis*-ständigen Acetonitrilmolekülen gewonnen werden (Abbildung 124).

$$Cu(ClQ_{2}) \cdot 6 H_{2}O + HL-N_{4}(^{tt}BzO)Me \xrightarrow{MeCN} [Cu(HL-N_{4}(^{tt}BzO)Me)(MeCN_{2}](ClO_{4})_{2} + 6 H_{2}O$$

$$45 \qquad 76$$
Abbildung 124: Herstellung von [Cu(HL-N_{4}(^{tt}BzO)Me)(MeCN_{2})](ClO_{4})_{2} 76

Analog zur Herstellung des Nickelphenolatkomplexes **72** gelang es weiterhin, den mit Natriumhydroxid deprotonierten Liganden **45** mit Kupferperchlorat-Hexahydrat in Ethanol umzusetzen (Abbildung 125). Der entstandene Komplex war violett.

$$Cu(ClO_4)_2 \cdot 6 H_2O + HL-N_4(^{tt}BzO)Me \xrightarrow{+ NaOH} [Cu(L-N_4(^{tt}BzO)Me)]ClO_4 + 7 H_2O$$

$$45 \qquad 77$$
Abbildung 125: Synthese von [Cu(L-N_4(^{tt}BzO)Me](ClO_4) 77

Bei der Umsetzung des Liganden mit *tetrakis*-(Acetonitril)-Kupfer(I)-perchlorat ohne Basenzugabe unter Stickstoffatmosphäre wurde zunächst die gelbe Farbe des Kupfer(I)-Komplexes beobachtet, diese änderte sich nach zwölf Stunden zur violetten Farbe des Phenolat-Komplexes. Auch unter Argonatmosphäre konnte die Kupfer(I)-Stufe nicht isoliert werden.

In folgender Abbildung werden die Festkörperstrukturen der Verbindungen dargestellt:

Abbildung 126: Die Kupfer(II)-Komplexkationen des Liganden HL-N₄[#]BzOMe 45

Während in Verbindung $[Cu(HL-N_4({}^{tt}BzO)Me)(MeCN_2)](ClO_4)_2$ **76** eine *cis*-oktaedrische Koordinationsumgebung vorliegt, ist im Komplex $[Cu(L-N_4({}^{tt}BzO)Me)](ClO_4)$ **77** das Kupfer(II)-Ion von einer verzerrten quadratischen Pyramide umgeben.

Durch den Jahn-Teller-Effekt sind die Bindungslängen des Metall(II)-Ions zu den Stickstoffdonoratomen für die Kupfer-Komplexe größer als für die entsprechenden Nickel-Komplexe. Eine Ausnahme bildet lediglich eine Metallion- N_{py} -Bindung der Phenolat-Komplexe, diese ist im Nickel-Komplex etwas größer. Auch ist die Verdrillung des Ligandrückgrates der Kupfer(II)-Komplexe geringer als bei den analogen Nickel-Komplexen.

Der Hauptunterschied zwischen den Phenolat-Komplexen ist jedoch, dass am Nickel-Ion eine Koordinationszahl von 6 und am Kupfer-Ion eine Koordinationszahl von 5 vorherrscht. Es wird eine verzerrte quadratische Pyramide ($\tau = 0,19$) von den Donoratomen aufgespannt.

Die Torsion bezüglich der α -Werte des Ligandrückgrates ist in den Kupfer-Komplexen geringfügig größer als in den entsprechenden Nickel-Komplexen. Aufgrund der für β bestimmten Werte, tritt in beiden Komplexen nahezu keine Torsion auf.

Anders als beim *bis*-(Acetonitril)-Kupfer-Komplex **76** sind die Abstände zwischen dem Zentralion und den Stickstoffdonoren nahezu identisch in dem Nickel- 72 und dem Kupfer-Komplex **77**. Die Bindungslänge vom Zentralion zum Phenolatsauerstoffatom ist kleiner als im entsprechenden Nickel-Komplex **72**. Durch die Fünffachkoordination von Komplex $[Cu(L-N_4({}^{tt}BzO)Me)](ClO_4)$ **77** sind die Winkel des Zentralmetalls zu den Donoratomen des Diazapyridinophanliganden mit denen des oktaedrischen [Ni(HL-N₄({}^{tt}Bz_2O)Me](ClO_4) **72** nahezu identisch.

Auch für diese Komplexe wurde das elektrochemische Verhalten untersucht. Der Kupferphenolat-Komplexes [Cu(L-N₄(tt BzO)Me)]ClO₄ 77 wird eine reversibleReduktion bei - 1,3 V vs. SCE. gemessen, die von einer irreversiblen Reduktion bei -1,63 V vs. SCE. gefolgt wird. Außerdem wird bei 0,44 V vs. SCE. eine quasireversibler Oxidation gefunden.

Anders als erwartet wird beim Kupferphenol-Komplex **76** keine Reduktion gefunden, die eigentlich zu erwarten wäre. Die elektochemische Oxidation liegt bei 0,55 V vs. SCE. Beim Kupferphenol-Komplex [Cu(HL-N₄(${}^{tt}BzO)Me$)(MeCN₂)](ClO₄)₂ **76** wurde keine Reduktion gefunden, die eigentlich zu erwarten wäre.

Die Umsetzungen des Liganden HL-N₄(^{*t*}BzO)Me **45** mit Kupfer(I)-Salzen führte mit und ohne Base zum Kupfer(II)-Phenolat-Komplex [Cu(L-N₄(^{*t*}BzO)Me)](ClO₄) **77**. Da ein Phenol-Komplex mit Kupfer(I)-Salzen nicht zu isolieren war, wurden erste Versuche mit Kupfer(I)-Salzen und den alkylsubstituierten Diazapyridinophanliganden durchgeführt. Um die Reaktivität von Kupfer(I)-Komplexen mit molekularem Sauerstoff zu ergründen, wurden die Kupfer(I)-Komplexe mit alkylsubstituierten Diazapyridinophanen verwendet. Die Kupfer(I)-

Komplexe mit den tetradendaten Diazapyridinophan-Liganden L-N₄^{*i*}Bu₂ **8** und L-N₄Ad^{*i*}Bu **17** konnten isoliert und charakterisiert werden (Abbildung 127).

$$[Cu(MeCN)_{4}](ClO_{4}) + L-N_{4}^{t}BuR \xrightarrow{MeCN} [Cu(L-N_{4}^{t}BuR)(MeCN)](ClO_{4})$$

$$R = Ad \ \mathbf{17} \qquad \qquad R = Ad \ \mathbf{79}$$

$${}^{t}Bu \ \mathbf{8} \qquad \qquad {}^{t}Bu \ \mathbf{80}$$
Abbildung 127: Herstellung der Kupfer(I)-Diazapyridinophan-Komplexe

Die Infrarotspektren zeigen auch hier Schwingungen, die zu den bekannten Komplexen sehr ähnlich sind.

Aufgrund der Sauerstoffempfindlichkeit der Komplexlösungen konnten keine sauberen Kernresonanzspektren gewonnen werden.

Wenn die gelben Lösungen einer Sauerstoffatmosphäre ausgesetzt werden, ändern sich die Farben von goldgelb nach dunkelgrün.

Von den Komplexen [Cu(L-N₄Ad[']Bu)(MeCN)](ClO₄) **79** und [Cu(L-N₄[']Bu₂)(MeCN)](ClO₄) **80** konnten die Festkörperstrukturen bestimmt werden (Abbildung 128).

Abbildung 128: Die Kupfer(I)-Komplexkationen von 79 und 80

In beiden Komplexen ist ein Acetonitrilmolekül als Donorligand am Kupfer(I)-Ion gebunden. Das Gegenion Perchlorat ist bei beiden Komplexen nicht am Zentralion koordiniert. In beiden Komplexen sind die Bindungen vom Kupferion zu den Aminstickstoffatomen wesentlich länger als zu den Pyridinstickstoffatomen, wobei beim Komplex $[Cu(L-N_4Ad'Bu)(MeCN)](ClO_4)$ **79** die Bindung zum N_{Ad} sehr lang ist. Da aber die Cu-N-
Winkel in beiden Komplexen sehr ähnlich sind, kann in beiden Verbindungen von einer fast idealen quadratisch pyramidalen Koordinationsumgebung ausgegangen werden. Hierbei ist aufgrund der langen Cu-N_{Ad}-Bindung im Komplex [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) **79** ($\tau = 0,03$) das Koordinationspolyeder weniger verzerrt als in der Verbindung [Cu(L-N₄^tBu₂)(MeCN)](ClO₄) **80** ($\tau = 0,08$).^[100]

Die Torsion, die durch den Winkel α bestimmt wird, zeigt eine sehr geringe Verzerrung der Komplexe. Bei der Verdrillung, die durch den β -Wert errechnet wird, tritt eine relativ starke Verzerrung auf

Auch bei den Kupfer(I)-Komplexen ist die Zentralion-Pyridinstickstoffbindung um 164° im $[Cu(L-N_4{}^tBu_2)(MeCN)](ClO_4)$ **80** und 16° im $[Cu(L-N_4Ad{}^tBu)(MeCN)](ClO_4)$ **79** zu den Pyridinringebenen verschoben. Im Kupfer(II)-Komplex $[Cu(L-N_4{}^tBu_2)Cl_2](H_2O)$ **81** liegen, obwohl der Ligand verzerrt oktaedrisch koordiniert ist, ähnliche Bindungslängen und –winkel vor.

Von der Verbindung [Cu(L-N₄Ad[']Bu)(MeCN)](ClO₄) **79** konnte unter einer Stickstoff-Schutzatmosphäre ein UV-Vis-Spektrum aufgenommen werden. Die Verbindung hat eine Charge Transferbande bei 271 nm mit einer molaren Extinktion von 12500 lmol⁻¹cm⁻¹. Ein breiter Übergang wird bei 620 nm mit einer molaren Extinktion von 71,5 lmol⁻¹cm⁻¹ beobachtet.

Die Lösung der Substanz [Cu(MeCN)(L-N₄Ad'Bu)]ClO₄ **79** erwies sich als sehr luftempfindlich. Die gelbe Lösung wurde grün. Die Reaktionsdauer war je nach Lösungsmittel verschieden. In Dichlormethan verlief die Reaktion innerhalb von Sekunden, in Acetonitril, das auch für die Präparation des Komplexes verwendet wurde, dauerte der Farbumschlag 15 Minuten. In Dimethylformamid wurde eine grüne Lösung erst nach 20 Minuten erhalten. Um zu beobachten, ob eine Superoxo-Zwischenstufe, die blaue oder grüne Farbtöne zeigt, durchlaufen wird, wurde die Reaktionstemperatur abgesenkt. Bei mehrfachen Versuchen einer Umsetzung bei –80 °C konnte lediglich einmal eine Blaufärbung beobachtet werden, die jedoch nicht reproduziert werden konnte. So wurde eine Reaktionskontrolle mit einem Diodenarray-UV-Vis-Spektrometer bei 4 °C vorgenommen. Damit Kohlendioxid als potentieller Reaktionspartner ausgeschlossen werden konnte, wurde in entgastem Dimethylformamid und unter reiner Sauerstoffatmosphäre gearbeitet. In der Spektrenschar tritt ein isobestischer Punkt auf.

4.2 Ausblick

Wenn der Ligand L-N₄[']BuBz **16** in besserer Reinheit darstellbar wäre, könnte auch der Ligand L-N₄[']BuH **82** hergestellt und weiter derivatisiert werden. Die Debenzylierungen mit Lewis-Säuren oder alternativ mit flüssigem Ammoniak und Lithium sind hier eher kontraproduktiv, da sehr wahrscheinlich auch das Ligandgerüst angegriffen wird. Aber durch eine Reaktion mit Vinylchlorformiat könnte die Benzylgruppe unter relativ schonenden Bedingungen abgespalten werden (Abbildung 129).^[84, 85]

Abbildung 129: Debenzylierung durch Acylierung

Zur Erzeugung neuer pentadetater Liganden wurden Versuche unternommen, in Liganden des Typus L-N₄HR (R = Tos **46**, Ad **47**) einen Phenolarm mit 2,4-*tert*-Butylphenol einzuführen (Abbildung 130). Diese Versuche müssten abgeschlossen werden.

Ebenso wäre die Einführung anderer donorhaltiger Substituenten wie Pyridine oder Thiophenole möglich.

Als weitere denkbare Derivatisierung dieser Ligandklasse ist eine saure Abspaltung der Tosyl- und 1-Adamantylgruppe aus den Verbindungen HL-N₄(${}^{tt}BzO$)R (R = Ad 47, Tos 46) denkbar (Abbildung 131).

Hierbei wird ebenfalls eine neue Bindungsstelle für weitere Derivatisierungen möglich. So könnte ein potentiell sechszähniger Ligand hergestellt werden für mehrkernige Verbindungen.

Ein weiterer Weg zur Herstellung neuer Liganden wäre die Verbindung zweier Diazapyridinophane oder eines Diazapyridinophanes, mit zum Beispiel einem Cyclophan oder anderem Liganden mit Donoratomen, über ein Abstandhaltermolekül ("Spacer"). Diese neuen Ligandtypen würden weitere Aufschlüsse über die Koordinationschemie und Reaktivität geben (Abbildung 132).

Abbildung 132: Verknüpfung zweier Liganden über einen "Spacer"

Ebenso sind in der Klasse der arylsubstituierten Liganden weitere Derivatisierungen möglich. Durch Reduktion ließe sich die Nitrophenylgruppe zunächst zur Anilingruppe **84** und anschließend zur Phenylgruppe **85** derivatisieren (Abbildung 133).

Abbildung 133: Derivatisierung des Arylsystemes

Hierbei ist wahrscheinlich der Ligand mit den 4-Aminophenylgruppen **84** komplexierbar, da das chinoide Amin-Nitro-System nicht mehr vorhanden ist. Ebenso ist die Einführung nur eines Phenylringesringes in die hetero-substituierten Liganden möglich. Liganden dieses Typs könnten bedeutsam sein für die Weiterentwicklung der Diazapyridinophanliganden im Sinne einer weiteren Koordinationsstelle für Substraterkennung. Ebenso kann so eine weitere Reaktionsstelle eingefügt werden. Denkbar wäre die Ausnutzung einer solchen Reaktivität bei der Oxidation einer ligandverknüpften *para*-Benzochinon-Einheit mit Sauerstoff, der eine Reoxidation des entstandenen Hydrochinons mit Hilfe des Metallions folgt.

Es wurden nun in der Doktorarbeit die Voraussetzungen geschaffen für die Synthese von komplexer aufgebauten Liganden mit den beschriebenen Derivatisierungsreaktionen. Mit den bereits synthetisierten Liganden könnten einige Untersuchungen in Angriff genommen werden. Z. B. könnte der Einfluss der Sterik der Aminsubstituenten auf bestimmte Reaktionen näher untersucht werden..

Es ist bekannt, dass Eisen(III)-Katecholat-Komplexe je nach Diazapyridinophan ein unterschiedliches Verhalten aufweisen. Im Falle des Komplexes mit dem Liganden L-N₄H₂ **3** wurde Intradiol- und Extradiolspaltung der gebundenen Katecholeinheit gefunden, mit L-N₄Me₂ **4** zeigt der Komplex nur Intradiolspaltung und mit L-N₄^{*i*}Bu₂ **8** bewirkt der Komplex nur eine Oxidation zum Benzochinon.^[37] Mit den neuen hetero-substituierten Liganden kann somit untersucht werden, wie der sterische Einfluss der Alkylsubstituenten auf die Reaktivität ist.

Die Menge der sauberen Nickel- und Kupfer-Komplexe des Liganden HL-N₄^{*tt*}BzO **45** reichte bisher nicht aus, um zu bestimmen, ob diese in der Lage sind, stabile Phenoxylradikal-Komplexe zu bilden und ob sie sich als Modellkomplexe für die Funktionsweise der Galaktoseoxidase eignen.

Erste Kupfer(I)-Komplexe konnten isoliert werden, so ist es weiterhin möglich weitere Diazapyridinophan-Komplexe mit den übrigen Diazapyridinophanliganden zu gewinnen. Es gelang jedoch noch nicht aufzuklären, welches Oxidationsprodukt bei der Umsetzung der Kupfer(I)-Komplexe mit Sauerstoff entsteht. So sollten die Produkte charakterisiert werden und der Einfluss der Substituenten an den Aminstickstoffatomen geklärt werden. Des Weiteren ist von Interesse, ob die Beschaffenheit der Aminsubstituenten einen Einfluss auf die Oxidationsprodukte hat.

5 Experimenteller Teil

5.1 Allgemeines

Natriumtosylamid und 2,6-Bis(chlormethyl)pyridin wurden nach den beschriebenen Methoden dargestellt.^[1] Die sonst verwendeten Chemikalien wurden von den Firmen Sigma-Aldrich, Fluka, Merck und Acros Organics bezogen.

Die ¹H-NMR-Spektren wurden von Frau Müller mit den Geräten "Avance DPX 200", "Avance DPX 400" oder "Avance DPX 600" der Firma Bruker aufgenommen. Als Referenz diente das verwendete Lösungsmittel. Bei mit * gekennzeichneten Signalen reicht die Auflösung des Spektrums nicht aus, um die Feinaufspaltung zu erkennen.

Alle Substanzen wurden als KBr-Pressling an einem Perkin Elmer "16 PC FT-IR Spektrometer", einem Perkin Elmer FT-IR Spektrometer "Spektrum 1000" oder einem Jasco "FT/IR-6100" gemessen. Nur die intensivsten Banden werden angegeben.

Massenspektren wurden mit einem Finnigan "Mat 90", einem Perkin Elmer "PE Sciex APT 2000 LC/MS/MS" (ESI) und einem Varian "Saturn 2100T GC/MS" (GC-MS) aufgenommen.

Die Kristallstrukturen wurden von Herrn Dr. Kelm oder Herrn Dr. Wolmershäuser mit einem "Stoe IPDS" oder "Gemini Enhance Ultra" der Firma Oxford Diffraction vermessen. Zur Lösung der Datensätze wurde das Programm "SIR97" (Giacovazzo et al., 1997) und zur Verfeinerung der Strukturen "SHELXL-97" (Sheldrick, 1997) verwendet.

Die UV-Vis-Spektren wurden mit einem "Carry 5000" der Firma Varian oder mit einem "HP 8453" der Firma Hewlett Packard gemessen.

Die Elementaranalysen wurden von der Analytikabteilung der Technischen Universität Kaiserslautern mit einem "Perkin Elmer Analyser 2400 CHN" bestimmt.

Die elektrochemischen Untersuchungen wurden von den Herren Blug, Kelm oder Vetter unter einer Stickstoffatmosphäre in einer Glove Box durchgeführt. Als Messgerät diente ein Princeton Applied Research Potentiostat/Galvanostat 273A mit einer Dreielektrodenanordnung unter Verwendung einer gesättigten Kalomel-Elektrode als Bezugselektrode. Die erhaltenen Ergebnisse wurden mittels der Nicholsen-Gleichung ausgewertet.^[136] Alle Potentialangaben beziehen sich auf das Redoxpotential der Kalomelelektrode (SCE), die als Referenz verwendet wurde. Die Untersuchungen wurde in einer 0,2 molaren Tetrabutylammoniumperchlorat-Lösung in Acetonitril durchgeführt.

139

5.2 Synthese der Liganden

5.2.1 Synthese der Ausgangsstoffe

5.2.1.1 Synthese von *tert*-Butyl-bis-(6-chlormethyl-2-pyridyl-methyl)amin N^tBu(CH₂PyCH₂Cl)₂ **12**

In Acetonitril (1,7 1) wurden 2,6-Bis(chlormethyl)pyridin 1 (22,0 g, 125 mmol) und Natriumcarbonat (26,5 g, 250 mmol) vorgelegt. Hierzu wurde eine Lösung von *tert*-Butylamin (5,3 ml, 50 mmol) in Acetonitril (100 ml) zugetropft. Das Reaktionsgemisch wurde 44 Stunden unter Rückfluss erhitzt. Der weiße Rückstand wurde warm über einen Büchnertrichter abfiltriert. Das Filtrat wurde am Rotationsverdampfer zur Trockene eingeengt und der entstehende Feststoff viermal mit heißem Petrolether (35/70) (je 100 ml) extrahiert. Das Lösungsmittel der vereinigten Extrakte wurde am Rotationsverdampfer entfernt. Das erhaltene hellbeige Gemisch wurde zu einem feinen Pulver zerrieben und in einer Sublime ($\emptyset = 7,5$ cm) für 36 Stunden bei 60 °C und einem Druck von $5 \cdot 10^{-2}$ mbar vom überschüssigem Edukt (2,6-Bis(chlormethyl)pyridin 1 (11,93 g)) befreit. Das so erhaltene Rohprodukt wurde aus Petrolether (300 ml) kristallisiert. Die Qualität des Produkts 12 reicht aus, um Zyklisierungen durchzuführen. Zur Gewinnung der analytischen Daten wurde das nahezu farblose Produkt bei 190 °C und 2,3 $\cdot 10^{-1}$ mbar destilliert, was jedoch zu 50 % Zersetzung führte.

Ausbeute:

9,73 g (27,62 mmol; 55,24 %, Reinheit 90%)

 $MW(C_{18}H_{23}N_3Cl_2) = 352,31 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 61,37 % H = 6,58 % N = 11,93 %Gefunden: C = 61,22 % H = 6,58 % N = 11,71 %

Massenspektrometrie (ESI):

m/z = 375,3; 352,3; 296,5; 281,4

¹H-NMR (CDCl₃, 400 MHz)

$$\begin{split} \delta &= 7,50 \text{ ppm (t, CH-Py,} & 2 \text{ H}, & {}^{3}\text{J}_{\text{HH}} = 7,8 \text{ Hz}) \\ \delta &= 7,41 \text{ ppm (d, CH-Py,} & 2 \text{ H}, & {}^{3}\text{J}_{\text{HH}} = 7,8 \text{ Hz}) \\ \delta &= 7,15 \text{ ppm (d, CH-Py,} & 2 \text{ H}, & {}^{3}\text{J}_{\text{HH}} = 7.8 \text{ Hz}) \\ \delta &= 4,50 \text{ ppm (s, CH_{2},} & 4 \text{ H}) \\ \delta &= 3,91 \text{ ppm (s, CH_{2},} & 4 \text{ H}) \end{split}$$

	$\delta = 1,15 \text{ ppm} (s$, CH ₃ , ^t Bu	9 H)
¹³ C-NMR, DEPT(135	5) (CDCl ₃ , 100 N	/Hz)	
	$\delta = 162,61 \text{ ppm}$	(s, C-Py)	
	$\delta = 155,59 \text{ ppm}$	(s, C-Py)	
	$\delta = 137,09 \text{ ppm}$	(d, CH-Py,	$^{1}J_{CH}$ = 160,5 Hz)
	$\delta = 122,72 \text{ ppm}$	(d, CH-Py,	$^{1}J_{CH}$ = 160,6 Hz)
	$\delta = 120,60 \text{ ppm}$	(d, CH-Py,	$^{1}J_{CH}$ = 160,9 Hz)
	$\delta = 57,00 \text{ ppm}$	(t, -CH ₂ -Cl,	$^{1}J_{CH} = 134,1 \text{ Hz}$)
	δ = 56,30 ppm	(s C- ^t Bu)	
	$\delta = 47,17 \text{ ppm}$	(t, -CH ₂ -N,	$^{1}J_{CH} = 153,5 \text{ Hz}$)
	$\delta = 27,69 \text{ ppm}$	$(q, CH_3-^tBu,$	$^{1}J_{CH} = 125,3 \text{ Hz}$

IR (KBr):

 $\tilde{v} = 3423, 2971, 1713, 1589, 1462, 1392, 1364, 1246, 1195, 1133, 1075, 1024, 973, 926, 844, 814, 751, 725, 698, 636, 589, 546 cm⁻¹$

5.2.1.2 Synthese von 1-Adamantyl-bis(6-chlormethyl-2-pyridyl-methyl)amin AdN(CH₂PyCH₂Cl)₂ **37**

5.2.1.2.1 Mikrowellenreaktion

1-Adamantylamin (189,1 mg, 1,25 mmol), 2,6-Bis(chlormethyl)pyridin 1 (440,2 mg, 2,5 mmol) Kaliumcarbonat (0,69 g, 5 mmol) und geglühter Seesand (12 g) wurden fein zerrieben. Das so vorbereitete Reaktionsgemisch wurde in ein mit einem Uhrglas abgedeckten Becherglas (100 ml) überführt, mit Korkringen in der Raummitte des Mikrowellenofens platziert und für sechs Minuten mit einer durchschnittlichen Leistung von 360 W bestrahlt. Nach dem Abkühlen wurde das Rohprodukt **37** mit Dichlormethan (2 mal 25 ml) extrahiert. Das Lösungsmittel wurde entfernt und der erhaltene Rückstand im Ölpumpenvakuum getrocknet. Aus diesem Feststoff wurde das Produkt mit Methanol (3 mal 20 ml) extrahiert. Nach Entfernen des Lösungsmittels am Rotationsverdampfer wurde der feste Rückstand im Vakuum getrocknet. Das erhaltene farblose Material **37** war analysenrein.

Ausbeute:

0,3825 g (0,885 mmol; 56,25 %)

5.2.1.2.2 Nasschemische Alternative

Eine Lösung aus 2,6-Bis(chlormethyl)pyridin **1** (4,5 g, 25,6 mmol) in Ethanol (72 ml) wurde bei 60 °C über sechs Stunden zu einer Suspension aus 1-1-Adamantylaminhydrochlorid (14,42 g, 76,8 mmol) und Natriumcarbonat (39,8 g, 375,5mmol) in Ethanol (133 ml) getropft. Die Reaktionsmischung wurde 17 Stunden bei 60 °C gerührt und dann 24 Stunden unter Rückfluss gekocht. Nach Abfiltrieren des Niederschlags wurde das Filtrat vom Lösungsmittel befreit und der entstehende breiige Rückstand im Ölpumpenvakuum getrocknet. Das entstandene zähflüssige Öl wurde mit Acetonitril (50 ml) kurz aufgekocht und heiß abfiltriert. Das Filtrat wurde bis zur Trockene eingeengt und der entstandene Feststoff zur Abtrennung von Eduktresten (**1**) bei 60 °C und 2,5 \cdot 10⁻² mbar sublimiert. Aus dem Rückstand der Sublimation wurde mittels einer Extraktion mit Methanol (5 mal 30 ml) eine Lösung des Produktes hergestellt. Diese Lösung wurde bis zur Trockene im Vakuum eingeengt. Es wurde ein analysenreines farbloses Pulver erhalten.

Ausbeute:

2,20 g (5,44 mmol, 21,2 %) eines zu etwa 97 % reinen Produkts

 $MW(C_{24}H_{29}N_3Cl_2) = 430,42 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 66,97 % H = 6,79 % N = 9,76 %Gefunden: C = 67,14 % H = 6,88 % N = 9,74 %

Massenspektrometrie (ESI):

m/z = 294; 135

¹H-NMR (CDCl₃, 400 MHz)

δ = 7,51 ppm (t, CH-Py,	2 H,	$^{3}J_{HH} = 7,6 \text{ Hz}$
δ = 7,42 ppm (d, CH-Py,	2 H,	$^{3}J_{HH} = 7,6$ Hz)
δ = 7,17 ppm (d, CH-Py,	2 H,	$^{3}J_{HH} = 7.6 \text{ Hz}$)
$\delta = 4,56 \text{ ppm}$ (s, CH ₂ ,	4 H)	
δ = 3,97 ppm (s, CH ₂ ,	4 H)	
$\delta = 2,05$ ppm (s, CH-Ad,	3 H)	

$$\delta = 1,61 \text{ ppm} (s, CH_2-Ad, 3 \text{ H})$$

 $\delta = 1,59 \text{ ppm} (s, CH_2-Ad, 3 \text{ H})$

¹³C-NMR, DEPT(135) (CDCl₃, 100 MHz)

$$\delta = 162,61 \text{ ppm (s, C-Py)}$$

 $\delta = 155,20 \text{ ppm (s, C-Ad)}$

δ = 136,58 ppm (d, CH-Py,) δ = 122,26 ppm (d, CH-Py) δ = 120,07 ppm (d, CH-Py) δ = 54,73 ppm (t, -CH₂-Cl) δ = 46,85 ppm (t, -CH₂-N) δ = 36,99 ppm (t, CH₂-Ad) δ = 36,69 ppm (t, CH₂-Ad)δ = 29,72 ppm (d, CH-Ad)

IR (KBr):

 $\tilde{v} = 3413, 2907, 2848, 2681, 2348, 2287, 2013, 1628, 1591, 1573, 1459, 1357, 1344, 1309, 1260, 1190, 1158, 1124, 1100, 1038, 994, 984, 927, 899, 862, 810, 749, 723, 701, 687, 644, 624, 601, 543, 520, 431 cm⁻¹$

5.1.3.1 Synthese von 2,6-Bis(1-adamantylaminomethyl)pyridin 38

2,6-Bis(chlormethyl)pyridin 1 (4,5 g, 25,6 mmol) wurde in Ethanol (72 ml) gelöst und bei 60 °C über 6 Stunden zu einer Lösung aus 1-Adamantylaminhydrochlorid (14,42 g, 76,8 mmol) in Natriumcarbonat (39,8 g, 375,5 mmol) in Ethanol (133 ml) getropft. Die Reaktionsmischung wurde 17 Stunden bei 60 °C gerührt und dann 24 Stunden gekocht. Der Niederschlag wurde abfiltriert, das Lösungsmittel am Rotationsverdampfer entfernt und im Ölpumpenvakuum getrocknet. Der breiige Rückstand wurde mit 50 ml Acetonitril kurz aufgekocht und abfiltriert. Danach wurde das Filtrat bis zur Trockene eingeengt. Aus dem entstandenen Feststoff wurden Eduktreste 1 bei 60 °C und 2,5 · 10⁻² mbar absublimiert. Ausbeute:

2,94 g (7,25 mmol, 28,3 %) eines zu etwa 84% reinen Produkts MW (C₂₇H₃₉N₃): 405,62 g/mol

 $^{3}J_{HH} = 16,0 \text{ Hz}$

 $^{3}J_{HH} = 16,0 \text{ Hz}$

Charakterisierung:	
¹ H-NMR (CDCl ₃ , 400 MHz	
	δ = 7,55 ppm (t, CH-Py,
	δ = 7,16 ppm (d, CH-Py,
	δ = 3,92 ppm (s, CH ₂)
	δ = 2,09 ppm (s, CH-Ad)
	$\delta = 1,78 \text{ ppm} (s, CH_2-Ad)$
	$\delta = 1,65 \text{ ppm} (s, CH_2-Ad)$

5.1.4.1 Synthese von N,N'-Di-1-Adamantyl-2,11-diaza[3.3](2,6)pyridinophan (L-N₄Ad₂) 39

2,6-Bis(1-adamantylaminomethyl)pyridin **38** (1,5 g, 3,7 mmol) wurde in Acetonitril (110 ml) gelöst und Natriumcarbonat (0,78 g, 7,4 mmol) zugegeben. In der Siedehitze wurde eine Lösung von 2,6-Bis(chlormethyl)pyridin **1** (651 mg, 3,7 mmol) in Acetonitril (30 ml) langsam zugetropft. Die Reaktionsmischung wurde 65 Stunden unter Rückfluss erhitzt, auf Raumtemperatur abkühlen lassen und abfiltriert. Der Rückstand wurde erst mit warmem Ethanol (250 ml), dann mit Chloroform (50 ml) extrahiert. Die ethanolische Lösung wurde am Rotationsverdampfer zur Trockene eingeengt. Der Rückstand wurde in Hexan umkristallisiert. Die Chloroform-Fraktion wurde leicht einreduziert und über Nacht stehen lassen, wodurch ein weißer Feststoff ausfiel. Da beide Feststoffe sehr unrein waren, wurde versucht, aus DMSO umzukristallisieren, wobei sich das Produkt **39** jedoch zersetzte.

5.2.4.2 Direkte Zyklisierung von N,N'-Di-1-adamantyl-2,11diaza[3.3](2,6)pyridinophan L-N₄Ad₂ **39**

5.2.4.2.1 Synthese von 1-Adamantylamin

1-Adamantylaminhydrochlorid (3,02 g, 16,1 mmol) wurde in Wasser (50 ml) mit Natriumhydroxid (1,23 g, 30,75 mmol) gerührt. Der entstandene Niederschlag wurde abfiltriert und getrocknet.

Ausbeute: 1,61 g (10,6 mmol, 66,1 %)

2H)

3H)

6H)

6H)

Charakterisierung:	
¹ H-NMR (CDCl ₃ , 400 MHz	:)
	$\delta = 2,32$ ppm (s, NH,
	δ = 2,08 ppm (s, CH-Ad,
	$\delta = 1,75$ ppm (m, CH ₂ -Ad,
	δ = 1,63 ppm (m, CH ₂ -Ad

5.2.4.2.2 Synthese von L-N₄Ad₂ 39

2,6-Bis(chlormethyl)pyridin 1 (1,76 g, 10 mmol) wurde in Acetonitril (700 ml) mit Natriumcarbonat (7 g, 66,04 mmol) bei 60 °C gerührt. Dazu wurde über vier Stunden eine Lösung aus 1-Adamantylamin (1,51 g, 10 mmol) in Acetonitril (200 ml) getropft. Die Reaktionsmischung wurde 72 Stunden unter Rückfluss erhitzt, dann der entstandene Niederschlag abfiltriert. Der Rückstand wurde zweimal mit Chloroform (je 50 ml) extrahiert, das Lösungsmittel am Rotationsverdampfer entfernt. Der weiße Feststoff wurde zuerst mit Ethanol (200 ml), anschließend mit Essigsäureethylester (200 ml) und danach mit Chloroform (170 ml) extrahiert. Aus Ethanol und Essigsäureethylester fiel in der Kälte nach mehrtägigem Stehen ein weißer Niederschlag aus. Der Vergleich mit der Mutterlauge zeigte eine Abreicherung der Verunreinigung im Feststoff. Jedoch wurde aufgrund der geringen Mengen von nur etwa 200 mg auf nochmaliges Umkristallisieren verzichtet. Das entstandene Produkt **39** wurde direkt eingesetzt zur Komplexierung.

Ausbeute: 462 mg (0,91 mmol, 9,1%) eines zu etwa 80 % reinen Produkts $MW(C_{34}H_{44}N_4)$: 508,74 g/mol

Charakterisierung:

¹H-NMR (CDCl₃, 400 MHz)

$$\begin{split} &\delta = 7,02 \text{ ppm (t, CH-Py,} & {}^{3}J_{HH} = 8,0 \text{ Hz}) \\ &\delta = 6,67 \text{ ppm (d, CH-Py,} & {}^{3}J_{HH} = 8,0 \text{ Hz}) \\ &\delta = 4,01 \text{ ppm (s, CH_2)} \\ &\delta = 2,17 \text{ ppm (s, CH-Ad)} \\ &\delta = 1,69 \text{ ppm (s, CH_2-Ad)} \\ &\delta = 1,58 \text{ ppm (s, CH_2-Ad)} \end{split}$$

IR (KBr):

 $\tilde{v} = 3423, 2971, 1589, 1482, 1462, 1364, 1216, 1195, 1193, 1075, 994, 973, 814, 750, 725, 698, 636, 389 \text{ cm}^{-1}$

5.2.2. Synthese der tert-butylsubstituierten Diazapyridinophan-Liganden

5.2.2.1 Synthese von *N*-1-Adamantyl-*N'-tert*-butyl-2,11-diaza[3.3](2,6)pyridinophan L-N₄Ad^{*t*}Bu **17**

Zu einer Suspension von 1-Adamantylaminhydrochlorid (2,09 g, 11,13 mmol) und wasserfreiem Kaliumcarbonat (10,24 g, 84,35 mmol) in Acetonitril (280 ml) wurden über fünf Stunden eine Lösung von N^{*t*}Bu(CH₂PyCH₂Cl)₂ **12** (4,17 g, 11,83 mmol) in Acetonitril (260 ml) getropft. Die Mischung wurde zwei Tage unter Rückfluss gekocht und anschließend heiß abfiltriert. Bei Raumtemperatur fiel reines Produkt **17** aus (1,5 g), das mit kaltem Acetonitril gewaschen und im Ölpumpenvakuum getrocknet wurde. Das Filtrat wurde eingeengt, bei -20 °C fielen weitere 1,5 g Ligand **17**aus. Die beiden Fraktionen wurden mit Acetonitril bei 0 °C gewaschen. So konnte analysenreines farbloses Produkt **17** auf -30 °C führte zu diffrakometertauglichen Kristallen.

Gesamtausbeute:

3,00 g (6,87 mmol, 61,7 %)

 $MW(C_{28}H_{38}N_4) = 430,64 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 77,73 % H = 9,32 % N = 12,96 %

Gefunden:
$$C = 77,42 \%$$
 H = 8,95 % N = 12,94 %

Massenspektrometrie (ESI):

m/z = 515; 430; 373; 295; 135; 65

¹H-NMR (CDCl₃, 400 MHz)

δ = 7,02 ppm (t, CH-Py,	2 H,	$^{3}J_{HH} = 7,6 \text{ Hz}$
δ = 6,69 ppm (d, CH-Py,	2 H,	$^{3}J_{HH} = 7,6 \text{ Hz}$)
δ = 6,68 ppm (d, CH-Py,	2 H,	$^{3}J_{HH} = 7,6 \text{ Hz}$)
δ = 3,96 ppm (s, CH ₂ ,	8 H)	
$\delta = 2,17$ ppm (s, CH-Ad,	3 H)	
$\delta = 1,92 \text{ ppm} (s, CH_2-Ad,$	6 H)	
δ = 1,69 ppm (s, CH ₂ -Ad,	6 H)	
$\delta = 1,30$ ppm (s, ^t Bu-H,	9 H)	

¹³C -NMR (CDCl₃, 100 MHz)

δ = 160,23 ppm (s, C-Py) δ = 159,66 ppm (s, C-Py) δ = 135,56 ppm (d, CH-Py, ¹J_{CH} = 159 Hz) δ = 122,29 ppm (d, CH-Py, ¹J_{CH} = 159 Hz)

> $δ = 122,16 ppm (d, CH-Py, {}^{1}J_{CH} = 159 Hz)$ $δ = 58,10 ppm (t, CH₂, {}^{1}J_{CH} = 80 Hz)$ δ = 40,82 ppm (m, CH₂-Ad) δ = 37,24 ppm (m, CH₂-Ad) δ = 30,40 ppm (m, CH-Ad) $δ = 30,40 ppm (m, CH₃-{}^{t}Bu,)$

IR (KBr):

 $\tilde{v} = 3428, 3052, 2968, 2898, 2876, 2844, 1654, 1588, 1448, 1364, 1238, 1200, 1096, 1032, 926, 812, 756, 620 \text{ cm}^{-1}$

Die Röntgenstrukturdaten befinden sich im Anhang ab Seite 210.

5.2.2.2 Synthese von *N-tert*-Butyl-*N'*-benzy-2,11-diaza 1[3.3](2,6)pyridinophan (L-N₄^tBuBz) 16

In eine Suspension aus N^tBu(2,6-CH₂PyCH₂Cl)₂ **12** (8,8 g, 24,98 mmol) und wasserfreiem Natriumcarbonat (2,65 g, 25 mmol) in Acetonitril (700 ml) wurde in der Siedehitze über 9,5 Stunden eine Lösung von Benzylamin (2,73 ml, 25 mmol) in Acetonitril (200 ml) zugetropft. Es wurde nun weiteres Natriumcarbonat (2,65 g, 25 mmol) zugegeben und die Reaktionsmischung für zwei Tage unter Rückfluss gekocht. Das Acetonitril wurde am Rotations-Verdampfer entfernt. Der Rückstand wurde zwei Mal aus Acetonitril und anschließend aus Chloroform umkristallisiert. Der entstandene Feststoff wurde in einer Natriumhydroxidlösung bei pH = 10 eine Stunde gerührt und anschließend drei Mal mit Chloroform (20 ml) extrahiert. Die vereinigten Chloroformphasen wurden mit Natriumsulfat getrocknet. Das Lösungsmittel wurde entfernt und der farblose Rückstand im Ölpumpenvakuum getrocknet. Das Pulver **16** enthielt immer noch Nebenprodukte, wurde aber für die Komplexierung so verwendet, da alle Versuche zur weiteren Aufreinigung (Kristallisation, Destillation, Säulenchromatographie) fehlschlugen.

Ausbeute:

2,1 g eines zu 70 % reinen Produkts (5,43 mmol, 21,74 %)

 $MW(C_{25}H_{30}N_4) = 386,56 \text{ g/mol}$

Charakterisierung:

Massenspektrometrie (HPLC-MS):

m/z = 387,7; 331,5; 280,4; 267; 254,1; 241,4; 239,3; 225,4; 224,4; 211,6; 209,6; 200,2

¹H-NMR (CDCl₃, 400 MHz)

 $\delta = 6,79-7,62 \text{ ppm} (\text{m CH-Bz}, \text{CH-Py})$

$\delta = 4,14$	ppm (s CH ₂)
δ = 3,86	ppm (s CH ₂)
δ = 3,8-3,6	ppm (m CH ₂ Bz)
δ = 2,21	ppm (s CH ₃ ^t Bu)

IR (KBr):

 $\tilde{v} = 3420, 3058, 3026, 2968, 2824, 1772, 1734, 1718, 1700, 1684, 1654, 1636, 1591, 1575, 1522, 1494, 1456, 1363, 1252, 1198, 1154, 1124, 1073, 1027, 996, 985, 931, 866, 846, 812, 753, 738, 726, 689, 658, 617, 551 cm⁻¹$

5.2.2.3 Synthese von *N-tert*-Butyl-*N'*-tosyl-2,11-diaza[3.3](2,6)pyridinophan $(L-N_4^{t}BuTos)$ 18

In einem Dreihalskolben (500 ml) wurde Natriumtosylamid (2,65 g, 13,7 mmol) unter Erwärmen in DMF (300 ml) suspendiert. Zu dieser Suspension wurden bei 85 °C eine Lösung des *tert*-Butyl-bis(6-chlormethyl-2-pyridinmethyl)amin **12** (4,61 g 13,1 mmol) in DMF (100 ml) über einen Zeitraum von vier Stunden getropft. Dabei musste der Tropftrichter erwärmt werden, da sonst das *tert*-Butyl-bis(6-chlormethyl-2-pyridinmethyl)amin **12** ausgefallen wäre. Nach Beendigung der Zugabe wurde noch eine Stunde bei 85 °C gerührt. Nun wurde Natriumtosylamid (2,12 g, 11,0 mmol) zugegeben, um das entstandene Amid zu deprotonieren. Diese Mischung wurde nun nochmals 2 Stunden bei 85 °C und anschließend über Nacht bei Raumtemperatur gerührt. Danach wurde die Lösung durch Destillation im Ölpumpenvakuum bei 60 °C auf ca. 100 ml eingeengt. Beim Abkühlen auf Raumtemperatur fiel ein farbloser Feststoff aus. Dieser wurde abfiltriert und nacheinander mit reichlich Wasser, Isopropanol und wenig Diethylether gewaschen und anschließend im Ölpumpenvakuum getrocknet. Es wurde ein zu 98 % reines Produkt **18** erhalten. Für

analytische Zwecke wurde 1 g des Feststoffes **18** aus Essigester (50 ml) umkristallisiert. Aus einer heiß gesättigten Lösung des makrozyklischen Liganden **18** in Ethylacetat kristallisierten beim Abkühlen quaderförmige Kristalle aus. Diese konnten röntgenstrukturanalytisch untersucht werden.

Ausbeute:

3,22 g (7,2 mmol; 54,5 %)

 $MW(C_{25}H_{30}N_4O_2S) = 450,60 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 66,49 % H = 6,92 % N = 12,41 %

Gefunden: C = 66,71 % H = 6,77 % N = 12,39 %

Massenspektrometrie (HPLC-MS Methanol):

m/z = 451,9; 398,6; 396,3; 379,0; 368,4; 353,7; 331,8; 317,5; 295,7; 288,1; 255,3; 241,5; 239,4; 222,3; 213,5; 210,6

¹H-NMR (CDCl₃, 400 MHz)

$\delta = 7,76$ ppm (d,CH-Tos,	2Н,	$^{3}J_{HH} = 8,2 \text{ Hz}$
δ = 7,35 ppm (d, CH-Tos,	2Н,	$^{3}J_{HH} = 8,2 \text{ Hz}$)
$\delta = 7,12 \text{ ppm} (t, \text{CH-Py})$	2Н,	$^{3}J_{HH} = 7,6 \text{ Hz}$)
δ = 6,99 ppm (d, CH-Py,	2Н,	$^{3}J_{HH} = 7,6 \text{ Hz}$)
δ = 6,81 ppm (d, CH-Py,	2Н,	$^{3}J_{HH} = 7,6 \text{ Hz}$)
$\delta = 4,47 \text{ ppm} (s, CH_2, 4H)$		
δ = 3,91 ppm (s, CH ₂ ,4H)		
δ = 2,44 ppm (s, CH ₃ -Tos,	3H)	
$\delta = 1,29$ ppm (s, ^t Bu-H,	9H)	

¹³C-NMR DEPT (CDCl₃, 100,62 MHz)

$$\begin{split} \delta &= 160,3 \text{ ppm (d, C-Py,} \quad {}^{3}J_{CH} = 5,4 \text{ Hz}) \\ \delta &= 154,5 \text{ ppm (ds, C-Py,} \quad {}^{3}J_{CH} = 5,2 \text{ Hz}) \\ \delta &= 143,8 \text{ ppm (hexs, C-Tos,} \quad {}^{3}J_{CH} = 6,5 \text{ Hz}) \\ \delta &= 136,6 \text{ ppm (ts, C-Tos,} \quad {}^{3}J_{CH} = 8,3 \text{ Hz}) \\ \delta &= 136,4 \text{ ppm (d*, CH-Py,} \quad {}^{1}J_{CH} = 161,9 \text{ Hz}) \\ \delta &= 130,2 \text{ ppm (m, CH-Tos,} \quad {}^{1}J_{CH} = 161,1 \text{ Hz,} \quad {}^{3}J_{CH} = 5,5 \text{ Hz}) \\ \delta &= 127,3 \text{ ppm (dd, CH-Tos,} \quad {}^{1}J_{CH} = 164,4 \text{ Hz,} \quad {}^{3}J_{CH} = 5,6 \text{ Hz}) \\ \delta &= 123,5 \text{ ppm (d*, CH-Py,} \quad {}^{1}J_{CH} = 162,2 \text{ Hz}) \end{split}$$

δ = 122,2 ppm (d*, CH-Py,	${}^{1}J_{CH} = 164,5 \text{ Hz})$
$\delta = 58,0 \text{ ppm}$ (t*, CH ₂ ,	${}^{1}J_{CH} = 132,5 \text{ Hz}$)
$\delta = 57,1 \text{ ppm} (t^*, CH_{2,})$	${}^{1}J_{CH} = 138,9 \text{ Hz}$)
$\delta = 56,2 \text{ ppm} (s^*, C^{-t}Bu)$	
$\delta = 28,0 \text{ ppm } (q^*, CH_3 - {}^tBu,$	${}^{1}J_{CH}$ = 125,2 Hz)
$\delta = 21,8 \text{ ppm}$ (tq, CH ₃ -Tos,	${}^{1}J_{CH} = 127,2 \text{ Hz}; {}^{3}J_{CH} = 4,2 \text{ Hz})$

IR (KBr):

 $\tilde{\nu} = 3072, 2956, 2918, 2832, 1970, 1923, 1807, 1654, 1593, 1574, 1487, 1 1593, 1574, 1487, 1 148, 1 1487, 1 1487, 1 148, 1 148, 1 148, 1 148, 1 14$

Die exakten Bindungslängen und -winkel sind im Anhang ab Seite 223 angegeben.

5.2.3 Synthese der wasserstoffsubstituierten Spezies

5.2.3.1 Synthese von L-N₄H₂ **3**

5.2.3.1.1 Synthese von 2,6-Bis(tert-butylaminomethyl)pyridin 7

Tert-Butylamin (130 ml, 1,224 mol) wurde in Ethanol (800 ml) gelöst und bei 60 °C gerührt. Anschließend wurde eine Lösung aus 2,6-Bis(chlormethyl)pyridin 1 (22 g, 125 mmol) in Ethanol (350 ml) tropfenweise zugegeben. Die Reaktionsmischung wurde über Nacht (ca. 12 Stunden) bei 60 °C gerührt und weitere sechs Stunden zum Sieden erhitzt. Bei Raumtemperatur wurde festes Natriumhydroxid (11 g, 275 mmol) zur Neutralisation des entstandenen Chlorwasserstoffs in die Reaktionslösung gegeben. Der aus der Lösung ausfallende farblose Feststoff (Natriumchlorid) wurde durch Filtration abgetrennt und das Lösungsmittel mittels Rotationsverdampfer entfernt. Zurück blieb eine gelbe, viskose Flüssigkeit, die in wenig Acetonitril aufgenommen und erneut filtriert wurde. Das Lösungsmittel wurde größtenteils am Rotationsverdampfer entfernt.

Das Produkt, eine klare, viskose Flüssigkeit, wurde durch Vakuumdestillation bei 132 °C und 1,5 mbar erhalten.

Ausbeute:

19,5 g (78 mmol, 62 %) M($C_{15}H_{27}N_3$) = 249,39 g/mol Charakterisierung:

¹H-NMR (CDCl₃, 400 MHz):

$$δ = 7.54 \text{ ppm (t, CH-Py, 1 H, }^{3}J_{HH} = 7.55 \text{ Hz})$$

 $δ = 7.16 \text{ ppm (d, CH-Py, 2 H, }^{3}J_{HH} = 7.55 \text{ Hz})$
 $δ = 3.86 \text{ ppm (s, CH2, 4 H)}$
 $δ = 2.27 \text{ ppm (br, NH, 2 H)}$
 $δ = 1.19 \text{ ppm (s, CH3, 18 H)}$

5.2.3.1.2 Synthese des Liganden N,N'-Di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophan $L-N_4^{t}Bu_2 8$

Eine Lösung aus 2,6-Bis(chlormethyl)pyridin 1 (4,4 g, 24,99 mmol) in Acetonitril (200 ml) wurde über acht Stunden zu einer siedenden Lösung von Na₂CO₃ (5,3 g, 50 mmol) und 2,6-Bis(*tert*-butylaminomethyl)pyridin 7 (6,26 g, 25,1 mmol) in Acetonitril (700 ml) getropft. Anschließend wurde das Gemisch für weitere 2,5 Tage zum Sieden erhitzt. Nach Abkühlen auf Raumtemperatur wurde der entstandene Niederschlag durch Filtration abgetrennt. Im Anschluss wurde dieser zweimal mit Acetonitril (50 ml) gewaschen und dreimal mit Chloroform (50 ml) extrahiert. Die Chloroformphasen wurden vereinigt und mit Natriumsulfat getrocknet. Das Produkt **8** wurde mittels Rotationsverdampfer durch Entfernen des Lösungsmittels erhalten.

Ausbeute:

6,14 g (17,42 mmol, 70 %)

 $M(C_{22}H_{32}N_4) = 352,52 \text{ g/mol}$

Charakterisierung:

¹H-NMR (CDCl₃, 400 MHz):

δ = 7.06 ppm (t, CH-Py, 2 H, ³J_{HH} = 7.63 Hz) δ = 6.72 ppm (d, CH-Py, 4 H, ³J_{HH} = 7.31 Hz) δ = 3.96 ppm (br, CH₂, 8 H) δ = 1.32 ppm (s, CH₃, 18 H)

5.2.3.1.3 Synthese von 2,11-Diaza[3.3](2,6)pyridinophan (L- N_4H_2) 3

L-N₄'Bu₂ **8** (0,99 g, 2,81 mmol) wurde in konzentrierter Salzsäure (100 ml) gelöst und vier Stunden zum Sieden erhitzt. Anschließend wurde das Lösungsmittel am Rotationsverdampfer entfernt und der Rückstand durch Zugabe von zehnprozentiger Kaliumhydroxidlösung (ca. 40 ml) alkalisch gestellt. Der entstandene Niederschlag wurde mittels Dichlormethan extrahiert. Die vereinigten Dichlormethanphasen wurden mit Natriumsulfat getrocknet und das Produkt **3** durch Entfernen des Lösungsmittels am Rotationsverdampfer erhalten.

Ausbeute:

0,52 g (2,16 mmol, 77 %) M(C₁₄H₁₆N₄) = 240,30 g/mol Charakterisierung: ¹H-NMR (CDCl₃, 400 MHz): $\delta = 7.07 \text{ ppm (t, CH-Py, 2 H, ^3J_{HH} = 7.52 \text{ Hz})}$ $\delta = 6.48 \text{ ppm (d, CH-Py, 4 H, ^3J_{HH} = 7.79 \text{ Hz})}$

δ = 3.93 ppm (s, CH₂, 8 H) δ = 3.38 ppm (br, NH, 2 H)

5.2.3.2 Synthese von N-1-Adamantyl-2,11-diaza[3.3](2,6)pyridinophan L-N₄AdH 57

L-N₄Ad^tBu 17 (1,06 g, 2,461 mmol) wurde für 2,5 Stunden in Salzsäure (100 ml, 9 M) gekocht. Die Salzsäure wurde mit dem Rotationsverdampfer entfernt und das erhaltene Hydrochlorid in Wasser (40 ml) aufgenommen. Nachdem zu dieser Lösung bei 0 °C festes Natriumhydroxid (8,2 g, 205 mmol) zugegeben wurde, wurde die Mischung für 20 Minuten bei 0 °C gerührt. Der ausgefallene farblose Niederschlag wurde durch eine Fritte der Porösität 3 von der Mutterlauge getrennt. Das helle Pulver wurde drei Mal mit Dichlormethan (20 ml) extrahiert. Die vereinigten organischen Phasen wurden mit Natriumsulfat getrocknet. Das Lösungsmittel wurde zuerst zur Trockene eingeengt und mit Acetonitril (3 mal 15 ml) gewaschen. Die farblose Substanz wurde im Ölpumpenvakuum getrocknet. Durch ethanolischen farblosen Pulvers Abdampfen einer Lösung des 57 konnten diffraktometertaugliche Kristalle gewonnen werden.

Ausbeute:

0,518 g (1,48 mmol, 60,2 %)

 $M(C_{24}H_{30}N_4) = 375,54 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 76,97 % H = 8,07 % N = 14,96 %Gefunden: C = 76,28 % H = 7,78 % N = 15.07 %

Massenspektrometrie (HPLC-MS Methanol):

m/z = 778,0; 748,2; 698,1; 685,1; 655,7; 628,0; 606,7; 603,0; 594,6; 564,9; 571,3; 550,8; 541,9; 509,9; 507,1; 492,9; 472,8; 453,9; 439,7; 432,7; 431,3; 411,9; 409,7; 389,9; 388,0; 376,0; 371,7; 361,9; 360,8; 353,7; 338,9; 340,6; 331,1; 340,6; 305,6; 297,9; 277,5; 275,6; 265,8; 356,4; 255,3; 241,5; 242,7; 222,3; 212,4

¹H-NMR (CDCl₃, 400 MHz)

 $^{3}J_{HH} = 8,1 \text{ Hz}$ $\delta = 7,04$ ppm (t, CH-Py, 2 H, $\delta = 6,71$ ppm (d, CH-Py, 2 H, $^{3}J_{HH} = 7,8 \text{ Hz}$ $^{3}J_{HH} = 7.2 \text{ Hz}$ $\delta = 6.45$ ppm (d, CH-Py, 2 H, $\delta = 4,07 \text{ ppm}$ (s, CH₂. 4 H) $\delta = 3,95$ ppm (s, CH₂) 4H) $\delta = 2,23$ ppm (s, CH-Ad, 3 H) $\delta = 1.96$ ppm (s, CH₂-Ad, 6H) $\delta = 1,74$ ppm (s, CH₂-Ad, 6 H)

¹³C -NMR (CDCl₃, 100 MHz)

$$δ = 160,95$$
 ppm (s, C-Py)
 $δ = 157,96$ ppm (s, C-Py)
 $δ = 135,56$ ppm (d, CH-Py, ¹J_{CH} = 159 Hz)
 $δ = 122,29$ ppm (d, CH-Py, ¹J_{CH} = 159 Hz)
 $δ = 119,51$ ppm (d, CH-Py, ¹J_{CH} = 159 Hz)
 $δ = 56,58$ ppm (t, CH₂, ¹J_{CH} = 69 Hz)
 $δ = 55,90$ ppm (t, CH₂, ¹J_{CH} = 74 Hz)
 $δ = 40,60$ ppm (m, CH₂-Ad)
 $δ = 36,80$ ppm (m, CH₂-Ad)
 $δ = 30,40$ ppm (m, CH-Ad)

IR (KBr):

 $\tilde{v} = 3421, 3302, 3056, 2978, 2849, 2301, 1794, 1772, 1748, 1716, 1623, 1587, 1573, 1454, 1364, 1309, 1289, 1244, 1212, 1157, 1125, 1097, 1039, 995, 952, 895, 855, 807, 785, 770, 751, 704, 667, 620, 540, 461, 420 cm⁻¹$

Die Röntgenstrukturdaten befinden sich im Anhang ab Seite 232.

5.2.3.3 Synthese des N-Benzyl-2,11-diaza[3.3](2,6)pyridinophan L-N₄BzH 42

L-N₄^{*t*}BuBz **16** (0,75 g; 1,94 mmol) wurde in Salzsäure (75 ml; 9 M) drei Stunden lang gekocht. Nachdem die Säure am Rotationsverdampfer abdestilliert worden war, wurde der Rückstand in destilliertem Wasser (10 ml) aufgenommen. Diese saure Lösung wurde im Eisbad mit festem Natriumhydroxid bis zur alkalischen Reaktion versetzt und mit Chloroform

(2 mal 10 ml und 1 mal 15 ml) extrahiert. Die vereinigten organischen Phasen wurden mit Natriumsulfat getrocknet und durch anschießendes Entfernen des Lösungsmittels ein weißes Pulver erhalten, das im Ölpumpenvakuum getrocknet wurde.

Ausbeute:

0,42 g (1,27 mmol, 65,46 %)

 $MW(C_{21}H_{22}N_4) = 330,43 \text{ g/mol}$

Charakterisierung:

Von diesem Material konnte keine stimmige Elementaranalyse gewonnen werden.

Massenspektrometrie (HPLC-MS in MeOH):

m/z = 493,6; 482,7; 481,4; 474,8; 473,7; 464,6; 451,7; 449,6; 434,5; 432,3; 423,5; 406,5; 399,3; 393,5; 383,3; 381,3; 371,4; 366,4; 361,7; 359,6; 353,6; 344,5; 339,6; 329,5; 327,6; 316,3; 303,3; 302,4; 297,4; 289,4; 276,3; 263,3; 249,5; 239,3; 237,2; 242,5; 228,3; 224,2; 222,2; 210,4; 200,3

¹H-NMR (CDCl₃, 400 MHz)

δ = 7,06 ppm (m, CH-Py, CH-Bz,	3 H)	
δ = 6,48 ppm (d, CH-Bz,	1 H	$^{3}J_{HH} = 7,4 Hz)$
δ = 6,56 ppm (d, CH-Py,	2 H,	$^{3}J_{HH} = 7,9 \text{ Hz}$
δ = 6,70 ppm (d, CH-Py,	2 H,	$^{3}J_{HH} = 7,9 \text{ Hz}$
δ = 4,05 ppm (s, CH ₂ ,	4 H)	
δ = 3,96 ppm (s, CH ₂ -Bz,	2 H)	
δ = 3,84 ppm (s, CH ₂ ,	4 H)	
$\delta = 2,15 \text{ ppm}$ (s, N-H,	3 H)	

IR (KBr):

 $\tilde{v} = 3413, 3301, 3060, 3024, 2997, 2925, 2877, 2831, 1589, 1575, 1523, 1493, 1454, 1384, 1363, 1341, 1302, 1259, 1210, 1163, 1123, 1097, 1028, 1002, 989, 955, 932, 921, 904, 866, 810, 772, 750, 735, 719, 697, 537, 491, 464, 431 cm⁻¹$

5.2.3.4 Synthese von N-Tosyl-2,11-diaza[3.3](2,6)pyridinophan L-N₄HTos 19

In einem Kolben (500 ml) wurde L- N_4 ^tBuTos **18** (3,22 g, 7,2 mmol) in Salzsäure (330 ml, 3 M) vier Tage unter Rückfluss erhitzt. Anschließend wurde das Lösungsmittel am Rotationsverdampfer entfernt und der Rückstand in Wasser (ca. 50 ml) gelöst. Unter

kräftigem Rühren wurde, unter Kühlung im Eisbad, der pH-Wert der Lösung auf den Wert 14 mit NaOH-Plätzchen eingestellt. Der ausgefallene beige Feststoff wurde abfiltriert, mit Wasser und Diethylether gewaschen und im Ölpumpenvakuum getrocknet. Ein Kristall für eine Röntgenstrukturanalyse des Liganden L-N₄HTos **19** kristallisierte aus Essigsäureethylester.

Ausbeute:

2,09 g (5,3 mmol, 74 %)

 $MW(C_{21}H_{22}N_4SO_2) = 394,49 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 63,94 % H = 5,62 % N = 14,20 %Gefunden: C = 63,72 % H = 5,58 % N = 14,24 %

Massenspektrometrie (ESI):

m/z = 394,7; 393,7; 392,7; 239,9; 238,9; 221,9; 211,9; 209,9; 133,0; 131,9; 130,9; 121,0; 120,0; 119,0; 107,0; 106,0; 105,0; 93,0; 92,0; 91,0; 79,0; 78,0; 77,0; 65,0; 63,0; 51,0; 39,0; 28,0

¹H-NMR (CDCl₃, 400 MHz)

δ = 7,81 ppm (d, CH-Tos,	2Н,	$^{3}J_{HH} = 8,0 \text{ Hz})$
δ = 7,39 ppm (d, CH-Tos,	2 H,	$^{3}J_{HH} = 7,9 \text{ Hz}$)
δ = 7,20 ppm (t, CH-Py,	2Н,	$^{3}J_{HH} = 7,6 \text{ Hz}$)
δ = 7,08 ppm (d, CH-Py,	2Н,	$^{3}J_{HH} = 7,7 \text{ Hz}$)
$\delta = 6,61 \text{ ppm} (d, CH-Py,$	2 H,	$^{3}J_{HH} = 7,4 \text{ Hz}$)
$\delta = 4,52 \text{ ppm} (s, CH_2,$	4 H)	
$\delta = 3,93 \text{ ppm} (s, CH_2,$	4 H)	
$\delta = 2,48 \text{ ppm}$ (s, CH ₃ -Tos,	3 H)	

¹³C-NMR DEPT (CDCl₃, 100,62 MHz)

$$\begin{split} \delta &= 157,2 \text{ ppm (s, C-Py)} \\ \delta &= 155,4 \text{ ppm (s, C-Py)} \\ \delta &= 143,8 \text{ ppm (s, C-Tos)} \\ \delta &= 136,7 \text{ ppm (t*, C-Tos)} \\ \delta &= 136,4 \text{ ppm (d*, CH-Py)} \\ \delta &= 130,1 \text{ ppm (m, CH-Tos)} \\ \delta &= 127,0 \text{ ppm (m, CH-Tos)} \\ \delta &= 121,2 \text{ ppm (d*, CH-Py)} \\ \delta &= 57,1 \text{ ppm (t, CH_2, 1^{-1}J_{CH} = 126,8 \text{ Hz})} \\ \delta &= 55,3 \text{ ppm (t, CH_2, 1^{-1}J_{CH} = 126,9 \text{ Hz})} \\ \delta &= 21,6 \text{ ppm (m, CH_3-Tos)} \end{split}$$

IR (KBr):

 $\tilde{v} = 3287, 3058, 2999, 2919, 2844, 2308, 1927, 1671, 1592, 1576, 1494, 1458, 1436, 1358, 1321, 1251, 1233, 1218, 1185, 1151, 1124, 1094, 1017, 973, 912, 816, 773, 749, 707, 656, 639, 604, 548 cm⁻¹$

Die vollständigen Strukturdaten befinden sich ab Seite 243.

5.2.4 Methylierungsreaktionen

5.2.4.1 Synthese von *N*-1-Adamantyl-*N*'-methyl-2,11-diaza[3.3](2,6)pyridinophan L-N₄AdMe **43**

Eine Mischung aus L-N₄AdH **41** (0,68 g, 1,81 mmol), Ameisensäure (17,5 ml, 45,57 mmol) und Formaldehydlösung (4 ml, 37 %, 53,00 mmol) wurde 24 Stunden zum Sieden erhitzt. Nach Abkühlen auf Raumtemperatur wurde Salzsäure (8,75 ml, 37 %) zugegeben. Die Flüssigkeiten wurden am Rotationsverdamfer entfernt. Der erhaltene Rückstand wurde aus 30 ml Acetonitril als beiges Pulver umkristallisiert. Die Güte dieses Pulvers **43** reichte für Komplexierungen aus. Für die Erstellung der analytischen Daten wurde das Material nochmals umkristallisiert. Analysenreine Kristalle konnten aus einer Kristallisation mit Essigester gewonnen werden. Aus einer heißgesättigten ethanolischen Lösung fielen beim Abkühlen farblose Einkristalle aus für die Röntgenstrukturanalyse.

Ausbeute:

0,36 g (0,92 mmol, 50,8 %)

MW ($C_{25}H_{32}N_4$) = 388,56 g/mol

Charakterisierung:

Elementaranalyse: Berechnet: C = 77,08 % H = 8,54 % N = 14,38 %

Gefunden: C = 76,96 % H = 8,41 % N = 14,46 %

Massenspektrometrie (HPLC-MS MeOH):

m/z = 689,8; 680,0; 673,6; 604,9; 590,8; 569,2; 527,9; 509,9; 495,9; 468,0; 454,8; 453,9; 444,1; 433,0; 411,8; 406,1; 390,1; 406,1; 390,1; 376,0; 360,8; 353,6; 347,7; 333,6; 325,8; 295,8; 283,6; 268,5; 257,6; 255,3; 248,6; 239,4; 222,3; 212,4

¹H-NMR (CDCl₃, 400 MHz)

 $\delta = 7,06$ ppm (m, CH-Py, 2 H) $\delta = 6,72$ ppm (m, CH-Py, 5 H) $\delta = 4,03 \text{ ppm}$ (s, CH₂, 4 H) $\delta = 3,81$ ppm (s, CH₂, 4 H) $\delta = 2,70$ ppm (s, CH₃-Me, 3 H) $\delta = 2,17$ ppm (s, CH-Ad, 6 H) $\delta = 1,91$ ppm (s, CH₂-Ad, 6 H) $\delta = 1,69 \text{ ppm}$ (s, CH₂-Ad, 6 H)

¹³C -NMR (CDCl₃, 50 MHz)

```
δ = 160,75 \text{ ppm (s, C-Py)}

δ = 157,06 \text{ ppm (s, C-Py)}

δ = 135,68 \text{ ppm (d, CH-Py, }^{1}J_{CH} = 161 \text{ Hz})

δ = 122,95 \text{ ppm (d, CH-Py, }^{1}J_{CH} = 161 \text{ Hz})

δ = 122,14 \text{ ppm (d, CH-Py, }^{1}J_{CH} = 161 \text{ Hz})

δ = 66,54 \text{ ppm (t, CH<sub>2</sub>, }^{1}J_{CH} = 131 \text{ Hz})

δ = 56,29 \text{ ppm (t, CH<sub>2</sub>, }^{1}J_{CH} = 131 \text{ Hz})

δ = 49,50 \text{ ppm (q, CH<sub>3</sub>)}

δ = 40,84 \text{ ppm (m, CH<sub>2</sub>-Ad)}

\delta = 37,19 \text{ ppm (m, CH<sub>2</sub>-Ad)}

\delta = 30,38 \text{ ppm (m, CH-Ad)}
```

IR (KBr):

 $\tilde{v} = 3464, 3057, 2911, 2848, 2200, 1588, 1452, 1369, 1259, 1224, 1098, 1036, 972, 921, 875, 817, 749, 630, 408 \text{ cm}^{-1}$

5.2.4.2 Synthese von N-Methyl-N'-tosyl-2,11-diaza[3.3](2,6)pyridinophan (L-N₄MeTos) **20**

Zu einer Lösung von L-N₄TosH **19** (1,1 g, 2,79 mmol) in Ameisensäure (48 ml, 125 mmol) wurde Formaldehydlösung (8 ml, 37%, 106 mmol) zugegeben und die Reaktionsmischung 24 Stunden unter Rückfluss erhitzt. Anschließend wurde rauchende Salzsäure (50 ml) zugegeben. Die Lösung wurde bis zur Trockene eingeengt. Der Rückstand wurde in wenig Wasser aufgenommen. Unter Kühlung im Eisbad wurde durch Zugaben von NaOH-Plätzchen die Lösung auf einen pH-Wert von ca. 12 eingestellt und dreimal mit Dichlormethan (je 20 ml) extrahiert. Die vereinigten Dichlormethanfraktionen wurden über Natriumsulfat getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt. Das Produkt wurde als brauner Feststoff erhalten.

Ausbeute:

1,13 g (2,77 mmol, 95 %)

 $MW(C_{22}H_{24}N_4SO_2) = 408,52 \text{ g/mol}$

Charakterisierung:

Die Elementaranalyse zeigt, dass außer dem Liganden noch eine andere Verbindung enthalten ist. Diese ist jedoch nicht NMR-aktiv.

Elementaranalyse: Berechnet: C = 67,07 % H = 7,14 % N = 12,03 %

Gefunden: C = 64,13 % H = 6,07 % N = 13,37 %

Massenspektrometrie (HPLC-MS in MeOH):

m/z = 556,1; 462,8; 461,8; 331,4; 225,8; 413,6; 395,9; 389,3; 376,0; 363,1; 376,0; 360,8; 353,7; 338,9; 312,7; 311,8; 298,8; 282,9; 270,5; 256,4; 253,2; 239,2; 222,3; 219,4; 212,5

¹H-NMR (CDCl₃, 600 MHz)

 $\delta = 2,39 \text{ ppm} (s, \text{CH}_3\text{-Tos}, 3 \text{ H})$ $\delta = 2,63 \text{ ppm} (s, \text{CH}_3, 3 \text{ H})$ $\delta = 3,71 \text{ ppm} (s, \text{CH}_2, 4 \text{ H})$ $\delta = 4,45 \text{ ppm} (\text{br}, \text{CH}_2, 4 \text{ H})$

	$\delta = 6,76 \text{ ppm}$ (d, CH-Py,	1 H,	${}^{3}J_{HH} = 7,6 \text{ Hz}$)
	$\delta = 6,99 \text{ ppm}$ (d, CH-Py,	1 H,	${}^{3}J_{HH} = 7,6 \text{ Hz}$)
	$\delta = 7,13 \text{ ppm}$ (*	t, CH-Py,	2 H,	${}^{3}J_{HH} = 7,6 \text{ Hz}$)
	$\delta = 7,30 \text{ ppm}$ (d, CH-Tos,	2 H,	${}^{3}J_{HH} = 8,0 \text{ Hz}$)
	$\delta = 7,71 \text{ ppm}$ (d, CH-Tos,	2 H,	${}^{3}J_{HH} = 8,0 \text{ Hz}$)
¹³ C-NMR (CDCl ₃ , 150,93 M	(Hz)			
	$\delta = 157,4 \text{ ppm}$	(s*, C-Py)		
	$\delta = 154,8 \text{ ppm}$	(s*, C-Py)		
	$\delta = 143,7 \text{ ppm}$	(hex, C-Tos,	${}^{3}J_{CH} = 0$	6,5 Hz)
	δ = 136,5 ppm	(d, CH-Py,	$^{1}J_{CH} =$	161,0 Hz)
	δ = 136,1 ppm	(t, C-Tos,	${}^{3}J_{CH} = 3$	8,4 Hz)
	δ = 130,1 ppm	(qud, CH-Tos	$^{1}J_{CH} =$	161,0 Hz, ${}^{3}J_{CH} = 5,5$ Hz)
	δ = 127,1 ppm	(dd, CH-Tos,	$^{1}J_{CH} =$	164,4 Hz, ${}^{3}J_{CH} = 5,7$ Hz)
	δ = 123,3 ppm	(d*, CH-Py,	$^{1}J_{CH} =$	161,8 Hz)
	δ = 122,7 ppm	(d*, CH-Py,	$^{1}J_{CH} =$	161,6 Hz)
	δ = 66,0 ppm	(t*, CH ₂ ,	$^{1}J_{CH} =$	133,2 Hz)
	δ = 56,9 ppm	(t, CH ₂ ,	$^{1}J_{CH} =$	139,0 Hz)
	$\delta = 49,3 \text{ ppm}$	(q, CH ₃ ,	$^{1}J_{CH} =$	133,6 Hz)
	$\delta = 21,7 \text{ ppm}$	(tq, CH ₃ -Tos,	$^{1}J_{CH} =$	127,2 Hz, ${}^{3}J_{CH} = 4,2$ Hz)

IR (KBr):

 $\tilde{v} = 3411, 3295, 3061, 2914, 1656, 1591, 1575, 1493, 1455, 1347, 1324, 1228, 1162, 1093, 1033, 995, 977, 911, 893, 865, 815, 769, 754, 707, 669, 640, 617, 550, 480 \text{ cm}^{-1}$

5.2.5 Herstellung von N-Methyl-2,11-diaza[3.3](2,6)pyridinophan L-N₄HMe 21

Eine Lösung von L-N₄TosMe **20** (1,55 g, 3,80 mmol) in konz. H_2SO_4 (28 ml) wurden für 2,5 Stunden auf 110 °C erhitzt. Nach Abkühlen wurde diese Reaktionslösung unter kräftigem Rühren auf eisgekühlten Diethylether (800 ml) gegossen. Von der dunklen zähen Masse wurde der überstehende Ether abdekantiert. Der Rückstand wurde in wenig Wasser gelöst. Unter Eiskühlung wurde die Lösung mit NaOH-Plätzchen alkalisch gestellt und viermal mit Dichlormethan (40 ml) extrahiert. Die Fraktionen der organischen Phase wurden vereinigt und über Na₂SO₄ getrocknet. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und der beige Feststoff **21** im Ölpumpenvakuum getrocknet.

Ausbeute:

0,93 g (3,66 mmol, 96 %)

Charakterisierung:

Elementaranalyse: Berechnet: C = 70,84 % H = 7,13 % N = 22,03 %

Gefunden: C = 70,65 % H = 7,30 % N = 21,89 %

Massenspektrometrie (GC-MS):

m/z = 255; 148; 135; 134; 133; 132; 131; 123; 121; 120; 119; 107; 106; 105; 104; 92; 79; 78; 65; 64; 63; 51; 42

¹H-NMR (CDCl₃, 400 MHz)

δ = 7,10 ppm (t, CH-Py,	2Н,	${}^{3}J_{\rm HH} = 7,6$ Hz)
δ = 6,72 ppm (d, CH-Py,	2 H,	$^{3}J_{HH} = 7,6 \text{ Hz}$)
$\delta = 6,54$ ppm (d, CH-Py,	2 H,	$^{3}J_{HH} = 7,6 \text{ Hz}$)
δ = 3,99 ppm (br, CH ₂ ,	4 H)	
δ = 3,85 ppm (s, CH ₂ ,	4 H)	
$\delta = 2,76 \text{ ppm} (s, CH_3,$	3 H)	

IR (KBr):

 $\tilde{v} = 3446, 1684, 1654, 1586, 1459, 1365, 1161, 1096, 1028, 988, 864, 810, 772, 749, 660$ cm⁻¹

5.2.6 Herstellung von *N*-Methyl-*N'*-(2-hydroxy-3,5-di-*tert*-butyl-benzyl)-2,11diaza[3.3](2,6)pyridinophan HL-N₄(tt BzO)Me **45**

Eine Lösung von L-N₄HMe **21** (1,13 g, 4,44 mmol) und Formaldehydlösung (0,85 ml, 11,4 mmol) in Methanol (25 ml) wurde zwei Stunden unter Rückfluss erhitzt. Nach Abkühlen auf Raumtemperatur wurde nach Zugabe von 2,4-Di-*tert*-butylphenol (1,71 g, 8,29 mmol) und zweier Tropfen rauchender Salzsäure über Nacht unter Rückfluss erhitzt. Danach wurde die Lösung bis fast zur Trockene eingeengt. Der orangefarbene Rückstand wurde in Diethylether (30 ml) aufgenommen und dreimal mit Salzsäure (15 ml, 3M) extrahiert. Die wässrigen Fraktionen wurden vereinigt und mit Diethylether (20 ml) gewaschen. Danach wurde die Salzsäure am Rotationsverdampfer entfernt. Der erhaltene hellbraune Feststoff wurde in wenig Wasser aufgenommen und die Lösung unter Kühlung im Eisbad mit NaOH-Plätzchen

auf pH = 12 eingestellt. Der ausgefallene hellbraune Feststoff wurde abfiltriert und mit Wasser gewaschen. Anschließend wurde das Rohprodukt in Ethanol (20 ml) aufgenommen und mit Eiswasser (100 ml) wieder ausgefällt.

Der erhaltene weiße Feststoff wurde abfiltriert, mit Wasser gewaschen und im Ölpumpenvakuum getrocknet. Auf diese Weise wurde das Produkt **45** in einer Reinheit erhalten, die zur Komplexierung ausreichend ist.

Für analytische Zwecke wurden ca. 500 mg des Produkts aus einem Ethanol/Wasser Gemisch (1:1) umkristallisiert. Dazu wurde der Feststoff in Ethanol (20 ml) gelöst und zum Sieden erhitzt, heißes Wasser zugegeben, bis die Löslichkeitsgrenze erreicht war. Nach dem Abkühlen fiel eine kleine Menge eines farblosen Feststoffes aus. Durch langsames Verdampfen des Ethanols konnten farblose, stäbchenförmige Kristalle erhalten werden. Diese dienten zu einer Strukturaufklärung.

