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Prof. Martin Maier for their interest in my work and for acting as referees, as well as to Prof. Dietmar
Eifler, representing the head of the committee.

Providing the basic network for scientific exchange, I wouldlike to thank all my colleagues for the
pleasant collaboration, especially Michael Scherer, Rouven Mohr and Stefan Uhlar. Finally, I would
like to thank my family for the continuous support and encouragement.

Kaiserslautern, July 2008 Johannes Utzinger

i





Abstract

The present thesis is concerned with the simulation of the loading behaviour of both hybrid lightweight
structures and piezoelectric mesostructures, with a special focus on solid interfaces on the meso scale.
Furthermore, an analytical review on bifurcation modes of continuum-interface problems is included.
The inelastic interface behaviour is characterised by elastoplastic, viscous, damaging and fatigue-
motivated models. For related numerical computations, theFinite Element Method is applied. In this
context, so-called interface elements play an important role. The simulation results are reflected by
numerous examples which are partially correlated to experimental data.

Keywords: solid interfaces, bifurcation, ferroelectric fatigue, hybrid lightweight structures
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1 Introduction

Progressive developments in technology demand materials and engineering structures with increasing
application potential and complexity. In this context, solid interfaces play a decisive role (Butt et
al. [30]). They inhere major influences on the physical properties of both natural and artificially
manufactured materials.

An example for a modern engineering structure is given by means of hybrid joints of metals and
fibre-reinforced polymers, which are investigated in the DFG Research Unit 524 “Manufacturing,
Characterisation and Simulation of Welded Lightweight Structures of Metal/Fibre-Reinforced Poly-
mer Composites”. By the combination of metals and polymers,a very large application field is deve-
loped, including the automotive and aerospace industry. Related, the incorporation of such lightweight
materials contributes to both the economy and the ecology. In contrast to other joining methods, weld-
ing has advantages concerning the surface pretreatment andmanufacturing time.

Materials that have one or more properties that can be significantly changed in a controlled fash-
ion by external stimuli, such as stress, temperature, moisture, pH, electric or magnetic fields, are
called “smart materials”. They constitute another field of modern engineering materials with many
applications, e.g. in sensor or medical technology. One subarea of smart materials is represented by
ferroelectric ceramics. Applied as sensors, actuators or storage segments, they are present in everyday
life.

The simulation of such modern engineering structures is economically imperative. By the ap-
plication of adequate physical models and subsequent mathematical treatment, several benefits are
achieved. If a structure can successfully be simulated, thenumber of related experiments can be re-
duced and a prediction of, e.g., the mechanical behaviour becomes possible. Furthermore, related
scientific fields as, for example, material science can profitfrom ideas and results generated in the
environment of modelling and simulation.

In view of numerical simulations, solid interfaces can be related to the meso scale. In this respect,
they constitute a link between some macroscopic surrounding materials, which are called the bulk
materials, and some microscopic matter which is resident inthe interior of the interface domain. Ge-
nerally, compared to the surrounding bulk materials, solidinterfaces are discontinuities with respect to
their geometrical and physical properties. Concerning mechanics, jumps of stiffnesses or other model-
dependent parameters have to be considered. In order to describe the failure of such discontinuities, so-
calledtraction-separation-lawsor cohesive lawscan be applied, tracing back to the work of Dugdale
[48] and Barenblatt [7].

Concerning Finite Element Methods (FEM), diverse possibilities to account for solid interfaces are
known. A first possibility is given by an embedded discontinuity approach. There, discontinuities
are inserted by means of additional degrees of freedom on theelement level, see, e.g., Ortiz et al.
[131], Belytschko et al. [15], Klisinski et al. [80], Lofti and Shing [96], Simo and Armero [162]
and Simo et al. [163]. Though arbitrary orientation is permitted, the discontinuities are incompatible
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1 Introduction

over the element boundaries. Another method is known as the “Extended Finite Element Method” –
(XFEM), introduced by Belytschko and Black [14] and Moës etal. [121]. It is based on the partition
of unity concept (Melenk and Babuška [109]). Here, the approximated displacement field is enriched
at the nodes by additional discontinuous functions. Therefore, discontinuities are compatible with
the element boundaries, see also Sukumar et al. [172], Dolbow et al. [46] and Wells and Sluys
[186]. The XFEM is applicable to any finite element type but all nodes have to be equipped with
the additional degrees of freedom. Some related methods arediscussed in, e.g., Hansbo and Hansbo
[61, 60], Mergheim and Steinmann [115], Mergheim [113] and Mergheim et al. [114].

In view of predefined failure zones, so-called interface elements can be applied (see, e.g., Beer [13],
Needleman [125], Gens et al. [58], Xu and Needleman [193], Camacho and Ortiz [31] and others).
Combined with the appropriate material modelling, interface elements are systematically used for the
discretisation of zones which are expected to fail. Though being very inflexible compared to the other
methods, they inhere decisive advantages concerning the simplicity and the numerical handling if the
failure zone is known a priori. For the example of a purely mechanical problem, the energetically
conjugated quantities are then given by the interfacial traction vector as known from Cauchy’s Lemma
and Theorem, and the displacement jump over the interface. In the scope of this work, solid interfaces
are reviewed by means of welding zones of tensile specimens and grain boundaries of piezoelectric
ceramics. For both cases, interfaces are predefined zones offailure. Consequently, in view of related
numerical computations, interface elements are applied.

Goals of the Study and Modus Operandi

The goals of this study can be structured into three parts.
The first part is concerned with the modelling, the numerics and the simulation of welded lightweight

structures of metal/fibre-reinforced polymer composites as investigated in the context of the DFG Re-
search Unit 524. Based on local and integral experimental data sets, tensile tests of the related hybrid
lightweight structures shall be simulated. This is achieved under quasistatic and fatigue-type loading
boundary conditions on the meso scale by means of FEM. In thiscontext, the welding zone is an a pri-
ori known zone of failure and is consequently discretised bythe above mentioned interface elements,
whereas the bulk material is discretised by continuum elements. Under the assumption that most of
the nonlinear constitutive behaviour stems from the interface, adequate material models for both the
bulk and the interface have to be developed. Related, a nonlinear finite element programme has to
be applied to implement these models. As in this case, the process of interfacial delamination is of
quite brittle nature, only geometrically linear formulations are accounted for. Interfacial modelling
parameters are verified by data comparison of experiments and numerical simulation. Related, all
experimental data is provided by partner projects connected to the DFG Research Unit 524.

The second part deals with the academic simulation of fatigued piezoelectric mesostructures. Con-
cerning piezoelectric materials, fatigue is a very common loading type. For this reason, the prediction
of the fatigue behaviour is a very important issue. Related,a granular piezoelectric mesostructure
is discretised by continuum elements for the grains and by interface elements for the grain bound-
aries. The fatigue behaviour is completely assigned to the interfaces, while the grains are modelled
by a linear ferroelectric material law. In the future, nonlinear effects as switching can be added to
the grain bulk behaviour, such that the considered meso-mechanics serves as a physical sound input

2



1 Introduction

for multiscale computations on the macro level. For now, it is solely focussed on the inelastic grain
boundary behaviour which shall be triggered by low- and high-cycle fatigue boundary conditions.
Related results have to be discussed and evaluated.

The third part concerns investigations on surface-wave type bifurcation modes in a two-dimensio-
nal non-coherent (cohesive) interface, connecting a semi-infinite three-dimensional linear bulk with a
rigid substrate. This part serves as an additional activitywith respect to the other goals of the study. If
an infinite number of bifurcation modes occurs for a certain combination of interfacial and bulk-related
material constitutions, a numerical solution of the boundary value problem would be considered to be
mesh-dependent. For the uncoupled problem, a linear elastic bulk and different inelastic interfaces
are considered. For the coupled problem, both the interfaceand the bulk are assumed to inhere linear
ferroelectric behaviour.

The goals of the study are aspired by the subsequent modus operandi.
Chapter 2 begins with a recapitulation of the mechanical and electrical boundary value problem.

This is followed by a reiteration of all constitutive bulk modelling aspects which are of relevance in
the scope of this work. Where necessary, algorithmic aspects are discussed.

Chapter 3 deals with the constitutive modelling and algorithmic aspects of solid interfaces. This in-
cludes elastic, linear ferroelectric, plastic and Lemaitre-type-damaging behaviour as well as low- and
high-cycle-fatigue-related models for both coupled and uncoupled problems. Additionally, viscoelas-
tic and viscoplastic cohesive laws coupled to Lemaitre-type damage are discussed as a preliminary
work in the context of the DFG Research Unit 524. Furthermore, mechanical and electrical interface
conditions are introduced in the beginning of the chapter, thus complementing the boundary value
problem as discussed in chapter 2. Finally, a penalty formalism is presented which prevents the inter-
face from some unphysical self-penetration.

Chapter 4 is concerned with the bifurcation analysis of the uncoupledproblem. First, an incre-
mental boundary value problem (IBVP) is formulated. Thereafter, a stationary wave-type ansatz is
applied to the IBVP. The results are exploited with respect to an elastic bulk and inelastic interfacial
traction-separation-laws related to chapter 3. A subsequent bifurcation analysis reveals a finite number
of bifurcation modes for all constitutive cases considered.

Chapter 5 deals with the bifurcation analysis for a coupled problem, whereby the strategy of chapter
4 is adopted. As a result for a linear ferroelectric bulk and interface, no surface wave-type bifurcation
modes occur. However, if interfacial stiffnesses are chosen negative, a finite number of bifurcations is
possible.

Chapter 6 includes the discretisation of the weak forms of the uncoupled and the coupled problem
by finite elements. Furthermore, the linearisations of the discretised weak forms are briefly discussed.
An outline on the issue of interface elements is included.

Chapter 7 contains the simulation of welded lightweight structures of metal/fibre-reinforced poly-
mer composites. First, manufacturing and measuring methods as applied in the context of the DFG
Research Unit 524 are introduced. This is followed by the presentation of the simulation results con-
cerning quasistatic tensile tests. This includes the simulation of thermal impact welded as well as
ultrasonic metal welded tensile specimens. For both manufacturing methods, good qualitative and
quantitative agreements of experimental and numerical data has been achieved. Both local and inte-
gral data sets have been compared. Subsequently, local and integral data of preliminary tensile fatigue
tests on ultrasonic metal welded specimens are compared to simulations.

3
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Chapter 8 begins with a literature survey concerning the issues of piezoelectric fatigue, grain
boundaries and piezoelectric modelling. This is followed by some remarks with respect to the in-
terfacial modelling in the present elaboration. Subsequently, a discretisation of a rectangular PZT
mesostructure which is adopted from a micrograph is presented, serving as an implementation frame-
work for the interfacial fatigue models. Next, results are presented. Different low- and high-cycle-
fatigue motivated boundary conditions are applied considering both mechanical and electrical cycling.
Finally, a detailed discussion deals with the accomplishedresults.

Chapter 9 closes the work with conclusions and an outlook on possible future activities.
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Zusammenfassung

Die progressive technologische Entwicklung benötigt Materialien und Strukturen mit geeignetem Po-
tential und ausreichender Komplexität. In diesem Zusammenhang spielen Festkörpergrenzschichten
eine entscheidende Rolle (Butt et al. [30]). Die physikalischen Eigenschaften von natürlichen und
künstlich hergestellten Materialien werden von solchen Grenzschichten in hohem Maße beeinflusst.

Ein Beispiel für eine moderne Ingenieursstruktur stellenhybride Verbindungen von Metallen und
faserverstärkten Kunststoffen dar. Diese werden im Rahmen der DFG-Forschergruppe 524 “Her-
stellung, Eigenschaftsanalyse und Simulation geschweißter Leichtbaustrukturen aus Metall/Faser-
Kunststoff-Verbunden” betrachtet. Durch die Kombinationvon Metallen und Polymeren werden sehr
breite Anwendungsfelder möglich, insbesondere in der Automobilindustrie und der Luft- und Raum-
fahrttechnik.Ökonomische und ökologische Aspekte spielen dabei eine maßgebende Rolle.

Ein weiteres Beispiel sind sogenannte intelligente Materialien, welche mannigfaltige Anwendungs-
möglichkeiten, z.B. in der Sensor- und Medizintechnik, bieten. Eine Untergruppe der intelligenten
Materialien stellen ferroelektrische Keramiken dar. Als Sensoren, Aktuatoren oder Speicherelemente
haben sie in den Alltag Einzug gehalten.

Die Simulation solcher Ingenieursstrukturen ist, ökonomisch gesehen, zwingend erforderlich. Die
Anwendung geeigneter physikalischer Modelle und deren mathematische Umsetzung ist in vielerlei
Hinsicht von Vorteil. So können durch Simulationen Experimente reduziert werden, und Vorhersagen,
z.B. bezüglich des mechanischen Verhaltens, werden möglich. Des Weiteren können verwandte wis-
senschaftliche Gebiete von Ideen und Resultaten profitieren, welche im Umfeld von Modellierung und
Simulation generiert werden.