Ausbeute:

1,74 g (3,68 mmol; 83 %)

 $MW(C_{30}H_{40}N_4O) = 472,67 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 76,23 %, H = 8,53 %, N = 11,85 %Gefunden: C = 75,88 % H = 8,21 % N = 11,67 %

Massenspektrometrie (HPLC-MS MeOH):

m/z = 737,8; 728,1; 700,5; 678,2; 666,1; 640,5; 630,0; 607,9; 596,0; 545,6; 535,6; 511,8; 497,8; 495,8; 476,8; 475,1; 460,1; 447,5; 427,0; 425,8; 412,7; 411,9; 395,9; 389,9; 358,6; 321,5; 293,6; 291,7; 278,6; 277,7; 257,5; 255,7; 249,7; 241,5; 228,5; 224,2; 219,5; 210,6

¹H-NMR (CDCl₃, 400 MHz)

$$\begin{split} \delta &= 10,96 \text{ ppm (br, OH,} & 1 \text{H}) \\ \delta &= 7,28 \text{ ppm (d, CH-Ph,} & 1 \text{ H,} & {}^{3}\text{J}_{\text{HH}} = 2,1 \text{ Hz}) \\ \delta &= 7,18 \text{ ppm (t, CH-Py,} & 2 \text{ H,} & {}^{3}\text{J}_{\text{HH}} = 7,4 \text{ Hz}) \\ \delta &= 6,97 \text{ ppm (d, CH-Ph,} & 1 \text{ H,} & {}^{3}\text{J}_{\text{HH}} = 2,1 \text{ Hz}) \\ \delta &= 6,80 \text{ ppm (d, CH-Py,} & 4 \text{ H,} & {}^{3}\text{J}_{\text{HH}} = 7,5 \text{ Hz}) \\ \delta &= 4,10 \text{ ppm (s, CH_2,} & 2 \text{ H}) \\ \delta &= 4,02 \text{ ppm (br, CH_2,} & 4 \text{ H}) \\ \delta &= 3,86 \text{ ppm (br, CH_2,} & 4 \text{ H}) \\ \delta &= 2,72 \text{ ppm (s, CH_3,} & 3 \text{ H}) \\ \delta &= 1,50 \text{ ppm (s, CH_3-{}^{t}\text{Bu}, 9 \text{ H}) \\ &162 \end{split}$$

 $\delta = 1,31 \text{ ppm}$ (s, CH₃-^{*t*}Bu, 9 H) ¹³C-NMR (CDCl₃, 100,62 MHz) $\delta = 157,7 \text{ ppm} (s^*, \text{C-Py})$ $^{3}J_{CH} = 5.0 \text{ Hz}$ $\delta = 156,6 \text{ ppm}$ (s, C-Py, $\delta = 154,2 \text{ ppm} (s^*, \text{C-O})$ $\delta = 141.4$ ppm (s, C-Ph) $\delta = 136.4$ ppm (s, C-Ph) $^{1}J_{CH} = 161.0 \text{ Hz}$ $\delta = 136,2 \text{ ppm}$ (d, CH-Py, $\delta = 124,2 \text{ ppm } (d^*, \text{CH-Ph}, ^1J_{\text{CH}} = 153,2 \text{ Hz})$ $\delta = 123,7$ ppm (dd, CH-Ph, ¹J_{CH} = 152,4 Hz, ³J_{CH} = 7,3 Hz) $\delta = 123,1 \text{ ppm } (d^*, \text{CH-Py}, ^1J_{\text{CH}} = 161,8 \text{ Hz})$ $\delta = 122.8 \text{ ppm} (d^*, \text{CH-Py}, ^1J_{\text{CH}} = 161.6 \text{ Hz})$ $\delta = 122,3 \text{ ppm} (s^*, \text{C-Ph})$ $^{1}J_{CH} = 132,2 \text{ Hz}$ $\delta = 66.4$ ppm (t, C-Py, $\delta = 64,7 \text{ ppm}$ (t, CH₂, $^{1}J_{CH} = 135.9 \text{ Hz}$ $^{1}J_{CH} = 135,5 \text{ Hz}$ $\delta = 63.8 \text{ ppm}$ (t, CH₂, $^{1}J_{CH} = 132,8 \text{ Hz}$ $\delta = 49,4 \text{ ppm} (q, CH_3,$ $\delta = 35.3 \text{ ppm} (s^*, C^{-t}Bu)$ $\delta = 34,5 \text{ ppm} (s^*, C^{-t}Bu)$ $\delta = 32,0 \text{ ppm} (q^*, CH_3-^tBu, {}^1J_{CH} = 125,3 \text{ Hz})$ $\delta = 30.1 \text{ ppm} (q^*, CH_3-^tBu, {}^1J_{CH} = 125.8 \text{ Hz})$

IR (KBr)

 $\tilde{v} = 3396, 3251, 3062, 2955, 2905, 2868, 2799, 2771, 1592, 1578, 1481, 1458, 1391, 1361, 1303, 1237, 1202, 1158, 1125, 1104, 996, 978, 882, 820, 759, 687 cm⁻¹ Die Strukturdaten befinden sich im Anhang S. 258 ff.$

5.2.7 Synthese von N,N'-(Di-4-nitrophenyl)-2,11-diaza[3.3](2,6)pyridinophan L-N₄(PhNO₂)₂ **48**

In einem Kolben mit Hahn wurden unter Stickstoffatmosphäre L-N₄H₂**3** (250 mg, 1,04 mmol) die Base Kaliumcarbonat (332 mg 2,40 mmol) und *para*-Fluornitrobenzol (0,1 ml, 1 mmol) in trockenem Dimethylsulfoxid (10 ml) vier Stunden lang bei 110 °C gerührt. Nach dem Abkühlen wurde die Mischung auf Eiswasser (30 ml) gegossen und mit Salzsäure neutralisiert. Das ausgefallene Rohprodukt wurde mit Wasser gewaschen und im Ölpumpenvakuum getrocknet. Ausbeute:

15,8 mg (0,03 mmol, 3,3 %)

 $MW(C_{26}H_{22}N_6O_4) = 482,5 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 64,72 %, H = 4,60 %, N = 17,42 %Gefunden: C = 47,88 %, H = 4,30 %, N = 11,93 %

¹H-NMR (CDCl₃, 400 MHz)

δ = 7,53 ppm (d, CH-Ph,	4 H,	$^{3}J_{HH} = 9,39 \text{ Hz}$
$\delta = 7,48$ ppm (t, CH-Py,	2 H,	$^{3}J_{HH} = 7,63$ Hz)
δ = 7,05 ppm (d, CH-Py,	4 H,	$^{3}J_{HH} = 7,63 \text{ Hz}$)
$\delta = 6,55$ ppm (d, CH-Ph,	4 H,	$^{3}J_{HH} = 9,39 \text{ Hz}$)
$\delta = 6,55$ ppm (s, HCl,	1 H)	
$\delta = 4,75 \text{ ppm} (s, CH_2,$	8 H)	

Die Strukturdaten befinden sich ab Seite 267.

5.3 Darstellung der Komplexe

5.3.1 Nickel-Komplexe

5.3.1.1 Nickel-Komplexe mit sterisch anspruchsvollen hetero-substituierten Diazapyridinophanliganden

5.3.1.1.1 Synthese von $[Ni(L-N_4^tBuBz)Cl_2]$ 56

Zu einer Lösung des Liganden L-N₄^{*i*}BuBz **16** (333,4 mg, 0,86 mmol) in Ethanol (20 ml) wurde in der Siedehitze eine Lösung von NiCl₂ \cdot 6H₂O (232,6 mg 0,86 mmol) in Ethanol (15 ml) gegeben. Die Mischung siedete für drei Stunden. Der ausgefallene Niederschlag wurde abgetrennt. Das Lösemittel wurde entfernt, der türkisfarbene Feststoff mit Acetonitril behandelt und Unlösliches abfiltriert. Nach Abziehen des Lösemittels war das grüne Rohprodukt **56** isoliert.

Ein Teil des Produkts wurde in Chloroform aufgenommen und mit Hexan überschichtet, um Kristalle für die Röntgenstruktur zu gewinnen.

Ausbeute:

236,6 mg (0,458 mmol, 53%)

 $MW(C_{25}H_{30}N_4NiCl_2) = 516,14 \text{ g/mol}$

Elementaranalyse: Berechnet: C = 58,18 % H = 5,86 % N = 10,86 %Gefunden: C = 56,50 % H = 6,22 % N = 9,68 %

5.3.1.1.2 Synthese von $[Ni(L-N_4Ad^tBu)Br_2]$ 60

Eine Lösung von [NiBr₂(PPh₃)₂] **52** (218,3 mg 0,5 mmol) in Ethanol (20 ml) wurde mit einer Ligandlösung (219,8 mg, 0,5 mmol) in Ethanol (20 ml) versetzt. Diese Mischung wurde eine Stunde unter Rückfluss gekocht. Es folgten nacheinander Diffusionen von Diethylether in Komplexlösungen der folgenden Lösungsmittel: Dichlormethan, Benzonitril und Methanol. Es konnten grüne Kristalle isoliert werden.

Gesamtausbeute:

63,3 mg (0,086 mmol, 17,2 %)

 $MW(NiC_{28}H_{38}N_4Br_2) = 734,07 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 47,45 % H = 5,49 % N = 7,63 %Gefunden: C = 47,96 % H = 5,34 % N = 7,62 %

IR (KBr):

 $\tilde{v} = 3413, 3069, 2964, 2908, 2847, 2348, 1602, 1581, 1466, 1448, 1416, 1401, 1377, 1364, 1258, 1226, 1157, 1111, 1073, 1047, 1031, 1008, 976, 962, 935, 909, 865, 847, 798, 773, 746, 727, 703, 659, 562, 521, 443 cm⁻¹$

Die Röntgenstrukturdaten befinden sich ab 274.

5.3.1.1.3 Synthese von $[Ni(L-N_4Ad^tBu)Cl_2]$ 55

Eine Lösung aus NiCl₂ · 6 H₂O (116,7 mg, 0,5 mmol) in Ethanol (10 ml) wurde in der Siedehitze zu einer Lösung aus L-N₄Ad'Bu **17** (219,8 mg 0,5 mmol) in Ethanol (40 ml) getropft. Danach wurde die Reaktionslösung für zwei Stunden unter Rückfluss gekocht. Am Rotationsverdampfer wurde die Lösung bis zur Trockene eingeengt. Der Rückstand wurde in Acetonitril (10 ml) aufgenommen. Die darin unlöslichen Bestandteile wurden abfiltriert, der grüne Komplex **55** wurde dann durch Diffusion von Diethylether in die Lösung kristallin erhalten. Zur Reinigung wurde das Rohprodukt **55** aus siedendem Ethanol rekristallisiert. So konnte analysenreines Material gewonnen werden. Zur Gewinnung der Einkristalle wurde eine gesättigte Lösung in Benzonitril hergestellt, in die Diethylether langsam eindiffundiert wurde. Es wurden grüne Kristalle gewonnen.

Ausbeute:

83,2 mg (0,148 mmol, 29 %)

MW(C₂₈H₃₈N₄NiCl₂) = 560,23 g/mol

Charakterisierung:

Elementaranalyse: Berechnet: C = 60,03 % H = 6,84 % N = 10,00 %Gefunden: C = 59,72 % H = 7,07 % N = 9,66 %

IR (KBr):

 $\tilde{\nu} = 3068, 3006, 2960, 2902, 2864, 1602, 1582, 1466, 1446, 1402, 1362, 1358, 1308, 1256, 1192, 1162, 1110, 1074, 1030, 934, 908, 866, 794, 704, 556, 518 cm⁻¹$

UV-Vis (Methanol):

261 nm (7653 lmol⁻¹cm⁻¹); 349 nm (83,6 lmol⁻¹cm⁻¹); 593 nm (5,1 lmol⁻¹cm⁻¹); 871 nm (67,3 lmol⁻¹cm⁻¹); 1322 nm (283,8 lmol⁻¹cm⁻¹)

Die Strukturdaten befinden sich ab Seite 290.

5.3.1.1.5 Synthese von [Ni(L-N₄AdMe)Cl₂] 58

Eine Lösung von L-N₄AdMe **43** (0,12 g, 0,308 mmol) in Ethanol (20 ml) wurde vorgelegt und in der Siedehitze eine Lösung NiCl₂ · 6 H₂O (0,084 g, 0,230 mmol) in Ethanol (12 ml) langsam zugegeben und zwölf Stunden unter Rückfluss gekocht. Die entstandene Lösung war blaugrün gefärbt. In diese wurde nach dem Erkalten unter vermindertem Druck Diethylether eindiffundiert. Der entstandene Feststoff **58** wurde aus Methanol-Diethylether-Diffusion als dunkelgrüner kristalliner Niederschlag gewonnen.

Ausbeute:

0,0877 g (0,228 mmol, 99,3 %)

MW ($C_{15}H_{18}N_4Cl_2Ni$) = 383.93 g/mol

Charakterisierung:

Elementaranalyse: Berechnet: C = 57,84 % H = 6,41 % N = 10,79 %

Gefunden: C = 57,68 % H = 6,48 % N = 10,67 %

IR (KBr):

 $\tilde{\nu} = 3282, 3208, 2986, 2812, 2702, 2592, 2358, 2330, 1608, 1580, 1664, 1432, 1320, 1364, 1272, 1228, 1158, 1088, 1070, 1038, 1010, 926, 889, 788, 746, 668, 602, 488 cm⁻¹$

 $\mu_{eff} = 3,11 \ \mu_{B}$

UV-Vis (Methanol):

263 nm (785 lmol⁻¹cm⁻¹); 340 nm (185,2 lmol⁻¹cm⁻¹); 588 nm (8,7 lmol⁻¹cm⁻¹); 934 nm (16,3 lmol⁻¹cm⁻¹); 1165 nm (34,1 1mol⁻¹cm⁻¹)

CV:

Abbildung 134: Zyklovoltammogramme des [Ni(L-N₄AdMe)Cl₂]-Komplexes 58 bei negativem (links) und positivem Potential (v_{scan} = 100 mV/s) in Acetonitril

Abbildung 135: Zyklovoltammogramme von [Ni(L-N₄AdMe)Cl₂] 58 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

<i>v</i> _{scan}	I_{Ruhe}	$E_{\text{Oxidation}}$	I _{Oxidation}	I _{Umkehr}	$E_{\text{Reduktion}}$	$I_{\text{Reduktion}}$	ΔE_p	E _{1/2}	$i_{\rm pc}/i_{\rm pa}$
mV/s	μA	mV	μA	μA	mV	μΑ	mV	mV	
10	1,1	1012,7	-119,0	-83,4	900,4	35,1	112,3	956,6	-0,7
20	2,5	1010,8	-162,0	-104,2	898,5	58,9	112,3	954,6	-0,7
50	11,4	1016,9	-247,9	-159,0	888,2	103,2	128,8	952,5	-0,8
100	24,8	1023,1	-341,1	-225,7	882,0	143,2	141,0	952,5	-0,7
200	39,4	1033,4	-465,6	-316,0	874,0	195,1	159,4	953,7	-0,7

Tabelle 60: Zyklovoltammetrische Daten zu [Ni(L-N₄AdMe)Cl₂] 58

Die Strukturdaten befinden sich ab Seite 307.

5.3.1.2 Synthese von $[Ni(L-N_4^tBuTos)(EtCN)(H_2O)](ClO_4)_2$ 69

In einen Kolben wurde zu einer siedenden Suspension von L-N₄^{*i*}BuTos **18** (229,8 mg, 0,5 mmol) in Ethanol (10 ml) eine Lösung von NiCl₂ \cdot 6 H₂O (182,6 mg, 0,5 mmol) in Wasser (10 ml) getropft. Die Suspension wurde gerührt, bis nach fünf Stunden eine klare blaugrüne Lösung entstand. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und der Feststoff in Propionitril (5 ml) aufgenommen. In die violette Lösung wurde langsam Diethylether diffundiert. Die isolierten Kristalle wurden mit Diethylether gewaschen und im Ölpumpenvakuum getrocknet.

Ausbeute:

55,2 mg (0,07 mmol, 14,4 %) MW($C_{29}H_{39}N_5NiSO_{12}$) = 766,31g/mol Charakterisierung:

Die Elementaranalyse wurde mit im Vakuum getrocknetem Material durchgeführt. Es wurde hierbei von der Zusammensetzung $C_{28}H_{37}N_5O_{11}Cl_2NiS$ ausgegangen.

Elementaranalyse: Berechnet: C = 43,05% H = 4,77% N = 8,96% Gefunden: C = 41,99% H = 4,83% N = 8,73%

IR (KBr):

 $\tilde{v} = 3422, 2898, 2876, 1605, 1470, 1435, 1354, 1164, 1089, 1118, 902, 802, 750, 717, 660, 626, 555 cm⁻¹$

Die Strukturdaten befinden sich ab Seite 327.
5.3.1.3 Nickel-Komplexe der Liganden L-N₄HR

5.3.1.3.1 Synthese von [Ni(L-N₄AdH)Cl₂] 57

In einem Kjeldahlkolben wurde eine Lösung des Liganden L-N₄AdH **41** (114,7 mg, 0,28 mmol) in Methanol (40 ml) zum Sieden erhitzt und eine Lösung von NiCl₂ \cdot 6 H₂O (666,7 mg, 0,28 mmol) in Methanol (5 ml) zugetropft. Die Lösung änderte beim Zutropfen die Farbe von dunkelgrün nach hellgrün. Nachdem der Ansatz 12 Stunden zum Sieden erhitzt worden war, wurde das Lösungsmittel auf etwa die Hälfte des Anfangsvolumens eingeengt. In die resultierende Lösung wurde unter vermindertem Druck Diethylether eindiffundiert. Zuerst konnte ein braunes, öliges Nebenprodukt gewonnen werden, auf dem sich grüne Kristalle des Produkts abschieden. Eine erneute Kristallisation der grünen Kristalle ergab röntgenstrukturfähige Einkristalle.

Ausbeute:

41 mg (0,08 mmol, 30 %)

MW $(C_{24}H_{31}N_4Cl_2Ni) = 505,13 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 57,07 % H = 6,19 % N = 11,09 %Gefunden: C = 56,61 % H = 5,86 % N = 10,98 %

IR (KBr)

 $\tilde{\nu} = 3426, 3244, 2930, 2902, 2848, 1706, 1598, 1584, 1468, 1434, 1368, 1326, 1260, 1156, 1084, 1070, 1022, 916, 796 cm⁻¹$

UV-Vis (Methanol):

261 nm (7653 lmol⁻¹cm⁻¹); 347 nm (171,8 lmol⁻¹cm⁻¹); 588 nm (32,2 lmol⁻¹cm⁻¹); 956 nm (93,4 lmol⁻¹cm⁻¹); 1126 nm (139,9 1mol⁻¹cm⁻¹)

Abbildung 136: Zyklovoltammogramme des [Ni(L-N₄AdH)Cl₂] 57 negativem (links) und positivem Potential in Acetonitril

Die Strukturdaten befinden sich ab Seite 298.

5.3.1.3.2 Synthese von [Ni(L-N₄BzH)Cl₂] 59

In der Siedehitze wurde der Ligand L-N₄BzH **42** (169,3 mg, 0,5 mmol) in Methanol (20 ml) vorgelegt und eine Lösung aus NiCl₂ · 6 H₂O (118,8 mg, 0,5 mmol) in Methanol (10 ml) zugetropft. Die Lösung änderte beim Zutropfen die Farbe von dunkelgrün nach hellgrün. Nachdem der Ansatz zwei Stunden zum Sieden erhitzt worden war, wurde das Lösungsmittel entfernt. Der Rückstand wurde in Benzylalkohol aufgenommen. Hierin wurde unter vermindertem Druck Diethylether eindiffundiert. Eine erneute Diffusion von Diethylether in eine Lösung der erhaltenen grünen Kristalle in N,N-Dimethylformamid ergab grüne diffraktometertaugliche Einkristalle.

Ausbeute:

204,5 mg (0,35 mmol, 70 %)

MW $(C_{28}H_{30}N_4Cl_2Ni) = 584,17 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 59,19 % H = 5,32 % N = 9,86 %Gefunden: C = 58,71 % H = 5,31 % N = 9,76 %

IR (KBr)

 $\tilde{v} = 3392, 3264, 3066, 2931, 1365, 1644, 1602, 1585, 1494, 1471, 1439, 1334, 1291, 1264, 1201, 1159, 1083, 1060, 1033, 944, 908, 869, 791, 751, 729, 706, 666, 600, 496, 449 cm⁻¹$

Abbildung 137: Zyklovoltammogramme des [Ni(L-N₄BzH)Cl₂]-Komplexes 59 bei negativem (links) und positivem Potential (*v*_{scan} = 100 mV/s) in Acetonitril

Abbildung 138:Zyklovoltammogramme von [Ni(L-N₄BzH)Cl₂] 59 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

Fabelle 61: Zyklovoltammetrische Da	aten zu [Ni(L-	-N ₄ BzH)Cl ₂] 59
-------------------------------------	----------------	--

V _s	can	I_{Ruhe}	$E_{\text{Oxidation}}$	I _{Oxidation}	$I_{\rm Umkehr}$	$E_{ m Reduktion}$	$I_{\text{Reduktion}}$	Ep	E _{1/2}	i _{pc} / i _{pa}
m	V/s	μA	mV	μΑ	μA	mV	μA	mV	mV	
1	0	-2,0	1018,9	-83,1	-54,2	912,7	22,5	106,2	965,8	-0,7
2	0	1,3	1016,9	-114,2	-66,5	910,8	41,3	106,2	963,8	-0,7
5	0	10,2	1025,0	-174,3	-97,5	900,4	79,1	124,6	962,7	-0,7
10	00	21,3	1029,2	-232,0	-142,0	898,5	103,6	130,7	963,8	-0,7
20	00	33,6	1037,3	-325,4	-213,0	892,4	145,8	144,9	964,8	-0,7

Die Strukturdaten befinden sich ab Seite 318.

5.3.1.3.3 Synthese von [Ni(L-N₄HMe)Cl₂] 54

Ausgehend von Nickel(II)-perchlorat:

Zu einer siedenden Mischung aus L-N₄HMe **21** (127 mg, 0,499 mmol) und Ni(ClO₄)₂ · $6H_2O$ (183,2 mg, 0,5 mmol) in Acetonitril (7 ml) wurde eine Lösung aus Tetraethylammoniumchlorid (166,6 mg, 0,5 mmol) in Acetonitril (3,4 ml) zugetropft. Bereits beim Zutropfen fiel ein grüner Feststoff aus. Die Mischung kristallisierte bei Raumtemperatur. Es wurde ein grüner mikrokristalliner Feststoff **54** abfiltriert. Dieser wurde mit wenig Acetonitril und drei Mal mit Diethylether (je 5 ml) gewaschen. Anschließend wurde das Material fein gepulvert und im Ölpumpenvakuum getrocknet. Da das erhaltene Rohprodukt (158,9 mg) mit Perchlorat verunreinigt war, wurde das grüne Pulver in Ethanol aufgenommen und in die Lösung langsam Diethylether eindiffundiert. Das grüne Pulver wurde wiederum abfiltriert und mit Diethylether und Acetonitril gewaschen und im Ölpumpenvakuum getrocknet.

Ausbeute:

120,1 mg (0,31 mmol, 62 %)

Direktsynthese:

Das Produkt **54** konnte ebenso durch eine Reaktion von Nickelchloridhexahydrat (659,7 mg, 2,77 mmol) und dem Liganden **21** (716,5 mg, 2,91 mmol) in Ethanol (43 ml) gewonnen werden, jedoch in geringerer Ausbeute. Zur Erzeugung von Kristallen wurde das pulverige Material in 15 ml Methanol aufgenommen und langsam Diethylether in die Lösung eindiffundiert. Der erhaltene Feststoff wurde mit Acetonitril gewaschen und im Ölpumpenvakuum getrocknet.

Ausbeute:

700,27 mg (1,82 mmol, 65 %)

 $MW(NiC_{15}H_{18}N_4Cl_2) = 383,93 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 46,93 % H = 4,73 % N = 14,59 %Gefunden: C = 46,95 % H = 4,50 % N = 14,85 %

IR (KBr):

 $\tilde{\nu} = 3242, 3064, 3006, 2926, 2898, 1602, 1584, 1472, 1438, 1378, 1324, 1262, 1212, 1154, 1118, 1090, 1068, 1026, 922, 892, 806, 790 cm⁻¹$

UV-Vis (Methanol):

261 nm (4827 lmol⁻¹cm⁻¹); 449 nm (514,7 lmol⁻¹cm⁻¹); 571 nm (215 lmol⁻¹cm⁻¹); 951 nm (504,6 lmol⁻¹cm⁻¹); 1012 nm (519,1 1mol⁻¹cm⁻¹)

5.3.1.4 Nickel-Komplexe des Liganden HL-N₄([#]BzO)Me 45

5.3.1.4.1 Synthese des Nickelphenolat-Komplexes [Ni(L-N₄(^{tt}BzO)Me)(EtOH)]Cl 71

Alle Arbeitsschritte wurden unter Schutzgasatmosphäre und unter Verwendung von entgasten Lösungsmitteln durchgeführt.

In einem Kjeldahlkolben (250 ml) wurde eine Lösung von HL-N₄(^{*th*}BzO)Me **45** (236,7 mg, 0,5 mmol) und Kaliumhydroxidplätzchen (119,1 mg, 0,5 mmol) in Methanol (30 ml) zehn Minuten zum Sieden erhitzt. Zur heißen Lösung wurde langsam unter kräftigem Rühren NiCl₂ · 6 H₂O (119,1 mg, 0,5 mmol) in Methanol (20 ml) zugetropft. Hierbei war ein Farbwechsel von farblos nach dunkelgrün zu beobachten und es fiel ein weißer Feststoff aus. Zur Vervollständigung der Reaktion wurde die Lösung noch eine Stunde unter Rückfluss erhitzt. Nach Abkühlen auf Raumtemperatur wurde das Lösungsmittel bis zur Trockene eingeengt. Der nun gelb-grüne Feststoff wurde in Acetonitril (20 ml) aufgenommen und das ausgefallene Kaliumchlorid abfiltriert. Das Lösungsmittel wurde entfernt und der Rückstand in Ethanol (10 ml) aufgenommen. Darin bildeten sich über Nacht in der Kälte bei –10 °C dunkelgrüne, stäbchenförmige Kristalle. Zur Vervollständigung der Kristallisation wurde die Lösung auf –60 °C gekühlt.

Die überstehende Lösung wurde abdekantiert und die Kristalle zweimal mit Diethylether (5 ml) gewaschen und im Stickstoffstrom getrocknet.

Ausbeute:

180,2 mg (0,27 mmol, 54,7 %)

 $MW(C_{34}H_{51}ClN_4O_3) = 599,26 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 62,17 % H = 7,83 % N = 8,53 %

Gefunden: C = 61,99 % H = 7,76 % N = 8,47 %

IR (KBr):

 $\tilde{v} = 2958, 2924, 2866, 1603, 1583, 1474, 1436, 1380, 1359, 1239, 1160, 1082, 1027, 973, 883, 834, 793, 743, 532 cm⁻¹$

UV-Vis (Methanol):

246 nm (166639 lmol⁻¹cm⁻¹); 297 nm (4332 lmol⁻¹cm⁻¹); 608 nm (24,4 lmol⁻¹cm⁻¹); 949 nm (56,9 lmol⁻¹cm⁻¹); 1012 nm (519,1 lmol⁻¹cm⁻¹) CV:

Abbildung 139: Zyklovoltammogramme von [Ni(L-N₄([#]BzO)Me](EtOH)]Cl 71bei $v_{scan} = 100$ mV/s bei negativem und positiven Potential.

Abbildung 140: Elektrochemische Oxidation von [Ni(L-N₄([#]BzO)Me](EtOH)]Cl 71

v _{scan} in mV/s	$E_{\rm pc}$ in mV	$E_{\rm pa}$ in mV	$E_{1/2}$ in mV	$i_{\rm pc}/i_{\rm pa}$	ΔE in mV
10	389	472	431	1,05	83
20	389	472	431	1,03	83
50	387	476	432	0,99	89
100	383	479	431	1,03	96
200	375	486	431	1,05	111

 Tabelle 62: Zyklovoltammetrische Daten von Ni(L-N4("BzO)Me](EtOH)]Cl 71

Abbildung 141: Elektrochemische Reduktion von [Ni(L-N₄([#]BzO)Me](EtOH)]Cl 71

Tabelle 63: Zyklovoltammetrische Daten der erste Reduktionsstufe von [Ni(L-N4([#]BzO)Me](EtOH)]Cl 71

v _{scan} in mV/s	$E_{\rm pc}$ in mV	$E_{\rm pa}$ in mV	$E_{1/2}$ in mV	$i_{\rm pc}/i_{\rm pa}$	ΔE in mV
10	-1629	-1562	-1596	0,70	67
20	-1628	-1562	-1595	0,79	66
50	-1631	-1558	-1595	0,87	73
100	-1636	-1555	-1596	0,89	81
200	-1644	-1546	-1595	0,89	98

Die Strukturdaten befinden sich ab Seite 345.

5.3.1.4.2 Synthese des Phenolat-Komplexes [Ni(L-N₄(^{tt}BzO)Me)(ClO₄)] 72

In Ethanol (20 ml) wurde der Ligand HL-N₄(^{*t*}BzO)Me **45** (118,6 mg, 0,25 mmol) mit Natriumhydroxid deprotoniert. Hierzu wurde für zwei Stunden unter Rückfluss gekocht bis eine klare Lösung entstanden war. In diese geklärte Lösung wurde Nickelperchlorat (91,5 mg, 0,25 mmol) zugegeben. Es entstand eine grüne Lösung. Das Lösungsmittel wurde entfernt und der Rückstand in Acetonitril aufgenommen. Das entstandene Natriumperchlorat wurde über eine Salzfritte der Porösität 4 mit Celite (1 cm) filtriert. Das Filtrat wurde zur Trockene eingeengt und mit Methanol versetzt. In diese methanolische Lösung wurde Diethylether diffundiert.

Ausbeute:

180,2 mg (0,27 mmol, 54,7 %)

 $MW(C_{34}H_{51}ClN_4O_3) = 599,26 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 62,17 %, H = 7,83 %, N = 8,53 %

Gefunden: C = 61,99 %, H = 7,76 %, N = 8,47 %

IR (KBr):

 $\tilde{v} = 2956, 2927, 2866, 1604, 1584, 1475, 1439, 1389, 1361, 1238, 1163, 1118, 1080, 1030, 978, 883, 823, 798, 739, 530 cm⁻¹$

CV:

Abbildung 142: Zyklovoltammogramme des [Ni(L-N₄([#]BzO)Me)(ClO₄]]-Komplexes 72 bei negativem (links) und positivem Potential (v_{scan} = 100 mV/s) in Acetonitril

Abbildung 143: Elektrochemische Oxidation von $[Ni(L-N_4(^{tt}BzO)Me)(ClO_4)]$ 72 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

<i>v</i> _{scan}	I_{Ruhe}	$E_{ m Oxidation}$	$I_{\text{Oxidation}}$	$I_{\rm Umkehr}$	$E_{ m Reduktion}$	$I_{ m Reduktion}$	ΔE_p	$E_{1/2}$	$i_{ m pc}$ / $i_{ m pa}$
mV/s	μΑ	mV	μA	μA	mV	μΑ	mV	mV	
10	3,0	110,7	-34,6	-16,4	44,2	22,4	66,4	77,5	-0,9
20	4,3	108,4	-46,9	-23,0	46,3	32,1	62,1	77,4	-0,9
50	7,6	112,9	-75,4	-37,2	44,2	50,4	68,7	78,6	-0,9
100	10,1	123,8	-106,5	-56,0	45,3	69,1	78,5	84,5	-0,9
200	15,3	128,1	-151,3	-80,6	34,4	100,8	93,6	81,2	-0,9

Tabelle 64: Zyklovoltammetrische Daten zu [Ni(L-N₄([#]BzO)Me)(ClO₄)] 72

Abbildung 144: Elektrochemische Reduktion von $[Ni(L-N_4(^tBzO)Me)(ClO_4)]$ 72 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

v _{scan}	$I_{\rm Ruhe}$	$E_{ m Oxidation}$	I _{Oxidation}	$I_{\rm Umkehr}$	$E_{\text{Reduktion}}$	$I_{\text{Reduktion}}$	ΔE_p	E _{1/2}	i _{pc} / i _{pa}
mV/s	μA	mV	μΑ	μA	mV	μA	mV	mV	
10	0,6	-1624,0	125,2	81,0	-1556,0	-41,8	-68,0	-590,0	-0,7
20	0,9	-1630,0	182,7	114,8	-1562,0	-75,9	-92,0	-592,0	-0,8
50	3,6	-1629,0	287,2	187,9	-1559,0	-141,1	-70,0	-594,0	-0,9
100	7,3	-1641,0	402,0	268,9	-1557,0	-206,3	-84,0	-599,0	-0,9
200	13,4	1649,0	574,5	396,9	-1550,0	-296,7	-99,0	-599,5	-1,0

Tabelle 65: Zyklovoltammetrische Daten zu [Ni(L-N₄([#]BzO)Me)(ClO₄)] 72

Die Strukturdaten befinden sich ab Seite 353.

5.3.1.4.3 Synthese des Nickelphenol-Komplexes [Ni(HL-N₄(^{tt}BzO)Me)(MeCN)₂](ClO₄)₂ 70

Zu einer Lösung von HL-N₄(^{*t*}BzO)Me **45** (118,4 mg, 0,25 mmol) in Acetonitril (20 ml) wurde das blaue NiClO₄•6H₂O (91,3 mg, 0,25 mmol) in Acetonitril (15 ml) getropft. Die Farbe änderte sich bei Zugabe in grün. Die Lösung wurde drei Stunden zum Sieden erhitzt. Die nun rote Reaktionslösung wurde abgekühlt bis Raumtemperatur erreicht war. Acetonitril wurde im Vakuum entfernt und der Rückstand in Methanol aufgenommen. In diese Lösung wurde langsam Diethylether diffundiert.

Ausbeute:

158,6 mg (0,185 mmol 74,2 %)

MW(C_{36,25}H₄₃Cl₂N₇NiO_{9,25}) = 854,39

Charakterisierung:

Es konnte kein Analysenreines Material gewonnen werden.

IR (KBr):

 $\tilde{v} = 3446, 2972, 2915, 2320, 2290, 1653, 1600, 1582, 1467, 1435, 1401, 1364, 1306, 1258, 1193, 1158, 1090, 931, 907, 862, 847, 778, 706, 623 (nur die intensivsten Banden) cm⁻¹ CV:$

Abbildung 145: Elektrochemische Oxidation der Verbindung [Ni(HL-N₄([#]BzO)Me)(MeCN)₂](ClO₄)₂70

v _{scan}	$I_{\rm Ruhe}$	$E_{\text{Oxidation}}$	$I_{\text{Oxidation}}$	I _{Umkehr}	$E_{\text{Reduktion}}$	I _{Reduktion}	ΔE_p	E _{1/2}	i _{pc} / i _{pa}
mV/s	μA	mV	μΑ	μA	mV	μΑ	mV	mV	
10	0,0	578,8	-5,3	-4,1	521,1	3,5	57,7	549,9	-1,1
20	-0,4	577,0	-7,4	-5,3	521,1	3,6	55,9	549,1	-1,0
50	-1,0	582,0	11,7	-8,9	517,9	6,2	64,1	549,9	0,8
100	-1,8	590,3	-16,0	-12,2	513,0	9,0	77,3	551,6	-1,2
200	-3,4	596,8	-24,6	-19,4	504,7	13,8	92,1	550,7	-1,3

Tabelle 66:Daten der Verbindung [Ni(HL-N₄([#]BzO)Me)(MeCN)₂](ClO₄)₂70

Die Strukturdaten befinden sich ab Seite 337.

5.3.2 Kupfer-Komplexe der Diazapyridinophanliganden

5.3.2.1 Synthese von [Cu(HL-N₄([#]BzO)Me)(MeCN)₂](ClO₄)₂76

Der Ligand HL-N₄(^{*u*}BzO)Me **45** (118,8 mg, 0,25 mmol) wurde in Acetonitril (10 ml) vorgelegt und in der Siedehitze wurde tropfenweise die blaue Lösung von Cu(ClO₄)₂ • 6 H₂O (91,0 mg, 0,25 mmol) in Acetonitril (5 ml) zugegeben. Bei Zugabe der Lösung wurde die Reaktionsmischung violett. Die Lösung wurde zwei Stunden unter Rückfluss gekocht. Im Verlauf dieser Zeit änderte sich die Farbe der Lösung mehrmals. Zuerst wurde die violette Farbe dunkler bis zu einer fast schwarzen Farbe. Dieses Schwarz ging wieder über in ein sehr dunkles Grün. In der Kälte färbte sich die Komplexlösung langsam violett. Nachdem in diese Lösung langsam Pentan eindiffundiert worden war, fielen wiederum grüne Komplexkristalle aus. Die Kristalle wurden abfiltriert und im Ölpumpenvakuum getrocknet.

Ausbeute:

54,1 mg (0,06 mmol, 25,25 %)

MW $(C_{36}H_{48}Cl_2CuN_7O_9) = 857,27g/mol$

Charakterisierung:

Elementaranalyse: Berechnet: C = 56,46 % H = 6,66 % N = 8,23 %Gefunden: C = 56,56 % H = 6,31 % N = 8,72 %

IR (KBr):

 $\tilde{v} = 3446, 2958, 1605, 1583, 1474, 1449, 1362, 1300, 1114, 1088, 941, 869, 796, 758, 627$ cm⁻¹

Die Strukturdaten befinden sich ab Seite 380.

CV:

Abbildung 146: Zyklovoltammogramm des Komplexes [Cu(HL-N₄([#]BzO)Me)(MeCN)₂](ClO₄)₂ 76 bei positivem Potential (v_{scan} = 100 mV/s)

Abbildung 147: Elektrochemische Oxidation von [Cu(HL-N₄([#]BzO)Me)(MeCN)₂](ClO₄)₂ 76 bei verschiedenen Verlaufgeschwindigkeiten v_{scan} in Acetonitril

1 abelie 07. Elykiovoltalihilleti iselle Dateli voli [Cu(11E-114) DzO)[vie)[vie(11)2](CiO4)2	Tabelle 67: Zyklovoltammetrische Daten von	[Cu(HL-N ₄ ([#] BzO)Me)(MeCN) ₂](ClO ₄) ₂ 7
--	--	---

v _{scan}	I _{Ruhe}	E Oxidation	I Oxidation	I Umkehr	E _{Reduktion}	I _{Reduktion}	ΔE_{p}	E _{1/2}	$i_{\rm pc}$ / $i_{\rm pa}$
mV/s	μΑ	mV	μΑ	μA	mV	μΑ	mV	mV	
10	0,0	578,8	-5,3	-4,1	521,1	3,5	57,7	549,9	-1,1
20	-0,4	577,0	-7,4	-5,3	521,1	3,6	55,9	549,1	-1,0
50	-1,0	582,0	11,7	-8,9	517,9	6,2	64,1	549,9	0,8
100	-1,8	590,3	-16,0	-12,2	513,0	9,0	77,3	551,6	-1,2
200	-3,4	596,8	-24,6	-19,4	504,7	13,8	92,1	550,7	-1,3

5.3.2.2 Synthese des Kupferphenolat-Komplexes [Cu(L-N₄(^{tt}BzO)Me)](ClO₄) 77

Variante 1

In eine Lösung des Liganden HL-N₄(^{*t*}BzO)Me **45** (333,6 mg, 0,5 mmol) in Ethanol (25 ml) wurde in einem Dreihalskolben unter Sauerstoffausschluß [Cu(MeCN)₄](BF₄) (157,8 mg, 0,5 mmol) in Ethanol (10 ml) zugetropft. Bei der Zugabe erfolgte ein schneller Farbwechsel von gelb über rot nach braun. Diese Lösung wurde drei Stunden unter Rückfluss erhitzt und danach Natriumperchlorat (91,85 mg, 0,75 mmol)zugegeben. Die Reaktionsmischung wurde auf das halbe Volumen reduziert und neun Stunden bei -20° C gekühlt. Die gebildeten violetten Kristalle wurden über eine Glasfritte der Porösität 3 abfiltriert und im Vakuum getrocknet.

Ausbeute: 92,7 mg (0,14 mmol, 28 %)

Variante 2

Der Ligand HL-N₄(^{*tt*}BzO)Me **45** (118,3 mg, 0,25 mmol) in entgastem Ethanol (10 ml) wurde in einem Kjeldahlkolben (100 ml) mit Natriumhydroxid (10 mg, 0,25 mmol) 45 Minuten lang erhitzt. In diese Lösung wurde die blaue Lösung von Cu(ClO₄)₂ • 6 H₂O (91,7 mg, 0,25 mmol) in entgastem Ethanol (5 ml) über eine Kanüle zugetropft. Das entstandene Reaktionsgemisch wurde 45 Minuten zum Sieden erhitzt, wobei die Farbe sich nach rotviolett änderte. Der nach dem Abkühlen erhaltene helle Bodensatz wurde unter Stickstoffatmosphäre abfiltriert und in die Lösung Diethylether eindiffundiert. Die gebildeten violetten Kristalle wurden von der Mutterlauge getrennt. Die erhaltenen Kristalle wurden mit Diethylether gewaschen und im Ölpumpenvakuum getrocknet.

Ausbeute: 91,3 mg (0,14 mmol, 55,5 %)

Variante 3

Unter Stickstoffschutzgasatmosphäre wurde in einem Kjeldahlkolben (100 ml) der Ligand HL-N₄(^{*tt*}BzO)Me **45** (104 mg, 0,22 mmol) in entgastem Acetonitril mit Natriumhydroxid (10 mg, 0,25 mmol) vorgelegt und [Cu(MeCN)₄](ClO₄) (118,5 mg, 0,28 mmol) in Acetonitril (10 ml) zugetropft. In die erhaltene gelbe Lösung wurde Diethylether diffundiert. Nach zwölf Stunden wurde eine Farbänderung nach violett beobachtet. Es kristallisierten aus dieser

Lösung violette Kristalle, die abfiltriert wurden über eine Glasfritte. Die mit Diethylether gewaschenen Kristalle wurden im Ölpumpenvakuum getrocknet.

Ausbeute: 113,3 mg (0,17 mmol, 72,3%)

Variante 4

Unter Stickstoffatmosphäre wurde zu dem Liganden HL-N₄(^{*t*}BzO)Me **45** (118,7 mg, 0,25 mmol) in entgastem Acetonitril (40 ml) in einem Kjeldahlkolben (100 ml) $[Cu(MeCN)_4](ClO_4)$ (118,5 mg, 0,28 mmol) in Acetonitril (10 ml) zugetropft. Das gelbe Gemisch wurde zwei Stunden und 45 Minuten zum Sieden erhitzt. In die erhaltene gelbe Lösung wurde Diethylether eindiffundiert. Nach 12 Stunden war auch diese Lösung violett. Die erhaltenen analysenreinen Kristalle wurden wie unter Variante 3. behandelt.

Ausbeute:

65,9 mg (0,100 mmol, 40,0 %)

MW $(C_{31}H_{42}ClCuN_4O_{5,5}) = 657,68 \text{ g/mol}$

Die Kristalle aus der Umsetzung von Kupfer(I)-perchlorat ohne Base (4.) lieferten analysenreines Material, deshalb wurde ausschließlich dieses Material zur Charakterisierung verwendet.

Charakterisierung:

Elementaranalyse: Berechnet: C = 49,04 % H = 5,86 % N = 8,67 %Gefunden: C = 48,86 % H = 5,85 % N = 8,75 %

IR (KBr):

 $\tilde{v} = 3457, 2964, 1632, 1582, 1445, 1414, 1261, 1097, 1021, 866, 800, 702, 483 \text{ cm}^{-1}$

Abbildung 148: Zyklovoltammogramme des Komplexes [Cu(L-N₄([#]BzO)Me)](ClO₄) 77 bei negativem (links) und positivem (rechts) Potential (v_{scan} = 100 mV/s) in Acetonitril

Abbildung 149: Elektrochemische Oxidation von [Cu(L-N₄(^{tt}BzO)Me)](ClO₄) 77 bei verschiedenen Verlaufgeschwindigkeiten v_{scan} in Acetonitril

Tabelle 68: Zyklovoltammetrische Daten zu [Cu(L-N₄([#]BzO)Me)](ClO₄) 77

<i>v</i> _{scan}	I _{Ruhe}	E _{Oxidation}	I _{Oxidation}	I _{Umkehr}	$E_{ m Reduktion}$	I _{Reduktion}	ΔE_p	E _{1/2}	$i_{ m pc}$ / $i_{ m pa}$
mV/s	μA	mV	μA	μA	mV	μA	mV	mV	
10	-9,7	367,2	458,8	124,5	475,0	-178,5	107,8	421,1	-0,6
20	-12,2	378,9	156,5	-151,4	488,9	-254,0	110,0	433,9	-1,1
50	-18,8	387,9	242,8	-237,9	500,3	-367,5	112,4	444,1	-1,0
100	-26,6	376,4	334,6	-345,9	507,3	-502,5	130,9	441,9	-1,0
200	-34,0	368,6	450,8	-490,5	530,7	-664,1	162,1	449,7	-0,9

Abbildung 150: Elektrochemische Reduktionenen von $[Cu(L-N_4(^{t\prime}BzO)Me)](ClO_4)$ 77 bei verschiedenen Vorschubgeschwindigkeiten v_{scan} in Acetonitril

 Tabelle 69: Zyklovoltammetrische Daten zur ersten Reduktion [Cu(L-N4(#BzO)Me)](ClO4) 77

$v_{\rm scan}$	I_{Ruhe}	$E_{\text{Oxidation}}$	$I_{\text{Oxidation}}$	$I_{\rm Umkehr}$	$E_{ m Reduktion}$	$I_{\rm Reduktion}$	ΔE_p	$E_{1/2}$	$i_{\rm pc}$ / $i_{\rm pa}$
mV/s	μA	mV	μA	μΑ	mV	μA	mV	mV	
10	1,5	-1341,6	155,0	119,3	-1243,4	-65,4	98,2	-1292,5	-0,9
20	2,7	-1349,4	208,8	158,1	-1245,9	-98,1	103,5	-1297,7	-0,9
50	4,5	-1357,1	310,1	226,6	-1245,9	-175,6	111,2	-1301,5	-1,0
100	10,8	-1359,7	426,2	316,0	-1243,4	-247,1	116,3	-1301,6	-1,1
200	19,7	-1370,1	578,2	435,1	-1227,9	-342,4	142,2	-1299,0	-1,1

<i>v</i> _{scan}	I_{Ruhe}	$E_{\text{Oxidation}}$	$I_{\text{Oxidation}}$	$I_{\rm Umkehr}$	$E_{ m Reduktion}$	$I_{ m Reduktion}$	ΔE_p	E _{1/2}	$i_{ m pc}$ / $i_{ m pa}$
mV/s	μΑ	mV	μA	μΑ	mV	μA	mV	mV	
10	1,5	-1645,1	217,4	192,8	-1599,4	59,9	45,7	-1622,3	-0,2
20	2,7	-1660,8	299,5	239,4	-1595,4	42,9	65,4	-1628,1	-0,3
50	4,5	-1673,7	459,2	359,9	-1597,4	23,8	76,3	-1635,6	-0,4
100	10,8	-1683,9	641,2	503,7	-1577,0	-39,5	106,9	-1630,5	-0,5
200	19,7	-1694,5	910,9	718,3	-1573,9	-41,1	120,6	-1634,2	-0,5

Tabelle 70: Zyklovoltammetrische Daten zur zweiten Reduktion [Cu(L-N₄([#]BzO)Me)](ClO₄) 77

Die Strukturdaten befinden sich ab Seite 387.

5.3.2.4 Synthese von [Cu(L-N₄Ad'Bu)(MeCN)](ClO₄) 79

In einem Kjeldahlkolben (100 ml) wurden L-N₄Ad^tBu **17** (108,1 mg, 0,25 mmol) und [Cu(MeCN)₄](ClO₄) (90 mg, 0,25 mmol) in entgastem Acetonitril (5 ml) unter Stickstoffatmosphäre für zwei Stunden zum Sieden erhitzt. In die abgekühlte Lösung wurde sauerstofffreier Diethylether eindiffundiert. Die entstandenen Kristalle wurden mit entgastem Propionitril und Diethylether gewaschen und im Ölpumpenvakuum getrocknet.

Ausbeute:

66,3 mg (0,104 mmol, 41,8 %)

 $MW(C_{30}H_{41}ClCuN_5O_4) = 634,67 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 56,77 % H = 6,51 % N = 11,03 %Gefunden: C = 56,73 % H = 6,78 % N = 11,16 %

IR (KBr):

 $\tilde{v} = 3446, 3058, 2971, 2899, 2844, 2374, 2347, 2312, 2261, 1599, 1577, 1448, 1397, 1368, 1360, 1302, 1242, 1198, 1162, 1103, 1081, 1033, 1010, 974, 940, 921, 892, 864, 813, 797, 782, 765, 622 cm⁻¹$

UV-Vis (Methanol):

271 nm (12500 l mol⁻¹ cm⁻¹); 620 nm (71,5 l mol⁻¹ cm⁻¹)

Die Strukturdaten befinden sich ab Seite 400.

5.3.2.5 Synthese von [Cu(L-N₄^tBu₂)(MeCN)](ClO₄) 80

Der Ligand L-N₄'Bu₂ **8** (88,2 mg, 0,25 mmol) und [Cu(MeCN)₄](ClO₄) (90 mg, 0,25 mmol) wurde in einem Kjeldahlkolben unter Stickstoff in entgastem Acetonitril (10 ml) gelöst. Die gelbe Lösung wurde zwei Stunden unter Rückfluss gekocht. Nach dem Abkühlen wurde in diese Lösung entgaster Diethylether eindiffundiert. Die so erhaltenen Kristalle wurden mit entgastem Propionitril gewaschen und im Ölpumpenvakuum getrocknet.

Ausbeute:

58,3 mg (0,105 mmol, 41,9 %) MW(C₂₄H₃₅ClCuN₅O₄) = 556,56 g/mol

Charakterisierung:

Elementaranalyse: Berechnet: C = 51,79 % H = 6,34 % N = 12,58 %Gefunden: C = 51,91 % H = 6,18 % N = 12,55 %IR (KBr):

 $\tilde{\nu} = 3438, 2924, 2887, 2880, 1598, 1575, 1463, 1441, 1396, 1372, 1366, 1247, 1222, 1196, 1092, 998, 941, 928, 856, 794, 774, 755, 623 cm⁻¹$

Die Strukturdaten befinden sich ab Seite 407.

5.3.3 Zink-Komplexe mit hetero-substituierten Diazapyridinophanen

5.3.3.1 Synthese von [Zn(L-N₄Ad^tBu)Cl₂] 65

Eine Lösung aus ZnCl₂ (68,15 mg, 0,5 mmol) in Ethanol (15 ml) wurde in der Wärme zu L-N₄Ad'Bu **17** (209,8 mg, 0,5 mmol) in Ethanol (20 ml) gegeben. Die entstandene Mischung wurde zwei Stunden zum Sieden erhitzt und der ausgefallene Niederschlag abfiltriert. Das Ethanol wurde am Rotationsverdampfer entfernt. Der erhaltene Rückstand wurde in Dimethylformamid (10 ml) aufgenommen. In diese Lösung wurde langsam Diethylether diffundiert. Es fielen farblose feine Kristalle aus. Diese wurden abfiltriert und mit Diethylether gewaschen. Im Ölpumpenvakuum wurden Reste der Lösungsmittel entfernt.

Ausbeute:

112,3 mg (0,20 mmol, 39,6 %)

 $MW(C_{28}H_{38}N_4ZnCl_2) = 566,92 \text{ g/mol}$

Charakterisierung:

¹H-NMR (CDCl₃ 400 MHz)

$$\begin{split} \delta &= 7,80 \text{ ppm (t, CH-Py,} & 2 \text{ H}, \ ^{3}\text{J}_{\text{HH}} &= 7,6 \text{ Hz}) \\ \delta &= 7,42 \text{ ppm (m, CH-Py,} & 4 \text{ H}) \\ \delta &= 4,68 \text{ ppm (dd, CH_2,} & 4 \text{ H}, \ ^{3}\text{J}_{\text{HH}} &= 16,9 \text{ Hz}, \ ^{3}\text{J}_{\text{HH}} &= 53,4 \text{ Hz}) \\ \delta &= 3,57 \text{ ppm (dd, CH_2,} & 4 \text{ H}, \ ^{3}\text{J}_{\text{HH}} &= 16,9 \text{ Hz}, \ ^{3}\text{J}_{\text{HH}} &= 24,5 \text{ Hz}) \\ \delta &= 1,95 \text{ ppm (m, CH_x-Ad,} & 15 \text{ H}) \\ \delta &= 1,52 \text{ ppm (s, CH_3-^{t}\text{Bu}, 9 \text{ H})} \end{split}$$

IR (KBr):

 $\tilde{v} = 3437, 3076, 2970, 2908, 2850, 2323, 2007, 1646, 1603, 1580, 1465, 1436, 1402, 1375, 1328, 1308, 1250, 1226, 1193, 1164, 1112, 1076, 1032, 1005, 976, 936, 912, 866, 849, 794, 707, 680, 660, 641, 623, 557, 522, 441 cm⁻¹$

CV:

Abbildung 151: Zyklovoltammogramme des Komplexes [Zn(L-N₄Ad'Bu)Cl₂] 65 bei negativem (links) und positivem Potential (v_{scan} = 100 mV/s)

5.3.3.2 Synthese von $[Zn(L-N_4^tBuBz)Cl_2]$ 66

Zu einer Lösung aus L-N₄^{*t*}BuBz **56** (Reinheit ca. 60 %, 0,7746 g, 1 mmol) in Aceton (60 ml) wurde in der Siedehitze eine Zinkchloridlösung (0,2733 g, 2 mmol) in Aceton (10 ml) gegeben. Die entstandene, helle farblose Lösung wurde 20 Minuten zum Sieden erhitzt und

anschließend vom Lösungsmittel befreit. Der Rückstand wurde in Methanol (73 ml) aufgenommen und unter vermindertem Druck Diethylether eindiffundiert. Es wurden farblose Kristalle erhalten.

Ausbeute:

0,104 g (0,20 mmol, 20 %) MW(C₂₅H₃₀N₄ZnCl₂) = 522,83 g/mol

Charakterisierung:

Elementaranalyse: Berechnet: C = 57,43 % H = 5,78 % N = 10,72 %Gefunden: C = 56,09 % H = 5,98 % N = 10,57 %

IR (KBr):

 $\tilde{\nu} = 3472, 3404, 3062, 2968, 2908, 1636, 1600, 1582, 1466, 1452, 1436, 1404, 1368, 1346, 1302, 1256, 1184, 1158, 1084, 1062, 1018, 956, 946, 888, 864, 794, 752, 734, 708, 598 cm⁻¹$

¹H-NMR (CDCl_{3,} 400 MHz)

$$\delta = 7,44-7,53 \text{ ppm} (m, \text{CH-Bz}, 5 \text{ H})$$

$$\begin{split} &\delta = 7,36 \text{ ppm (t, CH-Py,} & 2 \text{ H,} & {}^{3}\text{J}_{\text{HH}} = 7,5 \text{ Hz}) \\ &\delta = 6,85 \text{ ppm (d, CH-Py,} & 2 \text{ H,} & {}^{3}\text{J}_{\text{HH}} = 7,5 \text{ Hz}) \\ &\delta = 6,69 \text{ ppm (d, CH-Py,} & 2 \text{ H} & {}^{3}\text{J}_{\text{HH}} = 7,5 \text{ Hz}) \\ &\delta = 4,84 \text{ ppm (dd, CH}_{2}, & 4 \text{ H,} & {}^{3}\text{J}_{\text{HH}} = 15,5 \text{ Hz}, {}^{3}\text{J}_{\text{HH}} = 48,8 \text{ Hz}) \\ &\delta = 3,45 \text{ ppm (dd, CH}_{2}, & 4 \text{ H} & {}^{3}\text{J}_{\text{HH}} = 16,3 \text{ Hz}, {}^{3}\text{J}_{\text{HH}} = 39,9 \text{ Hz}) \\ &\delta = 2,19 \text{ ppm (s, CH}_{3}\text{-Aceton, 5 H)} \\ &\delta = 2,04 \text{ ppm (s, CH}_{2}\text{-Bz,} & 6 \text{ H}) \\ &\delta = 1,75 \text{ ppm (s, CH}_{3}\text{-}{}^{t}\text{Bu}, & 9 \text{ H}) \end{split}$$

Die Strukturdaten befinden sich ab Seite 362.

5.3.3.3 Synthese von [Zn(L-N₄MeH)Cl₂] 70

In Methanol (30 ml) wurden der Ligand L-N₄MeH **21** (670 mg, 2,63 mmol) und Zinkchlorid (0,3618 g, 2,63 mmol) in Methanol (10 ml) zwei Stunden zum Sieden erhitzt. Bei langsamem Abdampfen des Methanols kristallisierte der gewünschte Komplex, dessen Kristalle jedoch schnell verwitterten. Aus dem kristallinen Material, aus dem die Röntgenstruktur aufgenommen worden war, wurde ebenfalls ein Infrarotspektrum aufgenommen.

Ausbeute:

483,3 mg (1,24 mmol, 47,0 %) MW (C₁₅H₁₈N₄ZnCl₂) = 390,60 g/mol Charakterisierung:

Elementaranalyse: Es konnte kein analysenreines Material gewonnen werden. IR (KBr):

 $\tilde{v} = 3478, 3422, 3252, 3072, 2968, 2917, 2817, 2789, 2348, 2305, 2079, 1702, 1627, 1601, 1584, 1472, 1442, 1379, 1363, 1322, 1215, 1165, 1119, 1088, 1033, 1019, 957, 931, 918, 894, 878, 804, 794, 754, 719, 669, 634, 607, 525, 472, 449, 413 cm⁻¹$

Die Strukturdaten befinden sich ab Seite 373.

5.3.4 Synthese von [Co(L-N₄Ad^tBu)Cl₂] 68

Der makrozyklische Ligand L-N₄Ad⁴Bu **17** (0,2156 g, 0,5 mmol) wurde in Ethanol (40 ml) gelöst und unter Rückfluss zum Sieden erhitzt. Eine tiefblaue Lösung von Kobaltchloridhexahydrat (0,1194 g, 0,5 mmol) in Ethanol (10 ml) wurde über 90 Minuten zugetropft. Nach einer Reaktionsdauer von 20 Stunden wurde das Lösungsmittel auf etwa ³/₄ des ursprünglichen Volumens eingeengt. Beim langsamen Abkühlen schieden sich tiefviolette Kristalle ab. Diese wurden abfiltriert und mit kaltem Ethanol (2 ml) gewaschen. Reste von Ethanol wurden im Ölpumpenvakuum entfernt.

Ausbeute:

235,1 mg (0,42 mmol, 84,0 %)

 $MW(C_{28}H_{38}N_4CoCl_2) = 560,47 \text{ g/mol}$

Charakterisierung:

Elementaranalyse: Berechnet: C = 60,00 % H = 6,83 % N = 10,00 %Gefunden: C = 59,87 % H = 6,82 % N = 9,75 %

IR (KBr):

 $\tilde{v} = 3447, 3066, 2965, 2903, 2849, 2229, 1992, 1599, 1580, 1464, 1444, 1435, 1402, 1386, 1375, 1365, 1309, 1288, 1261, 1223, 1196, 1152, 1107, 1075, 1050, 1021, 979, 934, 904, 869, 849, 802, 791, 773, 696, 661, 636, 553 cm⁻¹$

Abbildung 152: Zyklovoltammogramme von [Co(L-N₄Ad'Bu)Cl₂] 68 bei negativem (links) und positivem Potential in Acetonitril

Abbildung 153: Zyklovoltammogramme zu [Co(L-N₄Ad'Bu)Cl₂] 68 bei verschiedenen Verlaufgeschwindigkeiten in Acetonitril

Die Strukturdaten befinden sich ab Seite 424.

6 Literaturverzeichnis

- [1] K. H.-J., Universität Hamburg (Hamburg), **1997**.
- [2] H.-J. Krüger, *Chem. Ber.* **1995**, *128*, 531.
- [3] U. Fooken, Universität Mainz.
- [4] E. M. Werle, Unveröffentliche Ergebnisse (Forschungsarbeit) 2005.
- [5] E. M. Werle, *Diplomarbeit Universität Kaiserslautern* 2007.
- [6] F. D. G. Bottino, Michele; Finocchiaro, Paolo; Fronczek, Frank R.; Mamo, Antonio; Papparlardo, Sebastiano, *J. Org. Chem* **1988**, *53*, 3521.
- [7] F. R. M. Fronezek, Antonio; Pappalardi, Sebastiano, Inorg. Chem. 1989, 28, 1419.
- [8] G. M. Lee, Yuyi; Inazu, Takashiko, Chem. Lett. 1996, 873.
- [9] G. O. Lee, Masakazu; Takemura, Heroyuki; Miyuhara, Yiyi; Shimazu, Nobiyiro; Inazu, Thikahiko, *J. Org. Chem* **1996**, *61*, 8304.
- [10] W. O. S. Koch, Volker; Gerslan, Michael; Trautwein, Alfred X.; Krüger, Hans-Jörg *Chem. Eur. J.* **1998**, *4*, 1255.
- [11] D. Y. Noda, Mikio; Takemura, Hiroyuki; Shinmyozu, Teruo; , *Tetrahedron Letters* **1999**, *40*, 3447.
- [12] N. S. Kataoka, Quinetta; Stambuli, James P. ;Hartwig, John F. , J. Org. Chem 2002, 2002, 5553.
- [13] J. L. Novak, Igor; Dvorakova, Hana Dovor, *Eur. J. Org. Chem.* **2004**, *12*, 2738.
- [14] G. V. O. Submona, Evandro Dall; Zucht, Cesar, *Tetrahedron Letters* **1998**, *39*, 2471.
- [15] X. Y. Sun, Zhengkun; Wu, Sishony; Xiao, Wen-Jing, Organometallics 2005, 24, 2959.
- [16] J. P. T. Wolfe, Hiroshi; Sadighi, Joseph P.; Yin, Jingjun; Buchwald, Stephan L., J. Org. Chem 2000, 65, 1158.
- [17] in *ChemFiles* (Ed.: sigma-aldrich.com), p. Vol 6 No 3.
- [18] A. B. Zapf, Mathias;, Chemical Communications 2004.
- [19] F. Z. Rataboul, Zapf, Alexander; Jackstell, Ralph; Harkal, Surendra, *Chem. Eur. J.* **2004**, *10*, 2983.
- [20] O. C. Kappe, Angew. Chem. Int. Ed. 2004, 43, 6250.
- [21] S. R. Harkal, Franck; Zapf Alexander; Fuhrmann, Christa; Riermeier, Thomas; Monsees, Axel; Beller, Matthias;, *Adv. Synth. Catal.* **2004**, *346*, 1742.
- [22] B. S. Schlummer, Ulrich, Adv. Synth. Catal. 2004, 346, 1599.
- [23] H.-U. I. Blaser, Adriano; Naud, Frederic; Nettekoven, Ulrike; Schnyder, Anita;, *Adv. Synth. Catal.* **2004**, *346*, 1583.
- [24] D. S. Kremzow, Günther; Lehmann, Christian W.; Fürstner, Alois, *Chem. Eur. J.* **2005**, *11*, 1833.
- [25] X. Y. Sun, Zhengkun; Wu, Sishony; Xiao, Wen-Jing, Organometallics 2005, 24, 2959.
- [26] M. B. Thommen, Hans-Ulrich, Chimica Oggi/Chemistry Today 2003, 21, 29.
- [27] M. B. Nakanishi, Carsten RWTH Aachen, 2005, p. Persönliche Mitteilung.
- [28] R. K. Guadhur, Bates, C. G., Venkataraman, D Org. Lett. 2001, 3, 4315.
- [29] T. D. B. Quach, Robert A., Organic Letters 2003, 5, 4397.
- [30] S. B. Kimura, Eckard; Bothe, Eberhard; Weyhermüller, Thomas; Wieghardt, Karl J. *Am. Chem. Soc.* **2001**, *123*, 6025.
- [31] C. Huber, Diplomarbeit thesis, Universität Kaiserslautern (Kaiserslautern), 2003.
- [32] J. Org. Chem 1996, 61, 8305.
- [33] K. H.-J. Kelm Harald, Angewandte Chemie International Edition 2001, 40, 2344.
- [34] S. P. L. Meneghetti, Pierre J.; Kress, Jacky, Organometallics 2001, 20, 5050.
- [35] K. H.-J. Kelm Harald, Eur. J. Inorg. Chem. 1998, 10, 1381.

- [36] T. H. Sciarone, Johan; Schlebos, Paul P. J.; Budzalaar, Peter H. M.; De Gelder, Rene; Smits, Jan M. M.; Gal, Anton W., *Eur. J. Inorg. Chem.* **2002**, 457.
- [37] H.-J. K. W. O. Krüger, *Bioinorganic Chemistry* 1997, 632.
- [38] M. J. P. Mc Pherson, Mark R.; Spooner, R. Kate; Wilmont, Carrie M., *Handboock of Metalloproteins*.
- [39] R. H. B. Becker, Wenzel P.; Urbanski, Edward T.; Margerum, Dale W., J. Chem. Soc. Dalton Trans. 2002, 695.
- [40] S. K. Itoh, Hieyuki; Nagamoto, Shigenori; Kitgawa, Teizo; Fukuzumi, Shunichi, J. *Am. Chem. Soc.* **2001**, *123*, 2165.
- [41] E. I. S. Solomon, Uma M.; Machonkin, Timothy E.;, Chem. Rev. 1996, 96, 2563.
- [42] H. S. Decker, Thorsten; Tuczek, Felix, Angew. Chem. Int. Ed. 2006, 45, 4546.
- [43] S. T. Itoh, M.; Takayama, Shigehisa; Nagamoto, Shigenori; Kitagawa, Teizo; Sakurada, Norio; Arakawa, Ryuichi; Fukuzumi, S., Angew. Chem. Int. Ed. 1999, 38, 2774.
- [44] A. T. Philibert, Fabrice; Philouze, Christian; Hamman, Sylvian; Saint-Aman, Eric; Pierre, Jean-Louis, *Chem. Eur. J.* **2003**, *9*, 3803.
- [45] H.-J. Krüger, Angewandte Chemie 1999, 111, 659.
- [46] N. S. Mikami, Tashiki; Sato, Shin, *Chemical Physikal Letters* 1991, 180, 431.
- [47] S. P. W. David P. Goldberg, Axel Marschelein, Lee Ann Wimmer, Stephen J. Lippard., J. Am. Chem. Soc. 1993, 115, 5346.
- [48] E. B. Britta Adam, Eberhard Bothe, Beatrix Goerdt, Gabriele Haselhorst, Knut Hildenbrandt, Achim Sokolowski, Steen Steenken, Thomas Weyhermüller, Karl Wieghardt., *Chem. Eur. J.* **1997**, *3*, 308.
- [49] F. T. Fabien Michel, Sylvain Hamman, Eric Saint-Aman, Christophe Backer, Jean-Louis Pierre, *Chem. Eur. J.* **2004**, *10*, 4115.
- [50] E. B. Achim Sokolowski, Eduard Bill, Thomas Weyhermüller, Karl Wieghardt., *Chem. Commun.* **1996**, *14*, 1671.
- [51] J. M. Achim Sokolowski, Thomas Weyhermüller, Robert Schnepf, Peter Hildebrandt, Knut Hildenbrand, Eberhard Bothe, Karl Wieghardt., J. Am. Chem. Soc. **1997**, 119, 8889.
- [52] F. C. C. Anson, Judith A.; Collins, Terrence J.; Corts, Robert J.; Futani, Tracy T.; Gipson, Stephen L.; Keich, John T.; Krafft, Terry E.; Santarsiero, Bernhard D.; Spies, George H., J. Am. Chem. Soc. 1984, 106, 4460.
- [53] F. C. C. Anson, Terrence J.; Gipson, Stephen L.; Keich, John T.; Krafft, Terry E.; Beake Geoffrey T., J. Am. Chem. Soc. **1986**, 108, 6593.
- [54] L. B. Bensisvy, Alexander J.; Collinson, David; Davies, E. Stephen; Garner, C. David;Innes, Eric J. L. M.;Mc Master, Jonathan; Wittaker, Gavin; Wilson, Claire, *Dalton Trans.* **2003**, 1975.
- [55] L. B. Bensisvy, Eckard; Blake, Alexander J.; Collinson, David; Davies, E. Stephen; Garner, C. David; Giundy, Christina I.; Mc Innes, Eric J. L.; Mc Ardale, Graeme; Mc Master, Jonathan; Wilson, Claire; Wolowska, Johanna, *Dalton Trans.* 2004, 3647.
- [56] D. P. K. Goldberg, Dionysios; Bruchvig, Gary W.;Lippard,Stephen J., J. Am. Chem. Soc. 1995, 117, 3134.
- [57] D. P. W. Goldberg, Steohen P.; Marschelein, Axel; Wimmer, Lee Ann; Lippard, Stephen J., J. Am. Chem. Soc. 1993, 115, 5346.
- [58] M. A. M. Halcow, Li; Chia, Lindy; Mc Innes, Eric J. L.; Yellowlees, Lesley J.; Mobbs, Frank S.; Davies, John E., Chem. Commun. 1998, 2465.
- [59] J. K. Müller, Akihiro; Bill, Eckard; Weyhermüller, Thomas; Hildebrandt, Peter; Ould-Moussa, Linda; Wieghard, Karl *Inorganica Chimica acta* **2000**, *297*, 265.
- [60] R. S. Schnepf, Achim; Müller, Jochen; Bachler, Vinzens; Wieghardt, Karl; Hildebrand Peter *J. Am. Chem. Soc.* **1998**, *120*, 2352.

- [61] Y. H. Shimasaki, Stephan; Karasawa, Satoru; Hirota, Shun; Naruta, Yoshinori; Yanauchi, Osamu, *Inorg. Chem.* **2004**, *43*, 7816.
- [62] Y. T. Shimasaki, Fumito; Fukui, Koichi; Naruta, Yoshinori; Yanauchi, Osamu J. Am. Chem. Soc. 2003, 125, 10512.
- [63] M. D. O.-M. Snodin, Lynda; Wallmann, Ursula; Lecomte, Sophie; Bachler, Vincenz; Bill, Eckard; Hummel, Helga; Weyhermüller, Thomas; Hildebrandt, Peter; Wieghardt, Karl, *Chem. Eur. J.* **1999**, *5*, 2554.
- [64] A. M. Sokolowski, Jochen; Weyhermüller, Thomas; Schnepf, Robert; Hildebrandt, Peter; Hildenbrand, Knut; Bothe, Eberhard; Wieghardt, Karl, *J. Am. Chem. Soc.* **1997**, *119*, 8889.
- [65] D. M. S. Close, Einar, Journal of Chemical Physics 1983, 79, 5292.
- [66] J. S. Hockertz, S; Wieghardt, K.; Hildebrandt, P., J. Am. Chem. Soc. 1993, 115, 11222.
- [67] Y. H. Shimasaki, Stephan; Odani, Akira; Yanauchi, Osamu, *Angew. Chem. Int. Ed.* **2000**, *39*, 1666.
- [68] A. K. B. Naim, Rajiv; Foxon, Simon P.; Liu, Xiaoming; Yellowlees, Lesley J.; Gilbert, Bruce C.; Walton, Paul H., *Dalton Trans.* **2002**, 1253.
- [69] M. Fabien, Torelli, Stephane; Fabrice, Thomas; Duboc, Carole; Philouze, Christian; Belle, Cathrine; Hamman, Sylvain; Saint-Aman, Pierre, Eric; Jean- Louis *Angew*. *Chem. Int. Ed.* **2005**, *44*, 438.
- [70] L. M. O. Mirica, Xavier; Stock, T. Daniel, Chem. Rev. 2004, 104, 1013.
- [71] E. A. T. Lewis, William Chem. Rev. 2004, 104, 1047.
- [72] E. C. Kim, Edurado E; Kamarj, Kalippan; Kalin, Kenneth D., *Chem. Rev.* 2004, *104*, 1077.
- [73] S. Schindler, Eur. J. Inorg. Chem. 2000, 2311.
- [74] G. E. Kiefer, Vol. WO 9426753 (Ed.: D. C. Company), AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, HU, JP, KR, KZ, LK, LU, LV, MG, MN, MW, NL, NO, NZ, PI, PT, RO, RU, SD, SE, SI, SK, UA, US, UZ, VN, European Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG) 1994.
- [75] J. A. J. Halfen, Brian A.; Mahapatra, Samiran; Berreau, Lisa M.; Wilkinson, Elisabeth C.; Oue Jr., Lawrence; Tolman, William B., J. Am. Chem. Soc. 1997, 119, 8217.
- [76] S. T. Itoh, Masayasu; Fukuzumi, Shunichi, *Coordination Chemistry Reviews* 2000, 198, 3.
- [77] A. T. Philibert, Fabrice; Philouze, Christian; Hamman, Sylvian; Saint-Aman, Eric; Pierre, Jean-Louis, *Chem. Eur. J.* **2003**, *9*, 3803.
- [78] S. T. Itoh, Masayasu; Kumei; Takayama, Hieyuki; Nagamoto, Shigenori; Kitgawa, Teizo; Arakawa, Ryuichi; Fukuzumi, Shunichi, *Inorg. Chem.* **2000**, *39*, 3708.
- [79] S. T. Itoh, Shigehisa;Arakawa, Ryuichi; Furuta, Akihiro; Mitsuo, Komatsu; Ishida, Akito; Takamuku, Setsuo; Fukuzumi, Shunichi, *Inorg. Chem.* **1197**, *36*, 1407.
- [80] J. Christ, Unveröffentliche Ergebnisse (Forschungsarbeit) 2005.
- [81] R. Bischoff, Unveröffentliche Ergebnisse (Forschungsarbeit) 2007.
- [82] V. H. J. Rawal, Robert J.; Cava, Michael P., J. Org. Chem 1987, 52, 19.
- [83] C. Seubert, Unveröffentliche Ergebnisse (Forschungsarbeit) 2005.
- [84] C. Seubert,
- [85] P. J. Kocienski, *Protecting Groups*, G. Thieme Stuttgart, 1994.
- [86] T. W. Greene, Wuts, Peter G. M., *Protective Groups in organic Synthesis*, Wiley-Interscience, **1990**.
- [87] Z. S. Majerski, Paul v. R.; Wolf, Alfred Peter, J. Am. Chem. Soc. 1970, 92, 5731.
- [88] J. March, Advanced Org. Chemistry, C. Wiley Interscience.

- [89] P. v. R. F. Schleyer, Raymond C. Jr.; Watts, William E.; Comisarrow, Melvin B.; Olah, George A., J. Am. Chem. Soc. **1964**, 86, 4195.
- [90] S. G. Ji, Leon B.; Waring, A.; Battisti, Angelo J.; Bank, Shelton; Closson, William D.; Wreide, Peter A., J. Am. Chem. Soc. 1967, 89, 5311.
- [91] L. D. Nezbedowa, Konstantin; Werner, Christian; Hesse, Manfred, *Helvetica Chimica Acta* **2000**, *83*, 2953.
- [92] K. A. J. Nielsen, Jan O.; Lellain, Eric, Thorup, Nils; Becher, Jan, Organic Letters 2002, 4, 4189.
- [93] S. W. L. Riesinger, Joakim; Petterson-Fasth, Helena; Bäckvall, Jan E., *Eur. J. Org. Chem.* **1999**, 3277.
- [94] Stetter, J. Chem. Soc. 1929, 736.
- [95] unbekannt, Science
- **1968**, *160*, 883.
- [96] J. Wittig, Ruchfelder, Vol. 610.
- [97] N. K. Yamasaki, Chihiro, J. Am. Chem. Soc. 1989, 111, 1396.
- [98] D. M. A. Abad, J. P. Pete, C. Postella, *Tetrahedron Letters* 1971, 47, 4555.
- [99] D. A. H. Colkin, John F., Organometallics 2004, 23, 3398.
- [100] C.-M. Che, Li, Zao-Ying, Wong Kwok-Yin, Poon Chung-Kwong, Mak, Thomas C. W., Peng Shie-Ming, *Polyhedron* 1994, 13, 771.
- [101] J. C. B. Antilla, Jeremy M.; Barder, Timothy E.; Buchwald, Stephen L., J. Org. Chem. 2004, 69, 5578.
- [102] M. C. G. Aversa, Placido; Caristi, Corrado; Feriazzo, Alida J. Chem. Soc. Chem. Commun. 1982, 469.
- [103] J. H. Gorvin, J. Chem. Soc. Perkin Trans. 1988, 1331.
- [104] Z. C. He, Donald C.; Colbran, Stephen B., J. Chem. Soc. Dalton Trans. 2002, 4224.
- [105] M. B. Makazza, Maciey, J. Org. Chem 1998, 63, 4878.
- [106] F. T. You, Robert J., Tetrahedron Letters 1999, 40, 8759.
- [107] G. C. Mansur, W.; Dorrestein, P. C.; Maxka, J.; MacDonald, J. C.; Helburn, R., Journal of Organic Chemistry 2001, 66, 4050.
- [108] X.-j. T. Wang, J.;Grozinger, K.; Betageri, R.;Kirrane, T.; Proudfoot, J. R., *Tetrahedron Letters* **2000**, *41*, 5321.
- [109] F. T. You, Robert J., Tetrahedron Letters 1999, 1999, 50.
- [110] C. L. M. Brown, I. Wayan; Young, David J.;, Synthesis 2003, 2511.
- [111] J. H. Gorvin, Chemical Communications 1985, 238.
- [112] K. N. Sato, Ukon; Tamaki, Makoto, *Bulletin of the Chemical Society of Japan* **1985**, 58, 3661.
- [113] A. H. A.-M. Khuthier, Khawla Y.; Hanna, Salim Y.; Abdulla, Noor Aldeen I., *Journal of Organic Chemistry* **1987**, *52*, 1710.
- [114] M. I. Kawai, Teruhiko; Butsugan, Yasuo; Nagai, Ukon;, Bulletin of the Chemical Society of Japan 1985, 58, 304.
- [115] E. C. S. Taylor, Jerauld S.;, Synthesis 1981, 606.
- [116] K. K. Rößler, Tobias; Schubert, Anett; Sun, You; Herdweck, Eberhard; Thiel, Werner R., Zeitschrift für Naturforschung 2004, 59b, 1253.
- [117] S. H. Spange, Katja; Walfort, Bernhard; Rueffer, Tobias; Lang, Heinrich, *Journal of Organic Chemistry* **2005**, *70*, 8564.
- [118] W. C. Zhang, Antony F.; Mahoudkhani, Amir H.; Tulumello, Mark; Mansour, Sarah; Vargas-Baca, Ignatcio, *Journal of Pysical Chemistry B* **2005**, *109*, 39.
- [119] M. C. C. Davis, Andrew C.; Sathrum, Aaron J., Symthetic Communications 2005, 35, 2085.
- [120] M. L. E. Cerrada, J.; de la Fuente, J.; Pardo, C.; Ramos, M.;, Symthetic Communications 1993, 23, 1947.