Bei numerischen Simulationen können Festkörpergrenzschichten auf eine Mesoskala bezogen wer-
den. Im diesem Sinne stellen Sie ein Bindeglied zwischen makroskopischem Gesamtverhalten und
dem mikroskopischen Inhalt der Grenzschicht selbst dar. Verglichen mit den umgebenden Materialien
sind Festkörpergrenzschichten geometrische und physikalische Diskontinuitäten. In der Mechanik
müssen deshalb Sprünge der Steifigkeiten oder anderer modellbezogener Parameter berücksichtigt
werden. Um das Versagen solcher Diskontinuitäten zu beschreiben, werden sogenannteTraktions-
Separations-Gesetzeoderkoḧasive Gesetzeverwendet. Diese werden auf Dugdale [48] und Barenblatt
[7] zurückgeführt.

Im Rahmen der Finiten Elemente Methode (FEM) sind verschiedene Möglichkeiten bekannt, um
Festkörpergrenzschichten mesomechanisch zu berücksichtigen. Eine Möglichkeit besteht in einem
eingebetteten Diskontinuitäten-Ansatz, wobei Diskontinuitäten durch zusätzliche Freiheitsgrade auf
der Elementebene darstellbar sind, siehe Ortiz et al. [131], Belytschko et al. [15], Klisinski et al.
[80], Lofti und Shing [96], Simo und Armero [162], und Simo etal. [163]. Beliebige Orientierungen
der Diskontinuitäten sind erlaubt, jedoch sind sie inkompatibel bezüglich der Elementgrenzen. Eine
weitere Methode ist als die Erweiterte Finite Elemente Methode (XFEM) bekannt, welche von Be-
lytschko und Black [14] und Moës et al. [121] eingeführt wurde. Dabei wird das approximierte
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Verschiebungsfeld an den Knoten durch zusätzliche diskontinuierliche Funktionen angereichert, so-
dass die Diskontinuitäten mit den Elementgrenzen kompatibel sind (Sukumar et al. [172], Dolbow
et al. [46], Wells und Sluys [186]). Die XFEM ist bei beliebigen Elementtypen anwendbar, jedoch
müssen alle Knoten mit Zusatzfreiheitsgraden ausgestattet sein. Damit verwandte Methoden sind z.B.
in Hansbo und Hansbo [61, 60], Mergheim und Steinmann [115],Mergheim [113], und Mergheim et
al. [114] zu finden.

Zur Diskretisierung vordefinierter Versagenszonen können sogenannte Grenzschichtelemente ver-
wendet werden (Beer [13], Needleman [125], Gens et al. [58],Xu und Needleman [193], Camacho
und Ortiz [31], und andere). Verglichen mit den oben erwähnten Methoden sind Grenzschichtele-
mente relativ unflexibel, allerdings sind sie von Vorteil hinsichtlich der einfachen numerischen Im-
plementierung. In der vorliegenden Arbeit werden sowohl Grenzschichten geschweißter Hybridstruk-
turen als auch Korngrenzschichten piezoelektrischer Keramiken betrachtet. In beiden Fällen sind die
Grenzschichten vordefinierte Versagenszonen. Für numerische Berechnungen werden deshalb Grenz-
schichtelemente verwendet.

Zielsetzung dieser Arbeit und Modus Operandi

Die Zielsetzung dieser Arbeit kann in drei Bereiche untergliedert werden.
Der erste Bereich beschäftigt sich mit der Modellierung, der Numerik und der Simulation von

geschweißten Leichtbaustrukturen aus Metall/Faser-Kunststoff-Verbunden, wie sie in der DFG-For-
schergruppe 524 untersucht werden. Basierend auf lokalen und integralen Datensätzen sollen Zug-
Scher-Versuche bezüglich der genannten hybriden Strukturen simuliert werden. Dies wird unter quasi-
statischen und zyklischen Randbedingungen auf der Mesoskala mittels FEM umgesetzt. In diesem
Zusammenhang ist die Schweißzone a priori als Versagenszone anzunehmen. Entsprechend wird
sie mit Grenzschichtelementen diskretisiert, während die umgebenden Substrate mit Kontinuumsele-
menten diskretisiert werden sollen. Unter der Annahme, dass nichtlineares Materialverhalten haupt-
sächlich von der Grenzschicht herrührt, werden geeignete Materialgesetze für die Grenzschicht und
ihre Umgebung entwickelt. Diese kommen im Rahmen eines nichtlinearen FEM-Programmes zum
Einsatz. Da der Delaminationsvorgang der Grenzschicht sehr spröde verläuft, werden nur geometrisch
lineare Methoden verwendet. Die Modellparameter der Grenzschicht werden durch den Vergleich von
Experimenten und numerischer Simulation verifiziert. Alleexperimentelle Daten werden dabei von
den Projektpartnern in der DFG-Forschergruppe 524 zur Verfügung gestellt.

Im zweiten Bereich soll die Ermüdung piezoelektrischer Mesostrukturen simuliert werden. Da
bei piezoelektrischen Materialien zyklische Beanspruchungen häufig sind, ist die Vorhersage des
Ermüdungsverhaltens von immenser Wichtigkeit. Eine durch Körner und Korngrenzen definierte
piezoelektrische Struktur wird mit Kontinuumselementen für die Körner und Grenzschichtelementen
für die Korngrenzen diskretisiert. Während das Ermüdungsverhalten gänzlich den Korngrenzen beige-
messen wird, werden die Körner mittels eines linearen ferroelektrischen Materialgesetzes modelliert.
Zukünftig sollen auch nichtlineare Effekte wie Domänenumklappprozesse berücksichtigt werden, und
die hier betrachtete Mesomechanik soll als Grundlage für Multiskalenbetrachtungen herangezogen
werden. Zunächst jedoch soll der Schwerpunkt auf der Simulation des Korngrenzenverhaltens liegen,
wobei kleine und große Zyklenzahlen durch geeignete Modelle berücksichtigt werden. Die daraus
hervorgehenden Resultate werden diskutiert und bewertet.
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Der dritte Bereich betrifft Untersuchungen zu Bifurkationsmöglichkeiten vom Oberflächenwellen-
typ. Dabei wird eine zweidimensionale, nicht-kohärente (kohesive) Grenzschicht betrachtet, welche
einen halbunendlichen dreidimensionalen linearen Festk¨orper mit einem starren Substrat verbindet.
Dieser Bereich ist bezüglich der anderen Zielsetzungen als Zusatzaktivität einzuordnen. Falls für
bestimmte Kombinationen von Festkörper- und Grenzschichtmaterialverhalten eine unendliche An-
zahl solcher Bifurkationen möglich ist, wäre eine numerische Lösung des Randwertproblems netz-
abhängig.

Die Ziele der Arbeit werden durch den folgenden modus operandi angestrebt:
Kapitel 2 beginnt mit dem mechanischen und dem elektrischen Randwertproblem. Danach folgt

eine Wiederholung von Modellierungsaspekten hinsichtlich der in dieser Arbeit relevanten, die Grenz-
schicht umgebenden Materialien. Wo notwendig, werden auchalgorithmische Aspekte beleuchtet.

Kapitel 3 beschäftigt sich mit der konstitutiven Modellierung und den algorithmischen Aspekten
von Festkörpergrenzschichten. Dabei wird elastisches, plastisches und schädigendes Verhalten vom
Lemaitre-Typ betrachtet. Ermüdungsbezogene Modelle für kleine und große Zyklenzahlen werden
sowohl für das nicht-gekoppelte als auch für das gekoppelte Problem vorgestellt. Des Weiteren wer-
den viskoelastisch-schädigende und viskoplastisch-schädigende Modelle als Vorarbeit im Kontext der
DFG-Forschergruppe 524 diskutiert. Zusätzlich werden mechanische und elektrische Grenzschichtbe-
dingungen sowie ein sogenannter Penalty-Formalismus beleuchtet.

Kapitel 4 enthält die Bifurkationsanalyse für ein nicht-gekoppeltes Problem. Zunächst wird ein
inkrementelles Randwertproblem formuliert, auf welches ein Ansatz für stehende Oberflächenwellen
angewendet wird. Die daraus folgenden Resultate werden hinsichtlich eines linear elastischen Fest-
körpers und inelastischen Traktions-Separations-Gesetzen ausgewertet, die in Beziehung zu Kapitel
3 stehen. Die anschließende Bifurkationsanalyse zeigt, dass für alle eingearbeiteten konstitutiven
Gesetze höchstens eine endliche Anzahl von Bifurkationsmöglichkeiten besteht.

Kapitel 5 enthält die Bifurkationsanalyse für ein gekoppeltes Problem, wobei das Vorgehen von
Kapitel 4 übernommen wird. Für lineare ferroelektrischeFestkörper und Grenzschichten treten keine
Bifurkationsmoden auf.

Kapitel 6 betrifft die Finite-Elemente-Diskretisierung der schwachen Formen für nicht-gekoppelte
und gekoppelte Probleme. Linearisierungsaspekte werden kurz diskutiert, und ein Abriss zum Thema
der Grenzschichtelemente ist enthalten.

Kapitel 7 beginnt mit einer kurzen Darstellung der Herstellungs- undMessmethoden, die im Rah-
men der DFG-Forschergruppe 524 angewendet werden. Anschließend werden die Simulationsergeb-
nisse bezüglich quasistatischer Zug-Scher-Versuche an wärmeimpulsgeschweißten und ultraschallge-
schweißten hybriden Proben besprochen. Eine gute qualitative und quantitativeÜbereinstimmung
von Experimenten und Simulation konnte erreicht werden. Des Weiteren werden Datensätze von zy-
klischen Zug-Scher-Vorversuchen an ultraschallgeschweißten Proben mit Simulationen verglichen.

Kapitel 8 beginnt mit einer Literaturrecherche zu piezoelektrischer Ermüdung, Modellierung und
Korngrenzen. Es folgen einige Anmerkungen zur Grenzschichtmodellierung, und die Diskretisierung
eines rechteckigen Ausschnitts einer piezoelektrischen Mesostruktur wird vorgestellt. Die anschließend
präsentierten Ergebnisse beziehen sich auf mechanische und elektrische Randbedingungen in kleinen
und großen Zyklenzahlen. Die Resultate werden diskutiert und bewertet.

Kapitel 9 fasst die Arbeit zusammen, enthält Schlussfolgerungen und einen Ausblick auf mögliche
zukünftige Aktivitäten.
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2 Constitutive Modelling and
Algorithmic Aspects of Selected Bulk
Materials

In the following, some selected bulk material properties aswell as related algorithmic aspects will
be briefly investigated. Thus, the focus is set on materials which are important in the context of this
work. All constitutive models are formulated geometrically linear, given in a standard continuum. By
addressing appropriate energy contributions, the material laws are motivated and derived. Expressions
for stresses and tangent moduli are obtained, and, in this regard, algorithmic methods are incorporated.

First of all, a Boundary Value Problem (BVP) is introduced, being splitted into a mechanical and
an electrical BVP. Then, the material models are discussed.The starting point is the simple linear
hyperelastic material modelling, adequate for many materials concerning small strains, e.g. for metals
in the isotropic case. Otherwise, especially fibre-reinforced composites inhere an anisotropic material
behaviour. In this regard and for small strains, transversal isotropic and orthotropic elasticity are
presented. To overview the diverse field of elasticity, the textbooks of Ogden [130], Marsden and
Hughes [105] and Ting [177] can be consulted. Next, small strain elastoplasticity with linear isotropic
hardening is concisely described. This material model is used to describe inelastic behaviour of metals
as a first approximation. Inelastic material modelling is discussed in detail in the textbooks of, e.g.,
Lemaitre [90], Lemaitre and Chaboche [91] as well as Simo andHughes [164]. Finally, introducing
coupled problems, linear ferroelectricity for bulk materials is described. In this context, switching
effects are not addressed. In order to gain further knowledge on the issue of electrically-mechanically
coupled problems, the books of Maugin [106], Eringen and Maugin [51], Ikeda [71] and Smith [165]
are advocated.

2.1 Boundary Value Problem

Let B ⊆ Rn be the configuration of a body of interest, subjected to smalldeformations, see Fig. 2.1
for an illustration. Then, position vectors pointing onB are denoted asx ∈ Rn, related displacements
and the electrical potential shall be given asu and, respectively,Φ. ConsideringB, inherent physi-
cal properties can be described as quasi-electrostatic andsource-free, with body forces and external
charges being neglected.
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B

∂Bu

∂Bσ

∂BΦ ∂BD

Figure 2.1: ConfigurationB and some boundary conditions

2.1.1 Mechanical Boundary Value Problem

The local format of the balance of linear momentum reads as

divσ = 0 in B (2.1)

with σ being the stress tensor. The boundary conditions, see also Fig. 2.1, are given as

u = up on ∂Bu, τ = σ · nσ = τ p on ∂Bσ (2.2)

Here,τ p are prescribed tractions andnσ is the outward normal with respect to∂Bσ . Moreover, the
balance of angular momentum implies the symmetry of the stress tensor, i.e.