- [121] H. K. Kotsuki, Shigeru; Matsumoto, Kaazuhiko; Suenaga, Hitoshi; Nishizawa Hitoshi, *Synthesis* **1990**, 1147.
- [122] L. D. M. Napoli, Anna; Montesachio, Daniela; Piccialli, Gennaro, *Journal of Organic Chemistry* **1995**, *60*, 2251.
- [123] J. B. Hanss, Alexander; Krüger, Hans-Jörg, Eur. J. Inorg. Chem. 1999, 163.
- [124] B. A. T. Jadzewski, William B., Coordination Chemistry Reviews 2000, 200-202, 633.
- [125] L. B. Bensisvy, Alexander J.; Collinson, David; Davies, E. Stephen; Garner, David; Mc Innes, Eric J. L.; Mc Master, Jonathan; Whittaker, Gavin; Wilson, Claire;, Chem. Commun. 2001, 1824.
- [126] S. T. Itoh, Masayasu; Fukuzumi, Shunichi, *Coordination Chemistry Reviews* 2000, 198, 3.
- [127] Y. H. Shimasaki, Stephan; Hirota, Shun; Yanauchi, Osamu *Inorganica Chimica acta* **2002**, *331*, 168.
- [128] A. W. Addison, Rao, T. Nageswara, Reedijk, Jan, van Rijn, Jakobus, Verschoor, Gerrit C. , *Dalton Trans.* **1984**, 1349.
- [129] M. R. Schatz, Volker; Foxon, Simon P.; Brehm Georg; Schneider, Siegfried; Reiher, Markus; Holthausen, Max C.; Sundermeyer, Jörg; , *Angewandte Chemie* 2004, 116, 4460.
- [130] C. G. Würtele, Ekaterina; Harms, Klaus; Holthausen, Max C.; Sundermeyer, Jörg; Schindler, Siegfried, *Angewandte Chemie* **2006**, *118*, 3951.
- [131] S. B. de Sousa, Semos K. E.; Schulz Sang, E., Z. anorg. allg. Chem. 1998, 624, 701.
- [132] S. B. de Sousa, Lemos K. E. E.; Lang, Schulz, Z. anorg. allg. Chem. 1998, 624, 701.
- [133] J. F. v. G. Harrod, Patrick, Can. J. Chem. 1979, 57, 890.
- [134] W.-Y. X. Sun, Jin; Mei, Yu-Hua; Ju, Kai-Mei, New. J. Chem 2000, 24, 519.
- [135] S. T. Itoh, Masayasu; Nakao, Hajime; Holland, Patrick L.; Tolman, William B.; Que, Lawrence Jr. Fukuzumi, Shunichi, *Angewandte Chemie* **2000**, *112*, 409.
- [136] J. Heinze, Angewandte Chemie 1984, 96, 823.

7 Anhang

7.1 Analytik der Grundbausteine und Liganden

7.1.1 N^tBu(CH₂PyCH₂Cl)₂ 12

7.1.1.1 NMR-Spektren

a) 400 MHz ¹H-NMR-Spektrum in CDCl₃

b) gekoppeltes 100 MHz ¹³C-NMR-Spektrum in CDCl₃

c) entkoppeltes100 MHz ¹³C-NMR-Spektrum in CDCl₃

d) 100 MHz DEPT(135)-NMR-Spektrum in CDCl₃

7.1.2 AdN(CH₂PyCH₂Cl)₂ **37**

7. 1.2.1 NMR-Spektren

a) 400 MHz ¹H-NMR-Spektrum in CDCl₃

b) gekoppeltes 100 MHz ¹³C-NMR-Spektrum in CDCl₃

c) entkoppeltes 100 MHz ¹³C-NMR-Spektrum in CDCl₃

d) 100 MHz DEPT(135)-NMR-Spektrum in CDCl₃

e) 100 MHz DEPT(90)-NMR-Spektrum in CDCl₃

7.1.2.2 IR-Spektrum

7.1.3 L-N₄Ad₂**39**

7.1.3.1 NMR-Spektren

a) 200MHz ¹H-NMR-Spektrum in CDCl₃

7.1.3.2 IR-Spektrum

7.1.4.1 NMR-Spektren

a) 400MHz ¹H-NMR-Spektrum in CDCl₃

b) gekoppeltes 100 MHz ¹³C-NMR-Spektrum in CDCl₃

d) 100 MHz DEPT(135)-NMR-Spektrum in CDCl₃

f) 100 MHz DEPT(45)-NMR-Spektrum in CDCl₃

7.1.4.2 IR-Spektrum

7.1.4.3 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0437.

Summenformel	$C_{28}H_{38}N_4$	
Molmasse	430.62	
Temperatur	193(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	P2 ₁ /c	
Zelldimensionen	a = 31.674(2) Å	$\alpha = 90^{\circ}$
	b = 12.6248(6) Å	$\beta = 99.566(7)^{\circ}$
	c = 12.2399(7) Å	$\gamma = 90^{\circ}$
Zellvolumen	4826.5(5) Å ³	
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.185 Mg/m ³	
Absorptionskoeffizient	0.070 mm ⁻¹	
Kristallgröße	0.70 x 0.50 x 0.20 mm	

Gemessener θ-Bereich	2.81 bis 26.73°
Anzahl der gemessenen Reflexe	47479
Unabhängige Reflexe	9772 (Rint = 0.2304)
Absorptionskorrektur	keine
Max. und min. Transmission	0.9861 und 0.9524
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	9772 / 0 / 583
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0464, wR2 = 0.1044
R-Werte (alle Daten)	R1 = 0.0976, $wR2 = 0.1194$
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.019P) ²] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.778
Größtes Maximum und Minimum	0.173 und -0.197 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

 $R_1 = \frac{\sum \left\| F_o \right| - \left| F_c \right\|}{\sum \left| F_o \right|}$

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$wR_{2} = \sqrt{\frac{\sum \left[w(F_{o}^{2} - F_{c}^{2})^{2}\right]}{\sum \left[w(F_{o}^{2})^{2}\right]}}$$

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0437.

U(eq) wird be rechnet als ein Drittel der Spur des orthogonalisierten $U_{\rm ij}$ -Tensors.

	x	У	Z	U(eq)
N(1)	4474(1)	4990(1)	7674(2)	26(1)
N(2)	3488(1)	6085(1)	6723(2)	29(1)
N(3)	4481(1)	7178(1)	7336(1)	22(1)
N(4)	5469(1)	6041(1)	7586(1)	25(1)
C(1)	5250(1)	5154(2)	8058(2)	37(1)
C(2)	4841(1)	4852(1)	7287(2)	27(1)
C(3)	4855(1)	4510(2)	6222(2)	31(1)
C(4)	4475(1)	4354(2)	5498(2)	32(1)
C(5)	4098(1)	4567(2)	5871(2)	34(1)
C(6)	4110(1)	4882(1)	6955(2)	29(1)
C(7)	3702(1)	5194(2)	7364(2)	43(1)
C(8)	3705(1)	7087(2)	7072(2)	37(1)
C(9)	4117(1)	7250(1)	6607(2)	25(1)
C(10)	4110(1)	7470(2)	5500(2)	34(1)
C(11)	4490(1)	7611(2)	5115(2)	34(1)
C(12)	4867(1)	7489(2)	5858(2)	31(1)
C(13)	4851(1)	7246(1)	6947(2)	24(1)
C(14)	5256(1)	7049(2)	7778(2)	36(1)
C(15)	5943(1)	6053(1)	7969(2)	25(1)
C(16)	6137(1)	5022(2)	7585(2)	32(1)
C(17)	6625(1)	5017(2)	7924(2)	40(1)
C(18)	6739(1)	5105(2)	9176(2)	45(1)
C(19)	6564(1)	6150(2)	9561(2)	40(1)
C(20)	6751(1)	7081(2)	8992(2)	43(1)
C(21)	6635(1)	6965(2)	7742(2)	39(1)
C(22)	6147(1)	6970(2)	7406(2)	32(1)
C(23)	6074(1)	6160(2)	9228(2)	34(1)
C(24)	6818(1)	5936(2)	7369(2)	42(1)
C(25)	3012(1)	6126(2)	6708(2)	33(1)
C(26)	2812(1)	5091(2)	6234(3)	60(1)
C(27)	2820(1)	6997(2)	5923(2)	50(1)
C(28)	2898(1)	6318(2)	7851(2)	56(1)
N(5)	499(1)	1764(1)	7624(1)	25(1)
N(6)	1525(1)	3006(1)	8321(2)	26(1)
N(7)	572(1)	4028(1)	7710(1)	24(1)
N(8)	-443(1)	2741(1)	7606(1)	24(1)
C(29)	-278(1)	1682(1)	7377(2)	29(1)
C(30)	158(1)	1519(1)	8089(2)	25(1)
C(31)	195(1)	1214(1)	9188(2)	30(1)

/ Annang
/ I mang

C(32)	594(1)	1217(2)	9847(2)	33(1)	
C(33)	943(1)	1547(2)	9385(2)	29(1)	
C(34)	883(1)	1812(1)	8275(2)	24(1)	
C(35)	1250(1)	2185(1)	7703(2)	26(1)	
C(36)	1344(1)	4073(2)	8055(2)	30(1)	
C(37)	926(1)	4177(1)	8465(2)	26(1)	
C(38)	916(1)	4293(2)	9591(2)	31(1)	
C(39)	528(1)	4199(2)	9957(2)	33(1)	
C(40)	165(1)	3974(1)	9190(2)	28(1)	
C(41)	200(1)	3890(1)	8084(2)	24(1)	
C(42)	-179(1)	3575(2)	7214(2)	28(1)	
C(43)	-914(1)	2892(1)	7248(2)	22(1)	
C(44)	-1161(1)	1977(1)	7686(2)	26(1)	
C(45)	-1647(1)	2159(2)	7396(2)	31(1)	
C(46)	-1773(1)	2213(2)	6139(2)	34(1)	
C(47)	-1538(1)	3142(2)	5693(2)	30(1)	
C(48)	-1657(1)	4175(2)	6221(2)	32(1)	
C(49)	-1532(1)	4108(2)	7476(2)	30(1)	
C(50)	-1048(1)	3918(1)	7786(2)	27(1)	
C(51)	-1053(1)	2960(2)	5984(2)	27(1)	
C(52)	-1773(1)	3193(2)	7914(2)	34(1)	
C(53)	1986(1)	2902(2)	8192(2)	30(1)	
C(54)	2161(1)	1872(2)	8758(2)	41(1)	
C(55)	2051(1)	2908(2)	6986(2)	45(1)	
C(56)	2245(1)	3807(2)	8814(2)	43(1)	

Ni(1)-N(4)	2.013(2)		N(4)-C(13)	1.329(3)	
Ni(1)-N(2)	2.012(2)		C(1)-C(2)	1.504(4)	
Ni(1)-N(3)	2.189(2)		C(2)-C(3)	1.366(4)	
Ni(1)-N(1)	2.216(2)		C(3)-C(4)	1.398(4)	
Ni(1)-Cl(1)	2.3645(8)		C(4) - C(5)	1.371(5)	
Ni(1)-Cl(2)	2.3752(8)		C(5)-C(6)	1.381(4)	
N(1)-C(15)	1.461(4)		C(6)-C(7)	1.504(4)	
N(1)-C(14)	1.473(4)		C(8)-C(9)	1.502(4)	
N(1)-C(1)	1.474(4)		C(9)-C(10)	1.373(4)	
N(2)-C(6)	1.330(4)		C(10)-C(11)	1.375(4)	
N(2)-C(2)	1.343(4)		C(11)-C(12)	1.374(5)	
N(3)-C(7)	1.460(4)		C(12)-C(13)	1.380(4)	
N(3)-C(8)	1.469(4)		C(13)-C(14)	1.505(4)	
N(4)-C(9)	1.342(4)				
N(4)-Ni(1)-N(2	.)	83.89(9)	C(9)-N(4)-Ni(1)	118.57(17)
N(4) - Ni(1) - N(3))	79.14(9)	C(13)-N(4)-Ni(1)	120.07(19)
N(2)-Ni(1)-N(3)	79.55(9)	C(2)-C(1)-N(1)		111.2(2)
N(4)-Ni(1)-N(1)	79.46(9)	N(2)-C(2)-C(3)		121.7(3)
N(2)-Ni(1)-N(1	.)	79.57(9)	N(2)-C(2)-C(1)		112.9(3)
N(3)-Ni(1)-N(1	.)	151.44(9)	C(3)-C(2)-C(1)		125.4(3)
N(4)-Ni(1)-Cl(1)	173.75(7)	C(4)-C(3)-C(2)		117.8(3)
N(2)-Ni(1)-Cl(1)	90.54(7)	C(3)-C(4)-C(5)		119.8(3)
N(3)-Ni(1)-Cl(1)	102.67(7)	C(6)-C(5)-C(4)		119.4(3)
N(1)-Ni(1)-Cl(1)	96.79(7)	N(2)-C(6)-C(5)		120.2(3)
N(4)-Ni(1)-Cl(2)	92.09(7)	N(2)-C(6)-C(7)		114.6(3)
N(2)-Ni(1)-Cl(2)	175.71(7)	C(5)-C(6)-C(7)		125.2(3)
N(3)-Ni(1)-Cl(2)	101.19(7)	N(3)-C(7)-C(6)		112.8(2)
N(1)-Ni(1)-Cl(2)	98.27(7)	N(3)-C(8)-C(9)		111.7(2)
Cl(1)-Ni(1)-Cl	(2)	93.40(3)	N(4)-C(9)-C(10))	120.5(3)
C(15) - N(1) - C(1)	4)	110.4(2)	N(4)-C(9)-C(8)		114.6(2)
C(15)-N(1)-C(1)	109.9(3)	C(10)-C(9)-C(8)	124.8(3)
C(14) - N(1) - C(1))	111.4(2)	C(9)-C(10)-C(1	1)	119.3(3)
C(15)-N(1)-Ni(1)	112.58(18)	C(12)-C(11)-C(10)	119.6(3)
C(14)-N(1)-Ni(1)	108.46(18)	C(11)-C(12)-C(13)	118.9(3)
C(1) - N(1) - Ni(1))	103.85(16)	N(4)-C(13)-C(1)	2)	120.9(3)
C(6) - N(2) - C(2)		121.0(3)	N(4)-C(13)-C(1)	4)	115.7(2)
C(6)-N(2)-Ni(1)	119.11(19)	C(12)-C(13)-C(14)	123.3(3)
C(2)-N(2)-Ni(1)	118.13(19)	C(13)-C(14)-N(1)	113.9(2)
C(7)-N(3)-C(8)		114.0(2)			
C(7)-N(3)-Ni(1)	108.07(18)			
C(8)-N(3)-Ni(1)	106.59(17)			
C(9)-N(4)-C(13))	120.8(2)			

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0347.

Tabelle 4. Anisotrope Auslenkungsparameter $[\text{\AA}^2 \text{ x } 10^3]$ für 0437.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
 N(1)	24(1)	23(1)	32(1)	4(1)	6(1)	0(1)
N(2)	18(1)	35(1)	33(1)	5(1)	4(1)	0(1)
N(3)	22(1)	21(1)	24(1)	-1(1)	3(1)	1(1)
N(4)	16(1)	22(2)	29(1)	-1(1)	1(1)	1(1)
C(1)	26(1)	48(1)	34(2)	11(1)	1(1)	-11(1)
C(2)	23(1)	23(1)	34(1)	5(1)	4(1)	-2(1)
C(3)	26(1)	31(1)	37(1)	0(1)	9(1)	2(1)
C(4)	37(1)	27(1)	32(1)	-2(1)	5(1)	-2(1)
C(5)	26(1)	34(1)	39(2)	4(1)	-4(1)	-8(1)
C(6)	22(1)	28(1)	38(1)	10(1)	5(1)	1(1)
C(7)	26(1)	61(2)	44(2)	24(1)	12(1)	11(1)
C(8)	23(1)	53(1)	35(2)	-16(1)	8(1)	-6(1)
C(9)	21(1)	27(1)	28(1)	-3(1)	6(1)	0(1)
C(10)	29(1)	43(1)	26(1)	1(1)	-3(1)	7(1)
C(11)	38(1)	40(1)	26(1)	4(1)	9(1)	4(1)
C(12)	28(1)	35(1)	33(1)	-4(1)	13(1)	-2(1)
C(13)	22(1)	22(1)	29(1)	-5(1)	5(1)	2(1)
C(14)	25(1)	43(1)	36(1)	-16(1)	-2(1)	7(1)
C(15)	19(1)	26(1)	28(1)	0(1)	1(1)	0(1)
C(16)	28(1)	27(1)	40(1)	0(1)	4(1)	0(1)
C(17)	28(1)	35(1)	56(2)	4(1)	4(1)	8(1)
C(18)	26(1)	49(1)	55(2)	14(1)	-5(1)	2(1)
C(19)	28(1)	52(1)	36(2)	4(1)	-10(1)	-5(1)
C(20)	25(1)	47(1)	53(2)	-2(1)	-5(1)	-10(1)
C(21)	28(1)	37(1)	51(2)	7(1)	4(1)	-9(1)
C(22)	28(1)	28(1)	39(1)	4(1)	3(1)	-2(1)
C(23)	25(1)	41(1)	33(1)	0(1)	-3(1)	-2(1)
C(24)	22(1)	52(1)	53(2)	4(1)	9(1)	0(1)
C(25)	19(1)	41(1)	41(2)	5(1)	4(1)	-1(1)
C(26)	30(1)	51(2)	95(3)	-2(1)	-2(1)	-10(1)
C(27)	31(1)	56(2)	60(2)	16(1)	-4(1)	3(1)
C(28)	25(1)	90(2)	57(2)	8(1)	16(1)	9(1)
N(5)	25(1)	22(1)	27(1)	-3(1)	3(1)	1(1)
N(6)	20(1)	29(1)	30(1)	-2(1)	4(1)	-2(1)
N(7)	23(1)	21(1)	28(1)	-1(1)	3(1)	-2(1)
N(8)	20(1)	24(1)	28(1)	-1(1)	1(1)	-3(1)
C(29)	23(1)	28(1)	36(1)	-8(1)	5(1)	-1(1)
C(30)	25(1)	17(1)	34(1)	-3(1)	6(1)	-1(1)
C(31)	29(1)	29(1)	35(1)	2(1)	11(1)	-1(1)
C(32)	33(1)	34(1)	31(1)	6(1)	5(1)	3(1)
C(33)	26(1)	30(1)	29(1)	2(1)	1(1)	2(1)

C(34)	23(1)	19(1)	30(1)	-4(1)	5(1)	1(1)	
C(35)	20(1)	30(1)	29(1)	-7(1)	5(1)	-1(1)	
C(36)	22(1)	29(1)	37(1)	2(1)	3(1)	-3(1)	
C(37)	26(1)	19(1)	32(1)	-1(1)	3(1)	-2(1)	
C(38)	30(1)	31(1)	30(1)	-8(1)	-2(1)	-2(1)	
C(39)	38(1)	32(1)	29(1)	-9(1)	5(1)	1(1)	
C(40)	27(1)	28(1)	29(1)	-6(1)	6(1)	0(1)	
C(41)	25(1)	20(1)	27(1)	2(1)	4(1)	0(1)	
C(42)	26(1)	29(1)	26(1)	3(1)	3(1)	-4(1)	
C(43)	19(1)	27(1)	19(1)	-1(1)	1(1)	-1(1)	
C(44)	26(1)	26(1)	27(1)	4(1)	3(1)	-2(1)	
C(45)	23(1)	32(1)	38(1)	7(1)	4(1)	-4(1)	
C(46)	26(1)	37(1)	35(1)	1(1)	-5(1)	-4(1)	
C(47)	30(1)	34(1)	24(1)	2(1)	-3(1)	-2(1)	
C(48)	28(1)	30(1)	37(1)	7(1)	1(1)	2(1)	
C(49)	30(1)	29(1)	33(1)	-1(1)	6(1)	6(1)	
C(50)	30(1)	26(1)	24(1)	-2(1)	2(1)	1(1)	
C(51)	26(1)	31(1)	24(1)	0(1)	2(1)	-3(1)	
C(52)	28(1)	43(1)	34(1)	7(1)	10(1)	7(1)	
C(53)	18(1)	37(1)	36(1)	1(1)	4(1)	-1(1)	
C(54)	26(1)	41(1)	54(2)	5(1)	5(1)	7(1)	
C(55)	33(1)	60(2)	45(2)	3(1)	18(1)	-2(1)	
C(56)	20(1)	46(1)	58(2)	-6(1)	-2(1)	-3(1)	

7 Anhang

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0437.

	х	У	Z	U(eq)
H(1A)	5181	5367	8786	44
H(1B)	5443	4534	8173	44
Н(З)	5122	4383	5989	37
H(4)	4474	4106	4765	39
Н(5)	3832	4498	5387	41
H(7A)	3505	4579	7302	52
Н(7В)	3770	5396	8155	52
H(8A)	3771	7104	7891	44
H(8B)	3507	7681	6829	44
H(10)	3845	7523	5008	40
H(11)	4494	7788	4362	41
H(12)	5136	7571	5618	37
H(14A)	5458	7641	7739	43
H(14B)	5182	7042	8533	43
H(16A)	6014	4405	7919	38

/ I IIII all

H(16B)	6062	4960	6770	38
H(17)	6741	4336	7680	48
H(18A)	7054	5082	9401	54
H(18B)	6614	4501	9528	54
H(19)	6643	6218	10384	48
H(20A)	6636	7756	9229	51
H(20B)	7067	7092	9210	51
H(21)	6758	7575	7377	47
H(22A)	6071	6900	6592	38
H(22B)	6031	7653	7623	38
H(23A)	5950	5567	9599	41
H(23B)	5958	6830	9478	41
H(24A)	6747	5867	6554	51
H(24B)	7134	5934	7582	51
H(26A)	2910	4936	5532	90
H(26B)	2499	5157	6105	90
H(26C)	2898	4515	6760	90
H(27A)	2906	7689	6248	76
H(27B)	2507	6940	5800	76
H(27C)	2923	6923	5214	76
H(28A)	3015	5745	8351	84
H(28B)	2586	6338	7797	84
H(28C)	3019	6996	8141	84
H(29A)	-253	1626	6584	34
H(29B)	-479	1128	7546	34
H(31)	-51	1005	9486	36
H(32)	629	999	10599	39
H(33)	1219	1589	9826	34
H(35A)	1429	1566	7588	32
H(35B)	1128	2469	6963	32
H(36A)	1300	4186	7244	35
H(36B)	1547	4618	8409	35
H(38)	1171	4434	10098	38
H(39)	510	4288	10719	40
H(40)	-104	3878	9423	33
H(42A)	-359	4207	7001	33
H(42B)	-72	3320	6546	33
H(44A)	-1076	1923	8500	32
H(44B)	-1085	1301	7355	32
H(45)	-1801	1554	7684	37
H(46A)	-2087	2314	5938	41
H(46B)	-1696	1541	5803	41
H(47)	-1623	3186	4870	36
H(48A)	-1506	4776	5936	39
H(48B)	-1969	4299	6023	39
H(49)	-1608	4787	7816	36
H(50A)	-969	3865	8601	32

H(50B)	-891	4526	7535	32	
H(51A)	-900	3549	5687	32	
H(51B)	-977	2294	5637	32	
H(52A)	-2086	3308	7717	41	
H(52B)	-1698	3155	8731	41	
H(54A)	2095	1848	9511	61	
H(54B)	2472	1845	8788	61	
H(54C)	2028	1265	8334	61	
H(55A)	1907	2292	6603	67	
H(55B)	2357	2876	6953	67	
H(55C)	1929	3559	6627	67	
H(56A)	2179	4471	8408	64	
H(56B)	2552	3655	8874	64	
H(56C)	2172	3873	9557	64	

7	Anhang)
		_

7.1.5 L-N₄^tBuBz 16

7.1.5.1 NMR-Spektren

a) 400MHz ¹H-NMR-Spektrum in CDCl₃

7.1.6 L-N₄^tBuTos 18

7.1.6.1 NMR-Spektren

a) 400 MHz ¹H-NMR-Spektrum in CDCl₃

b) 100 MHz ¹³C-NMR-Spektrum in CDCl₃

d) 100 MHz DEPT(135)-Spektrum in CDCl₃

7.1.6.2 IR-Spektrum

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0528.

Summenformel	$C_{25}H_{30}N_4O_2S$	
Molmasse	450.59	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Oszillation	
Kristallsystem	Orthorhombisch	
Raumgruppe	Pnma	
Zelldimensionen	a = 14.0469(8) Å	$\alpha = 90^{\circ}$
	b = 12.0095(7) Å	$\beta = 90^{\circ}$
	c = 14.2655(12) Å	$\gamma = 90^{\circ}$
Zellvolumen	2406.5(3) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.244 Mg/m ³	
Absorptionskoeffizient	0.163 mm ⁻¹	
Kristallgröße	0.58 x 0.51 x 0.44 mm	
	223	

Gemessener θ-Bereich	2.65 bis 26.73°
Anzahl der gemessenen Reflexe	21506
Unabhängige Reflexe	2674 (Rint = 0.0395)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.90559 und 0.85364
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	2674 / 0 / 160
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0360, wR2 = 0.1000
R-Werte (alle Daten)	R1 = 0.0502, $wR2 = 0.1043$
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0656P)^2]$ mit P=(Fo^2+2Fc^2)/3
GooF (alle Daten)	1.031
Größtes Maximum und Minimum	0.216 und -0.193 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0528.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
S(1)	5307(1)	2500	7857(1)	55(1)
0(1)	5449(1)	3528(1)	7375(1)	73(1)
N(1)	8971(1)	2500	11905(1)	50(1)
N(2)	7292(1)	3678(1)	10487(1)	44(1)
N(3)	6044(1)	2500	8743(1)	57(1)
C(1)	8385(1)	3497(2)	11787(1)	74(1)
C(2)	8195(1)	3747(1)	10767(1)	48(1)
C(3)	8923(1)	3994(1)	10158(1)	60(1)
C(4)	8722(1)	4169(1)	9227(1)	67(1)
C(5)	7802(1)	4049(2)	8927(1)	66(1)
C(6)	7110(1)	3789(1)	9578(1)	50(1)
C(7)	6099(1)	3538(2)	9289(1)	75(1)
C(8)	4155(1)	2500	8339(1)	49(1)
C(9)	3713(1)	3491(1)	8562(1)	61(1)
C(10)	2848(1)	3478(1)	9014(1)	67(1)
C(11)	2404(2)	2500	9247(2)	58(1)
C(12)	1467(2)	2500	9764(2)	86(1)
C(13)	9565(2)	2500	12770(1)	56(1)
C(14)	8960(2)	2500	13659(2)	100(1)
C(15)	10220(2)	3506(2)	12753(2)	85(1)

S(1)-O(1)	1.4271(12)		C(4)-	-C(5)	1.368(2)	
S(1)-O(1)#1	1.4271(12)		C(5)-	-C(6)	1.380(2)	
S(1)-N(3)	1.6332(16)		C(6)-	-C(7)	1.509(2)	
S(1)-C(8)	1.759(2)		C(8)-	-C(9)#1	1.3796(19)	
N(1)-C(1)	1.4629(19)		C(8)-	-C(9)	1.3796(18)	
N(1)-C(1)#1	1.4630(19)		C(9)-	-C(10)	1.376(2)	
N(1)-C(13)	1.491(2)		C(10)-C(11)	1.371(2)	
N(2)-C(6)	1.3292(18)		C(11)-C(10)#1	1.371(2)	
N(2)-C(2)	1.3331(17)		C(11)-C(12)	1.509(3)	
N(3)-C(7)#1	1.4718(19)		C(13)-C(15)	1.518(2)	
N(3)-C(7)	1.4718(19)		C(13)-C(15)#1	1.518(2)	
C(1)-C(2)	1.509(2)		C(13)-C(14)	1.526(3)	
C(2)-C(3)	1.375(2)					
C(3)-C(4)	1.374(2)					
O(1)-S(1)-O(1)#1		119.76(11)	C(10)-C(9)-C(8)	119.69(15)
O(1)-S(1)-N(3)		106.56(6)	C(11)-C(10)-C(9	9)	121.70(15)
O(1)#1-S(1)-N(3)		106.56(6)	C(10)#1-C(11)-(C(10)	117.9(2)
O(1)-S(1)-C(8)		108.44(6)	C(10)#1-C(11)-(C(12)	121.02(10)
O(1)#1- $S(1)$ - $C(8)$		108.44(6)	C(10)-C(11)-C(1	12)	121.03(10)
N(3)-S(1)-C(8)		106.30(9)	N(1)-	-C(13)-C(15)	5)	109.02(12)
C(1)-N(1)-C(1)#1		109.84(19)	N(1)-	-C(13)-C(1	5)#1	109.02(12)
C(1)-N(1)-C(13)		114.24(10)	C(15	-C(13)-C(13)	15)#1	105.4(2)
C(1)#1-N(1)-C(13)	114.24(10)	N(1)-	-C(13)-C(14)	4)	112.10(18)
C(6) - N(2) - C(2)	,	117.95(12)	C(15)-C(13)-C(1	14)	110.54(14)
C(7) #1 - N(3) - C(7)		115.7(2)	C(15)#1-C(13)-(C(14)	110.54(14)
C(7) #1 - N(3) - S(1)		116.31(9)		,	-()	
C(7) - N(3) - S(1)		116.31(9)				
N(1) - C(1) - C(2)		111.89(13)				
N(2) - C(2) - C(3)		122.18(13)				
N(2) - C(2) - C(1)		116 38(13)				
C(3) - C(2) - C(1)		120.30(13) 121.40(14)				
C(4) - C(3) - C(2)		$119 \ 37(13)$				
C(5) - C(4) - C(3)		118,76(14)				
C(4) - C(5) - C(6)		118.57(14)				
N(2) - C(6) - C(5)		122.98(13)				
N(2) - C(6) - C(7)		115 26(13)				
C(5) - C(6) - C(7)		121 65(14)				
N(3) = C(7) = C(6)		111 33(13)				
C(9) #1 - C(8) - C(9)		119 29(19)				
C(9) #1 - C(8) - C(1)		120 27(9)				
C(2) + T - C(0) - O(T)		140.41(9)				

Tabelle 3. Bindungslängen [Å] und -winkel [⁰] für 0528.

120.27(9)

C(9)-C(8)-S(1)

7 Anhang

Symmetrietransformationen für die äquivalenten Atome:

#1 x,-y+1/2,z

Tabelle 4. Anisotrope Auslenkungsparameter [Å² x 10³] für 0528.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$]

	$\mathbf{U}_{_{11}}$	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
S(1)	48(1)	71(1)	45(1)	0	-11(1)	0
0(1)	64(1)	90(1)	65(1)	25(1)	-9(1)	-7(1)
N(1)	46(1)	58(1)	47(1)	0	-13(1)	0
N(2)	46(1)	38(1)	48(1)	-2(1)	-2(1)	2(1)
N(3)	49(1)	72(1)	49(1)	0	-13(1)	0
C(1)	74(1)	96(1)	53(1)	-9(1)	-13(1)	35(1)
C(2)	48(1)	43(1)	54(1)	-5(1)	-7(1)	7(1)
C(3)	44(1)	58(1)	77(1)	-6(1)	-4(1)	-4(1)
C(4)	62(1)	63(1)	76(1)	7(1)	20(1)	-8(1)
C(5)	72(1)	78(1)	47(1)	9(1)	1(1)	4(1)
C(6)	48(1)	54(1)	49(1)	-4(1)	-6(1)	3(1)
C(7)	51(1)	102(1)	71(1)	-28(1)	-13(1)	10(1)
C(8)	47(1)	47(1)	51(1)	0	-14(1)	0
C(9)	57(1)	42(1)	84(1)	7(1)	-8(1)	-2(1)
C(10)	59(1)	46(1)	95(1)	-5(1)	-2(1)	10(1)
C(11)	51(1)	57(1)	66(1)	0	-6(1)	0
C(12)	65(2)	99(2)	95(2)	0	13(1)	0
C(13)	53(1)	66(1)	50(1)	0	-16(1)	0
C(14)	83(2)	171(3)	47(1)	0	-12(1)	0
C(15)	83(1)	80(1)	93(1)	-5(1)	-37(1)	-16(1)

7 Anhang

	х	У	Z	U(eq)
H(1A)	8705	4128	12071	89
H(1B)	7783	3392	12109	89
Н(З)	9547	4043	10374	72
H(4)	9201	4365	8809	80
H(5)	7647	4141	8298	79
H(7A)	5705	3471	9844	90
H(7B)	5855	4149	8916	90
H(9)	3999	4165	8407	73
H(10)	2557	4150	9165	80
H(12A)	996	2881	9397	130
H(12B)	1542	2873	10355	130
H(12C)	1266	1746	9871	130
H(14A)	9354	2328	14189	151
H(14B)	8467	1951	13603	151
H(14C)	8679	3221	13743	151
H(15A)	10533	3547	12156	128
H(15B)	10688	3435	13240	128
H(15C)	9853	4170	12853	128

Tabelle 5.

H-Atomkoordinaten	x 10 ⁴	und äq	uivalente	isotrope	Auslenkun	gsparameter	[Å	² x]	10 ³	für	0528
-------------------	-------------------	--------	-----------	----------	-----------	-------------	----	------------------	-----------------	-----	------

7.1.7 L-N₄AdH **41**

7.1.7.1 NMR-Spektren

a) 400 MHz ¹H-NMR-Spektrum in CDCl₃

c) 100 MHz $^{13}C\{^{1}H\}$ -NMR-Spektrum in CDCl₃

7.1.7.2 IR-Spektrum

7.1.7.3 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 06790a.

Summenformel	$C_{24}H_{30}N_4$
Molmasse	374.52
Temperatur	150 K
Strahlung	СиКа
Wellenlänge	1.54180 Å
Scanmodus	Ω -scans
Kristallsystem	Monoklin
Raumgruppe	I2/a
Zelldimensionen	$a = 25.2836(4)$ Å $\alpha = 90^{\circ}$
	$b = 6.3033(1)$ Å $\beta = 104.418(1)^{\circ}$
	$c = 25.4273(2) \text{ Å}$ $\gamma = 90^{\circ}$
Zellvolumen	3924.72(9) Å ³
Formeleinheiten pro Zelle Z	8
Berechnete Dichte	1.268 Mg/m ³
Absorptionskoeffizient	0.585 mm ⁻¹
Kristallgröße	0.39 x 0.21 x 0.07 mm
Gemessener θ-Bereich	4.41 bis 62.39°
Anzahl der gemessenen Reflexe	13688
Unabhängige Reflexe	2925 (Rint = 0.0160)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.9602 und 0.8040
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	2925 / 0 / 257
Endgültige R-Werte [I> $2\sigma(I)$]	R1 = 0.0293, $wR2 = 0.0785$
R-Werte (alle Daten)	R1 = 0.0327, wR2 = 0.0809
Wichtungsschema	w=1/[$\sigma^{2}(Fo^{2})+(0.0443P)^{2}+1.5984P$] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.081
Größtes Maximum und Minimum	0.207 und -0.150 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Das Wasserstoffatom am Stickstoffatom N3 wurde frei verfeinert. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}}$$

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|}$$

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right|}{\sum \left|F_{o}\right|}$$

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06790a. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	X	У	Z	U(eq)
 N(1)	2709(1)	6667(2)	3805(1)	24(1)
N(2)	1395(1)	6742(2)	3937(1)	23(1)
N(3)	462(1)	8396(2)	3141(1)	30(1)
N(4)	1488(1)	7458(2)	2852(1)	25(1)
C(1)	2455(1)	7662(2)	3277(1)	34(1)
C(2)	1963(1)	6427(2)	2971(1)	25(1)
C(3)	2004(1)	4295(2)	2843(1)	33(1)
C(4)	1536(1)	3201(2)	2593(1)	36(1)
C(5)	1040(1)	4240(2)	2494(1)	32(1)
C(6)	1030(1)	6354(2)	2636(1)	26(1)
C(7)	509(1)	7557(2)	2616(1)	32(1)
C(8)	420(1)	6800(2)	3546(1)	31(1)

				•
C(9)	936(1)	5577(2)	3805(1)	25(1)
C(10)	940(1)	3407(2)	3889(1)	31(1)
C(11)	1433(1)	2397(2)	4100(1)	37(1)
C(12)	1908(1)	3572(2)	4204(1)	31(1)
C(13)	1875(1)	5751(2)	4113(1)	24(1)
C(14)	2379(1)	7116(2)	4196(1)	30(1)
C(15)	3304(1)	7112(2)	4027(1)	21(1)
C(16)	3532(1)	5528(2)	4487(1)	24(1)
C(17)	4145(1)	5835(2)	4719(1)	26(1)
C(18)	4447(1)	5470(2)	4275(1)	30(1)
C(19)	4231(1)	7042(2)	3816(1)	28(1)
C(20)	3616(1)	6739(2)	3587(1)	26(1)
C(21)	4253(1)	8098(2)	4937(1)	28(1)
C(22)	4046(1)	9683(2)	4477(1)	27(1)
C(23)	4341(1)	9309(2)	4028(1)	30(1)
C(24)	3429(1)	9389(2)	4245(1)	25(1)

7 Anhang

7	Anl	hang
---	-----	------

_			
N(1)-C(14)	1.4762(15)	C(9)-C(10)	1.3844(17)
N(1)-C(1)	1.4779(14)	C(10)-C(11)	1.3827(19)
N(1)-C(15)	1.4937(14)	C(11)-C(12)	1.3786(19)
N(2)-C(13)	1.3381(15)	C(12)-C(13)	1.3916(17)
N(2)-C(9)	1.3448(15)	C(13)-C(14)	1.5088(17)
N(3)-C(8)	1.4632(16)	C(15)-C(16)	1.5383(14)
N(3)-C(7)	1.4678(15)	C(15)-C(20)	1.5403(15)
N(3)-HN3	0.893(16)	C(15)-C(24)	1.5432(15)
N(4)-C(2)	1.3325(15)	C(16)-C(17)	1.5274(17)
N(4)-C(6)	1.3463(15)	C(17)-C(18)	1.5290(16)
C(1)-C(2)	1.5084(17)	C(17)-C(21)	1.5302(16)
C(2)-C(3)	1.3930(18)	C(18)-C(19)	1.5251(16)
C(3)-C(4)	1.3801(18)	C(19)-C(23)	1.5283(17)
C(4)-C(5)	1.3822(18)	C(19)-C(20)	1.5295(16)
C(5)-C(6)	1.3821(18)	C(21)-C(22)	1.5291(16)
C(6)-C(7)	1.5091(17)	C(22)-C(23)	1.5286(16)
C(8)-C(9)	1.5162(17)	C(22)-C(24)	1.5365(17)
C(14)-N(1)-C	(1) 109.85(9)	N(3)-C(7)-C(6)	114.63(9)
C(14)-N(1)-C	(15) 113.24(8)	N(3)-C(8)-C(9)	116.74(10)
C(1)-N(1)-C(15) 115.62(9)	N(2)-C(9)-C(10)	121.86(11)
C(13)-N(2)-C	(9) 118.91(10)	N(2)-C(9)-C(8)	115.26(10)
C(8)-N(3)-C(7) 115.49(10)	C(10)-C(9)-C(8)	122.86(11)
C(8)-N(3)-HN	3 107.7(9)	C(11)-C(10)-C(9)	119.11(12)
C(7)-N(3)-HN	3 106.5(9)	C(12)-C(11)-C(10)	118.98(12)
C(2)-N(4)-C(6) 118.44(10)	C(11)-C(12)-C(13)	119.04(12)
N(1)-C(1)-C(2) 111.47(9)	N(2)-C(13)-C(12)	121.85(11)
N(4)-C(2)-C(3) 122.20(11)	N(2)-C(13)-C(14)	116.38(10)
N(4)-C(2)-C(1) 116.50(11)	C(12)-C(13)-C(14)	121.76(11)
C(3)-C(2)-C(1) 121.24(11)	N(1)-C(14)-C(13)	113.36(9)
C(4)-C(3)-C(2) 118.96(12)	N(1)-C(15)-C(16)	108.48(9)
C(3)-C(4)-C(5) 118.88(12)	N(1)-C(15)-C(20)	110.35(8)
C(6)-C(5)-C(4) 118.95(11)	C(16)-C(15)-C(20)	106.89(9)
N(4)-C(6)-C(5) 122.34(11)	N(1)-C(15)-C(24)	114.05(9)
N(4)-C(6)-C(7) 114.16(11)	C(16)-C(15)-C(24)	108.98(8)
C(5)-C(6)-C(7) 123.24(11)	C(20)-C(15)-C(24)	107.85(9)

Tabelle 3. Bind	ungslängen [Å]	und -winkel [°]	für 0679oa.
-----------------	----------------	-----------------	-------------

7	Anhang
---	--------

C(17) - C(16) - C(15) 111.38(9) C(16) - C(17) - C(18) 109.93(9) C(16) - C(17) - C(21) 109.28(9) C(18) - C(17) - C(21) 109.32(10) C(19) - C(18) - C(17) 108.59(9) C(18) - C(19) - C(23) 109.77(9) C(18) - C(19) - C(20) 110.28(10) C(23) - C(19) - C(20) 109.22(10) C(19) - C(20) - C(15) 111.18(9) C(22) - C(21) - C(17) 109.60(9) C(23) - C(22) - C(24) 109.41(9) C(21) - C(22) - C(24) 109.65(9) C(19) - C(23) - C(22) 109.15(9) C(22) - C(24) - C(15) 110.37(9)

Tabelle 4. Anisotrope Auslenkungsparameter $[\text{\AA}^2 \text{ x } 10^3]$ für 06790a.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	19(1)	28(1)	24(1)	2(1)	3(1)	-1(1)
N(2)	20(1)	27(1)	24(1)	-1(1)	7(1)	0(1)
N(3)	23(1)	32(1)	33(1)	-2(1)	4(1)	2(1)
N(4)	22(1)	31(1)	21(1)	3(1)	3(1)	-1(1)
C(1)	25(1)	37(1)	36(1)	12(1)	-2(1)	-5(1)
C(2)	22(1)	33(1)	21(1)	6(1)	5(1)	1(1)
C(3)	30(1)	38(1)	29(1)	0(1)	7(1)	8(1)
C(4)	44(1)	31(1)	31(1)	-7(1)	6(1)	2(1)
C(5)	31(1)	37(1)	25(1)	-4(1)	4(1)	-8(1)
C(6)	23(1)	35(1)	18(1)	1(1)	3(1)	-3(1)
C(7)	23(1)	44(1)	28(1)	2(1)	2(1)	2(1)
C(8)	21(1)	41(1)	30(1)	-2(1)	6(1)	-1(1)
C(9)	24(1)	31(1)	23(1)	-3(1)	9(1)	-3(1)
C(10)	29(1)	31(1)	38(1)	-4(1)	15(1)	-7(1)
C(11)	43(1)	25(1)	48(1)	4(1)	22(1)	0(1)
C(12)	29(1)	31(1)	35(1)	5(1)	11(1)	7(1)
C(13)	24(1)	29(1)	22(1)	-2(1)	7(1)	2(1)
C(14)	22(1)	31(1)	36(1)	-8(1)	7(1)	0(1)
C(15)	18(1)	22(1)	23(1)	0(1)	3(1)	-2(1)
C(16)	24(1)	22(1)	26(1)	2(1)	6(1)	0(1)
C(17)	22(1)	28(1)	26(1)	7(1)	1(1)	1(1)
C(18)	20(1)	30(1)	38(1)	-1(1)	5(1)	1(1)
C(19)	22(1)	36(1)	26(1)	-2(1)	9(1)	-2(1)
C(20)	25(1)	31(1)	23(1)	-2(1)	4(1)	-2(1)
C(21)	22(1)	36(1)	24(1)	-2(1)	1(1)	-5(1)
C(22)	27(1)	23(1)	31(1)	-3(1)	3(1)	-6(1)
C(23)	23(1)	34(1)	31(1)	6(1)	3(1)	-7(1)
C(24)	25(1)	21(1)	29(1)	1(1)	4(1)	1(1)

Tabelle 5.

	Х	у	Z	U(eq)
HN3	763(6)	9150(20)	3274(6)	39(4)
H(1A)	2726	7740	3056	41
H(1B)	2343	9128	3338	41
H(3)	2349	3605	2925	39
H(4)	1555	1758	2492	43
H(5)	710	3513	2331	38
H(7A)	483	8755	2359	39
H(7B)	195	6605	2470	39
H(8A)	135	5767	3373	37
H(8B)	293	7517	3839	37
H(10)	609	2621	3803	37
H(11)	1444	917	4172	44
H(12)	2252	2903	4335	37
H(14A)	2268	8626	4163	35
H(14B)	2608	6890	4569	35
H(16A)	3342	5723	4780	29
H(16B)	3462	4063	4347	29
H(17)	4280	4802	5021	32
H(18A)	4844	5681	4424	36
H(18B)	4386	4000	4137	36
H(19)	4421	6799	3520	33
H(20A)	3545	5281	3442	31
H(20B)	3484	7744	3284	31
H(21A)	4064	8337	5229	34
H(21B)	4650	8304	5092	34
H(22)	4121	11160	4620	33
H(23A)	4208	10330	3728	36
H(23B)	4738	9527	4172	36
H(24A)	3295	10420	3948	30
H(24B)	3236	9666	4533	30

H-Atomkoordinaten [x	10 ⁴] uno	l äquivalente	isotrope A	uslenkungsparame	ter [Å ²	$x 10^3$]	für 06790a.
-----------------------	-----------------------	---------------	------------	------------------	---------------------	-------------	-------------

7.1.8 L-N₄BzH **42**

7.1.8.1 NMR-Spektren

a) 400 MHz ¹H-NMR-Spektrum in CDCl₃

7.1.8.2 IR-Spektrum

7.1.9 L-N₄HTos 19

7.1.9.1 NMR-Spektren

a) 600 MHz ¹H-NMR-Spektrum in CDCl₃

b) 125 MHz gekoppeltes 13C-NMR-Spektrum in CDCl3

c) 125 MHz ¹³C{¹H}-NMR-Spektrum in CDCl₃

d) 125 MHz DEPT(135)-NMR-Spektrum in CDCl₃

242

7.1.9.3 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 07400.

Summenformel	$C_{21}H_{22}N_4O_2S$	
Molmasse	394.49	
Temperatur	150(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Ω -scans	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$	
Zelldimensionen	a = 21.9182(7) Å	$\alpha = 90^{\circ}$
	b = 6.1732(2) Å	$\beta = 95.392(3)^{\circ}$
	c = 14.0489(4) Å	$\gamma = 90^{\circ}$
Zellvolumen	1892.48(10) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.385 Mg/m ³	
Absorptionskoeffizient	0.197 mm ⁻¹	
Kristallgröße	0.38 x 0.32 x 0.08 mm	
Gemessener θ-Bereich	2.91 bis 24.15°	
Anzahl der gemessenen Reflexe	9808	
Unabhängige Reflexe	2956 (Rint = 0.0457)	
Absorptionskorrektur	Semi-empirisch aus Äquivalenter	1
Max. und min. Transmission	0.9844 und 0.9290	
Diffraktometer	Oxford Diffraction Gemini S Ultr	ra
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen	F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	2956 / 1 / 257	
Endgültige R-Werte [I>2o(I)]	R1 = 0.0389, wR2 = 0.0938	
R-Werte (alle Daten)	R1 = 0.0603, wR2 = 0.1027	
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0620P)^2]$ mit P=	$=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.946	
Größtes Maximum und Minimum	0.608 und -0.320 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden

alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}}$$

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|}$$

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|}$$

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right|}{\sum \left|F_{o}\right|}$$

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 07400. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
S(1)	1674(1)	5518(1)	-563(1)	31(1)
0(1)	1884(1)	4719(3)	-1437(1)	44(1)
0(2)	1483(1)	3994(3)	122(1)	44(1)
N(1)	4415(1)	9314(4)	1978(2)	38(1)
N(2)	3773(1)	7746(3)	181(1)	25(1)
N(3)	2212(1)	7013(3)	-53(1)	29(1)
N(4)	3151(1)	7713(3)	1927(1)	28(1)
C(1)	4702(1)	8116(4)	1224(2)	30(1)
C(2)	4268(1)	6694(4)	605(2)	25(1)
C(3)	4328(1)	4470(4)	558(2)	29(1)
C(4)	3863(1)	3265(4)	78(2)	29(1)
C(5)	3344(1)	4318(4)	-304(2)	28(1)
C(6)	3314(1)	6553(4)	-233(2)	26(1)
C(7)	2732(1)	7775(4)	-566(2)	31(1)
C(8)	2180(1)	7747(4)	946(2)	32(1)
C(9)	2644(1)	6597(4)	1638(2)	27(1)
C(10)	2557(1)	4455(4)	1901(2)	32(1)

C(11)	3021(1)	3407(5)	2449(2)	37(1)
C(12)	3555(1)	4520(4)	2716(2)	34(1)
C(13)	3608(1)	6665(4)	2448(2)	30(1)
C(14)	4185(1)	7966(5)	2711(2)	36(1)
C(15)	1040(1)	7234(4)	-860(2)	29(1)
C(16)	455(1)	6437(5)	-780(2)	33(1)
C(17)	-49(1)	7707(4)	-1040(2)	35(1)
C(18)	17(1)	9805(4)	-1380(2)	33(1)
C(19)	608(1)	10572(5)	-1461(2)	35(1)
C(20)	1119(1)	9308(4)	-1198(2)	33(1)
C(21)	-537(1)	11212(5)	-1631(2)	43(1)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 07400.

S(1)-O(2)	1.4364(18)		C(8)-H(8A)	0.9900	
S(1)-O(1)	1.4386(17)		C(8)-H(8B)	0.9900	
S(1)-N(3)	1.611(2)		C(9)-C(10)	1.391(3)	
S(1)-C(15)	1.767(2)		C(10)-C(11)	1.379(3)	
N(1)-C(14)	1.450(3)		C(10)-H(10)	0.9500	
N(1)-C(1)	1.481(3)		C(11)-C(12)	1.378(4)	
N(1)-H(1)	0.911(17)		C(11)-H(11)	0.9500	
N(2)-C(6)	1.335(3)		C(12)-C(13)	1.385(4)	
N(2)-C(2)	1.353(3)		C(12)-H(12)	0.9500	
N(3)-C(8)	1.483(3)		C(13)-C(14)	1.515(3)	
N(3)-C(7)	1.479(3)		C(14)-H(14A)	0.9900	
N(4)-C(13)	1.349(3)		C(14)-H(14B)	0.9900	
N(4)-C(9)	1.338(3)		C(15)-C(20)	1.382(3)	
C(1)-C(2)	1.509(3)		C(15)-C(16)	1.388(3)	
C(1)-H(1A)	0.9900		C(16)-C(17)	1.375(3)	
C(1)-H(1B)	0.9900		C(16)-H(16)	0.9500	
C(2)-C(3)	1.382(3)		C(17)-C(18)	1.392(4)	
C(3)-C(4)	1.384(3)		C(17)-H(17)	0.9500	
C(3)-H(3)	0.9500		C(18)-C(19)	1.393(3)	
C(4)-C(5)	1.376(3)		C(18)-C(21)	1.508(3)	
C(4)-H(4)	0.9500		C(19)-C(20)	1.387(3)	
C(5)-C(6)	1.385(3)		C(19)-H(19)	0.9500	
C(5)-H(5)	0.9500		C(20)-H(20)	0.9500	
C(6)-C(7)	1.519(3)		C(21)-H(21A)	0.9800	
C(7)-H(7A)	0.9900		C(21)-H(21B)	0.9800	
C(7)-H(7B)	0.9900		C(21)-H(21C)	0.9800	
C(8)-C(9)	1.515(3)				
O(2)-S(1)-O(1)		118.97(13)	O(1)-S(1)-N(3)		107.25(10)
O(2)-S(1)-N(3)		108.99(10)	O(2)-S(1)-C(15)		106.15(11)

7 Anhang

O(1)-S(1)-C(15)	108.12(11)	C(9)-C(10)-H(10)	120.6
N(3)-S(1)-C(15)	106.76(11)	C(11)-C(10)-H(10)	120.6
C(14)-N(1)-C(1)	114.9(2)	C(12)-C(11)-C(10)	118.8(3)
C(14)-N(1)-H(1)	103.7(17)	C(12)-C(11)-H(11)	120.6
C(1)-N(1)-H(1)	108.2(17)	C(10)-C(11)-H(11)	120.6
C(6)-N(2)-C(2)	117.8(2)	C(11)-C(12)-C(13)	119.6(2)
C(8)-N(3)-C(7)	118.05(19)	C(11)-C(12)-H(12)	120.2
C(8)-N(3)-S(1)	119.84(15)	C(13)-C(12)-H(12)	120.2
C(7)-N(3)-S(1)	122.05(16)	N(4)-C(13)-C(12)	121.9(2)
C(13)-N(4)-C(9)	118.1(2)	N(4)-C(13)-C(14)	116.1(2)
N(1)-C(1)-C(2)	114.48(18)	C(12)-C(13)-C(14)	122.0(2)
N(1)-C(1)-H(1A)	108.6	N(1)-C(14)-C(13)	117.9(2)
C(2)-C(1)-H(1A)	108.6	N(1)-C(14)-H(14A)	107.8
N(1)-C(1)-H(1B)	108.6	C(13)-C(14)-H(14A)	107.8
C(2)-C(1)-H(1B)	108.6	N(1)-C(14)-H(14B)	107.8
H(1A)-C(1)-H(1B)	107.6	C(13)-C(14)-H(14B)	107.8
N(2)-C(2)-C(3)	122.2(2)	H(14A)-C(14)-H(14B)	107.2
N(2)-C(2)-C(1)	114.3(2)	C(20)-C(15)-C(16)	120.2(2)
C(3)-C(2)-C(1)	123.2(2)	C(20)-C(15)-S(1)	121.02(18)
C(4)-C(3)-C(2)	119.2(2)	C(16)-C(15)-S(1)	118.7(2)
C(4)-C(3)-H(3)	120.4	C(17)-C(16)-C(15)	120.1(3)
C(2)-C(3)-H(3)	120.4	C(17)-C(16)-H(16)	120.0
C(3)-C(4)-C(5)	118.7(2)	C(15)-C(16)-H(16)	120.0
C(3)-C(4)-H(4)	120.6	C(18)-C(17)-C(16)	121.0(2)
C(5)-C(4)-H(4)	120.6	C(18)-C(17)-H(17)	119.5
C(6)-C(5)-C(4)	119.0(2)	C(16)-C(17)-H(17)	119.5
C(6)-C(5)-H(5)	120.5	C(17)-C(18)-C(19)	118.1(2)
C(4)-C(5)-H(5)	120.5	C(17)-C(18)-C(21)	120.6(2)
N(2)-C(6)-C(5)	122.9(2)	C(19)-C(18)-C(21)	121.3(3)
N(2)-C(6)-C(7)	115.9(2)	C(18)-C(19)-C(20)	121.3(3)
C(5)-C(6)-C(7)	121.1(2)	C(18)-C(19)-H(19)	119.3
N(3)-C(7)-C(6)	110.82(19)	C(20)-C(19)-H(19)	119.3
N(3)-C(7)-H(7A)	109.5	C(15)-C(20)-C(19)	119.3(2)
C(6)-C(7)-H(7A)	109.5	C(15)-C(20)-H(20)	120.4
N(3)-C(7)-H(7B)	109.5	C(19)-C(20)-H(20)	120.4
C(6)-C(7)-H(7B)	109.5	C(18)-C(21)-H(21A)	109.5
H(7A)-C(7)-H(7B)	108.1	C(18)-C(21)-H(21B)	109.5
N(3)-C(8)-C(9)	112.04(19)	H(21A)-C(21)-H(21B)	109.5
N(3)-C(8)-H(8A)	109.2	C(18)-C(21)-H(21C)	109.5
C(9)-C(8)-H(8A)	109.2	H(21A)-C(21)-H(21C)	109.5
N(3)-C(8)-H(8B)	109.2	H(21B)-C(21)-H(21C)	109.5
C(9)-C(8)-H(8B)	109.2		
H(8A)-C(8)-H(8B)	107.9		
N(4)-C(9)-C(10)	122.6(2)		
N(4)-C(9)-C(8)	116.2(2)		
C(10)-C(9)-C(8)	121.0(2)		
C(9)-C(10)-C(11)	118.8(2)		

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 07400.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S(1)	24(1)	29(1)	38(1)	-2(1)	-5(1)	1(1)
0(1)	33(1)	52(1)	45(1)	-20(1)	-6(1)	9(1)
0(2)	34(1)	36(1)	60(1)	13(1)	-10(1)	-7(1)
N(1)	38(1)	38(2)	39(1)	-5(1)	3(1)	-7(1)
N(2)	23(1)	25(1)	28(1)	0(1)	4(1)	-2(1)
N(3)	21(1)	37(1)	30(1)	-4(1)	-1(1)	-2(1)
N(4)	24(1)	32(1)	28(1)	-2(1)	4(1)	-2(1)
C(1)	22(1)	34(2)	35(1)	-3(1)	3(1)	-3(1)
C(2)	21(1)	31(2)	25(1)	1(1)	5(1)	1(1)
C(3)	26(1)	31(2)	30(1)	0(1)	4(1)	5(1)
C(4)	32(1)	23(1)	34(1)	-2(1)	5(1)	3(1)
C(5)	27(1)	30(2)	28(1)	-2(1)	2(1)	-5(1)
C(6)	25(1)	30(2)	22(1)	1(1)	4(1)	-1(1)
C(7)	27(1)	34(2)	31(1)	3(1)	0(1)	-2(1)
C(8)	25(1)	37(2)	34(1)	-5(1)	1(1)	1(1)
C(9)	23(1)	32(2)	25(1)	-2(1)	4(1)	2(1)
C(10)	32(1)	35(2)	30(1)	0(1)	3(1)	-7(1)
C(11)	51(2)	30(2)	31(1)	2(1)	3(1)	-4(1)
C(12)	34(2)	39(2)	29(1)	3(1)	2(1)	5(1)
C(13)	27(1)	41(2)	24(1)	-4(1)	5(1)	1(1)
C(14)	29(1)	47(2)	32(1)	-2(1)	1(1)	-6(1)
C(15)	25(1)	34(2)	27(1)	-2(1)	0(1)	0(1)
C(16)	28(1)	42(2)	28(1)	5(1)	2(1)	0(1)
C(17)	23(1)	52(2)	32(1)	1(1)	5(1)	-2(1)
C(18)	28(1)	45(2)	26(1)	-4(1)	0(1)	6(1)
C(19)	34(2)	32(2)	39(1)	-2(1)	-1(1)	1(1)
C(20)	22(1)	36(2)	40(1)	-2(1)	-1(1)	-4(1)
C(21)	34(2)	59(2)	37(1)	-3(1)	1(1)	12(1)

Tabelle 5.

	х	У	Z	U(eq)
H(1)	4072(10)	9990(4)	1703(17)	46
H(1A)	5036	7201	1531	36
H(1B)	4890	9174	810	36
H(3)	4684	3776	851	35
H(4)	3902	1740	15	35
H(5)	3010	3524	-613	34
H(7A)	2795	9344	-448	37
H(7B)	2634	7559	-1261	37
H(8A)	1763	7475	1135	38
H(8B)	2255	9328	983	38
H(10)	2184	3728	1707	39
H(11)	2974	1944	2639	45
H(12)	3885	3820	3081	41
H(14A)	4110	8911	3257	43
H(14B)	4514	6940	2939	43
H(16)	402	5014	-544	39
H(17)	-447	7144	-988	42
H(19)	661	11991	-1702	42
H(20)	1519	9861	-1248	39
H(21A)	-848	10382	-2023	65
H(21B)	-418	12480	-1990	65
H(21C)	-705	11688	-1043	65

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 07400.

$7.1.10 \ L\text{-}N_4 AdMe\, \textbf{43}$

7.1.10.1 NMR-Spektren

a) 200 MHz ¹H-NMR-Spektrum in CDCl₃

b) 50 MHz ¹³C-NMR-Spektrum in CDCl₃

1

d) 50 MHz DEPT(135)-Spektrum in CDCl₃

e) 50 MHz DEPT(90)-Spektrum in CDCl₃

7.1.10.2 IR-Spektrum

251

7.1.11 L-N₄MeTos 20

7.1.11.1NMR-Spektren a) 400 MHz-¹H-Spektrum in CDCl₃

c) 100 MHz-13C{1H}-Spektrum in CDCl3

7.1.11.2 IR-Spektrum

7.1.12 L-N₄HMe **21**

7.1.12.1 NMR-Spektrum

a) 200 MHz ¹H-NMR-Spektrum in CDCl₃

7.1.12.2 IR-Spektrum

7.1.13 HL-N₄Ad(^{tt}BzO) 47

7.1.13.1 NMR-Spektrum

7.1.14 HL-N₄(^{*tt*}BzO)Me **45**

7.1.14.1 NMR-Spektren

a) 200 MHz ¹H-NMR-Spektrum in CDCl₃

b) 50 MHz ¹³C-NMR-Spektrum in CDCl₃

d) 50 MHz DEPT(135)-Spektrum in CDCl₃

7.1.14.2 IR-Spektrum

7.1.14.3 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0518.

Summenformel	$C_{32}H_{48}N_4O_3$	
Molmasse	536.74	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ-Oszillation	
Kristallsystem	Triklin	
Raumgruppe	P1; ⁻	
Zelldimensionen	<i>a</i> = 9.3590(15) Å	$\alpha = 92.034(18)^{\circ}$
	b = 12.5295(18) Å	$\beta = 107.438(17)^{\circ}$
	c = 14.859(2) Å	$\gamma = 105.905(17)^{\circ}$
Zellvolumen	1585.5(4) Å ³	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.124 Mg/m ³	
Absorptionskoeffizient	0.072 mm^{-1}	
Kristallgröße	0.68 x 0.56 x 0.16 mm	
Gemessener θ-Bereich	2.59 bis 26.73°	
Anzahl der gemessenen Reflexe	10808	
Unabhängige Reflexe	6234 (Rint = 0.0361)	
Absorptionskorrektur	Keine	
Max. und min. Transmission	0.9885 und 0.9524	

7	Anl	hang
---	-----	------

Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	6234 / 18 / 399
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0441, wR2 = 0.0870
R-Werte (alle Daten)	R1 = 0.1346, wR2 = 0.1055
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.04P)^2]$ mit P=(Fo^2+2Fc^2)/3
GooF (alle Daten)	0.726
Größtes Maximum und Minimum	0.204 und -0.192 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und O-H für Wasser) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10 ⁴	und äc	uivalente	isotrope	Auslenkung	sparameter	[Å ²	² x 10 ³	für	0518.
					<u> </u>					

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
0(1)	7358(2)	4175(2)	5140(1)	69(1)
N(1)	3740(3)	-1334(2)	1420(2)	80(1)
N(2)	6842(2)	1134(2)	2221(1)	63(1)
N(3)	8360(2)	2666(2)	4364(1)	60(1)
N(4)	5845(2)	-40(2)	3605(1)	67(1)
C(1)	5119(4)	-593(3)	1244(2)	87(1)
C(2)	5433(3)	621(2)	1592(2)	65(1)
C(3)	4315(3)	1161(2)	1285(2)	79(1)
C(4)	4625(3)	2245(2)	1658(2)	87(1)
C(5)	6027(3)	2749(2)	2350(2)	78(1)
C(6)	7107(3)	2169(2)	2627(1)	61(1)
C(7)	8610(3)	2645(2)	3432(2)	74(1)
C(8)	7857(3)	1537(2)	4644(2)	73(1)
C(9)	6154(3)	908(2)	4174(2)	64(1)
C(10)	4968(3)	1286(3)	4310(2)	81(1)
C(11)	3435(4)	692(3)	3839(2)	95(1)
C(12)	3119(3)	-246(3)	3225(2)	90(1)
C(13)	4344(3)	-588(2)	3114(2)	75(1)
C(14)	4081(4)	-1574(2)	2404(2)	93(1)
C(15)	3205(4)	-2400(3)	792(2)	109(1)
C(16)	9841(3)	3323(2)	5093(2)	63(1)
C(17)	9608(3)	3659(2)	6010(1)	56(1)
C(18)	8383(3)	4098(2)	5999(1)	54(1)
C(19)	8213(2)	4491(2)	6839(1)	53(1)
C(20)	9321(3)	4417(2)	7682(1)	57(1)
C(21)	10553(3)	3972(2)	7732(1)	55(1)
C(22)	10647(3)	3585(2)	6872(2)	58(1)
C(23)	6866(3)	4975(2)	6834(2)	62(1)
C(24)	7036(3)	6051(2)	6354(2)	80(1)
C(25)	5264(3)	4130(2)	6316(2)	81(1)
C(26)	6898(3)	5294(3)	7844(2)	85(1)
C(27)	11707(3)	3871(2)	8673(2)	64(1)
C(28A)	11328(8)	2625(5)	8814(5)	108(3)
C(29A)	11610(9)	4524(8)	9506(3)	107(4)
C(30A)	13370(7)	4276(9)	8633(6)	107(3)
C(28B)	10890(13)	3217(15)	9305(9)	113(7)
C(29B)	12530(2)	5100(10)	9226(11)	128(7)
C(30B)	13030(2)	3440(2)	8590(13)	135(10)
0(2)	9448(3)	285(3)	2354(2)	144(1)

	7 Anl	nang	
9831(9)	1238(9)	1068(6)	

C(31)	9831(9)	1238(9)	1068(6)	295(5)
C(32)	9864(10)	612(9)	1553(5)	297(6)
O(3)	8382(5)	-1153(4)	3725(3)	208(2)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0518.

O(1)-C(18)	1.374(2)		C(13)-C(14)	1.512(4)	
N(1)-C(1)	1.470(4)		C(16)-C(17)	1.507(3)	
N(1)-C(14)	1.461(3)		C(17)-C(18)	1.397(3)	
N(1)-C(15)	1.473(3)		C(17)-C(22)	1.380(3)	
N(2)-C(6)	1.336(3)		C(18)-C(19)	1.394(3)	
N(2)-C(2)	1.335(3)		C(19)-C(20)	1.391(3)	
N(3)-C(8)	1.480(3)		C(19)-C(23)	1.540(3)	
N(3)-C(7)	1.474(3)		C(20)-C(21)	1.396(3)	
N(3)-C(16)	1.477(3)		C(21)-C(22)	1.387(3)	
N(4)-C(9)	1.343(3)		C(21)-C(27)	1.523(3)	
N(4)-C(13)	1.341(3)		C(23)-C(24)	1.539(3)	
C(1)-C(2)	1.509(3)		C(23)-C(26)	1.529(3)	
C(2)-C(3)	1.372(3)		C(23)-C(25)	1.531(3)	
C(3)-C(4)	1.368(4)		C(27)-C(29A)	1.498(5)	
C(4)-C(5)	1.367(3)		C(27)-C(30B)	1.520(11)	
C(5)-C(6)	1.375(3)		C(27)-C(28B)	1.511(10)	
C(6)-C(7)	1.499(3)		C(27)-C(30A)	1.519(7)	
C(8)-C(9)	1.502(3)		C(27)-C(28A)	1.540(5)	
C(9)-C(10)	1.383(3)		C(27)-C(29B)	1.587(10)	
C(10)-C(11)	1.370(4)		O(2)-C(32)	1.400(6)	
C(11)-C(12)	1.367(4)		C(31)-C(32)	1.085(7)	
C(12)-C(13)	1.379(4)				
C(1)-N(1)-C(14)		112.3(2)	C(4)-C(5)-C(6)		119.3(3)
C(1)-N(1)-C(15)		108.9(2)	N(2)-C(6)-C(5)		121.9(2)
C(14)-N(1)-C(15)		108.4(3)	N(2)-C(6)-C(7)		116.4(2)
C(6)-N(2)-C(2)		118.3(2)	C(5)-C(6)-C(7)		121.7(2)
C(8)-N(3)-C(7)		113.09(19)	N(3)-C(7)-C(6)		112.4(2)
C(8)-N(3)-C(16)		108.69(18)	N(3)-C(8)-C(9)		114.8(2)
C(7)-N(3)-C(16)		108.7(2)	N(4)-C(9)-C(10)		121.7(2)
C(9)-N(4)-C(13)		118.4(2)	N(4)-C(9)-C(8)		116.2(2)
N(1)-C(1)-C(2)		112.9(2)	C(10)-C(9)-C(8)		122.1(2)
N(2)-C(2)-C(3)		122.0(2)	C(9)-C(10)-C(11)	119.4(3)
N(2)-C(2)-C(1)		116.4(2)	C(12)-C(11)-C(1	0)	119.0(3)
C(3)-C(2)-C(1)		121.5(2)	C(11)-C(12)-C(1	3)	119.4(3)
C(4)-C(3)-C(2)		119.3(2)	N(4)-C(13)-C(12)	122.0(3)
C(3)-C(4)-C(5)		118.8(2)	N(4)-C(13)-C(14)	115.9(3)

7 Anhang

C(12)-C(13)-C(14)	122.1(3)
N(1)-C(14)-C(13)	114.1(2)
N(3)-C(16)-C(17)	112.64(19)
C(18)-C(17)-C(22)	119.3(2)
C(18)-C(17)-C(16)	120.41(19)
C(22)-C(17)-C(16)	120.2(2)
O(1)-C(18)-C(17)	119.02(19)
O(1)-C(18)-C(19)	119.5(2)
C(17)-C(18)-C(19)	121.43(18)
C(18)-C(19)-C(20)	116.4(2)
C(18)-C(19)-C(23)	121.79(18)
C(20)-C(19)-C(23)	121.79(19)
C(19)-C(20)-C(21)	124.4(2)
C(22)-C(21)-C(20)	116.39(19)
C(22)-C(21)-C(27)	121.0(2)
C(20)-C(21)-C(27)	122.6(2)
C(21)-C(22)-C(17)	122.1(2)
C(19)-C(23)-C(24)	109.9(2)
C(19)-C(23)-C(26)	111.46(18)
C(24)-C(23)-C(26)	106.9(2)
C(19)-C(23)-C(25)	111.4(2)
C(24)-C(23)-C(25)	109.62(19)
C(26)-C(23)-C(25)	107.4(2)
C(21)-C(27)-C(29A)	112.9(3)
C(21)-C(27)-C(30B)	115.3(7)
C(29A)-C(27)-C(30B)	129.1(8)
C(21)-C(27)-C(28B)	112.2(4)
C(29A)-C(27)-C(28B)	62.9(6)
C(30B)-C(27)-C(28B)	110.9(10)
C(21)-C(27)-C(30A)	109.7(4)
C(29A)-C(27)-C(30A)	108.8(4)
C(30B)-C(27)-C(30A)	38.6(9)
C(28B)-C(27)-C(30A)	136.9(5)
C(21)-C(27)-C(28A)	107.8(2)
C(29A)-C(27)-C(28A)	108.8(4)
C(30B)-C(27)-C(28A)	70.9(10)
C(28B)-C(27)-C(28A)	48.3(6)
C(30A)-C(27)-C(28A)	108.8(4)
C(21)-C(27)-C(29B)	106.7(5)
C(29A)-C(27)-C(29B)	43.7(7)
C(30B)-C(27)-C(29B)	105.6(10)
C(28B)-C(27)-C(29B)	105.4(9)
C(30A)-C(27)-C(29B)	71.1(8)
C(28A)-C(27)-C(29B)	143.0(6)
C(31)-C(32)-O(2)	142.4(9)

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
				- /		
0(1)	72(1)	82(1)	55(1)	8(1)	14(1)	31(1)
N(1)	77(2)	64(2)	82(1)	-4(1)	14(1)	9(1)
N(2)	73(1)	61(2)	57(1)	7(1)	25(1)	21(1)
N(3)	64(1)	58(2)	52(1)	2(1)	20(1)	9(1)
N(4)	70(1)	54(2)	70(1)	15(1)	20(1)	9(1)
C(1)	95(2)	70(2)	93(2)	-6(2)	31(2)	22(2)
C(2)	75(2)	62(2)	58(1)	6(1)	21(1)	20(2)
C(3)	84(2)	74(2)	68(2)	0(1)	11(1)	23(2)
C(4)	98(2)	80(2)	82(2)	7(2)	10(2)	46(2)
C(5)	98(2)	60(2)	73(2)	3(1)	21(2)	28(2)
C(6)	73(2)	62(2)	50(1)	4(1)	26(1)	18(1)
C(7)	72(2)	86(2)	60(1)	-3(1)	26(1)	13(2)
C(8)	75(2)	67(2)	70(2)	9(1)	15(1)	19(2)
C(9)	68(2)	59(2)	61(1)	16(1)	22(1)	11(1)
C(10)	82(2)	87(2)	74(2)	10(1)	34(2)	18(2)
C(11)	76(2)	113(3)	103(2)	26(2)	44(2)	22(2)
C(12)	67(2)	94(3)	95(2)	20(2)	24(2)	5(2)
C(13)	75(2)	62(2)	74(2)	20(1)	18(1)	5(2)
C(14)	95(2)	61(2)	93(2)	10(2)	9(2)	1(2)
C(15)	111(2)	68(2)	117(2)	-19(2)	10(2)	12(2)
C(16)	57(1)	67(2)	63(1)	-2(1)	22(1)	12(1)
C(17)	54(1)	55(2)	54(1)	1(1)	18(1)	11(1)
C(18)	54(1)	54(2)	52(1)	8(1)	14(1)	16(1)
C(19)	52(1)	52(2)	55(1)	7(1)	18(1)	15(1)
C(20)	58(1)	61(2)	52(1)	1(1)	19(1)	18(1)
C(21)	50(1)	58(2)	55(1)	3(1)	16(1)	13(1)
C(22)	50(1)	60(2)	63(1)	3(1)	16(1)	16(1)
C(23)	60(2)	67(2)	64(1)	12(1)	22(1)	26(1)
C(24)	87(2)	76(2)	93(2)	25(2)	36(2)	41(2)
C(25)	63(2)	91(2)	93(2)	20(2)	24(1)	27(2)
C(26)	88(2)	106(3)	85(2)	16(2)	39(1)	53(2)
C(27)	57(1)	77(2)	56(1)	7(1)	12(1)	22(1)
C(28A)	131(5)	92(4)	86(4)	27(3)	7(3)	39(4)
C(29A)	107(5)	151(10)	56(3)	-16(3)	-4(3)	62(6)
C(30A)	61(3)	171(8)	82(3)	26(5)	12(2)	34(5)
C(28B)	98(8)	137(18)	95(9)	38(11)	29(6)	19(8)
C(29B)	119(13)	108(11)	96(9)	8(8)	-26(9)	5(9)
C(30B)	102(14)	230(3)	100(8)	28(15)	18(9)	114(19)
0(2)	130(2)	186(3)	153(2)	49(2)	57(2)	90(2)

Tabelle 4. Anisotrope Auslenkungsparameter [Å² x 10³] für 0518.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$]

7 Anhang	3
----------	---

C(31)	257(8)	470(16)	282(9)	242(9)	170(7)	187(9)
C(32)	340(10)	523(17)	251(7)	251(9)	227(8)	312(11)
0(3)	208(4)	187(3)	257(4)	48(3)	53(3)	127(3)

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0518.

	х	У	Z	U(eq)
H(1)	7385	3740	4725	83
H(1A)	4961	-672	566	104
H(1B)	6033	-825	1559	104
Н(З)	3356	793	828	95
H(4)	3895	2632	1445	105
H(5)	6248	3476	2631	93
H(7A)	9308	2200	3424	89
H(7B)	9116	3401	3341	89
H(8A)	8075	1609	5328	88
H(8B)	8484	1099	4495	88
H(10)	5208	1937	4716	97
H(11)	2622	922	3934	113
H(12)	2087	-649	2886	108
H(14A)	5011	-1823	2575	111
H(14B)	3215	-2184	2448	111
H(15A)	2948	-2259	140	163
H(15B)	2293	-2885	895	163
H(15C)	4025	-2751	930	163
H(16A)	10305	3991	4847	76
H(16B)	10570	2883	5220	76
H(20)	9236	4682	8250	68
H(22)	11436	3266	6876	70
H(24A)	7999	6604	6714	120
H(24B)	6168	6330	6328	120
H(24C)	7048	5889	5720	120
H(25A)	5190	3936	5669	122
H(25B)	4449	4455	6324	122
H(25C)	5146	3470	6629	122
H(26A)	6819	4646	8174	128
H(26B)	6030	5574	7817	128
H(26C)	7864	5862	8176	128
H(28A)	10258	2349	8803	162
H(28B)	12015	2541	9415	162
H(28C)	11473	2208	8311	162
H(29A)	11848	5303	9426	161

II (20D)	10051	4406	10070	1.61
H(29B)	12351	4426	10079	101
H(29C)	10569	4262	9546	161
H(30A)	13453	3845	8115	160
H(30B)	14091	4188	9219	160
H(30C)	13616	5052	8541	160
H(28D)	10291	3632	9506	170
H(28E)	11658	3094	9853	170
H(28F)	10201	2510	8959	170
H(29D)	13221	5524	8917	192
H(29E)	13116	5063	9870	192
H(29F)	11741	5457	9227	192
H(30D)	12620	2665	8323	202
H(30E)	13787	3512	9209	202
H(30F)	13535	3864	8185	202
H(2)	8650	443	2343	172
H(31A)	8868	1425	952	443
H(31B)	9892	948	479	443
H(31C)	10702	1897	1345	443
H(32A)	10970	664	1763	356
H(32B)	9362	-75	1114	356
H(03)	8790(8) -	-1010(7)	4358(15)	312
H(04)	7680(7)	-850(6)	3400(4)	312

7 Anhang

7.1.15 L-N₄(PhNO₂)₂ 52

7.1.15.1 NMR-Spektrum

a) 400 MHz ¹H-NMR-Spektrum in DMSO-d₆

7.1.15.2 IR-Spektrum

7.1.15.3 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 07020.

Summenformel	$C_{13}H_{11.50}Cl_{0.50}N_3O_2$	
Molmasse	259.48	
Temperatur	150(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Ω -scans	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$	
Zelldimensionen	a = 14.6867(4) Å	$\alpha = 90^{\circ}$
	b = 11.5062(3) Å	$\beta = 103.994(4)^{\circ}$
	c = 16.1216(6) Å	$\gamma = 90^{\circ}$
Zellvolumen	2643.50(14) Å ³	
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.304 Mg/m^3	
Absorptionskoeffizient	0.187 mm ⁻¹	
Kristallgröße	0.49 x 0.35 x 0.04 mm	

Gemessener θ-Bereich	2.44 bis 32.46°
Anzahl der gemessenen Reflexe	25085
Unabhängige Reflexe	8657 (Rint = 0.0703)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.9925 und 0.9137
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	8657 / 0 / 334
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0585, wR2 = 0.1380
R-Werte (alle Daten)	R1 = 0.1412, $wR2 = 0.1565$
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0650P)^{2}]$ mit P=(Fo^{2}+2Fc^{2})/3
GooF (alle Daten)	0.917
Größtes Maximum und Minimum	0.431 und -0.295 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Das auf der Wyckoff-Position *c* befindliche Ethermolekül ist mehrfach fehlgeordnet. Ein sinnvolles Modell kann nur mit sehr vielen Constraints erstellt werden. Daher wurde der Streubeitrag dieses Bereichs mit der Option ,SQUEEZE' des Programms ,PLATON' herausgerechnet. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.2fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10^4] und äquivalente isotrope Auslenkungsparameter [Å² x 10^3] für 07020.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
DT (1)	0170(1)	4255(2)	2199/1)	22(1)
N(1)	81/8(1)	4255(2)	3177(1)	23(1)
N(2)	7410(1)	5674(2)	4230(1)	20(1)
N(3)	7275(1)	4422(2)	5673(1)	23(1)
N(4)	8743(1)	3999(2)	4917(1)	22(1)
N(5)	5661(1)	581(2)	2163(1)	34(1)
N(6)	4981(1)	777(2)	4080(1)	35(1)
0(1)	4850(1)	/98(2)	1/95(2)	61(1)
0(2)	5965(1)	-422(2)	2263(1)	44(1)
0(3)	4173(1)	1020(2)	3686(1)	51(1)
0(4)	5295(1)	-218(2)	4139(1)	41(1)
C(1)	7919(2)	5430(2)	2888(2)	25(1)
C(2)	7462(1)	6126(2)	3470(1)	23(1)
C(3)	7115(2)	7235(2)	3264(2)	30(1)
C(4)	6741(2)	7844(2)	3841(2)	36(1)
C(5)	6674(2)	7338(2)	4596(2)	30(1)
C(6)	7011(1)	6218(2)	4788(1)	23(1)
C(7)	6944(2)	5614(2)	5587(2)	27(1)
C(8)	8203(1)	4193(2)	6217(1)	29(1)
C(9)	8885(1)	3721(2)	5752(1)	25(1)
C(10)	9659(2)	3059(2)	6162(2)	34(1)
C(11)	10292(2)	2710(2)	5715(2)	37(1)
C(12)	10151(2)	2997(2)	4862(2)	32(1)
C(13)	9358(1)	3654(2)	4483(2)	25(1)
C(14)	9164(1)	4002(2)	3555(2)	28(1)
C(15)	7541(1)	3355(2)	2975(1)	23(1)
C(16)	7819(2)	2206(2)	3184(2)	28(1)
C(17)	7199(2)	1295(2)	2932(2)	31(1)
C(18)	6294(2)	1532(2)	2477(1)	26(1)
C(19)	5989(2)	2666(2)	2308(2)	30(1)
C(20)	6594(2)	3566(2)	2557(2)	27(1)
C(21)	6714(1)	3518(2)	5283(1)	23(1)
C(22)	6970(2)	2358(2)	5471(2)	28(1)
C(23)	6409(2)	1461(2)	5080(2)	28(1)
C(24)	5583(1)	1711(2)	4492(1)	26(1)
C(25)	5315(1)	2851(2)	4287(2)	26(1)
C(26)	5873(1)	3743(2)	4675(1)	25(1)
Cl(1)	8715(1)	7797(1)	1916(1)	38(1)

N(1)-C(15)	1.382(3)		C(8)-H(8B)	0.9900	
N(1)-C(14)	1.458(3)		C(9)-C(10)	1.395(3)	
N(1)-C(1)	1.451(3)		C(10)-C(11)	1.368(4)	
N(2)-C(6)	1.347(3)		C(10)-H(10)	0.9500	
N(2)-C(2)	1.347(3)		C(11)-C(12)	1.380(4)	
N(2)-H(2)	0.8800		C(11)-H(11)	0.9500	
N(3)-C(21)	1.381(3)		C(12)-C(13)	1.398(3)	
N(3)-C(7)	1.450(3)		C(12)-H(12)	0.9500	
N(3)-C(8)	1.455(3)		C(13)-C(14)	1.508(3)	
N(4)-C(13)	1.331(3)		C(14)-H(14A)	0.9900	
N(4)-C(9)	1.350(3)		C(14)-H(14B)	0.9900	
N(5)-O(1)	1.221(3)		C(15)-C(20)	1.411(3)	
N(5)-O(2)	1.234(3)		C(15)-C(16)	1.400(3)	
N(5)-C(18)	1.446(3)		C(16)-C(17)	1.384(3)	
N(6)-O(4)	1.229(3)		C(16)-H(16)	0.9500	
N(6)-O(3)	1.234(2)		C(17)-C(18)	1.381(3)	
N(6)-C(24)	1.447(3)		C(17)-H(17)	0.9500	
C(1)-C(2)	1.508(3)		C(18)-C(19)	1.385(3)	
C(1)-H(1A)	0.9900		C(19)-C(20)	1.361(3)	
C(1)-H(1B)	0.9900		C(19)-H(19)	0.9500	
C(2)-C(3)	1.384(3)		C(20)-H(20)	0.9500	
C(3)-C(4)	1.381(3)		C(21)-C(26)	1.402(3)	
C(3)-H(3)	0.9500		C(21)-C(22)	1.401(3)	
C(4)-C(5)	1.373(3)		C(22)-C(23)	1.376(3)	
C(4)-H(4)	0.9500		C(22)-H(22)	0.9500	
C(5)-C(6)	1.388(3)		C(23)-C(24)	1.377(3)	
C(5)-H(5)	0.9500		C(23)-H(23)	0.9500	
C(6)-C(7)	1.488(3)		C(24)-C(25)	1.386(3)	
C(7)-H(7A)	0.9900		C(25)-C(26)	1.367(3)	
C(7)-H(7B)	0.9900		C(25)-H(25)	0.9500	
C(8)-C(9)	1.491(3)		C(26)-H(26)	0.9500	
C(8)-H(8A)	0.9900				
C(15)-N(1)-C(14)		119.78(18)	O(1)-N(5)-O(2)		122.3(2)
C(15)-N(1)-C(1)		120.87(17)	O(1)-N(5)-C(18)		118.9(2)
C(14)-N(1)-C(1)		118.51(18)	O(2)-N(5)-C(18)		118.8(2)
C(6)-N(2)-C(2)		123.72(18)	O(4)-N(6)-O(3)		123.2(2)
C(6)-N(2)-H(2)		118.1	O(4)-N(6)-C(24)		118.7(2)
C(2)-N(2)-H(2)		118.1	O(3)-N(6)-C(24)		118.2(2)
C(21)-N(3)-C(7)		121.28(17)	N(1)-C(1)-C(2)		114.64(18)
C(21)-N(3)-C(8)		120.48(18)	N(1)-C(1)-H(1A)		108.6
C(7)-N(3)-C(8)		118.18(18)	C(2)-C(1)-H(1A)		108.6
C(13)-N(4)-C(9)		119.54(18)	N(1)-C(1)-H(1B)		108.6

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 07020.

7 Anhang

C(2)-C(1)-H(1B)	108.6	N(1)-C(14)-H(14B)	108.9
H(lA)-C(l)-H(lB)	107.6	C(13)-C(14)-H(14B)	108.9
N(2)-C(2)-C(3)	118.5(2)	H(14A)-C(14)-H(14B)	107.7
N(2)-C(2)-C(1)	119.19(19)	N(1)-C(15)-C(20)	121.1(2)
C(3)-C(2)-C(1)	122.22(19)	N(1)-C(15)-C(16)	120.61(19)
C(2)-C(3)-C(4)	119.3(2)	C(20)-C(15)-C(16)	118.3(2)
C(2)-C(3)-H(3)	120.3	C(17)-C(16)-C(15)	120.7(2)
C(4)-C(3)-H(3)	120.3	C(17)-C(16)-H(16)	119.6
C(5)-C(4)-C(3)	120.4(2)	C(15)-C(16)-H(16)	119.6
C(5)-C(4)-H(4)	119.8	C(16)-C(17)-C(18)	119.1(2)
C(3)-C(4)-H(4)	119.8	C(16)-C(17)-H(17)	120.4
C(4)-C(5)-C(6)	119.6(2)	C(18)-C(17)-H(17)	120.4
C(4)-C(5)-H(5)	120.2	C(17)-C(18)-C(19)	121.0(2)
C(6)-C(5)-H(5)	120.2	C(17)-C(18)-N(5)	119.4(2)
N(2)-C(6)-C(5)	118.2(2)	C(19)-C(18)-N(5)	119.7(2)
N(2)-C(6)-C(7)	119.61(19)	C(20)-C(19)-C(18)	120.2(2)
C(5)-C(6)-C(7)	122.1(2)	C(20)-C(19)-H(19)	119.9
N(3)-C(7)-C(6)	115.68(19)	C(18)-C(19)-H(19)	119.9
N(3)-C(7)-H(7A)	108.4	C(19)-C(20)-C(15)	120.5(2)
C(6)-C(7)-H(7A)	108.4	C(19)-C(20)-H(20)	119.8
N(3)-C(7)-H(7B)	108.4	C(15)-C(20)-H(20)	119.8
C(6)-C(7)-H(7B)	108.4	C(26)-C(21)-N(3)	120.5(2)
H(7A)-C(7)-H(7B)	107.4	C(26)-C(21)-C(22)	118.2(2)
C(9)-C(8)-N(3)	114.07(18)	N(3)-C(21)-C(22)	121.30(19)
C(9)-C(8)-H(8A)	108.7	C(23)-C(22)-C(21)	121.0(2)
N(3)-C(8)-H(8A)	108.7	C(23)-C(22)-H(22)	119.5
C(9)-C(8)-H(8B)	108.7	C(21)-C(22)-H(22)	119.5
N(3)-C(8)-H(8B)	108.7	C(22)-C(23)-C(24)	119.3(2)
H(8A)-C(8)-H(8B)	107.6	С(22)-С(23)-Н(23)	120.3
N(4)-C(9)-C(10)	120.9(2)	C(24)-C(23)-H(23)	120.3
N(4)-C(9)-C(8)	117.05(18)	C(25)-C(24)-C(23)	120.9(2)
C(10)-C(9)-C(8)	122.0(2)	C(25)-C(24)-N(6)	119.11(19)
C(11)-C(10)-C(9)	119.4(2)	C(23)-C(24)-N(6)	120.0(2)
C(11)-C(10)-H(10)	120.3	C(26)-C(25)-C(24)	119.8(2)
C(9)-C(10)-H(10)	120.3	C(26)-C(25)-H(25)	120.1
C(10)-C(11)-C(12)	119.8(2)	С(24)-С(25)-Н(25)	120.1
C(10)-C(11)-H(11)	120.1	C(25)-C(26)-C(21)	120.7(2)
С(12)-С(11)-Н(11)	120.1	C(25)-C(26)-H(26)	119.7
C(11)-C(12)-C(13)	118.2(2)	C(21)-C(26)-H(26)	119.7
C(11)-C(12)-H(12)	120.9		
С(13)-С(12)-Н(12)	120.9		
N(4)-C(13)-C(12)	122.1(2)		
N(4)-C(13)-C(14)	116.92(18)		
C(12)-C(13)-C(14)	121.0(2)		
N(1)-C(14)-C(13)	113.46(17)		
N(1)-C(14)-H(14A)	108.9		
C(13)-C(14)-H(14A)	108.9		

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 07020.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U_{13}	U_{12}
	25(1)	22(1)	24/1)	1 (1)	0(1)	1 / 1 \
$N(\perp)$	25(1)	22(1)	24(1)	$\perp(\perp)$	9(1)	$\perp(\perp)$
N(2)	21(1)	13(1)	26(1)	U(1)	5(1)	$\perp(\perp)$
N(3)	26(1)	24(1)	20(1)	$\perp(\perp)$	5(1)	0(1)
N(4)	19(1)	21(1)	26(1)	2(1)	3(1)	-2(1)
N(5)	38(1)	29(1)	35(1)	$-\perp(\perp)$	9(1)	-5(1)
N(6)	38(1)	33(1)	35(1)	-9(1)	12(1)	-6(1)
0(1)	41(1)	45(1)	85(2)	-11(1)	-10(1)	-8(1)
0(2)	56(1)	29(1)	43(1)	-3(1)	7(1)	-9(1)
0(3)	41(1)	40(1)	58(1)	-7(1)	-13(1)	-5(1)
0(4)	46(1)	25(1)	55(1)	-14(1)	16(1)	-1(1)
C(1)	33(1)	19(1)	25(1)	2(1)	9(1)	-1(1)
C(2)	20(1)	22(1)	24(1)	3(1)	4(1)	0(1)
C(3)	31(1)	25(1)	35(1)	11(1)	9(1)	7(1)
C(4)	36(1)	23(1)	50(2)	7(1)	13(1)	8(1)
C(5)	32(1)	21(1)	39(1)	-2(1)	13(1)	3(1)
C(6)	19(1)	22(1)	26(1)	-1(1)	4(1)	-1(1)
C(7)	31(1)	26(1)	26(1)	-5(1)	11(1)	-1(1)
C(8)	30(1)	32(1)	20(1)	0(1)	-1(1)	-3(1)
C(9)	25(1)	19(1)	24(1)	1(1)	-4(1)	-5(1)
C(10)	33(1)	25(1)	36(1)	2(1)	-7(1)	-1(1)
C(11)	26(1)	24(1)	53(2)	0(1)	-6(1)	4(1)
C(12)	22(1)	26(1)	48(2)	-3(1)	5(1)	2(1)
C(13)	19(1)	22(1)	35(1)	-2(1)	4(1)	-4(1)
C(14)	22(1)	27(1)	37(1)	1(1)	11(1)	1(1)
C(15)	29(1)	23(1)	20(1)	-2(1)	11(1)	1(1)
C(16)	30(1)	21(1)	32(1)	0(1)	5(1)	3(1)
C(17)	36(1)	23(1)	36(1)	0(1)	9(1)	3(1)
C(18)	32(1)	23(1)	24(1)	-3(1)	8(1)	-3(1)
C(19)	28(1)	32(1)	28(1)	-2(1)	4(1)	1(1)
C(20)	29(1)	20(1)	32(1)	2(1)	6(1)	5(1)
C(21)	26(1)	26(1)	21(1)	-1(1)	12(1)	-3(1)
C(22)	24(1)	31(1)	28(1)	8(1)	5(1)	-1(1)
C(23)	29(1)	23(1)	35(1)	4(1)	12(1)	2(1)
C(24)	26(1)	23(1)	30(1)	-6(1)	10(1)	-5(1)
C(25)	23(1)	29(1)	27(1)	1(1)	5(1)	1(1)
C(26)	25(1)	25(1)	27(1)	3(1)	7(1)	4(1)
Cl(1)	33(1)	33(1)	47(1)	15(1)	8(1)	0(1)

Tabelle 5.

H-Atomkoordinaten	[x 10 ⁴	und ä	quivalente isotrop	e Auslenkungs	sparameter	$[Å^2 x 1]$	0 ³] für 0702o.
-------------------	---------------------	-------	--------------------	---------------	------------	-------------	-----------------------------

	x	У	Z	U(eq)
H(2)	7665	4984	4369	24
H(1A)	7482	5393	2315	30
H(1B)	8489	5846	2828	30
Н(З)	7135	7573	2731	36
H(4)	6528	8619	3715	43
H(5)	6398	7751	4983	36
H(7A)	7307	6064	6081	32
H(7B)	6279	5621	5620	32
H(8A)	8458	4925	6505	34
H(8B)	8142	3632	6666	34
H(10)	9745	2853	6747	41
H(11)	10828	2272	5991	44
H(12)	10580	2754	4541	39
H(14A)	9542	4699	3504	34
H(14B)	9369	3367	3228	34
H(16)	8440	2051	3504	34
H(17)	7393	516	3069	38
H(19)	5356	2816	2017	35
H(20)	6379	4343	2448	33
H(22)	7542	2188	5876	34
H(23)	6588	677	5214	34
H(25)	4746	3012	3878	32
H(26)	5689	4524	4532	30

7.2 Komplexe

- 7.2.1 Nickel-Komplexe
- 7.2.1.1 [Ni(L-N₄^tBuBz)Cl₂] 56

siehe Diplomarbeit Huber 2003

7.2.1.2 [Ni(L-N₄Ad^tBu)Br₂] 60

7.2.1.2.1 IR-Spektrum

7.2.1.2.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 06650.

Summenformel	$C_{29}H_{40}Br_2Cl_2N_4Ni$
Molmasse	734.08
Temperatur	150(2) K
Strahlung	ΜοΚα
Wellenlänge	0.71073 Å
Scanmodus	Ω -scans

Kristallsystem	Monoklin	
Raumgruppe	$P2_1/n$	
Zelldimensionen	<i>a</i> = 17.4345(5) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 12.6246(5) Å	$\beta = 99.674(2)^{\circ}$
	c = 27.5182(7) Å	$\gamma = 90^{\circ}$
Zellvolumen	5970.7(3) Å ³	
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.633 Mg/m ³	
Absorptionskoeffizient	3.532 mm ⁻¹	
Kristallgröße	0.32 x 0.20 x 0.20 mm	
Gemessener θ-Bereich	2.58 bis 32.21°	
Anzahl der gemessenen Reflexe	53561	
Unabhängige Reflexe	18654 (Rint = 0.0319)	
Absorptionskorrektur	Semi-empirisch aus Äquivalenten	
Max. und min. Transmission	0.5385 und 0.3978	
Diffraktometer	Oxford Diffraction Gemini S Ultr	a
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen H	72
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	18654 / 145 / 769	
Endgültige R-Werte [I>2o(I)]	R1 = 0.0440, wR2 = 0.1099	
R-Werte (alle Daten)	R1 = 0.0781, wR2 = 0.1306	
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0737P)^{2}+2.2959$	P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.007	
Größtes Maximum und Minimum	0.977 und -0.782 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Lösemittelmoleküle sind fehlgeordnet. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06650. U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Br(1)	3503(1)	-198(1)	5899(1)	29(1)
Br(2)	2908(1)	-1797(1)	6857(1)	34(1)
Ni(1)	2435(1)	-90(1)	6421(1)	23(1)
N(1)	1379(1)	-507(2)	5799(1)	19(1)
N(2)	2107(1)	1296(2)	6101(1)	26(1)
N(3)	2879(2)	1097(3)	7072(1)	35(1)
N(4)	1541(2)	24(2)	6791(1)	26(1)
C(1)	1543(2)	237(2)	5408(1)	22(1)
C(2)	1809(2)	1296(3)	5622(1)	28(1)
C(3)	1736(2)	2231(3)	5350(1)	38(1)
C(4)	1981(3)	3162(3)	5602(2)	50(1)
C(5)	2229(3)	3158(3)	6097(2)	47(1)
C(6)	2278(2)	2205(3)	6352(1)	34(1)
C(7)	2444(2)	2085(3)	6901(1)	38(1)
C(8)	2521(2)	596(4)	7465(1)	41(1)
C(9)	1704(2)	249(3)	7279(1)	33(1)
C(10)	1112(2)	198(4)	7559(1)	43(1)
C(11)	371(2)	-94(3)	7338(1)	40(1)
C(12)	205(2)	-249(3)	6831(1)	31(1)
C(13)	813(2)	-149(3)	6568(1)	24(1)
C(14)	696(2)	-91(3)	6012(1)	22(1)
C(15)	3735(2)	1360(4)	7238(2)	44(1)
C(16)	3856(2)	2012(4)	7720(2)	60(1)
C(17)	4188(2)	318(4)	7320(2)	61(2)
C(18)	4040(2)	1983(4)	6844(2)	57(1)
C(19)	1207(2)	-1621(2)	5602(1)	23(1)
C(20)	1956(2)	-2122(3)	5490(1)	28(1)
C(21)	1791(2)	-3266(3)	5311(2)	41(1)
C(22)	1184(2)	-3293(3)	4848(2)	45(1)

7 Anhang	
----------	--

C(23)	429(2)	-2795(3)	4959(1)	41(1)
C(24)	130(2)	-3418(4)	5367(2)	47(1)
C(25)	754(2)	-3413(3)	5829(2)	41(1)
C(26)	912(2)	-2273(3)	6002(1)	27(1)
C(27)	1506(3)	-3903(3)	5725(2)	46(1)
C(28)	592(2)	-1643(3)	5131(1)	30(1)
Br(3)	8473(1)	-1000(1)	5859(1)	33(1)
Br(4)	7996(1)	-555(1)	7087(1)	34(1)
Ni(2)	7362(1)	-1489(1)	6303(1)	22(1)
N(5)	6417(2)	-343(2)	5894(1)	21(1)
N(6)	6450(1)	-1878(2)	6621(1)	24(1)
N(7)	7601(2)	-3254(2)	6565(1)	25(1)
N(8)	6851(1)	-2306(2)	5707(1)	21(1)
C(29)	5671(2)	-804(2)	5999(1)	24(1)
C(30)	5761(2)	-1425(2)	6473(1)	23(1)
C(31)	5137(2)	-1636(3)	6716(1)	29(1)
C(32)	5242(2)	-2360(3)	7095(1)	38(1)
C(33)	5945(2)	-2875(3)	7227(1)	33(1)
C(34)	6550(2)	-2626(3)	6975(1)	27(1)
C(35)	7315(2)	-3190(3)	7047(1)	28(1)
C(36)	7041(2)	-3872(3)	6210(1)	28(1)
C(37)	6842(2)	-3373(3)	5713(1)	26(1)
C(38)	6568(2)	-3930(3)	5276(1)	36(1)
C(39)	6290(2)	-3363(3)	4853(1)	36(1)
C(40)	6263(2)	-2278(3)	4864(1)	30(1)
C(41)	6543(2)	-1762(3)	5301(1)	24(1)
C(42)	6490(2)	-589(2)	5371(1)	23(1)
C(43)	8413(2)	-3/39(3)	6624(1)	32(1)
C(44)	8473(2)	-4/84(4)	6907(2)	50(1)
C(45)	9003(2)	-2968(4)	6894(2)	44(1)
C(40)	6015(2)	-3910(3)	0110(2)	41(1)
C(47)	6395(2)	047(2)	5905(1)	20(1)
C(48)	7301(3)	2272(3)	6084(1)	42(1)
C(49)	6739(3)	2400(3)	5700(2)	$\pm 2(1)$
C(51)	5906(3)	2661(3)	5717(2)	48(1)
C(52)	5711(3)	2851(3)	6224(2)	51(1)
C(53)	7271(2)	1261(3)	5976(1)	32(1)
C(54)	6247(2)	1068(3)	6503(1)	31(1)
C(55)	7108(3)	2658(3)	6596(2)	47(1)
C(56)	5861(2)	1461(3)	5597(1)	35(1)
C(59)	-331(7)	-2888(11)	3339(7)	108(6)
Cl(1)	548(4)	-2239(4)	3531(2)	80(1)
Cl(2)	-419(2)	-4065(3)	3657(1)	57(1)
C(59A)	219(14)	-3408(13)	3331(16)	94(4)
Cl(1A)	89(7)	-2090(6)	3444(4)	85(2)
Cl(2A)	-617(7)	-4126(10)	3344(6)	137(4)
C(59B)	427(9)	-3155(12)	3527(8)	80(4)
--------	---------	-----------	---------	--------
Cl(1B)	686(5)	-1852(5)	3663(3)	78(2)
Cl(2B)	-514(4)	-3485(9)	3608(3)	112(3)
C(60)	1041(3)	1649(4)	9073(2)	62(2)
Cl(3)	202(1)	1531(1)	9335(1)	65(1)
Cl(4)	1448(1)	455(1)	8958(1)	59(1)
C(60A)	80(2)	1280(5)	9000(2)	77(10)
Cl(3A)	671(8)	1836(11)	9504(4)	45(3)
Cl(4A)	534(13)	262(10)	8736(4)	72(5)

Br(1)-Ni(1)	2.5388(5)	C(15)-C(17)	1.531(6)
Br(2)-Ni(1)	2.5366(5)	C(15)-C(16)	1.545(5)
Ni(1)-N(2)	1.999(3)	C(16)-H(16A)	0.9800
Ni(1)-N(4)	2.006(2)	C(16)-H(16B)	0.9800
Ni(1)-N(1)	2.352(2)	C(16)-H(16C)	0.9800
Ni(1)-N(3)	2.365(3)	C(17)-H(17A)	0.9800
N(1)-C(1)	1.492(4)	C(17)-H(17B)	0.9800
N(1)-C(14)	1.507(4)	C(17)-H(17C)	0.9800
N(1)-C(19)	1.519(4)	C(18)-H(18A)	0.9800
N(2)-C(2)	1.333(4)	C(18)-H(18B)	0.9800
N(2)-C(6)	1.346(4)	C(18)-H(18C)	0.9800
N(3)-C(8)	1.478(5)	C(19)-C(20)	1.530(4)
N(3)-C(7)	1.495(5)	C(19)-C(26)	1.530(4)
N(3)-C(15)	1.522(4)	C(19)-C(28)	1.538(4)
N(4)-C(13)	1.331(4)	C(20)-C(21)	1.538(5)
N(4)-C(9)	1.353(4)	C(20)-H(20A)	0.9900
C(1)-C(2)	1.501(5)	C(20)-H(20B)	0.9900
C(1)-H(1A)	0.9900	C(21)-C(22)	1.515(6)
C(1)-H(1B)	0.9900	C(21)-C(27)	1.542(5)
C(2)-C(3)	1.391(5)	C(21)-H(21)	1.0000
C(3)-C(4)	1.393(6)	C(22)-C(23)	1.536(5)
C(3)-H(3)	0.9500	C(22)-H(22A)	0.9900
C(4)-C(5)	1.359(6)	C(22)-H(22B)	0.9900
C(4)-H(4)	0.9500	C(23)-C(24)	1.530(6)
C(5)-C(6)	1.389(6)	C(23)-C(28)	1.541(5)
C(5)-H(5)	0.9500	C(23)-H(23)	1.0000
C(6)-C(7)	1.499(5)	C(24)-C(25)	1.529(6)
C(7)-H(7A)	0.9900	C(24)-H(24A)	0.9900
C(7)-H(7B)	0.9900	C(24)-H(24B)	0.9900
C(8)-C(9)	1.496(5)	C(25)-C(27)	1.520(5)
C(8)-H(8A)	0.9900	C(25)-C(26)	1.526(5)
C(8)-H(8B)	0.9900	C(25)-H(25)	1.0000
C(9)-C(10)	1.391(5)	C(26)-H(26A)	0.9900
C(10)-C(11)	1.382(5)	C(26)-H(26B)	0.9900
C(10)-H(10)	0.9500	C(27)-H(27A)	0.9900
C(11)-C(12)	1.390(5)	C(27)-H(27B)	0.9900
C(11)-H(11)	0.9500	C(28)-H(28A)	0.9900
C(12)-C(13)	1.387(4)	C(28)-H(28B)	0.9900
C(12)-H(12)	0.9500	Br(3)-Ni(2)	2.5336(5)
C(13)-C(14)	1.511(4)	Br(4)-Ni(2)	2.5432(5)
C(14)-H(14A)	0.9900	Ni(2)-N(6)	2.002(2)
C(14)-H(14B)	0.9900	Ni(2)-N(8)	2.014(2)
C(15)-C(18)	1.505(7)	Ni(2)-N(5)	2.334(3)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 06650.

Ni(2)-N(7)	2.358(3)	C(46)-H(46B)	0.9800
N(5)-C(29)	1.497(4)	C(46)-H(46C)	0.9800
N(5)-C(42)	1.500(4)	C(47)-C(54)	1.543(4)
N(5)-C(47)	1.523(4)	C(47)-C(56)	1.548(5)
N(6)-C(30)	1.331(4)	C(47)-C(53)	1.544(5)
N(6)-C(34)	1.346(4)	C(48)-C(52)	1.522(6)
N(7)-C(36)	1.480(4)	C(48)-C(55)	1.523(6)
N(7)-C(35)	1.495(4)	C(48)-C(54)	1.548(5)
N(7)-C(43)	1.527(4)	C(48)-H(48)	1.0000
N(8)-C(41)	1.344(4)	C(49)-C(50)	1.496(6)
N(8)-C(37)	1.348(4)	C(49)-C(55)	1.522(5)
C(29)-C(30)	1.507(4)	C(49)-C(53)	1.548(5)
C(29)-H(29A)	0.9900	C(49)-H(49)	1.0000
С(29)-Н(29В)	0.9900	C(50)-C(51)	1.535(7)
C(30)-C(31)	1.394(4)	C(50)-H(50A)	0.9900
C(31)-C(32)	1.378(5)	C(50)-H(50B)	0.9900
C(31)-H(31)	0.9500	C(51)-C(52)	1.509(6)
C(32)-C(33)	1.380(5)	C(51)-C(56)	1.549(5)
C(32)-H(32)	0.9500	C(51)-H(51)	1.0000
C(33)-C(34)	1.392(4)	C(52)-H(52A)	0.9900
C(33)-H(33)	0.9500	C(52)-H(52B)	0.9900
C(34)-C(35)	1.496(4)	C(53)-H(53A)	0.9900
C(35)-H(35A)	0.9900	C(53)-H(53B)	0.9900
C(35)-H(35B)	0.9900	C(54)-H(54A)	0.9900
C(36)-C(37)	1.494(4)	C(54)-H(54B)	0.9900
C(36)-H(36A)	0.9900	C(55)-H(55A)	0.9900
C(36)-H(36B)	0.9900	C(55)-H(55B)	0.9900
C(37)-C(38)	1.406(5)	C(56)-H(56A)	0.9900
C(38)-C(39)	1.381(5)	C(56)-H(56B)	0.9900
C(38)-H(38)	0.9500	C(59)-Cl(2)	1.745(10)
C(39)-C(40)	1.372(5)	C(59)-Cl(1)	1.740(11)
C(39)-H(39)	0.9500	C(59)-H(59A)	0.9900
C(40)-C(41)	1.383(4)	C(59)-H(59B)	0.9900
C(40)-H(40)	0.9500	C(59A)-Cl(1A)	1.714(14)
C(41)-C(42)	1.497(4)	C(59A)-Cl(2A)	1.722(15)
C(42)-H(42A)	0.9900	C(59A)-H(59C)	0.9900
C(42)-H(42B)	0.9900	C(59A)-H(59D)	0.9900
C(43)-C(46)	1.513(5)	C(59B)-Cl(1B)	1.731(12)
C(43)-C(45)	1.517(5)	C(59B)-Cl(2B)	1.743(12)
C(43)-C(44)	1.527(5)	C(59B)-H(59E)	0.9900
C(44)-H(44A)	0.9800	C(59B)-H(59F)	0.9900
C(44)-H(44B)	0.9800	C(60)-C1(4)	1.718(5)
C(44)-H(44C)	0.9800	C(60)-C1(3)	1.741(5)
C(45)-H(45A)	0.9800	C(60)-H(60A)	0.9900
C(45)-H(45B)	0.9800	C(60)-H(60B)	0.9900
C(45)-H(45C)	0.9800	C(60A)-Cl(4A)	1.732(16)
C(46)-H(46A)	0.9800	C(60A)-Cl(3A)	1.729(16)

C(60A)-H(60C)	0.9900	C(60A)-H(60D) C	.9900
N(2)-Ni(1)-N(4)	88.39(11)	C(5)-C(4)-C(3)	120.9(4)
N(2)-Ni(1)-N(1)	75.22(10)	C(5)-C(4)-H(4)	119.5
N(4)-Ni(1)-N(1)	78.81(9)	C(3)-C(4)-H(4)	119.5
N(2)-Ni(1)-N(3)	79.19(11)	C(4)-C(5)-C(6)	119.5(4)
N(4)-Ni(1)-N(3)	75.68(10)	C(4)-C(5)-H(5)	120.3
N(1)-Ni(1)-N(3)	144.09(9)	C(6)-C(5)-H(5)	120.3
N(2) - Ni(1) - Br(2)	176.93(8)	N(2)-C(6)-C(5)	119.3(4)
N(4)-Ni(1)-Br(2)	92.27(8)	N(2)-C(6)-C(7)	114.8(3)
N(1)-Ni(1)-Br(2)	107.85(6)	C(5)-C(6)-C(7)	125.6(3)
N(3)-Ni(1)-Br(2)	98.07(8)	C(6)-C(7)-N(3)	113.8(3)
N(2) - Ni(1) - Br(1)	88.89(7)	C(6)-C(7)-H(7A)	108.8
N(4) - Ni(1) - Br(1)	176.11(8)	N(3)-C(7)-H(7A)	108.8
N(1)-Ni(1)-Br(1)	97.79(6)	C(6)-C(7)-H(7B)	108.8
N(3)-Ni(1)-Br(1)	106.53(7)	N(3)-C(7)-H(7B)	108.8
Br(2)-Ni(1)-Br(1) 90.589(16)	H(7A)-C(7)-H(7B)	107.7
C(1)-N(1)-C(14)	108.6(2)	N(3)-C(8)-C(9)	111.7(3)
C(1)-N(1)-C(19)	112.1(2)	N(3)-C(8)-H(8A)	109.3
C(14)-N(1)-C(19)	109.8(2)	C(9)-C(8)-H(8A)	109.3
C(1)-N(1)-Ni(1)	99.34(16)	N(3)-C(8)-H(8B)	109.3
C(14)-N(1)-Ni(1)	102.31(16)	C(9)-C(8)-H(8B)	109.3
C(19)-N(1)-Ni(1)	123.41(17)	H(8A)-C(8)-H(8B)	107.9
C(2)-N(2)-C(6)	121.6(3)	N(4)-C(9)-C(10)	119.2(3)
C(2)-N(2)-Ni(1)	118.0(2)	N(4)-C(9)-C(8)	115.5(3)
C(6)-N(2)-Ni(1)	119.8(2)	C(10)-C(9)-C(8)	125.1(3)
C(8)-N(3)-C(7)	109.4(3)	C(11)-C(10)-C(9)	119.6(3)
C(8)-N(3)-C(15)	112.8(3)	C(11)-C(10)-H(10)	120.2
C(7)-N(3)-C(15)	109.4(3)	C(9)-C(10)-H(10)	120.2
C(8)-N(3)-Ni(1)	99.1(2)	C(12)-C(11)-C(10)	120.1(3)
C(7)-N(3)-Ni(1)	101.85(19)	C(12)-C(11)-H(11)	120.0
C(15)-N(3)-Ni(1)	123.07(19)	C(10)-C(11)-H(11)	120.0
C(13)-N(4)-C(9)	121.2(3)	C(11)-C(12)-C(13)	117.6(3)
C(13)-N(4)-Ni(1)	120.9(2)	C(11)-C(12)-H(12)	121.2
C(9)-N(4)-Ni(1)	117.8(2)	C(13)-C(12)-H(12)	121.2
N(1)-C(1)-C(2)	111.3(2)	N(4)-C(13)-C(12)	121.7(3)
N(1)-C(1)-H(1A)	109.4	N(4)-C(13)-C(14)	114.7(3)
C(2)-C(1)-H(1A)	109.4	C(12)-C(13)-C(14)	123.2(3)
N(1)-C(1)-H(1B)	109.4	C(13)-C(14)-N(1)	113.2(2)
C(2)-C(1)-H(1B)	109.4	C(13)-C(14)-H(14A)	108.9
H(1A)-C(1)-H(1B)	108.0	N(1)-C(14)-H(14A)	108.9
N(2)-C(2)-C(3)	121.0(3)	C(13)-C(14)-H(14B)	108.9
N(2)-C(2)-C(1)	115.5(3)	N(1)-C(14)-H(14B)	108.9
C(3)-C(2)-C(1)	123.4(3)	H(14A)-C(14)-H(14E) 107.7
C(2)-C(3)-C(4)	117.2(4)	C(18)-C(15)-N(3)	110.2(3)
C(2)-C(3)-H(3)	121.4	C(18)-C(15)-C(17)	108.6(3)
C(4)-C(3)-H(3)	121.4	N(3)-C(15)-C(17)	108.1(3)

C(18)-C(15)-C(16)	109.0(4)	C(22)-C(23)-C(28)	109.1(3)
N(3)-C(15)-C(16)	111.0(3)	С(24)-С(23)-Н(23)	109.4
C(17)-C(15)-C(16)	109.8(4)	C(22)-C(23)-H(23)	109.4
C(15)-C(16)-H(16A)	109.5	C(28)-C(23)-H(23)	109.4
C(15)-C(16)-H(16B)	109.5	C(23)-C(24)-C(25)	108.9(3)
H(16A)-C(16)-H(16B)	109.5	C(23)-C(24)-H(24A)	109.9
C(15)-C(16)-H(16C)	109.5	C(25)-C(24)-H(24A)	109.9
H(16A)-C(16)-H(16C)	109.5	C(23)-C(24)-H(24B)	109.9
H(16B)-C(16)-H(16C)	109.5	C(25)-C(24)-H(24B)	109.9
C(15)-C(17)-H(17A)	109.5	H(24A)-C(24)-H(24B)	108.3
C(15)-C(17)-H(17B)	109.5	C(27)-C(25)-C(26)	109.1(3)
H(17A)-C(17)-H(17B)	109.5	C(27)-C(25)-C(24)	111.0(3)
C(15)-C(17)-H(17C)	109.5	C(26)-C(25)-C(24)	109.2(3)
H(17A)-C(17)-H(17C)	109.5	C(27)-C(25)-H(25)	109.2
H(17B)-C(17)-H(17C)	109.5	C(26)-C(25)-H(25)	109.2
C(15)-C(18)-H(18A)	109.5	C(24)-C(25)-H(25)	109.2
C(15)-C(18)-H(18B)	109.5	C(25)-C(26)-C(19)	110.4(3)
H(18A)-C(18)-H(18B)	109.5	C(25)-C(26)-H(26A)	109.6
C(15)-C(18)-H(18C)	109.5	C(19)-C(26)-H(26A)	109.6
H(18A)-C(18)-H(18C)	109.5	C(25)-C(26)-H(26B)	109.6
H(18B)-C(18)-H(18C)	109.5	C(19)-C(26)-H(26B)	109.6
N(1)-C(19)-C(20)	109.3(2)	H(26A)-C(26)-H(26B)	108.1
N(1)-C(19)-C(26)	108.2(2)	C(25)-C(27)-C(21)	108.8(3)
C(20)-C(19)-C(26)	108.9(3)	C(25)-C(27)-H(27A)	109.9
N(1)-C(19)-C(28)	112.7(3)	C(21)-C(27)-H(27A)	109.9
C(20)-C(19)-C(28)	108.6(2)	C(25)-C(27)-H(27B)	109.9
C(26)-C(19)-C(28)	109.0(3)	C(21)-C(27)-H(27B)	109.9
C(19)-C(20)-C(21)	109.4(3)	H(27A)-C(27)-H(27B)	108.3
C(19)-C(20)-H(20A)	109.8	C(19)-C(28)-C(23)	110.0(3)
C(21)-C(20)-H(20A)	109.8	C(19)-C(28)-H(28A)	109.7
C(19)-C(20)-H(20B)	109.8	C(23)-C(28)-H(28A)	109.7
C(21)-C(20)-H(20B)	109.8	C(19)-C(28)-H(28B)	109.7
H(20A)-C(20)-H(20B)	108.2	C(23)-C(28)-H(28B)	109.7
C(22)-C(21)-C(20)	110.9(3)	H(28A)-C(28)-H(28B)	108.2
C(22)-C(21)-C(27)	110.1(3)	N(6)-Ni(2)-N(8)	87.45(10)
C(20)-C(21)-C(27)	108.7(3)	N(6)-Ni(2)-N(5)	79.36(9)
C(22)-C(21)-H(21)	109.0	N(8)-Ni(2)-N(5)	75.25(9)
C(20)-C(21)-H(21)	109.0	N(6)-Ni(2)-N(7)	75.30(10)
C(27)-C(21)-H(21)	109.0	N(8)-Ni(2)-N(7)	78.22(10)
C(21)-C(22)-C(23)	108.9(3)	N(5)-Ni(2)-N(7)	143.83(9)
C(21)-C(22)-H(22A)	109.9	N(6)-Ni(2)-Br(3)	177.21(7)
C(23)-C(22)-H(22A)	109.9	N(8)-Ni(2)-Br(3)	90.10(7)
C(21)-C(22)-H(22B)	109.9	N(5)-Ni(2)-Br(3)	98.72(6)
C(23)-C(22)-H(22B)	109.9	N(7)-Ni(2)-Br(3)	105.50(6)
H(22A)-C(22)-H(22B)	108.3	N(6)-Ni(2)-Br(4)	90.37(8)
C(24)-C(23)-C(22)	110.2(4)	N(8)-Ni(2)-Br(4)	176.52(7)
C(24)-C(23)-C(28)	109.2(3)	N(5)-Ni(2)-Br(4)	107.01(6)

N(7)-Ni(2)-Br(4)	98.61(7)	N(7)-C(36)-C(37)	114.0(3)
Br(3)-Ni(2)-Br(4)	92.147(16)	N(7)-C(36)-H(36A)	108.7
C(29)-N(5)-C(42)	108.6(2)	C(37)-C(36)-H(36A)	108.7
C(29)-N(5)-C(47)	110.6(2)	N(7)-C(36)-H(36B)	108.7
C(42) - N(5) - C(47)	111.0(2)	C(37)-C(36)-H(36B)	108.7
C(29)-N(5)-Ni(2)	103.43(17)	H(36A)-C(36)-H(36B)	107.6
C(42)-N(5)-Ni(2)	99.67(17)	N(8)-C(37)-C(38)	119.6(3)
C(47)-N(5)-Ni(2)	122.36(19)	N(8)-C(37)-C(36)	115.5(3)
C(30) - N(6) - C(34)	121.7(3)	C(38)-C(37)-C(36)	124.5(3)
C(30) - N(6) - Ni(2)	120.1(2)	C(39)-C(38)-C(37)	118.8(3)
C(34) - N(6) - Ni(2)	118.2(2)	C(39)-C(38)-H(38)	120.6
C(36)-N(7)-C(35)	109.4(2)	C(37)-C(38)-H(38)	120.6
C(36)-N(7)-C(43)	110.9(3)	C(40)-C(39)-C(38)	120.6(3)
C(35)-N(7)-C(43)	111.6(2)	C(40)-C(39)-H(39)	119.7
C(36) - N(7) - Ni(2)	103.52(18)	C(38)-C(39)-H(39)	119.7
C(35)-N(7)-Ni(2)	98.75(19)	C(39)-C(40)-C(41)	118.7(3)
C(43)-N(7)-Ni(2)	121.62(19)	C(39)-C(40)-H(40)	120.6
C(41)-N(8)-C(37)	121.1(3)	C(41)-C(40)-H(40)	120.6
C(41)-N(8)-Ni(2)	118.4(2)	N(8)-C(41)-C(40)	121.1(3)
C(37)-N(8)-Ni(2)	120.5(2)	N(8)-C(41)-C(42)	115.0(3)
N(5)-C(29)-C(30)	113.6(2)	C(40)-C(41)-C(42)	123.8(3)
N(5)-C(29)-H(29A)	108.8	C(41)-C(42)-N(5)	110.2(2)
C(30)-C(29)-H(29A)	108.8	C(41)-C(42)-H(42A)	109.6
N(5)-C(29)-H(29B)	108.8	N(5)-C(42)-H(42A)	109.6
C(30)-C(29)-H(29B)	108.8	C(41)-C(42)-H(42B)	109.6
H(29A)-C(29)-H(29B)	107.7	N(5)-C(42)-H(42B)	109.6
N(6)-C(30)-C(31)	120.4(3)	H(42A)-C(42)-H(42B)	108.1
N(6)-C(30)-C(29)	116.6(2)	C(46)-C(43)-C(45)	107.7(3)
C(31)-C(30)-C(29)	122.5(3)	C(46)-C(43)-N(7)	108.5(3)
C(32)-C(31)-C(30)	118.4(3)	C(45)-C(43)-N(7)	109.6(3)
С(32)-С(31)-Н(31)	120.8	C(46)-C(43)-C(44)	109.6(3)
C(30)-C(31)-H(31)	120.8	C(45)-C(43)-C(44)	108.8(3)
C(33)-C(32)-C(31)	120.7(3)	N(7)-C(43)-C(44)	112.5(3)
C(33)-C(32)-H(32)	119.7	C(43)-C(44)-H(44A)	109.5
C(31)-C(32)-H(32)	119.7	C(43)-C(44)-H(44B)	109.5
C(32)-C(33)-C(34)	118.4(3)	H(44A)-C(44)-H(44B)	109.5
C(32)-C(33)-H(33)	120.8	C(43)-C(44)-H(44C)	109.5
С(34)-С(33)-Н(33)	120.8	H(44A)-C(44)-H(44C)	109.5
N(6)-C(34)-C(33)	120.1(3)	H(44B)-C(44)-H(44C)	109.5
N(6)-C(34)-C(35)	115.7(3)	C(43)-C(45)-H(45A)	109.5
C(33)-C(34)-C(35)	124.1(3)	C(43)-C(45)-H(45B)	109.5
N(7)-C(35)-C(34)	109.3(2)	H(45A)-C(45)-H(45B)	109.5
N(7)-C(35)-H(35A)	109.8	C(43)-C(45)-H(45C)	109.5
C(34)-C(35)-H(35A)	109.8	H(45A)-C(45)-H(45C)	109.5
N(7)-C(35)-H(35B)	109.8	H(45B)-C(45)-H(45C)	109.5
C(34)-C(35)-H(35B)	109.8	C(43)-C(46)-H(46A)	109.5
H(35A)-C(35)-H(35B)	108.3	С(43)-С(46)-Н(46В)	109.5

H(46A)-C(46)-H(46B)	109.5	C(47)-C(54)-H(54A)	109.6
C(43)-C(46)-H(46C)	109.5	C(48)-C(54)-H(54A)	109.6
H(46A)-C(46)-H(46C)	109.5	C(47)-C(54)-H(54B)	109.6
H(46B)-C(46)-H(46C)	109.5	C(48)-C(54)-H(54B)	109.6
N(5)-C(47)-C(54)	109.0(2)	H(54A)-C(54)-H(54B)	108.1
N(5)-C(47)-C(56)	112.6(3)	C(49)-C(55)-C(48)	109.4(3)
C(54)-C(47)-C(56)	109.1(3)	C(49)-C(55)-H(55A)	109.8
N(5)-C(47)-C(53)	109.3(3)	C(48)-C(55)-H(55A)	109.8
C(54)-C(47)-C(53)	107.8(3)	C(49)-C(55)-H(55B)	109.8
C(56)-C(47)-C(53)	108.9(3)	C(48)-C(55)-H(55B)	109.8
C(52)-C(48)-C(55)	109.7(3)	H(55A)-C(55)-H(55B)	108.2
C(52)-C(48)-C(54)	109.5(3)	C(47)-C(56)-C(51)	109.9(3)
C(55)-C(48)-C(54)	108.5(3)	C(47)-C(56)-H(56A)	109.7
C(52)-C(48)-H(48)	109.7	C(51)-C(56)-H(56A)	109.7
C(55)-C(48)-H(48)	109.7	C(47)-C(56)-H(56B)	109.7
C(54)-C(48)-H(48)	109.7	C(51)-C(56)-H(56B)	109.7
C(50)-C(49)-C(55)	110.8(4)	H(56A)-C(56)-H(56B)	108.2
C(50)-C(49)-C(53)	109.8(3)	Cl(2)-C(59)-Cl(1)	113.3(6)
C(55)-C(49)-C(53)	109.1(3)	Cl(2)-C(59)-H(59A)	108.9
C(50)-C(49)-H(49)	109.0	Cl(1)-C(59)-H(59A)	108.9
C(55)-C(49)-H(49)	109.0	Cl(2)-C(59)-H(59B)	108.9
C(53)-C(49)-H(49)	109.0	Cl(1)-C(59)-H(59B)	108.9
C(49)-C(50)-C(51)	110.1(3)	H(59A)-C(59)-H(59B)	107.7
C(49)-C(50)-H(50A)	109.6	Cl(1A)-C(59A)-Cl(2A)	111.7(12)
C(51)-C(50)-H(50A)	109.6	Cl(1A)-C(59A)-H(59C)	109.3
C(49)-C(50)-H(50B)	109.6	Cl(2A)-C(59A)-H(59C)	109.3
C(51)-C(50)-H(50B)	109.6	Cl(1A)-C(59A)-H(59D)	109.3
H(50A)-C(50)-H(50B)	108.2	Cl(2A)-C(59A)-H(59D)	109.3
C(52)-C(51)-C(50)	109.8(4)	H(59C)-C(59A)-H(59D)	107.9
C(52)-C(51)-C(56)	109.9(3)	Cl(1B)-C(59B)-Cl(2B)	114.7(10)
C(50)-C(51)-C(56)	107.9(3)	Cl(1B)-C(59B)-H(59E)	108.6
C(52)-C(51)-H(51)	109.7	Cl(2B)-C(59B)-H(59E)	108.6
C(50)-C(51)-H(51)	109.7	Cl(1B)-C(59B)-H(59F)	108.6
C(56)-C(51)-H(51)	109.7	Cl(2B)-C(59B)-H(59F)	108.6
C(51)-C(52)-C(48)	110.5(3)	H(59E)-C(59B)-H(59F)	107.6
C(51)-C(52)-H(52A)	109.6	Cl(4)-C(60)-Cl(3)	113.8(3)
C(48)-C(52)-H(52A)	109.6	Cl(4)-C(60)-H(60A)	108.8
C(51)-C(52)-H(52B)	109.6	Cl(3)-C(60)-H(60A)	108.8
C(48)-C(52)-H(52B)	109.6	Cl(4)-C(60)-H(60B)	108.8
H(52A)-C(52)-H(52B)	108.1	Cl(3)-C(60)-H(60B)	108.8
C(47)-C(53)-C(49)	109.3(3)	H(60A)-C(60)-H(60B)	107.7
C(47)-C(53)-H(53A)	109.8	Cl(4A) - C(60A) - Cl(3A)	112.6(14)
C(49)-C(53)-H(53A)	109.8	Cl(4A) - C(60A) - H(60C)	109.1
C(47)-C(53)-H(53B)	109.8	Cl(3A)-C(60A)-H(60C)	109.1
C(49)-C(53)-H(53B)	109.8	Cl(4A)-C(60A)-H(60D)	109.1
H(53A)-C(53)-H(53B)	108.3	Cl(3A)-C(60A)-H(60D)	109.1
C(47)-C(54)-C(48)	110.3(3)	H(60C)-C(60A)-H(60D)	107.8

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 06650.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Br(1)	26(1)	38(1)	25(1)	2(1)	9(1)	4(1)
Br(2)	33(1)	44(1)	28(1)	12(1)	10(1)	10(1)
Ni(1)	22(1)	31(1)	18(1)	-2(1)	5(1)	6(1)
N(1)	20(1)	23(1)	14(1)	1(1)	5(1)	1(1)
N(2)	21(1)	26(1)	30(1)	-8(1)	7(1)	1(1)
N(3)	24(1)	51(2)	26(1)	-21(1)	1(1)	6(1)
N(4)	26(1)	31(2)	23(1)	-6(1)	8(1)	7(1)
C(1)	27(1)	21(1)	19(1)	4(1)	4(1)	2(1)
C(2)	28(2)	26(2)	32(2)	2(1)	12(1)	5(1)
C(3)	49(2)	28(2)	40(2)	5(2)	19(2)	9(2)
C(4)	73(3)	19(2)	65(3)	3(2)	34(2)	0(2)
C(5)	55(2)	24(2)	69(3)	-8(2)	31(2)	-4(2)
C(6)	28(2)	30(2)	47(2)	-16(2)	14(1)	-1(1)
C(7)	29(2)	38(2)	48(2)	-24(2)	10(2)	-1(2)
C(8)	31(2)	65(3)	25(2)	-18(2)	2(1)	7(2)
C(9)	31(2)	51(2)	19(1)	-9(1)	7(1)	7(2)
C(10)	37(2)	72(3)	23(2)	-9(2)	12(1)	10(2)
C(11)	37(2)	57(3)	30(2)	-1(2)	18(1)	7(2)
C(12)	24(1)	43(2)	27(2)	0(1)	10(1)	3(1)
C(13)	24(1)	27(2)	22(1)	-1(1)	7(1)	5(1)
C(14)	20(1)	27(2)	19(1)	-1(1)	4(1)	4(1)
C(15)	25(2)	63(3)	45(2)	-33(2)	5(2)	0(2)
C(16)	27(2)	94(4)	55(3)	-51(3)	-2(2)	1(2)
C(17)	29(2)	97(4)	54(3)	-41(3)	-7(2)	16(2)
C(18)	31(2)	83(4)	59(3)	-39(3)	10(2)	-14(2)
C(19)	29(1)	24(2)	17(1)	-3(1)	8(1)	-3(1)
C(20)	33(2)	28(2)	25(2)	-1(1)	12(1)	4(1)
C(21)	47(2)	30(2)	51(2)	-7(2)	26(2)	6(2)
C(22)	59(2)	39(2)	44(2)	-19(2)	26(2)	-8(2)
C(23)	43(2)	46(2)	36(2)	-18(2)	13(2)	-12(2)
C(24)	50(2)	45(2)	51(2)	-21(2)	20(2)	-15(2)
C(25)	54(2)	30(2)	46(2)	-3(2)	26(2)	-9(2)
C(26)	31(2)	30(2)	22(1)	2(1)	8(1)	2(1)
C(27)	63(3)	22(2)	58(3)	1(2)	29(2)	4(2)
C(28)	33(2)	38(2)	20(1)	-4(1)	4(1)	-3(1)
Br(3)	30(1)	42(1)	28(1)	1(1)	9(1)	-7(1)
Br(4)	38(1)	41(1)	23(1)	-6(1)	5(1)	-7(1)
Ni(2)	22(1)	26(1)	17(1)	1(1)	6(1)	-5(1)
N(5)	28(1)	20(1)	17(1)	1(1)	8(1)	-2(1)
N(6)	24(1)	26(1)	21(1)	4(1)	8(1)	-1(1)

N(7)	23(1)	28(1)	25(1)	5(1)	5(1)	1(1)	
N(8)	20(1)	21(1)	22(1)	-2(1)	6(1)	-1(1)	
C(29)	24(1)	24(2)	24(1)	3(1)	5(1)	-1(1)	
C(30)	28(1)	20(1)	22(1)	-1(1)	7(1)	-5(1)	
C(31)	26(2)	34(2)	30(2)	1(1)	10(1)	0(1)	
C(32)	33(2)	49(2)	36(2)	8(2)	18(1)	1(2)	
C(33)	31(2)	43(2)	28(2)	12(1)	12(1)	-1(2)	
C(34)	30(2)	30(2)	24(1)	6(1)	9(1)	0(1)	
C(35)	27(2)	33(2)	24(2)	9(1)	6(1)	1(1)	
C(36)	29(2)	22(2)	32(2)	5(1)	5(1)	2(1)	
C(37)	26(1)	26(2)	26(2)	0(1)	5(1)	2(1)	
C(38)	44(2)	24(2)	38(2)	-4(1)	6(2)	-3(2)	
C(39)	39(2)	34(2)	30(2)	-10(1)	-2(1)	1(2)	
C(40)	34(2)	29(2)	25(2)	-4(1)	2(1)	0(1)	
C(41)	27(1)	27(2)	20(1)	-1(1)	5(1)	0(1)	
C(42)	29(2)	24(2)	18(1)	2(1)	6(1)	3(1)	
C(43)	23(2)	38(2)	38(2)	12(2)	7(1)	3(1)	
C(44)	31(2)	52(3)	68(3)	29(2)	9(2)	11(2)	
C(45)	27(2)	64(3)	39(2)	9(2)	0(1)	-3(2)	
C(46)	35(2)	43(2)	48(2)	7(2)	16(2)	9(2)	
C(47)	36(2)	19(2)	24(1)	2(1)	11(1)	-2(1)	
C(48)	72(3)	28(2)	31(2)	-9(2)	22(2)	-6(2)	
C(49)	64(3)	28(2)	38(2)	-5(2)	23(2)	-14(2)	
C(50)	96(4)	24(2)	40(2)	4(2)	25(2)	-12(2)	
C(51)	75(3)	25(2)	45(2)	5(2)	17(2)	8(2)	
C(52)	76(3)	27(2)	55(3)	-1(2)	27(2)	7(2)	
C(53)	43(2)	27(2)	31(2)	-1(1)	16(1)	-13(1)	
C(54)	41(2)	29(2)	25(2)	-2(1)	12(1)	-1(1)	
C(55)	71(3)	37(2)	37(2)	-8(2)	17(2)	-18(2)	
C(56)	49(2)	22(2)	35(2)	1(1)	12(2)	5(2)	
C(59)	77(10)	108(13)	121(13)	72(11)	-37(9)	9(9)	
Cl(1)	81(3)	80(4)	77(3)	15(2)	12(2)	-3(3)	
Cl(2)	76(2)	51(2)	50(2)	-1(1)	28(1)	4(2)	
C(59A)	95(8)	96(8)	95(9)	-20(8)	24(8)	6(8)	
Cl(1A)	110(6)	48(4)	102(6)	-23(4)	28(5)	29(5)	
Cl(2A)	109(7)	147(9)	156(8)	-58(8)	24(7)	23(6)	
C(59B)	90(8)	77(8)	78(8)	-16(7)	26(7)	10(8)	
Cl(1B)	82(4)	60(4)	93(5)	7(3)	21(3)	41(3)	
Cl(2B)	66(3)	174(8)	93(5)	-58(5)	7(3)	-5(5)	
C(60)	43(3)	52(3)	96(4)	22(3)	28(3)	13(2)	
Cl(3)	56(1)	71(1)	76(1)	14(1)	31(1)	16(1)	
Cl(4)	76(1)	51(1)	57(1)	9(1)	33(1)	12(1)	
Cl(3A)	32(6)	67(9)	34(6)	-9(5)	2(5)	-3(6)	
Cl(4A)	163(14)	40(7)	19(5)	2(5)	32(7)	-20(8)	

Tabelle 5.

H-Atomkoordinaten [x 10 ⁴] und äqui	ivalente isotrope Auslenkungsp	oarameter [Å ² x 10	°] für 06650.
--	--------------------------------	--------------------------------	---------------

	x	У	Z	U(eq)
H(1A)	1066	331	5161	26
H(1B)	1950	-69	5240	26
Н(3)	1528	2235	5008	45
H(4)	1974	3808	5424	60
H(5)	2368	3802	6267	56
H(7A)	1945	2087	7028	46
H(7B)	2749	2704	7045	46
H(8A)	2521	1107	7738	49
H(8B)	2835	-25	7597	49
H(10)	1216	362	7901	52
H(11)	-25	-188	7533	48
H(12)	-306	-417	6671	37
H(14A)	601	655	5908	26
H(14B)	227	-505	5874	26
H(16A)	4361	2370	7761	89
H(16B)	3841	1539	8001	89
H(16C)	3441	2542	7705	89
H(17A)	4071	-121	7023	92
H(17B)	4036	-60	7600	92
H(17C)	4747	469	7389	92
H(18A)	3886	1633	6525	86
H(18B)	4609	2020	6923	86
H(18C)	3823	2701	6829	86
H(20A)	2359	-2118	5790	34
H(20B)	2154	-1706	5232	34
H(21)	2284	-3590	5239	49
H(22A)	1086	-4034	4737	54
H(22B)	1371	-2893	4581	54
H(23)	26	-2802	4654	49
H(24A)	11	-4156	5257	57
H(24B)	-354	-3090	5440	57
H(25)	564	-3827	6095	50
H(26A)	1306	-2266	6306	32
H(26B)	428	-1953	6078	32
H(27A)	1416	-4650	5622	55
Н(27В)	1905	-3888	6027	55
H(28A)	781	-1233	4868	36
H(28B)	105	-1310	5196	36
H(29A)	5451	-1275	5722	29
Н(29В)	5294	-223	6013	29

H(31)	4652	-1288	6621	35
H(32)	4826	-2508	7268	46
H(33)	6014	-3386	7484	40
H(35A)	7698	-2803	7290	33
H(35B)	7255	-3912	7175	33
H(36A)	6557	-3967	6349	33
H(36B)	7263	-4583	6173	33
H(38)	6573	-4682	5271	43
H(39)	6115	-3728	4553	43
H(40)	6057	-1888	4576	35
H(42A)	6031	-308	5146	28
H(42B)	6960	-242	5288	28
H(44A)	8106	-5296	6729	75
H(44B)	8348	-4666	7236	75
H(44C)	9004	-5062	6936	75
H(45A)	9529	-3248	6901	66
H(45B)	8907	-2874	7232	66
H(45C)	8954	-2284	6723	66
H(46A)	8513	-3267	5921	61
H(46B)	8297	-4494	5952	61
H(46C)	9167	-4102	6147	61
H(48)	6152	2407	6946	51
H(49)	7838	2731	6074	50
H(50A)	6870	2893	5370	62
H(50B)	6778	3807	5761	62
H(51)	5531	3056	5466	57
H(52A)	5177	2598	6234	61
H(52B)	5731	3620	6295	61
H(53A)	7415	1125	5649	39
H(53B)	7647	886	6227	39
H(54A)	6622	691	6754	37
H(54B)	5719	800	6521	37
H(55A)	7148	3423	6674	57
H(55B)	7482	2273	6844	57
H(56A)	5326	1201	5599	42
H(56B)	5989	1339	5265	42
H(59A)	-763	-2409	3384	130
H(59B)	-382	-3046	2982	130
H(59C)	642	-3692	3583	113
H(59D)	377	-3489	3004	113
H(59E)	798	-3623	3739	96
H(59F)	478	-3298	3180	96
H(60A)	913	2046	8760	74
H(60B)	1430	2067	9298	74
H(60C)	-397	997	9108	93
H(60D)	-81	1833	8752	93

7.2.1.3 [Ni(L-N₄Ad^tBu)Cl₂] 55

7.2.1.3.1 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0513.

Summenformel	$C_{35}H_{46}Cl_2N_4NiO$	
Molmasse	668.37	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Oszillation	
Kristallsystem	Orthorhombisch	
Raumgruppe	P2 ₁ 2 ₁ 2 ₁	
Zelldimensionen	a = 10.5372(6) Å	$\alpha = 90^{\circ}$
	b = 16.1228(10) Å	$\beta = 90^{\circ}$
	c = 19.3284(16) Å	$\gamma = 90^{\circ}$
Zellvolumen	3283.7(4) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.352 Mg/m ³	
Absorptionskoeffizient	0.788 mm ⁻¹	
Kristallgröße	0.61 x 0.42 x 0.40 mm	
Gemessener θ-Bereich	2.74 bis 26.73°	
Anzahl der gemessenen Reflexe	19546	
Unabhängige Reflexe	6736 (Rint = 0.0304)	
Absorptionskorrektur	Keine	
Max. und min. Transmission	0.7434 und 0.6450	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen	F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	6736 / 20 / 387	
Endgültige R-Werte [I>2o(I)]	R1 = 0.0308, wR2 = 0.0696	
R-Werte (alle Daten)	R1 = 0.0402, wR2 = 0.0720	
Absolutstrukturparameter	0.506(10)	
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.04P)^2]$ mit P=(H	$Fo^2 + 2Fc^2)/3$
GooF (alle Daten)	0.971	
Größtes Maximum und Minimum	0.309 und -0.200 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das

Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

In der asymmetrischen Einheit befindet sich ein Molekül Benzylalkohol. Dieses ist fehlgeordnet. Alle Nichtwasserstoffatome bis auf die des Lösemittelmoleküls wurden mit anisotropen Temperaturfaktoren versehen Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen C- bzw. O-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0513.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ii} -Tensors.

	х	У	Z	U(eq)
Ni(1)	9328(1)	1647(1)	8449(1)	43(1)
Cl(1)	9241(1)	292(1)	7988(1)	64(1)
Cl(2)	11537(1)	1602(1)	8726(1)	56(1)
N(1)	8261(2)	1377(1)	9514(1)	47(1)
N(2)	7483(2)	1808(1)	8219(1)	47(1)
N(3)	9486(2)	2509(1)	7490(1)	45(1)
N(4)	9262(2)	2786(1)	8862(1)	42(1)
C(1)	7108(3)	971(2)	9225(1)	55(1)
C(2)	6599(3)	1440(2)	8610(1)	53(1)
C(3)	5338(2)	1504(2)	8444(2)	63(1)
C(4)	4977(3)	1945(2)	7878(2)	71(1)
C(5)	5899(3)	2355(2)	7493(2)	63(1)
C(6)	7144(3)	2292(1)	7688(1)	49(1)
C(7)	8171(3)	2822(2)	7383(1)	53(1)

/ Annang
/ I mang

C(8)	10272(3)	3186(1)	7800(1)	50(1)
C(9)	9776(2)	3411(1)	8506(1)	45(1)
C(10)	9807(3)	4198(1)	8771(1)	54(1)
C(11)	9314(3)	4338(1)	9426(1)	59(1)
C(12)	8751(3)	3697(2)	9777(1)	52(1)
C(13)	8698(2)	2916(1)	9477(1)	45(1)
C(14)	7901(3)	2219(1)	9762(1)	53(1)
C(15)	10054(3)	2212(2)	6809(1)	57(1)
C(16)	10276(3)	2926(2)	6300(1)	70(1)
C(17)	11308(3)	1771(2)	6945(2)	75(1)
C(18)	9127(3)	1581(2)	6488(1)	75(1)
C(19)	8863(2)	855(2)	10082(1)	48(1)
C(20)	9363(3)	41(1)	9778(1)	55(1)
C(21)	10009(3)	-480(2)	10342(2)	69(1)
C(22)	9063(4)	-685(2)	10910(2)	85(1)
C(23)	8586(4)	125(2)	11226(2)	79(1)
C(24)	9691(4)	615(2)	11521(2)	91(1)
C(25)	10644(4)	804(2)	10945(1)	72(1)
C(26)	9991(3)	1330(2)	10389(1)	58(1)
C(27)	11116(3)	1(2)	10642(2)	77(1)
C(28)	7915(3)	646(2)	10664(1)	64(1)
C(29A)	3959(5)	9120(4)	8841(3)	60(2)
C(30A)	5064(8)	9264(6)	8521(6)	85(3)
C(31A)	6229(7)	8830(4)	8615(4)	89(2)
C(32A)	6136(8)	8206(5)	9086(4)	103(2)
C(33A)	4996(11)	8003(5)	9416(5)	108(3)
C(34A)	3895(9)	8476(6)	9312(5)	102(3)
C(35A)	2828(8)	9605(5)	8775(4)	112(3)
O(1A)	2451(10)	9750(6)	8050(4)	160(3)
C(29B)	4024(7)	9312(5)	8606(4)	72(2)
C(30B)	5291(9)	9271(7)	8487(6)	80(4)
C(31B)	6038(11)	8743(7)	8923(6)	113(4)
C(32B)	5559(14)	8270(8)	9418(7)	137(4)
C(33B)	4327(15)	8323(10)	9528(7)	150(5)
C(34B)	3542(12)	8800(7)	9168(5)	117(4)
C(35B)	3133(8)	9829(5)	8292(5)	87(2)
O(1B)	1886(7)	9495(4)	8505(4)	110(2)

Ni(1)-N(4)	2.0041(16)		C(15)-C(18)	1.541(4)	
Ni(1)-N(2)	2.011(2)		C(19)-C(20)	1.531(3)	
Ni(1)-N(3)	2.3225(17)		C(19)-C(26)	1.533(4)	
Ni(1)-Cl(1)	2.3616(6)		C(19)-C(28)	1.541(3)	
Ni(1)-N(1)	2.3866(19)		C(20)-C(21)	1.535(4)	
Ni(1)-Cl(2)	2.3900(7)		C(21)-C(27)	1.516(5)	
N(1)-C(1)	1.487(3)		C(21)-C(22)	1.519(5)	
N(1)-C(14)	1.489(3)		C(22)-C(23)	1.527(5)	
N(1)-C(19)	1.523(3)		C(23)-C(24)	1.518(5)	
N(2)-C(6)	1.338(3)		C(23)-C(28)	1.543(4)	
N(2)-C(2)	1.338(3)		C(24)-C(25)	1.530(5)	
N(3)-C(7)	1.489(3)		C(25)-C(27)	1.505(5)	
N(3)-C(8)	1.496(3)		C(25)-C(26)	1.532(4)	
N(3)-C(15)	1.522(3)		C(29A)-C(30A)	1.339(9)	
N(4)-C(9)	1.335(3)		C(29A)-C(34A)	1.382(10)	
N(4)-C(13)	1.345(3)		C(29A)-C(35A)	1.431(9)	
C(1)-C(2)	1.508(4)		C(30A)-C(31A)	1.424(9)	
C(2)-C(3)	1.371(4)		C(31A)-C(32A)	1.360(11)	
C(3)-C(4)	1.360(4)		C(32A)-C(33A)	1.399(13)	
C(4)-C(5)	1.390(4)		C(33A)-C(34A)	1.403(13)	
C(5)-C(6)	1.369(4)		C(35A)-O(1A)	1.475(10)	
C(6)-C(7)	1.500(4)		C(29B)-C(30B)	1.355(10)	
C(8)-C(9)	1.505(3)		C(29B)-C(35B)	1.395(10)	
C(9)-C(10)	1.369(3)		C(29B)-C(34B)	1.457(12)	
C(10)-C(11)	1.388(4)		C(30B)-C(31B)	1.435(11)	
C(11)-C(12)	1.371(4)		C(31B)-C(32B)	1.323(14)	
C(12)-C(13)	1.388(3)		C(32B)-C(33B)	1.318(16)	
C(13)-C(14)	1.506(3)		C(33B)-C(34B)	1.326(15)	
C(15)-C(17)	1.523(4)		C(35B)-O(1B)	1.479(9)	
C(15)-C(16)	1.533(4)				
$\mathbf{x}(A)$ $\mathbf{x}(A)$ $\mathbf{x}(A)$		96 25(9)	NT(2) NT(1) 01(2		174 22(6)
N(4) - NI(1) - N(2)		30.35(0)	N(2) - NI(1) - CI(2)	<u>(</u>)	1/4.33(0)
$N(4) = N(3)$ $N(2) = N^{+}(1) = N(3)$		70.00(0)	M(3) = ML(1) = CL(2)	·)	97.33(0) 05 11(2)
$\mathbf{N}(\mathbf{A}) = \mathbf{N}(\mathbf{A}) = \mathbf{N}(\mathbf{A}) = \mathbf{N}(\mathbf{A}) = \mathbf{N}(\mathbf{A})$		175 57(7)	$\mathbf{U}(1) = \mathbf{N}\mathbf{I}(1) = \mathbf{U}\mathbf{I}(1)$	_Δ)	35.41(3)
M(2) M(1) - M(1) - M(1)		29 92(6)	C(1) = N(1) = C(14)	• /	108 2(2)
N(3) - Ni(1) - CI(1)		104 80(5)	C(1) = N(1) = C(14)		111 62/12)
$\mathbf{N}(\Delta) = \mathbf{N}^{-1}(1) = \mathbf{N}^{-1}(1)$		78 88(7)	$C(14)_N(1)_C(19)$	3)	112 20/10)
TN (- T) - TN T (T) - TN (T)		/0.00(/)	$C(T_{-1}) - TN(T) - C(T_{2})$	·)	,ZU(O)

Tabelle 3. Bindungslängen [Å] und -winkel [⁰] für 0513.

C(1)-N(1)-Ni(1)

C(14)-N(1)-Ni(1)

C(19)-N(1)-Ni(1)

C(6)-N(2)-C(2)

98.14(13)

103.33(13)

121.81(15)

120.4(2)

76.02(8)

146.29(7)

97.91(5)

88.40(6)

N(2)-Ni(1)-N(1)

N(3)-Ni(1)-N(1)

Cl(1)-Ni(1)-N(1)

N(4)-Ni(1)-Cl(2)

C(6)-N(2)-Ni(1)	120.18(17)	C(27)-C(21)-C(20)	109.5(2)
C(2)-N(2)-Ni(1)	119.41(16)	C(22)-C(21)-C(20)	109.9(3)
C(7)-N(3)-C(8)	108.86(18)	C(21)-C(22)-C(23)	108.6(2)
C(7)-N(3)-C(15)	110.69(19)	C(24)-C(23)-C(22)	110.1(3)
C(8)-N(3)-C(15)	111.0(2)	C(24)-C(23)-C(28)	109.4(3)
C(7)-N(3)-Ni(1)	104.28(13)	C(22)-C(23)-C(28)	109.6(3)
C(8)-N(3)-Ni(1)	98.97(12)	C(23)-C(24)-C(25)	109.4(3)
C(15)-N(3)-Ni(1)	121.99(14)	C(27)-C(25)-C(24)	109.2(3)
C(9)-N(4)-C(13)	121.24(18)	C(27)-C(25)-C(26)	110.6(2)
C(9)-N(4)-Ni(1)	118.10(14)	C(24)-C(25)-C(26)	109.0(3)
C(13)-N(4)-Ni(1)	120.65(15)	C(25)-C(26)-C(19)	110.0(2)
N(1)-C(1)-C(2)	111.5(2)	C(25)-C(27)-C(21)	109.5(3)
N(2)-C(2)-C(3)	120.6(2)	C(19)-C(28)-C(23)	109.6(3)
N(2)-C(2)-C(1)	114.8(2)	C(30A)-C(29A)-C(34A)	118.5(7)
C(3)-C(2)-C(1)	124.5(2)	C(30A)-C(29A)-C(35A)	126.0(7)
C(4)-C(3)-C(2)	119.9(3)	C(34A)-C(29A)-C(35A)	115.4(6)
C(3)-C(4)-C(5)	119.0(3)	C(29A)-C(30A)-C(31A)	127.3(8)
C(6)-C(5)-C(4)	119.2(3)	C(32A)-C(31A)-C(30A)	112.7(8)
N(2)-C(6)-C(5)	120.7(2)	C(31A)-C(32A)-C(33A)	122.7(8)
N(2)-C(6)-C(7)	116.2(2)	C(32A)-C(33A)-C(34A)	121.2(8)
C(5)-C(6)-C(7)	122.8(2)	C(29A)-C(34A)-C(33A)	117.5(8)
N(3)-C(7)-C(6)	115.06(19)	C(29A)-C(35A)-O(1A)	113.4(7)
N(3)-C(8)-C(9)	110.30(19)	C(30B)-C(29B)-C(35B)	128.1(8)
N(4)-C(9)-C(10)	121.0(2)	C(30B)-C(29B)-C(34B)	116.3(8)
N(4)-C(9)-C(8)	115.27(19)	C(35B)-C(29B)-C(34B)	115.4(7)
C(10)-C(9)-C(8)	123.7(2)	C(29B)-C(30B)-C(31B)	118.0(10)
C(9)-C(10)-C(11)	118.9(2)	C(32B)-C(31B)-C(30B)	123.9(12)
C(12)-C(11)-C(10)	119.4(2)	C(33B)-C(32B)-C(31B)	117.1(13)
C(11)-C(12)-C(13)	119.6(2)	C(32B)-C(33B)-C(34B)	124.6(13)
N(4)-C(13)-C(12)	119.5(2)	C(33B)-C(34B)-C(29B)	120.1(11)
N(4)-C(13)-C(14)	116.98(19)	C(29B)-C(35B)-O(1B)	105.0(7)
C(12)-C(13)-C(14)	123.1(2)		
N(1)-C(14)-C(13)	114.9(2)		
N(3)-C(15)-C(17)	109.8(2)		
N(3)-C(15)-C(16)	112.2(2)		
C(17)-C(15)-C(16)	109.2(3)		
N(3)-C(15)-C(18)	107.8(2)		
C(17)-C(15)-C(18)	108.2(2)		
C(16)-C(15)-C(18)	109.5(2)		
N(1)-C(19)-C(20)	109.86(19)		
N(1)-C(19)-C(26)	109.02(19)		
C(20)-C(19)-C(26)	108.1(2)		
N(1)-C(19)-C(28)	112.1(2)		
C(20)-C(19)-C(28)	108.4(2)		
C(26)-C(19)-C(28)	109.3(2)		
C(19)-C(20)-C(21)	110.4(2)		
C(27)-C(21)-C(22)	109.9(3)		

Tabelle 4. Anisotrope Auslenkungsparameter $[\text{\AA}^2 \text{ x } 10^3]$ für 0513.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Ni(1)	42(1)	39(1)	48(1)	-2(1)	-2(1)	1(1)
Cl(1)	90(1)	42(1)	59(1)	-6(1)	-1(1)	1(1)
Cl(2)	45(1)	67(1)	55(1)	2(1)	-3(1)	6(1)
N(1)	45(1)	47(1)	48(1)	2(1)	4(1)	-4(1)
N(2)	40(1)	46(1)	56(1)	2(1)	-4(1)	-2(1)
N(3)	46(1)	45(1)	44(1)	2(1)	-1(1)	-1(1)
N(4)	41(1)	41(1)	45(1)	0(1)	1(1)	1(1)
C(1)	44(2)	63(1)	59(1)	9(1)	2(1)	-6(1)
C(2)	46(2)	52(1)	60(2)	2(1)	-2(1)	-4(1)
C(3)	40(2)	74(2)	76(2)	3(2)	3(1)	-8(1)
C(4)	46(2)	81(2)	85(2)	3(2)	-14(2)	1(1)
C(5)	48(2)	70(2)	72(2)	7(1)	-12(1)	6(1)
C(6)	47(2)	48(1)	53(1)	0(1)	-7(1)	4(1)
C(7)	54(2)	52(1)	53(1)	8(1)	-7(1)	4(1)
C(8)	54(2)	45(1)	50(1)	5(1)	4(1)	-7(1)
C(9)	43(1)	42(1)	51(1)	0(1)	-3(1)	-1(1)
C(10)	55(2)	41(1)	65(2)	0(1)	-4(1)	-7(1)
C(11)	56(2)	48(1)	72(2)	-15(1)	-6(2)	4(1)
C(12)	48(2)	58(1)	49(1)	-10(1)	-2(1)	8(1)
C(13)	41(2)	50(1)	45(1)	-4(1)	-2(1)	7(1)
C(14)	53(2)	54(1)	52(1)	0(1)	12(1)	4(1)
C(15)	68(2)	58(1)	44(1)	-2(1)	3(1)	1(1)
C(16)	83(3)	77(2)	50(1)	8(1)	8(1)	-2(2)
C(17)	80(2)	87(2)	58(2)	-5(2)	7(1)	26(2)
C(18)	101(2)	70(2)	53(1)	-6(1)	-7(2)	-6(2)
C(19)	43(2)	54(1)	48(1)	7(1)	5(1)	-5(1)
C(20)	56(2)	49(1)	60(1)	8(1)	5(1)	-4(1)
C(21)	68(2)	61(2)	77(2)	22(1)	-3(2)	4(1)
C(22)	84(3)	80(2)	92(2)	42(2)	1(2)	-13(2)
C(23)	78(2)	100(2)	61(2)	30(2)	12(2)	-15(2)
C(24)	100(3)	120(3)	51(2)	21(2)	-4(2)	-8(2)
C(25)	65(2)	95(2)	57(2)	16(1)	-11(2)	-14(2)
C(26)	58(2)	68(2)	47(1)	6(1)	0(1)	-11(1)
C(27)	63(2)	88(2)	80(2)	28(2)	-10(2)	-2(2)
C(28)	55(2)	80(2)	57(2)	14(1)	13(1)	-7(1)

Tabelle 5.