σ = σt (2.3)

Stresses are dependent on strainsε and, optionally, other quantities, which are summarised in[•], being
of special relevance in view of coupled problems. Consequently, until some constitutive relations are
specified, stresses are given as

σ = σ(ε, [•]) (2.4)

with the strainsε being the symmetric gradient of the displacement vectoru which is the basic kine-
matic assumption.

ε = ∇sym
x u (2.5)
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2.1.2 Electrical Boundary Value Problem

For the present configuration, mechanical and, moreover, electrical fluxes shall be considered. In this
regard, a second balance law to be considered is the Gaussianlaw, resulting from Maxwell’s equations,
given as

divD = 0 in B (2.6)

whereinD is the dielectric displacement. Appropriate boundary conditions, see also Fig. 2.1, read as

Φ = Φp on ∂BΦ, Λ = −D · nD = Λp on ∂BD (2.7)

with Λp denoting external surface charges andnD being the outward normal with respect to∂BD,
compare also Kamlah [76], Schröder and Romanowski [158], Maugin [106] and Eringen and Maugin
[51]. In order to close the system of equations, the dielectric displacement vector must be specified.
Generally, it holds

D = D(E, [•]) (2.8)

with E being the electric field vector. The choice of[•] depends on some material behaviour to
be selected, especially in the case of electrical-mechanical coupling. Finally, the related kinematic
assumption is expressed by

E = −∇xΦ (2.9)

In the subsequent sections equations (2.4) and (2.8) will bespecified, based on energetically motivated
assumptions.

2.2 Linear Elasticity

In this section some linear hyperelastic material laws are presented. For this reason the associated
boundary value problem is reduced to the mechanical case of equations (2.1)–(2.5). In the context of
elasticity it may be noteworthy to address the difference between hypo- and hyperelasticity. For both
cases stressesσ are solely dependent on the strainsε, i.e.

σ = σ(ε) (2.10)

For the case of hypoelasticity, or rather Cauchy Elasticity, the relation of stress and strain rates is
invertible, but no potential relation for the stresses can be specified. Consequently, Cauchy elastic
materials may dissipate energy in closed strain cycles. Forfurther details see for instance Truesdell
[178] and Ogden [130]. In contrast to this, hyperelasticity– which is also called Green elasticity –
inheres an invertible stress-strain rate relation, too, but additionally a potential by means of a strain
energy functionW is present. For such material behaviour the second law of thermodynamics results
in

D = Dloc = W − Ψ̇ = 0 (2.11)
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reflecting a reversible process, introducing the dissipation powerD, the stress powerW = Ẇ and the
free energy poweṙΨ. In this regard, it holds

Ψ = Ψ(ε; [•]), [•] = const. (2.12)

The stress power is expressed by
W = σ : ε̇ (2.13)

The combination of equations (2.11) and (2.13) renders

σ : ε̇ − Ψ̇ = 0 (2.14)

and, with equation (2.12) in mind, yields in

[

σ −
∂Ψ

∂ε

]

: ε̇ = 0 (2.15)

The Coleman-Noll Entropy Principle – for a detailed outlineon this issue see, e.g., Coleman and Noll
[41] as well as Truesdell and Noll [179] – directly implies

σ =
∂Ψ

∂ε
(2.16)

with σ being symmetric as induced by the local form of balance of angular momentum. Furthermore,
by

σ̇ = C
el : ε̇ (2.17)

with

C
el =

∂2Ψ

∂ε ⊗ ∂ε
=

∂σ

∂ε
= [Cel]ijkl ei ⊗ ej ⊗ ek ⊗ el (2.18)

the rate relation of stresses and strains is founded on the fourth order Elastic Continuum Tangent
Stiffness TensorCel. As obvious from equations (2.5) and (2.18)Cel inheres some minor symmetries,
i.e.

[Cel]ijkl = [Cel]jikl = [Cel]jilk (2.19)

and, furthermore, major symmetries
[Cel]ijkl = [Cel]klij (2.20)

Requesting a linear and positive definite relation of stresses and strains, the free energy is specified as

Ψ = W =
1

2
ε : C

el : ε > 0 ∀ ε 6= 0, [Cel]ijkl = const. (2.21)

Consequently, the correlation of stresses and strains is rewritten as

σ = C
el : ε (2.22)

denoting the constitutive relation. The symmetry properties ofCel allow a reduction from81 to 21
coefficients. This, together with the symmetries of the stress and strain tensors is exploited by applying
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the so-called Voigt notation, giving a compact descriptionof correlations. Accordingly, Voigt-notated
strainsεV and stressesσV are related by

σV = Cel · εV (2.23)

with Cel = Cel
ij ei ⊗ej being the Voigt-notated Elastic Continuum Tangent Stiffness Tensor. Thereby,

the sequence of indices corresponding to the Voigt notationshall be exemplified by














σ11

σ22

σ33

σ12

σ23

σ13














︸ ︷︷ ︸

σV
i

=














[Cel]1111 [Cel]1122 [Cel]1133 [Cel]1112 [Cel]1123 [Cel]1113

[Cel]2211 [Cel]2222 [Cel]2233 [Cel]2212 [Cel]2223 [Cel]2213

[Cel]3311 [Cel]3322 [Cel]3333 [Cel]3312 [Cel]3323 [Cel]3313

[Cel]1211 [Cel]1222 [Cel]1233 [Cel]1212 [Cel]1223 [Cel]1213

[Cel]2311 [Cel]2322 [Cel]2333 [Cel]2312 [Cel]2323 [Cel]2313

[Cel]1311 [Cel]1322 [Cel]1233 [Cel]1312 [Cel]1323 [Cel]1313














︸ ︷︷ ︸

Cel
ij

·














ε11

ε22

ε33

2ε12

2ε23

2ε13














︸ ︷︷ ︸

εV
j

(2.24)

as found in, e.g., Mehlhorn [107], Simo and Hughes [164] and Haupt [64]. Other sequences are
described in, for instance, the books of Voigt [184] and Spencer [166, 167]. Please note that for linear
elasticity, due to givenCel = const., no further algorithmic procedures are necessary.

2.2.1 Isotropic Linear Elasticity

If, in addition to the demands of equation (2.21), directional independence for material properties is
assumed, isotropy is at hand. This is the case for the elasticregime of, e.g., steel. Therefore, the free
energy is given as

Ψ = Ψ(ε) = Ψ(iε) (2.25)

depending solely on the strains. This correlation is refinedby introducing an irreducible set of invari-
ants

iε = {I1, I2, I3} = {I∗
1 , I

∗
2 , I

∗
3} = {ε1, ε2, ε3} with Im = εm : I (2.26)

For m = 1, 2, 3, the so-called basic invariants are given byIm, the so-called principal invariants are
denoted asI∗

m, while εm are the eigenvalues ofε. Straightforwardly, stresses can be computed as

σ =
∂Ψ

∂ε
=

∂Ψ

∂I1
I + 2

∂Ψ

∂I2
ε + 3

∂Ψ

∂I3
ε2 = Φ1 I + Φ2 ε + Φ3 ε2 (2.27)

For the sake of linearity, withλ andµ being material parameters –the so-called Lamé-parameters– it
shall be

Φ1 = λ I1, Φ2 = 2µ, Φ3 = 0 (2.28)

and consequently, the stresses are given as

σ = λI [ε : I] + 2µ ε (2.29)
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and the constant Elastic Continuum Tangent Stiffness Tensor for the isotropic case reads as

C
iso =

∂σ

∂ε
= λ I ⊗ I + 2µ I

sym (2.30)

Concerning the Voigt notation, this is reflected by

Ciso
ij =












2µ + λ λ λ 0 0 0

λ 2µ + λ λ 0 0 0

λ λ 2µ + λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ












(2.31)

2.2.2 Transversely Isotropic Linear Elasticity

Now, transversely isotropic material properties are highlighted. For this class of materials a direction
of anisotropy, denoted bym0, ‖m0‖ = 1, and the structure tensorM 0 = m0⊗m0 are introduced. A
material example for this is found in the elastic regime of a fibre-reinforced composite where all fibres
are aligned in one direction. The free energy allows a reduced representation of5 invariants and reads
as

Ψ = Ψ(ε; m0) = Ψ(iε, iεM0
) = Ψ(I1, I2, I3, I4, I5) (2.32)

with
iεM0

= {I4, I5} = {ε : M 0, ε
2 : M 0} (2.33)

Again, stresses are computed by differentiating the free energy with respect to basic invariants, yield-
ing

σ =
∂Ψ

∂ε

=
∂Ψ

∂I1
I + 2

∂Ψ

∂I2
ε + 3

∂Ψ

∂I3
ε2 +

∂Ψ

∂I4
M 0 +

∂Ψ

∂I5
2 [ε · M 0]

sym

= Φ1 I + Φ2 ε + Φ3 ε2 + Φ4 M 0 + Φ5 2 [ε · M 0]
sym (2.34)

Due to the assumption of linearity and the symmetry of the Elastic Continuum Tangent Stiffness
Tensor, an adequate invariant formulation of the free energy is determined. Accordingly, fori =
1, ..., 5, Φi takes the format

Φ1 = λ I1 + α I4, Φ2 = 2µ⊥, Φ3 = 0, Φ4 = α I1 + β I4, Φ5 = 2[µ‖ − µ⊥] (2.35)

at whichλ, µ⊥, µ‖, α andβ denote adequate material constants, leading towards

σ = [λ ε : I +α ε : M 0]I +2µ⊥ ε+[α ε : I +β ε : M 0]M 0 +2[µ‖−µ⊥] [ε ·M 0 +M 0 ·ε] (2.36)
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The constant Elastic Continuum Tangent Stiffness Tensor for the transversal isotropic case is then
given as

C
tra =

∂σ

∂ε
= λ I ⊗ I + α [I ⊗M 0 + M 0 ⊗ I] + βM0 ⊗M 0 + 2µ⊥ I

sym + 2[µ‖ −µ⊥] M0 (2.37)

A coefficient-explicit representation describes

M0 =
1

2
[δikM(0)jl + δilM(0)jk + δjlM(0)ik + δjkM(0)il] ei ⊗ ej ⊗ ek ⊗ el (2.38)

If the direction of anisotropy is identified asm0 = e3, the Voigt-notated equivalent to equation (2.37)
is consequently found as

Ctra
ij =












λ + 2µ⊥ λ λ + α 0 0 0

λ λ + 2µ⊥ λ + α 0 0 0

λ + α λ + α λ + 2α + β − 2µ⊥ + 4µ‖ 0 0 0

0 0 0 µ⊥ 0 0

0 0 0 0 µ‖ 0

0 0 0 0 0 µ‖












(2.39)

2.2.3 Orthotropic Linear Elasticity

Finally, let m1, ‖m1‖ = 1 andm2, ‖m2‖ = 1 be two orthogonal directions of anisotropy, with
structure tensorsM 1 = m1 ⊗ m1 andM 2 = m2 ⊗ m2. This orthotropic model is exemplary for
many fibre-reinforced composites, e.g. for a carbon fibre – polyamide canvas. In this case the free
energy can be represented by a reduced number of7 invariants, reading as

Ψ = Ψ(ε; m1, m2) = Ψ(iε, iεM1
, iεM2

) = Ψ(I1, I2, I3, I4, I5, I6, I7) (2.40)

with

iεM1
= {I4, I5} = {ε : M 1, ε

2 : M 1}, iεM2
= {I6, I7} = {ε : M 2, ε

2 : M 2} (2.41)

By differentiating the free energy with respect to basic invariants, stresses are computed as

σ =
∂Ψ

∂ε

=
∂Ψ

∂I1
I + 2

∂Ψ

∂I2
ε + 3

∂Ψ

∂I3
ε2

+
∂Ψ

∂I4
M 1 +

∂Ψ

∂I5
2 [ε · M 1]

sym +
∂Ψ

∂I6
M 2 +

∂Ψ

∂I7
2 [ε · M 2]

sym

= Φ1 I + Φ2 ε + Φ3 ε2 + Φ4 M 1 + Φ5 2 [ε · M 1]
sym + Φ6 M 2 + Φ7 2 [ε · M 2]

sym (2.42)
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2 Constitutive Modelling and Algorithmic Aspects of Selected Bulk Materials

Following from the assumption of linearity and the symmetryof the Elastic Continuum Tangent Stiff-
ness Tensor, an appropriate free energy function determinesΦi as

Φ1 = λ I1 + α1 I4, + α2 I6, Φ2 = 2µ, Φ3 = 0, Φ4 = α1 I1 + β1 I4 + β3 I6,

Φ5 = 2µ1, Φ6 = α2 I1 + β3I4 + β2I6, Φ7 = 2µ2 (2.43)

with λ, µ, α1, α2, µ1, µ2, β1, β2 andβ3 being appropriate material parameters. With this in hand the
stress tensor is rewritten as

σ = [λ ε : I + α1 ε : M 1 + α2 ε : M 2] I + 2µ ε

+ [α1 ε : I + β1 ε : M 1 + β3 ε : M 2] M 1 + 2µ1 [ε · M 1 + M 1 · ε]

+ [α2 ε : I + β3 ε : M 1 + β2 ε : M 2] M 2 + 2µ2 [ε · M 2 + M 2 · ε]

(2.44)

Here, the constant Elastic Continuum Tangent Stiffness Tensor reads as

Cort =
∂σ

∂ε
= λ I ⊗ I + α1 I ⊗ M 1 + α2 I ⊗ M 2 + 2µ Isym

+ α1 M 1 ⊗ I + β1 M 1 ⊗ M 1 + β3 M 1 ⊗ M 2 + 2µ1 M1

+ α2 M 2 ⊗ I + β3 M 2 ⊗ M 1 + β2 M 2 ⊗ M 2 + 2µ2 M2

(2.45)

A coefficient-explicit representation describes

M1 =
1

2
[δikM(1)jl + δilM(1)jk + δjlM(1)ik + δjkM(1)il] ei ⊗ ej ⊗ ek ⊗ el (2.46)

M2 =
1

2
[δikM(2)jl + δilM(2)jk + δjlM(2)ik + δjkM(2)il] ei ⊗ ej ⊗ ek ⊗ el (2.47)

Additionally, form1 = e1 andm2 = e2 denoting the directions of anisotropy, the Elastic Continuum
Tangent Stiffness Tensor in the Voigt notation is represented by

Cort
ij =












λ+2α1+β1+2µ+4µ1 λ+α1+α2+β3 λ+α1 0 0 0

λ+α1+α2+β3 λ+2α2+β2+2µ+4µ2 λ+α2 0 0 0

λ+α1 λ+α2 λ+2µ 0 0 0

0 0 0 [µ+µ1+µ2] 0 0

0 0 0 0 [µ+µ2] 0

0 0 0 0 0 [µ+µ1]












(2.48)
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2.3 Elastoplasticity with Linear Isotropic Hardening

2.3 Elastoplasticity with Linear Isotropic Hardening

Now, an elastoplastic material law with isotropic hardening will be presented. In this context an
uncoupled problem is at hand and the boundary value problem described in section 2.1 is again reduced
to equations (2.1)–(2.5), describing the pure mechanical case.