	H-Atomkoordinaten [x	10 ⁴] und ä	quivalente isotrop	e Auslenkungsparame	ter [Å ² x 10	0 ³] für 0513.
--	-----------------------	-------------------------	--------------------	---------------------	--------------------------	----------------------------

	x	У	Z	U(eq)
H(1A)	6459	943	9580	66
H(1B)	7315	409	9087	66
H(3)	4730	1245	8718	76
H(4)	4127	1972	7750	85
H(5)	5672	2668	7108	76
H(7A)	8020	2874	6890	63
H(7B)	8110	3373	7583	63
H(8A)	10250	3670	7502	60
H(8B)	11147	3004	7837	60
H(10)	10152	4632	8516	64
H(11)	9365	4862	9626	70
H(12)	8407	3785	10214	62
H(14A)	7960	2228	10263	64
H(14B)	7022	2320	9640	64
H(16A)	9474	3155	6162	105
H(16B)	10716	2722	5900	105
H(16C)	10776	3349	6519	105
H(17A)	11896	2152	7152	112
H(17B)	11649	1571	6516	112
H(17C)	11168	1313	7252	112
H(18A)	8878	1185	6832	112
H(18B)	9536	1300	6111	112
H(18C)	8389	1867	6319	112
H(20A)	9966	160	9413	66
H(20B)	8665	-270	9579	66
H(21)	10323	-997	10137	82
H(22A)	9467	-1021	11263	102
H(22B)	8356	-996	10720	102
Н(23)	7982	0	11597	95
H(24A)	10101	297	11883	109
H(24B)	9384	1129	11720	109
H(25)	11362	1114	11137	87
H(26A)	10593	1461	10025	69
H(26B)	9698	1846	10590	69
H(27A)	11528	-326	10998	92
H(27B)	11734	114	10282	92
H(28A)	7205	337	10476	76
H(28B)	7591	1154	10866	76
H(30A)	5073	9696	8202	102
H(31A)	6973	8959	8379	107

		7 A:	nhang		
H(32A)	6860	7902	9193	123	
H(33A)	4967	7545	9709	130	
H(34A)	3150	8361	9552	123	
H(35A)	2959	10136	9000	135	
H(35B)	2141	9324	9013	135	
H(1A1)	1675	9754	8021	192	
H(30B)	5663	9577	8133	97	
H(31B)	6912	8733	8855	135	
H(32B)	6069	7915	9676	164	
H(33B)	3985	8004	9882	180	
H(34B)	2681	8807	9275	141	
H(35C)	3221	9815	7792	104	
H(35D)	3234	10397	8448	104	
H(1B1)	1401	9496	8173	132	

7.2.1.3.1 NMR- Spektrum

7.2.1.4 [Ni(L-N₄AdH]Cl₂] 57

7.2.1.4.1 IR-Spektrum

7.2.1.4.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0381.

Summenformel	$C_{24}H_{30}Cl_2N_4Ni$	
Molmasse	504.13	
Temperatur	193(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/n$	
Zelldimensionen	a = 10.2017(7) Å	$\alpha = 90^{\circ}$
	b = 10.0154(4) Å	$\beta = 93.117(8)^{\circ}$
	c = 21.7754(14) Å	$\gamma = 90^{\circ}$
Zellvolumen	2221.6(2) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.507 Mg/m ³	
Absorptionskoeffizient	1.134 mm^{-1}	
Kristallgröße	0.56 x 0.48 x 0.11 mm	
Gemessener θ-Bereich	2.77 bis 26.73°	
Anzahl der gemessenen Reflexe	23407	
Unabhängige Reflexe	4706 (Rint = 0.0829)	
Absorptionskorrektur	Analytisch	

Max. und min. Transmission	0.87399 und 0.49550
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	4706 / 0 / 284
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0262, wR2 = 0.0651
R-Werte (alle Daten)	R1 = 0.0348, $wR2 = 0.0673$
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0344P) ² +0.0282P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.014
Größtes Maximum und Minimum	0.356 und -0.242 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome, bis auf N-H, wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0381.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Ni(1)	5724(1)	8634(1)	6113(1)	14(1)
Cl(1)	5644(1)	10916(1)	6407(1)	25(1)
Cl(2)	3469(1)	8510(1)	5758(1)	22(1)
N(1)	6584(1)	9038(2)	5257(1)	19(1)
N(2)	7665(1)	8506(1)	6381(1)	15(1)
N(3)	5725(1)	7335(1)	7046(1)	15(1)
N(4)	5945(1)	6739(1)	5821(1)	16(1)
C(1)	7877(2)	9640(2)	5423(1)	24(1)
C(2)	8505(2)	8992(2)	5984(1)	18(1)
C(3)	9848(2)	8887(2)	6102(1)	23(1)
C(4)	10310(2)	8347(2)	6656(1)	24(1)
C(5)	9434(2)	7850(2)	7064(1)	21(1)
C(6)	8100(2)	7879(2)	6892(1)	15(1)
C(7)	7129(2)	7049(2)	7222(1)	18(1)
C(8)	5119(2)	6092(2)	6787(1)	19(1)
C(9)	5710(2)	5710(2)	6191(1)	18(1)
C(10)	5973(2)	4415(2)	6020(1)	23(1)
C(11)	6495(2)	4200(2)	5451(1)	27(1)
C(12)	6752(2)	5269(2)	5081(1)	25(1)
C(13)	6466(2)	6552(2)	5279(1)	19(1)
C(14)	6652(2)	7786(2)	4900(1)	24(1)
C(15)	5003(2)	7857(2)	7589(1)	15(1)
C(16)	4842(2)	6788(2)	8088(1)	21(1)
C(17)	4107(2)	7367(2)	8623(1)	26(1)
C(18)	2742(2)	7823(2)	8381(1)	28(1)
C(19)	2891(2)	8901(2)	7896(1)	23(1)
C(20)	3640(2)	8344(2)	7361(1)	18(1)
C(21)	5749(2)	9056(2)	7872(1)	20(1)
C(22)	5009(2)	9622(2)	8412(1)	24(1)
C(23)	4882(2)	8545(2)	8904(1)	29(1)
C(24)	3645(2)	10087(2)	8177(1)	25(1)

Ni(1)-N(4)	2.0178(14)		C(6)-C(7)	1.505(2)	
Ni(1)-N(2)	2.0376(13)		C(8)-C(9)	1.510(2)	
Ni(1)-N(1)	2.1430(14)		C(9)-C(10)	1.380(2)	
Ni(1)-Cl(1)	2.3761(5)		C(10)-C(11)	1.393(3)	
Ni(1)-Cl(2)	2.3897(5)		C(11)-C(12)	1.373(3)	
Ni(1)-N(3)	2.4127(12)		C(12)-C(13)	1.391(2)	
N(1)-C(1)	1.477(2)		C(13)-C(14)	1.504(2)	
N(1)-C(14)	1.479(2)		C(15)-C(20)	1.530(2)	
N(2)-C(6)	1.3333(19)		C(15)-C(21)	1.533(2)	
N(2)-C(2)	1.341(2)		C(15)-C(16)	1.541(2)	
N(3)-C(8)	1.487(2)		C(16)-C(17)	1.533(2)	
N(3)-C(7)	1.490(2)		C(17)-C(23)	1.530(3)	
N(3)-C(15)	1.5177(19)		C(17)-C(18)	1.531(3)	
N(4)-C(13)	1.335(2)		C(18)-C(19)	1.523(2)	
N(4)-C(9)	1.338(2)		C(19)-C(24)	1.525(2)	
C(1)-C(2)	1.495(2)		C(19)-C(20)	1.533(2)	
C(2)-C(3)	1.385(2)		C(21)-C(22)	1.540(2)	
C(3)-C(4)	1.381(3)		C(22)-C(24)	1.529(2)	
C(4)-C(5)	1.386(2)		C(22)-C(23)	1.530(2)	
C(5)-C(6)	1.391(2)				
N(4)-Ni(1)-N(2)		84.68(5)	C(8)-N(3)-C(15)		111.99(12)
N(4)-Ni(1)-N(1)		81.08(5)	C(7)-N(3)-C(15)		111.55(12)
N(2)-Ni(1)-N(1)		79.79(5)	C(8)-N(3)-Ni(1)		98.66(9)
N(4)-Ni(1)-Cl(1)	1	74.55(4)	C(7)-N(3)-Ni(1)		106.00(9)
N(2)-Ni(1)-Cl(1)		91.77(4)	C(15)-N(3)-Ni(1))	119.43(9)
N(1)-Ni(1)-Cl(1)		94.24(4)	C(13)-N(4)-C(9)		121.17(14)
N(4)-Ni(1)-Cl(2)		88.34(4)	C(13)-N(4)-Ni(1)	1	117.93(11)
N(2)-Ni(1)-Cl(2)	1	73.02(4)	C(9)-N(4)-Ni(1)		120.50(11)
N(1)-Ni(1)-Cl(2)		99.22(4)	N(1)-C(1)-C(2)		111.13(13)
Cl(1)-Ni(1)-Cl(2))	95.192(17)	N(2)-C(2)-C(3)		120.87(15)
N(4)-Ni(1)-N(3)		76.33(5)	N(2)-C(2)-C(1)		115.02(14)
N(2)-Ni(1)-N(3)		76.67(5)	C(3)-C(2)-C(1)		124.11(15)
N(1)-Ni(1)-N(3)	1	48.59(5)	C(4)-C(3)-C(2)		118.67(15)
Cl(1)-Ni(1)-N(3)	1	06.91(3)	C(3)-C(4)-C(5)		119.89(15)
Cl(2)-Ni(1)-N(3)	1	01.62(3)	C(4)-C(5)-C(6)		118.44(15)
C(1)-N(1)-C(14)	1	14.09(14)	N(2)-C(6)-C(5)		120.69(14)
C(1)-N(1)-Ni(1)	1	05.42(10)	N(2)-C(6)-C(7)		117.40(13)
C(14)-N(1)-Ni(1)	1	09.31(10)	C(5)-C(6)-C(7)		121.34(14)
C(6)-N(2)-C(2)	1	20.90(14)	N(3)-C(7)-C(6)		114.86(12)
C(6)-N(2)-Ni(1)	1	22.87(10)	N(3)-C(8)-C(9)		111.17(13)
C(2)-N(2)-Ni(1)	1	15.99(10)	N(4)-C(9)-C(10)		121.18(15)
C(8)-N(3)-C(7)	1	08.05(12)	N(4)-C(9)-C(8)		114.58(14)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0381.

C(10)-C(9)-C(8)	124.22(15)
C(9)-C(10)-C(11)	118.35(16)
C(12)-C(11)-C(10)	119.77(16)
C(11)-C(12)-C(13)	119.20(15)
N(4)-C(13)-C(12)	120.31(16)
N(4)-C(13)-C(14)	115.95(15)
C(12)-C(13)-C(14)	123.67(15)
N(1)-C(14)-C(13)	113.43(13)
N(3)-C(15)-C(20)	109.20(12)
N(3)-C(15)-C(21)	109.38(12)
C(20)-C(15)-C(21)	107.65(13)
N(3)-C(15)-C(16)	112.59(13)
C(20)-C(15)-C(16)	108.68(13)
C(21)-C(15)-C(16)	109.22(13)
C(17)-C(16)-C(15)	110.39(14)
C(23)-C(17)-C(18)	110.37(16)
C(23)-C(17)-C(16)	109.39(15)
C(18)-C(17)-C(16)	108.97(14)
C(19)-C(18)-C(17)	109.03(14)
C(24)-C(19)-C(20)	109.08(14)
C(24)-C(19)-C(18)	109.97(14)
C(20)-C(19)-C(18)	110.00(14)
C(19)-C(20)-C(15)	110.60(13)
C(15)-C(21)-C(22)	110.05(13)
C(24)-C(22)-C(23)	109.79(15)
C(24)-C(22)-C(21)	109.37(13)
C(23)-C(22)-C(21)	109.76(14)
C(17)-C(23)-C(22)	109.00(14)
C(22)-C(24)-C(19)	109.10(14)

Tabelle 4. Anisotrope Auslenkungsparameter $[\text{\AA}^2 \text{ x } 10^3]$ für 0381.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
NT- (1)	14(1)	14(1)	14(1)	1 (1)	2(1)	1/1)
NI(1)	14(1)	14(1)	14(1)	$\perp(\perp)$	2(1)	$\perp (\perp)$
CI(I)	33(1) 17(1)	15(1)	20(1)	U(1)	2(1)	$\mathcal{I}(1)$
CI(2)	$\perp / (\perp)$	30(1)	20(1) 17(1)	5(1)	-1(1)	$Z(\perp)$
	18(1)	23(1)	(1)	0(1) 1(1)	2(1)	Z(1)
N(Z)	15(1)	14(1)	$\perp / (\perp)$	$\perp(\perp)$	3(1)	0(1)
N(3)	14(1)	1/(1)	14(1)	2(1)	Z(1)	$U(\mathbf{I})$
N(4)	16(1)	18(1)	15(1)	0(1)	1 (1)	$\bot(\bot)$
C(1)	21(1)	28(1)	23(1)	9(1)	5(1)	-6(1)
C(2)	18(1)	16(1)	20(1)	0(1)	3(1)	-2(1)
C(3)	18(1)	22(1)	30(1)	0(1)	7(1)	-4(1)
C(4)	14(1)	24(1)	34(1)	-2(1)	-2(1)	0(1)
C(5)	19(1)	20(1)	24(1)	-1(1)	-3(1)	2(1)
C(6)	16(1)	13(1)	17(1)	-2(1)	1(1)	2(1)
C(7)	15(1)	19(1)	18(1)	5(1)	1(1)	4(1)
C(8)	21(1)	15(1)	20(1)	1(1)	4(1)	-3(1)
C(9)	17(1)	17(1)	19(1)	0(1)	0(1)	-1(1)
C(10)	26(1)	16(1)	27(1)	-1(1)	-2(1)	1(1)
C(11)	28(1)	21(1)	31(1)	-10(1)	-1(1)	7(1)
C(12)	24(1)	31(1)	20(1)	-8(1)	2(1)	4(1)
C(13)	16(1)	26(1)	16(1)	-3(1)	0(1)	2(1)
C(14)	27(1)	31(1)	15(1)	0(1)	6(1)	0(1)
C(15)	15(1)	18(1)	14(1)	2(1)	4(1)	1(1)
C(16)	26(1)	20(1)	18(1)	6(1)	6(1)	1(1)
C(17)	34(1)	29(1)	17(1)	6(1)	9(1)	2(1)
C(18)	27(1)	33(1)	26(1)	0(1)	14(1)	-2(1)
C(19)	18(1)	30(1)	21(1)	0(1)	4(1)	3(1)
C(20)	15(1)	22(1)	18(1)	0(1)	2(1)	2(1)
C(21)	17(1)	23(1)	19(1)	0(1)	0(1)	-3(1)
C(22)	26(1)	24(1)	22(1)	-5(1)	-1(1)	-1(1)
C(23)	35(1)	37(1)	16(1)	1(1)	1(1)	5(1)
C(24)	28(1)	24(1)	23(1)	-3(1)	4(1)	5(1)

Tabelle 4. Anisotrope Auslenkungsparameter $[\text{\AA}^2 \text{ x } 10^3]$ für 0381.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
NT- (1)	14(1)	14(1)	14(1)	1 (1)	2(1)	1/1)
NI(1)	14(1)	14(1)	14(1)	$\perp(\perp)$	2(1)	$\perp (\perp)$
CI(I)	33(1) 17(1)	15(1)	20(1)	O(1)	2(1)	$\mathcal{I}(1)$
CI(2)	$\perp / (\perp)$	30(1)	20(1) 17(1)	5(1)	-1(1)	$Z(\perp)$
	18(1)	23(1)	(1)	0(1) 1(1)	2(1)	Z(1)
N(Z)	15(1)	14(1)	$\perp / (\perp)$	$\perp(\perp)$	3(1)	0(1)
N(3)	14(1)	1/(1)	14(1)	2(1)	Z(1)	$U(\mathbf{I})$
N(4)	16(1)	18(1)	15(1)	0(1)	1 (1)	$\bot(\bot)$
C(1)	21(1)	28(1)	23(1)	9(1)	5(1)	-6(1)
C(2)	18(1)	16(1)	20(1)	0(1)	3(1)	-2(1)
C(3)	18(1)	22(1)	30(1)	0(1)	7(1)	-4(1)
C(4)	14(1)	24(1)	34(1)	-2(1)	-2(1)	0(1)
C(5)	19(1)	20(1)	24(1)	-1(1)	-3(1)	2(1)
C(6)	16(1)	13(1)	17(1)	-2(1)	1(1)	2(1)
C(7)	15(1)	19(1)	18(1)	5(1)	1(1)	4(1)
C(8)	21(1)	15(1)	20(1)	1(1)	4(1)	-3(1)
C(9)	17(1)	17(1)	19(1)	0(1)	0(1)	-1(1)
C(10)	26(1)	16(1)	27(1)	-1(1)	-2(1)	1(1)
C(11)	28(1)	21(1)	31(1)	-10(1)	-1(1)	7(1)
C(12)	24(1)	31(1)	20(1)	-8(1)	2(1)	4(1)
C(13)	16(1)	26(1)	16(1)	-3(1)	0(1)	2(1)
C(14)	27(1)	31(1)	15(1)	0(1)	6(1)	0(1)
C(15)	15(1)	18(1)	14(1)	2(1)	4(1)	1(1)
C(16)	26(1)	20(1)	18(1)	6(1)	6(1)	1(1)
C(17)	34(1)	29(1)	17(1)	6(1)	9(1)	2(1)
C(18)	27(1)	33(1)	26(1)	0(1)	14(1)	-2(1)
C(19)	18(1)	30(1)	21(1)	0(1)	4(1)	3(1)
C(20)	15(1)	22(1)	18(1)	0(1)	2(1)	2(1)
C(21)	17(1)	23(1)	19(1)	0(1)	0(1)	-3(1)
C(22)	26(1)	24(1)	22(1)	-5(1)	-1(1)	-1(1)
C(23)	35(1)	37(1)	16(1)	1(1)	1(1)	5(1)
C(24)	28(1)	24(1)	23(1)	-3(1)	4(1)	5(1)

Tabelle 5.

	x	У	Z	U(eq)
H(1)	6201(19)	9600(2)	5035(9)	20(5)
H(1A)	7766	10606	5501	29
H(1B)	8456	9538	5076	29
Н(З)	10440	9181	5809	27
H(4)	11227	8316	6757	29
H(5)	9736	7498	7451	26
H(7A)	7302	6095	7139	21
H(7B)	7278	7195	7670	21
H(8A)	4162	6227	6714	22
H(8B)	5254	5356	7088	22
H(10)	5802	3688	6284	28
H(11)	6673	3318	5319	32
H(12)	7120	5133	4694	30
H(14A)	7517	7737	4715	29
H(14B)	5968	7808	4559	29
H(16A)	4349	6017	7909	26
H(16B)	5718	6468	8242	26
H(17)	4015	6662	8943	32
H(18A)	2248	7056	8199	34
H(18B)	2248	8181	8724	34
H(19)	2002	9203	7739	27
H(20A)	3730	9049	7047	22
H(20B)	3140	7594	7167	22
H(21A)	5837	9756	7556	24
H(21B)	6642	8774	8021	24
H(22)	5508	10399	8595	29
H(23A)	5765	8244	9057	35
H(23B)	4423	8913	9255	35
H(24A)	3726	10793	7864	30
H(24B)	3166	10461	8521	30

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0381.

7.2.1.4.3 NMR-Spektrum

7.2.1.5 [Ni(L-N₄AdMe)Cl₂] 58

7.2.1.5.1 IR-Spektrum

7.2.1.5.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0441.

Summenformel	$C_{25}H_{32}Cl_2N_4Ni$	
Molmasse	518.16	
Temperatur	193(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/n$	
Zelldimensionen	a = 18.5856(10) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 13.7576(9) Å	$\beta = 105.218(6)^{\circ}$
	c = 18.9803(9) Å	$\gamma = 90^{\circ}$
Zellvolumen	4683.0(5) Å ³	
Formeleinheiten pro Zelle Z	8	

Berechnete Dichte	1.470 Mg/m ³
Absorptionskoeffizient	1.078 mm ⁻¹
Kristallgröße	0.28 x 0.21 x 0.14 mm
Gemessener θ-Bereich	2.67 bis 26.73°
Anzahl der gemessenen Reflexe	49993
Unabhängige Reflexe	9943 (Rint = 0.1649)
Absorptionskorrektur	None
Max. und min. Transmission	0.8637 und 0.7522
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	9943 / 0 / 579
Endgültige R-Werte [I>2o(I)]	R1 = 0.0376, wR2 = 0.0557
R-Werte (alle Daten)	R1 = 0.1115, $wR2 = 0.0692$
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0000P) ²] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.626
Größtes Maximum und Minimum	0.300 und -0.315 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) , der 1.2-fache Wert (CH-Gruppen) bzw. der 1.2-fache Wert (Cp-H oder Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0441.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Ni(1)	6524(1)	-91(1)	2208(1)	22(1)
Cl(1)	6765(1)	-1232(1)	3183(1)	31(1)
Cl(2)	6755(1)	-1214(1)	1310(1)	28(1)
N(1)	7539(2)	959(2)	2380(1)	23(1)
N(2)	6226(2)	975(2)	2806(1)	25(1)
N(3)	5321(1)	-298(2)	1944(1)	26(1)
N(4)	6232(2)	825(2)	1355(1)	24(1)
C(1)	7286(2)	1883(2)	2664(2)	25(1)
C(2)	6639(2)	1765(2)	2990(2)	24(1)
C(3)	6426(2)	2503(3)	3398(2)	39(1)
C(4)	5735(2)	2431(3)	3530(2)	52(1)
C(5)	5287(2)	1629(3)	3292(2)	49(1)
C(6)	5549(2)	894(3)	2935(2)	32(1)
C(7)	5128(2)	-9(3)	2630(2)	33(1)
C(8)	7542(2)	1138(3)	1602(2)	25(1)
C(9)	6756(2)	1290(2)	1132(2)	24(1)
C(10)	5298(2)	1399(3)	334(2)	36(1)
C(11)	5840(2)	1892(3)	106(2)	39(1)
C(12)	6582(2)	1862(3)	505(2)	30(1)
C(13)	5513(2)	872(3)	980(2)	29(1)
C(14)	4969(2)	360(3)	1324(2)	35(1)
C(15)	5086(2)	-1316(3)	1768(2)	32(1)
C(16)	8297(2)	642(2)	2849(2)	22(1)
C(17)	8248(2)	574(3)	3650(2)	33(1)
C(18)	8990(2)	226(3)	4141(2)	38(1)
C(19)	9612(2)	938(3)	4094(2)	41(1)
C(20)	9674(2)	979(3)	3306(2)	36(1)
C(21)	9844(2)	-26(3)	3057(2)	41(1)
C(22)	9226(2)	-733(3)	3110(2)	36(1)
C(23)	8482(2)	-376(2)	2615(2)	29(1)
C(24)	8926(2)	1339(2)	2803(2)	27(1)
C(25)	9167(2)	-788(3)	3900(2)	45(1)
Ni(2)	2068(1)	161(1)	1556(1)	27(1)
Cl(3)	1110(1)	-988(1)	1640(1)	41(1)
Cl(4)	3062(1)	-976(1)	1754(1)	36(1)
N(5)	2245(2)	1116(2)	2632(1)	26(1)
N(6)	1240(2)	1138(2)	1302(2)	33(1)
N(7)	1844(2)	106(2)	364(1)	34(1)
N(8)	2746(2)	1217(2)	1368(1)	26(1)

C(26)	1458(2)	1348(3)	2605(2)	32(1)
C(27)	1006(2)	1564(3)	1833(2)	32(1)
C(27)	266(2)	2120(2)	1666(2)	J=(1)
C(20)	300(2)	2129(3)	1000(2)	43(1)
C(29)	-17(2)	2242(3)	938(2)	53(1)
C(30)	244(2)	1807(3)	394(2)	45(1)
C(31)	884(2)	1263(3)	590(2)	37(1)
C(32)	1260(2)	817(4)	57(2)	55(1)
C(33)	2565(2)	389(3)	226(2)	35(1)
C(34)	2929(2)	1199(3)	727(2)	28(1)
C(35)	3413(2)	1869(3)	575(2)	33(1)
C(36)	3757(2)	2524(3)	1120(2)	33(1)
C(37)	3556(2)	2550(3)	1768(2)	30(1)
C(38)	3006(2)	1908(2)	1864(2)	27(1)
C(39)	2611(2)	2012(2)	2458(2)	29(1)
C(40)	1641(3)	-892(3)	64(2)	52(1)
C(41)	2660(2)	701(2)	3381(2)	26(1)
C(42)	2347(2)	-303(3)	3488(2)	36(1)
C(43)	2802(2)	-744(3)	4219(2)	46(1)
C(44)	2761(2)	-76(4)	4850(2)	53(1)
C(45)	3888(2)	800(3)	4726(2)	50(1)
C(46)	3926(2)	112(3)	4101(2)	45(1)
C(47)	3473(2)	558(3)	3374(2)	35(1)
C(48)	2625(2)	1368(3)	4018(2)	43(1)
C(49)	3081(3)	917(3)	4742(2)	51(1)
C(50)	3607(2)	-878(3)	4206(2)	49(1)

Ni(1)-N(4)	2.010(3)	Ni(2)-N(8)	2.016(3)
Ni(1)-N(2)	2.019(3)	Ni(2)-N(7)	2.191(3)
Ni(1)-N(3)	2.176(3)	Ni(2)-Cl(4)	2.3742(10)
Ni(1)-N(1)	2.329(3)	Ni(2)-N(5)	2.379(3)
Ni(1)-Cl(1)	2.3782(9)	Ni(2)-Cl(3)	2.4161(11)
Ni(1)-Cl(2)	2.4217(9)	N(5)-C(26)	1.485(4)
N(1)-C(8)	1.499(4)	N(5)-C(39)	1.487(4)
N(1)-C(1)	1.504(4)	N(5)-C(41)	1.538(4)
N(1)-C(16)	1.520(4)	N(6)-C(27)	1.334(5)
N(2)-C(2)	1.324(4)	N(6)-C(31)	1.350(4)
N(2)-C(6)	1.348(4)	N(7)-C(32)	1.464(5)
N(3)-C(15)	1.479(4)	N(7)-C(33)	1.483(4)
N(3)-C(7)	1.492(4)	N(7)-C(40)	1.497(5)
N(3)-C(14)	1.493(4)	N(8)-C(38)	1.336(4)
N(4)-C(9)	1.324(4)	N(8)-C(34)	1.346(4)
N(4)-C(13)	1.340(4)	C(26)-C(27)	1.514(5)
C(1)-C(2)	1.498(5)	C(27)-C(28)	1.386(5)
C(2)-C(3)	1.397(5)	C(28)-C(29)	1.387(5)
C(3)-C(4)	1.374(5)	C(29)-C(30)	1.387(6)
C(4)-C(5)	1.385(5)	C(30)-C(31)	1.372(5)
C(5)-C(6)	1.376(5)	C(31)-C(32)	1.502(6)
C(6)-C(7)	1.501(5)	C(33)-C(34)	1.506(5)
C(8)-C(9)	1.512(4)	C(34)-C(35)	1.371(5)
C(9)-C(12)	1.393(5)	C(35)-C(36)	1.395(5)
C(10)-C(11)	1.375(5)	C(36)-C(37)	1.377(5)
C(10)-C(13)	1.389(5)	C(37)-C(38)	1.398(5)
C(11)-C(12)	1.389(5)	C(38)-C(39)	1.505(5)
C(13)-C(14)	1.514(5)	C(41)-C(47)	1.528(5)
C(16)-C(24)	1.532(4)	C(41)-C(42)	1.533(5)
C(16)-C(23)	1.536(4)	C(41)-C(48)	1.532(5)
C(16)-C(17)	1.548(5)	C(42)-C(43)	1.547(5)
C(17)-C(18)	1.526(5)	C(43)-C(50)	1.514(6)
C(18)-C(19)	1.536(5)	C(43)-C(44)	1.527(6)
C(18)-C(25)	1.530(6)	C(44)-C(49)	1.525(6)
C(19)-C(20)	1.532(5)	C(45)-C(49)	1.515(6)
C(20)-C(21)	1.520(5)	C(45)-C(46)	1.533(6)
C(20)-C(24)	1.547(5)	C(46)-C(50)	1.520(6)
C(21)-C(22)	1.528(5)	C(46)-C(47)	1.542(5)
C(22)-C(25)	1.533(5)	C(48)-C(49)	1.544(5)
C(22)-C(23)	1.535(5)		
Ni(2)-N(6)	2.004(3)		

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0441.

N(4)-Ni(1)-N(2)	86.64(11)	C(12)-C(9)-C(8)	123.6(3)
N(4)-Ni(1)-N(3)	81.54(11)	C(11)-C(10)-C(13)	118.1(3)
N(2)-Ni(1)-N(3)	78.91(10)	C(10)-C(11)-C(12)	121.1(3)
N(4)-Ni(1)-N(1)	76.23(10)	C(9)-C(12)-C(11)	117.3(4)
N(2)-Ni(1)-N(1)	78.63(10)	N(4)-C(13)-C(10)	120.6(3)
N(3)-Ni(1)-N(1)	149.10(10)	N(4)-C(13)-C(14)	115.7(3)
N(4)-Ni(1)-Cl(1)	175.10(8)	C(10)-C(13)-C(14)	123.6(3)
N(2)-Ni(1)-Cl(1)	93.75(8)	N(3)-C(14)-C(13)	114.7(3)
N(3)-Ni(1)-Cl(1)	93.74(8)	N(1)-C(16)-C(24)	113.0(3)
N(1)-Ni(1)-Cl(1)	108.64(7)	N(1)-C(16)-C(23)	109.6(3)
N(4)-Ni(1)-Cl(2)	83.90(8)	C(24)-C(16)-C(23)	108.8(3)
N(2)-Ni(1)-Cl(2)	170.06(8)	N(1)-C(16)-C(17)	107.9(3)
N(3)-Ni(1)-Cl(2)	96.63(7)	C(24)-C(16)-C(17)	109.6(3)
N(1)-Ni(1)-Cl(2)	101.98(7)	C(23)-C(16)-C(17)	107.8(3)
Cl(1)-Ni(1)-Cl(2)	95.41(3)	C(18)-C(17)-C(16)	110.0(3)
C(8)-N(1)-C(1)	107.2(2)	C(19)-C(18)-C(25)	109.9(3)
C(8)-N(1)-C(16)	112.5(3)	C(19)-C(18)-C(17)	109.7(3)
C(1)-N(1)-C(16)	111.2(2)	C(25)-C(18)-C(17)	109.6(3)
C(8)-N(1)-Ni(1)	100.16(18)	C(18)-C(19)-C(20)	109.3(3)
C(1)-N(1)-Ni(1)	104.87(19)	C(21)-C(20)-C(19)	110.2(3)
C(16)-N(1)-Ni(1)	119.76(19)	C(21)-C(20)-C(24)	109.0(3)
C(2)-N(2)-C(6)	121.7(3)	C(19)-C(20)-C(24)	109.1(3)
C(2)-N(2)-Ni(1)	121.2(2)	C(20)-C(21)-C(22)	109.8(3)
C(6)-N(2)-Ni(1)	116.7(2)	C(21)-C(22)-C(25)	110.1(3)
C(15)-N(3)-C(7)	108.9(3)	C(21)-C(22)-C(23)	109.1(3)
C(15)-N(3)-C(14)	110.7(3)	C(25)-C(22)-C(23)	109.3(3)
C(7)-N(3)-C(14)	111.6(3)	C(16)-C(23)-C(22)	110.4(3)
C(15)-N(3)-Ni(1)	113.7(2)	C(16)-C(24)-C(20)	109.9(3)
C(7)-N(3)-Ni(1)	103.44(18)	C(22)-C(25)-C(18)	108.9(3)
C(14)-N(3)-Ni(1)	108.3(2)	N(6)-Ni(2)-N(8)	87.15(12)
C(9)-N(4)-C(13)	121.4(3)	N(6)-Ni(2)-N(7)	81.34(12)
C(9)-N(4)-Ni(1)	119.6(2)	N(8)-Ni(2)-N(7)	78.45(11)
C(13)-N(4)-Ni(1)	118.6(2)	N(6)-Ni(2)-Cl(4)	175.11(9)
N(1)-C(1)-C(2)	114.6(3)	N(8)-Ni(2)-Cl(4)	90.36(8)
N(2)-C(2)-C(3)	120.9(3)	N(7)-Ni(2)-Cl(4)	94.05(9)
N(2)-C(2)-C(1)	117.0(3)	N(6)-Ni(2)-N(5)	76.12(10)
C(3)-C(2)-C(1)	121.7(3)	N(8)-Ni(2)-N(5)	78.54(10)
C(4)-C(3)-C(2)	117.6(3)	N(7)-Ni(2)-N(5)	148.37(11)
C(3)-C(4)-C(5)	120.6(4)	Cl(4)-Ni(2)-N(5)	107.51(7)
C(6)-C(5)-C(4)	119.0(4)	N(6)-Ni(2)-Cl(3)	85.56(9)
N(2)-C(6)-C(5)	119.8(3)	N(8)-Ni(2)-Cl(3)	171.38(8)
N(2)-C(6)-C(7)	114.5(3)	N(7)-Ni(2)-Cl(3)	95.89(8)
C(5)-C(6)-C(7)	125.7(3)	Cl(4)-Ni(2)-Cl(3)	96.57(4)
N(3)-C(7)-C(6)	109.7(3)	N(5)-Ni(2)-Cl(3)	104.09(7)
N(1)-C(8)-C(9)	110.5(3)	C(26)-N(5)-C(39)	108.6(3)
N(4)-C(9)-C(12)	121.4(3)	C(26)-N(5)-C(41)	111.2(2)
N(4)-C(9)-C(8)	115.0(3)	C(39)-N(5)-C(41)	111.5(2)

C(26)-N(5)-Ni(2)	100.10(18)
C(39) - N(5) - Ni(2)	103.62(18)
C(41)-N(5)-Ni(2)	120.8(2)
C(27)-N(6)-C(31)	122.0(3)
C(27)-N(6)-Ni(2)	119.7(2)
C(31)-N(6)-Ni(2)	117.9(3)
C(32)-N(7)-C(33)	111.4(3)
C(32)-N(7)-C(40)	112.0(3)
C(33)-N(7)-C(40)	108.9(3)
C(32)-N(7)-Ni(2)	107.9(2)
C(33) - N(7) - Ni(2)	103.77(18)
C(40)-N(7)-Ni(2)	112.6(2)
C(38)-N(8)-C(34)	121.3(3)
C(38) - N(8) - Ni(2)	121.0(2)
C(34) - N(8) - Ni(2)	117.7(2)
N(5)-C(26)-C(27)	111.6(3)
N(6)-C(27)-C(28)	120.3(3)
N(6)-C(27)-C(26)	115.9(3)
C(28)-C(27)-C(26)	123.8(3)
C(29)-C(28)-C(27)	118.4(4)
C(28)-C(29)-C(30)	120.3(4)
C(31)-C(30)-C(29)	118.8(4)
N(6)-C(31)-C(30)	120.2(4)
N(6)-C(31)-C(32)	115.5(3)
C(30)-C(31)-C(32)	124.3(3)
N(7)-C(32)-C(31)	115.6(3)
N(7)-C(33)-C(34)	111.1(3)
N(8)-C(34)-C(35)	120.9(3)
N(8)-C(34)-C(33)	113.9(3)
C(35)-C(34)-C(33)	125.1(3)
C(34)-C(35)-C(36)	118.5(3)
C(37)-C(36)-C(35)	120.0(3)
C(36)-C(37)-C(38)	118.6(3)
N(8)-C(38)-C(37)	120.0(3)
N(8)-C(38)-C(39)	116.0(3)
C(37)-C(38)-C(39)	123.6(3)
N(5)-C(39)-C(38)	115.4(3)
C(47)-C(41)-C(42)	107.2(3)
C(47)-C(41)-C(48)	109.3(3)
C(42)-C(41)-C(48)	109.8(3)
C(47)-C(41)-N(5)	107.2(3)
C(42)-C(41)-N(5)	110.0(3)
C(48)-C(41)-N(5)	113.1(3)
C(41)-C(42)-C(43)	109.6(3)
C(50)-C(43)-C(44)	109.8(3)
C(50)-C(43)-C(42)	110.0(3)
C(44)-C(43)-C(42)	109.8(3)

C(49)-C(44)-C(43)	109.3(3)	
C(49)-C(45)-C(46)	109.1(3)	
C(50)-C(46)-C(45)	110.7(3)	
C(50)-C(46)-C(47)	109.5(3)	
C(45)-C(46)-C(47)	108.8(3)	
C(41)-C(47)-C(46)	110.6(3)	
C(41)-C(48)-C(49)	109.5(3)	
C(45)-C(49)-C(44)	109.3(4)	
C(45)-C(49)-C(48)	109.9(3)	
C(44)-C(49)-C(48)	109.7(3)	
C(46)-C(50)-C(43)	108.3(3)	
7 Anhang	7	nhang
----------	---	-------
----------	---	-------

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^* U_{12}]$

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni(1)	21(1)	23(1)	23(1)	-1(1)	7(1)	0(1)
$C_{1}(1)$	35(1)	32(1)	25(1)	2(1)	9(1)	-3(1)
C1(2)	34(1)	$\frac{32(1)}{28(1)}$	25(1)	2(1)	(1)	5(1)
N(1)	22(2)	23(2)	23(1)	-1(1)	8(1)	-2(1)
N(2)	21(2)	28(2)	27(1)	-5(1)	10(1)	-1(1)
N(3)	24(1)	27(2)	29(1)	-6(1)	10(1)	-3(1)
N(4)	21(2)	25(2)	29(2)	-1(1)	9(1)	-1(1)
C(1)	26(2)	20(2)	32(2)	-1(1)	11(2)	1(2)
C(2)	17(2)	28(2)	27(2)	-6(2)	6(1)	0(2)
C(3)	37(2)	36(2)	49(2)	-17(2)	19(2)	-12(2)
C(4)	47(3)	50(3)	71(3)	-33(2)	39(2)	-10(2)
C(5)	38(2)	51(3)	69(3)	-32(2)	35(2)	-15(2)
C(6)	28(2)	32(2)	38(2)	-10(2)	14(2)	-4(2)
C(7)	27(2)	35(2)	41(2)	-11(2)	18(2)	-6(2)
C(8)	23(2)	32(2)	22(2)	2(1)	7(1)	0(2)
C(9)	24(2)	26(2)	23(2)	-1(1)	7(1)	2(2)
C(10)	34(2)	37(2)	33(2)	0(2)	1(2)	9(2)
C(11)	43(2)	42(2)	26(2)	5(2)	2(2)	9(2)
C(12)	29(2)	30(2)	31(2)	4(2)	9(2)	4(2)
C(13)	25(2)	26(2)	34(2)	-7(2)	6(2)	2(2)
C(14)	23(2)	33(2)	48(2)	1(2)	7(2)	4(2)
C(15)	23(2)	35(2)	39(2)	-12(2)	10(2)	-5(2)
C(16)	15(2)	24(2)	26(2)	4(1)	4(1)	-3(1)
C(17)	22(2)	47(2)	27(2)	1(2)	4(1)	-8(2)
C(18)	32(2)	51(3)	28(2)	7(2)	2(2)	-5(2)
C(19)	27(2)	49(3)	39(2)	1(2)	-5(2)	-5(2)
C(20)	23(2)	40(2)	45(2)	7(2)	5(2)	-6(2)
C(21)	27(2)	44(2)	50(2)	9(2)	6(2)	10(2)
C(22)	29(2)	34(2)	42(2)	8(2)	4(2)	6(2)
C(23)	22(2)	27(2)	37(2)	4(2)	6(2)	-2(2)
C(24)	21(2)	25(2)	35(2)	2(2)	7(2)	0(2)
C(25)	36(2)	46(3)	48(2)	19(2)	1(2)	1(2)
Ni(2)	25(1)	31(1)	26(1)	2(1)	9(1)	-2(1)
Cl(3)	33(1)	47(1)	42(1)	9(1)	11(1)	-6(1)
Cl(4)	33(1)	33(1)	44(1)	1(1)	14(1)	2(1)
N(5)	26(2)	25(2)	29(2)	-1(1)	11(1)	-1(1)
N(6)	28(2)	41(2)	28(2)	6(1)	6(1)	9(2)

			, 11	linang			
N(7)	32(2)	47(2)	25(1)	-2(2)	8(1)	-9(2)	
N(8)	30(2)	25(2)	25(1)	-1(1)	12(1)	-2(1)	
C(26)	26(2)	40(2)	32(2)	0(2)	12(2)	1(2)	
C(27)	29(2)	36(2)	37(2)	4(2)	9(2)	1(2)	
C(28)	36(2)	49(3)	45(2)	6(2)	11(2)	11(2)	
C(29)	38(3)	56(3)	62(3)	21(2)	8(2)	17(2)	
C(30)	32(2)	59(3)	40(2)	17(2)	5(2)	5(2)	
C(31)	31(2)	52(2)	26(2)	6(2)	3(2)	-6(2)	
C(32)	46(3)	88(4)	30(2)	5(2)	9(2)	11(3)	
C(33)	38(2)	36(2)	36(2)	-5(2)	18(2)	-2(2)	
C(34)	27(2)	30(2)	27(2)	2(2)	9(1)	1(2)	
C(35)	39(2)	33(2)	31(2)	6(2)	18(2)	4(2)	
C(36)	31(2)	28(2)	43(2)	1(2)	16(2)	-1(2)	
C(37)	30(2)	28(2)	31(2)	-4(2)	8(2)	-4(2)	
C(38)	31(2)	24(2)	26(2)	1(1)	10(2)	7(2)	
C(39)	34(2)	27(2)	30(2)	-1(2)	14(2)	-3(2)	
C(40)	56(3)	66(3)	39(2)	-23(2)	22(2)	-34(2)	
C(41)	26(2)	29(2)	22(2)	0(1)	7(1)	-3(2)	
C(42)	34(2)	39(2)	32(2)	5(2)	5(2)	-9(2)	
C(43)	44(3)	48(3)	39(2)	16(2)	0(2)	-10(2)	
C(44)	45(2)	84(3)	31(2)	17(2)	13(2)	1(3)	
C(45)	42(3)	63(3)	32(2)	-1(2)	-10(2)	-16(2)	
C(46)	26(2)	65(3)	39(2)	1(2)	1(2)	-1(2)	
C(47)	21(2)	51(2)	30(2)	-2(2)	2(2)	-4(2)	
C(48)	54(3)	47(2)	28(2)	-5(2)	11(2)	6(2)	
C(49)	66(3)	62(3)	24(2)	-2(2)	11(2)	5(2)	
C(50)	49(3)	48(3)	45(2)	4(2)	2(2)	7(2)	

7 Anhang

	x	У	Z	U(eq)
H(1A)	7147	2357	2258	30
H(1B)	7710	2161	3039	30
H(3)	6747	3036	3578	47
H(4)	5564	2936	3786	62
H(5)	4805	1588	3375	58
H(7A)	5257	-542	2991	39
Н(7В)	4585	113	2526	39
H(8A)	7769	576	1416	30
H(8B)	7846	1721	1575	30
H(10)	4792	1417	58	44
H(11)	5704	2261	-333	46
H(12)	6955	2216	356	36
H(14A)	4673	858	1502	42
H(14B)	4619	-25	943	42
H(15A)	5350	-1742	2166	48
H(15B)	5203	-1508	1314	48
H(15C)	4547	-1371	1708	48
H(17A)	8124	1220	3816	39
H(17B)	7847	116	3681	39
H(18)	8954	194	4656	46
H(19A)	10092	722	4422	49
H(19B)	9498	1593	4252	49
H(20)	10082	1438	3274	44
H(21A)	10328	-257	3368	50
H(21B)	9881	6	2547	50
H(22)	9341	-1393	2947	43
H(23A)	8513	-356	2102	35
H(23B)	8080	-834	2643	35
H(24A)	8814	1999	2955	33
H(24B)	8963	1374	2293	33
H(25A)	9643	-1024	4223	54
H(25B)	8768	-1248	3932	54
H(26A)	1444	1919	2918	38
H(26B)	1232	792	2800	38
Н(28)	193	2431	2041	52
H(29)	-461	2619	811	64
H(30)	-15	1885	-105	54

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0441.

		1.	Annang		
ц(22л)	975	497	- 225	66	
H(32R)	1401	1246	- 555	66	
H(32B)	1481	1346	-1/1	66	
H(33A)	24/9	602	-288	42	
H(33B)	2901	-181	301	42	
Н(35)	3512	1886	109	39	
Н(36)	4131	2953	1044	39	
H(37)	3786	2994	2143	36	
H(39A)	2977	2236	2907	35	
H(39B)	2228	2526	2312	35	
H(40A)	1169	-1090	160	78	
H(40B)	2034	-1350	299	78	
H(40C)	1586	-889	-464	78	
H(42A)	2375	-736	3080	43	
H(42B)	1817	-243	3491	43	
H(43)	2586	-1391	4290	55	
H(44A)	2236	-5	4868	64	
H(44B)	3048	-362	5318	64	
H(45A)	4183	530	5197	60	
H(45B)	4099	1440	4653	60	
Н(46)	4457	36	4089	54	
H(47A)	3692	1193	3297	42	
H(47B)	3498	124	2965	42	
H(48A)	2100	1453	4032	52	
H(48B)	2829	2015	3949	52	
H(49)	3056	1353	5156	61	
H(50A)	3896	-1171	4671	59	
H(50B)	3636	-1317	3801	59	
· /		-			

7 Anhang

7.2.1.6 [Ni(L-N₄HMe)Cl₂] 54

Siehe Diplomarbeit Huber 2003

$7.2.1.7 \ [Ni(L-N_4BzH)Cl_2] \ \textbf{59}$

7.2.1.7.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 06930.

$C_{28}H_{30}Cl_2N_4NiO_4\\$
568.17
150 K
ΜοΚα

7 A	nh	ang
-----	----	-----

Wellenlänge	0.71073 Å	
Scanmodus	Ω -scans	
Kristallsystem	Triklin	
Raumgruppe	P-1	
Zelldimensionen	a = 98975(19) Å	$\alpha = 72.54(4)^{\circ}$
	b = 10.884(4) Å	$\beta = 78.36(2)^{\circ}$
	c = 13.609(6) Å	$\gamma = 71.57(3)^{\circ}$
Zellvolumen	1317(8) Å ³	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.432 Mg/m ³	
Absorptionskoeffizient	0.968 mm ⁻¹	
Kristallgröße	0.24 x 0.22 x 0.11 mm	
Gemessener θ-Bereich	2.54 bis 32.06°	
Anzahl der gemessenen Reflexe	20473	
Unabhängige Reflexe	8399 (Rint = 0.0292)	
Absorptionskorrektur	Semi-empirisch aus Äqu	ivalenten
Max. und min. Transmission	0.9010 und 0.8009	
Diffraktometer	Oxford Diffraction Gem	ini S Ultra
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick,	1997)
Strukturverfeinerung	Vollmatrix Least-Square	es gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick,	1997)
Daten / Restraints / Parameter	8399 / 0 / 330	
Endgültige R-Werte [I>2 σ (I)]	$R1 = 0.0300, wR2 = 0.0^{\circ}$	711
R-Werte (alle Daten)	R1 = 0.0468, WR2 = 0.07	750
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0404P)]$	2] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.964	
Größtes Maximum und Minimum	0.709 und -0.431 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Das Wasserstoffatom am Amin-Stickstoffatom wurde rechnerisch lokalisiert.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06930.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Ni(1)	4965(1)	2501(1)	3731(1)	17(1)
Cl(1)	4137(1)	2383(1)	5511(1)	24(1)
Cl(2)	2970(1)	1984(1)	3394(1)	24(1)
N(1)	4316(1)	4736(1)	3148(1)	18(1)
N(2)	6754(1)	2919(1)	3871(1)	20(1)
N(3)	6485(1)	548(1)	3827(1)	22(1)
N(4)	5811(1)	2713(1)	2217(1)	18(1)
C(1)	5346(2)	5228(1)	3491(1)	21(1)
C(2)	6773(2)	4191(1)	3662(1)	20(1)
C(3)	8025(2)	4515(2)	3653(1)	26(1)
C(4)	9267(2)	3475(2)	3843(1)	31(1)
C(5)	9245(2)	2157(2)	4020(1)	28(1)
C(6)	7952(2)	1906(2)	4035(1)	23(1)
C(7)	7741(2)	523(2)	4270(1)	26(1)
C(8)	6828(2)	345(2)	2766(1)	26(1)
C(9)	6778(1)	1656(1)	1955(1)	21(1)
C(10)	7625(2)	1807(2)	1001(1)	28(1)
C(11)	7479(2)	3088(2)	352(1)	29(1)

7 Anhang						
C(12)	6501(2)	4177(2)	650(1)	24(1)		
C(13)	5654(1)	3950(1)	1602(1)	18(1)		
C(14)	4474(2)	5017(1)	2000(1)	20(1)		
C(15)	2801(1)	5353(1)	3550(1)	21(1)		
C(16)	2196(1)	6824(1)	3036(1)	22(1)		
C(17)	2600(2)	7837(2)	3240(1)	28(1)		
C(18)	2095(2)	9167(2)	2706(1)	34(1)		
C(19)	1162(2)	9509(2)	1970(1)	36(1)		
C(20)	713(2)	8517(2)	1792(1)	30(1)		
C(21)	1228(2)	7191(2)	2318(1)	25(1)		
O(1)	8460(1)	5801(1)	-1541(1)	37(1)		
C(22)	9008(2)	6565(2)	-1104(1)	35(1)		
C(23)	7943(2)	7146(2)	-284(1)	30(1)		
C(24)	8367(2)	7049(2)	658(1)	33(1)		
C(25)	7397(2)	7596(2)	1408(1)	37(1)		
C(26)	5983(2)	8230(2)	1233(2)	39(1)		
C(27)	5546(2)	8319(2)	307(2)	40(1)		
C(28)	6514(2)	7798(2)	-453(1)	36(1)		

Tabelle 3. Bindungslängen [Å] und -winkel [⁰] für 06930.

Ni(1)-N(2)	2.0190(12)	N(4)-C(13)	1.3341(18)
Ni(1)-N(4)	2.0357(14)	C(1)-C(2)	1.513(2)
Ni(1)-N(3)	2.1658(15)	C(2)-C(3)	1.3878(19)
Ni(1)-N(1)	2.2401(15)	C(3)-C(4)	1.390(2)
Ni(1)-Cl(1)	2.3730(11)	C(4)-C(5)	1.388(2)
Ni(1)-Cl(2)	2.3771(6)	C(5)-C(6)	1.3856(19)
N(1)-C(14)	1.4856(18)	C(6)-C(7)	1.514(2)
N(1)-C(1)	1.4934(17)	C(8)-C(9)	1.513(2)
N(1)-C(15)	1.5003(18)	C(9)-C(10)	1.391(2)
N(2)-C(2)	1.3326(19)	C(10)-C(11)	1.390(2)
N(2)-C(6)	1.3430(19)	C(11)-C(12)	1.383(2)
N(3)-C(7)	1.4775(19)	C(12)-C(13)	1.3931(19)
N(3)-C(8)	1.481(2)	C(13)-C(14)	1.508(2)
N(3)-HN3	0.835(18)	C(15)-C(16)	1.518(2)
N(4)-C(9)	1.3333(18)	C(16)-C(21)	1.390(2)

		7 Anhang	
C(16)-C(17)	1.400(2)	C(23)-C(24)	1.392(2)
C(17)-C(18)	1.390(2)	C(23)-C(28)	1.398(2)
C(18)-C(19)	1.388(2)	C(24)-C(25)	1.388(3)
C(19)-C(20)	1.386(2)	C(25)-C(26)	1.385(3)
C(20)-C(21)	1.384(2)	C(26)-C(27)	1.379(3)
O(1)-C(22)	1.4318(19)	C(27)-C(28)	1.386(3)
C(22)-C(23)	1.511(2)		
N(2)-Ni(1)-N(4)	83.39(5)	C(8)-N(3)-HN3	109.4(12)
N(2)-Ni(1)-N(3)	80.16(5)	Ni(1)-N(3)-HN3	114.5(12)
N(4)-Ni(1)-N(3)	79.95(6)	C(9)-N(4)-C(13)	121.92(12)
N(2)-Ni(1)-N(1)	79.68(5)	C(9)-N(4)-Ni(1)	117.75(10)
N(4)-Ni(1)-N(1)	79.51(6)	C(13)-N(4)-Ni(1)	118.20(10)
N(3)-Ni(1)-N(1)	152.63(5)	N(1)-C(1)-C(2)	112.93(11)
N(2)-Ni(1)-Cl(1)	90.97(4)	N(2)-C(2)-C(3)	120.97(13)
N(4)-Ni(1)-Cl(1)	174.00(3)	N(2)-C(2)-C(1)	115.79(12)
N(3)-Ni(1)-Cl(1)	101.14(5)	C(3)-C(2)-C(1)	123.18(13)
N(1)-Ni(1)-Cl(1)	97.51(5)	C(2)-C(3)-C(4)	118.10(14)
N(2)-Ni(1)-Cl(2)	174.11(3)	C(5)-C(4)-C(3)	120.33(14)
N(4)-Ni(1)-Cl(2)	90.83(4)	C(6)-C(5)-C(4)	118.47(14)
N(3)-Ni(1)-Cl(2)	97.76(4)	N(2)-C(6)-C(5)	120.50(14)
N(1)-Ni(1)-Cl(2)	100.43(4)	N(2)-C(6)-C(7)	114.82(12)
Cl(1)-Ni(1)-Cl(2)	94.84(3)	C(5)-C(6)-C(7)	124.64(13)
C(14)-N(1)-C(1)	111.03(11)	N(3)-C(7)-C(6)	111.94(12)
C(14)-N(1)-C(15)	110.20(10)	N(3)-C(8)-C(9)	111.22(12)
C(1)-N(1)-C(15)	110.85(11)	N(4)-C(9)-C(10)	120.48(14)
C(14)-N(1)-Ni(1)	105.82(9)	N(4)-C(9)-C(8)	114.24(12)
C(1)-N(1)-Ni(1)	106.35(8)	C(10)-C(9)-C(8)	125.28(14)
C(15)-N(1)-Ni(1)	112.44(8)	C(11)-C(10)-C(9)	118.32(14)
C(2)-N(2)-C(6)	121.56(12)	C(12)-C(11)-C(10)	120.32(14)
C(2)-N(2)-Ni(1)	119.53(9)	C(11)-C(12)-C(13)	118.32(14)
C(6)-N(2)-Ni(1)	118.28(10)	N(4)-C(13)-C(12)	120.58(13)
C(7)-N(3)-C(8)	113.77(12)	N(4)-C(13)-C(14)	114.86(12)
C(7)-N(3)-Ni(1)	107.95(9)	C(12)-C(13)-C(14)	124.51(13)
C(8)-N(3)-Ni(1)	107.10(10)	N(1)-C(14)-C(13)	111.97(11)
C(7)-N(3)-HN3	104.2(12)	N(1)-C(15)-C(16)	115.28(11)

C(21)-C(16)-C(17)	118.24(14)
C(21)-C(16)-C(15)	119.45(13)
C(17)-C(16)-C(15)	122.30(13)
C(18)-C(17)-C(16)	120.74(14)
C(19)-C(18)-C(17)	120.10(15)
C(20)-C(19)-C(18)	119.42(15)
C(21)-C(20)-C(19)	120.42(15)
C(20)-C(21)-C(16)	121.00(14)
O(1)-C(22)-C(23)	112.72(14)
C(24)-C(23)-C(28)	118.45(16)
C(24)-C(23)-C(22)	120.58(15)
C(28)-C(23)-C(22)	120.97(15)
C(25)-C(24)-C(23)	120.77(16)
C(26)-C(25)-C(24)	120.13(16)
C(27)-C(26)-C(25)	119.63(17)
C(26)-C(27)-C(28)	120.59(17)
C(27)-C(28)-C(23)	120.42(16)

7 Anhang

_ Tabelle 4. Anisotrope Auslenkungsparameter [Å² x 10³] für 06930.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2 [(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
 Ni(1)	18(1)	15(1)	17(1)	-3(1)	-2(1)	-5(1)
Cl(1)	33(1)	21(1)	19(1)	-5(1)	0(1)	-11(1)
Cl(2)	22(1)	26(1)	26(1)	-5(1)	-4(1)	-10(1)
N(1)	18(1)	17(1)	18(1)	-5(1)	-2(1)	-4(1)
N(2)	19(1)	18(1)	19(1)	-1(1)	-3(1)	-4(1)
N(3)	24(1)	16(1)	23(1)	-1(1)	-1(1)	-6(1)
N(4)	18(1)	16(1)	20(1)	-5(1)	-1(1)	-5(1)
C(1)	23(1)	17(1)	26(1)	-6(1)	-8(1)	-5(1)
C(2)	23(1)	22(1)	18(1)	-5(1)	-2(1)	-7(1)
C(3)	24(1)	26(1)	29(1)	-7(1)	-1(1)	-11(1)
C(4)	22(1)	38(1)	36(1)	-10(1)	-1(1)	-13(1)
C(5)	18(1)	31(1)	30(1)	-6(1)	-3(1)	-3(1)
C(6)	22(1)	23(1)	19(1)	-2(1)	-3(1)	-5(1)
C(7)	24(1)	21(1)	30(1)	1(1)	-6(1)	-3(1)
C(8)	31(1)	18(1)	27(1)	-8(1)	1(1)	-2(1)
C(9)	21(1)	20(1)	22(1)	-8(1)	-2(1)	-3(1)
C(10)	25(1)	30(1)	24(1)	-10(1)	0(1)	0(1)
C(11)	25(1)	36(1)	20(1)	-6(1)	1(1)	-3(1)
C(12)	23(1)	26(1)	19(1)	0(1)	-3(1)	-7(1)
C(13)	19(1)	19(1)	18(1)	-4(1)	-4(1)	-5(1)
C(14)	23(1)	17(1)	17(1)	-3(1)	-3(1)	-4(1)
C(15)	20(1)	20(1)	22(1)	-6(1)	-1(1)	-4(1)
C(16)	19(1)	20(1)	24(1)	-8(1)	1(1)	-2(1)
C(17)	27(1)	24(1)	34(1)	-14(1)	-7(1)	-2(1)
C(18)	31(1)	23(1)	51(1)	-16(1)	-6(1)	-4(1)
C(19)	35(1)	19(1)	48(1)	-6(1)	-9(1)	1(1)
C(20)	28(1)	25(1)	35(1)	-8(1)	-12(1)	3(1)
C(21)	23(1)	22(1)	31(1)	-10(1)	-5(1)	-1(1)
O(1)	56(1)	26(1)	33(1)	-6(1)	-15(1)	-14(1)
C(22)	41(1)	37(1)	35(1)	-13(1)	-8(1)	-14(1)
C(23)	39(1)	24(1)	30(1)	-4(1)	-8(1)	-14(1)

7 Anhang

C(24)	36(1)	31(1)	34(1)	-6(1)	-12(1)	-11(1)
C(25)	53(1)	34(1)	29(1)	-6(1)	-6(1)	-17(1)
C(26)	48(1)	28(1)	43(1)	-11(1)	5(1)	-16(1)
C(27)	38(1)	26(1)	57(1)	-9(1)	-12(1)	-8(1)
C(28)	44(1)	25(1)	42(1)	-5(1)	-19(1)	-9(1)

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06930.

	Х	у	Z	U(eq)	
H(1A)	4915	5492	4145	25	
H(1B)	5509	6034	2960	25	
H(3)	8032	5420	3522	31	
H(4)	10136	3667	3851	37	
H(5)	10096	1444	4128	33	
H(7A)	8611	-74	3983	32	
H(7B)	7611	154	5031	32	
H(8A)	6132	-65	2649	31	
H(8B)	7797	-279	2696	31	
H(10)	8287	1052	798	33	
H(11)	8053	3217	-300	35	
H(12)	6408	5059	218	28	
H(14A)	4685	5893	1691	24	
H(14B)	3557	5076	1778	24	
H(15A)	2755	5249	4303	26	
H(15B)	2180	4848	3461	26	
H(17)	3227	7612	3751	33	
H(18)	2389	9843	2844	41	
H(19)	833	10414	1591	43	
H(20)	49	8749	1307	36	
H(21)	915	6522	2186	30	
HN3	6193(18)	-86(19)	4232(14)	29(4)	
H(1)	7973	6318	-2018	44	
H(22A)	9272	7303	-1665	42	

7 Anhang					
H(22B)	9890	5983	-793	42	
H(24)	9332	6603	789	39	
H(25)	7704	7535	2043	45	
H(26)	5317	8602	1747	47	
H(27)	4573	8741	190	48	
H(28)	6206	7885	-1094	43	

7.2.1.8 [Ni(L-N₄^tBuTos)(EtCN)(H₂O)](ClO₄)₂ 69

7.2.1.8.1 IR-Spektrum

7.2.1.8.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 06850.

Summenformel	$C_{29}H_{39}Cl_2N_5NiO_{12}S$	
Molmasse	799.31	
Temperatur	150 K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Ω -scans	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/n$	
Zelldimensionen	$a = 9.5037(2)$ Å $\alpha = 90$)°
	b = 26.5065(5) Å	$\beta = 104.775(2)^{\circ}$
	<i>c</i> = 13.9498(2) Å	$\gamma = 90^{\circ}$
Zellvolumen	3397.90(11) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.562 Mg/m ³	
Absorptionskoeffizient	0.858 mm ⁻¹	
Kristallgröße	0.31 x 0.22 x 0.13 mm	
Gemessener 0-Bereich	2.46 bis 32.24°	
Anzahl der gemessenen Reflexe	35656	
Unabhängige Reflexe	10953 (Rint = 0.0390)	
Absorptionskorrektur	Semi-empirisch aus Äquivalente	en
Max. und min. Transmission	0.8966 und 0.7767	
Diffraktometer	Oxford Diffraction Gemini S U	ltra
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1997)	
Strukturverfeinerung	Vollmatrix Least-Squares geger	$1 F^2$
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	10953 / 46 / 508	
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0659, wR2 = 0.1171	
R-Werte (alle Daten)	R1 = 0.0970, wR2 = 0.1250	
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0177P)^2+6.816$	59P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.166	
Größtes Maximum und Minimum	0.696 und -0.630 eÅ ⁻³	

Die Elementarzelle beinhaltet neben dem Komplex-Ion ein Wassermolekül und zwei Perchlorat-Ionen, wovon eins

fehlgeordnet ist.

Г .

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome der beiden Wassermoleküle wurden frei verfeinert. Alle weiteren Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06850.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	Х	У	Z	U(eq)
Ni(1)	5776(1)	1373(1)	7581(1)	22(1)
O(3)	7565(2)	1676(1)	8534(2)	27(1)
N(5)	6527(3)	674(1)	8055(2)	30(1)
C(26)	6795(4)	256(1)	8074(2)	37(1)
C(27)	7039(6)	-283(1)	8028(3)	57(1)
C(28)	5577(7)	-535(2)	7535(6)	117(3)
N(1)	4018(3)	1452(1)	8285(2)	23(1)
N(2)	5070(3)	2035(1)	6979(2)	22(1)
N(3)	6606(3)	1416(1)	6098(2)	26(1)
N(4)	4169(3)	1031(1)	6578(2)	26(1)
C(1)	3108(3)	1877(1)	7747(2)	25(1)
C(2)	3882(3)	2225(1)	7194(2)	23(1)
C(3)	3331(3)	2687(1)	6807(2)	28(1)
C(4)	3982(4)	2930(1)	6153(2)	32(1)
C(5)	5148(3)	2714(1)	5884(2)	29(1)
C(6)	5679(3)	2260(1)	6322(2)	24(1)
C(7)	6913(3)	1971(1)	6078(2)	27(1)
C(8)	5327(4)	1254(1)	5282(2)	32(1)
C(9)	4242(4)	942(1)	5646(2)	29(1)
C(10)	3266(4)	613(1)	5049(2)	35(1)
C(11)	2183(4)	402(1)	5415(2)	36(1)
C(12)	2070(4)	515(1)	6362(2)	31(1)
C(13)	3120(4)	831(1)	6937(2)	27(1)
C(14)	3182(3)	971(1)	7991(2)	27(1)
C(15)	4377(3)	1533(1)	9414(2)	26(1)
C(16)	5500(4)	1144(1)	9934(2)	32(1)
C(17)	3010(4)	1485(1)	9805(2)	35(1)
C(18)	5029(4)	2060(1)	9638(2)	30(1)
S(1)	8089(1)	1051(1)	6197(1)	29(1)
O(1)	9092(3)	1193(1)	7104(2)	35(1)
O(2)	7535(3)	548(1)	6041(2)	38(1)

		, 1 1 111 0	B	
C(19)	8889(4)	1211(1)	5231(2)	27(1)
C(20)	8497(4)	945(1)	4340(2)	32(1)
C(21)	9259(4)	1040(1)	3630(2)	33(1)
C(22)	10390(3)	1385(1)	3796(2)	30(1)
C(23)	10710(4)	1660(1)	4682(2)	32(1)
C(24)	9960(4)	1575(1)	5392(2)	31(1)
C(25)	11284(4)	1459(2)	3057(3)	41(1)
Cl(1)	8541(1)	171(1)	1211(1)	36(1)
O(4)	7411(3)	234(1)	1710(2)	56(1)
O(5)	9178(3)	655(1)	1142(2)	51(1)
O(6)	9616(3)	-163(1)	1796(2)	52(1)
O(7)	7981(5)	-33(1)	255(2)	80(1)
Cl(2)	9949(6)	2801(2)	8024(4)	46(2)
O(8)	8682(12)	2622(4)	8347(9)	47(3)
O(9)	9972(15)	2545(4)	7130(6)	48(3)
O(10)	11233(10)	2670(4)	8773(8)	65(3)
O(11)	9832(12)	3321(3)	7899(7)	71(3)
Cl(2A)	9921(5)	2779(2)	8008(4)	23(1)
O(8A)	9408(18)	3221(5)	7461(10)	116(7)
O(9A)	10028(19)	2396(6)	7335(10)	76(5)
O(10A)	11337(14)	2882(5)	8618(10)	75(5)
O(11A)	8972(16)	2651(7)	8593(12)	55(4)
O(12)	9666(3)	1044(1)	-639(2)	37(1)

7 Anhang

Ni(1)-N(2)	1.986(2)	C(12)-C(13)	1.391(4)
Ni(1)-N(4)	2.005(2)	C(13)-C(14)	1.502(4)
Ni(1)-N(5)	2.034(3)		
Ni(1)-O(3)	2.037(2)	C(15)-C(16)	1.527(4)
Ni(1)-N(1)	2.153(3)	C(15)-C(18)	1.529(4)
Ni(1)-N(3)	2.398(2)	C(15)-C(17)	1.537(4)
O(3)-HO3A	0.841(19)	S(1)-O(1)	1.426(2)
O(3)-HO3B	0.833(19)	S(1)-O(2)	1.429(2)
N(5)-C(26)	1.137(4)	S(1)-C(19)	1.760(3)
C(26)-C(27)	1.452(5)	C(19)-C(24)	1.378(5)
C(27)-C(28)	1.537(8)	C(19)-C(20)	1.394(4)
N(1)-C(1)	1.500(4)	C(20)-C(21)	1.391(4)
N(1)-C(14)	1.503(4)	C(21)-C(22)	1.385(5)
N(1)-C(15)	1.539(3)	C(22)-C(23)	1.399(4)
N(2)-C(2)	1.337(4)	C(22)-C(25)	1.506(4)
N(2)-C(6)	1.342(4)	C(23)-C(24)	1.378(5)
N(3)-C(8)	1.500(4)	Cl(1)-O(7)	1.412(3)
N(3)-C(7)	1.501(4)	Cl(1)-O(4)	1.430(3)
N(3)-S(1)	1.685(3)	Cl(1)-O(5)	1.433(3)
N(4)-C(13)	1.334(4)	Cl(1)-O(6)	1.438(3)
N(4)-C(9)	1.340(4)	Cl(2)-O(11)	1.391(9)
C(1)-C(2)	1.509(4)	Cl(2)-O(9)	1.425(9)
C(2)-C(3)	1.386(4)	Cl(2)-O(10)	1.432(10)
C(3)-C(4)	1.384(4)	Cl(2)-O(8)	1.467(10)
C(4)-C(5)	1.382(5)	Cl(2A)-O(9A)	1.403(13)
C(5)-C(6)	1.384(4)	Cl(2A)-O(11A)	1.403(14)
C(6)-C(7)	1.511(4)	Cl(2A)-O(8A)	1.416(12)
C(8)-C(9)	1.507(5)	Cl(2A)-O(10A)	1.423(12)
C(9)-C(10)	1.387(4)	O(12)-H(2OA)	0.833(19)
C(10)-C(11)	1.379(5)	O(12)-H(2OB)	0.836(19)
C(11)-C(12)	1.386(5)		
N(2)-Ni(1)-N(4)	89.38(10)	N(2)-Ni(1)-O(3)	93.64(10)
N(2)-Ni(1)-N(5)	173.92(10)	N(4)-Ni(1)-O(3)	173.59(10)
N(4)-Ni(1)-N(5)	87.50(11)	N(5)-Ni(1)-O(3)	88.97(10)

7 Anhang

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 06850.

N(2)-Ni(1)-N(1)	83.68(10)	C(4)-C(3)-C(2)	118.7(3)	
N(4)-Ni(1)-N(1)	79.68(10)	C(5)-C(4)-C(3)	120.6(3)	
N(5)-Ni(1)-N(1)	100.87(10)	C(4)-C(5)-C(6)	117.9(3)	
O(3)-Ni(1)-N(1)	106.26(9)	N(2)-C(6)-C(5)	121.0(3)	
N(2)-Ni(1)-N(3)	75.14(9)	N(2)-C(6)-C(7)	115.0(3)	
N(4)-Ni(1)-N(3)	77.20(10)	C(5)-C(6)-C(7)	124.0(3)	
N(5)-Ni(1)-N(3)	99.07(10)	N(3)-C(7)-C(6)	109.1(2)	
O(3)-Ni(1)-N(3)	98.10(9)	N(3)-C(8)-C(9)	113.1(2)	
N(1)-Ni(1)-N(3)	148.58(9)	N(4)-C(9)-C(10)	120.1(3)	
Ni(1)-O(3)-HO3A	112(4)	N(4)-C(9)-C(8)	116.1(3)	
Ni(1)-O(3)-HO3B	122(3)	C(10)-C(9)-C(8)	123.6(3)	
НОЗА-О(3)-НОЗВ	108(4)	C(11)-C(10)-C(9)	118.8(3)	
C(26)-N(5)-Ni(1)	162.5(3)	C(10)-C(11)-C(12)	120.8(3)	
N(5)-C(26)-C(27)	175.4(4)	C(11)-C(12)-C(13)	117.5(3)	
C(26)-C(27)-C(28)	108.1(4)	N(4)-C(13)-C(12)	121.2(3)	
C(1)-N(1)-C(14)	107.6(2)	N(4)-C(13)-C(14)	115.0(3)	
C(1)-N(1)-C(15)	110.9(2)	C(12)-C(13)-C(14)	123.8(3)	
C(14)-N(1)-C(15)	111.2(2)	C(13)-C(14)-N(1)	111.3(2)	
C(1)-N(1)-Ni(1)	105.08(17)	C(16)-C(15)-C(18)	108.8(3)	
C(14)-N(1)-Ni(1)	102.19(18)	C(16)-C(15)-C(17)	109.2(3)	
C(15)-N(1)-Ni(1)	119.01(18)	C(18)-C(15)-C(17)	109.7(3)	
C(2)-N(2)-C(6)	121.4(3)	C(16)-C(15)-N(1)	109.7(2)	
C(2)-N(2)-Ni(1)	116.8(2)	C(18)-C(15)-N(1)	108.0(2)	
C(6)-N(2)-Ni(1)	121.6(2)	C(17)-C(15)-N(1)	111.4(2)	
C(8)-N(3)-C(7)	113.0(2)	O(1)-S(1)-O(2)	121.16(15)	
C(8)-N(3)-S(1)	113.4(2)	O(1)-S(1)-N(3)	106.15(13)	
C(7)-N(3)-S(1)	113.6(2)	O(2)-S(1)-N(3)	104.74(15)	
C(8)-N(3)-Ni(1)	105.08(18)	O(1)-S(1)-C(19)	107.09(15)	
C(7)-N(3)-Ni(1)	99.76(16)	O(2)-S(1)-C(19)	108.84(14)	
S(1)-N(3)-Ni(1)	110.74(12)	N(3)-S(1)-C(19)	108.28(14)	
C(13)-N(4)-C(9)	121.5(3)	C(24)-C(19)-C(20)	121.2(3)	
C(13)-N(4)-Ni(1)	115.27(19)	C(24)-C(19)-S(1)	119.3(2)	
C(9)-N(4)-Ni(1)	122.5(2)	C(20)-C(19)-S(1)	119.4(2)	
N(1)-C(1)-C(2)	114.9(2)	C(21)-C(20)-C(19)	118.3(3)	
N(2)-C(2)-C(3)	120.1(3)	C(22)-C(21)-C(20)	121.5(3)	
N(2)-C(2)-C(1)	115.7(3)	C(21)-C(22)-C(23)	118.4(3)	
C(3)-C(2)-C(1)	123.6(3)	C(21)-C(22)-C(25)	121.4(3)	

C(23)-C(22)-C(25)	120.3(3)
C(24)-C(23)-C(22)	121.0(3)
C(23)-C(24)-C(19)	119.4(3)
O(7)-Cl(1)-O(4)	110.8(2)
O(7)-Cl(1)-O(5)	110.05(19)
O(4)-Cl(1)-O(5)	108.14(18)
O(7)-Cl(1)-O(6)	110.0(2)
O(4)-Cl(1)-O(6)	107.96(17)
O(5)-Cl(1)-O(6)	109.84(18)
O(11)-Cl(2)-O(9)	112.3(6)
O(11)-Cl(2)-O(10)	111.0(6)
O(9)-Cl(2)-O(10)	108.9(6)
O(11)-Cl(2)-O(8)	108.2(6)
O(9)-Cl(2)-O(8)	108.2(7)
O(10)-Cl(2)-O(8)	108.1(6)
O(9A)-Cl(2A)-O(11A)	112.5(8)
O(9A)-Cl(2A)-O(8A)	108.1(7)
O(11A)-Cl(2A)-O(8A)	109.2(8)
O(9A)-Cl(2A)-O(10A)	108.7(8)
O(11A)-Cl(2A)-O(10A)	110.4(8)
O(8A)-Cl(2A)-O(10A)	107.9(8)
H(2OA)-O(12)-H(2OB)	104(5)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ni(1)	25(1)	22(1)	18(1)	0(1)	3(1)	1(1)
O(3)	25(1)	30(1)	25(1)	0(1)	5(1)	0(1)
N(5)	34(2)	30(1)	24(1)	2(1)	4(1)	4(1)
C(26)	49(2)	33(2)	24(2)	-1(1)	1(1)	6(2)
C(27)	94(4)	31(2)	42(2)	-1(2)	12(2)	14(2)
C(28)	120(6)	52(3)	221(8)	-37(4)	124(6)	-23(4)
N(1)	24(1)	24(1)	19(1)	0(1)	2(1)	-2(1)
N(2)	25(1)	23(1)	17(1)	0(1)	1(1)	3(1)
N(3)	31(1)	27(1)	21(1)	0(1)	6(1)	6(1)
N(4)	31(1)	24(1)	21(1)	-1(1)	2(1)	0(1)
C(1)	21(1)	26(2)	26(1)	2(1)	2(1)	0(1)
C(2)	20(1)	26(1)	22(1)	-1(1)	2(1)	0(1)
C(3)	24(2)	30(2)	31(2)	4(1)	5(1)	6(1)
C(4)	30(2)	29(2)	35(2)	9(1)	5(1)	5(1)
C(5)	30(2)	29(2)	26(1)	7(1)	6(1)	2(1)
C(6)	24(1)	26(1)	20(1)	1(1)	2(1)	0(1)
C(7)	31(2)	27(2)	22(1)	2(1)	7(1)	4(1)
C(8)	38(2)	37(2)	18(1)	-3(1)	4(1)	0(1)
C(9)	37(2)	25(2)	21(1)	1(1)	2(1)	5(1)
C(10)	48(2)	29(2)	22(1)	-6(1)	-4(1)	4(2)
C(11)	42(2)	25(2)	34(2)	-3(1)	-6(1)	-1(1)
C(12)	33(2)	25(2)	32(2)	-1(1)	0(1)	-4(1)
C(13)	33(2)	22(1)	24(1)	2(1)	1(1)	0(1)
C(14)	29(2)	26(2)	26(1)	1(1)	5(1)	-7(1)
C(15)	27(2)	31(2)	19(1)	0(1)	5(1)	0(1)
C(16)	34(2)	37(2)	22(1)	2(1)	3(1)	1(1)
C(17)	34(2)	46(2)	27(2)	0(1)	13(1)	-4(2)
C(18)	31(2)	32(2)	28(2)	-7(1)	8(1)	-4(1)
S(1)	40(1)	28(1)	22(1)	1(1)	11(1)	9(1)
D(1)	41(1)	42(1)	22(1)	1(1)	7(1)	16(1)
D(2)	60(2)	26(1)	37(1)	2(1)	26(1)	5(1)
C(19)	33(2)	25(1)	24(1)	-1(1)	9(1)	4(1)
C(20)	40(2)	29(2)	27(2)	-5(1)	11(1)	-5(1)

 Tabelle 4.
 Anisotrope Auslenkungsparameter [Å² x 10³] für 06850.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

			/	Annang			
C(21)	38(2)	37(2)	24(1)	-3(1)	12(1)	0(2)	
C(22)	31(2)	30(2)	30(2)	4(1)	11(1)	5(1)	
C(23)	30(2)	24(2)	38(2)	0(1)	4(1)	2(1)	
C(24)	33(2)	27(2)	28(2)	-5(1)	2(1)	8(1)	
C(25)	38(2)	48(2)	38(2)	9(2)	14(2)	1(2)	
Cl(1)	49(1)	30(1)	29(1)	3(1)	10(1)	3(1)	
O(4)	50(2)	50(2)	75(2)	8(2)	27(2)	7(1)	
O(5)	79(2)	36(1)	43(2)	4(1)	22(1)	-7(1)	
O(6)	54(2)	55(2)	48(2)	18(1)	13(1)	15(1)	
O(7)	140(3)	49(2)	34(2)	-7(1)	-6(2)	1(2)	
Cl(2)	58(3)	55(3)	26(3)	-9(2)	13(2)	5(2)	
O(8)	49(5)	32(4)	76(7)	3(4)	44(6)	4(4)	
O(9)	41(4)	83(7)	21(2)	-16(3)	11(2)	-6(4)	
O(10)	47(5)	112(9)	31(3)	-12(5)	3(3)	30(5)	
O(11)	91(6)	32(3)	107(8)	3(4)	57(6)	-13(4)	
Cl(2A)	19(2)	16(2)	35(3)	1(2)	11(2)	2(2)	
O(8A)	190(17)	80(10)	110(12)	65(8)	97(11)	66(10)	
O(9A)	36(5)	77(9)	106(12)	-64(8)	1(7)	9(6)	
O(10A)	58(6)	120(12)	45(7)	-43(7)	10(5)	-42(7)	
O(11A)	50(6)	67(7)	50(6)	12(5)	18(5)	-12(5)	
O(12)	32(1)	40(1)	40(1)	11(1)	12(1)	6(1)	

Tabelle 5.

	Х	У	Z	U(eq)
H(27A)	7429	-420	8704	68
H(27B)	7754	-351	7637	68
H(28A)	4906	-493	7959	175
H(28B)	5732	-896	7442	175
H(28C)	5160	-378	6889	175
H(1A)	2750	2079	8233	30
H(1B)	2248	1732	7269	30
H(3)	2523	2833	6986	34
H(4)	3624	3249	5887	38
H(5)	5572	2871	5414	34
H(7A)	7009	2069	5413	32
H(7B)	7838	2050	6569	32
H(8A)	5681	1055	4790	38
H(8B)	4832	1558	4942	38
H(10)	3343	534	4400	42
H(11)	1507	175	5013	43
H(12)	1303	382	6609	37
H(14A)	3652	695	8437	33
H(14B)	2180	1013	8065	33
H(16A)	6400	1189	9722	47
H(16B)	5118	803	9759	47
H(16C)	5704	1190	10653	47
H(17A)	2682	1133	9753	52
H(17B)	2238	1700	9411	52
H(17C)	3239	1592	10500	52
H(18A)	5373	2105	10357	45
H(18B)	4285	2314	9365	45
H(18C)	5847	2099	9336	45
H(20)	7730	705	4221	38
H(21)	8998	864	3017	39
H(23)	11456	1908	4796	38
H(24)	10179	1766	5988	37
H(25A)	12248	1308	3315	61

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06850.

H(25B)	11388	1821	2946	61
H(25C)	10796	1296	2430	61
НОЗА	8220(40)	1459(15)	8730(40)	80(17)
НОЗВ	7950(40)	1940(10)	8400(30)	49(13)
H(2OA)	9540(50)	892(17)	-150(30)	76(17)
H(2OB)	9790(50)	813(14)	-1020(30)	71(17)

7.2.1.9 [Ni(HL-N₄(^{tt}BzO)Me)(MeCN)₂](ClO₄)] 70

7.2.1.9.1 IR-Spektrum

7.2.1.9.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0549.

Summenformel	$C_{36.25}H_{43}Cl_2N_7NiO_{9.25}$
Molmasse	854.39
Temperatur	293(2) K

Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ- Rotation	
Kristallsystem	Orthorhombisch	
Raumgruppe	Cmc2 ₁	
Zelldimensionen	a = 17.8904(16) Å	$\alpha = 90^{\circ}$
	b = 19.5606(12) Å	$\beta = 90^{\circ}$
	c = 12.2326(7) Å	$\gamma = 90^{\circ}$
Zellvolumen	4280.8(5) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.326 Mg/m ³	
Absorptionskoeffizient	0.636 mm ⁻¹	
Kristallgröße	0.44 x 0.36 x 0.12 mm	
Gemessener θ-Bereich	2.67 bis 26.73°	
Anzahl der gemessenen Reflexe	22919	
Unabhängige Reflexe	4649 (Rint = 0.0445)	
Absorptionskorrektur	None	
Max. und min. Transmission	0.9276 und 0.7672	
Diffraktometer	Stoe IPDS	
Strukturlösung	Direkte Methoden	
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)	
Strukturverfeinerung	Vollmatrix Least-Squares gegen	F^2
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)	
Daten / Restraints / Parameter	4649 / 95 / 279	
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0494, wR2 = 0.1234	
R-Werte (alle Daten)	R1 = 0.0686, wR2 = 0.1325	
Absolutstrukturparameter	-0.01(2)	
Extinktionskoeffizient	0.00156(13)	
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0860P)^2]$ mit P=	$=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.947	
Größtes Maximum und Minimum	0.451 und -0.361 eÅ ⁻³	

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H

oder Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0549.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Ni(1)	5000	3052(1)	4034(1)	49(1)
0(1)	3720(2)	1297(2)	6499(3)	114(1)
N(1)	5000	3961(1)	2958(2)	55(1)
N(2)	4250(1)	3624(1)	4838(1)	53(1)
N(3)	5000	2515(1)	5611(2)	57(1)
N(4)	4185(1)	2508(1)	3254(1)	66(1)
C(1)	4315(1)	4344(1)	3256(2)	66(1)
C(2)	4093(1)	4248(1)	4419(1)	54(1)
C(3)	3718(1)	4731(1)	5045(2)	69(1)
C(4)	3524(1)	4552(1)	6101(2)	74(1)
C(5)	3710(1)	3927(1)	6534(2)	69(1)
C(6)	4087(1)	3467(1)	5865(1)	55(1)
C(7)	4314(1)	2759(1)	6190(2)	65(1)
C(8)	5000	3820(2)	1764(2)	78(1)
C(9)	5000	1749(1)	5526(2)	69(1)
C(10)	5000	1358(1)	6621(2)	62(1)
C(11)	4328(1)	1171(1)	7105(2)	67(1)
C(12)	4306(1)	836(1)	8101(2)	70(1)
C(13)	5000	677(2)	8577(2)	74(1)
C(15)	3587(1)	637(1)	8674(2)	95(1)
C(16)	3157(2)	121(2)	7926(3)	135(1)
C(17)	3078(2)	1274(2)	8846(4)	169(2)
C(18)	3687(2)	318(2)	9755(2)	161(1)

C(19)	3690(1)	2247(1)	2837(2)	71(1)
C(20)	3051(1)	1919(1)	2309(2)	117(1)
Cl(1)	2126(1)	1623(1)	5132(1)	87(1)
0(2)	2714(2)	1110(2)	5008(5)	214(3)
O(3)	1699(2)	1575(3)	4181(3)	183(2)
O(4)	2521(2)	2262(2)	5111(3)	101(1)
O(5)	1785(2)	1506(2)	6120(3)	125(1)
O(6)	1509(2)	2068(2)	5370(4)	167(2)
O(7)	1982(2)	1224(1)	4187(2)	106(1)
O(8)	2126(2)	1151(2)	6039(3)	125(1)
O(9)	2786(2)	1978(2)	5086(3)	136(1)
N(5)	5000	6107(2)	3713(3)	126(2)
C(21)	5000	6646(2)	4024(4)	114(1)
C(22)	5000	7418(3)	4424(4)	150(2)
0(10)	5000	8362(9)	5948(14)	173(6)
C(23)	5000	8825(19)	6750(4)	229(14)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0549.

Ni(1)-N(2)#1	2.0062(13)	C(9)-C(10)	1.542(3)
Ni(1)-N(2)	2.0062(13)	C(10)-C(11)#1	1.389(2)
Ni(1)-N(4)#1	2.0410(15)	C(10)-C(11)	1.389(2)
Ni(1)-N(4)	2.0410(15)	C(11)-C(12)	1.383(3)
Ni(1)-N(3)	2.1963(19)	C(12)-C(13)	1.407(2)
Ni(1)-N(1)	2.2131(18)	C(12)-C(15)	1.515(3)
O(1)-C(11)	1.339(4)	C(13)-C(12)#1	1.407(2)
N(1)-C(1)#1	1.483(2)	C(15)-C(18)	1.473(4)
N(1)-C(1)	1.483(2)	C(15)-C(17)	1.559(4)
N(1)-C(8)	1.486(3)	C(15)-C(16)	1.565(4)
N(2)-C(6)	1.325(2)	C(19)-C(20)	1.461(3)
N(2)-C(2)	1.351(2)	Cl(1)-O(9)	1.370(3)
N(3)-C(7)#1	1.494(2)	Cl(1)-O(5)	1.373(3)
N(3)-C(7)	1.494(2)	Cl(1)-O(3)	1.395(4)
N(3)-C(9)	1.503(3)	Cl(1)-O(7)	1.419(3)
N(4)-C(19)	1.143(2)	Cl(1)-O(4)	1.435(3)
C(1)-C(2)	1.489(2)	Cl(1)-O(6)	1.435(4)
C(2)-C(3)	1.390(2)	Cl(1)-O(8)	1.443(3)
C(3)-C(4)	1.383(3)	Cl(1)-O(2)	1.462(4)
C(4)-C(5)	1.372(3)	N(5)-C(21)	1.120(5)
C(5)-C(6)	1.392(2)	C(21)-C(22)	1.588(7)
C(6)-C(7)	1.498(2)	O(10)-C(23)	1.33(4)

N(2)#1-Ni(1)-N(2)	84.01(7)
N(2)#1-Ni(1)-N(4)#1	92.42(5)
N(2)-Ni(1)-N(4)#1	176.40(6)
N(2)#1-Ni(1)-N(4)	176.41(6)
N(2)-Ni(1)-N(4)	92.42(5)
N(4)#1-Ni(1)-N(4)	91.15(8)
N(2)#1-Ni(1)-N(3)	80.57(5)
N(2)-Ni(1)-N(3)	80.57(5)
N(4)#1-Ni(1)-N(3)	99.29(5)
N(4)-Ni(1)-N(3)	99.29(5)
N(2)#1-Ni(1)-N(1)	80.97(5)
N(2)-Ni(1)-N(1)	80.97(5)
N(4)#1-Ni(1)-N(1)	98.09(5)
N(4)-Ni(1)-N(1)	98.09(5)
N(3)-Ni(1)-N(1)	155.06(7)
C(1)#1-N(1)-C(1)	111.57(18)
C(1)#1-N(1)-C(8)	109.63(12)
C(1)-N(1)-C(8)	109.63(12)
C(1)#1-N(1)-Ni(1)	105.06(10)
C(1)-N(1)-Ni(1)	105.06(10)
C(8)-N(1)-Ni(1)	115.79(16)
C(6)-N(2)-C(2)	121.57(13)
C(6)-N(2)-Ni(1)	118.80(10)
C(2)-N(2)-Ni(1)	117.12(10)
C(7)#1-N(3)-C(7)	110.38(18)
C(7)#1-N(3)-C(9)	110.53(12)
C(7)-N(3)-C(9)	110.53(12)
C(7)#1-N(3)-Ni(1)	105.31(10)
C(7)-N(3)-Ni(1)	105.31(10)
C(9)-N(3)-Ni(1)	114.55(14)
C(19) - N(4) - Ni(1)	174.33(15)
N(1)-C(1)-C(2)	113.01(15)
N(2)-C(2)-C(3)	120.30(15)
N(2)-C(2)-C(1)	114.97(13)
C(3)-C(2)-C(1)	124.65(15)
C(4)-C(3)-C(2)	117.59(16)
C(5)-C(4)-C(3)	121.73(17)
C(4)-C(5)-C(6)	117.78(17)
N(2)-C(6)-C(5)	120.92(15)
N(2)-C(6)-C(7)	114.01(14)
C(5)-C(6)-C(7)	125.02(16)
N(3)-C(7)-C(6)	113.05(15)
N(3)-C(9)-C(10)	115.7(2)
C(11)#1-C(10)-C(11)	119.9(2)
C(11)#1-C(10)-C(9)	120.04(11)
C(11)-C(10)-C(9)	120.04(11)
O(1)-C(11)-C(12)	123.5(2)

O(1)-C(11)-C(10)	114.7(2)
C(12)-C(11)-C(10)	121.65(18)
C(11)-C(12)-C(13)	116.38(18)
C(11)-C(12)-C(15)	123.64(17)
C(13)-C(12)-C(15)	119.97(18)
C(12)#1-C(13)-C(12)	123.9(2)
C(18)-C(15)-C(12)	114.9(2)
C(18)-C(15)-C(17)	106.8(3)
C(12)-C(15)-C(17)	110.6(2)
C(18)-C(15)-C(16)	108.1(2)
C(12)-C(15)-C(16)	108.19(18)
C(17)-C(15)-C(16)	107.9(2)
N(4)-C(19)-C(20)	179.4(2)
O(9)-Cl(1)-O(5)	120.2(2)
O(9)-Cl(1)-O(3)	118.2(3)
O(5)-Cl(1)-O(3)	118.6(2)
O(9)-Cl(1)-O(7)	113.7(2)
O(5)-Cl(1)-O(7)	123.0(2)
O(3)-Cl(1)-O(7)	35.3(2)
O(9)-Cl(1)-O(4)	30.10(18)
O(5)-Cl(1)-O(4)	112.3(2)
O(3)-Cl(1)-O(4)	108.3(3)
O(7)-Cl(1)-O(4)	123.67(19)
O(9)-Cl(1)-O(6)	111.4(2)
O(5)-Cl(1)-O(6)	65.2(2)
O(3)-Cl(1)-O(6)	77.8(3)
O(7)-Cl(1)-O(6)	111.1(2)
O(4)-Cl(1)-O(6)	81.6(2)
O(9)-Cl(1)-O(8)	110.8(2)
O(5)-Cl(1)-O(8)	38.4(2)
O(3)-Cl(1)-O(8)	126.7(2)
O(7)-Cl(1)-O(8)	105.86(17)
O(4)-Cl(1)-O(8)	124.8(2)
O(6)-Cl(1)-O(8)	103.4(2)
O(9)-Cl(1)-O(2)	73.9(2)
O(5)-Cl(1)-O(2)	107.3(3)
O(3)-Cl(1)-O(2)	105.1(3)
O(7)-Cl(1)-O(2)	70.6(3)
O(4)-Cl(1)-O(2)	104.0(2)
O(6)-Cl(1)-O(2)	172.1(3)
O(8)-Cl(1)-O(2)	68.9(3)
N(5)-C(21)-C(22)	178.1(5)

Symmetrietransformationen für die äquivalenten Atome:

#1 -x+1,y,z

Tabelle 4. Anisotrope Auslenkungsparameter $[\text{\AA}^2 \text{ x } 10^3]$ für 0549.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Ni(1)	47(1)	57(1)	43(1)	0(1)	0	0
0(1)	92(2)	118(2)	132(2)	47(2)	-47(2)	-29(2)
N(1)	53(1)	63(1)	49(1)	0(1)	0	0
N(2)	46(1)	65(1)	49(1)	0(1)	-3(1)	0(1)
N(3)	58(1)	62(1)	50(1)	3(1)	0	0
N(4)	67(1)	73(1)	58(1)	-3(1)	-2(1)	-7(1)
C(1)	71(1)	67(1)	60(1)	14(1)	-1(1)	10(1)
C(2)	42(1)	64(1)	57(1)	-6(1)	-5(1)	3(1)
C(3)	55(1)	73(1)	78(1)	-13(1)	-10(1)	7(1)
C(4)	53(1)	88(1)	82(1)	-30(1)	-4(1)	10(1)
C(5)	53(1)	94(1)	61(1)	-19(1)	4(1)	-5(1)
C(6)	45(1)	70(1)	51(1)	-7(1)	5(1)	-3(1)
C(7)	62(1)	78(1)	56(1)	10(1)	10(1)	0(1)
C(8)	88(2)	93(2)	52(2)	11(1)	0	0
C(9)	96(2)	55(1)	57(1)	16(1)	0	0
C(10)	78(1)	61(1)	48(1)	13(1)	0	0
C(11)	70(1)	73(1)	58(1)	8(1)	-11(1)	-9(1)
C(12)	76(1)	75(1)	58(1)	7(1)	2(1)	-10(1)
C(13)	75(2)	94(2)	53(1)	16(1)	0	0
C(15)	86(1)	123(1)	75(1)	17(1)	-1(1)	-45(1)
C(16)	140(2)	145(2)	119(2)	-9(2)	7(2)	-80(1)
C(17)	99(2)	146(2)	264(4)	-7(3)	72(2)	-19(2)
C(18)	126(2)	270(4)	86(2)	54(2)	21(2)	-61(2)
C(19)	79(1)	79(1)	55(1)	-2(1)	-5(1)	-17(1)
C(20)	116(1)	147(2)	87(2)	-2(1)	-31(1)	-72(1)
Cl(1)	87(1)	87(1)	88(1)	2(1)	-4(1)	-8(1)
N(5)	124(2)	99(2)	153(4)	-12(2)	0	0
C(21)	96(2)	141(2)	105(2)	38(3)	0	0
C(22)	191(5)	159(4)	100(3)	0(3)	0	0

Tabelle 5.

H(8A)

H(8B)

H(8C)

H(9A)

H(9B)

H(13)

H(16A)

H(16B)

H(16C)

H(17A) H(17B)

H(17C)

H(18A)

H(18B)

H(18C)

H(22A)

H(22B)

H(22C)

	х	У	Z	U(eq)
H(1)	3532	1659	6693	137
H(1A)	3907	4196	2789	79
H(1B)	4397	4827	3122	79
H(3)	3602	5160	4765	82
H(4)	3260	4862	6529	89
H(5)	3588	3816	7251	83
H(7A)	4404	2749	6972	78
H(7B)	3906	2447	6035	78

-282

-147

-2

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0549.

7.2.1.10 [Ni(L-N₄(^{tt}BzO)Me)(EtOH)]Cl 71

7.2.1.10.1 IR-Spektrum

7.2.1.10.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0519.

Summenformel	C34H51ClN4NiO3	
Molmasse	657.95	
Temperatur	293(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Oszillation	
Kristallsystem	Triklin	
Raumgruppe	P1; ⁻	
Zelldimensionen	a = 10.0052(8) Å	$\alpha = 75.746(9)^{\circ}$
	<i>b</i> = 10.7482(9) Å	$\beta = 81.307(9)^{\circ}$
	c = 17.2830(12) Å	$\gamma = 81.749(10)^{\circ}$
Zellvolumen	1769.7(2) Å ³	
Formeleinheiten pro Zelle Z	2	
Berechnete Dichte	1.235 Mg/m ³	

0.661 mm ⁻¹
0.70 x 0.60 x 0.12 mm
2.65 bis 26.73°
20906
7020 (Rint = 0.0840)
Analytisch
0.92156 und 0.67318
Stoe IPDS
Direkte Methoden
SIR97 (Giacovazzo et al., 1997)
Vollmatrix Least-Squares gegen F ²
SHELXL-97 (Sheldrick, 1997)
7020 / 6 / 439
R1 = 0.0440, wR2 = 0.0977
R1 = 0.0809, wR2 = 0.1076
w=1/[$\sigma^2(Fo^2)$ +(0.049P) ²] mit P=(Fo ² +2Fc ²)/3
0.847
0.364 und -0.426 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die asymmetrische Einheit enthält 1 fehlgeordnetes Ethanolmolekül. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5fache Wert (CH₃-Gruppen und O-H) und für alle anderen H-Atome. der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0519.

U(eq) wird be rechnet als ein Drittel der Spur des orthogonalisierten $U_{\rm ij}\mbox{-}{\rm Tensors}.$

	x	У	Z	U(eq)
Ni(1)	4612(1)	2959(1)	3101(1)	49(1)
0(1)	3432(2)	3658(2)	2272(1)	56(1)
0(2)	2812(2)	2722(3)	3939(2)	74(1)
N(1)	5188(3)	4652(2)	3441(2)	63(1)
N(2)	5697(2)	2056(2)	4000(1)	53(1)
N(3)	5024(2)	1094(2)	2832(1)	49(1)
N(4)	6458(2)	3134(2)	2445(1)	53(1)
C(1)	5702(3)	4144(3)	4229(2)	68(1)
C(2)	6308(3)	2758(3)	4356(2)	60(1)
C(3)	7354(4)	2188(4)	4801(2)	75(1)
C(4)	7774(4)	909(4)	4867(2)	80(1)
C(5)	7164(3)	179(3)	4486(2)	69(1)
C(6)	6118(3)	795(3)	4052(2)	55(1)
C(7)	5334(3)	177(3)	3592(2)	58(1)
C(8)	6192(3)	1101(3)	2194(2)	56(1)
C(9)	7104(3)	2109(3)	2185(2)	53(1)
C(10)	8474(3)	2029(4)	1932(2)	71(1)
C(11)	9182(4)	3029(5)	1962(2)	88(1)
C(12)	8521(4)	4058(4)	2247(2)	82(1)
C(13)	7147(3)	4098(3)	2488(2)	63(1)
C(14)	6277(4)	5158(3)	2812(2)	74(1)
C(15)	4076(4)	5717(3)	3489(3)	88(1)
C(16)	3762(3)	836(3)	2565(2)	53(1)
C(17)	3391(3)	1742(2)	1801(2)	47(1)
C(18)	3244(2)	3111(3)	1696(2)	46(1)
C(19)	2878(2)	3887(2)	953(2)	44(1)
C(20)	2634(2)	3277(3)	373(2)	47(1)
C(21)	2760(2)	1938(3)	465(2)	46(1)
C(22)	3152(3)	1206(3)	1180(2)	50(1)
C(23)	2722(3)	5374(2)	802(2)	49(1)
C(24)	2354(3)	6043(3)	-35(2)	69(1)
C(25)	1588(3)	5826(3)	1406(2)	65(1)
C(26)	4053(3)	5851(3)	895(2)	67(1)
C(27)	2441(3)	1358(3)	-201(2)	54(1)
C(28)	2754(4)	-121(3)	-24(3)	88(1)
C(29)	952(4)	1688(5)	-295(4)	122(2)
C(30)	3290(5)	1878(4)	-982(2)	110(2)
C(31)	661(8)	4146(9)	3911(6)	209(3)
C(32)	1354(6)	2929(7)	3815(4)	155(3)

Cl(1)	2769(6)	3080(3)	5693(3)	78(1)
Cl(2)	2380(3)	3420(4)	5500(2)	130(7)
0(3)	-179(10)	2091(15)	5977(7)	161(6)
C(33)	-830(3)	2344(19)	6719(10)	450(5)
C(34)	-440(3)	1080(2)	7296(13)	205(14)
O(4)	1333(8)	1465(9)	7201(5)	173(4)
C(35)	-47(10)	1876(14)	7266(8)	149(5)
C(36)	-572(15)	1297(17)	6697(8)	164(6)

Tabelle 3. Bindungslängen [Å] und -winkel [⁰] für 0519.	Tabelle 3.	Bindungslängen	[Å] und -winkel	[°] für 0519.
--	------------	----------------	-----------------	---------------

Ni(1)-O(1)	1.934(2)	C(10)-C(11)	1.384(5)
Ni(1)-N(2)	2.000(3)	C(11)-C(12)	1.365(5)
Ni(1)-N(4)	2.023(2)	C(12)-C(13)	1.373(4)
Ni(1)-N(3)	2.138(2)	C(13)-C(14)	1.501(5)
Ni(1)-N(1)	2.217(2)	C(16)-C(17)	1.496(4)
O(1)-C(18)	1.323(3)	C(17)-C(22)	1.400(4)
O(2)-C(32)	1.484(6)	C(17)-C(18)	1.427(4)
N(1)-C(14)	1.478(4)	C(18)-C(19)	1.415(4)
N(1)-C(1)	1.478(4)	C(19)-C(20)	1.392(4)
N(1)-C(15)	1.486(4)	C(19)-C(23)	1.543(4)
N(2)-C(2)	1.340(4)	C(20)-C(21)	1.398(4)
N(2)-C(6)	1.345(4)	C(21)-C(22)	1.372(4)
N(3)-C(8)	1.480(3)	C(21)-C(27)	1.528(4)
N(3)-C(7)	1.480(4)	C(23)-C(24)	1.523(4)
N(3)-C(16)	1.491(3)	C(23)-C(25)	1.531(4)
N(4)-C(9)	1.337(3)	C(23)-C(26)	1.538(4)
N(4)-C(13)	1.346(3)	C(27)-C(30)	1.508(5)
C(1)-C(2)	1.502(5)	C(27)-C(29)	1.505(4)
C(2)-C(3)	1.375(5)	C(27)-C(28)	1.539(4)
C(3)-C(4)	1.360(5)	C(31)-C(32)	1.425(9)
C(4) - C(5)	1.391(5)	O(3)-C(33)	1.419(10)
C(5)-C(6)	1.375(4)	C(33)-C(34)	1.517(10)
C(6)-C(7)	1.512(4)	O(4)-C(35)	1.384(8)
C(8)-C(9)	1.510(4)	C(35)-C(36)	1.477(9)
C(9)-C(10)	1.372(4)		

O(1)-Ni(1)-N(2)	173.02(9)	O(1)-Ni(1)-N(1)	105.77(10)
O(1)-Ni(1)-N(4)	100.61(9)	N(2)-Ni(1)-N(1)	80.14(10)
N(2)-Ni(1)-N(4)	84.00(10)	N(4) - Ni(1) - N(1)	79.42(9)
O(1)-Ni(1)-N(3)	94.50(8)	N(3) - Ni(1) - N(1)	153.54(9)
N(2)-Ni(1)-N(3)	81.03(9)	C(18)-O(1)-Ni(1)	126.74(18)
N(4)-Ni(1)-N(3)	80.28(8)	C(14)-N(1)-C(1)	111.3(3)

C(14)-N(1)-C(15)	108.2(3)	C(20)-C(19)-C(23)	121.0(3)
C(1)-N(1)-C(15)	110.3(3)	C(18)-C(19)-C(23)	120.5(2)
C(14)-N(1)-Ni(1)	106.01(17)	C(19)-C(20)-C(21)	124.3(3)
C(1)-N(1)-Ni(1)	105.71(18)	C(22)-C(21)-C(20)	116.2(2)
C(15)-N(1)-Ni(1)	115.2(2)	C(22)-C(21)-C(27)	123.3(2)
C(2)-N(2)-C(6)	120.8(3)	C(20)-C(21)-C(27)	120.5(3)
C(2)-N(2)-Ni(1)	119.1(2)	C(21)-C(22)-C(17)	123.1(3)
C(6)-N(2)-Ni(1)	116.91(19)	C(24)-C(23)-C(25)	107.0(3)
C(8) - N(3) - C(7)	111.7(2)	C(24)-C(23)-C(26)	107.3(2)
C(8)-N(3)-C(16)	111.6(2)	C(25)-C(23)-C(26)	108.6(3)
C(7)-N(3)-C(16)	111.5(2)	C(24)-C(23)-C(19)	113.0(2)
C(8)-N(3)-Ni(1)	109.16(15)	C(25)-C(23)-C(19)	110.1(2)
C(7)-N(3)-Ni(1)	105.92(17)	C(26)-C(23)-C(19)	110.6(2)
C(16)-N(3)-Ni(1)	106.69(16)	C(30)-C(27)-C(29)	110.2(4)
C(9)-N(4)-C(13)	120.6(2)	C(30)-C(27)-C(21)	110.3(2)
C(9)-N(4)-Ni(1)	118.07(17)	C(29)-C(27)-C(21)	109.0(3)
C(13)-N(4)-Ni(1)	118.4(2)	C(30)-C(27)-C(28)	106.4(3)
N(1)-C(1)-C(2)	113.3(2)	C(29)-C(27)-C(28)	107.9(3)
N(2)-C(2)-C(3)	120.3(3)	C(21)-C(27)-C(28)	113.0(3)
N(2)-C(2)-C(1)	113.2(3)	C(31)-C(32)-O(2)	115.1(6)
C(3)-C(2)-C(1)	126.5(3)	O(3)-C(33)-C(34)	100.9(12)
C(4)-C(3)-C(2)	119.3(3)	O(4)-C(35)-C(36)	104.2(9)
C(3)-C(4)-C(5)	120.8(4)		
C(6)-C(5)-C(4)	117.5(3)		
N(2)-C(6)-C(5)	121.2(3)		
N(2)-C(6)-C(7)	113.1(3)		
C(5)-C(6)-C(7)	125.7(3)		
N(3)-C(7)-C(6)	110.0(2)		
N(3)-C(8)-C(9)	111.6(2)		
N(4)-C(9)-C(10)	121.1(3)		
N(4)-C(9)-C(8)	114.0(2)		
C(10)-C(9)-C(8)	124.9(3)		
C(9)-C(10)-C(11)	118.5(3)		
C(12)-C(11)-C(10)	120.1(3)		
C(13)-C(12)-C(11)	119.2(3)		
N(4)-C(13)-C(12)	120.5(3)		
N(4)-C(13)-C(14)	113.8(3)		
C(12)-C(13)-C(14)	125.6(3)		
N(1)-C(14)-C(13)	111.7(2)		
N(3)-C(16)-C(17)	113.9(2)		
C(22)-C(17)-C(18)	119.6(3)		
C(22)-C(17)-C(16)	117.9(2)		
C(18)-C(17)-C(16)	122.5(2)		
O(1)-C(18)-C(19)	120.1(2)		
O(1)-C(18)-C(17)	121.7(3)		
C(19)-C(18)-C(17)	118.2(2)		
C(20)-C(19)-C(18)	118.5(2)		
7 Anhang

Tabelle 4. Anisotrope Auslenkungsparameter [Å² x 10³] für 0519.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Ni(1)	53(1)	52(1)	47(1)	-20(1)	-4(1)	-10(1)
0(1)	71(1)	51(1)	54(1)	-24(1)	-17(1)	1(1)
0(2)	53(1)	101(2)	68(2)	-25(1)	-2(1)	-8(1)
N(1)	72(2)	63(2)	61(2)	-29(1)	0(1)	-15(1)
N(2)	57(1)	67(2)	42(2)	-20(1)	-4(1)	-14(1)
N(3)	54(1)	53(1)	43(2)	-13(1)	-11(1)	-8(1)
N(4)	58(1)	61(2)	45(2)	-18(1)	-5(1)	-15(1)
C(1)	84(2)	78(2)	55(2)	-31(2)	-6(2)	-24(2)
C(2)	64(2)	76(2)	46(2)	-23(2)	1(2)	-23(2)
C(3)	74(2)	102(3)	61(3)	-28(2)	-18(2)	-24(2)
C(4)	79(2)	99(3)	71(3)	-19(2)	-30(2)	-11(2)
C(5)	72(2)	80(2)	54(2)	-11(2)	-16(2)	-6(2)
C(6)	57(2)	64(2)	43(2)	-12(1)	-3(1)	-10(1)
C(7)	71(2)	56(2)	52(2)	-12(1)	-18(2)	-9(1)
C(8)	57(2)	64(2)	53(2)	-28(2)	-7(1)	2(1)
C(9)	54(2)	69(2)	38(2)	-14(1)	-5(1)	-6(1)
C(10)	58(2)	91(2)	61(2)	-20(2)	2(2)	-2(2)
C(11)	56(2)	128(3)	78(3)	-19(2)	4(2)	-26(2)
C(12)	72(2)	109(3)	71(3)	-22(2)	6(2)	-45(2)
C(13)	70(2)	78(2)	45(2)	-14(2)	-2(2)	-30(2)
C(14)	94(2)	69(2)	68(2)	-25(2)	2(2)	-37(2)
C(15)	100(3)	67(2)	109(3)	-46(2)	-8(2)	-4(2)
C(16)	61(2)	49(2)	54(2)	-14(1)	-16(1)	-12(1)
C(17)	46(1)	45(2)	53(2)	-15(1)	-11(1)	-6(1)
C(18)	41(1)	48(2)	54(2)	-20(1)	-5(1)	-5(1)
C(19)	37(1)	46(1)	49(2)	-13(1)	-2(1)	-5(1)
C(20)	43(1)	51(2)	49(2)	-13(1)	-8(1)	-4(1)
C(21)	41(1)	50(2)	53(2)	-19(1)	-10(1)	-7(1)
C(22)	47(1)	47(2)	60(2)	-19(1)	-9(1)	-9(1)
C(23)	48(1)	45(2)	55(2)	-15(1)	-1(1)	-4(1)
C(24)	84(2)	52(2)	67(2)	-11(2)	-9(2)	1(2)
C(25)	64(2)	57(2)	69(2)	-19(2)	5(2)	7(1)
C(26)	59(2)	56(2)	90(3)	-23(2)	-1(2)	-16(1)
C(27)	54(2)	57(2)	58(2)	-22(1)	-18(1)	-7(1)
C(28)	126(3)	65(2)	91(3)	-36(2)	-44(2)	-6(2)
C(29)	84(3)	150(4)	173(6)	-104(4)	-71(3)	24(3)
C(30)	173(5)	115(3)	62(3)	-39(2)	6(3)	-65(3)
C(31)	196(8)	222(9)	200(9)	-30(7)	-74(6)	25(6)
C(32)	139(5)	197(7)	130(5)	-72(5)	-42(4)	72(4)
Cl(1)	107(2)	72(3)	66(2)	-25(1)	-10(1)	-29(1)
Cl(2)	116(10)	198(11)	109(10)	-88(10)	35(8)	-82(10)

7 Anhang						
0(3)	104(7)	253(16)	130(11)	-33(9)	-20(6)	-51(8)
C(33)	260(3)	520(7)	790(11)	-570(9)	-340(5)	270(4)
C(34)	290(4)	133(17)	200(3)	1(16)	-160(3)	-14(18)
0(4)	138(6)	217(9)	132(7)	2(5)	-12(5)	12(6)
C(35)	151(11)	141(11)	139(11)	-45(8)	35(9)	4(8)
C(36)	210(14)	231(16)	70(8)	-27(8)	-34(8)	-80(12)

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0519.

	x	У	Z	U(eq)
H(2)	2887	2829	4384	111
H(1A)	4959	4223	4652	82
H(1B)	6387	4668	4275	82
H(3)	7771	2671	5054	90
H(4)	8477	519	5170	97
H(5)	7453	-693	4524	83
H(7A)	5867	-597	3474	70
H(7B)	4493	-69	3917	70
H(8A)	5858	1272	1675	67
H(8B)	6715	256	2280	67
H(10)	8917	1319	1744	85
H(11)	10110	3000	1787	105
H(12)	8996	4724	2277	98
H(14A)	6842	5609	3036	88
H(14B)	5871	5774	2376	88
H(15A)	4426	6421	3614	132
H(15B)	3365	5410	3901	132
H(15C)	3719	6006	2981	132
H(16A)	3013	897	2987	63
H(16B)	3882	-40	2491	63
H(20)	2371	3795	-107	56
H(22)	3266	312	1257	59
H(24A)	1512	5783	-108	104
H(24B)	3061	5807	-431	104
H(24C)	2258	6962	-94	104
H(25A)	1534	6747	1328	98
H(25B)	1784	5420	1943	98
H(25C)	736	5595	1325	98
H(26A)	4743	5677	473	101
H(26B)	4342	5410	1407	101
H(26C)	3906	6764	864	101
H(28A)	2559	-430	-466	132
H(28B)	2201	-499	457	132

7 Anhang

			-		
H(28C)	3698	-357	47	132	
H(29A)	746	2609	-451	182	
H(29B)	421	1362	207	182	
H(29C)	738	1304	-701	182	
H(30A)	3093	1494	-1393	166	
H(30B)	4237	1671	-914	166	
H(30C)	3081	2798	-1137	166	
H(31A)	997	4397	4335	314	
H(31B)	-297	4078	4043	314	
H(31C)	816	4783	3418	314	
H(32A)	1286	2842	3278	186	
H(32B)	892	2251	4193	186	
H(3A)	488	1558	6059	241	
H(33A)	-1814	2514	6719	543	
H(33B)	-495	3064	6843	543	
H(34A)	3	459	6997	307	
H(34B)	-1234	760	7622	307	
H(34C)	179	1218	7635	307	
H(4A)	1731	1968	6832	260	
H(35A)	-208	2811	7118	179	
H(35B)	-474	1574	7810	179	
H(36A)	-776	1955	6230	247	
H(36B)	-1383	913	6951	247	
H(36C)	103	646	6540	247	

7.2.1.11 [Ni(L-N₄(^{tt}BzO)Me)(ClO₄)] 72

7.2.1.11.1 IR-Spektrum

7.2.1.11.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0566.

Summenformel	C31H42ClN4NiO5.50		
Molmasse	652.85		
Temperatur	193(2) K		
Strahlung	ΜοΚα		
Wellenlänge	0.71073 Å		
Scanmodus	Φ -Oszillation		
Kristallsystem	Monoklin		
Raumgruppe	I2/a		
Zelldimensionen	a = 19.354(3) Å	$\alpha = 90^{\circ}$	
	<i>b</i> = 14.2265(12) Å		$\beta = 98.086(15)^{\circ}$
	c = 23.991(2) Å	$\gamma = 90^{\circ}$	
Zellvolumen	6539.8(13) Å ³		
Formeleinheiten pro Zelle Z	8		
Berechnete Dichte	1.326 Mg/m ³		
Absorptionskoeffizient	0.720 mm ⁻¹		
Kristallgröße	0.50 x 0.48 x 0.24 mm		

7 Anhang

Gemessener θ-Bereich	2.80 bis 26.73°
Anzahl der gemessenen Reflexe	34826
Unabhängige Reflexe	6918 (Rint = 0.0341)
Absorptionskorrektur	Multi-scan (MULABS/PLATON 98)
Max. und min. Transmission	0.70516 und 0.64339
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	6918 / 51 / 450
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0377, wR2 = 0.1141
R-Werte (alle Daten)	R1 = 0.0441, wR2 = 0.1179
Wichtungsschema	$w=1/[\sigma^{2}(Fo^{2})+(0.0877P)^{2}+1.1348P]$ mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.050
Größtes Maximum und Minimum	0.908 und -0.416 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Atomlagen des mehrfach fehlgeordneten Lösemittels sind nur partiell besetzt. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen und O-H) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0566.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	х	У	Z	U(eq)
Ni(1)	454(1)	1106(1)	1985(1)	25(1)
Cl(1)	-969(1)	-289(1)	1452(1)	46(1)
O(1)	567(1)	626(1)	2742(1)	29(1)
O(2)	-445(1)	10(1)	1898(1)	49(1)
O(3A)	-1319(2)	-1089(3)	1626(2)	50(1)
O(4A)	-1487(3)	466(3)	1415(3)	95(2)
O(5A)	-743(3)	-388(5)	955(2)	155(2)
O(3B)	-1428(2)	-945(3)	1638(2)	59(1)
O(4B)	-1290(3)	454(3)	1167(3)	181(2)
O(5B)	-564(3)	-786(3)	1088(2)	138(2)
N(1)	-198(1)	2330(1)	2035(1)	33(1)
N(2)	1184(1)	2109(1)	2012(1)	31(1)
N(3)	1261(1)	304(1)	1703(1)	28(1)
N(4)	231(1)	1379(1)	1174(1)	33(1)
C(1)	282(1)	3107(1)	2257(1)	39(1)
C(2)	992(1)	3002(1)	2068(1)	36(1)
C(3)	1431(1)	3731(1)	1969(1)	46(1)
C(4)	2076(1)	3515(1)	1805(1)	50(1)
C(5)	2262(1)	2588(1)	1735(1)	44(1)
C(6)	1795(1)	1891(1)	1839(1)	33(1)
C(7)	1924(1)	852(1)	1781(1)	36(1)
C(8)	1016(1)	98(1)	1098(1)	38(1)
C(9)	578(1)	893(1)	821(1)	37(1)
C(10)	493(1)	1107(2)	252(1)	51(1)
C(11)	51(1)	1842(2)	65(1)	60(1)
C(12)	-285(1)	2353(2)	438(1)	56(1)
C(13)	-188(1)	2094(1)	1005(1)	39(1)
C(14)	-554(1)	2526(1)	1453(1)	44(1)
C(15)	-724(1)	2170(1)	2412(1)	45(1)
C(16)	1324(1)	-578(1)	2042(1)	28(1)
C(17)	1514(1)	-435(1)	2670(1)	24(1)
C(18)	1095(1)	121(1)	2983(1)	24(1)
C(19)	1250(1)	108(1)	3584(1)	27(1)
C(20)	1804(1)	-435(1)	3833(1)	30(1)
C(21)	2234(1)	-967(1)	3530(1)	30(1)
C(22)	2074(1)	-949(1)	2947(1)	28(1)
C(23)	801(1)	687(1)	3940(1)	38(1)
C(24)	872(1)	1737(1)	3800(1)	54(1)
C(25)	1028(1)	565(2)	4575(1)	61(1)
C(26)	35(1)	377(2)	3821(1)	52(1)

7 Anhang

C(27)	2829(1)	-1554(1)	3841(1)	38(1)	
C(28)	3242(1)	-962(2)	4308(1)	53(1)	
C(29)	2533(1)	-2421(2)	4096(1)	77(1)	
C(30)	3350(1)	-1855(2)	3443(1)	49(1)	
C(28A)	2759(10)	-1698(14)	4505(7)	57(4)	
C(29A)	2761(12)	-2600(15)	3625(9)	73(6)	
C(30A)	3523(12)	-1123(16)	3808(10)	80(7)	
О(б)	2822(3)	3983(3)	4770(2)	108(2)	
C(31)	2500	5506(6)	5000	180(5)	
C(32)	2500	4673(6)	5000	114(3)	
C(33)	2500	3232(11)	5000	134(13)	
C(34)	2500	2474(9)	5000	131(9)	

Tabelle 3. Bindungslängen [Å] und -winkel [⁰] für 0566.

Ni(1)-O(1)	1.9226(10)	C(8)-C(9)	1.511(2)
Ni(1)-N(4)	1.9730(13)	C(9)-C(10)	1.385(2)
Ni(1)-N(2)	2.0029(13)	C(10)-C(11)	1.385(3)
Ni(1)-N(3)	2.1207(13)	C(11)-C(12)	1.385(3)
Ni(1)-N(1)	2.1642(13)	C(12)-C(13)	1.395(3)
Ni(1)-O(2)	2.3236(13)	C(13)-C(14)	1.501(3)
Cl(1)-O(5A)	1.334(4)	C(16)-C(17)	1.5146(19)
Cl(1)-O(4B)	1.360(4)	C(17)-C(22)	1.395(2)
Cl(1)-O(3B)	1.405(3)	C(17)-C(18)	1.4211(19)
Cl(1)-O(3A)	1.419(4)	C(18)-C(19)	1.4316(19)
Cl(1)-O(2)	1.4318(13)	C(19)-C(20)	1.386(2)
Cl(1)-O(5B)	1.439(4)	C(19)-C(23)	1.540(2)
Cl(1)-O(4A)	1.462(4)	C(20)-C(21)	1.402(2)
O(1)-C(18)	1.3148(17)	C(21)-C(22)	1.389(2)
N(1)-C(15)	1.472(2)	C(21)-C(27)	1.529(2)
N(1)-C(14)	1.491(2)	C(23)-C(26)	1.535(3)
N(1)-C(1)	1.494(2)	C(23)-C(25)	1.534(2)
N(2)-C(2)	1.336(2)	C(23)-C(24)	1.541(3)
N(2)-C(6)	1.342(2)	C(27)-C(30A)	1.49(2)
N(3)-C(16)	1.4905(19)	C(27)-C(29)	1.524(3)
N(3)-C(8)	1.4922(19)	C(27)-C(28)	1.534(3)
N(3)-C(7)	1.491(2)	C(27)-C(30)	1.542(3)
N(4)-C(13)	1.328(2)	C(27)-C(29A)	1.57(2)
N(4)-C(9)	1.343(2)	C(27)-C(28A)	1.632(16)
C(1)-C(2)	1.513(2)	O(6)-C(32)	1.324(8)
C(2)-C(3)	1.383(2)	C(31)-C(32)	1.186(10)
C(3)-C(4)	1.394(3)	C(33)-C(34)	1.079(16)
C(4)-C(5)	1.384(3)	C(33)-O(6)#1	1.390(11)
C(5)-C(6)	1.388(2)		
C(6)-C(7)	1.509(2)		

O(1)-Ni(1)-N(4)	169.02(5)	C(6)-N(2)-Ni(1)	118.29(11)
O(1)-Ni(1)-N(2)	103.69(5)	C(16)-N(3)-C(8)	110.78(12)
N(4)-Ni(1)-N(2)	86.95(5)	C(16)-N(3)-C(7)	111.70(12)
O(1)-Ni(1)-N(3)	96.86(5)	C(8) - N(3) - C(7)	112.00(12)
N(4)-Ni(1)-N(3)	81.94(5)	C(16)-N(3)-Ni(1)	106.63(9)
N(2)-Ni(1)-N(3)	81.09(5)	C(8) - N(3) - Ni(1)	105.61(9)
O(1)-Ni(1)-N(1)	102.93(5)	C(7) - N(3) - Ni(1)	109.79(10)
N(4)-Ni(1)-N(1)	81.20(6)	C(13)-N(4)-C(9)	122.65(14)
N(2)-Ni(1)-N(1)	80.74(5)	C(13)-N(4)-Ni(1)	119.44(12)
N(3)-Ni(1)-N(1)	155.76(5)	C(9) - N(4) - Ni(1)	117.44(11)
O(1)-Ni(1)-O(2)	80.28(5)	N(1)-C(1)-C(2)	111.38(14)
N(4)-Ni(1)-O(2)	89.19(5)	N(2)-C(2)-C(3)	120.64(16)
N(2)-Ni(1)-O(2)	175.46(5)	N(2)-C(2)-C(1)	113.72(14)
N(3)-Ni(1)-O(2)	100.75(5)	C(3)-C(2)-C(1)	125.62(16)
N(1)-Ni(1)-O(2)	96.29(5)	C(2)-C(3)-C(4)	118.61(17)
O(5A)-Cl(1)-O(4B)	79.5(4)	C(5)-C(4)-C(3)	120.23(17)
O(5A)-Cl(1)-O(3B)	121.1(3)	C(4)-C(5)-C(6)	118.10(17)
O(4B)-Cl(1)-O(3B)	114.4(3)	N(2)-C(6)-C(5)	121.02(16)
O(5A)-Cl(1)-O(3A)	114.2(3)	N(2)-C(6)-C(7)	114.80(13)
O(4B)-Cl(1)-O(3A)	124.7(3)	C(5)-C(6)-C(7)	124.18(15)
O(3B)-Cl(1)-O(3A)	12.1(3)	N(3)-C(7)-C(6)	111.87(13)
O(5A)-Cl(1)-O(2)	114.4(2)	N(3)-C(8)-C(9)	111.22(14)
O(4B)-Cl(1)-O(2)	111.7(2)	N(4)-C(9)-C(10)	120.47(17)
O(3B)-Cl(1)-O(2)	111.85(18)	N(4)-C(9)-C(8)	114.09(13)
O(3A)-Cl(1)-O(2)	109.56(19)	C(10)-C(9)-C(8)	125.36(17)
O(5A)-Cl(1)-O(5B)	29.6(4)	C(11)-C(10)-C(9)	117.9(2)
O(4B)-Cl(1)-O(5B)	109.1(4)	C(12)-C(11)-C(10)	120.76(18)
O(3B)-Cl(1)-O(5B)	106.8(2)	C(11)-C(12)-C(13)	118.70(19)
O(3A)-Cl(1)-O(5B)	96.2(3)	N(4)-C(13)-C(12)	119.50(18)
O(2)-Cl(1)-O(5B)	102.2(2)	N(4)-C(13)-C(14)	115.06(14)
O(5A)-Cl(1)-O(4A)	109.4(4)	C(12)-C(13)-C(14)	125.34(17)
O(4B)-Cl(1)-O(4A)	30.6(4)	N(1)-C(14)-C(13)	113.07(14)
O(3B)-Cl(1)-O(4A)	92.8(3)	N(3)-C(16)-C(17)	114.76(12)
O(3A)-Cl(1)-O(4A)	104.8(3)	C(22)-C(17)-C(18)	120.20(13)
O(2)-Cl(1)-O(4A)	103.5(2)	C(22)-C(17)-C(16)	117.91(13)
O(5B)-Cl(1)-O(4A)	138.8(3)	C(18)-C(17)-C(16)	121.52(12)
C(18)-O(1)-Ni(1)	125.95(9)	O(1)-C(18)-C(17)	122.61(12)
Cl(1)-O(2)-Ni(1)	135.16(8)	O(1)-C(18)-C(19)	119.34(12)
C(15)-N(1)-C(14)	109.64(13)	C(17)-C(18)-C(19)	118.04(12)
C(15)-N(1)-C(1)	110.08(14)	C(20)-C(19)-C(18)	118.81(13)
C(14)-N(1)-C(1)	112.27(13)	C(20)-C(19)-C(23)	121.37(13)
C(15)-N(1)-Ni(1)	111.57(10)	C(18)-C(19)-C(23)	119.82(13)
C(14)-N(1)-Ni(1)	107.16(10)	C(19)-C(20)-C(21)	123.80(13)
C(1)-N(1)-Ni(1)	106.06(9)	C(22)-C(21)-C(20)	116.59(13)
C(2)-N(2)-C(6)	121.34(14)	C(22)-C(21)-C(27)	123.12(14)
C(2)-N(2)-Ni(1)	118.37(11)	C(20)-C(21)-C(27)	120.26(14)

7 Anhang

C(21)-C(22)-C(17)	122.52(14)
C(26)-C(23)-C(25)	106.58(16)
C(26)-C(23)-C(24)	110.54(17)
C(25)-C(23)-C(24)	107.75(16)
C(26)-C(23)-C(19)	110.40(14)
C(25)-C(23)-C(19)	112.70(15)
C(24)-C(23)-C(19)	108.83(14)
C(30A)-C(27)-C(29)	138.3(10)
C(30A)-C(27)-C(28)	55.3(9)
C(29)-C(27)-C(28)	109.70(19)
C(30A)-C(27)-C(21)	111.9(10)
C(29)-C(27)-C(21)	109.74(15)
C(28)-C(27)-C(21)	109.59(16)
C(30A)-C(27)-C(30)	53.8(9)
C(29)-C(27)-C(30)	109.82(19)
C(28)-C(27)-C(30)	106.60(16)
C(21)-C(27)-C(30)	111.33(15)
C(30A)-C(27)-C(29A)	114.0(12)
C(29)-C(27)-C(29A)	49.3(8)
C(28)-C(27)-C(29A)	140.3(8)
C(21)-C(27)-C(29A)	109.5(8)
C(30)-C(27)-C(29A)	64.3(8)
C(30A)-C(27)-C(28A)	107.6(11)
C(29)-C(27)-C(28A)	54.4(7)
C(28)-C(27)-C(28A)	57.4(7)
C(21)-C(27)-C(28A)	112.6(7)
C(30)-C(27)-C(28A)	136.1(7)
C(29A)-C(27)-C(28A)	100.7(10)
C(31)-C(32)-O(6)	137.8(3)
C(34)-C(33)-O(6)#1	140.2(4)

Symmetrietransformationen für die äquivalenten Atome:

#1 -x+1/2,y,-z+1

Tabelle 4. Anisotrope Auslenkungsparameter [Å² x 10³] für 0566.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni(1)	26(1)	20(1)	29(1)	2(1)	3(1)	2(1)
Cl(1)	20(1) 51(1)	20(1) 40(1)	43(1)	5(1)	-9(1)	-17(1)
O(1)	29(1)	10(1)	$\frac{13(1)}{28(1)}$	1(1)	2 (1) 4 (1)	8(1)
O(2)	50(1)	52(1)	42(1)	2(1)	-3(1)	-22(1)
$O(3\Delta)$	37(2)	32(2)	78(3)	4(2)	-4(2)	-8(2)
$O(4\Delta)$	74(3)	33(2)	164(5)	-9(3)	-27(3)	16(2)
O(5A)	162(3)	281(6)	26(2)	-38(2)	26(2)	-180(4)
O(3B)	35(1)	64(2)	80(2)	3(2)	16(1)	-17(1)
O(4B)	136(3)	90(3)	266(5)	109(3)	-144(3)	-51(2)
O(5B)	192(3)	127(3)	123(3)	-82(2)	118(2)	-99(3)
N(1)	31(1)	24(1)	45(1)	3(1)	2(1)	5(1)
N(2)	30(1)	23(1)	38(1)	3(1)	1(1)	-1(1)
N(3)	31(1)	25(1)	28(1)	1(1)	6(1)	1(1)
N(4)	34(1)	30(1)	34(1)	8(1)	0(1)	-5(1)
C(1)	40(1)	21(1)	55(1)	-2(1)	2(1)	3(1)
C(2)	37(1)	24(1)	44(1)	2(1)	-2(1)	-1(1)
C(3)	50(1)	24(1)	61(1)	4(1)	-4(1)	-7(1)
C(4)	47(1)	38(1)	64(1)	10(1)	2(1)	-18(1)
C(5)	35(1)	43(1)	55(1)	9(1)	6(1)	-9(1)
C(6)	31(1)	31(1)	37(1)	5(1)	3(1)	-4(1)
C(7)	29(1)	32(1)	48(1)	5(1)	12(1)	0(1)
C(8)	48(1)	40(1)	27(1)	-2(1)	9(1)	3(1)
C(9)	42(1)	40(1)	30(1)	6(1)	5(1)	-7(1)
C(10)	60(1)	62(1)	31(1)	11(1)	5(1)	-6(1)
C(11)	72(1)	68(1)	37(1)	21(1)	-2(1)	-6(1)
C(12)	60(1)	52(1)	51(1)	25(1)	-11(1)	-1(1)
C(13)	37(1)	32(1)	43(1)	12(1)	-7(1)	-6(1)
C(14)	40(1)	33(1)	54(1)	10(1)	-9(1)	8(1)
C(15)	39(1)	36(1)	64(1)	-1(1)	17(1)	10(1)
C(16)	35(1)	21(1)	29(1)	-2(1)	5(1)	3(1)
C(17)	27(1)	18(1)	28(1)	-1(1)	2(1)	-1(1)
C(18)	24(1)	21(1)	27(1)	0(1)	2(1)	-2(1)
C(19)	31(1)	24(1)	27(1)	-1(1)	4(1)	-1(1)
C(20)	34(1)	29(1)	27(1)	0(1)	-1(1)	-2(1)
C(21)	27(1)	23(1)	37(1)	1(1)	-3(1)	-2(1)
C(22)	26(1)	21(1)	36(1)	-3(1)	3(1)	1(1)

C(23)	51(1)	36(1)	29(1)	-2(1)	10(1)	10(1)	
C(24)	85(1)	35(1)	43(1)	-9(1)	14(1)	11(1)	
C(25)	84(1)	69(2)	31(1)	-3(1)	14(1)	24(1)	
C(26)	46(1)	62(1)	54(1)	2(1)	23(1)	13(1)	
C(27)	30(1)	37(1)	45(1)	6(1)	-6(1)	3(1)	
C(28)	34(1)	76(2)	44(1)	-7(1)	-12(1)	8(1)	
C(29)	46(1)	60(2)	119(2)	56(2)	-12(1)	0(1)	
C(30)	40(1)	46(1)	57(1)	-10(1)	-10(1)	17(1)	
0(6)	97(3)	144(5)	80(3)	15(3)	2(2)	-5(3)	
C(31)	287(14)	96(6)	137(7)	0	-34(8)	0	
C(32)	51(2)	212(9)	82(3)	0	25(2)	0	
C(33)	230(4)	71(17)	104(19)	0	20(2)	0	
C(34)	168(17)	46(11)	136(15)	0	-124(13)	0	

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0566.

	x	У	Z	U(eq)
H(1A)	336	3105	2674	47
H(1B)	76	3718	2124	47
H(3)	1296	4366	2012	55
H(4)	2388	4006	1742	60
H(5)	2697	2433	1619	53
H(7A)	2175	746	1454	43
H(7B)	2226	625	2122	43
H(8A)	738	-488	1068	45
H(8B)	1425	-2	899	45
H(10)	730	760	-2	62
H(11)	-23	1996	-324	72
H(12)	-576	2870	311	67
H(14A)	-582	3214	1395	53
H(14B)	-1037	2280	1416	53
H(15A)	-999	2743	2435	68
H(15B)	-489	2005	2788	68
H(15C)	-1033	1655	2265	68
H(16A)	1683	-982	1907	34
H(16B)	874	-919	1972	34
H(20)	1897	-448	4233	36
H(22)	2356	-1300	2729	33
H(24A)	724	1836	3396	81
H(24B)	1360	1931	3897	81
H(24C)	578	2110	4016	81
H(25A)	732	955	4782	91
H(25B)	1516	759	4671	91
			360	

7	Anhang
---	--------

_	H(25C)	979	-96	4677	91
	H(26A)	-3	-285	3924	78
	H(26B)	-136	458	3420	78
	H(26C)	-246	762	4044	78
	H(28A)	3641	-1326	4491	79
	H(28B)	2939	-793	4587	79
	H(28C)	3411	-389	4145	79
	H(29A)	2909	-2749	4336	116
	H(29B)	2328	-2841	3794	116
	H(29C)	2173	-2228	4322	116
	H(30A)	3542	-1295	3283	74
	H(30B)	3109	-2243	3139	74
	H(30C)	3730	-2218	3655	74
	H(28D)	3160	-2058	4688	85
	H(28E)	2327	-2040	4539	85
	H(28F)	2747	-1083	4687	85
	H(29D)	2790	-2617	3221	110
	H(29E)	2311	-2857	3694	110
	H(29F)	3140	-2978	3828	110
	H(30D)	3878	-1436	4077	119
	H(30E)	3508	-453	3901	119
	H(30F)	3640	-1197	3427	119
	Н(б)	2737	4022	4417	162
	H(31A)	2171	5736	5245	269
	H(31B)	2359	5736	4616	269
	H(31C)	2970	5736	5140	269
	H(32A)	2001	4520	4885	137
	H(32B)	2592	4520	5406	137
	H(33A)	2411	3377	4593	160
	H(33B)	3001	3377	5113	160
	H(34A)	2829	2244	4755	196
	H(34B)	2030	2244	4860	196
	H(34C)	2641	2244	5384	196

7.2.2 Zink-Komplexe

7.2.2.1 $[Zn(L-N_4^tBuBz)Cl_2] \cdot CH_3COCH_366$

7.2.2.1.1 IR-Spektrum

7.2.2.1.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0404.

Summenformel	$C_{28}H_{36}Cl_2N_4OZn$	
Molmasse	580.88	
Temperatur	193(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Oszillation	
Kristallsystem	Orthorhombisch	
Raumgruppe	Pna2 ₁	
Zelldimensionen	a = 28.3216(12) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 12.1886(5) Å	$\beta = 90^{\circ}$
	c = 15.7515(10) Å	$\gamma=90^{o}$
Zellvolumen	5437.4(5) Å ³	
Formeleinheiten pro Zelle Z	8	

7 Anhang

Berechnete Dichte	1.419 Mg/m ³
Absorptionskoeffizient	1.129 mm ⁻¹
Kristallgröße	0.40 x 0.32 x 0.23 mm
Gemessener θ-Bereich	2.59 bis 26.73°
Anzahl der gemessenen Reflexe	47955
Unabhängige Reflexe	11433 (Rint = 0.0633)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.71894 und 0.67752
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	11433 / 1 / 659
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0344, WR2 = 0.0597
R-Werte (alle Daten)	R1 = 0.0719, wR2 = 0.0674
Absolutstrukturparameter	0.00 (Inversionszwilling)
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0270P)^2]$ mit $P=(Fo^2+2Fc^2)/3$
GooF (alle Daten)	0.808
Größtes Maximum und Minimum	0.370 und -0.310 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Struktur enthält zwei unabhängige Moleküle. Diese liegen nicht, wie man annehmen könnte, zentrosymmetrisch zueinander. Die Raumgruppe Pnma ist daher nicht anwendbar. Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (alle anderen H-Atome) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist. Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0404.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Zn(1)	3869(1)	2591(1)	7124(1)	22(1)
Cl(1)	3397(1)	4135(1)	7414(1)	29(1)
Cl(2)	3345(1)	1154(2)	7388(1)	31(1)
N(1)	4457(3)	2529(3)	8262(5)	24(2)
N(2)	4442(2)	3624(6)	6675(4)	23(1)
N(3)	3765(3)	2605(4)	5651(5)	22(2)
N(4)	4404(2)	1440(6)	6664(4)	29(2)
C(1)	4760(3)	3470(8)	8083(5)	63(3)
C(2)	4805(2)	3783(6)	7142(5)	34(2)
C(3)	5221(3)	4236(7)	6866(6)	38(2)
C(4)	5231(3)	4564(8)	6035(6)	43(2)
C(5)	4871(2)	4338(7)	5505(6)	33(2)
C(6)	4466(2)	3855(6)	5878(5)	22(2)
C(7)	4022(2)	3613(6)	5325(5)	28(2)
C(8)	3971(2)	1565(7)	5353(5)	30(2)
C(9)	4426(2)	1271(6)	5855(5)	24(2)
C(10)	4833(3)	849(7)	5450(6)	35(2)
C(11)	5206(3)	664(8)	5972(6)	46(2)
C(12)	5196(2)	929(6)	6810(5)	37(2)
C(13)	4764(2)	1282(6)	7111(5)	36(2)
C(14)	4707(3)	1512(8)	8079(5)	69(3)
C(15)	4284(3)	2552(6)	9179(6)	40(2)
C(16)	3958(3)	1560(11)	9322(6)	153(6)
C(17)	4035(3)	3623(9)	9330(6)	115(4)
C(18)	4690(3)	2466(5)	9822(6)	36(2)
C(19)	3267(3)	2666(6)	5439(6)	32(2)
C(20)	3103(3)	2601(5)	4537(7)	27(2)
C(21)	3133(3)	3498(6)	3996(5)	48(2)
C(22)	2970(3)	3407(8)	3181(6)	62(3)
C(23)	2809(4)	2464(4)	2819(7)	38(2)
C(24)	2753(2)	1558(6)	3412(5)	45(2)
C(25)	2910(2)	1649(5)	4243(4)	35(1)
Zn(2)	3631(1)	7538(1)	4354(1)	23(1)
Cl(3)	4106(1)	5997(2)	4046(1)	32(1)
Cl(4)	4148(1)	8988(2)	4112(1)	35(1)

7 Anhang	
----------	--

N(5)	3060(3)	7585(4)	3245(5)	26(2)
N(6)	3095(2)	6442(6)	4781(4)	23(1)
N(7)	3710(2)	7497(4)	5822(5)	25(2)
N(8)	3079(2)	8599(6)	4823(4)	26(2)
C(26)	2858(2)	6442(6)	3311(5)	35(2)
C(27)	2737(2)	6190(6)	4196(5)	25(1)
C(28)	2331(2)	5675(6)	4482(5)	33(2)
C(29)	2265(3)	5461(7)	5350(6)	40(2)
C(30)	2646(3)	5710(7)	5909(5)	36(2)
C(31)	3040(3)	6227(6)	5638(5)	27(2)
C(32)	3431(2)	6590(6)	6169(5)	27(2)
C(33)	3539(3)	8555(7)	6097(5)	31(2)
C(34)	3090(3)	8827(6)	5686(5)	24(2)
C(35)	2699(2)	9252(7)	6063(5)	33(2)
C(36)	2272(3)	9367(7)	5624(6)	38(2)
C(37)	2261(2)	9111(7)	4789(6)	40(2)
C(38)	2661(2)	8709(6)	4361(6)	28(2)
C(39)	2666(2)	8337(7)	3480(5)	41(2)
C(40)	3217(2)	7773(6)	2329(5)	28(1)
C(41)	3402(2)	8955(4)	2235(5)	41(1)
C(42)	3633(2)	7040(4)	2146(4)	32(1)
C(43)	2829(3)	7621(6)	1699(6)	38(2)
C(44)	4242(3)	7376(6)	5983(6)	31(2)
C(45)	4368(3)	7435(5)	6943(7)	25(2)
C(46)	4341(2)	6534(5)	7485(4)	32(1)
C(47)	4479(2)	6604(5)	8324(4)	34(1)
C(48)	4670(4)	7558(7)	8578(8)	53(3)
C(49)	4662(4)	8439(8)	8133(6)	78(3)
C(50)	4532(3)	8379(6)	7285(6)	59(2)
0(1)	3789(3)	3530(8)	1511(6)	112(3)
C(54)	3936(4)	1718(9)	1866(7)	88(4)
C(56)	3967(3)	2911(9)	1987(5)	54(2)
C(57)	4223(3)	3262(8)	2745(6)	82(3)
O(2)	6286(2)	1526(6)	5035(4)	76(2)
C(51)	6513(4)	3336(9)	4637(10)	107(5)
C(52)	6592(3)	1633(6)	3660(5)	64(2)
C(53)	6446(3)	2143(11)	4478(6)	62(3)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0404.

Zn(1)-N(2)	2.173(6)	Zn(1)-N(1)	2.448(8)
Zn(1)-N(4)	2.190(7)	N(1)-C(14)	1.457(9)
Zn(1)-N(3)	2.340(7)	N(1)-C(1)	1.460(9)
Zn(1)-Cl(2)	2.3318(19)	N(1)-C(15)	1.525(13)
Zn(1)-Cl(1)	2.3517(19)	N(2)-C(2)	1.278(9)

N(2)-C(6)	1.288(11)		N(5)-C(26)	1.510(9)	
N(3)-C(8)	1.472(10)		N(6)-C(31)	1.383(10)	
N(3)-C(19)	1.450(10)		N(6)-C(27)	1.404(8)	
N(3)-C(7)	1.518(9)		N(7)-C(33)	1.444(9)	
N(4)-C(13)	1.255(9)		N(7)-C(32)	1.465(9)	
N(4)-C(9)	1.292(11)		N(7)-C(44)	1.536(9)	
C(1)-C(2)	1.536(11)		N(8)-C(34)	1.389(10)	
C(2)-C(3)	1.372(10)		N(8)-C(38)	1.396(8)	
C(3)-C(4)	1.369(12)		C(26)-C(27)	1.468(10)	
C(4)-C(5)	1.346(12)		C(27)-C(28)	1.384(9)	
C(5)-C(6)	1.418(9)		C(28)-C(29)	1.405(13)	
C(6)-C(7)	1.557(9)		C(29)-C(30)	1.426(12)	
C(8)-C(9)	1.553(9)		C(30)-C(31)	1.349(11)	
C(9)-C(10)	1.416(9)		C(31)-C(32)	1.459(10)	
C(10)-C(11)	1.357(12)		C(33)-C(34)	1.463(10)	
C(11)-C(12)	1.358(12)		C(34)-C(35)	1.359(10)	
C(12)-C(13)	1.382(9)		C(35)-C(36)	1.400(11)	
C(13)-C(14)	1.558(11)		C(36)-C(37)	1.352(12)	
C(15)-C(17)	1.505(11)		C(37)-C(38)	1.406(10)	
C(15)-C(16)	1.538(10)		C(38)-C(39)	1.461(12)	
C(15)-C(18)	1.534(12)		C(40)-C(43)	1.491(11)	
C(19)-C(20)	1.496(14)		C(40)-C(42)	1.508(8)	
C(20)-C(25)	1.364(9)		C(40)-C(41)	1.541(9)	
C(20)-C(21)	1.389(11)		C(44)-C(45)	1.555(13)	
C(21)-C(22)	1.370(11)		C(45)-C(46)	1.393(10)	
C(22)-C(23)	1.362(11)		C(45)-C(50)	1.352(10)	
C(23)-C(24)	1.454(11)		C(46)-C(47)	1.381(8)	
C(24)-C(25)	1.387(9)		C(47)-C(48)	1.343(10)	
Zn(2)-N(6)	2.132(6)		C(48)-C(49)	1.283(13)	
Zn(2)-N(8)	2.158(7)		C(49)-C(50)	1.388(13)	
Zn(2)-Cl(4)	2.326(2)		O(1)-C(56)	1.176(12)	
Zn(2)-N(7)	2.324(8)		C(54)-C(56)	1.469(14)	
Zn(2)-Cl(3)	2.362(2)		C(56)-C(57)	1.461(12)	
Zn(2)-N(5)	2.382(8)		O(2)-C(53)	1.243(11)	
N(5)-C(39)	1.490(9)		C(51)-C(53)	1.487(15)	
N(5)-C(40)	1.527(11)		C(52)-C(53)	1.489(13)	
N(2)-Zn(1)-N(4)		75.2(3)	N(4)-Zn(1)-N(2	L)	75.6(2)
N(2)-Zn(1)-N(3)		76.5(2)	N(3)-Zn(1)-N(2	L)	144.3(3)
N(4)-Zn(1)-N(3)		76.3(2)	Cl(2)-Zn(1)-N	(1)	106.21(15)
N(2)-Zn(1)-Cl(2)		165.46(19)	Cl(1)-Zn(1)-N	(1)	105.61(15)
N(4)-Zn(1)-Cl(2)		91.0(2)	C(14)-N(1)-C(1	L)	110.2(7)
N(3)-Zn(1)-Cl(2)		95.83(16)	C(14)-N(1)-C(1	L5)	111.0(6)
N(2)-Zn(1)-Cl(1)		91.40(19)	C(1)-N(1)-C(1	5)	110.9(6)
N(4)-Zn(1)-Cl(1)		166.0(2)	C(14)-N(1)-Zn	(1)	102.3(5)
N(3)-Zn(1)-Cl(1)		96.64(16)	C(1)-N(1)-Zn(1)	L)	103.6(5)
Cl(2)-Zn(1)-Cl(1)	101.87(8)	C(15)-N(1)-Zn	(1)	118.3(5)
N(2)-Zn(1)-N(1)		75.4(2)	C(2) - N(2) - C(6))	119.0(6)

7 Anhang

C(2)-N(2)-Zn(1)	120.1(5)	N(6)-Zn(2)-N(8)	75.6(3)
C(6)-N(2)-Zn(1)	118.9(5)	N(6)-Zn(2)-Cl(4)	167.5(2)
C(8)-N(3)-C(19)	110.9(6)	N(8)-Zn(2)-Cl(4)	93.25(19)
C(8)-N(3)-C(7)	113.5(7)	N(6)-Zn(2)-N(7)	75.0(2)
C(19)-N(3)-C(7)	110.3(6)	N(8)-Zn(2)-N(7)	75.1(2)
C(8)-N(3)-Zn(1)	105.1(4)	Cl(4)-Zn(2)-N(7)	96.81(15)
C(19)-N(3)-Zn(1)	110.6(5)	N(6)-Zn(2)-Cl(3)	88.45(19)
C(7)-N(3)-Zn(1)	106.3(4)	N(8)-Zn(2)-Cl(3)	163.7(2)
C(13)-N(4)-C(9)	119.4(7)	Cl(4)-Zn(2)-Cl(3)	102.23(9)
C(13)-N(4)-Zn(1)	118.4(5)	N(7)-Zn(2)-Cl(3)	97.61(15)
C(9)-N(4)-Zn(1)	117.5(5)	N(6)-Zn(2)-N(5)	76.3(2)
N(1)-C(1)-C(2)	115.5(7)	N(8)-Zn(2)-N(5)	75.2(2)
N(2)-C(2)-C(3)	124.7(8)	Cl(4)-Zn(2)-N(5)	106.81(15)
N(2)-C(2)-C(1)	116.8(6)	N(7)-Zn(2)-N(5)	142.8(2)
C(3)-C(2)-C(1)	118.5(7)	Cl(3)-Zn(2)-N(5)	104.79(16)
C(2)-C(3)-C(4)	116.0(8)	C(39)-N(5)-C(40)	111.1(6)
C(5)-C(4)-C(3)	121.2(7)	C(39)-N(5)-C(26)	105.5(6)
C(4)-C(5)-C(6)	116.2(7)	C(40) - N(5) - C(26)	108.3(6)
N(2)-C(6)-C(5)	122.5(7)	C(39) - N(5) - Zn(2)	109.9(5)
N(2)-C(6)-C(7)	117.5(6)	C(40) - N(5) - Zn(2)	119.9(4)
C(5)-C(6)-C(7)	120.0(7)	C(26) - N(5) - Zn(2)	100.6(4)
C(6)-C(7)-N(3)	110.6(6)	C(31)-N(6)-C(27)	121.2(6)
C(9)-C(8)-N(3)	111.4(6)	C(31)-N(6)-Zn(2)	120.5(5)
N(4)-C(9)-C(10)	122.7(7)	C(27) - N(6) - Zn(2)	116.4(5)
N(4)-C(9)-C(8)	115.2(6)	C(33)-N(7)-C(32)	112.3(7)
C(10)-C(9)-C(8)	122.1(7)	C(33)-N(7)-C(44)	111.5(5)
C(11)-C(10)-C(9)	115.0(7)	C(32)-N(7)-C(44)	113.2(6)
C(10)-C(11)-C(12)	122.2(7)	C(33) - N(7) - Zn(2)	104.3(5)
C(13)-C(12)-C(11)	115.2(7)	C(32) - N(7) - Zn(2)	109.6(5)
N(4)-C(13)-C(12)	125.1(7)	C(44)-N(7)-Zn(2)	105.2(5)
N(4)-C(13)-C(14)	115.9(6)	C(34)-N(8)-C(38)	120.7(6)
C(12)-C(13)-C(14)	119.0(7)	C(34) - N(8) - Zn(2)	116.0(5)
N(1)-C(14)-C(13)	113.4(7)	C(38)-N(8)-Zn(2)	119.6(5)
C(17)-C(15)-C(16)	112.1(8)	C(27)-C(26)-N(5)	110.3(6)
C(17)-C(15)-C(18)	107.9(7)	N(6)-C(27)-C(28)	119.0(7)
C(16)-C(15)-C(18)	107.5(7)	N(6)-C(27)-C(26)	114.2(6)
C(17)-C(15)-N(1)	108.4(7)	C(28)-C(27)-C(26)	126.7(6)
C(16)-C(15)-N(1)	108.5(7)	C(29)-C(28)-C(27)	120.8(7)
C(18)-C(15)-N(1)	112.6(7)	C(28)-C(29)-C(30)	117.4(7)
C(20)-C(19)-N(3)	121.2(8)	C(31)-C(30)-C(29)	121.9(8)
C(25)-C(20)-C(21)	119.1(9)	N(6)-C(31)-C(30)	119.4(7)
C(25)-C(20)-C(19)	119.4(7)	N(6)-C(31)-C(32)	114.6(6)
C(21)-C(20)-C(19)	121.4(7)	C(30)-C(31)-C(32)	126.0(7)
C(22)-C(21)-C(20)	119.4(8)	N(7)-C(32)-C(31)	115.1(6)
C(23)-C(22)-C(21)	125.0(8)	N(7)-C(33)-C(34)	111.2(6)
C(22)-C(23)-C(24)	114.1(9)	N(8)-C(34)-C(35)	119.0(7)
C(25)-C(24)-C(23)	120.7(6)	N(8)-C(34)-C(33)	114.1(6)
C(20)-C(25)-C(24)	121.1(7)	C(35)-C(34)-C(33)	126.9(7)

/ / mang

C(34)-C(35)-C(36)	121.7(7)
C(37)-C(36)-C(35)	118.5(7)
C(36)-C(37)-C(38)	121.9(8)
N(8)-C(38)-C(37)	117.8(7)
N(8)-C(38)-C(39)	117.1(6)
C(37)-C(38)-C(39)	125.0(6)
C(38)-C(39)-N(5)	115.8(6)
C(43)-C(40)-N(5)	113.3(6)
C(43)-C(40)-C(42)	112.1(6)
N(5)-C(40)-C(42)	108.7(5)
C(43)-C(40)-C(41)	107.6(6)
N(5)-C(40)-C(41)	109.3(6)
C(42)-C(40)-C(41)	105.5(5)
N(7)-C(44)-C(45)	112.4(7)
C(46)-C(45)-C(50)	116.5(9)
C(46)-C(45)-C(44)	123.1(6)
C(50)-C(45)-C(44)	120.4(7)
C(45)-C(46)-C(47)	121.5(6)
C(48)-C(47)-C(46)	116.9(7)
C(47)-C(48)-C(49)	123.7(10)
C(48)-C(49)-C(50)	119.1(9)
C(45)-C(50)-C(49)	121.3(8)
O(1)-C(56)-C(54)	121.8(9)
O(1)-C(56)-C(57)	123.0(11)
C(54)-C(56)-C(57)	115.2(9)
O(2)-C(53)-C(52)	117.4(11)
O(2)-C(53)-C(51)	121.2(10)
C(52)-C(53)-C(51)	121.3(10)

Tabelle 4. Anisotrope Auslenkungsparameter $[\text{\AA}^2 \text{ x } 10^3]$ für 0404.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Zn(1)	21(1)	21(1)	24(1)	2(1)	1(1)	-1(1)
Cl(1)	28(1)	26(1)	32(1)	4(1)	3(1)	3(1)
Cl(2)	31(1)	31(1)	31(1)	4(1)	1(1)	-9(1)
N(1)	24(3)	23(4)	24(4)	-2(2)	-7(3)	0(2)
N(2)	21(3)	21(3)	27(3)	-3(3)	3(2)	-7(2)
N(3)	35(3)	15(3)	17(3)	4(2)	1(3)	4(2)
N(4)	35(3)	28(4)	23(4)	1(3)	0(3)	5(3)
C(1)	72(5)	97(7)	20(3)	9(4)	-10(3)	-63(5)
C(2)	35(3)	40(4)	26(3)	9(3)	-1(3)	-12(3)
C(3)	30(3)	43(4)	42(4)	16(3)	-4(3)	-11(3)
C(4)	36(4)	46(5)	46(5)	14(4)	3(3)	-13(3)
C(5)	20(3)	42(4)	37(4)	9(3)	11(3)	-11(3)
C(6)	15(2)	24(4)	27(4)	-6(2)	-6(2)	-4(2)
C(7)	32(3)	19(3)	31(4)	2(3)	-2(3)	-10(2)
C(8)	29(3)	31(4)	30(4)	3(3)	-11(3)	0(3)
C(9)	21(3)	24(4)	26(4)	3(3)	4(2)	0(2)
C(10)	39(4)	30(4)	35(4)	0(3)	20(3)	0(3)
C(11)	28(3)	51(5)	58(5)	-12(4)	6(3)	15(3)
C(12)	30(3)	33(4)	47(4)	-10(3)	-16(3)	9(2)
C(13)	41(3)	41(4)	26(3)	-8(3)	-2(3)	22(3)
C(14)	98(6)	82(7)	28(4)	-15(4)	-32(4)	67(5)
C(15)	38(4)	56(5)	26(4)	2(3)	4(3)	-6(3)
C(16)	163(9)	244(14)	53(5)	48(7)	-26(6)	-180(10)
C(17)	107(6)	199(11)	38(4)	-17(6)	-9(5)	122(7)
C(18)	38(4)	43(5)	28(4)	4(3)	-21(3)	7(2)
C(19)	26(3)	43(4)	27(4)	13(3)	4(3)	-6(3)
C(20)	25(3)	28(4)	28(5)	0(2)	-1(3)	-1(2)
C(21)	78(5)	23(4)	43(4)	8(3)	-26(4)	4(3)
C(22)	98(6)	35(5)	52(5)	15(4)	-51(4)	-4(4)
C(23)	63(5)	29(5)	23(3)	-9(2)	-19(3)	6(3)
C(24)	55(3)	37(4)	44(4)	-3(3)	-13(3)	-11(3)
C(25)	36(3)	37(3)	31(3)	5(3)	-2(2)	-4(2)
Zn(2)	22(1)	25(1)	23(1)	2(1)	1(1)	0(1)
Cl(3)	31(1)	32(1)	33(1)	3(1)	2(1)	8(1)
Cl(4)	31(1)	35(1)	38(1)	-1(1)	1(1)	-10(1)
N(5)	27(3)	33(4)	17(3)	2(2)	6(3)	-7(2)
N(6)	19(3)	31(4)	17(3)	0(3)	-4(2)	-1(2)
N(7)	13(2)	29(4)	32(4)	-1(2)	-5(2)	0(2)
N(8)	25(3)	25(4)	28(4)	2(3)	-3(2)	-1(3)
C(26)	31(3)	43(4)	31(3)	-1(3)	-5(2)	-4(3)

Q(27)	21(2)	20(2)	24/2)	2(2)	2 (2)	(12)	
C(27)	21(2)	30(3)	24(3)	-2(2)	-3(2)	-6(2)	
C(28)	32(3)	30(3)	37(4)	3(3)	-4(2)	-7(2)	
C(29)	22(3)	42(5)	54(5)	11(4)	-1(3)	-11(3)	
C(30)	56(5)	28(4)	26(4)	4(3)	4(3)	0(3)	
C(31)	41(4)	17(4)	24(4)	7(3)	3(3)	3(3)	
C(32)	38(3)	18(3)	24(3)	13(2)	-1(2)	2(2)	
C(33)	45(4)	32(4)	16(3)	-12(3)	-2(3)	2(3)	
C(34)	38(3)	15(3)	20(3)	-10(2)	7(3)	-4(2)	
C(35)	35(3)	28(4)	34(4)	-8(3)	-9(3)	-1(3)	
C(36)	38(4)	33(4)	41(4)	-11(3)	18(3)	0(3)	
C(37)	16(3)	43(4)	60(5)	-5(3)	6(3)	6(3)	
C(38)	21(3)	25(3)	39(4)	0(3)	-13(3)	0(2)	
C(39)	20(2)	60(5)	43(4)	4(3)	-5(2)	11(2)	
C(40)	20(3)	45(3)	19(3)	3(2)	-5(2)	3(2)	
C(41)	50(3)	34(3)	40(3)	16(2)	-12(2)	9(2)	
C(42)	27(2)	47(3)	22(2)	12(2)	10(2)	-1(2)	
C(43)	36(4)	58(5)	21(4)	-1(3)	7(3)	-5(3)	
C(44)	22(3)	50(5)	21(3)	-12(3)	-8(2)	9(3)	
C(45)	19(3)	30(4)	28(5)	-6(2)	-4(3)	-3(2)	
C(46)	29(2)	28(3)	39(4)	-8(3)	-5(2)	-4(2)	
C(47)	34(3)	41(4)	26(3)	4(2)	0(2)	-3(2)	
C(48)	54(5)	74(8)	29(4)	4(4)	-17(3)	-7(4)	
C(49)	146(8)	31(5)	59(6)	-9(4)	-51(6)	12(5)	
C(50)	97(5)	24(4)	56(5)	9(3)	-43(5)	-6(3)	
0(1)	93(5)	159(8)	85(6)	40(5)	8(4)	14(5)	
C(54)	117(7)	80(7)	65(7)	-15(5)	30(6)	-17(6)	
C(56)	57(4)	64(5)	42(5)	-16(5)	-9(4)	18(4)	
C(57)	79(5)	83(6)	84(6)	3(4)	-14(4)	3(4)	
0(2)	88(4)	104(5)	37(3)	16(3)	-8(3)	-41(3)	
C(51)	142(10)	41(6)	139(12)	10(6)	-47(8)	-17(6)	
C(52)	89(5)	50(4)	52(4)	2(3)	4(3)	19(4)	
C(53)	44(4)	99(7)	44(5)	32(5)	-24(3)	3(4)	

7 Anhang

Tabelle 5.

	x	У	Z	U(eq)
H(1A)	5079	3311	8306	76
H(1B)	4636	4112	8397	76
H(3)	5487	4317	7229	46
H(4)	5497	4958	5829	51
H(5)	4888	4493	4915	40
H(7A)	4120	3491	4729	33
H(7B)	3807	4253	5339	33
H(8A)	3736	969	5422	36
H(8B)	4047	1626	4742	36
H(10)	4845	707	4858	42
H(11)	5483	337	5745	55
H(12)	5467	876	7163	44
H(14A)	4534	893	8342	83
H(14B)	5024	1544	8343	83
H(16A)	3860	1537	9918	230
H(16B)	4128	884	9180	230
H(16C)	3679	1628	8958	230
H(17A)	3745	3648	8989	173
H(17B)	4242	4232	9167	173
H(17C)	3954	3688	9933	173
H(18A)	4913	3068	9728	54
H(18B)	4852	1763	9749	54
H(18C)	4563	2513	10399	54
H(19A)	3107	2070	5753	38
H(19B)	3147	3366	5673	38
H(21)	3266	4169	4190	58
H(22)	2968	4051	2841	74
H(23)	2739	2402	2231	46
H(24)	2609	897	3228	54
H(25)	2882	1038	4615	42
H(26A)	2571	6385	2953	42
H(26B)	3092	5903	3101	42
H(28)	2095	5465	4087	39
Н(29)	1978	5161	5557	48
Н(30)	2623	5506	6490	44
H(32A)	3304	6818	6728	32
H(32B)	3644	5959	6268	32
H(33A)	3776	9125	5959	37
H(33B)	3495	8548	6721	37

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0404.