2.3.1 Constitutive Modelling

A kinematic assumption is introduced as

ε = εe + εp (2.49)

splitting the strains into an elastic partεe and a plastic partεp. Stresses are given as

σ = σ(εe, αp) (2.50)

being dependent on the elastic strains and a plastic parameterαp, accounting for irreversible plastic ef-
fects. Based on the free energy, the second law of thermodynamics also reflects the so-called principle
of positive dissipation, reading as

D = Dloc = W − Ψ̇ ≥ 0 (2.51)

with
Ψ = Ψ(εe, αp) (2.52)

and the stress power being given in equation (2.13). The combination of equations (2.49), (2.51), and
(2.52) renders

[

σ −
∂Ψ

∂εe

]

: ε̇e + σ : ε̇p −
∂Ψ

∂αp
α̇p ≥ 0 (2.53)

The Coleman-Noll entropy principle, also known as the standard argument of rational thermodynam-
ics, implies

σ =
∂Ψ

∂εe
(2.54)

Next, by defining

R = −
∂Ψ

∂αp
(2.55)

as the so-called internal stress, or, respectively, the hardening stress, a reduced dissipation inequality
turns out to be

Dred = σ : ε̇p + R α̇p = S ◦ Ḟ ≥ 0 (2.56)

introducing the thermodynamic forceS = {σ, R} and the thermodynamic fluẋF = {ε̇p, α̇p}. Up
to now, this does not contain any statement concerning the constitutive relations – in this regard, an
evolution equation is needed. In order to give consideration to the separation of an elastic and a plastic
range, which is present for loads above the yielding point, ayield function is proposed as

Φp = Φp(S) ≤ 0 (2.57)
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2 Constitutive Modelling and Algorithmic Aspects of Selected Bulk Materials

The yield function is supposed to be negative in the elastic range and is zero if plasticity evolves. Let
E be a closure of the elastic range, defined as

E := {S | Φp(S) ≤ 0} (2.58)

The crucial assumption to be incorporated is the well-knownpostulate of maximum dissipation, see,
e.g., Hill [65] and Lubliner [98], given as

Dred(S) ≥ Dred(S
∗) ∀ S∗ ∈ E (2.59)

and constituting a constraint maximisation problem, see Simo and Hughes [164]. Therewith, the so-
called associative evolution equations or flow rules

ε̇p = γ̇
∂Φp(S)

∂σ
(2.60)

α̇p = γ̇
∂Φp(S)

∂R
(2.61)

are derived, together with some loading- and unloading conditions which are also called Kuhn-Tucker
optimality conditions, reading as

γ̇ ≥ 0, Φp(S) ≤ 0, γ̇ Φp(S) = 0 (2.62)

In equation (2.62),̇γ denotes a Lagrange multiplier. Moreover, related to the postulate of maximum
dissipation, the closure of the elastic rangeE gets convex. Please note that the principle of maximum
dissipation does not include the principle of positive dissipation, which has to be checked separately.
In the case of maximum dissipation the so-called plastic potential is identified with the yield function
Φp(S). If this associative case is not indicated, some non-associative evolution equations or flow rules

ε̇p = γ̇
∂Φp,⋆(S)

∂σ
(2.63)

α̇p = γ̇
∂Φp,⋆(S)

∂R
(2.64)

may decide the constitutive behaviour, whereΦp,⋆(S) denotes the plastic potential withΦp,⋆(S) 6=
Φp(S).

The rate relation concerning stresses is expressed by

σ̇ =
∂2Ψ

∂εe ⊗ ∂εe
: ε̇e +

∂2Ψ

∂εe ∂αp
α̇p (2.65)

Otherwise, the rate relation for the hardening stress yields in

Ṙ = −
∂2Ψ

∂αp ∂εe
: ε̇e −

∂2Ψ

∂αp ∂αp
α̇p (2.66)
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2.3 Elastoplasticity with Linear Isotropic Hardening

Now, a further constitutive assumption is declared by an additive split of the free energy function.

Ψ(εe, αp) = Ψel(εe) + Ψep(αp) = Ψel(iε) + Ψep(αp) (2.67)

For an isotropic linear behaviour in the elastic range, thisresults straightforwardly in

σ̇ = C
iso : ε̇e, C

iso =
∂2Ψ

∂εe ⊗ ∂εe
(2.68)

and, concerning the rate of the hardening stress, it is found

Ṙ = −Hp α̇p, Hp =
∂2Ψ

∂αp ∂αp
(2.69)

with Hp denoting the hardening modulus. Demanding linear relations, a quadratic format of the free
energy is introduced by

Ψ(εe, αp) =
1

2
εe : C

iso : εe +
1

2
Hp [αp]2 (2.70)

rendering
σ = C

iso : εe, R = −Hp αp (2.71)

Moreover, the so-called Prandtl-Reuss tensorC
ep pulls together the stresses and overall strains, i.e.

σ̇ = C
ep : ε̇, C

ep = C
iso − ℵ−1

[

C
iso :

∂Φp

∂σ

]

⊗
[∂Φp

∂σ
: C

iso
]

(2.72)

with

ℵ =
∂Φp

∂σ
: C

iso :
∂Φp

∂σ
+ Hp

[∂Φp

∂R

]2

(2.73)

The Prandtl-Reuss tensorCep is in general non-symmetric. Only for associative evolution equations it
inheres minor and major symmetries, see equations (2.19) and (2.20).

A further constitutive assumption comprises plastic incompressibility. That means, only the de-
viatoric part of the stress tensor initiates plastic behaviour. This is reflected by the von Mises yield
function

Φp(S) = ϕ(σ) − [Y0 − R], ϕ(σ) =
√

3/2‖σdev‖ (2.74)

being motivated by a one dimensional tension setting, introducing the initial yield stressY0. In view
of the evolution equations, equation (2.74-1) multiplied by

√

2/3 yields in

ε̇p = γ̇ N , N =
σdev

‖σdev‖
⇒ εp = [εp]dev (2.75)

α̇p = γ̇
√

2/3 (2.76)
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2 Constitutive Modelling and Algorithmic Aspects of Selected Bulk Materials

2.3.2 Algorithmic Aspects

For the given problem please consider the overall strainsε to be a known quantity. In order to generate
explicit expressions for stressesσ, it is necessary to integrate the evolution equations numerically.
Here, this is accomplished by the Euler backward method. A time increment∆t = tn+1 − tn between
two discrete points of timetn+1 andtn shall be given. The related evolution equations then read as

ε
p
n+1 = εp

n + ∆γn+1 Nn+1 (2.77)

αp
n+1 = αp

n + ∆γn+1

√

2/3 (2.78)

Recalling that only the deviatoric part of the stresses is incorporated into plastic evolution, and, con-
sequently, the plastic strain tensor is deviatoric itself,see equation (2.75), with equation (2.71-1) it
holds

σ = [λ I ⊗ I + 2µ I
sym] : [ε − εp] = 3λ εsph + 2µ [ε − εp]

= [3λ + 2µ]εsph + 2µ [εdev − εp] = σsph + σdev (2.79)

In view of equation (2.77) and for the point of timetn+1, this yields in

σdev
n+1 = 2µ [εdev

n+1 − εp
n] − 2µ ∆γn+1 Nn+1 (2.80)

and, furthermore, it holds

σ
sph
n+1 = [3 λ + 2 µ] εsph

n+1 = [λ + 2/3µ] [I : εn+1] I (2.81)

With

σdev
trial = 2µ [εdev

n+1 − εp
n], N trial =

σdev
trial

‖σdev
trial‖

= Nn+1 (2.82)

the double contraction of equation (2.80) withNn+1 renders the so-called radial return, given as

‖σdev
n+1‖ = ‖σdev

trial‖ − 2µ ∆γn+1 (2.83)

Furthermore, together with equations (2.71-2), (2.78) and(2.83), the von Mises yield function (2.74-1)
renders

∆γn+1 = Φp
trial [2H

p/3 + 2µ]−1, Φp
trial = ‖σdev

trial‖ −
√

2/3 [Y0 − Rn], Rn = −Hp αp
n (2.84)

This, together with equation (2.77), can be reiterated in order to computeεp
n+1 and in combination

with equations (2.79) and (2.80) to computeσn+1 = σ
sph
n+1 + σdev

n+1. Please note that for von Mises
plasticity with isotropic linear hardening the Lagrange multiplier ∆γn+1 can directly be computed.
Taking equation (2.78) into account, the hardening stress then follows asRn+1 = −Hp αp

n+1. In the
case of non-linear hardening an iteration has to be accomplished in order to find some∆γn+1 with
Φp(∆γn+1) = 0. To solve the boundary value problem at hand, Newton’s method is applied. In this
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2.4 Linear Ferroelectricity

context the so-called algorithmic tangent modulus has to becomputed. In general, it is not identical
to the Prandtl-Reuss tensor and is given by

C
ep
alg =

∂σn+1

∂εn+1

= [λ + 2µ] I ⊗ I + cI I
dev + cII Nn+1 ⊗ Nn+1 (2.85)

with

cI = 2µ
[

1 −
2µ∆γn+1

‖σdev
trial‖

]

(2.86)

cII = 4µ2
[ ∆γn+1

‖σdev
trial‖

− [2µ + 2Hp/3]−1
]

(2.87)

It inheres minor and major symmetries, see equations (2.19)and (2.20). For a non-associative flow
rule such symmetry would be lost. The aforementioned considerations are only valid in the plastic
range. In contrast, for loads in the elastic range the algorithmic procedure above is replaced by setting

ε
p
n+1 = εp

n, σn+1 = C
iso : [εn+1 − ε

p
n+1] (2.88)

whereCiso denotes the tangent modulus. The Voigt notation ofCiso has been given in equation (2.31).
Finally, the algorithmic procedure is concisely comprehended in Tab. 2.1.

2.4 Linear Ferroelectricity

In the following, a linear ferroelectric material law is introduced, being relevant for, e.g., ferroelectric
ceramics as lead zirconate titanate (PZT) close to saturation polarisation. Consequently, the operating
point of the ferroelectric ceramic is located on a linear regime of the hysteresis loop. Switching effects
are therefore neglected. Therefore, the material behaviour is not explicitly ferroelectric anymore,
but in view of future work, including nonlinear effects as switching, the name is retained. For the
given electrical-mechanical coupling the electromechanical boundary value problem as described in
equations (2.1)–(2.9) has to be solved. Stresses, given as

σ = σ(ε, E) (2.89)

as well as the dielectric displacements
D = D(ε, E) (2.90)

shall depend on the strainsε and the electric field vectorE. Here, the strain energy functionWmech and
the complementary electric field energy functionW ∗

elec constitute mechanical and electrical potentials
to be incorporated in the second law of thermodynamics, resulting in

D = Dloc = Wmech −W∗
elec − Ḣ = 0 (2.91)

Changes of state are reversible since in this case all mechanical and electrical forces are assumed to
be derived from potentials. In equation (2.91)Wmech denotes the stress power whileW∗

elec is identi-
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2 Constitutive Modelling and Algorithmic Aspects of Selected Bulk Materials

given: εn+1, εp
n, αp

n

1. trial value: compute‖σdev
trial‖ ⇒ Φp

trial

2. check yield function: ifΦp
trial ≤ 0: goto 3.a), else: goto 3.b)

3.a) elastic update: •p
n+1 = •p

n

σn+1 = Ciso : [εn+1 − ε
p
n+1]

Ciso tangent modulus

3.b) plastic update: ∆γp
n+1 =

Φp
trial

2/3Hp + 2µ
⇒ ε

p
n+1, α

p
n+1

σ
sph
n+1 = [λ + 2/3µ] [I : εn+1] I

σdev
n+1 = σdev

trial − 2µ∆γp
n+1Nn+1

σn+1 = σ
sph
n+1 + σdev

n+1

C
ep
alg tangent modulus

Table 2.1: Algorithmic procedure for bulk elastoplasticity with linear isotropic hardening

fied with the complementary dielectric displacement power.For ferroelectricity a widely applicable
potential is provided by introducing the electric enthalpyfunctionH. It allows that the polarisation
can be specified due to fixed electric field inputs as well as stresses due to fixed strains, compare
Smith [165]. For temperature-independent problems the electric enthalpy function is equivalent to the
electric Gibbs function. By application of the Legendre-transformation, the electric enthalpy can be
correlated to other potentials, e.g. the free energy.

H = H(ε, E; m0) = inf
D

(Ψ − E · D), m0 = const. (2.92)

Corresponding to section 2.2.2, ferroelectric materials inhere one direction of anisotropy, denoted
by m0, ‖m0‖ = 1. The structure tensor is given asM 0 = m0 ⊗ m0. The stress power and the
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2.4 Linear Ferroelectricity

complementary dielectric displacement power are expressed by

Wmech = σ : ε̇, W∗
elec = D · Ė (2.93)

Equations (2.91) and (2.93) together yield

σ : ε̇ − D · Ė − Ḣ = 0 (2.94)

and, incorporating equation (2.92), renders

[

σ −
∂H

∂ε

]

: ε̇ +
[

− D −
∂H

∂E

]

· Ė = 0 (2.95)

Due to the Coleman-Noll Entropy Principle, it follows

σ =
∂H

∂ε
, D = −

∂H

∂E
(2.96)

The rate relations of stresses and dielectric displacements with respect to the strains and the electric
field are given by

σ̇ = C
fer,el : ε̇ − e△ · Ė, Ḋ = e : ε̇ + ǫ · Ė (2.97)

The associated Ferroelectric Continuum Tangent Tensors read as

C
fer,el =

∂2H

∂ε ⊗ ∂ε
= [Cfer,el]ijklei ⊗ ej ⊗ ek ⊗ el, e

△ = −
∂2H

∂ε ⊗ ∂E
= [e△]ijkei ⊗ ej ⊗ ek,

e = −
∂2H

∂E ⊗ ∂ε
= [e]kijek ⊗ ei ⊗ ej , ǫ = −

∂2H

∂E ⊗ ∂E
= ǫijei ⊗ ej

(2.98)
The symmetric properties ofCfer,el are equivalent to properties stated in equations (2.19) and(2.20).
In order to achieve a linear relation of energetically conjugated quantities, the electric enthalpy is
formulated as

H =
1

2
ε : C

fer,el : ε − E · e : ε −
1

2
E · ǫ · E (2.99)

Accordingly, the correlations

σ = C
fer,el : ε − et · E, D = e : ε + ǫ · E (2.100)

follow straightforwardly. Concerning the other Ferroelectric Continuum Tangent Tensors, it holds

[e]kij = [e]kji, ǫij = ǫji (2.101)

as well as
e = [e]kijek ⊗ ei ⊗ ej, e

t = e△ = [e]kijei ⊗ ej ⊗ ek (2.102)

Here,e is called the third order piezoelectric tensor andǫ denotes the second-order tensor of permittiv-
ity. As found in equation (2.101), symmetric properties allow e to be represented by18 piezoelectric
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constants while6 dielectric or permittivity constants are sufficient for a complete description ofǫ.
Together with the Voigt representations ofσV andεV as stated in equation (2.24) it holds

σV = Cfer,el · εV − et · E, D = e · εV + ǫ · E (2.103)

At the same time, an adequate Voigt notation ofe, denoted ase, is given as

eij =





e111 e122 e133 e112 e123 e131

e211 e222 e233 e212 e223 e231

e311 e322 e333 e312 e323 e331



 (2.104)

Obviously, a Voigt notation ofǫ andE is not indicated while the Voigt notation ofCfer,el, identified
with Cfer,el, has already been given in equation (2.24). According to Schröder and Gross [155], an
invariant representation of the electric enthalpy reads

H = H(ε, E; m0) = H(iε, iEm0
, iεEm0

)

= H(I1, I2, I3, I4, I5, J1, J2, K1, K2, K3, K4)

= H1(I1, I2, I3, I4, I5) + H2(J1, J2) + H3(K1, K2, K3, K4) (2.105)

with
iEm0

= {E2, E · m0} = {J1, J2}

iεEm0
= {ε : [E ⊗ m0], ε : [E ⊗ E], ε2 : [E ⊗ E], ε2 : [E ⊗ m0]}

= {K1, K2, K3, K4}

(2.106)

with K3 being redundant but generally important as a natural quantity to model higher order effects,
according to Schröder and Gross [155]. With this in hand, stresses are computed by differentiating the
electric enthalpy with respect to the invariants depicted above:

σ =
∂H

∂ε
=

∂H

∂I1

I + 2
∂H

∂I2

ε + 3
∂H

∂I3

ε2 +
∂H

∂I4

M 0 +
∂H

∂I5

2 [ε · M 0]
sym

+
∂H

∂K1

[E ⊗ m0]
sym +

∂H

∂K2

E ⊗ E +
∂H

∂K3

2 [ε · [E ⊗ E]]sym

+
∂H

∂K4
[[ε · [E ⊗ m0]]

sym + [[E ⊗ m0] · ε]sym] (2.107)

24



2.4 Linear Ferroelectricity

This is further developed, yielding

σ = Φ1 I + Φ2 ε + Φ3 ε2 + Φ4 M 0 + Φ5 2 [ε · M 0]
sym

+ Φ6 [E ⊗ m0]
sym + Φ7 E ⊗ E + Φ8 2 [ε · [E ⊗ E]]sym

+ Φ9 [[ε · [E ⊗ m0]]
sym + [[E ⊗ m0] · ε]sym] (2.108)

Analogously, dielectric displacements are expressed as

D = −
∂H

∂E

= −2
∂H

∂J1
E −

∂H

∂J2
m0 −

∂H

∂K1
ε · m0 − 2

∂H

∂K2
ε · E − 2

∂H

∂K3
ε2 · E −

∂H

∂K4
ε2 · m0

= −Φ10 E − Φ11 m0 − Φ6 ε · m0 − Φ7 ε · E − Φ8 ε2 · E − Φ9 ε2 · m0 (2.109)

The constitutive relations are considered to be linear. Consequently, in order to create constant sym-
metric Ferroelectric Continuum Tangent Tensors, the evaluation of an appropriate quadratic enthalpy
function renders

Φ1 = λ I1 + α I4 + ζ1 J2, Φ2 = 2µ⊥, Φ3 = 0, Φ4 = α I1 + β I4 + ζ2 J2, Φ5 = 2 [µ‖ − µ⊥]

Φ6 = ζ3, Φ7 = Φ8 = Φ9 = 0, Φ10 = 2γ1, Φ11 = ζ1 I1 + ζ2 I4 + 2γ2 J2 (2.110)

with λ, µ⊥, µ‖, α, β, ζ1, ζ2, ζ3, γ1 andγ2 indicating material parameters. Consequently, this leadsto

σ = [λ I1 + α I4 + ζ1 J2] I + 2µ⊥ ε + [α I1 + β I4 + ζ2 J2] M0

+ 4 [µ‖ − µ⊥] [ε · M 0]
sym + ζ3 [E ⊗ m0]

sym (2.111)

D = −2γ1 E − (ζ1 I1 + ζ2 I4 + 2γ2J2) m0 − ζ3 ε · m0 (2.112)

Hence, the Ferroelectric Continuum Tangent Tensors are given as

C
fer,el = C

tra (2.113)

e =
∂D

∂ε
= −ζ1m0 ⊗ I − ζ2 m0 ⊗ M 0 − ζ3 e

∗ (2.114)

ǫ =
∂D

∂E
= −2γ1 I − 2γ2 M 0 (2.115)
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with

e
∗ =

1

2
[m(0)iδkj + m(0)jδki] ek ⊗ ei ⊗ ej (2.116)

Finally, if the direction of anisotropy is identified asm0 = e3 the Voigt notated piezoelectric tensor
reads as

eij =





0 0 0 0 0 e15

0 0 0 0 e15 0

e31 e31 e33 0 0 0



 (2.117)

with

e31 = −ζ1, e33 = −ζ1 − ζ2 − ζ3, e15 = −
1

2
ζ3 (2.118)

Due to the fact that the Ferroelectric Continuum Tangent Tensors as well as the stressesσ and the
dielectric displacementsD can be directly computed, no further algorithmic methods have to be dealt
within this section.
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3 Constitutive Modelling and
Algorithmic Aspects of Solid
Interfaces

Subsequently, several geometrically linear interfacial constitutive models, also referred to as traction-
separation-laws or cohesive laws, are introduced. Such material models are supposed to be sufficient
to simulate the behaviour of laminar welding interfaces of metal-/fibre-reinforced polymer composites
under diverse loading conditions as well as grain boundaries of ferroelectric materials under fatigue
loading. Solid interfaces are –approximately– one geometrical dimension smaller than the surrounding
continuum. They normally inhere significant differences inmaterial behaviour when compared to the
bulk material. The fact that an interface is bordered by surfaces belonging to the surrounding material
implies the idea of constitutively connecting traction vectors and displacement jumps related to those
surfaces. Accordingly, for a coupled problem, the relationof dielectric displacements and potential
jumps has to be considered additionally.

Constitutive originators are, once more, energy considerations with respect to the free energy or the
electric enthalpy function, bearing in mind the second law of thermodynamics. Stresses and Conti-
nuum Tangent Stiffness Tensors are derived, under special consideration of algorithmic aspects. For
the bigger part of the traction-separation-laws introduced in this work the constitutive behaviour is
decoupled with respect to an interfacial orthonormal base system{s, t, n}. It is localised on some
average surface in between the surrounding surfaces, withs and t being tangential vectors. Such
decoupling is considered to be adequate if the debonding processes are largely dominated by one
failure mode. Due to the fact that many interfacial constitutive relations are strongly kindred to bulk
material laws, for further insight, it shall be referred to the textbooks already stated in chapter 2.
Applications of uncoupled cohesive material laws are foundin, e.g., Tijssens et al. [176], Tijssens et
al. [175], Hanson et al. [62] and Li et al. [94], [93]. In contrast, coupled material laws are introduced
in e.g., Xu and Needleman [193], Ortiz and Pandolfi [132], Falk et al. [54], Jin et al. [73], Kroon and
Faleskog [86] and Van den Bosch et al. [45].

Before going into detail concerning such traction-separation-laws, some mechanical and electrical
complementing conditions with respect to the interface arestated, in addition to the boundary value
problem discussed above. The first interfacial material lawto be introduced, i.e. linear elasticity,
provides something of a fundament for subsequent traction-separation-laws. Next, this framework
is extended by taking viscous effects into account. Furthermore, elastoplasticity with Lemaitre-type
damage is introduced, being sufficient for the simulation of, e.g., thermal impact welded tensile spec-
imens. A further viscous material law, viscoplasticity with Lemaitre-type damage, is discussed there-
after. The incorporation of viscous interfaces is considered to capture relaxation and creep characteris-
tics. Subsequently, interfacial fatigue is modelled by adequate traction-separation-laws distinguishing
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B+ B−

Γ

Γ+ Γ−

τ Γ+

τΓ−

nΓ+

nΓ−

Figure 3.1: ConfigurationsB+, B−, interfaceΓ and some interface conditions

between small and large cycle numbers. In this regard, so-called time- and cycle-based fatigue laws
are introduced. By reviewing linear ferroelectricity for the interface, the coupled problem is taken into
account. Finally, this is extended by time- and cycle-basedfatigue laws. To emphasise the function-
ality of the mentioned constitutive relations, prototype examples of relevant quantities are included
where adequate, pointing out the basic constitutive behaviour.

3.1 Interface Conditions

Without loss of generality letB be splitted into two parts, denoted asB+ andB−. These are bonded
by an interface, withΓ denoting the related centre line. Adequate interface-related position vectorsx
are only considered to point ontoΓ. Furthermore, towards the interface, letB+ andB− be closed by
boundariesΓ+ andΓ−, see Fig. 3.1 for a visualisation. With respect to bothB+ andB−, the afore-
mentioned equations (2.1)–(2.9), constituting the boundary value problem, retain all their validity.