H(35)	2716	9477	6640	39
н(36)	1997	9620	5906	45
H(37)	1975	9205	4483	48
н(39д)	2682	8990	3107	49
H(39B)	2364	7961	3361	49
н(35D) н(41л)	3612	8999	1741	62
$\Pi(\Pi \Lambda)$	3577	0162	2748	62
	3136	9162	2156	62
ц(42л)	3533	6271	2150	19
H(42R)	3933	7164	2103	10
H(42B)	3759	7210	1591	10
H(42C)	2755	6020	1646	57
$\Pi(43R)$	2755	7009	1146	57
п(436)	2929	0010	1900	57
H(43C)	2547	0010 7065	1090	27
H(44A)	4413	7965	5077	37
H(44B)	4351	6664 5056	5752	37
H(46)	4225	5856	1212	38
H(4/)	4441	6005	8/04	41
H(48)	4819	/582	9118	63
H(49)	4744	9124	8381	94
H(50)	4559	9013	6937	70
H(54A)	3763	1560	1341	131
H(54B)	3769	1388	2348	131
H(54C)	4254	1408	1829	131
H(57A)	4553	3408	2597	123
Н(57В)	4209	2682	3175	123
H(57C)	4078	3932	2971	123
H(51A)	6263	3601	5015	161
H(51B)	6498	3735	4097	161
H(51C)	6821	3458	4903	161
H(52A)	6927	1788	3555	95
H(52B)	6402	1937	3197	95
H(52C)	6544	837	3690	95

7 Anhang

7.2.2.2 [Zn(L-N₄HMe)Cl₂] 67

7.2.2.2.1 IR-Spektrum

7.2.2.2.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 06260.

$C_{15}H_{18}Cl_2N_4Zn$	
390.60	
150(2) K	
ΜοΚα	
0.71073 Å	
Ω-scans	
Monoklin	
$P2_1/c$	
a = 8.0060(5) Å	$\alpha = 90^{\circ}$
b = 18.0087(10) Å	$\beta = 106.455(6)^{\circ}$
c = 11.9491(6) Å	$\gamma = 90^{\circ}$
1652.23(16) Å ³	
4	
1.570 Mg/m ³	
1.810 mm ⁻¹	
0.75 x 0.50 x 0.26 mm	
	C ₁₅ H ₁₈ Cl ₂ N ₄ Zn 390.60 150(2) K MoK α 0.71073 Å Ω -scans Monoklin P2 ₁ /c a = 8.0060(5) Å b = 18.0087(10) Å c = 11.9491(6) Å 1652.23(16) Å ³ 4 1.570 Mg/m ³ 1.810 mm ⁻¹ 0.75 x 0.50 x 0.26 mm

Gemessener θ-Bereich	2.88 bis 30.51°
Anzahl der gemessenen Reflexe	15142
Unabhängige Reflexe	4963 (Rint = 0.0144)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.32775 und 0.30290
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	4963 / 0 / 200
Endgültige R-Werte [I>2o(I)]	R1 = 0.0211, $wR2 = 0.0536$
R-Werte (alle Daten)	R1 = 0.0270, wR2 = 0.0558
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.028P) ² +0.54P] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	1.063
Größtes Maximum und Minimum	0.539 und -0.370 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06260.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Zn(1)	-692(1)	892(1)	8274(1)	18(1)
Cl(1)	-1844(1)	1347(1)	9750(1)	24(1)
Cl(2)	-2506(1)	-158(1)	7818(1)	23(1)
N(1)	-2220(1)	1694(1)	6797(1)	22(1)
N(2)	977(1)	1845(1)	8436(1)	19(1)
N(3)	1978(1)	432(1)	9162(1)	21(1)
N(4)	430(1)	708(1)	6863(1)	20(1)
C(1)	-1565(2)	2438(1)	7222(1)	24(1)
C(2)	384(2)	2432(1)	7752(1)	21(1)
C(3)	1493(2)	2982(1)	7582(1)	26(1)
C(4)	3260(2)	2911(1)	8154(1)	30(1)
C(5)	3872(2)	2294(1)	8840(1)	26(1)
C(6)	2674(2)	1759(1)	8949(1)	21(1)
C(7)	3176(2)	1050(1)	9648(1)	26(1)
C(8)	2514(2)	-19(1)	8292(1)	27(1)
C(9)	1906(2)	317(1)	7084(1)	21(1)
C(10)	2788(2)	226(1)	6252(1)	27(1)
C(11)	2115(2)	568(1)	5169(1)	32(1)
C(12)	635(2)	997(1)	4973(1)	29(1)
C(13)	-186(2)	1063(1)	5847(1)	23(1)
C(14)	-1840(2)	1509(1)	5695(1)	31(1)
C(15)	-4105(2)	1653(1)	6661(1)	34(1)

Zn(1)-N(4)	2.1492(10)		N(4)-C(9)	1.3358(16)	
Zn(1)-N(2)	2.1498(10)		C(1)-C(2)	1.5086(18)	
Zn(1)-N(3)	2.2579(11)		C(2)-C(3)	1.3838(18)	
Zn(1)-N(1)	2.3396(10)		C(3)-C(4)	1.392(2)	
Zn(1)-Cl(2)	2.3522(3)		C(4)-C(5)	1.385(2)	
Zn(1)-Cl(1)	2.3569(3)		C(5)-C(6)	1.3921(18)	
N(1)-C(14)	1.4722(17)		C(6)-C(7)	1.5149(17)	
N(1)-C(15)	1.4731(18)		C(8)-C(9)	1.5125(17)	
N(1)-C(1)	1.4754(17)		C(9)-C(10)	1.3838(17)	
N(2)-C(6)	1.3316(16)		C(10)-C(11)	1.396(2)	
N(2)-C(2)	1.3379(15)		C(11)-C(12)	1.378(2)	
N(3)-C(8)	1.4758(17)		C(12)-C(13)	1.3881(19)	
N(3)-C(7)	1.4777(17)		C(13)-C(14)	1.515(2)	
N(4)-C(13)	1.3356(15)				
N(4)-Zn(1)-N(2)		78.84(4)	C(13)-N(4)-Zn	(1)	120.68(9)
N(4)-Zn(1)-N(3)		76.21(4)	C(9)-N(4)-Zn(2	1)	117.92(8)
N(2)-Zn(1)-N(3)		76.66(4)	N(1)-C(1)-C(2)	111.21(10)
N(4)-Zn(1)-N(1)		75.45(4)	N(2)-C(2)-C(3)	121.59(12)
N(2)-Zn(1)-N(1)		75.76(4)	N(2)-C(2)-C(1)	114.13(11)
N(3)-Zn(1)-N(1)		143.54(4)	C(3)-C(2)-C(1)	124.27(11)
N(4)-Zn(1)-Cl(2)		93.59(3)	C(2)-C(3)-C(4)	117.86(12)
N(2)-Zn(1)-Cl(2)		171.83(3)	C(5)-C(4)-C(3)	120.25(12)
N(3)-Zn(1)-Cl(2)		104.71(3)	C(4)-C(5)-C(6)	118.29(12)
N(1)-Zn(1)-Cl(2)		99.50(3)	N(2)-C(6)-C(5)	121.06(12)
N(4)-Zn(1)-Cl(1)		168.52(3)	N(2)-C(6)-C(7)	115.41(11)
N(2)-Zn(1)-Cl(1)		91.15(3)	C(5)-C(6)-C(7)	123.53(12)
N(3)- $Zn(1)$ - $Cl(1)$		107.17(3)	N(3)-C(7)-C(6)	112.14(10)
N(1)-Zn(1)-Cl(1)		96.77(3)	N(3)-C(8)-C(9)	111.85(10)
Cl(2)-Zn(1)-Cl(1)	96.065(12)	N(4)-C(9)-C(10)))	121.55(12)
C(14)-N(1)-C(15)		110.78(11)	N(4)-C(9)-C(8)	115.36(11)
C(14)-N(1)-C(1)		111.76(11)	C(10)-C(9)-C(8	3)	123.08(12)
C(15)-N(1)-C(1)		109.70(11)	C(9)-C(10)-C(1	11)	118.15(13)
C(14)-N(1)-Zn(1)		109.77(8)	C(12)-C(11)-C	(10)	119.55(12)
C(15)-N(1)-Zn(1)		110.62(8)	C(11)-C(12)-C	(13)	119.17(12)
C(1)-N(1)-Zn(1)		104.03(7)	N(4)-C(13)-C(2	12)	120.74(13)
C(6)-N(2)-C(2)		120.86(11)	N(4)-C(13)-C(13)	14)	116.62(11)
C(6)-N(2)-Zn(1)		118.37(8)	C(12)-C(13)-C	(14)	122.61(12)
C(2)-N(2)-Zn(1)		118.10(8)	N(1)-C(14)-C(1	13)	114.07(10)
C(8)-N(3)-C(7)		113.94(11)			
C(8)-N(3)-Zn(1)		107.26(8)			
C(7)-N(3)-Zn(1)		109.30(8)			
C(13)-N(4)-C(9)		120.70(11)			

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 06260.

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 06260.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Zn(1)	21(1)	17(1)	16(1)	2(1)	7(1)	-1(1)
Cl(1)	30(1)	23(1)	20(1)	-1(1)	11(1)	2(1)
Cl(2)	30(1)	17(1)	24(1)	0(1)	9(1)	-4(1)
N(1)	22(1)	22(1)	21(1)	3(1)	3(1)	1(1)
N(2)	22(1)	19(1)	17(1)	2(1)	6(1)	-1(1)
N(3)	23(1)	23(1)	18(1)	7(1)	7(1)	2(1)
N(4)	25(1)	20(1)	17(1)	2(1)	7(1)	-1(1)
C(1)	26(1)	18(1)	28(1)	5(1)	7(1)	3(1)
C(2)	26(1)	17(1)	21(1)	0(1)	8(1)	0(1)
C(3)	33(1)	16(1)	31(1)	2(1)	11(1)	-2(1)
C(4)	31(1)	22(1)	40(1)	-2(1)	14(1)	-8(1)
C(5)	24(1)	27(1)	29(1)	-4(1)	7(1)	-5(1)
C(6)	23(1)	24(1)	16(1)	-1(1)	6(1)	-1(1)
C(7)	23(1)	31(1)	21(1)	8(1)	0(1)	-1(1)
C(8)	32(1)	27(1)	26(1)	7(1)	12(1)	9(1)
C(9)	24(1)	20(1)	21(1)	0(1)	8(1)	-3(1)
C(10)	24(1)	32(1)	26(1)	-6(1)	11(1)	-5(1)
C(11)	34(1)	44(1)	23(1)	-7(1)	15(1)	-13(1)
C(12)	35(1)	36(1)	17(1)	2(1)	8(1)	-10(1)
C(13)	30(1)	22(1)	16(1)	1(1)	5(1)	-4(1)
C(14)	39(1)	35(1)	17(1)	4(1)	3(1)	9(1)
C(15)	23(1)	41(1)	34(1)	11(1)	3(1)	-1(1)

Tabelle 5.

H-Atomkoordinaten	$[x 10^4]$	und äc	uivalente isotroj	e Auslenkungs	parameter	$[Å^2 x 10]$) ³] für 06260.
	-			-			

	х	У	Z	U(eq)	
H(3)	1900	125	9771	25	
H(1A)	-2133	2606	7814	29	
H(1B)	-1871	2795	6564	29	
H(3A)	1062	3396	7091	32	
H(4)	4050	3287	8074	36	
H(5)	5077	2238	9225	32	
H(7A)	4375	909	9656	32	
Н(7В)	3171	1142	10464	32	
H(8A)	2025	-525	8274	33	
H(8B)	3800	-62	8526	33	
H(10)	3824	-62	6412	32	
H(11)	2672	505	4571	38	
H(12)	182	1244	4248	35	
H(14A)	-1745	1975	5279	38	
H(14B)	-2831	1223	5198	38	
H(15A)	-4709	2035	6111	51	
H(15B)	-4320	1734	7419	51	
H(15C)	-4540	1161	6363	51	

$7.2.2.3 \ [Zn(L-N_4Ad'Bu)Cl_2]$ 65

7.2.2.3.1 IR-Spektrum

7.2.2.3.2 NMR-Spektrum

a) 400 MHz ¹H-NMR-Spektrum in CD₃CN

7.2.3 Kupfer-Komplexe

7.2.3.1 [Cu(HL-N₄([#]BzO)Me)(MeCN)₂](ClO₄)₂ 76

7.2.3.1.1 IR-Spektrum

7.2.3.1.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0604.

Summenformel	$C_{36}H_{48}Cl_2CuN_7O_9$	
Molmasse	857.25	
Temperatur	193(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ -Oszillation	
Kristallsystem	Orthorhombisch	
Raumgruppe	Cmc2 ₁	
Zelldimensionen	a = 17.8510(8) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 19.3267(9) Å	$\beta = 90^{\circ}$
	c = 12.2015(7) Å	$\gamma=90^{o}$
Zellvolumen	4209.5(4) Å ³	

Formeleinheiten pro Zelle Z	4
Berechnete Dichte	1.353 Mg/m ³
Absorptionskoeffizient	0.704 mm ⁻¹
Kristallgröße	0.50 x 0.24 x 0.18 mm
Gemessener θ-Bereich	3.11 bis 26.73°
Anzahl der gemessenen Reflexe	14380
Unabhängige Reflexe	4538 (Rint = 0.0425)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.801622 und 0.705022
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	4538 / 106 / 302
Endgültige R-Werte [I>2o(I)]	R1 = 0.0351, $wR2 = 0.0838$
R-Werte (alle Daten)	R1 = 0.0433, $wR2 = 0.0865$
Absolutstrukturparameter	0.008(15)
Wichtungsschema	$w=1/[\sigma^2(Fo^2)+(0.0570P)^2]$ mit P=(Fo^2+2Fc^2)/3
GooF (alle Daten)	0.951
Größtes Maximum und Minimum	0.256 und -0.281 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H oder Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0604.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	X	У	Z	U(eq)
Cu(1)	0	6982(1)	2001(1)	32(1)
0(1)	1278(4)	8747(4)	-653(7)	89(2)
C(1)	687(2)	5621(2)	2733(3)	41(1)
C(2)	904(2)	5762(2)	1563(2)	35(1)
C(3)	1275(2)	5283(2)	917(3)	42(1)
C(4)	1475(2)	5468(2)	-142(3)	47(1)
C(5)	1284(2)	6105(2)	-554(3)	44(1)
C(6)	904(2)	6567(2)	124(2)	35(1)
C(7)	691(2)	7282(2)	-239(2)	42(1)
C(8)	0	6072(3)	4277(3)	48(1)
C(9)	0	8319(3)	356(4)	50(1)
C(10)	0	8693(2)	-748(3)	43(1)
C(11)	678(2)	8864(2)	-1255(3)	45(1)
C(12)	693(2)	9176(2)	-2290(3)	45(1)
C(13)	0	9317(2)	-2782(4)	45(1)
C(15)	1434(2)	9358(2)	-2848(3)	56(1)
C(16)	1842(4)	9911(3)	-2182(5)	94(2)
C(17)	1937(3)	8710(3)	-2938(6)	90(2)
C(18)	1321(4)	9642(4)	-4007(4)	105(2)
C(19)	1328(2)	7765(2)	3132(3)	48(1)
C(20)	1993(3)	8082(3)	3606(4)	73(1)
N(1)	0	5985(2)	3077(3)	35(1)
N(2)	741(2)	6397(1)	1161(2)	34(1)
N(3)	0	7545(2)	291(3)	38(1)
N(4)	818(2)	7511(2)	2760(2)	45(1)
Cl(1)	2852(1)	8384(1)	752(1)	63(1)
0(2)	3109(2)	8697(2)	1715(2)	94(1)
0(3)	2262(4)	7953(5)	831(7)	97(4)
O(4)	2834(4)	8866(4)	-108(6)	99(3)
O(5)	3511(4)	7933(3)	450(7)	107(3)
O(3A)	3162(9)	8472(9)	-182(9)	118(7)
O(4A)	2549(11)	7725(6)	946(14)	127(7)
O(5A)	2106(7)	8784(9)	760(13)	162(8)
N(6)	5000	8843(3)	2259(4)	68(1)

7 Anhang					
C(21)	5000	7594(4)	1500(6)	97(3)	
C(22)	5000	8304(3)	1924(6)	57(1)	

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0604.

Cu(1)-N(4)	2.008(3)	
Cu(1)-N(4)#1	2.008(3)	
Cu(1)-N(2)	2.019(3)	
Cu(1)-N(2)#1	2.019(3)	
Cu(1)-N(1)	2.331(3)	
Cu(1)-N(3)	2.354(3)	
O(1)-C(11)	1.318(7)	
C(1)-N(1)	1.476(4)	
C(1)-C(2)	1.504(4)	
C(2)-N(2)	1.353(4)	
C(2)-C(3)	1.385(4)	
C(3)-C(4)	1.388(5)	
C(4)-C(5)	1.374(5)	
C(5)-C(6)	1.391(5)	
C(6)-N(2)	1.339(4)	
C(6)-C(7)	1.502(5)	
C(7)-N(3)	1.482(4)	
C(8)-N(1)	1.474(5)	
C(9)-N(3)	1.496(6)	
C(9)-C(10)	1.529(6)	
C(10)-C(11)#1	1.400(4)	
C(10)-C(11)	1.400(4)	

C(11)-C(12)	1.399(4)
C(12)-C(13)	1.401(4)
C(12)-C(15)	1.529(5)
C(13)-C(12)#1	1.401(4)
C(15)-C(18)	1.529(6)
C(15)-C(16)	1.528(6)
C(15)-C(17)	1.546(6)
C(19)-N(4)	1.130(5)
C(19)-C(20)	1.455(6)
N(1)-C(1)#1	1.476(4)
N(3)-C(7)#1	1.482(4)
Cl(1)-O(3A)	1.278(8)
Cl(1)-O(3)	1.346(5)
Cl(1)-O(2)	1.399(3)
Cl(1)-O(4A)	1.404(10)
Cl(1)-O(4)	1.404(6)
Cl(1)-O(5)	1.510(6)
Cl(1)-O(5A)	1.539(9)
N(6)-C(22)	1.120(7)
C(21)-C(22)	1.465(10)

N(4)-Cu(1)-N(4)#1	93.20(17)	N(1)-C(1)-C(2)	113.4(3)
N(4)-Cu(1)-N(2)	92.46(11)	N(2)-C(2)-C(3)	120.3(3)
N(4)#1-Cu(1)-N(2)	174.34(12)	N(2)-C(2)-C(1)	117.0(3)
N(4)-Cu(1)-N(2)#1	174.34(12)	C(3)-C(2)-C(1)	122.7(3)
N(4)#1-Cu(1)-N(2)#1	92.46(11)	C(2)-C(3)-C(4)	118.7(3)
N(2)-Cu(1)-N(2)#1	81.88(14)	C(5)-C(4)-C(3)	120.5(3)
N(4)-Cu(1)-N(1)	99.29(10)	C(4)-C(5)-C(6)	118.6(3)
N(4)#1-Cu(1)-N(1)	99.29(10)	N(2)-C(6)-C(5)	120.7(3)
N(2)-Cu(1)-N(1)	79.83(9)	N(2)-C(6)-C(7)	116.6(3)
N(2)#1-Cu(1)-N(1)	79.83(9)	C(5)-C(6)-C(7)	122.6(3)
N(4)-Cu(1)-N(3)	99.96(10)	N(3)-C(7)-C(6)	113.5(3)
N(4)#1-Cu(1)-N(3)	99.96(10)	N(3)-C(9)-C(10)	115.2(4)
N(2)-Cu(1)-N(3)	78.98(9)	C(11)#1-C(10)-C(11)	119.8(4)
N(2)#1-Cu(1)-N(3)	78.98(9)	C(11)#1-C(10)-C(9)	120.09(19)
N(1)-Cu(1)-N(3)	151.83(13)	C(11)-C(10)-C(9)	120.09(19)

7 Anhang

O(1)-C(11)-C(12)	124.2(5)	O(2)-Cl(1)-O(5A)	93.5(5)
O(1)-C(11)-C(10)	114.6(4)	O(4A)-Cl(1)-O(5A)	97.0(9)
C(12)-C(11)-C(10)	121.1(3)	O(4)-Cl(1)-O(5A)	69.6(8)
C(11)-C(12)-C(13)	117.0(3)	O(5)-Cl(1)-O(5A)	164.8(6)
C(11)-C(12)-C(15)	121.1(3)	N(6)-C(22)-C(21)	179.3(7)
C(13)-C(12)-C(15)	121.9(3)		
C(12)#1-C(13)-C(12)	123.9(4)		
C(18)-C(15)-C(12)	112.4(4)		
C(18)-C(15)-C(16)	107.7(4)		
C(12)-C(15)-C(16)	109.7(4)		
C(18)-C(15)-C(17)	107.5(5)		
C(12)-C(15)-C(17)	110.3(3)		
C(16)-C(15)-C(17)	109.1(4)		
N(4)-C(19)-C(20)	179.0(5)		
C(1)#1-N(1)-C(1)	112.5(4)		
C(1)#1-N(1)-C(8)	109.7(2)		
C(1)-N(1)-C(8)	109.7(2)		
C(1)#1-N(1)-Cu(1)	103.54(18)		
C(1)-N(1)-Cu(1)	103.54(18)		
C(8)-N(1)-Cu(1)	117.7(3)		
C(6)-N(2)-C(2)	121.1(3)		
C(6)-N(2)-Cu(1)	119.1(2)		
C(2)-N(2)-Cu(1)	117.7(2)		
C(7)#1-N(3)-C(7)	112.7(3)		
C(7)#1-N(3)-C(9)	111.5(2)		
C(7)-N(3)-C(9)	111.5(2)		
C(7)#1-N(3)-Cu(1)	103.15(18)		
C(7)-N(3)-Cu(1)	103.15(18)		
C(9)-N(3)-Cu(1)	114.5(2)		
C(19)-N(4)-Cu(1)	172.9(3)		
O(3A)-Cl(1)-O(3)	119.1(8)		
O(3A)-Cl(1)-O(2)	123.3(7)		
O(3)-Cl(1)-O(2)	117.6(4)		
O(3A)-Cl(1)-O(4A)	116.0(8)		
O(3)-Cl(1)-O(4A)	29.0(8)		
O(2)-Cl(1)-O(4A)	112.1(7)		
O(3A)-Cl(1)-O(4)	41.9(7)		
O(3)-Cl(1)-O(4)	116.5(4)		
O(2)-Cl(1)-O(4)	110.4(4)		
O(4A)-Cl(1)-O(4)	136.0(8)		
O(3A)-Cl(1)-O(5)	61.4(9)		
O(3)-Cl(1)-O(5)	105.7(5)		
O(2)-Cl(1)-O(5)	101.5(4)		
O(4A)-Cl(1)-O(5)	79.5(9)		
O(4)-Cl(1)-O(5)	102.7(5)		
O(3A)-Cl(1)-O(5A)	108.3(9)		
O(3)-Cl(1)-O(5A)	68.5(8)		

Symmetrietransformationen für die äquivalenten Atome:

#1 -x,y,z

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 0604.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
$C_{11}(1)$	22(1)	26(1)	27(1)	0(1)	0	0
Cu(1)	32(1)	30(1)	27(I) 110(E)	O(1)	U E Q (4)	0
O(1)	70(3) 43(3)	00(4) 41(2)	10(3)	40(4)	-58(4)	-32(4)
C(1)	43(2)	41(2)	40(2)	O(1)	-1(1)	5(1)
C(2)	20(2)	41(2)	37(1)	-3(1)	-8(1)	0(1)
C(3)	31(2)	49(2)	40(2)	-o(1)	-8(1)	3(1)
C(4)	33(2)	62(2)	4/(2)	-19(2)	-2(1)	7(2)
C(5)	32(2)	64(2)	34(1)	-10(1)	2(1)	-6(2)
C(6)	27(2)	50(2)	29(1)	-1(1)	-2(1)	-5(1)
C(7)	34(2)	56(2)	35(1)	8(1)	3(1)	-6(I)
C(8)	57(3)	55(3)	32(2)	6(2)	0	0
C(9)	75(4)	41(2)	34(2)	7(2)	0	0
C(10)	55(3)	42(2)	32(2)	8(2)	0	0
C(11)	49(2)	45(2)	41(2)	8(1)	-9(1)	-8(2)
C(12)	46(2)	45(2)	43(2)	6(1)	1(1)	-9(2)
C(13)	49(3)	47(2)	39(3)	10(2)	0	0
C(15)	49(2)	65(2)	55(2)	13(2)	0(2)	-18(2)
C(16)	87(4)	89(4)	105(4)	-4(3)	15(3)	-49(3)
C(17)	56(3)	83(3)	131(4)	-2(4)	28(4)	-3(2)
C(18)	81(4)	169(6)	64(3)	31(3)	12(2)	-35(4)
C(19)	51(2)	55(2)	38(2)	0(1)	-5(2)	-14(2)
C(20)	73(3)	90(3)	57(2)	4(2)	-14(2)	-41(3)
N(1)	37(2)	38(2)	32(2)	3(1)	0	0
N(2)	30(1)	41(1)	32(1)	0(1)	-3(1)	-3(1)
N(3)	45(2)	41(2)	27(2)	7(1)	0	0
N(4)	48(2)	48(2)	38(1)	-1(1)	-2(1)	-3(1)
Cl(1)	68(1)	58(1)	63(1)	5(1)	-15(1)	-12(1)
0(2)	95(3)	120(3)	66(2)	-8(2)	-6(2)	-44(2)
0(3)	57(4)	157(9)	78(4)	34(5)	-15(3)	-63(5)
O(4)	93(6)	117(6)	86(5)	47(4)	-19(4)	-32(4)
0(5)	94(5)	82(4)	146(7)	-30(4)	17(4)	11(3)
O(3A)	143(13)	143(14)	67(6)	8(8)	64(8)	-48(11)
O(4A)	209(19)	81(8)	90(10)	-2(7)	11(11)	-31(11)
O(5A)	116(11)	198(15)	170(12)	-79(11)	-65(10)	106(10)
N(6)	67(3)	72(3)	66(3)	-5(2)	0	0
C(21)	158(9)	68(4)	64(4)	1(3)	0	0
C(22)	56(3)	65(3)	51(3)	9(3)	0	0
	х	У	Z	U(eq)		
--------	------	-------	-------	-------		
H(1)	1653	8931	-950	107		
H(1A)	612	5117	2827	49		
H(1B)	1105	5762	3218	49		
H(3)	1390	4836	1194	51		
H(4)	1746	5151	-586	57		
H(5)	1407	6229	-1285	52		
H(7A)	1109	7602	-72	50		
H(7B)	618	7281	-1043	50		
H(8A)	458	6313	4503	72		
H(8B)	-20	5617	4629	72		
H(8C)	-438	6345	4497	72		
H(9A)	447	8467	774	60		
H(9B)	-447	8467	774	60		
H(13)	0	9521	-3490	54		
H(16A)	2322	10019	-2533	141		
H(16B)	1933	9738	-1438	141		
H(16C)	1534	10330	-2146	141		
H(17A)	1664	8341	-3316	135		
H(17B)	2077	8553	-2202	135		
H(17C)	2391	8825	-3353	135		
H(18A)	1078	9290	-4462	157		
H(18B)	1809	9761	-4324	157		
H(18C)	1005	10056	-3976	157		
H(20A)	2397	7739	3639	110		
H(20B)	1879	8246	4347	110		
H(20C)	2151	8473	3150	110		
H(21A)	4721	7294	2003	145		
H(21B)	5517	7429	1438	145		
H(21C)	4762	7586	777	145		

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0604.

7.2.3.2 [Cu(L-N₄("BzO)Me)](ClO₄) 70

7.2.3.2.1 IR-Spektrum

7.2.3.2.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 0570.

Summenformel	$C_{31}H_{42}ClCuN_4O_{5.50}$	
Molmasse	657.68	
Temperatur	193(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Φ-Oszillation	
Kristallsystem	Monoklin	
Raumgruppe	$P2_1/c$	
Zelldimensionen	a = 24.694(2) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 14.1839(8) Å	$\beta = 108.615(9)^{\circ}$
	c = 19.2484(14) Å	$\gamma = 90^{\circ}$
Zellvolumen	6389.1(8) Å ³	
Formeleinheiten pro Zelle Z	8	
Berechnete Dichte	1.367 Mg/m ³	
Absorptionskoeffizient	0.814 mm ⁻¹	

7	Anhang
---	--------

Kristallgröße	0.50 x 0.36 x 0.04 mm
Gemessener θ-Bereich	2.61 bis 26.02°
Anzahl der gemessenen Reflexe	63874
Unabhängige Reflexe	12060 (Rint = 0.1252)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	1.02475 und 0.70758
Diffraktometer	Stoe IPDS
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	12060 / 124 / 852
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0492, $wR2 = 0.1020$
R-Werte (alle Daten)	R1 = 0.0975, wR2 = 0.1133
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0500P) ²] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.857
Größtes Maximum und Minimum	0.961 und -0.703 eÅ ⁻³

Verfeinerung nach F^2 mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F^2 . Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F^2 gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F^2 bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}}$$

$$R_1 = \frac{\sum \left\|F_o\right| - \left|F_c\right|}{\sum \left|F_o\right|}$$

 $GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$ n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0570.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
<u> </u>	0559/1)	1210/1\	7000/1\	27/1)
Cu(1)	9550(1) 10262(1)	1310(1)	7900(I) 9192(2)	27(1)
O(1)	10203(1)	1917(2)	0102(2)	31(1)
	9636(1) 0651(1)	87(2) 206(2)	7353(2)	32(1)
N(Z)	9051(1)	206(2)	0795(2)	33(1)
$\mathbb{N}(3)$	9284(1)	2041(2)	8770(2)	31(1)
N(4)	8/5/(1)	959(2)	7011(2)	30(1)
C(1)	9822(2)	-735(2)	7874(3)	38(1)
C(2)	9588(2)	-001(2)	8496(2)	35(1)
C(3)	9320(2)	-1359(3)	8772(3)	50(1)
C(4)	9097(2)	-1141(3)	9313(3)	57(1)
C(5)	9124(2)	-221(3)	9577(3)	51(1)
C(6)	9407(2)	438(3)	9292(2)	36(1)
C(7)	9448(2)	1484(3)	9467(3)	43(1)
C(8)	8652(2)	2141(3)	8451(3)	46(1)
C(9)	8396(2)	1339(3)	7934(3)	38(1)
C(10)	7841(2)	1020(3)	7751(3)	50(1)
C(11)	7658(2)	320(3)	7228(3)	53(1)
C(12)	8039(2)	- 76(3)	6921(3) 7120(2)	46(1)
C(13)	8596(2)	258(2)	7129(2)	34(1)
C(14)	9050(2)	-65(3)	6814(2)	37(1)
C(15)	10046(2)	234(3)	6945(3)	44(1) 25(1)
C(16)	9564(2)	2986(2)	8868(3)	35(1)
C(17)	10208(2)	2952(2)	9143(2)	28(1)
C(18)	10520(2)	2423(2)	8776(2)	25(1)
C(19)	11131(2)	2450(2)	9062(2)	24(1)
C(20)	11383(2)	3053(2)	9642(2)	26(1)
C(21)	11083(2)	3601(2)	10005(2)	28(1)
C(22)	10491(2)	3516(2)	9742(2)	26(1)
C(23)	11493(2)	1836(2)	8722(2)	30(1)
C(24)	11352(2)	/84(2)	8/91(3)	41(1)
C(25)	12141(2)	1951(3)	9118(3)	$4 \perp (\perp)$
C(26)	11377(2)	2088(3)	7912(2)	36(1)
C(27)	11392(2)	4272(2)	10634(2)	31(1)
C(28)	11012(2)	4535(3)	10014(0)	5U(1)
C(29)	11546(3)	5182(3)	10314(3)	66(2)
C(30)	11924(2)	3804(4)	11152(3)	63(2)
Cu(2)	5834(1)	437(1)	8285(1)	35(1)
0(2)	5960(1)	-588(2)	7752(2)	36(1)
N(5)	6179(2)	-42(2)	9432(2)	49(1)

7 Anhang	
----------	--

N(6)	6627(1)	1205(2)	8653(2)	40(1)
N(7)	5687(1)	1449(2)	7448(2)	33(1)
N(8)	5526(1)	1416(2)	8758(2)	40(1)
C(31)	6798(2)	221(4)	9698(3)	61(1)
C(32)	6916(2)	1127(3)	9364(3)	51(1)
C(33)	7273(2)	1849(4)	9728(4)	72(2)
C(34)	7296(3)	2667(4)	9346(4)	79(2)
C(35)	6958(2)	2760(3)	8626(3)	59(1)
C(36)	6623(2)	1995(3)	8283(3)	37(1)
C(37)	6227(2)	1975(3)	7496(2)	36(1)
C(38)	5244(2)	2099(3)	7545(3)	43(1)
C(39)	5290(2)	2179(3)	8339(3)	40(1)
C(40)	5088(2)	2922(3)	8656(3)	50(1)
C(41)	5123(2)	2860(3)	9385(3)	60(2)
C(42)	5385(2)	2092(3)	9802(3)	58(1)
C(43)	5582(2)	1375(3)	9461(3)	48(1)
C(44)	5839(3)	461(3)	9838(3)	63(2)
C(45)	6120(3)	-1078(3)	9529(3)	65(2)
C(46)	5456(2)	932(3)	6737(2)	36(1)
C(47)	5857(2)	198(2)	6610(2)	31(1)
C(48)	6080(2)	-534(2)	7136(2)	28(1)
C(49)	6423(2)	-1244(2)	6951(2)	29(1)
C(50)	6502(2)	-1198(2)	6269(2)	31(1)
C(51)	6286(2)	-493(3)	5744(2)	34(1)
C(52)	5969(2)	209(3)	5949(2)	35(1)
C(53)	6702(2)	-2023(3)	7503(2)	33(1)
C(54)	7112(2)	-1575(3)	8199(3)	49(1)
C(55)	7047(2)	-2718(3)	7198(3)	47(1)
C(56)	6242(2)	-2605(3)	7703(3)	42(1)
C(57)	6378(2)	-486(3)	5001(3)	44(1)
C(58)	6003(4)	245(6)	4458(5)	52(2)
C(59)	6143(5)	-1468(6)	4610(6)	71(3)
C(60)	6981(4)	-367(8)	5059(6)	67(3)
C(61)	5863(5)	-585(11)	4418(8)	65(4)
C(62)	6845(5)	-1236(8)	4947(7)	46(3)
C(63)	6678(6)	516(8)	4927(8)	58(4)
CI(1)	8828(1)	2663(1)	6213(1)	60(1)
0(3)	8744(2)	3467(2)	5788(3)	93(2)
O(4)	9346(3)	2222(6)	6346(11)	135(6)
0(5)	8376(5)	2018(8)	5983(7)	102(6)
0(6)	8834(6)	3062(9)	6932(5)	103(4)
O(4A)	$\forall 3 2 2 (5)$	2116(11)	60/L(9)	/3(/)
O(5A)	0100(10)	2693(15)	6927(6)	$\perp \angle \angle (\perp \cup)$
O(6A)	4224(1)	2092(10)	5848(14)	$\perp \angle 4(8)$
CI(Z)	4324(⊥)	-255(1)	53(1)	$5/(\perp)$
O(7)	3/13(2)	-502(4)	/003(4)	141(2)
\cup (\otimes)	4040(3)	-1048(3)	03/3(3)	141(2)

0(9)	4294(2)	514(2)	8615(2)	79(1)
0(10)	4656(2)	3(3)	7709(3)	105(2)
C(64)	2744(4)	-1723(6)	8250(6)	133(4)
C(65)	2463(5)	-852(8)	8052(7)	145(4)
0(11)	2826(6)	-111(10)	8383(10)	169(7)
0(12)	1842(8)	-985(12)	7576(8)	155(9)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 0570.

Cu(1)-O(1)	1.864(2)	C(21)-C(22)	1.391(5)
Cu(1)-N(4)	1.946(3)	C(21)-C(27)	1.538(5)
Cu(1) - N(3)	2.103(3)	C(23)-C(26)	1.535(6)
Cu(1) - N(2)	2.173(3)	C(23)-C(25)	1.545(5)
Cu(1) - N(1)	2.175(3)	C(23)-C(24)	1.548(5)
O(1)-C(18)	1.326(5)	C(27)-C(28)	1.521(6)
N(1)-C(15)	1.479(5)	C(27)-C(30)	1.523(6)
N(1)-C(14)	1.503(5)	C(27)-C(29)	1.529(6)
N(1)-C(1)	1.511(5)	Cu(2)-O(2)	1.862(3)
N(2)-C(6)	1.325(5)	Cu(2)-N(8)	1.944(3)
N(2)-C(2)	1.346(5)	Cu(2)-N(7)	2.102(3)
N(3)-C(16)	1.492(4)	Cu(2)-N(6)	2.155(3)
N(3)-C(8)	1.492(5)	Cu(2)-N(5)	2.204(4)
N(3)-C(7)	1.498(6)	O(2)-C(48)	1.314(5)
N(4)-C(13)	1.333(5)	N(5)-C(45)	1.494(5)
N(4)-C(9)	1.349(5)	N(5)-C(31)	1.495(7)
C(1)-C(2)	1.487(6)	N(5)-C(44)	1.498(6)
C(2)-C(3)	1.389(6)	N(6)-C(36)	1.325(5)
C(3)-C(4)	1.359(7)	N(6)-C(32)	1.332(6)
C(4)-C(5)	1.395(7)	N(7)-C(38)	1.488(5)
C(5)-C(6)	1.381(6)	N(7)-C(46)	1.495(5)
C(6)-C(7)	1.518(5)	N(7)-C(37)	1.504(5)
C(8)-C(9)	1.512(6)	N(8)-C(43)	1.317(6)
C(9)-C(10)	1.379(5)	N(8)-C(39)	1.365(6)
C(10)-C(11)	1.383(7)	C(31)-C(32)	1.506(7)
C(11)-C(12)	1.379(7)	C(32)-C(33)	1.387(7)
C(12)-C(13)	1.387(5)	C(33)-C(34)	1.385(8)
C(13)-C(14)	1.506(6)	C(34)-C(35)	1.378(8)
C(16)-C(17)	1.507(5)	C(35)-C(36)	1.395(6)
C(17)-C(22)	1.394(5)	C(36)-C(37)	1.518(6)
C(17)-C(18)	1.416(5)	C(38)-C(39)	1.501(7)
C(18)-C(19)	1.431(5)	C(39)-C(40)	1.389(6)
C(19)-C(20)	1.387(5)	C(40)-C(41)	1.381(7)
C(19)-C(23)	1.536(5)	C(41)-C(42)	1.385(8)
C(20)-C(21)	1.404(5)	C(42)-C(43)	1.382(6)

C(43)-C(44)	1.521(7)		C(57)-C(59)	1.601(10)	
C(46)-C(47)	1.509(5)		C(57)-C(63)	1.630(12)	
C(47)-C(52)	1.385(6)		Cl(1)-O(5A)	1.340(9)	
C(47)-C(48)	1.432(5)		Cl(1)-O(3)	1.380(3)	
C(48)-C(49)	1.432(5)		Cl(1)-O(4)	1.372(6)	
C(49)-C(50)	1.390(6)		Cl(1)-O(5)	1.402(7)	
C(49)-C(53)	1.536(5)		Cl(1)-O(4A)	1.421(8)	
C(50)-C(51)	1.399(6)		Cl(1)-O(6)	1.491(8)	
C(51)-C(52)	1.400(5)		Cl(1)-O(6A)	1.518(11)	
C(51)-C(57)	1.520(6)		Cl(2)-O(8)	1.392(5)	
C(53)-C(54)	1.535(6)		Cl(2)-O(10)	1.408(4)	
C(53)-C(55)	1.537(6)		Cl(2)-O(7)	1.417(5)	
C(53)-C(56)	1.549(6)		Cl(2)-O(9)	1.424(4)	
C(57)-C(61)	1.409(13)		C(64)-C(65)	1.409(11)	
C(57)-C(60)	1.466(9)		C(65)-O(11)	1.396(12)	
C(57)-C(58)	1.552(9)		C(65)-O(12)	1.528(14)	
C(57)-C(62)	1.596(10)				
			C(2)-C(1)-N(1)		111.5(3)
O(1)-Cu(1)-N(4)		165.34(12)	N(2)-C(2)-C(3)		119.4(4)
O(1)-Cu(1)-N(3)		97.32(11)	N(2)-C(2)-C(1)		112.8(3)
N(4) - Cu(1) - N(3)		82.69(13)	C(3)-C(2)-C(1)		127.8(4)
O(1)-Cu(1)-N(2)		107.96(12)	C(4)-C(3)-C(2)		119.4(4)
N(4)-Cu(1)-N(2)		86.54(13)	C(3)-C(4)-C(5)		120.5(4)
N(3)-Cu(1)-N(2)		80.05(13)	C(6)-C(5)-C(4)		117.4(5)
O(1)-Cu(1)-N(1)		103.52(11)	N(2)-C(6)-C(5)		121.6(4)
N(4)-Cu(1)-N(1)		80.95(12)	N(2)-C(6)-C(7)		112.9(3)
N(3)-Cu(1)-N(1)		154.17(12)	C(5)-C(6)-C(7)		125.4(4)
N(2)-Cu(1)-N(1)		79.14(13)	N(3)-C(7)-C(6)		109.7(4)
C(18)-O(1)-Cu(1)		125.3(2)	N(3)-C(8)-C(9)		111.1(3)
C(15) - N(1) - C(14)		109.0(3)	N(4)-C(9)-C(10)		120.0(4)
C(15) - N(1) - C(1)		110.3(3)	N(4)-C(9)-C(8)		113.9(3)
C(14) - N(1) - C(1)		111.6(3)	C(10)-C(9)-C(8)		126.0(4)
C(15) - N(1) - Cu(1)		112.5(2)	C(9)-C(10)-C(11)		119.3(4)
C(14) - N(1) - Cu(1)		105.4(2)	C(12)-C(11)-C(10)	119.7(4)
C(1)-N(1)-Cu(1)		107.9(3)	C(11)-C(12)-C(13)	119.1(4)
C(6) - N(2) - C(2)		121.3(3)	N(4)-C(13)-C(12)		120.2(4)
C(6)-N(2)-Cu(1)		111.6(2)	N(4)-C(13)-C(14)		114.4(3)
C(2)-N(2)-Cu(1)		112.7(3)	C(12)-C(13)-C(14)	125.3(4)
C(16)-N(3)-C(8)		110.4(3)	N(1)-C(14)-C(13)		110.9(3)
C(16)-N(3)-C(7)		112.2(3)	N(3)-C(16)-C(17)		114.2(3)
C(8)-N(3)-C(7)		111.5(3)	C(22)-C(17)-C(18)	120.5(3)
C(16) - N(3) - Cu(1)		106.7(2)	C(22)-C(17)-C(16)	117.7(3)
C(8)-N(3)-Cu(1)		106.7(2)	C(18)-C(17)-C(16)	121.6(3)
C(7) - N(3) - Cu(1)		109.1(2)	O(1)-C(18)-C(17)		122.0(3)
C(13)-N(4)-C(9)		121.7(3)	O(1)-C(18)-C(19)		120.1(3)
C(13)-N(4)-Cu(1)		119.8(3)	C(17)-C(18)-C(19)	117.9(3)
C(9)-N(4)-Cu(1)		117.8(3)	C(20)-C(19)-C(18)	118.3(3)

C(20)-C(19)-C(23)	121.3(3)	C(39)-N(8)-Cu(2)	116.5(3)
C(18)-C(19)-C(23)	120.4(3)	N(5)-C(31)-C(32)	112.5(4)
C(19)-C(20)-C(21)	124.7(3)	N(6)-C(32)-C(33)	120.2(5)
C(22)-C(21)-C(20)	115.5(3)	N(6)-C(32)-C(31)	113.4(4)
C(22)-C(21)-C(27)	122.8(3)	C(33)-C(32)-C(31)	126.4(5)
C(20)-C(21)-C(27)	121.7(3)	C(34)-C(33)-C(32)	118.5(6)
C(21)-C(22)-C(17)	122.8(3)	C(35)-C(34)-C(33)	120.0(5)
C(26)-C(23)-C(19)	110.8(3)	C(34)-C(35)-C(36)	118.6(5)
C(26)-C(23)-C(25)	107.7(3)	N(6)-C(36)-C(35)	120.1(5)
C(19)-C(23)-C(25)	112.5(3)	N(6)-C(36)-C(37)	114.3(3)
C(26)-C(23)-C(24)	109.7(3)	C(35)-C(36)-C(37)	125.6(4)
C(19)-C(23)-C(24)	109.4(3)	N(7)-C(37)-C(36)	110.3(3)
C(25)-C(23)-C(24)	106.6(3)	N(7)-C(38)-C(39)	110.8(4)
C(28)-C(27)-C(30)	106.9(4)	N(8)-C(39)-C(40)	119.2(5)
C(28)-C(27)-C(29)	107.6(4)	N(8)-C(39)-C(38)	114.9(4)
C(30)-C(27)-C(29)	111.0(4)	C(40)-C(39)-C(38)	125.8(4)
C(28)-C(27)-C(21)	111.2(3)	C(41)-C(40)-C(39)	118.9(5)
C(30)-C(27)-C(21)	110.8(3)	C(40)-C(41)-C(42)	120.3(5)
C(29)-C(27)-C(21)	109.3(4)	C(43)-C(42)-C(41)	118.3(6)
O(2)-Cu(2)-N(8)	167.28(13)	N(8)-C(43)-C(42)	121.2(5)
O(2)-Cu(2)-N(7)	97.43(12)	N(8)-C(43)-C(44)	114.8(4)
N(8)-Cu(2)-N(7)	82.79(14)	C(42)-C(43)-C(44)	123.9(5)
O(2)-Cu(2)-N(6)	106.30(12)	N(5)-C(44)-C(43)	112.0(4)
N(8)-Cu(2)-N(6)	86.29(13)	N(7)-C(46)-C(47)	114.1(3)
N(7)-Cu(2)-N(6)	79.78(13)	C(52)-C(47)-C(48)	120.8(3)
O(2)-Cu(2)-N(5)	103.36(13)	C(52)-C(47)-C(46)	118.4(4)
N(8)-Cu(2)-N(5)	80.49(15)	C(48)-C(47)-C(46)	120.6(4)
N(7)-Cu(2)-N(5)	153.55(13)	O(2)-C(48)-C(49)	120.3(3)
N(6)-Cu(2)-N(5)	78.82(15)	O(2)-C(48)-C(47)	122.3(3)
C(48)-O(2)-Cu(2)	125.3(2)	C(49)-C(48)-C(47)	117.3(4)
C(45)-N(5)-C(31)	109.4(4)	C(50)-C(49)-C(48)	118.3(4)
C(45) - N(5) - C(44)	108.0(4)	C(50)-C(49)-C(53)	121.4(3)
C(31)-N(5)-C(44)	112.6(4)	C(48)-C(49)-C(53)	120.3(4)
C(45) - N(5) - Cu(2)	114.0(3)	C(49)-C(50)-C(51)	125.4(4)
C(31) - N(5) - Cu(2)	107.1(3)	C(52)-C(51)-C(50)	115.1(4)
C(44) - N(5) - Cu(2)	105.9(3)	C(52)-C(51)-C(57)	121.8(4)
C(36) - N(6) - C(32)	122.2(4)	C(50)-C(51)-C(57)	123.1(3)
C(36) - N(6) - Cu(2)	113.6(3)	C(47)-C(52)-C(51)	123.0(4)
C(32) - N(6) - Cu(2)	115.4(3)	C(54)-C(53)-C(49)	109.3(3)
C(38) - N(7) - C(46)	109.7(3)	C(54) - C(53) - C(55)	107.9(4)
C(38) - N(7) - C(37)	111.0(3)	C(49) - C(53) - C(55)	112.2(4)
C(46) - N(7) - C(37)	111.8(3)	C(54) - C(53) - C(56)	109.6(4)
C(38) - N(7) - Cu(2)	106.2(3)	C(49)-C(53)-C(56)	110.7(3)
C(46) - N(7) - Cu(2)	106.7(2)	C(55)-C(53)-C(56)	107.1(3)
C(37) - N(7) - Cu(2)	111.0(2)	C(61) - C(57) - C(60)	135.2(8)
C(43) - N(8) - C(39)	121.9(4)	C(61) - C(57) - C(51)	112.3(7)
C(43) - N(8) - Cu(2)	121.4(3)	C(60)-C(57)-C(51)	112.5(5)

C(61)-C(57)-C(58)	48.5(7)	C(64)-C(65)-O(12)	111.6(11)
C(60)-C(57)-C(58)	110.4(6)		
C(51)-C(57)-C(58)	113.7(4)		
C(61)-C(57)-C(62)	111.8(8)		
C(60)-C(57)-C(62)	49.1(6)		
C(51)-C(57)-C(62)	112.7(5)		
C(58)-C(57)-C(62)	133.7(6)		
C(61)-C(57)-C(59)	55.9(7)		
C(60)-C(57)-C(59)	110.1(6)		
C(51)-C(57)-C(59)	107.2(5)		
C(58)-C(57)-C(59)	102.4(6)		
C(62)-C(57)-C(59)	63.4(6)		
C(61)-C(57)-C(63)	109.8(9)		
C(60)-C(57)-C(63)	55.1(6)		
C(51)-C(57)-C(63)	107.2(6)		
C(58)-C(57)-C(63)	63.2(6)		
C(62)-C(57)-C(63)	102.6(7)		
C(59)-C(57)-C(63)	145.6(7)		
O(5A)-Cl(1)-O(3)	120.7(8)		
O(5A)-Cl(1)-O(4)	68.7(9)		
O(3)-Cl(1)-O(4)	116.3(7)		
O(5A)-Cl(1)-O(5)	118.3(9)		
O(3)-Cl(1)-O(5)	113.5(6)		
O(4)-Cl(1)-O(5)	111.2(6)		
O(5A)-Cl(1)-O(4A)	112.7(7)		
O(3)-Cl(1)-O(4A)	112.4(6)		
O(4)-Cl(1)-O(4A)	119.7(9)		
O(5)-Cl(1)-O(4A)	11.5(13)		
O(5A)-Cl(1)-O(6)	36.9(10)		
O(3)-Cl(1)-O(6)	101.1(5)		
O(4)-Cl(1)-O(6)	105.5(6)		
O(5)-Cl(1)-O(6)	108.2(6)		
O(4A) - Cl(1) - O(6)	97.7(9)		
O(5A) - CL(1) - O(6A)	105.8(8)		
O(3) - CI(1) - O(6A)	99.6(6)		
O(4) - CI(1) - O(6A)	37.2(7)		
O(5) - CI(1) - O(6A)	91.3(11)		
O(4A) - CI(1) - O(6A)	102.7(8)		
O(6) - CI(1) - O(6A)	142.7(8)		
O(8) - CI(2) - O(10)	107.1(4)		
O(8) - CI(2) - O(7)	107.1(4)		
O(10) - C1(2) - O(7)	LU/.6(4)		
O(0) = CL(2) = O(9)	100.7(2)		
O(10) - C1(2) - O(9)	LUY./(3)		
O(7) - CL(2) - O(9)	LLU.9(3)		
U(11) - C(65) - C(64)	LTU.3(LU)		
O(11) - C(65) - O(12)	138.0(12)		

Tabelle 4. Anisotrope Auslenkungsparameter $[\text{\AA}^2 \text{ x } 10^3]$ für 0570.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U_{13}	U_{12}
Cu(1)	30(1)	24(1)	30(1)	-6(1)	12(1)	-5(1)
0(1)	35(1)	32(1)	29(2)	-10(1)	16(1)	-10(1)
N(1)	39(2)	30(2)	29(2)	-5(1)	14(2)	-4(1)
N(2)	40(2)	27(2)	32(2)	1(1)	11(2)	-5(1)
N(3)	29(2)	30(2)	37(2)	-9(2)	15(2)	-7(1)
N(4)	30(2)	29(2)	30(2)	-1(1)	8(2)	-6(1)
C(1)	46(2)	23(2)	41(3)	-5(2)	6(2)	4(2)
C(2)	41(2)	28(2)	29(3)	5(2)	1(2)	1(2)
C(3)	68(3)	30(2)	43(3)	10(2)	7(3)	-5(2)
C(4)	82(4)	50(3)	40(4)	14(2)	21(3)	-19(2)
C(5)	63(3)	59(3)	34(3)	7(2)	20(2)	-15(2)
C(6)	39(2)	42(2)	27(3)	-4(2)	11(2)	-13(2)
C(7)	51(3)	43(2)	43(3)	-11(2)	28(2)	-13(2)
C(8)	29(2)	48(2)	64(4)	-24(2)	18(2)	-7(2)
C(9)	29(2)	36(2)	48(3)	-5(2)	11(2)	-5(2)
C(10)	30(2)	49(2)	74(4)	-8(2)	19(2)	-4(2)
C(11)	35(2)	45(2)	67(4)	-2(2)	2(2)	-10(2)
C(12)	41(2)	33(2)	54(4)	-7(2)	1(2)	-10(2)
C(13)	37(2)	25(2)	33(3)	2(2)	1(2)	-3(2)
C(14)	47(3)	33(2)	26(3)	-6(2)	5(2)	-4(2)
C(15)	52(3)	45(2)	43(3)	-16(2)	28(2)	-5(2)
C(16)	33(2)	25(2)	47(3)	-14(2)	14(2)	-4(2)
C(17)	28(2)	23(2)	32(3)	0(2)	9(2)	-1(1)
C(18)	34(2)	20(2)	26(3)	1(2)	15(2)	-3(1)
C(19)	29(2)	23(2)	22(2)	4(2)	12(2)	-3(1)
C(20)	28(2)	24(2)	27(3)	5(2)	11(2)	-2(1)
C(21)	34(2)	23(2)	27(3)	5(2)	10(2)	-1(1)
C(22)	32(2)	21(2)	30(3)	-3(2)	16(2)	2(1)
C(23)	33(2)	28(2)	32(3)	0(2)	15(2)	-3(2)
C(24)	56(3)	25(2)	51(3)	-2(2)	31(2)	2(2)
C(25)	32(2)	47(2)	47(3)	-5(2)	17(2)	7(2)
C(26)	41(2)	38(2)	35(3)	-1(2)	21(2)	-2(2)
C(27)	39(2)	29(2)	25(3)	-4(2)	9(2)	-2(2)
C(28)	58(3)	50(2)	42(3)	-19(2)	16(2)	-5(2)
C(29)	104(4)	49(3)	38(4)	-9(2)	14(3)	-37(3)
C(30)	58(3)	80(3)	36(4)	-19(3)	-5(2)	19(3)
Cu(2)	45(1)	30(1)	34(1)	-2(1)	19(1)	2(1)
0(2)	47(2)	29(1)	38(2)	1(1)	21(1)	2(1)
N(5)	73(3)	39(2)	38(3)	1(2)	24(2)	4(2)
N(6)	42(2)	42(2)	33(3)	-3(2)	10(2)	4(2)

N(7)	34(2)	28(2)	41(3)	-4(1)	17(2)	2(1)	
N(8)	43(2)	37(2)	44(3)	-6(2)	21(2)	-1(2)	
C(31)	80(4)	67(3)	30(3)	2(2)	8(3)	10(3)	
C(32)	46(3)	58(3)	44(4)	-5(2)	7(2)	1(2)	
C(33)	61(3)	94(4)	49(4)	-16(3)	1(3)	-18(3)	
C(34)	86(4)	90(4)	58(5)	-25(3)	19(4)	-41(3)	
C(35)	66(3)	54(3)	60(4)	-10(3)	26(3)	-23(2)	
C(36)	40(2)	35(2)	41(3)	-5(2)	20(2)	-1(2)	
C(37)	42(2)	31(2)	40(3)	-2(2)	21(2)	-3(2)	
C(38)	44(2)	38(2)	49(4)	-5(2)	18(2)	11(2)	
C(39)	36(2)	39(2)	46(3)	-12(2)	15(2)	-3(2)	
C(40)	47(3)	45(2)	59(4)	-19(2)	17(2)	8(2)	
C(41)	63(3)	56(3)	68(5)	-28(3)	30(3)	1(2)	
C(42)	69(3)	59(3)	55(4)	-22(3)	34(3)	-1(2)	
C(43)	60(3)	49(2)	42(4)	-10(2)	26(2)	-6(2)	
C(44)	105(4)	52(3)	47(4)	-1(2)	46(3)	8(3)	
C(45)	113(5)	37(2)	55(4)	11(2)	39(3)	8(3)	
C(46)	39(2)	35(2)	32(3)	0(2)	10(2)	8(2)	
C(47)	35(2)	28(2)	31(3)	-1(2)	12(2)	0(2)	
C(48)	31(2)	29(2)	28(3)	-7(2)	13(2)	-7(2)	
C(49)	28(2)	29(2)	30(3)	-4(2)	9(2)	-2(2)	
C(50)	35(2)	27(2)	33(3)	-6(2)	13(2)	-1(2)	
C(51)	36(2)	38(2)	31(3)	-3(2)	13(2)	-2(2)	
C(52)	40(2)	32(2)	31(3)	1(2)	10(2)	1(2)	
C(53)	41(2)	32(2)	28(3)	0(2)	13(2)	2(2)	
C(54)	43(3)	56(3)	42(3)	2(2)	5(2)	4(2)	
C(55)	57(3)	41(2)	47(4)	7(2)	21(2)	21(2)	
C(56)	57(3)	30(2)	42(3)	6(2)	18(2)	0(2)	
C(57)	59(3)	44(2)	36(3)	4(2)	24(2)	14(2)	
C(58)	70(6)	59(5)	32(6)	7(4)	23(4)	7(4)	
C(59)	121(9)	61(6)	39(7)	-6(4)	34(6)	10(5)	
C(60)	53(5)	97(8)	60(8)	16(6)	32(5)	12(5)	
C(61)	50(8)	99(12)	43(10)	-6(8)	9(6)	6(7)	
C(62)	48(7)	58(7)	38(8)	5(6)	24(6)	19(6)	
C(63)	78(9)	59(7)	53(10)	11(6)	45(7)	-4(6)	
CI(1)	59(1)	47(1)	69(1)	19(1)	12(1)	-2(1)	
0(3)	136(4)	57(2)	92(4)	35(2)	44(3)	9(2)	
O(4)	57(5)	83(5)	234(16)	-21(8)	3(7)	32(4)	
O(5)	103(10)	65(6)	97(9)	-1/(6)	-26(7)	-17(6)	
O(0)	τυδ(δ)	132(0) 11)	01(1)	-14(5)	20(5)	-42(0)	
O(4A))))))))))))))))))))	09(11) 167/16)	$O \perp (\perp Z)$	02(9) AE(0)	∠(/) _20/0\	-19(0) -05(10)	
O(SX)	150/15)	TO/(TO)	+++(10)	40(9) 10(0)	-30(0)	- 20(12)	
C1(2)	130(15) 70/1)	23(1V)	120(10) 60(1)	$\pm O(9)$	01(12) 27/1)	$\pm \pm (\pm 0)$ $\pm 7(1)$	
$C_{\perp}(Z)$	26(2) 86(2)	+3(±) 121(4)	172(7)	-2(1) -34(1)	37(I) 23(A)	-/(±) -46(3)	
0(8)	244(7)	20(2)	100(5)	-34(4)	23(4) 50(5)	-τυ(3) 71(Δ)	
0(9)	277(/) 115(3)	53(2)	200(J) 85(A)	-8(2)	59(3)	3(2)	
J (J)		55(2)	00(1)	0(2)	55(5)	5(2)	

125(4)	120(4)	102(4)	-35(3)	80(3)	-53(3)
178(9)	111(6)	153(10)	-11(6)	113(8)	11(6)
123(8)	132(8)	162(11)	-50(7)	19(7)	5(7)
186(14)	144(11)	228(18)	7(10)	136(13)	12(9)
210(2)	148(15)	78(12)	-13(8)	5(11)	45(12)
	125(4) 178(9) 123(8) 186(14) 210(2)	125(4)120(4)178(9)111(6)123(8)132(8)186(14)144(11)210(2)148(15)	125(4)120(4)102(4)178(9)111(6)153(10)123(8)132(8)162(11)186(14)144(11)228(18)210(2)148(15)78(12)	125(4)120(4)102(4)-35(3)178(9)111(6)153(10)-11(6)123(8)132(8)162(11)-50(7)186(14)144(11)228(18)7(10)210(2)148(15)78(12)-13(8)	125(4)120(4)102(4)-35(3)80(3)178(9)111(6)153(10)-11(6)113(8)123(8)132(8)162(11)-50(7)19(7)186(14)144(11)228(18)7(10)136(13)210(2)148(15)78(12)-13(8)5(11)

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 0570.

	х	У	Z	U(eq)
H(1A)	9688	-1330	7605	46
H(1B)	10244	-754	8068	46
H(3)	9292	-1983	8585	59
H(4)	8921	-1619	9513	69
H(5)	8955	-54	9939	61
H(7A)	9190	1644	9751	51
H(7B)	9843	1645	9768	51
H(8A)	8560	2747	8183	55
H(8B)	8481	2152	8852	55
H(10)	7587	1278	7981	60
H(11)	7272	112	7081	63
H(12)	7921	-570	6572	55
H(14A)	8996	-743	6689	44
H(14B)	9014	289	6358	44
H(15A)	10048	-323	6645	66
H(15B)	10429	334	7293	66
H(15C)	9932	788	6628	66
H(16A)	9431	3355	9219	42
H(16B)	9440	3322	8393	42
H(20)	11788	3100	9806	31
H(22)	10270	3857	9980	32
H(24A)	10937	700	8632	61
H(24B)	11516	584	9303	61
H(24C)	11515	403	8482	61
H(25A)	12353	1533	8892	62
H(25B)	12228	1788	9637	62
H(25C)	12253	2606	9076	62
H(26A)	10974	1974	7640	54
Н(26В)	11617	1696	7709	54
H(26C)	11467	2754	7871	54
H(28A)	10900	3963	11294	75
H(28B)	10669	4856	10776	75
H(28C)	11220	4956	11488	75

7	Anhan	g
7	Anhan	ρ

H(29A)	11196	5482	9999	99
H(29B)	11797	5035	10024	99
H(29C)	11743	5612	10713	99
H(30A)	12098	4224	11568	95
H(30B)	12197	3679	10891	95
H(30C)	11816	3209	11332	95
H(31A)	7024	-293	9578	73
H(31B)	6923	288	10238	73
H(33)	7498	1783	10228	87
H(34)	7544	3165	9581	95
H(35)	6952	3332	8368	70
H(37A)	6132	2628	7317	43
H(37B)	6422	1663	7181	43
H(38A)	4860	1860	7262	52
H(38B)	5291	2730	7352	52
H(40)	4928	3465	8376	60
H(41)	4966	3347	9602	72
H(42)	5428	2060	10310	69
H(44A)	6090	603	10342	75
H(44B)	5528	43	9875	75
H(45A)	6330	-1422	9255	98
H(45B)	5715	-1253	9346	98
H(45C)	6277	-1237	10050	98
H(46A)	5367	1395	6331	43
H(46B)	5094	621	6724	43
H(50)	6721	-1684	6148	37
H(52)	5824	717	5620	41
H(54A)	7439	-1300	8088	74
H(54B)	7247	-2059	8579	74
H(54C)	6911	-1080	8376	74
H(55A)	7354	-2379	7084	71
H(55B)	6794	-3013	6751	71
H(55C)	7213	-3207	7565	71
H(56A)	6428	-3075	8076	63
H(56B)	5996	-2925	7264	63
H(56C)	6009	-2184	7896	63
H(58A)	6067	188	3983	78
H(58B)	6105	882	4652	78
H(58C)	5599	126	4395	78
H(59A)	5754	-1573	4622	107
H(59B)	6391	-1982	4868	107
H(59C)	6139	-1449	4099	107
H(60A)	7019	-371	4567	100
H(60B)	7206	-885	5349	100
H(60C)	7121	235	5300	100
H(61A)	5946	-649	3956	98
H(61B)	5623	-28	4397	98

H(61C)	5660	-1149	4498	98
H(62A)	6697	-1875	4956	69
H(62B)	7195	-1153	5364	69
H(62C)	6931	-1140	4489	69
H(63A)	6771	526	4469	87
H(63B)	7029	592	5343	87
H(63C)	6415	1033	4926	87
H(64A)	3108	-1624	8640	199
H(64B)	2816	-2003	7823	199
H(64C)	2503	-2148	8426	199
H(65A)	2342	-778	7513	174
H(65B)	2117	-836	8207	174
H(11A)	3067	-26	8165	203
H(12A)	1676	-1345	7790	186

7 Anhang

7.2.3.3 [Cu(L-N₄Ad^tBu)(MeCN)](ClO₄) 79

7.2.3.2.1 IR-Spektrum

Tabelle 1. Kristalldaten und Strukturverfeinerung für 06130.

$C_{30}H_{41}ClCuN_5O_4$	
634.67	
150(2) K	
ΜοΚα	
0.71073 Å	
Ω -scans	
Monoklin	
P2(1)/n	
a = 12.7977(3) Å	$\alpha = 90^{\circ}$
<i>b</i> = 15.0206(4) Å	$\beta = 100.912(2)^{\circ}$
c = 14.8730(4) Å	$\gamma = 90^{\circ}$
2807.33(12) Å ³	
4	
1.502 Mg/m ³	
	C ₃₀ H ₄₁ ClCuN ₅ O ₄ 634.67 150(2) K MoK α 0.71073 Å Ω -scans Monoklin P2(1)/n a = 12.7977(3) Å b = 15.0206(4) Å c = 14.8730(4) Å 2807.33(12) Å ³ 4 1.502 Mg/m ³

Absorptionskoeffizient	0.920 mm ⁻¹
Kristallgröße	0.28 x 0.24 x 0.14 mm
Gemessener θ-Bereich	2.36 bis 32.38°
Anzahl der gemessenen Reflexe	30071
Unabhängige Reflexe	9155 (Rint = 0.0447)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.8820 und 0.7827
Diffraktometer	Oxford Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	9155 / 0 / 374
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0395, $wR2 = 0.0739$
R-Werte (alle Daten)	R1 = 0.0828, $wR2 = 0.0811$
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.038P) ²] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.906
Größtes Maximum und Minimum	0.349 und -0.484 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) und für alle anderen H-Atome der 1.2-fache Wert des äquivalenten isotropen Temperaturfaktors desjenigen Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06130.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
$C_{11}(1)$		1150(1)	1470/1)	24(1)
U(1)	9550(1) 10055(1)	1152(1)	1470(1)	24(1)
$N(\perp)$	10000(1)	1775(1)	093(1)	19(1)
N(Z)	10323(1)	2020(I) 510(1)	2445(1)	19(1)
N(S)	9124(1)	510(1)	2983(1)	1/(1)
N(4)	10887(1)	399(1)	2034(1)	18(1)
N(5)	8213(1)	967(I)	/3/(1)	21(1)
C(1)	11348(1)	2495(1)	1303(1)	26(1)
C(2)	11227(1)	2385(1)	2285(1)	19(1)
C(3)	12040(1)	2647(1)	2989(1)	23(1)
C(4)	11914(1)	2521(1)	3879(1)	27(1)
C(5)	10996(1)	2127(1)	4050(1)	25(1)
C(6)	10222(1)	1871(1)	3316(1)	20(1)
C(7)	9242(1)	1386(1)	3446(1)	27(1)
C(8)	10045(1)	-61(1)	3321(1)	22(1)
C(9)	11004(1)	60(1)	2875(1)	18(1)
C(10)	11994(1)	-202(1)	3359(1)	24(1)
C(11)	12882(1)	-59(1)	2983(1)	28(1)
C(12)	12772(1)	346(1)	2139(1)	24(1)
C(13)	11763(1)	561(1)	1681(1)	19(1)
C(14)	11586(1)	1010(1)	759(1)	25(1)
C(15)	10524(1)	2089(1)	-289(1)	21(1)
C(16)	9958(1)	1335(1)	-866(1)	27(1)
C(17)	9736(1)	2854(1)	-316(1)	29(1)
C(18)	11474(1)	2397(1)	-700(1)	27(1)
C(19)	8100(1)	51(1)	3081(1)	17(1)
C(20)	7897(1)	-723(1)	2403(1)	21(1)
C(21)	6846(1)	-1195(1)	2465(1)	29(1)
C(22)	6909(1)	-1545(1)	3440(1)	28(1)
C(23)	7078(1)	-773(1)	4116(1)	25(1)
C(24)	6159(1)	-114(1)	3881(1)	31(1)
C(25)	6110(1)	231(1)	2905(1)	30(1)
C(26)	7160(1)	699(1)	2849(1)	23(1)
C(27)	5923(1)	-542(1)	2240(1)	35(1)
C(28)	8123(1)	-306(1)	4054(1)	22(1)
C(29)	6301(1)	581(1)	-95(1)	28(1)
C(30)	7374(1)	801(1)	365(1)	20(1)
Cl(1)	418(1)	7286(1)	3795(1)	27(1)
0(1)	722(1)	7286(1)	2926(1)	56(1)
0(2)	945(1)	7994(1)	4327(1)	59(1)

		7 Anl	nang		
O(3)	718(1)	6462(1)	4240(1)	56(1)	
O(4)	-699(1)	7390(1)	3698(1)	59(1)	

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 06130.