3.1.1 Mechanical Interface Conditions

An interface-related traction equilibrium condition reads as

τ Γ+ + τΓ− = 0, with τΓ+ = σ · nΓ+ , τΓ− = σ · nΓ− and [[σ]] · nΓ− = 0 (3.1)

see also Fig. 3.1 for illustration. A displacement compatibility condition is given as

uΓ+ − uΓ− = [[u]] (3.2)

where[[u]] denotes the so-called displacement jump.
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3.2 Linear Elasticity

3.1.2 Electrical Interface Conditions

Furthermore, a dielectrical displacement equilibrium condition takes the representation

ΛΓ+ + ΛΓ− = 0, with ΛΓ+ = −D · nΓ+, ΛΓ− = −D · nΓ− and [[D]] · nΓ− = 0 (3.3)

while the potential compatibility condition reads as

ΦΓ+ − ΦΓ− = [[Φ]] (3.4)

In what follows, it will be identifiednΓ− ≡ n.

3.2 Linear Elasticity

The linear hyperelastic traction-separation behaviour described in this section refers to the uncoupled
boundary value problem. An adequate relation of tractions and displacement jumps therefore reads as

τ = τ ([[u]]) (3.5)

Though the traction vectorτ inheres the same units as the stress tensor, the energetically conjugate
quantity is chosen to inhere the unit of meter, i.e. the displacement jump. This is due to the fact that
strains are given as length differences divided by an initial length. In the case of an interface the initial
distance between the bordering surfaces is supposed to be very small or even zero. Division by zero
is avoided by only taking the separation of the bordering surfaces into account. Consequently, for
the sake of units, a division by an internal length must be inherent in the constitutive relations. With
W being a displacement jump energy function andW = Ẇ denoting the traction power, identical to
equation (2.11), the second law of thermodynamics for an interface reads as

D = Dloc = W − Ψ̇ = 0 (3.6)

Please note that here and in all following sections the second law of thermodynamics, represented
by the Clausius-Duhem inequality (3.6), shall be separately fullfilled for the bulk continuum and the
interface. The free energy of the interface is given as

Ψ = Ψ([[u]]; s, t, n), s, t, n = const. (3.7)

where{s, t, n} is the orthonormal interface base system, withs andt denoting orthogonal tangential
vectors of the interface. In what follows, as all further interfacial material laws include elasticity, the
dependency on the constant orthogonal tangential vectors is tacitly assumed and not explicitly stated
anymore. The traction power is expressed by

W = τ · ˙[[u]] (3.8)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Equations (3.6) and (3.8) together yield

τ · ˙[[u]] − Ψ̇ = 0 (3.9)

Considering equation (3.7), it holds

[

τ −
∂Ψ

∂[[u]]

]

· ˙[[u]] = 0 (3.10)

Application of the Coleman-Noll Entropy Principle then gives

τ =
∂Ψ

∂[[u]]
(3.11)

The rate relation of tractions and displacement jumps then reads as

τ̇ = C if,el · ˙[[u]] (3.12)

where the second order Elastic Interfacial Tangent Stiffness Tensor is given by

Cif,el =
∂2Ψ

∂[[u]] ⊗ ∂[[u]]
=

∂τ

∂[[u]]
= Cif,el

ij ei ⊗ ej (3.13)

Regarding equation (3.13), symmetric properties follow as

Cif,el
ij = Cif,el

ji (3.14)

The free energy is specified by

Ψ = W =
1

2
[[u]] · Cif,el · [[u]] > 0 ∀ [[u]] 6= 0, Cif,el

ij = const. (3.15)

assuming a linear and positive definite relation of tractions and displacement jumps which is given by

τ = C if,el · [[u]] (3.16)

The traction-separation correlation regarded here shall be linear and decoupled with respect to the
interfacial orthonormal system{s, t, n}. This is clearly a simplification of the general case where the
constitutive answer is coupled with respect to{s, t, n}. An adequate formulation of the free energy
function is given as

Ψ = Ψ([[u]]; s, t, n) = Ψ(i[[u]]) (3.17)

where the coefficientsi[[u]] compare to the irreducible set of invariants of the tensorial case, reading as

i[[u]] = {I if
s , I if

t , I if
n } with I if

i = [[[u]] · i]2 (3.18)
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3.3 Viscoelasticity with Damage

Consequently, tractions are computed by

τ =
∂Ψ

∂[[u]]
= 2

∂Ψ

∂I if
s

[[[u]] · s] s + 2
∂Ψ

∂I if
t

[[[u]] · t] t + 2
∂Ψ

∂I if
n

[[[u]] · n] n

= Φs [[[u]] · s] s + Φt [[[u]] · t] t + Φn [[[u]] · n] n (3.19)

Therewith, interfacial material constants are introducedvia

Φi = ci =
c∗i
li

, i = s, t, n (3.20)

with c∗i being elastic stiffnesses,li denoting some constant and inherent lengths, as already mentioned,
andci being the interfacial stiffness parameters. This renders the tractions straightforwardly as

τ =
∑

i

ci [[[u]] · i] i, i = s, t, n (3.21)

The second order Elastic Interfacial Tangent Stiffness Tensor then reads

Cif,el =
∑

i

C
if,el
i , i = s, t, n (3.22)

with
C

if,el
i = ci i ⊗ i (3.23)

Please note that if the distance between the bordering interfaces is greater than zero, it can be identified
with ln. Then,c∗n can be correlated to the Young’s modulus of the bulk. Even if the distance between
the bordering interfaces is close to zero, someln 6= 0 can be applied to map the bulk properties on
the interface. Nevertheless, it has to be considered that anorthotropic elastic bulk cannot completely
be compared to the interface because the orthonormal decoupled interface is in lack of any transversal
contraction stiffnesses. Otherwise, it can also be setln = 1 as a default. Then, the interfacial normal
stiffnesscn is exempt from any comparison with the bulk, and numerical difficulties resulting from
very smallli are excluded. Regarding the tangential directions a correlation with bulk shear moduli
is in principle possible. For further remarks on these issues, see, e.g. Willam et al. [188]. In further
examinations it is setls = lt = ln = 1 for convenience, except where explicitly stated otherwise.

3.3 Viscoelasticity with Damage

The computational modelling of viscous interfaces is of special interest since adhesive connections
gain more and more importance, e.g. in the field of fibre-reinforced polymer composites. In the case
of viscoelasticity, material behaviour is rate-dependentwithout equilibrium hysteresis. First theories
have been developed by e.g. Coleman and Noll [39], [40], Coleman and Mizel [38] and Mizel and
Wang [120]. For more recent reviews concerning the field of viscoelasticity, see, e.g., Kaliske and
Rothert [75], Reese and Govindjee [147, 148], and Kaliske [74]. Concerning general textbooks, once
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[[u]]ve [[u]]e

[[u]]

Figure 3.2: One-dimensional model of viscoelasticity withLemaitre-type damage, consisting of a
generalised Maxwell element

more, the book of Simo and Hughes [164] is recommended. In ourcase, a generalised Maxwell
element is chosen as a material model, compare Fig. 3.2.

3.3.1 Constitutive Modelling

As illustrated in Fig. 3.2 the displacement jump[[u]] is split into an elastic part[[u]]e and a viscous part
[[u]]ve i.e.

[[u]] = [[u]]e + [[u]]ve (3.24)

This is the basic kinematic assumption. Furthermore, the parallel spring shall induce a tractionτ∞
i

while the spring serial to the damper induces the tractionτm
i . This is the case for all interfacial

orthonormal directionsi ∈ {s, t, n}. Again, related material behaviour is decoupled. The overall
traction then reads as

τ = τ∞ + τm (3.25)

The dependencies of the tractions are given as

τ∞ = τ∞([[u]], di), τm = τm([[u]]e, di), i = s, t, n (3.26)

In equation (3.26) the damage parameterdi ∈ [0, 1[ is introduced, withḋi > 0 and healing effects
being excluded. It is incorporated in a Lemaitre-type damage context, see Lemaitre [90] and Lemaitre
and Chaboche [91]. Fordi → 1, some regarded material tends to be fully damaged and not to be able
to bear any load. The Clausius-Duhem inequality reads as

D = Dloc = W − Ψ̇ ≥ 0 (3.27)

where the free energy of the interface occupies the dependencies

Ψ = Ψ([[u]], [[u]]e, di) (3.28)
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3.3 Viscoelasticity with Damage

The traction power is given as

W = τ · ˙[[u]] = τ∞ · ˙[[u]] + τ m · ˙[[u]]
e
+ τ m · ˙[[u]]

ve
(3.29)

In view of the second law of thermodynamics, represented by equation (3.27), it follows

τ∞ · ˙[[u]] + τm · ˙[[u]]
e
+ τm · ˙[[u]]

ve
− Ψ̇ ≥ 0 (3.30)

being equivalent to

[

τ∞ −
∂Ψ

∂[[u]]

]

· ˙[[u]] +
[

τm −
∂Ψ

∂[[u]]e

]

· ˙[[u]]
e
+ τm · ˙[[u]]

ve
−

∑

i

∂Ψ

∂di

ḋi ≥ 0 (3.31)

With the Coleman-Noll Entropy Principle in mind, also knownas the standard argument of rational
thermodynamics, it is concluded

τ∞ =
∂Ψ

∂[[u]]
, τm =

∂Ψ

∂[[u]]e
(3.32)

Furthermore, the damage driving force shall be defined as

µ̄i = −
∂Ψ

∂di

(3.33)

This yields the reduced dissipation inequality, reading as

Dred = τ m · ˙[[u]]
ve

+
∑

i

µ̄i ḋi ≥ 0 (3.34)

The constitutive assumption of viscoelasticity is given bythe rate dependency

˙[[ui]]
ve

=
τm
i

ηi

, τ m =
∑

i

τm
i i (3.35)

whereηi > 0 denotes the viscosity ini-direction. The tractions induced by the spring serial to the
damper are supposed to be constituted by

τm
i = [1 − di] c

m
i [[ui]]

e (3.36)

The bracket term containingdi becomes zero ifdi → 1. Such damaging behaviour is indicated by the
dotted line in Fig. 3.2. The rate of this traction is straightforwardly computed as

τ̇m
i = [1 − di] c

m
i

[ ˙[[ui]] − ˙[[ui]]
ve]

(3.37)

Please note that damaging behaviour is computed independently such thatdi is treated as a constant
in equation (3.36). Equations (3.35) and (3.37) together yield the differential equation for the damper-
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serial tractions

τ̇m
i + [1 − di]

cm
i

ηi

τm
i = [1 − di] c

m
i

˙[[ui]] (3.38)

Additionally, combining equations (3.24), (3.35) and (3.36), an alternative differential equation for the
viscoelastic displacement jump is derived, reading as

˙[[ui]]
ve

=
1 − di

Ti

[[[ui]] − [[ui]]
ve], Ti =

ηi

cm
i

(3.39)

Therein, the relaxation timeTi has been introduced. The free energy is now split into two parts, given
as

Ψ([[u]], [[u]]e, di) = Ψ∞([[u]]) + Ψm([[u]]e, di) (3.40)

=
1

2
[[u]] ·

[ ∑

i

[1 − di] C
if,el,∞
i

]

· [[u]]

+
1

2
[[u]]e ·

[ ∑

i

[1 − di] C
if,el,m
i

]

· [[u]]e (3.41)

and incorporating the Elastic Interfacial Tangent Stiffness Tensors with respect to the parallel spring
C

if,el,∞
i and the damper-serial springCif,el,m

i , both at hand for thei-direction. Here, synchronal
damage is assumed for both springs, dependent ondi. Certainly, an alternative and more general
description is possible if the spring damage evolutions arekept distinctly. Because the displacement
jump [[u]] is considered to be available for direct computation, a non-incremental expression forτ∞ is
possible, which is given as

τ∞ =
[ ∑

i

[1 − di] C
if,el,∞
i

]

· [[u]] (3.42)

In order to computeτ m, algorithmic procedures have to be incorporated, a topic ofwhich will be
discussed later on.

The phenomenological Lemaitre-type-damage approach, seealso Lemaitre [90], Lemaitre and Cha-
boche [91], Jansson and Larsson [72] as well as Larsson and Jansson [88], relies on the idea that
the load capacity of some specimen is related to the effective cross-sectional area or rather effective
volume. This is expressed by means of the interfacial damageparametersdi ∈ [0, 1[. If di → 1, the
material tends to be fully damaged. With respect to the interfacial orthonormal base system{s, t, n}
three different damage parametersds, dt, dn are distinguished. For the decoupled damage parameters
di exponential relations are chosen, reading as

di = 1 − exp(ji[µi(0) − µi]) (3.43)

The variableµi, accountable for the progression of damage ini-direction, is computed according to

µi = max{µ̄i([[u]], [[u]]e), µi(0)} (3.44)
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3.3 Viscoelasticity with Damage

and the so-called damage driving force is given by

µ̄i = −∂di
Ψ =

1

2
[[u]]e · Cif,el,m

i · [[u]]e +
1

2
[[u]] · Cif,el,∞

i · [[u]] (3.45)

By equation (3.44) the actual elastic relative displacement energy is compared to the prior state what
serves as a criterion on whether damage proceeds or not. Please note that the values of the damage
parameters either remain zero or increase monotonically. The fixed material parametersµi(0) are da-
mage thresholds, determining the initiation of damage, where ji represent the intensity of the damage
evolution.

In view of the reduced dissipation inequality (3.34) the first summand of this inequality can be
reformulated by applying equation (3.35), rendering

τm · ˙[[u]]
ve

=
[∑

i

˙[[ui]]
ve

ηi i
]

·
[ ∑

i

˙[[ui]]
ve

i
]

=
∑

i

ηi

[ ˙[[ui]]
ve]2

(3.46)

Obviously, this is always positive or zero. In order to fulfilinequality (3.34), also the second summand
must be positive or zero. With a closer look on equation (3.45) it always holds̄µi ≥ 0. Consequently,
together withḋi > 0, the second term of equation (3.34) is positive or zero, too,and the reduced
dissipation inequality is fulfilled, providing thermodynamical consistency.

3.3.2 Algorithmic Aspects

To allow for an easy algorithmic treatment, the evolutions of viscous and damaging effects are sep-
arated. Firstly, viscous effects are computed, incorporating damage parametersdi(n), given from the
last computational step, which is denoted by indexn. For the computation ofτ m the starting point is
given by equation (3.39). By multiplication with the time increment∆t an algorithmic-incremental
version of equation (3.39) in the sense of the Euler backwardmethod is obtained, reading as

∆[[ui]]
ve =

∆t [1 − di(n)]

Ti

[[ui]]
e
n+1 =

∆t [1 − di(n)]

Ti

[[[ui]]
e
n + ∆[[ui]] − ∆[[ui]]

ve] (3.47)

This equation is solved with respect to the viscoelastic displacement jump increment, yielding

∆[[ui]]
ve =

∆t [1 − di(n)]

Ti + ∆t [1 − di(n)]
[[[ui]]

e
n + ∆[[ui]]] (3.48)

with
∆[[ui]] = [[ui]]n+1 − [[ui]]n (3.49)

The damper-serial tractions are then computed as

τm
i(n+1) = cm

i [1 − di(n)][[[ui]]n+1 − [[ui]]
ve
n+1] (3.50)

with
[[ui]]

ve
n+1 = [[ui]]

ve
n + ∆[[ui]]

ve (3.51)
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given: [[u]]n+1, [[u]]ve
n , di(n)

1. viscous update: compute∆[[u]]ve ⇒ [[u]]ve
n+1

2. traction update: τm
n+1 =

∑

i

cm
i [1 − di(n)] [[[ui]]n+1 − [[ui]]

ve
n+1]

τ∞
n+1 =

∑

i

c∞i [1 − di(n)] [[ui]]n+1

τ n+1 = τm
n+1 + τ∞

n+1

3. damage update: computeµ̄i(n+1) ⇒ di(n+1)

4. tangent modulus: Cif,ved
alg

Table 3.1: Algorithmic procedure for interfacial viscoelasticity with damage

The traction components are then given as

τ∞
n+1 =

∑

i

τ∞
i(n+1) i, τ∞

i(n+1) = c∞i [1 − di(n)] [[ui]]n+1, τm
n+1 =

∑

i

τm
i(n+1) i (3.52)

Consequently, the overall traction is computed as

τ n+1 = τ∞
n+1 + τ m

n+1 (3.53)

With the current viscoelastic displacement jump in hand thedamage parameterdi(n+1) is computed.
It is based on the elastic part of the relative displacements[[u]]en+1 = [[u]]n+1 − [[u]]ve

n+1 and inheres the
straightforward update

di(n+1) = 1 − exp(ji[µi(0) − µi(n+1)]) (3.54)

with
µi(n+1) = max{µ̄i(n+1)([[u]]n+1, [[u]]en+1), µi(n), µi(0)} (3.55)

and

µ̄i(n+1) = −∂di
Ψn+1 =

1

2
[[u]]en+1 · C

if,el,m
i · [[u]]en+1 +

1

2
[[u]]n+1 · C

if,el,∞
i · [[u]]n+1 (3.56)
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3.3 Viscoelasticity with Damage

If damage evolves, it is essential that

µi(n+1) = µ̄i(n+1)([[u]]n+1, [[u]]en+1) (3.57)

The such computed damage parameter then serves as input for the next computation step. The present
boundary value problem shall be solved by Newton’s method. Therefore, the interfacial algorithmic
tangent modulus is needed. It is given as

C
if,ved
alg =

∂τ n+1

∂[[u]]n+1

=
∑

i

C
if,el,∞
i [1 − di(n)] +

∑

i

cm
i [1 − di(n)]

[

i ⊗ i −
∂[[ui]]

ve
n+1

∂[[u]]n+1

]

(3.58)

With
∂[[ui]]

ve
n+1

∂[[u]]n+1
=

∆t [1 − di(n)]

Ti + ∆t [1 − di(n)]
i ⊗ i (3.59)

the algorithmic tangent finally results in

C
if,ved
alg =

∑

i

C
if,el,∞
i [1 − di(n)] +

∑

i

C
if,el,m
i

Ti [1 − di(n)]

Ti + ∆t [1 − di(n)]
(3.60)

The algorithmic procedure is reiterated in Tab. 3.1.

3.3.3 Prototype Examples

In this section some prototype examples are presented, demonstrating the functionality of the vis-
coelastic damage law, which has been discussed above. The plots have been created by a finite
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Figure 3.3: One-dimensional exemplary force-displacement plots of viscoelasticity. Left: displace-
ment control. Relaxation behaviour, starting from different points of the loading history.
Right: force control. Creep behaviour, starting from different points of the loading history
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Figure 3.4: One-dimensional exemplary force-displacement plots of viscoelasticity with Lemaitre-
type damage. Left: displacement control. Damage is activated at approx. 15 kN. Right:
force control. Creep behaviour - the elastic straight line is exceeded because damage is
active

element simulation of a single lap tensile specimen, with linear elasticity for the bulk and viscoelas-
ticity (with damage) for the interfacial zone.

In Fig. 3.3 relaxation behaviour is shown on the left hand side, whereas creep behaviour is presented
on the right hand side. In both cases, damage has been switched off to focus on the purely viscoelastic
material law. Moreover, in both cases, an elastic comparison straight line has been plotted, which
refers to the parallel spring. Concerning relaxation, different starting points have been chosen, render-
ing different lines. All lines end before they reach the elastic comparison straight line. This is due to
the fact that the damper needs an infinite amount of time to relax, being parallel to some spring. For
the similar reason, in the case of creep, the elastic comparison straight line is not reached either.

Damaging behaviour is presented in Fig. 3.4. On the left handside, some displacement controlled
viscoelastic behaviour is plotted with and without damage.Damage is activated at approx. 15 kN,
being visible by the decreasing character of the red curve. On the right hand side, some creep be-
haviour already shown in Fig. 3.3 is extended by damage. The elastic comparison straight line is now
exceeded due to the damaging influence on the parallel spring.

3.4 Elastoplasticity with Damage

In what follows, a traction-separation-law is introduced,representing elastoplasticity with linear har-
dening, coupled with Lemaitre-type damage. Again, the constitutive response is decoupled with re-
spect to the interfacial orthonormal system. For elastoplasticity in an interfacial context, see, e.g.,
Miehe and Schröder [118]. Concerning damage, an interfacial adaption is given in, e.g., Willam et al.
[188], Jansson and Larsson [72] and Larsson and Jansson [88]. The continuum case of elastoplasticity
coupled to damage is discussed in, e.g., Lemaitre [89]. Moreover, the typical textbooks of Simo and

38



3.4 Elastoplasticity with Damage

Hughes [164], Lemaitre [90] and Lemaitre and Chaboche [91] are recommended.

3.4.1 Constitutive Modelling

For geometrically linear elastoplasticity a split of kinematic quantities is proceeded. Translated to the
interface, this would be a split of the (overall) displacement jump [[u]] into an elastic part[[u]]e and a
plastic part[[u]]p.

[[u]] = [[u]]e + [[u]]p (3.61)

Tractions are given as
τ = τ ([[u]]e, αp

i , di), i = s, t, n (3.62)

dependent on the elastic part of the displacement jump, plastic parametersαp
i and damage parame-

tersdi (see also section 3.3). The second law of thermodynamics is given by the Clausius-Duhem
inequality, reading as

D = Dloc = W − Ψ̇ ≥ 0 (3.63)

where the free energy of the interface occupies the dependencies

Ψ = Ψ([[u]]e, αp
i , di) (3.64)

andW denotes the traction power, reading as

W = τ · ˙[[u]] = τ · [ ˙[[u]]
e
+ ˙[[u]]

p
] (3.65)

Accordingly, the Clausius-Duhem inequality can be rewritten as

[

τ −
∂Ψ

∂[[u]]e

]

· ˙[[u]]
e
+ τ · ˙[[u]]

p
−

∑

i

[ ∂Ψ

∂αp
i

α̇p
i +

∂Ψ

∂di

ḋi

]

≥ 0 (3.66)

The Coleman-Noll entropy principle implies

τ =
∂Ψ

∂[[u]]e
(3.67)

The so-called interfacial internal stress or, respectively, hardening traction ini-direction is defined as

Ri = −
∂Ψ

∂αp
i

(3.68)

while the so-called damage driving force shall be given oncemore as

µ̄i = −
∂Ψ

∂di

(3.69)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

With this in hand, the reduced dissipation inequality is written as

Dred = τ · ˙[[u]]
p
+

∑

i

[

Ri α̇
p
i + µ̄i ḋi

]

≥ 0 (3.70)

The thermodynamic force shall be given bySif
i = {τ , Ri, µ̄i}. Then, constitutive relations are intro-

duced by means of the interfacial yield function, reading as

Φp
i = Φp

i (S
if
i ) ≤ 0 (3.71)

The interfacial yield function is negative in the elastic range and zero if plasticity evolves. The elastic
range shall therefore be defined by the closure

E if
i := {Sif

i | Φp
i (S

if
i ) ≤ 0} (3.72)

The postulate of maximum dissipation, as proposed by e.g. Hill [65] and Lubliner [98], can be adapted
to the interface, reading as

Dred(S
if
i ) ≥ Dred(S

if,∗
i ) ∀ Sif,∗

i ∈ E if
i (3.73)

By the related constraint maximisation problem, see Simo and Hughes [164], the interfacial associated
evolution equations or, respectively, flow rules follow as

˙[[ui]]
p

=
γ̇p

i

1 − di

∂Φp
i (S

if
i )

∂τ̄
,

∑

i

[[ui]]
p = [[u]]p with i = s, t, n (3.74)

α̇p
i =

γ̇p
i

1 − di

∂Φp
i (S

if
i )

∂R̄i

(3.75)

being decoupled in the interfacial orthonormal base systemi ∈ {s, t, n}. The Lagrange multipliers
are denoted aṡγp

i . The related Kuhn-Tucker optimality conditions of loadingand unloading are given
as

γ̇p
i ≥ 0, Φp

i (S
if
i ) ≤ 0, γ̇p

i Φp
i (S

if
i ) = 0 (3.76)

The postulate of maximum dissipation does generally not imply that dissipation is positive. Ther-
modynamical consistency will be shown later. A quadratic format of the free energy is introduced
as

Ψ([[u]]e, αp
i , di) = Ψeld([[u]]e, di) + Ψepd(αp

i , di)

=
1

2
[[u]]e ·

[ ∑

i

[1 − di] C
if,el
i

]

· [[u]]e +
1

2

∑

i

[1 − di] H
p
i αp

i
2 (3.77)
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3.4 Elastoplasticity with Damage

introducing the plastic hardening moduli ini-direction,Hp
i . This renders the tractions and the hard-

ening tractions as
τ =

∑

i

[1 − di] C
if,el
i ·

[
[[u]] − [[u]]p

]
(3.78)

Ri = −[1 − di] H
p
i αp

i (3.79)

The so-called effective tractions and effective hardeningtractions, given in the undamaged part of the
interface, are given as

τ̄ = C if,el ·
[
[[u]] − [[u]]p

]
(3.80)

R̄i = −Hp
i αp

i (3.81)

The formulations for the damage related quantitiesdi, µi andµ̄i, compare section 3.3, are introduced
as

di = 1 − exp(ji[µi(0) − µi]) (3.82)

Being accountable for the progression of damage ini-direction, the variableµi is computed according
to

µi = max{µ̄i([[u]]e, αp
i ), µi(0)} (3.83)

The damage driving force is given by

µ̄i = −∂di
Ψ =

1

2
[[u]]e · Cif,el

i · [[u]]e +
1

2
Hp

i αp
i

2 (3.84)

Before going into detail concerning algorithmic aspects, the directionally decoupled interfacial yield
functions are specified, mainly inspired by Miehe and Schröder [118]:

Φp
i = | τ̄ · i | −[Yi(0) − R̄i] ≤ 0 (3.85)

with Yi(0) denoting the interfacial yield tractions. Equation (3.85), together with equations (3.74) and
(3.75), then renders

˙[[ui]]
p

=
γ̇p

i

1 − di

sign(τ̄ · i) i (3.86)

α̇p
i =

γ̇p
i

1 − di

(3.87)