Cu(1)-N(5)	1.8734(13)		C(11)-C(12)	1.379(2)	
Cu(1)-N(2)	2.0611(13)		C(12)-C(13)	1.380(2)	
Cu(1)-N(4)	2.0837(13)		C(13)-C(14)	1.505(2)	
Cu(1)-N(1)	2.3891(13)		C(15)-C(16)	1.519(2)	
N(1)-C(14)	1.474(2)		C(15)-C(17)	1.525(2)	
N(1)-C(1)	1.473(2)		C(15)-C(18)	1.531(2)	
N(1)-C(15)	1.516(2)		C(19)-C(20)	1.529(2)	
N(2)-C(2)	1.339(2)		C(19)-C(26)	1.535(2)	
N(2)-C(6)	1.347(2)		C(19)-C(28)	1.539(2)	
N(3)-C(8)	1.467(2)		C(20)-C(21)	1.538(2)	
N(3)-C(7)	1.480(2)		C(21)-C(27)	1.522(3)	
N(3)-C(19)	1.5116(19)		C(21)-C(22)	1.532(3)	
N(4)-C(9)	1.333(2)		C(22)-C(23)	1.523(3)	
N(4)-C(13)	1.347(2)		C(23)-C(28)	1.529(2)	
N(5)-C(30)	1.138(2)		C(23)-C(24)	1.526(2)	
C(1)-C(2)	1.507(2)		C(24)-C(25)	1.531(3)	
C(2)-C(3)	1.386(2)		C(25)-C(27)	1.515(3)	
C(3)-C(4)	1.376(2)		C(25)-C(26)	1.533(2)	
C(4)-C(5)	1.381(2)		C(29)-C(30)	1.451(2)	
C(5)-C(6)	1.382(2)		Cl(1)-O(2)	1.4185(16)	
C(6)-C(7)	1.495(2)		Cl(1)-O(1)	1.4174(16)	
C(8)-C(9)	1.513(2)		Cl(1)-O(4)	1.4189(14)	
C(9)-C(10)	1.390(2)		Cl(1)-O(3)	1.4210(15)	
C(10)-C(11)	1.374(2)				
N(5)-Cu(1)-N(2)		139.99(6)	C(6)-N(2)-Cu(1)		116.60(10)
N(5)-Cu(1)-N(4)		138.04(6)	C(8)-N(3)-C(7)		110.83(13)
N(2)-Cu(1)-N(4)		79.53(5)	C(8)-N(3)-C(19)		110.85(12)
N(5)-Cu(1)-N(1)		115.00(5)	C(7)-N(3)-C(19)		111.95(12)
N(2)-Cu(1)-N(1)		78.94(5)	C(9)-N(4)-C(13)		118.73(13)
N(4)-Cu(1)-N(1)		79.42(5)	C(9)-N(4)-Cu(1)		121.58(10)
C(14)-N(1)-C(1)		109.84(13)	C(13)-N(4)-Cu(1)		114.98(11)
C(14)-N(1)-C(15)		111.35(13)	C(30)-N(5)-Cu(1)		172.80(14)
C(1)-N(1)-C(15)		112.01(12)	N(1)-C(1)-C(2)		114.00(13)
C(14)-N(1)-Cu(1)		98.81(9)	N(2)-C(2)-C(3)		122.07(16)
C(1)-N(1)-Cu(1)		104.20(9)	N(2)-C(2)-C(1)		117.81(14)
C(15)-N(1)-Cu(1)		119.62(9)	C(3)-C(2)-C(1)		120.11(15)
C(2)-N(2)-C(6)		118.90(13)	C(4)-C(3)-C(2)		118.65(16)
C(2)-N(2)-Cu(1)		116.40(11)	C(3)-C(4)-C(5)		119.62(15)

C(4)-C(5)-C(6)	118.79(16)	O(2)-Cl(1)-O(3)	109.61(11)
N(2)-C(6)-C(5)	121.83(15)	O(1)-Cl(1)-O(3)	109.16(10)
N(2)-C(6)-C(7)	116.30(14)	O(4)-Cl(1)-O(3)	108.78(10)
C(5)-C(6)-C(7)	121.85(16)		
N(3)-C(7)-C(6)	112.82(13)		
N(3)-C(8)-C(9)	116.46(13)		
N(4)-C(9)-C(10)	121.62(14)		
N(4)-C(9)-C(8)	120.04(13)		
C(10)-C(9)-C(8)	118.33(15)		
C(11)-C(10)-C(9)	119.17(16)		
C(10)-C(11)-C(12)	119.33(15)		
C(13)-C(12)-C(11)	118.56(15)		
N(4)-C(13)-C(12)	122.35(15)		
N(4)-C(13)-C(14)	116.33(14)		
C(12)-C(13)-C(14)	121.31(15)		
N(1)-C(14)-C(13)	113.15(14)		
N(1)-C(15)-C(16)	109.24(13)		
N(1)-C(15)-C(17)	108.82(13)		
C(16)-C(15)-C(17)	107.70(14)		
N(1)-C(15)-C(18)	112.32(13)		
C(16)-C(15)-C(18)	109.25(14)		
C(17)-C(15)-C(18)	109.40(14)		
N(3)-C(19)-C(20)	108.96(12)		
N(3)-C(19)-C(26)	110.30(12)		
C(20)-C(19)-C(26)	107.84(13)		
N(3)-C(19)-C(28)	112.77(12)		
C(20)-C(19)-C(28)	109.01(13)		
C(26)-C(19)-C(28)	107.84(13)		
C(19)-C(20)-C(21)	110.64(14)		
C(27)-C(21)-C(22)	109.19(16)		
C(27)-C(21)-C(20)	109.97(15)		
C(22)-C(21)-C(20)	108.97(14)		
C(23)-C(22)-C(21)	109.80(15)		
C(22)-C(23)-C(28)	109.09(14)		
C(22)-C(23)-C(24)	109.67(15)		
C(28)-C(23)-C(24)	109.46(14)		
C(23)-C(24)-C(25)	109.11(14)		
C(27)-C(25)-C(26)	110.33(15)		
C(27)-C(25)-C(24)	109.48(16)		
C(26)-C(25)-C(24)	109.13(14)		
C(19)-C(26)-C(25)	110.79(14)		
C(25)-C(27)-C(21)	109.27(14)		
C(23)-C(28)-C(19)	110.80(13)		
N(5)-C(30)-C(29)	178.95(18)		
O(2)-Cl(1)-O(1)	108.96(10)		
O(2)-Cl(1)-O(4)	109.71(11)		
O(1)-Cl(1)-O(4)	110.61(11)		

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 06130.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
Cu(1)	16(1)	25(1)	28(1)	-7(1)	-3(1)	1(1)
N(1)	19(1)	19(1)	19(1)	1(1)	4(1)	-2(1)
N(2)	19(1)	16(1)	22(1)	-2(1)	3(1)	-2(1)
N(3)	16(1)	15(1)	21(1)	0(1)	6(1)	0(1)
N(4)	16(1)	17(1)	20(1)	-1(1)	3(1)	0(1)
N(5)	20(1)	22(1)	20(1)	2(1)	3(1)	0(1)
C(1)	27(1)	27(1)	22(1)	-1(1)	5(1)	-12(1)
C(2)	21(1)	15(1)	23(1)	-1(1)	3(1)	-2(1)
C(3)	20(1)	22(1)	27(1)	-5(1)	2(1)	-4(1)
C(4)	25(1)	28(1)	25(1)	-8(1)	-4(1)	0(1)
C(5)	34(1)	23(1)	18(1)	-2(1)	5(1)	1(1)
C(6)	24(1)	15(1)	23(1)	-3(1)	8(1)	0(1)
C(7)	31(1)	24(1)	29(1)	-7(1)	15(1)	-5(1)
C(8)	17(1)	27(1)	20(1)	7(1)	4(1)	1(1)
C(9)	17(1)	15(1)	21(1)	-2(1)	4(1)	-2(1)
C(10)	19(1)	29(1)	23(1)	5(1)	3(1)	4(1)
C(11)	16(1)	34(1)	33(1)	5(1)	2(1)	7(1)
C(12)	16(1)	26(1)	33(1)	2(1)	8(1)	2(1)
C(13)	18(1)	17(1)	24(1)	0(1)	7(1)	0(1)
C(14)	22(1)	32(1)	25(1)	5(1)	11(1)	6(1)
C(15)	21(1)	23(1)	18(1)	1(1)	6(1)	-2(1)
C(16)	28(1)	32(1)	21(1)	-3(1)	4(1)	-4(1)
C(17)	29(1)	31(1)	25(1)	1(1)	2(1)	5(1)
C(18)	30(1)	32(1)	22(1)	3(1)	10(1)	-5(1)
C(19)	14(1)	18(1)	20(1)	2(1)	6(1)	0(1)
C(20)	21(1)	21(1)	22(1)	0(1)	7(1)	-1(1)
C(21)	29(1)	28(1)	30(1)	-3(1)	7(1)	-9(1)
C(22)	24(1)	24(1)	38(1)	6(1)	9(1)	-4(1)
C(23)	22(1)	31(1)	25(1)	8(1)	7(1)	0(1)
C(24)	19(1)	36(1)	39(1)	7(1)	13(1)	2(1)
C(25)	15(1)	35(1)	40(1)	13(1)	6(1)	6(1)
C(26)	20(1)	22(1)	28(1)	6(1)	8(1)	5(1)
C(27)	21(1)	51(1)	32(1)	12(1)	-1(1)	-9(1)
C(28)	19(1)	25(1)	21(1)	4(1)	5(1)	0(1)
C(29)	18(1)	32(1)	32(1)	-4(1)	-1(1)	-3(1)
C(30)	21(1)	21(1)	19(1)	1(1)	5(1)	0(1)
Cl(1)	25(1)	25(1)	31(1)	3(1)	10(1)	6(1)
0(1)	62(1)	73(1)	39(1)	-1(1)	26(1)	-4(1)
0(2)	75(1)	48(1)	52(1)	-13(1)	10(1)	-13(1)
0(3)	47(1)	38(1)	92(1)	32(1)	34(1)	19(1)

			7 Anha	ing			
O(4)	25(1)	83(1)	67(1)	9(1)	8(1)	21(1)	

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06130.

	x	У	Z	U(eq)
נו (1 א)	11024	2068	1070	21
п(IA) ц(1р)	12115	2522	1281	21
п(тр)	12115	2522	2061	20
п() п()	12072	2908	2001	20
п(т) п(т)	10000	2705	4575	20
п() ц(7)	10090	12024	4000	30
п(/A) ц(7р)	9205	1756	4109	22
п(/D) ц(Ол)	0012	£90	3203	32
H(OA)	9013	-689	3241	20
п(ов) ц(10)	12056	40	2012	20
п(10) п(11)	12564	-4//	2202	27 22
п(⊥⊥) п(10)	12270	-231	33U∠ 1070	33
$\Pi(\perp Z)$	1000	4/4	τα / α	29
H(14A)	112240	1215	034	30
п(14B)	10465	569	282	30
п(10A)	10405	855	-909	40
H(16B)	9661	1557	-1481	40
H(16C)	9382	1107	-580	40
H(I/A)	9197	2696	44	43
H(17B)	9389	2967	-952	43
H(17C)	10114	3390	-59	43
H(18A)	11859	2865	-314	41
H(18B)	11218	2631	-1317	41
H(18C)	11951	1892	-731	41
H(20A)	8492	-1154	2539	26
H(20B)	7865	-497	1773	26
H(21)	6731	-1703	2023	34
H(22A)	6242	-1861	3485	34
H(22B)	7506	-1972	3591	34
H(23)	7111	-1004	4751	30
H(24A)	6267	390	4318	37
H(24B)	5481	-411	3928	37
Н(25)	5511	665	2751	36
H(26A)	7126	937	2224	27
Н(26В)	7268	1206	3283	27
H(27A)	5867	-321	1605	42
Н(27В)	5249	-846	2286	42
H(28A)	8721	-729	4219	26

		7 Ar	nhang		
H(28B)	8240	194	4496	26	
H(29A)	6200	-65	-83	42	
H(29B)	6191	786	-731	42	
H(29C)	5787	874	220	42	

7.2.3.4 [Cu(L-N4^tBu₂)(MeCN)]](ClO₄) 80

7.2.3.4.1 IR-Spektrum

7.2.3.4.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 06560.

Summenformel	C24H35ClCuN5O4	
Molmasse	556.56	
Temperatur	150(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Ω -scans	
Kristallsystem	Orthorhombisch	
Raumgruppe	Pm21n	
Zelldimensionen	a = 9.2343(4) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 10.7639(5) Å	$\beta = 90^{\circ}$
	c = 25.9983(12) Å	$\gamma = 90^{\circ}$
Zellvolumen	2584.2(2) Å ³	
Formeleinheiten pro Zelle Z	4	

Berechnete Dichte	1.431 Mg/m ³
Absorptionskoeffizient	0.988 mm ⁻¹
Kristallgröße	0.42 x 0.38 x 0.08 mm
Gemessener θ-Bereich	2.46 bis 31.49°
Anzahl der gemessenen Reflexe	15576
Unabhängige Reflexe	7548 (Rint = 0.0344)
Absorptionskorrektur	Analytical
Max. und min. Transmission	0.92588 und 0.68873
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SIR97 (Giacovazzo et al., 1997)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	7548 / 94 / 344
Endgültige R-Werte [I>2 σ (I)]	R1 = 0.0309, $wR2 = 0.0682$
R-Werte (alle Daten)	R1 = 0.0397, $wR2 = 0.0792$
Absolutstrukturparameter	-0.001(8)
Wichtungsschema	w=1/[$\sigma^{2}(Fo^{2})$ +(0.0430P) ²] mit P=(Fo^{2}+2Fc^{2})/3
GooF (alle Daten)	1.055
Größtes Maximum und Minimum	0.438 und -0.335 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH₃-Gruppen) bzw. der 1.2-fache Wert (Cp-H oder Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06560.

U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
Cu(1)	5735(1)	9223(1)	3682(1)	19(1)
N(1)	5192(2)	7158(1)	3341(1)	17(1)
N(2)	5073(2)	8265(2)	4337(1)	18(1)
N(3)	5096(2)	10912(2)	4263(1)	17(1)
N(4)	3495(2)	9311(2)	3579(1)	19(1)
N(5)	7369(2)	9800(2)	3318(1)	22(1)
C(1)	5107(3)	6386(2)	3808(1)	29(1)
C(2)	4648(2)	7084(2)	4285(1)	21(1)
C(3)	3791(3)	6494(2)	4651(1)	27(1)
C(4)	3349(2)	7155(2)	5079(1)	27(1)
C(5)	3741(2)	8395(2)	5124(1)	24(1)
C(6)	4588(2)	8926(2)	4739(1)	20(1)
C(7)	4978(2)	10286(2)	4767(1)	24(1)
C(8)	3626(2)	11230(2)	4071(1)	26(1)
C(9)	2796(2)	10106(2)	3890(1)	20(1)
C(10)	1377(2)	9896(2)	4043(1)	26(1)
C(11)	697(2)	8816(2)	3887(1)	30(1)
C(12)	1422(2)	7976(2)	3587(1)	28(1)
C(13)	2844(2)	8243(2)	3442(1)	22(1)
C(14)	3738(2)	7339(2)	3124(1)	30(1)
C(15)	6256(2)	6633(2)	2953(1)	24(1)
C(16)	6322(3)	7501(2)	2480(1)	30(1)
C(17)	7747(3)	6614(2)	3198(1)	33(1)
C(18)	5810(3)	5342(2)	2772(1)	36(1)
C(19)	6092(2)	12007(2)	4282(1)	20(1)
C(20)	6153(2)	12626(2)	3751(1)	27(1)
C(21)	7621(2)	11558(2)	4421(1)	26(1)
C(22)	5624(3)	12987(2)	4679(1)	29(1)
C(23)	8331(2)	10182(2)	3091(1)	28(1)
C(24)	9553(3)	10678(3)	2804(1)	51(1)
Cl(1)	989(1)	4004(1)	3737(1)	26(1)
0(1)	779(3)	2752(2)	3584(1)	62(1)
0(3)	2071(3)	4036(2)	4133(1)	60(1)
0(2)	-347(3)	4464(3)	3943(1)	62(1)

,

O(4)	1422(4)	4726(3)	3310(1)	81(1)
Cl(2)	711(15)	4000(12)	3636(5)	88(6)
O(5)	570(2)	2862(14)	3903(7)	53(6)
0(6)	230(2)	5032(14)	3923(6)	37(5)
0(7)	-160(2)	3910(2)	3174(6)	74(8)
O(8)	2193(17)	4190(2)	3486(9)	97(10)

Tabelle 3. Bindungslängen [Å] und -winkel [$^{\circ}$] für 06560.

Cu(1)-N(5)	1.8865(17)	C(8)-C(9)	1.507(3)	
Cu(1)-N(2)	2.0829(16)	C(9)-C(10)	1.389(3)	
Cu(1)-N(4)	2.0876(15)	C(10)-C(11)	1.382(3)	
Cu(1)-N(3)	2.4357(15)	C(11)-C(12)	1.368(3)	
Cu(1)-N(1)	2.4456(16)	C(12)-C(13)	1.395(3)	
N(1)-C(14)	1.469(3)	C(13)-C(14)	1.520(3)	
N(1)-C(1)	1.473(3)	C(15)-C(17)	1.517(3)	
N(1)-C(15)	1.517(2)	C(15)-C(18)	1.524(3)	
N(2)-C(2)	1.337(2)	C(15)-C(16)	1.544(3)	
N(2)-C(6)	1.342(2)	C(19)-C(20)	1.532(3)	
N(3)-C(7)	1.478(2)	C(19)-C(21)	1.535(3)	
N(3)-C(8)	1.486(2)	C(19)-C(22)	1.538(3)	
N(3)-C(19)	1.496(2)	C(23)-C(24)	1.453(3)	
N(4)-C(9)	1.343(2)	Cl(1)-O(4)	1.413(2)	
N(4)-C(13)	1.346(3)	Cl(1)-O(1)	1.418(2)	
N(5)-C(23)	1.143(3)	Cl(1)-O(2)	1.433(2)	
C(1)-C(2)	1.511(3)	Cl(1)-O(3)	1.437(2)	
C(2)-C(3)	1.391(3)	Cl(2)-O(5)	1.415(12)	
C(3)-C(4)	1.382(3)	Cl(2)-O(6)	1.410(12)	
C(4)-C(5)	1.388(3)	Cl(2)-O(8)	1.438(12)	
C(5)-C(6)	1.393(3)	Cl(2)-O(7)	1.449(12)	
C(6)-C(7)	1.510(3)			
N(5)-Cu(1)-N(2)	143.88(7)	C(14)-N(1)-C(15)		112.78(15)
N(5)-Cu(1)-N(4)	135.52(7)	C(1)-N(1)-C(15)		111.84(16)
N(2)-Cu(1)-N(4)	80.60(6)	C(14)-N(1)-Cu(1)		101.84(12)
N(5)-Cu(1)-N(3)	105.01(6)	C(1)-N(1)-Cu(1)		102.99(11)
N(2)-Cu(1)-N(3)	77.96(6)	C(15)-N(1)-Cu(1)		116.53(12)
N(4)-Cu(1)-N(3)	78.82(6)	C(2)-N(2)-C(6)		119.03(16)
N(5)-Cu(1)-N(1)	106.34(6)	C(2)-N(2)-Cu(1)		118.31(13)
N(2)-Cu(1)-N(1)	77.64(6)	C(6)-N(2)-Cu(1)		118.20(12)
N(4)-Cu(1)-N(1)	77.97(6)	C(7)-N(3)-C(8)		109.62(16)
N(3)-Cu(1)-N(1)	148.61(5)	C(7)-N(3)-C(19)		112.04(15)
C(14)-N(1)-C(1)	110.03(18)	C(8)-N(3)-C(19)		113.02(15)
	41.0			

C(7)-N(3)-Cu(1)	103.19(11)	O(2)-Cl(1)-O(3)	108.77(15)
C(8)-N(3)-Cu(1)	100.62(11)	O(5)-Cl(2)-O(6)	113.1(11)
C(19)-N(3)-Cu(1)	117.34(11)	O(5)-Cl(2)-O(8)	110.3(11)
C(9)-N(4)-C(13)	119.26(16)	O(6)-Cl(2)-O(8)	109.4(11)
C(9)-N(4)-Cu(1)	115.34(12)	O(5)-Cl(2)-O(7)	107.4(10)
C(13)-N(4)-Cu(1)	115.96(13)	O(6)-Cl(2)-O(7)	108.4(10)
C(23)-N(5)-Cu(1)	177.63(18)	O(8)-Cl(2)-O(7)	108.1(11)
N(1)-C(1)-C(2)	114.25(15)		
N(2)-C(2)-C(3)	122.14(18)		
N(2)-C(2)-C(1)	118.28(17)		
C(3)-C(2)-C(1)	119.58(18)		
C(4)-C(3)-C(2)	118.91(19)		
C(3)-C(4)-C(5)	119.08(19)		
C(4)-C(5)-C(6)	118.69(19)		
N(2)-C(6)-C(5)	121.97(18)		
N(2)-C(6)-C(7)	118.21(16)		
C(5)-C(6)-C(7)	119.82(17)		
N(3)-C(7)-C(6)	114.62(15)		
N(3)-C(8)-C(9)	112.64(16)		
N(4)-C(9)-C(10)	121.53(18)		
N(4)-C(9)-C(8)	117.04(17)		
C(10)-C(9)-C(8)	121.42(18)		
C(11)-C(10)-C(9)	118.76(19)		
C(12)-C(11)-C(10)	120.05(19)		
C(11)-C(12)-C(13)	118.6(2)		
N(4)-C(13)-C(12)	121.63(19)		
N(4)-C(13)-C(14)	116.59(17)		
C(12)-C(13)-C(14)	121.77(19)		
N(1)-C(14)-C(13)	111.91(17)		
C(17)-C(15)-N(1)	108.30(16)		
C(17)-C(15)-C(18)	111.3(2)		
N(1)-C(15)-C(18)	111.66(18)		
C(17)-C(15)-C(16)	107.8(2)		
N(1)-C(15)-C(16)	109.19(16)		
C(18)-C(15)-C(16)	108.50(16)		
N(3)-C(19)-C(20)	109.63(15)		
N(3)-C(19)-C(21)	108.99(16)		
C(20)-C(19)-C(21)	108.38(17)		
N(3)-C(19)-C(22)	112.93(16)		
C(20)-C(19)-C(22)	108.40(16)		
C(21)-C(19)-C(22)	108.41(17)		
N(5)-C(23)-C(24)	179.6(3)		
O(4)-Cl(1)-O(1)	109.96(19)		
O(4)-Cl(1)-O(2)	110.35(19)		
O(1)-Cl(1)-O(2)	108.39(19)		
O(4)-Cl(1)-O(3)	110.72(19)		
O(1)-Cl(1)-O(3)	108.59(16)		

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 06560.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu (1)	15(1)	23(1)	19(1)	4(1)	2(1)	-2(1)
N(1)	13(1)	16(1)	18(1)	-1(1)	-1(1)	0(1)
N(2)	15(1)	21(1)	16(1)	3(1)	0(1)	0(1)
N(3)	13(1)	15(1)	18(1)	0(1)	-1(1)	1(1)
N(4)	17(1)	20(1)	19(1)	-1(1)	-3(1)	0(1)
N(5)	23(1)	23(1)	21(1)	-1(1)	3(1)	-2(1)
C(1)	48(1)	13(1)	27(1)	2(1)	9(1)	1(1)
C(2)	25(1)	19(1)	19(1)	3(1)	-1(1)	0(1)
C(3)	33(1)	23(1)	25(1)	4(1)	3(1)	-8(1)
C(4)	25(1)	33(1)	22(1)	9(1)	6(1)	-4(1)
C(5)	24(1)	29(1)	19(1)	1(1)	3(1)	-4(1)
C(6)	21(1)	25(1)	14(1)	1(1)	-2(1)	-1(1)
C(7)	34(1)	20(1)	17(1)	-3(1)	4(1)	-2(1)
C(8)	18(1)	24(1)	35(1)	-6(1)	-4(1)	6(1)
C(9)	17(1)	21(1)	21(1)	1(1)	-3(1)	2(1)
C(10)	17(1)	33(1)	28(1)	-3(1)	1(1)	6(1)
C(11)	13(1)	41(1)	36(1)	2(1)	0(1)	-6(1)
C(12)	19(1)	31(1)	35(1)	-1(1)	-5(1)	-5(1)
C(13)	16(1)	26(1)	25(1)	-2(1)	-5(1)	-1(1)
C(14)	22(1)	29(1)	38(1)	-14(1)	-5(1)	-1(1)
C(15)	29(1)	23(1)	19(1)	-4(1)	2(1)	7(1)
C(16)	40(1)	30(1)	21(1)	0(1)	4(1)	-5(1)
C(17)	27(1)	39(1)	34(1)	-6(1)	1(1)	12(1)
C(18)	57(2)	21(1)	29(1)	-8(1)	4(1)	0(1)
C(19)	20(1)	21(1)	19(1)	-2(1)	-1(1)	-1(1)
C(20)	33(1)	19(1)	28(1)	5(1)	-2(1)	-3(1)
C(21)	19(1)	33(1)	28(1)	-1(1)	-5(1)	-4(1)
C(22)	33(1)	23(1)	31(1)	-8(1)	0(1)	-4(1)
C(23)	23(1)	35(1)	25(1)	-3(1)	-1(1)	-8(1)
C(24)	46(2)	73(2)	33(1)	3(1)	12(1)	-27(2)
Cl(1)	33(1)	20(1)	24(1)	1(1)	-1(1)	0(1)
0(1)	71(2)	28(1)	88(2)	-19(1)	-19(2)	-5(1)
0(3)	58(1)	58(2)	65(1)	-20(1)	-31(1)	15(1)
0(2)	55(2)	74(2)	57(1)	-8(1)	2(1)	25(2)
0(4)	109(3)	78(2)	57(2)	37(2)	15(2)	-16(2)

Tabelle 5.

H-Atomkoordinaten	[x 10 ⁴]	und äc	uivalente isotroj	e Auslenkungs	parameter	$[Å^2 \times 10^3]$	³] für 06560.
,				a			

	х	У	Z	U(eq)
H(1A)	6049	6015	3869	35
H(1B)	4426	5716	3747	35
H(3)	3520	5669	4608	32
H(4)	2797	6774	5333	32
Н(5)	3445	8862	5406	29
H(7A)	4250	10712	4970	28
H(7B)	5896	10368	4946	28
H(8A)	3715	11814	3788	31
H(8B)	3087	11634	4343	31
H(10)	893	10471	4247	31
H(11)	-254	8661	3985	36
H(12)	978	7244	3483	34
H(14A)	3242	6546	3109	36
H(14B)	3823	7653	2776	36
H(16A)	6436	8344	2593	45
H(16B)	5442	7426	2286	45
H(16C)	7129	7273	2268	45
H(17A)	7909	7382	3377	50
H(17B)	8469	6515	2935	50
H(17C)	7808	5935	3436	50
H(18A)	6558	5001	2558	54
H(18B)	4926	5399	2579	54
H(18C)	5665	4814	3065	54
H(20A)	6184	11998	3489	40
H(20B)	7005	13134	3729	40
H(20C)	5309	13133	3704	40
H(21A)	7656	11351	4780	40
H(21B)	8307	12206	4350	40
H(21C)	7855	10838	4220	40
H(22A)	4691	13311	4586	44
H(22B)	6319	13651	4684	44
H(22C)	5572	12612	5013	44
H(24A)	9501	11568	2800	76
H(24B)	9524	10369	2458	76
H(24C)	10440	10422	2965	76

Cu(1)-C(01)	1.8583(11)	C(4) - H(4)	0.9500
Cu(1)-N(2)	2.0697(10)	C(5)-C(6)	1.3852(17)
Cu(1)-N(8)	2.0729(8)	C(5)-H(5)	0.9500
Cu(1)-N(1)	2.2115(8)	C(6)-C(7)	1.5179(14)
Cu(2)-N(02)	1.8385(10)	C(7)-H(7A)	0.9900
Cu(2)-N(03)#1	1.8418(11)	C(7)-H(7B)	0.9900
Cu(2A)-N(03)#1	1.838(2)	C(8)-C(9)	1.5135(15)
Cu(2A)-N(02)	1.951(2)	C(8)-H(8A)	0.9900
Cu(3)-C(04)	1.8620(12)	C(8)-H(8B)	0.9900
Cu(3)-N(4)	2.0351(10)	C(9)-C(10)	1.3816(19)
Cu(3)-N(6)	2.1066(8)	C(10)-C(11)	1.3833(18)
Cu(3)-N(5)	2.2179(8)	C(10)-H(10)	0.9500
C(01)-N(02)	1.1598(14)	C(11)-C(12)	1.3753(17)
N(03)-C(04)	1.1534(16)	C(11)-H(11)	0.9500
N(03)-Cu(2A)#1	1.838(2)	C(12)-C(13)	1.3808(18)
N(03)-Cu(2)#1	1.8419(11)	C(12)-H(12)	0.9500
N(1)-C(28)	1.4695(12)	C(13)-C(14)	1.5124(14)
N(1)-C(1)	1.4886(15)	C(14)-H(14A)	0.9900
N(1)-C(29)	1.5171(12)	C(14)-H(14B)	0.9900
N(2)-C(6)	1.3496(11)	C(15)-C(16)	1.5081(12)
N(2)-C(2)	1.3531(13)	C(15)-H(15A)	0.9900
N(3)-C(7)	1.4631(11)	C(15)-H(15B)	0.9900
N(3)-C(8)	1.4732(12)	C(16)-C(17)	1.3789(13)
N(3)-C(33)	1.5101(13)	C(17)-C(18)	1.3845(13)
N(4)-C(13)	1.3444(13)	C(17)-H(17)	0.9500
N(4)-C(9)	1.3476(13)	C(18)-C(19)	1.3907(13)
N(5)-C(15)	1.4637(14)	C(18)-H(18)	0.9500
N(5)-C(14)	1.4833(15)	C(19)-C(20)	1.3785(14)
N(5)-C(37)	1.5288(11)	C(19)-H(19)	0.9500
N(6)-C(20)	1.3420(11)	C(20)-C(21)	1.5193(13)
N(6)-C(16)	1.3444(11)	C(21)-H(21A)	0.9900
N(7)-C(22)	1.4638(12)	C(21)-H(21B)	0.9900
N(7)-C(21)	1.4720(13)	C(22)-C(23)	1.5049(14)
N(7)-C(41)	1.5004(15)	C(22)-H(22A)	0.9900
N(8)-C(23)	1.3445(13)	C(22)-H(22B)	0.9900
N(8)-C(27)	1.3446(12)	C(23)-C(24)	1.3813(14)
C(1)-C(2)	1.5020(13)	C(24)-C(25)	1.3741(15)
C(1)-H(1A)	0.9900	C(24)-H(24)	0.9500
C(1)-H(1B)	0.9900	C(25)-C(26)	1.3822(17)
C(2)-C(3)	1.3916(17)	C(25)-H(25)	0.9500
C(3)-C(4)	1.3713(13)	C(26)-C(27)	1.3805(14)
C(3)-H(3)	0.9500	C(26)-H(26)	0.9500
C(4)-C(5)	1.3881(16)	C(27)-C(28)	1.5208(15)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 07660.

C(28)-H(28A)	0.9900	C(43)-H(43C)	0.9800
C(28)-H(28B)	0.9900	C(44)-H(44A)	0.9800
C(29)-C(30)	1.5188(18)	C(44)-H(44B)	0.9800
C(29)-C(32)	1.5211(15)	C(44)-H(44C)	0.9800
C(29)-C(31)	1.5390(15)	Cl(1)-O(7)	1.4249(14)
C(30)-H(30A)	0.9800	Cl(1)-O(5)	1.4230(11)
C(30)-H(30B)	0.9800	Cl(1)-O(8)	1.4294(12)
C(30)-H(30C)	0.9800	Cl(1)-O(6)	1.4428(11)
C(31)-H(31A)	0.9800	Cl(1A)-O(7A)	1.397(5)
C(31)-H(31B)	0.9800	Cl(1A)-O(6A)	1.411(4)
C(31)-H(31C)	0.9800	Cl(1A)-O(8A)	1.432(4)
C(32)-H(32A)	0.9800	Cl(1A)-O(5A)	1.477(4)
C(32)-H(32B)	0.9800	O(9)-C(45)	1.2178(14)
C(32)-H(32C)	0.9800	N(9)-C(45)	1.3127(17)
C(33)-C(34)	1.5281(14)	N(9)-C(46)	1.455(2)
C(33)-C(36)	1.5333(14)	N(9)-C(47)	1.464(2)
C(33)-C(35)	1.5397(19)	C(45)-H(45)	0.9500
C(34)-H(34A)	0.9800	C(46)-H(46A)	0.9800
C(34)-H(34B)	0.9800	C(46)-H(46B)	0.9800
C(34)-H(34C)	0.9800	C(46)-H(46C)	0.9800
C(35)-H(35A)	0.9800	C(47)-H(47A)	0.9800
C(35)-H(35B)	0.9800	C(47)-H(47B)	0.9800
C(35)-H(35C)	0.9800	C(47)-H(47C)	0.9800
C(36)-H(36A)	0.9800	O(10)-C(48)	1.222(3)
C(36)-H(36B)	0.9800	N(10)-C(49)	1.293(4)
C(36)-H(36C)	0.9800	N(10)-C(50)	1.362(3)
C(37)-C(40)	1.5253(18)	N(10)-C(48)	1.559(2)
C(37)-C(39)	1.5256(17)	C(48)-H(48)	0.9500
C(37)-C(38)	1.5346(15)	C(49)-H(49A)	0.9800
C(38)-H(38A)	0.9800	C(49)-H(49B)	0.9800
C(38)-H(38B)	0.9800	C(49)-H(49C)	0.9800
C(38)-H(38C)	0.9800	C(50)-H(50A)	0.9800
C(39)-H(39A)	0.9800	C(50)-H(50B)	0.9800
C(39)-H(39B)	0.9800	C(50)-H(50C)	0.9800
C(39)-H(39C)	0.9800	O(11)-C(51)	1.2318(16)
C(40)-H(40A)	0.9800	N(11)-C(51)	1.3671(17)
C(40)-H(40B)	0.9800	N(11)-C(54)	1.4106(17)
C(40)-H(40C)	0.9800	N(11)-C(53)	1.425(2)
C(41)-C(42)	1.5238(15)	C(51)-H(51)	0.9500
C(41)-C(44)	1.5376(14)	C(53)-H(53A)	0.9800
C(41)-C(43)	1.5385(15)	C(53)-H(53B)	0.9800
C(42)-H(42A)	0.9800	C(53)-H(53C)	0.9800
C(42)-H(42B)	0.9800	C(54)-H(54A)	0.9800
C(42)-H(42C)	0.9800	C(54)-H(54B)	0.9800
C(43)-H(43A)	0.9800	C(54)-H(54C)	0.9800
C(43)-H(43B)	0.9800		

C(01)-Cu(1)-N(2)	115.88(4)	C(22)-N(7)-C(41)	111.32(7)
C(01)-Cu(1)-N(8)	128.71(4)	C(21)-N(7)-C(41)	114.16(7)
N(2)-Cu(1)-N(8)	106.49(3)	C(23)-N(8)-C(27)	119.52(8)
C(01)-Cu(1)-N(1)	131.46(3)	C(23)-N(8)-Cu(1)	125.40(6)
N(2)-Cu(1)-N(1)	80.52(3)	C(27)-N(8)-Cu(1)	114.42(6)
N(8)-Cu(1)-N(1)	81.39(3)	N(1)-C(1)-C(2)	111.93(8)
N(02)-Cu(2)-N(03)#1	158.29(5)	N(1)-C(1)-H(1A)	109.2
N(03)#1-Cu(2A)-N(02)	145.09(13)	C(2)-C(1)-H(1A)	109.2
C(04)-Cu(3)-N(4)	136.20(4)	N(1)-C(1)-H(1B)	109.2
C(04)-Cu(3)-N(6)	111.93(4)	C(2)-C(1)-H(1B)	109.2
N(4)-Cu(3)-N(6)	104.17(3)	H(1A)-C(1)-H(1B)	107.9
C(04)-Cu(3)-N(5)	126.82(4)	N(2)-C(2)-C(3)	120.99(8)
N(4)-Cu(3)-N(5)	83.08(3)	N(2)-C(2)-C(1)	117.18(10)
N(6)-Cu(3)-N(5)	78.96(3)	C(3)-C(2)-C(1)	121.68(9)
N(02)-C(01)-Cu(1)	175.57(10)	C(4)-C(3)-C(2)	119.52(10)
C(01)-N(02)-Cu(2)	175.86(9)	C(4)-C(3)-H(3)	120.2
C(01)-N(02)-Cu(2A)	149.31(11)	C(2)-C(3)-H(3)	120.2
Cu(2)-N(02)-Cu(2A)	27.78(6)	C(3)-C(4)-C(5)	119.42(12)
C(04)-N(03)-Cu(2A)#1	153.65(12)	C(3)-C(4)-H(4)	120.3
C(04)-N(03)-Cu(2)#1	177.40(10)	C(5)-C(4)-H(4)	120.3
Cu(2A)#1-N(03)-Cu(2)#1	28.83(7)	C(6)-C(5)-C(4)	119.00(9)
N(03)-C(04)-Cu(3)	171.61(10)	C(6)-C(5)-H(5)	120.5
C(28)-N(1)-C(1)	108.15(9)	C(4)-C(5)-H(5)	120.5
C(28)-N(1)-C(29)	113.89(7)	N(2)-C(6)-C(5)	121.50(9)
C(1)-N(1)-C(29)	112.50(7)	N(2)-C(6)-C(7)	114.22(9)
C(28)-N(1)-Cu(1)	103.37(5)	C(5)-C(6)-C(7)	124.18(8)
C(1)-N(1)-Cu(1)	103.32(5)	N(3)-C(7)-C(6)	117.52(9)
C(29)-N(1)-Cu(1)	114.67(7)	N(3)-C(7)-H(7A)	107.9
C(6)-N(2)-C(2)	119.45(10)	C(6)-C(7)-H(7A)	107.9
C(6)-N(2)-Cu(1)	126.52(7)	N(3)-C(7)-H(7B)	107.9
C(2)-N(2)-Cu(1)	114.00(6)	C(6)-C(7)-H(7B)	107.9
C(7)-N(3)-C(8)	108.79(7)	H(7A)-C(7)-H(7B)	107.2
C(7)-N(3)-C(33)	114.19(7)	N(3)-C(8)-C(9)	113.65(9)
C(8)-N(3)-C(33)	112.07(8)	N(3)-C(8)-H(8A)	108.8
C(13)-N(4)-C(9)	118.17(10)	C(9)-C(8)-H(8A)	108.8
C(13)-N(4)-Cu(3)	114.08(7)	N(3)-C(8)-H(8B)	108.8
C(9)-N(4)-Cu(3)	127.75(7)	C(9)-C(8)-H(8B)	108.8
C(15)-N(5)-C(14)	109.20(8)	H(8A)-C(8)-H(8B)	107.7
C(15)-N(5)-C(37)	112.62(7)	N(4)-C(9)-C(10)	122.02(10)
C(14)-N(5)-C(37)	113.23(8)	N(4)-C(9)-C(8)	115.66(10)
C(15)-N(5)-Cu(3)	104.50(6)	C(10)-C(9)-C(8)	122.16(9)
C(14)-N(5)-Cu(3)	102.16(5)	C(9)-C(10)-C(11)	118.90(11)
C(37) - N(5) - Cu(3)	114.28(6)	C(9)-C(10)-H(10)	120.5
C(20)-N(6)-C(16)	119.31(8)	C(11)-C(10)-H(10)	120.5
C(20)-N(6)-Cu(3)	126.12(6)	C(12)-C(11)-C(10)	119.63(13)
C(16)-N(6)-Cu(3)	113.75(6)	C(12)-C(11)-H(11)	120.2
C(22)-N(7)-C(21)	108.07(9)	C(10)-C(11)-H(11)	120.2

C(11)-C(12)-C(13)	118.34(11)	C(24)-C(23)-C(22)	123.61(10)
C(11)-C(12)-H(12)	120.8	C(25)-C(24)-C(23)	119.40(10)
C(13)-C(12)-H(12)	120.8	C(25)-C(24)-H(24)	120.3
N(4)-C(13)-C(12)	122.92(9)	C(23)-C(24)-H(24)	120.3
N(4)-C(13)-C(14)	117.34(10)	C(24)-C(25)-C(26)	119.56(10)
C(12)-C(13)-C(14)	119.63(9)	C(24)-C(25)-H(25)	120.2
N(5)-C(14)-C(13)	115.47(8)	C(26)-C(25)-H(25)	120.2
N(5)-C(14)-H(14A)	108.4	C(27)-C(26)-C(25)	118.61(10)
C(13)-C(14)-H(14A)	108.4	C(27)-C(26)-H(26)	120.7
N(5)-C(14)-H(14B)	108.4	C(25)-C(26)-H(26)	120.7
C(13)-C(14)-H(14B)	108.4	N(8)-C(27)-C(26)	121.77(10)
H(14A)-C(14)-H(14B)	107.5	N(8)-C(27)-C(28)	115.86(8)
N(5)-C(15)-C(16)	113.24(7)	C(26)-C(27)-C(28)	122.32(9)
N(5)-C(15)-H(15A)	108.9	N(1)-C(28)-C(27)	113.61(9)
C(16)-C(15)-H(15A)	108.9	N(1)-C(28)-H(28A)	108.8
N(5)-C(15)-H(15B)	108.9	C(27)-C(28)-H(28A)	108.8
C(16)-C(15)-H(15B)	108.9	N(1)-C(28)-H(28B)	108.8
H(15A)-C(15)-H(15B)	107.7	C(27)-C(28)-H(28B)	108.8
N(6)-C(16)-C(17)	121.63(8)	H(28A)-C(28)-H(28B)	107.7
N(6)-C(16)-C(15)	117.29(8)	C(30)-C(29)-N(1)	108.82(8)
C(17)-C(16)-C(15)	121.01(8)	C(30)-C(29)-C(32)	107.66(11)
C(16)-C(17)-C(18)	119.53(8)	N(1)-C(29)-C(32)	109.56(8)
C(16)-C(17)-H(17)	120.2	C(30)-C(29)-C(31)	109.79(9)
C(18)-C(17)-H(17)	120.2	N(1)-C(29)-C(31)	111.76(10)
C(17)-C(18)-C(19)	118.36(9)	C(32)-C(29)-C(31)	109.16(8)
C(17)-C(18)-H(18)	120.8	C(29)-C(30)-H(30A)	109.5
C(19)-C(18)-H(18)	120.8	C(29)-C(30)-H(30B)	109.5
C(20)-C(19)-C(18)	119.39(8)	H(30A)-C(30)-H(30B)	109.5
C(20)-C(19)-H(19)	120.3	C(29)-C(30)-H(30C)	109.5
C(18)-C(19)-H(19)	120.3	H(30A)-C(30)-H(30C)	109.5
N(6)-C(20)-C(19)	121.73(8)	H(30B)-C(30)-H(30C)	109.5
N(6)-C(20)-C(21)	114.52(8)	C(29)-C(31)-H(31A)	109.5
C(19)-C(20)-C(21)	123.69(8)	C(29)-C(31)-H(31B)	109.5
N(7)-C(21)-C(20)	115.77(9)	H(31A)-C(31)-H(31B)	109.5
N(7)-C(21)-H(21A)	108.3	C(29)-C(31)-H(31C)	109.5
C(20)-C(21)-H(21A)	108.3	H(31A)-C(31)-H(31C)	109.5
N(7)-C(21)-H(21B)	108.3	H(31B)-C(31)-H(31C)	109.5
C(20)-C(21)-H(21B)	108.3	C(29)-C(32)-H(32A)	109.5
H(21A)-C(21)-H(21B)	107.4	C(29)-C(32)-H(32B)	109.5
N(7)-C(22)-C(23)	113.92(7)	H(32A)-C(32)-H(32B)	109.5
N(7)-C(22)-H(22A)	108.8	C(29)-C(32)-H(32C)	109.5
C(23)-C(22)-H(22A)	108.8	H(32A)-C(32)-H(32C)	109.5
N(7)-C(22)-H(22B)	108.8	H(32B)-C(32)-H(32C)	109.5
C(23)-C(22)-H(22B)	108.8	N(3)-C(33)-C(34)	108.58(8)
H(22A)-C(22)-H(22B)	107.7	N(3)-C(33)-C(36)	109.20(8)
N(8)-C(23)-C(24)	121.13(9)	C(34)-C(33)-C(36)	108.42(9)
N(8)-C(23)-C(22)	115.12(8)	N(3)-C(33)-C(35)	112.11(9)

C(34)-C(33)-C(35)	109.96(9)	N(7)-C(41)-C(43)	112.81(10)
C(36)-C(33)-C(35)	108.50(9)	C(42)-C(41)-C(43)	111.14(9)
C(33)-C(34)-H(34A)	109.5	C(44)-C(41)-C(43)	109.36(8)
C(33)-C(34)-H(34B)	109.5	C(41)-C(42)-H(42A)	109.5
H(34A)-C(34)-H(34B)	109.5	C(41)-C(42)-H(42B)	109.5
C(33)-C(34)-H(34C)	109.5	H(42A)-C(42)-H(42B)	109.5
H(34A)-C(34)-H(34C)	109.5	C(41)-C(42)-H(42C)	109.5
H(34B)-C(34)-H(34C)	109.5	H(42A)-C(42)-H(42C)	109.5
C(33)-C(35)-H(35A)	109.5	H(42B)-C(42)-H(42C)	109.5
C(33)-C(35)-H(35B)	109.5	C(41)-C(43)-H(43A)	109.5
H(35A)-C(35)-H(35B)	109.5	C(41)-C(43)-H(43B)	109.5
C(33)-C(35)-H(35C)	109.5	H(43A)-C(43)-H(43B)	109.5
H(35A)-C(35)-H(35C)	109.5	C(41)-C(43)-H(43C)	109.5
H(35B)-C(35)-H(35C)	109.5	H(43A)-C(43)-H(43C)	109.5
C(33)-C(36)-H(36A)	109.5	H(43B)-C(43)-H(43C)	109.5
C(33)-C(36)-H(36B)	109.5	C(41)-C(44)-H(44A)	109.5
H(36A)-C(36)-H(36B)	109.5	C(41)-C(44)-H(44B)	109.5
C(33)-C(36)-H(36C)	109.5	H(44A)-C(44)-H(44B)	109.5
H(36A)-C(36)-H(36C)	109.5	C(41)-C(44)-H(44C)	109.5
H(36B)-C(36)-H(36C)	109.5	H(44A)-C(44)-H(44C)	109.5
C(40)-C(37)-C(39)	108.21(9)	H(44B)-C(44)-H(44C)	109.5
C(40)-C(37)-N(5)	109.15(9)	O(7)-Cl(1)-O(5)	109.81(8)
C(39)-C(37)-N(5)	108.91(8)	O(7)-Cl(1)-O(8)	110.83(8)
C(40)-C(37)-C(38)	109.18(9)	O(5)-Cl(1)-O(8)	110.99(7)
C(39)-C(37)-C(38)	109.34(10)	O(7)-Cl(1)-O(6)	107.67(7)
N(5)-C(37)-C(38)	111.98(8)	O(5)-Cl(1)-O(6)	108.24(7)
C(37)-C(38)-H(38A)	109.5	O(8)-Cl(1)-O(6)	109.21(7)
C(37)-C(38)-H(38B)	109.5	O(7A)-Cl(1A)-O(6A)	112.9(4)
H(38A)-C(38)-H(38B)	109.5	O(7A)-Cl(1A)-O(8A)	111.1(3)
C(37)-C(38)-H(38C)	109.5	O(6A)-Cl(1A)-O(8A)	110.9(3)
H(38A)-C(38)-H(38C)	109.5	O(7A)-Cl(1A)-O(5A)	109.2(3)
H(38B)-C(38)-H(38C)	109.5	O(6A)-Cl(1A)-O(5A)	105.4(3)
C(37)-C(39)-H(39A)	109.5	O(8A)-Cl(1A)-O(5A)	106.9(3)
C(37)-C(39)-H(39B)	109.5	C(45)-N(9)-C(46)	119.14(14)
H(39A)-C(39)-H(39B)	109.5	C(45)-N(9)-C(47)	121.52(15)
C(37)-C(39)-H(39C)	109.5	C(46)-N(9)-C(47)	119.22(15)
H(39A)-C(39)-H(39C)	109.5	O(9)-C(45)-N(9)	126.67(15)
H(39B)-C(39)-H(39C)	109.5	O(9)-C(45)-H(45)	116.7
C(37)-C(40)-H(40A)	109.5	N(9)-C(45)-H(45)	116.7
C(37)-C(40)-H(40B)	109.5	N(9)-C(46)-H(46A)	109.5
H(40A)-C(40)-H(40B)	109.5	N(9)-C(46)-H(46B)	109.5
C(37)-C(40)-H(40C)	109.5	H(46A)-C(46)-H(46B)	109.5
H(40A)-C(40)-H(40C)	109.5	N(9)-C(46)-H(46C)	109.5
H(40B)-C(40)-H(40C)	109.5	H(46A)-C(46)-H(46C)	109.5
N(7)-C(41)-C(42)	107.96(8)	H(46B)-C(46)-H(46C)	109.5
N(7)-C(41)-C(44)	108.80(8)	N(9)-C(47)-H(47A)	109.5
C(42)-C(41)-C(44)	106.55(10)	N(9)-C(47)-H(47B)	109.5

H(47A)-C(47)-H(47B)	109.5
N(9)-C(47)-H(47C)	109.5
H(47A)-C(47)-H(47C)	109.5
H(47B)-C(47)-H(47C)	109.5
C(49)-N(10)-C(50)	135.3(2)
C(49)-N(10)-C(48)	110.5(2)
C(50)-N(10)-C(48)	108.82(17)
O(10)-C(48)-N(10)	125.92(19)
O(10)-C(48)-H(48)	117.0
N(10)-C(48)-H(48)	117.0
N(10)-C(49)-H(49A)	109.5
N(10)-C(49)-H(49B)	109.5
H(49A)-C(49)-H(49B)	109.5
N(10)-C(49)-H(49C)	109.5
H(49A)-C(49)-H(49C)	109.5
H(49B)-C(49)-H(49C)	109.5
N(10)-C(50)-H(50A)	109.5
N(10)-C(50)-H(50B)	109.5
H(50A)-C(50)-H(50B)	109.5
N(10)-C(50)-H(50C)	109.5
H(50A)-C(50)-H(50C)	109.5
H(50B)-C(50)-H(50C)	109.5
C(51)-N(11)-C(54)	120.06(13)
C(51)-N(11)-C(53)	118.50(11)
C(54)-N(11)-C(53)	121.15(12)
O(11)-C(51)-N(11)	125.74(14)
O(11)-C(51)-H(51)	117.1
N(11)-C(51)-H(51)	117.1
N(11)-C(53)-H(53A)	109.5
N(11)-C(53)-H(53B)	109.5
H(53A)-C(53)-H(53B)	109.5
N(11)-C(53)-H(53C)	109.5
H(53A)-C(53)-H(53C)	109.5
H(53B)-C(53)-H(53C)	109.5
N(11)-C(54)-H(54A)	109.5
N(11)-C(54)-H(54B)	109.5
H(54A)-C(54)-H(54B)	109.5
N(11)-C(54)-H(54C)	109.5
H(54A)-C(54)-H(54C)	109.5
H(54B)-C(54)-H(54C)	109.5

Symmetrietransformationen für die äquivalenten Atome:

#1 -x+1,-y+1,-z+1

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 07660.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2U_{11} + ... + 2hka^*b^*U_{12}$]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cu(1)	30(1)	22(1)	20(1)	0(1)	-11(1)	-9(1)
Cu(2)	37(1)	50(1)	24(1)	-7(1)	-17(1)	-4(1)
Cu(2A)	37(1)	50(1)	24(1)	-7(1)	-17(1)	-4(1)
Cu(3)	30(1)	23(1)	22(1)	2(1)	-13(1)	-9(1)
C(01)	29(1)	21(1)	29(1)	-5(1)	-12(1)	-5(1)
N(02)	38(1)	45(1)	29(1)	-9(1)	-18(1)	-1(1)
N(03)	42(1)	50(1)	30(1)	-3(1)	-17(1)	-12(1)
C(04)	34(1)	31(1)	24(1)	1(1)	-10(1)	-7(1)
N(1)	22(1)	24(1)	21(1)	-1(1)	-6(1)	-6(1)
N(2)	30(1)	21(1)	22(1)	2(1)	-12(1)	-10(1)
N(3)	28(1)	18(1)	23(1)	1(1)	-6(1)	-8(1)
N(4)	26(1)	22(1)	25(1)	0(1)	-9(1)	-8(1)
N(5)	23(1)	22(1)	22(1)	3(1)	-7(1)	-7(1)
N(6)	28(1)	23(1)	20(1)	1(1)	-11(1)	-10(1)
N(7)	24(1)	23(1)	33(1)	-4(1)	-15(1)	-6(1)
N(8)	14(1)	23(1)	24(1)	0(1)	-7(1)	-4(1)
C(1)	35(1)	25(1)	27(1)	-6(1)	-8(1)	-12(1)
C(2)	37(1)	20(1)	26(1)	2(1)	-14(1)	-12(1)
C(3)	42(1)	26(1)	34(1)	-5(1)	-11(1)	-17(1)
C(4)	43(1)	34(1)	42(1)	-1(1)	-17(1)	-22(1)
C(5)	24(1)	33(1)	36(1)	-4(1)	-8(1)	-11(1)
C(6)	24(1)	19(1)	22(1)	4(1)	-7(1)	-10(1)
C(7)	26(1)	22(1)	26(1)	-1(1)	-9(1)	-12(1)
C(8)	31(1)	24(1)	27(1)	-1(1)	-10(1)	-7(1)
C(9)	27(1)	24(1)	33(1)	1(1)	-12(1)	-10(1)
C(10)	46(1)	27(1)	80(1)	-1(1)	-37(1)	-14(1)
C(11)	53(1)	42(1)	89(1)	-8(1)	-49(1)	-15(1)
C(12)	38(1)	37(1)	60(1)	2(1)	-32(1)	-9(1)
C(13)	24(1)	26(1)	28(1)	0(1)	-11(1)	-10(1)
C(14)	28(1)	27(1)	28(1)	5(1)	-13(1)	-9(1)
C(15)	28(1)	21(1)	34(1)	2(1)	-12(1)	-5(1)
C(16)	31(1)	18(1)	22(1)	-1(1)	-14(1)	-7(1)
C(17)	34(1)	19(1)	28(1)	3(1)	-14(1)	-11(1)
C(18)	36(1)	27(1)	28(1)	1(1)	-12(1)	-17(1)
C(19)	30(1)	26(1)	31(1)	-1(1)	-6(1)	-13(1)
C(20)	24(1)	22(1)	28(1)	-5(1)	-13(1)	-6(1)

C(21)	27(1)	21(1)	32(1)	0(1)	-12(1)	-9(1)	
C(22)	32(1)	15(1)	29(1)	-1(1)	-13(1)	-6(1)	
C(23)	14(1)	23(1)	28(1)	0(1)	-7(1)	-4(1)	
C(24)	32(1)	22(1)	35(1)	3(1)	-10(1)	-7(1)	
C(25)	41(1)	28(1)	30(1)	8(1)	-10(1)	-10(1)	
C(26)	39(1)	31(1)	21(1)	2(1)	-11(1)	-8(1)	
C(27)	25(1)	25(1)	21(1)	3(1)	-12(1)	-7(1)	
C(28)	30(1)	29(1)	19(1)	-2(1)	-12(1)	-8(1)	
C(29)	29(1)	30(1)	29(1)	-8(1)	-12(1)	4(1)	
C(30)	29(1)	40(1)	48(1)	-6(1)	-14(1)	-7(1)	
C(31)	38(1)	35(1)	30(1)	-6(1)	-8(1)	-3(1)	
C(32)	41(1)	32(1)	31(1)	-4(1)	-16(1)	2(1)	
C(33)	36(1)	25(1)	25(1)	4(1)	-11(1)	-10(1)	
C(34)	47(1)	36(1)	34(1)	3(1)	-3(1)	-17(1)	
C(35)	49(1)	36(1)	31(1)	2(1)	-19(1)	-12(1)	
C(36)	51(1)	27(1)	33(1)	5(1)	-14(1)	-11(1)	
C(37)	31(1)	26(1)	28(1)	4(1)	-6(1)	-5(1)	
C(38)	36(1)	33(1)	37(1)	7(1)	-6(1)	-3(1)	
C(39)	33(1)	41(1)	36(1)	7(1)	-1(1)	-13(1)	
C(40)	40(1)	42(1)	30(1)	-6(1)	-9(1)	-4(1)	
C(41)	31(1)	25(1)	37(1)	-2(1)	-14(1)	-11(1)	
C(42)	40(1)	39(1)	56(1)	-2(1)	-28(1)	-16(1)	
C(43)	49(1)	37(1)	33(1)	-1(1)	-18(1)	-15(1)	
C(44)	47(1)	36(1)	44(1)	-12(1)	-21(1)	-14(1)	
Cl(1)	35(1)	31(1)	66(1)	17(1)	-26(1)	-18(1)	
0(5)	73(1)	42(1)	136(1)	19(1)	-62(1)	-19(1)	
0(6)	59(1)	65(1)	66(1)	17(1)	-22(1)	-20(1)	
0(7)	101(1)	77(1)	89(1)	20(1)	-71(1)	-46(1)	
0(8)	50(1)	30(1)	136(1)	27(1)	-14(1)	-22(1)	
Cl(1A)	32(1)	35(1)	83(2)	9(1)	10(1)	-3(1)	
0(9)	61(1)	67(1)	105(1)	-24(1)	-6(1)	-29(1)	
N(9)	49(1)	83(1)	71(1)	23(1)	-20(1)	-30(1)	
C(45)	50(1)	46(1)	63(1)	5(1)	-10(1)	-32(1)	
C(46)	79(1)	272(2)	74(1)	42(1)	-39(1)	-91(1)	
C(47)	55(1)	60(1)	163(2)	39(1)	-14(1)	-21(1)	
0(10)	65(1)	63(1)	84(2)	0(1)	2(1)	-17(1)	
N(10)	165(2)	36(1)	99(1)	-12(1)	-75(1)	-7(1)	
C(48)	46(1)	42(1)	68(2)	-7(1)	-22(1)	-1(1)	
C(49)	250(5)	66(2)	82(3)	-5(2)	31(3)	-74(2)	
C(50)	89(2)	55(2)	99(2)	-22(2)	13(2)	-27(2)	
0(11)	66(1)	89(1)	38(1)	-8(1)	-14(1)	-33(1)	
N(11)	44(1)	39(1)	52(1)	-11(1)	-17(1)	-12(1)	
C(51)	49(1)	56(1)	49(1)	-18(1)	-11(1)	-15(1)	
C(53)	74(1)	76(1)	81(1)	8(1)	-35(1)	-45(1)	
C(54)	85(1)	42(1)	61(1)	-10(1)	-35(1)	-2(1)	
Tabelle 5.

H-Atomkoordinaten	[x 10 ⁴] und äc	quivalente isotrop	e Auslenkungs	sparameter [.	Å ² x 10	³] für 0766o.
-------------------	---------------------	----------	--------------------	---------------	---------------	---------------------	---------------------------

	x	У	Z	U(eq)
H(1A)	3831	8655	9688	33
H(1B)	3559	9008	8833	33
H(3)	5835	8689	9210	38
H(4)	7717	8027	8400	43
H(5)	8120	6856	7467	37
H(7A)	6726	5390	7634	28
H(7B)	5944	6132	7101	28
H(8A)	8580	4552	5902	33
H(8B)	7459	4446	6571	33
H(10)	9186	5281	7315	56
H(11)	10401	4336	8114	64
H(12)	10810	2644	8243	51
H(14A)	10785	1205	7690	33
H(14B)	9463	1440	8198	33
H(15A)	9588	-16	7801	33
H(15B)	9214	15	6999	33
H(17)	7734	-259	8614	31
H(18)	5739	475	9195	34
H(19)	4823	2102	8800	34
H(21A)	5940	3735	8075	31
H(21B)	6212	3427	7172	31
H(22A)	3363	5070	7840	30
Н(22В)	4656	5060	7674	30
Н(24)	3662	3619	9370	36
Н(25)	3173	4032	10710	41
Н(26)	3088	5574	10991	37
H(28A)	2995	7260	10467	30
H(28B)	4319	6969	9950	30
H(30A)	1585	7127	9253	58
H(30B)	450	7933	9750	58
H(30C)	1387	7227	10196	58
H(31A)	637	9252	10359	56
H(31B)	1774	9552	10020	56
H(31C)	1770	8642	10649	56
H(32A)	1967	8495	8276	55
H(32B)	1965	9442	8628	55
H(32C)	794	9201	8832	55
H(34A)	9040	6381	5348	61
H(34B)	8384	6575	4661	61
H(34C)	8906	5486	5008	61

7	Anhang

H(35A)	6984	5263	5367	56	
H(35B)	6438	6339	5008	56	
H(35C)	5869	6034	5916	56	
H(36A)	6048	7495	6374	57	
H(36B)	6645	7760	5461	57	
H(36C)	7281	7634	6149	57	
H(38A)	11362	-684	6939	59	
H(38B)	12015	б	7051	59	
H(38C)	12387	-504	6210	59	
H(39A)	12103	1185	5559	60	
H(39B)	11627	1672	6419	60	
H(39C)	10859	2018	5792	60	
H(40A)	9857	888	5577	60	
H(40B)	10331	-228	5879	60	
H(40C)	11179	238	5210	60	
H(42A)	2739	3348	7741	61	
H(42B)	2752	3647	6816	61	
H(42C)	2534	4460	7422	61	
H(43A)	4206	4923	6467	56	
H(43B)	4446	4100	5864	56	
H(43C)	5458	4104	6213	56	
H(44A)	5687	2357	6645	59	
H(44B)	4575	2386	6402	59	
H(44C)	4664	2082	7308	59	
H(45)	-238	7714	5777	61	
H(46A)	1140	7306	7465	200	
H(46B)	305	6678	7840	200	
H(46C)	-233	7836	7703	200	
H(47A)	949	5653	6549	151	
H(47B)	1968	6105	6280	151	
H(47C)	1146	6265	5709	151	
H(48)	1619	4247	9153	64	
H(49A)	301	4445	10978	216	
H(49B)	935	3745	10228	216	
H(49C)	-422	3991	10642	216	
H(50A)	-1395	6053	10444	131	
H(50B)	-687	6277	9551	131	
H(50C)	-227	6279	10307	131	
H(51)	2982	9338	4241	62	
H(53A)	5575	9293	4314	103	
H(53B)	5420	10364	3901	103	
H(53C)	6041	9427	3355	103	
H(54A)	4517	9860	2582	96	
H(54B)	3985	10898	2990	96	
H(54C)	3201	10229	3119	96	

7.2.4 Kobalt-Komplexe

7.2.4.1 [Co(L-N₄Ad^tBu)Cl₂] 68

7.2.4.1.1 IR

7.2.4.1.2 Struktur

Tabelle 1. Kristalldaten und Strukturverfeinerung für 06580.

Summenformel	$C_{35}H_{43}Cl_2CoN_5$	
Molmasse	663.57	
Temperatur	150(2) K	
Strahlung	ΜοΚα	
Wellenlänge	0.71073 Å	
Scanmodus	Ω -scans	
Kristallsystem	Orthorhombisch	
Raumgruppe	P212121	
Zelldimensionen	a = 10.4007(4) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 15.7218(5) Å	$\beta = 90^{\circ}$
	c = 19.4579(6) Å	$\gamma = 90^{\circ}$
Zellvolumen	3181.71(19) Å ³	
Formeleinheiten pro Zelle Z	4	
Berechnete Dichte	1.385 Mg/m ³	
Absorptionskoeffizient	0.741 mm ⁻¹	

7	Anhang
---	--------

Kristallgröße	0.52 x 0.28 x 0.20 mm
Gemessener θ-Bereich	2.35 bis 31.50°
Anzahl der gemessenen Reflexe	23522
Unabhängige Reflexe	9770 (Rint = 0.0267)
Absorptionskorrektur	Semi-empirisch aus Äquivalenten
Max. und min. Transmission	0.72771 und 0.69555
Diffraktometer	Oxford Diffraction Gemini S Ultra
Strukturlösung	Direkte Methoden
Strukturlösungsprogramm	SHELXS-97 (Sheldrick, 1990)
Strukturverfeinerung	Vollmatrix Least-Squares gegen F ²
Strukturverfeinerungsprogramm	SHELXL-97 (Sheldrick, 1997)
Daten / Restraints / Parameter	9770 / 0 / 391
Endgültige R-Werte [I>2o(I)]	R1 = 0.0258, wR2 = 0.0489
R-Werte (alle Daten)	R1 = 0.0328, $wR2 = 0.0510$
Absolutstrukturparameter	0.002(6)
Wichtungsschema	w=1/[$\sigma^2(Fo^2)$ +(0.0250P) ²] mit P=(Fo ² +2Fc ²)/3
GooF (alle Daten)	0.966
Größtes Maximum und Minimum	0.265 und -0.255 eÅ ⁻³

Verfeinerung nach F² mit ALLEN Reflexen. Die gewichteten R-Werte wR2 und alle GooF's basieren auf F². Die konventionellen R-Werte R1 basieren auf F, wobei F für negative F² gleich Null gesetzt wird. Das Ablehnungskriterium $F^2 > 2\sigma(F^2)$ wird nur zum Berechnen von R(obs) etc. verwendet. Zur Verfeinerung wurden alle Reflexe herangezogen. Grundsätzlich gilt: Auf F² bezogene R-Werte sind statistisch etwa doppelt so groß wie die auf F basierenden. Auf ALLE Reflexe bezogene R-Werte sind noch größer.

Die Wasserstoffatome wurden geometrisch lokalisiert. Für die Verfeinerung wurde ein Reitermodell angenommen. Als Temperaturfaktor wurde der 1.5-fache Wert (CH_3 -Gruppen), der 1.2-fache Wert (CH-Gruppen) bzw. der 1.2-fache Wert (Cp-H oder Ar-H) des äquivalenten isotropen Temperaturfaktors desjenigen C-Atoms eingesetzt, an welches das jeweilige H-Atom gebunden ist.

Einzelheiten können dem Handbuch für das Verfeinerungsprogramm SHELXL entnommen werden.

$$GooF = \sqrt{\frac{\sum \left[w\left(F_o^2 - F_c^2\right)\right]}{(n-p)}}$$
 n = Zahl der Reflexe; p = Zahl der verfeinerten Parameter

Tabelle 2.

Atomkoordinaten [x 10 ⁴] und äquivalente isotrope Auslenkungsparameter [Å ² x 10 ³] für 06580.
U(eq) wird berechnet als ein Drittel der Spur des orthogonalisierten U_{ij} -Tensors.

	x	У	Z	U(eq)
$C_{O}(1)$	9468(1)	1603(1)	8471(1)	17(1)
C1(1)	9079(1)	257(1)	7975(1)	$\frac{1}{28(1)}$
C1(2)	11707(1)	1438(1)	8703(1)	25(1)
$\mathbf{U}(\mathbf{Z})$	8335(1)	1300(1)	9541(1)	23(1) 17(1)
N(1)	7550(1)	1920(1)	8270(1)	18(1)
N(2)	9613(1)	1920(1)	7516(1)	10(1)
N(3)	9013(1)	2504(1)	7510(1) 9011(1)	17(1)
N(4)	9471(1)	2012(1)	0911(1)	(1)
C(1)	7112(1)	1045(1)	9200(1)	21(1)
C(2)	5031(1)	1565(1)	0001(1)	20(1)
C(3)	5340(1)	16/4(1)	8510(1)	24(1)
C(4)	5017(1)	2146(1)	7935(I)	27(1)
C(5)	5960(1)	2533(1)	7551(1)	26(1)
C(6)	/23/(1)	2428(1)	7746(1)	19(1)
C(7)	8307(1)	2945(1)	7434(1)	21(1)
C(8)	10483(1)	3203(1)	7842(1)	20(1)
C(9)	9964(1)	3452(1)	8538(1)	18(1)
C(10)	9928(1)	4285(1)	8766(1)	21(1)
C(11)	9376(1)	4451(1)	9403(1)	23(1)
C(12)	8827(1)	3794(1)	9772(1)	20(1)
C(13)	8856(1)	2975(1)	9503(1)	16(1)
C(14)	8071(1)	2266(1)	9817(1)	19(1)
C(15)	10123(1)	2261(1)	6823(1)	22(1)
C(16)	10356(1)	3003(1)	6326(1)	26(1)
C(17)	11374(2)	1773(1)	6930(1)	34(1)
C(18)	9137(2)	1654(1)	6511(1)	31(1)
C(19)	8921(1)	817(1)	10082(1)	18(1)
C(20)	9333(1)	-28(1)	9751(1)	20(1)
C(21)	9967(1)	-611(1)	10287(1)	24(1)
C(22)	9018(2)	-798(1)	10870(1)	29(1)
C(23)	8629(1)	41(1)	11210(1)	28(1)
C(24)	9818(1)	482(1)	11500(1)	30(1)
C(25)	10766(1)	664(1)	10912(1)	25(1)
C(26)	10129(1)	1242(1)	10378(1)	21(1)
C(27)	11163(1)	-173(1)	10575(1)	27(1)
C(28)	7985(1)	615(1)	10674(1)	24(1)
N(5)	12343(2)	-2201(1)	10082(1)	48(1)
C(29)	13806(2)	-1357(1)	9255(1)	29(1)
C(30)	13312(2)	-704(1)	8849(1)	30(1)
C(31)	14117(2)	-292(1)	8393(1)	36(1)

C(32)	15396(2)	-510(1)	8353(1)	43(1)
C(33)	15884(2)	-1145(1)	8763(1)	43(1)
C(34)	15093(2)	-1578(1)	9215(1)	39(1)
C(35)	12978(2)	-1821(1)	9716(1)	35(1)

Tabelle 3. Bindungslängen [Å] und -winkel [°] für 06580.

Co(1)-N(4)	2.0843(10)	C(12)-C(13)	1.3908(17)
Co(1)-N(2)	2.0928(11)	C(13)-C(14)	1.5107(18)
Co(1)-Cl(1)	2.3603(4)	C(15)-C(17)	1.5249(19)
Co(1)-Cl(2)	2.3866(4)	C(15)-C(18)	1.5268(19)
Co(1)-N(3)	2.4008(10)	C(15)-C(16)	1.5336(18)
Co(1)-N(1)	2.4128(10)	C(19)-C(26)	1.5353(18)
N(1)-C(14)	1.4906(16)	C(19)-C(20)	1.5377(17)
N(1)-C(1)	1.4931(16)	C(19)-C(28)	1.5421(18)
N(1)-C(19)	1.5220(15)	C(20)-C(21)	1.5366(18)
N(2)-C(6)	1.3364(16)	C(21)-C(27)	1.529(2)
N(2)-C(2)	1.3421(16)	C(21)-C(22)	1.532(2)
N(3)-C(7)	1.4924(16)	C(22)-C(23)	1.530(2)
N(3)-C(8)	1.4939(16)	C(23)-C(24)	1.526(2)
N(3)-C(15)	1.5252(16)	C(23)-C(28)	1.534(2)
N(4)-C(13)	1.3414(16)	C(24)-C(25)	1.538(2)
N(4)-C(9)	1.3441(15)	C(25)-C(27)	1.525(2)
C(1)-C(2)	1.5104(17)	C(25)-C(26)	1.5312(19)
C(2)-C(3)	1.3795(17)	N(5)-C(35)	1.140(2)
C(3)-C(4)	1.3853(19)	C(29)-C(34)	1.385(2)
C(4)-C(5)	1.375(2)	C(29)-C(30)	1.394(2)
С(5)-С(б)	1.3918(19)	C(29)-C(35)	1.442(2)
C(6)-C(7)	1.5062(18)	C(30)-C(31)	1.381(2)
C(8)-C(9)	1.5092(16)	C(31)-C(32)	1.377(3)
C(9)-C(10)	1.3826(17)	C(32)-C(33)	1.374(3)
C(10)-C(11)	1.3908(19)	C(33)-C(34)	1.384(2)
C(11)-C(12)	1.3815(18)		

N(4)-Co(1)-N(2)	82.02(4)	Cl(2)-Co(1)-N(3)	98.80(3)
N(4)-Co(1)-Cl(1)	170.22(3)	N(4)-Co(1)-N(1)	76.54(4)
N(2)-Co(1)-Cl(1)	88.49(3)	N(2)-Co(1)-N(1)	74.19(4)
N(4)-Co(1)-Cl(2)	91.12(3)	Cl(1)-Co(1)-N(1)	98.65(3)
N(2)-Co(1)-Cl(2)	172.44(3)	Cl(2)-Co(1)-N(1)	107.41(3)
Cl(1)-Co(1)-Cl(2)	98.485(14)	N(3)-Co(1)-N(1)	141.44(4)
N(4)-Co(1)-N(3)	75.15(3)	C(14)-N(1)-C(1)	108.42(10)
N(2)-Co(1)-N(3)	76.42(4)	C(14)-N(1)-C(19)	111.98(9)
Cl(1)-Co(1)-N(3)	104.99(3)	C(1)-N(1)-C(19)	111.69(9)

7 Anhang

C(14)-N(1)-Co(1)	106.26(7)	C(26)-C(19)-C(28)	109.02(10)
C(1)-N(1)-Co(1)	98.62(7)	C(20)-C(19)-C(28)	108.08(10)
C(19)-N(1)-Co(1)	118.74(7)	C(21)-C(20)-C(19)	110.57(10)
C(6)-N(2)-C(2)	120.49(11)	C(27)-C(21)-C(22)	109.80(11)
C(6)-N(2)-Co(1)	121.13(9)	C(27)-C(21)-C(20)	109.25(11)
C(2)-N(2)-Co(1)	118.30(8)	C(22)-C(21)-C(20)	109.88(12)
C(7)-N(3)-C(8)	109.11(9)	C(23)-C(22)-C(21)	108.96(11)
C(7)-N(3)-C(15)	110.30(10)	C(24)-C(23)-C(22)	109.73(13)
C(8)-N(3)-C(15)	111.98(10)	C(24)-C(23)-C(28)	109.74(12)
C(7)-N(3)-Co(1)	106.18(7)	C(22)-C(23)-C(28)	109.23(11)
C(8)-N(3)-Co(1)	97.65(7)	C(23)-C(24)-C(25)	109.18(11)
C(15)-N(3)-Co(1)	120.62(7)	C(27)-C(25)-C(26)	109.77(11)
C(13)-N(4)-C(9)	120.18(10)	C(27)-C(25)-C(24)	109.43(12)
C(13)-N(4)-Co(1)	121.74(8)	C(26)-C(25)-C(24)	109.74(12)
C(9)-N(4)-Co(1)	117.51(8)	C(25)-C(26)-C(19)	110.48(10)
N(1)-C(1)-C(2)	111.25(10)	C(25)-C(27)-C(21)	109.03(12)
N(2)-C(2)-C(3)	121.20(11)	C(23)-C(28)-C(19)	110.70(11)
N(2)-C(2)-C(1)	115.25(11)	C(34)-C(29)-C(30)	120.63(15)
C(3)-C(2)-C(1)	123.56(11)	C(34)-C(29)-C(35)	119.02(15)
C(2)-C(3)-C(4)	118.53(12)	C(30)-C(29)-C(35)	120.35(14)
C(5)-C(4)-C(3)	120.00(13)	C(31)-C(30)-C(29)	119.09(15)
C(4)-C(5)-C(6)	118.71(12)	C(32)-C(31)-C(30)	120.29(16)
N(2)-C(6)-C(5)	120.76(12)	C(33)-C(32)-C(31)	120.43(16)
N(2)-C(6)-C(7)	116.81(11)	C(32)-C(33)-C(34)	120.39(16)
C(5)-C(6)-C(7)	122.11(11)	C(33)-C(34)-C(29)	119.15(16)
N(3)-C(7)-C(6)	114.36(10)	N(5)-C(35)-C(29)	178.53(18)
N(3)-C(8)-C(9)	109.75(10)		
N(4)-C(9)-C(10)	121.68(11)		
N(4)-C(9)-C(8)	115.31(10)		
C(10)-C(9)-C(8)	122.92(11)		
C(9)-C(10)-C(11)	118.38(12)		
C(12)-C(11)-C(10)	119.59(12)		
C(11)-C(12)-C(13)	119.15(11)		
N(4)-C(13)-C(12)	120.73(11)		
N(4)-C(13)-C(14)	117.66(11)		
C(12)-C(13)-C(14)	121.20(11)		
N(1)-C(14)-C(13)	115.35(10)		
N(3)-C(15)-C(17)	109.49(10)		
N(3)-C(15)-C(18)	108.25(11)		
C(17)-C(15)-C(18)	108.20(12)		
N(3)-C(15)-C(16)	112.00(10)		
C(17)-C(15)-C(16)	109.48(12)		
C(18)-C(15)-C(16)	109.34(11)		
N(1)-C(19)-C(26)	109.01(10)		
N(1)-C(19)-C(20)	109.99(9)		
C(26)-C(19)-C(20)	107.79(10)		
N(1)-C(19)-C(28)	112.83(10)		

Tabelle 4. Anisotrope Auslenkungsparameter $[Å^2 x 10^3]$ für 06580.

Der Exponent des anisotropen Auslenkungsfaktors hat die Form: $-2\pi^2$ [$(ha^*)^2 U_{11} + ... + 2hka^*b^*U_{12}$]

	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Co(1)	16(1)	15(1)	20(1)	-2(1)	-2(1)	1(1)
Cl(1)	47(1)	16(1)	22(1)	-2(1)	0(1)	-1(1)
Cl(2)	18(1)	36(1)	22(1)	3(1)	0(1)	5(1)
N(1)	16(1)	16(1)	19(1)	0(1)	1(1)	-1(1)
N(2)	16(1)	17(1)	21(1)	1(1)	-2(1)	0(1)
N(3)	17(1)	17(1)	17(1)	0(1)	0(1)	1(1)
N(4)	17(1)	17(1)	17(1)	-1(1)	0(1)	-1(1)
C(1)	16(1)	23(1)	25(1)	5(1)	-1(1)	-4(1)
C(2)	18(1)	19(1)	23(1)	1(1)	0(1)	0(1)
C(3)	15(1)	25(1)	32(1)	0(1)	0(1)	-1(1)
C(4)	16(1)	30(1)	36(1)	1(1)	-6(1)	1(1)
C(5)	24(1)	27(1)	26(1)	4(1)	-5(1)	3(1)
C(6)	20(1)	19(1)	20(1)	0(1)	-2(1)	2(1)
C(7)	22(1)	19(1)	22(1)	3(1)	-3(1)	3(1)
C(8)	20(1)	18(1)	20(1)	0(1)	2(1)	-3(1)
C(9)	15(1)	18(1)	20(1)	0(1)	-1(1)	-2(1)
C(10)	21(1)	18(1)	25(1)	0(1)	-1(1)	-2(1)
C(11)	22(1)	16(1)	30(1)	-6(1)	-2(1)	1(1)
C(12)	20(1)	22(1)	18(1)	-3(1)	-2(1)	4(1)
C(13)	14(1)	18(1)	16(1)	0(1)	-3(1)	4(1)
C(14)	20(1)	18(1)	20(1)	0(1)	5(1)	1(1)
C(15)	27(1)	23(1)	15(1)	0(1)	1(1)	3(1)
C(16)	31(1)	28(1)	20(1)	3(1)	5(1)	1(1)
C(17)	39(1)	42(1)	23(1)	-3(1)	2(1)	20(1)
C(18)	46(1)	25(1)	22(1)	-2(1)	-5(1)	-3(1)
C(19)	17(1)	18(1)	18(1)	2(1)	2(1)	-1(1)
C(20)	20(1)	19(1)	20(1)	-1(1)	0(1)	0(1)
C(21)	28(1)	21(1)	25(1)	2(1)	-1(1)	2(1)
C(22)	31(1)	27(1)	30(1)	11(1)	-1(1)	-4(1)
C(23)	29(1)	32(1)	23(1)	6(1)	6(1)	-4(1)
C(24)	37(1)	36(1)	19(1)	3(1)	0(1)	-1(1)
C(25)	22(1)	31(1)	22(1)	-1(1)	-3(1)	-3(1)
C(26)	23(1)	23(1)	18(1)	0(1)	1(1)	-5(1)
C(27)	24(1)	32(1)	25(1)	5(1)	-3(1)	1(1)
C(28)	22(1)	27(1)	22(1)	2(1)	4(1)	-2(1)
N(5)	44(1)	53(1)	48(1)	9(1)	-2(1)	0(1)
C(29)	29(1)	30(1)	28(1)	-7(1)	-4(1)	-1(1)
C(30)	31(1)	28(1)	31(1)	-9(1)	-4(1)	0(1)
C(31)	47(1)	29(1)	31(1)	-5(1)	-4(1)	-7(1)
C(32)	45(1)	45(1)	38(1)	-16(1)	4(1)	-18(1)

kauf

C(33)	26(1)	53(1)	51(1)	-22(1)	-5(1)	-3(1)
C(34)	36(1)	40(1)	39(1)	-8(1)	-11(1)	4(1)
C(35)	35(1)	37(1)	33(1)	0(1)	-7(1)	5(1)

Tabelle 5.

H-Atomkoordinaten [x 10⁴] und äquivalente isotrope Auslenkungsparameter [Å² x 10³] für 06580.

	x	У	Z	U(eq)
H(1A)	6465	1038	9619	26
H(1B)	7253	463	9113	26
H(3)	4714	1436	8788	29
H(4)	4158	2202	7809	33
H(5)	5748	2858	7168	31
H(7A)	8135	3017	6947	25
H(7B)	8306	3505	7642	25
H(8A)	10545	3703	7551	23
H(8B)	11338	2964	7892	23
H(10)	10264	4723	8500	25
H(11)	9377	5000	9580	27
H(12)	8442	3898	10195	24
H(14A)	8226	2261	10309	23
H(14B)	7167	2393	9748	23
H(16A)	9560	3294	6242	39
H(16B)	10690	2788	5901	39
H(16C)	10964	3391	6525	39
H(17A)	12013	2148	7117	51
H(17B)	11668	1554	6497	51
H(17C)	11229	1310	7242	51
H(18A)	8934	1216	6837	46
H(18B)	9487	1401	6103	46
H(18C)	8370	1963	6397	46
H(20A)	8586	-310	9558	24
H(20B)	9934	83	9381	24
H(21)	10219	-1146	10067	29
H(22A)	8263	-1082	10688	35
H(22B)	9416	-1170	11206	35
H(23)	8022	-75	11584	33
H(24A)	10223	121	11842	36
H(24B)	9572	1011	11721	36
H(25)	11530	947	11097	30
H(26A)	10732	1360	10010	26
H(26B)	9897	1779	10591	26
H(27A)	11575	-538	10912	32

8 Lebenskauf

H(27B)	11772	-63	10208	32	
H(28A)	7713	1141	10891	28	
H(28B)	7228	334	10492	28	
н(30)	12452	-548	8884	36	
H(31)	13793	135	8111	43	
H(32)	15934	-227	8048	51	
H(33)	16752	-1285	8736	52	
H(34)	15421	-2011	9489	46	

8 Lebenslauf

Geburtsdatum:	25.4.1975		
Geburtsort:	Pirmasens		
Staatsbürgerschaft:	Deutsch		
Schulbildung:			
1981-1985	Grundschule Thaleischweiler- Fröschen.		
Leibniz- Gymnasium	Pirmasens.		
6.1994	Allgemeine Hochschulreife		
	Leistungsfächer: Mathematik, Chemie, Geschichte.		
Wehrdienst:			
7.1994- 6.1995	ABC- Abwehr Btl. 310 in Zweibrücken.		
Studium:			
8.1995	Zulassung Chemie (Diplom) Universität Kaiserslautern		
9. 1999	Vordiplom Universität Kaiserslautern		
	Forschungspraktika:		
	Anorganische Chemie: AK. Prof. Dr. Sitzmann		
"Darstellung und	Charakterisierung sterisch aufwendig substituierter Chrom(II)-		
Indenylkomplexe im	Hinblick auf Feststellung katalytischer Aktivität"		
	Organische Chemie: AK Prof. Dr. Regitz		
"Ein neuer Weg zur I	Darstellung substituierter 1,4-Azaphosphinine"		
	Technische Chemie: AK Prof. Dr. Ernst		
"Synthese Charakteri	sierung und katalytische Aktivität metallsubstituierter Alumophosphate		
mit AEL- und AFO-	Struktur"		
8.2003	Diplom Universität Kaiserslautern		
	Diplomarbeit: Bioanorganische Chemie: A.K. Prof. Krüger Ph. D.		
"Darstellung unsymm	netrisch substituierter Diazapyridinophanliganden und ihrer Komplexe"		
10.2003	Promotionsbeginn (Wissenschaftlicher Mitarbeiter)		