In section 2.3, the continuum tangent modulus is given by thePrandtl-Reuss Tensor. Accordingly, for
the interfacial material law as discussed here, an interfacial tangent modulus is defined via

τ̇ = Cif,epd · ˙[[u]] (3.88)

It is found by developing the traction rate as

τ̇ =
∑

i

[
[1 − di] C

if,el
i · [ ˙[[ui]] − ˙[[ui]]

p
] − ḋi τ̄ i

]
(3.89)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

If damage evolution is active, it holds

ḋi = ji exp(ji[µi(0) − µi])
︸ ︷︷ ︸

d′i

[
τ̄ i · [ ˙[[ui]] − ˙[[ui]]

p
] + Hp

i α
p
i α̇

p
i

]
(3.90)

In order to further develop equations (3.89) and (3.90), therates of the plastic displacement jump and
the plastic parameter have to be found. During plastic evolution, the rate of the yield function is given
by

Φ̇p
i = ∂τ̄ Φp

i · ˙̄τ + ∂R̄i
Φp

i
˙̄Ri = 0 (3.91)

The rates of the effective traction and effective hardeningtraction are given as

˙̄τ =
∑

i

C
if,el
i · [ ˙[[ui]] − ˙[[ui]]

p
] (3.92)

˙̄Ri = −Hp
i α̇p

i (3.93)

Incorporating this as well as the results from equations (3.86) and (3.87) in equation (3.91) renders
after some manipulations the Lagrange multipliers ini-direction as

γ̇p
i =

1 − di

1 + Hp
i /ci

sign(τ̄i) ˙[[ui]] (3.94)

Therewith, the rates of the plastic displacement jump and the plastic parameter are rewritten and
inserted into equations (3.90) and (3.89). Consequently, the interfacial tangent modulus is computed
as

Cif,epd =
∑

i

[

[1 − di]ci

[

1 −
1

1 + Hp
i /ci

]

− d′
i

[

τ̄ 2
i

[

1 −
1

1 + Hp
i /ci

]

−
R̄i |τ̄i|

1 + Hp
i /ci

]]

︸ ︷︷ ︸

ρ
epd
i

i ⊗ i (3.95)

Now, the reduced dissipation inequality is regarded once more in order to check thermodynamical
consistency. Equations (3.70), (3.78) and (3.80) render

Dred = τ · ˙[[u]]
p
+

∑

i

[Ri α̇
p
i + µ̄i ḋi]

=
∑

i

[[1 − di] τ̄ i · ˙[[u]]pi + Ri α̇
p
i + µ̄i ḋi]

=
∑

i

[|τ̄i|γ̇
p
i + Ri

γ̇p
i

1 − di

+ µ̄iḋi] (3.96)

By incorporating the yield function (3.85) and the Kuhn-Tucker optimality conditions (3.76), equation
(3.96) is rewritten as

Dred =
∑

i

[Φp
i γ̇p

i
︸ ︷︷ ︸

=0

+ Yi(0) γ̇p
i

︸ ︷︷ ︸

≥0

+ µ̄iḋi
︸︷︷︸

≥0

] ≥ 0 (3.97)
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3.4 Elastoplasticity with Damage

Accordingly, the dissipation inequality is fulfilled and thermodynamical consistency is given.

3.4.2 Algorithmic Aspects

Again, a staggered algorithm is used to compute plastic and damage-related quantities. First, the
plastic update is proceeded. Accordingly, the damage parameter is assumed to be fixed, given from
the previous computation step. For a discrete time step∆t = tn+1−tn > 0 the implicit Euler backward
method is applied to the rate of the plastic displacement jump:

[[u]]pn+1 = [[u]]pn + ∆t
∑

i

˙[[ui]]
p

n+1 i = [[u]]pn +
∑

i

∆γp

i(n+1)

1 − di(n)

sign(τ̄i(n+1)) i (3.98)

The effective tractions can, accordingly, be written as

τ̄ n+1 =
∑

i

[

C
if,el
i ·

[
[[u]]n+1 − [[u]]pn

]

︸ ︷︷ ︸

τ̄ i,trial

−ci

∆γp

i(n+1)

1 − di(n)

sign(τ̄i(n+1)) i
]

(3.99)

The effective traction ini-direction is then given as

τ̄ i(n+1) = τ̄ i,trial − ci

∆γp

i(n+1)

1 − di(n)

sign(τ̄i(n+1)) i (3.100)

from which we conclude

i = itrial, τ̄i(n+1) + ci

∆γp

i(n+1)

1 − di(n)

sign(τ̄i(n+1)) = τ̄i,trial (3.101)

Equation (3.101)2 is equivalent to

τ̄i,trial

|τ̄i,trial|
|τ̄i,trial| =

τ̄i(n+1)

|τ̄i(n+1)|
|τ̄i(n+1)| + ci

∆γp

i(n+1)

1 − di(n)

τ̄i(n+1)

|τ̄i(n+1)|
(3.102)

Based on this relation, together withci ≥ 0 and∆γp

i(n+1) ≥ 0, we obtain after some transformation

|τ̄i(n+1)| = |τ̄i,trial| − ci

∆γp

i(n+1)

1 − di(n)

and sign(τ̄i(n+1)) = sign(τ̄i,trial) (3.103)

During plastic evolution it is essential to satisfy the yield condition

Φp

i(n+1) = |τ̄i(n+1)| − [Yi(0) − R̄i(n+1)] = 0 (3.104)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Furthermore, the Euler backward method results in

R̄i(n+1) = R̄i,trial − Hp
i

∆γp

i(n+1)

1 − di(n)

, R̄i,trial = −Hp
i αp

i(n) (3.105)

and

αp

i(n+1) = αp

i(n) +
∆γp

i(n+1)

1 − di(n)

(3.106)

Equations (3.103), (3.104) and (3.105) render the explicitupdate for the Lagrange multiplier.

∆γp

i(n+1) =
Φp

i,trial [1 − di(n)]

ci + Hp
i

with Φp
i,trial = |τ̄i,trial| − [Yi(0) − R̄i,trial] (3.107)

Of course, only ifΦp
i,trial > 0, plasticity evolves. IfΦp

i,trial ≤ 0, all plastic quantities remain un-
changed. This is taken into account by introducing

ζep
i =

{

0 if Φp
i,trial ≤ 0

1 if Φp
i,trial > 0

(3.108)

and setting

∆γp

i(n+1) = ζep
i

Φp
i,trial [1 − di(n)]

ci + Hp
i

(3.109)

Combining equations (3.100), (3.101), (3.103) and (3.107)1, we end up with

τ̄ i(n+1) = τ̄ i,trial − ζep
i

Φp
i,trial

1 + Hp
i /ci

sign(τ̄i,trial) i (3.110)

The effective traction vector updatēτ n+1 is then given by assembling terms of all directions as well
as the nominal traction vector updateτ n+1.

τ̄ n+1 =
∑

i

τ̄ i(n+1), τ n+1 =
∑

i

[1 − di(n)]τ̄ i(n+1) (3.111)

Concerning the damage quantities, the update is now consequently computed by incorporating the
current plastic or, respectively, elastic displacement jump [[u]]en+1 = [[u]]n+1 − [[u]]pn+1, yielding

di(n+1) = 1 − exp(ji[µi(0) − µi(n+1)]) (3.112)

with
µi(n+1) = max{µ̄i(n+1)([[u]]en+1, α

p

i(n+1)), µi(n), µi(0)} (3.113)

and

µ̄i(n+1) = −∂di
Ψn+1 =

1

2
[[u]]en+1 · C

if,el
i · [[u]]en+1 +

1

2
Hp

i αp

i(n+1)
2 (3.114)
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3.4 Elastoplasticity with Damage

given: [[u]]n+1, [[u]]pn, αp

i(n), di(n)

1. trial value: compute‖τ̄i,trial‖ ⇒ Φp
i,trial

2. check yield function: ζep
i =

{

0 if Φp
i,trial ≤ 0

1 if Φp
i,trial > 0

3. traction update: ∆γp

i(n+1) = ζep
i

Φp
i,trial[1 − di(n)]

ci + Hp
i

⇒ [[u]]pn+1, αp

i(n+1)

4. tangent modulus: C
if,epd
alg

5. damage update: computeµ̄i(n+1) ⇒ di(n+1)

Table 3.2: Algorithmic procedure for interfacial elastoplasticity with damage

When solving the obtained set of nonlinear equations with a classical Newton scheme, the so-called
algorithmic tangent

C
if,epd
alg =

∂τ n+1

∂[[u]]n+1
(3.115)

is required to compute the global tangent matrix of the finiteelement code. Using equations (3.78) in
the given algorithmic context together with (3.115) gives

∂τ n+1

∂[[u]]n+1
=

∑

i

[1 − di(n)]C
if,el
i ·

[

I −
∂[[u]]pn+1

∂[[u]]n+1

]

(3.116)

To further develop equation (3.116), we observe from equation (3.98)

∂[[u]]pn+1

∂[[u]]n+1

=
∑

i

[

∆γp

i(n+1)

∂[sign(τ̄i(n+1)) i]

∂[[u]]n+1

+ [sign(τ̄i(n+1)) i] ⊗
∂∆γp

i(n+1)

∂[[u]]n+1

]

[1 − di(n)]
−1 (3.117)

Combining equations (3.101), (3.103) and (3.117) renders
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∂∆γp

i(n+1)

∂[[u]]n+1
= ζep

i [1 − di(n)]
∂
[
|τ̄i,trial|/[ci + Hp

i ]
]

∂[[u]]n+1

= ζep
i [1 − di(n)]

∂
[
|
[
Cif,el · [[[u]]n+1 − [[u]]pn]

]
· i | /[ci + Hp

i ]
]

∂[[u]]n+1

= ζep
i [1 − di(n)]

sign(τ̄i,trial)

1 + Hp
i /ci

i (3.118)

whereζep
i has been evaluated at the beginning of the algorithmic procedure. Furthermore, it holds

∂[sign(τ̄i,trial) i]

∂[[u]]n+1

=
∂[τ̄ i,trial/‖τ̄ i,trial‖]

∂[[u]]n+1

=
∂ i

∂[[u]]n+1

= 0 (3.119)

Considering equations (3.118), (3.119) and (3.117) then gives

∂[[u]]pn+1

∂[[u]]n+1
=

∑

i

ζep
i

1 + Hp
i /ci

i ⊗ i (3.120)

Reinserting these results finally renders

C
if,epd
alg =

∑

i

[1 − di(n)]
[

1 −
ζep
i

1 + Hp
i /ci

]

C
if,el
i (3.121)

The algorithmic procedure is once more reflected by Tab. 3.2.

3.4.3 Prototype Example

Now, a prototype example is presented which demonstrates the functionality of the elastoplastic dam-
age law discussed above. The plot has been created by a finite element simulation of a single lap
tensile specimen, with linear elasticity for the bulk and elastoplasticity with damage for the interfacial
zone. In Fig. 3.5 the plastic behaviour begins at approx. 6300 N whereas damaging occurs at 7000 N.
Obviously, the damage law induces some softening behaviour, which is also observed in the unloading
behaviour.

3.5 Viscoplasticity with Damage

In this section the material model of interfacial viscoplasticity with Lemaitre-Type damage is dis-
cussed. This constitutive relation reflects rate-dependent interfacial material behaviour with equilib-
rium hysteresis. In our case the ansatz of Perzyna, see, e.g., Perzyna [142], Perzyna and Wojno [143]
and Chaboche [34] is applied. In this context a yield surfaceseparates an elastic and a viscoplastic
domain. The framework of this theory includes classical plasticity as a special case. An adequate
one-dimensional model is depicted in Fig. 3.6. Other approaches of viscoplasticity are given by an
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Figure 3.5: One-dimensional exemplary force-displacement plots of elastoplasticity with damage

abandonment of yield criteria and an uniform formulation ofthe viscoplastic evolution, see, e.g., Hart
[63] and Miller [119], and a split of stresses into an rate-independent and a rate-dependent viscoplastic
part as proposed by, e.g., Krempl [83] and Krempl and Bordonaro [84].

For some more recent achievements in the field of viscoplasticity see, e.g., Ortiz and Stainier [133]
and Espinosa et al. [52].

3.5.1 Constitutive Modelling

Again, a split of the overall displacement jump into an elastic and a plastic part is carried out.

[[u]] = [[u]]e + [[u]]vp (3.122)

The traction vector is given as

τ = τ ([[u]]e, αvp
i , di), i = s, t, n (3.123)

It depends on the elastic part of the displacement jump, someviscoplastic parametersαvp
i and some

damage parametersdi. The Clausius-Duhem inequality reads as

D = Dloc = W − Ψ̇ ≥ 0 (3.124)
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[[u]]e [[u]]vp

[[u]]

Figure 3.6: One-dimensional model of viscoplasticity

with the free energy of the interface, reading as

Ψ = Ψ([[u]]e, αvp
i , di) (3.125)

The traction power is denoted by

W = τ · ˙[[u]] = τ · [ ˙[[u]]
e
+ ˙[[u]]

vp
] (3.126)

The Clausius-Duhem inequality can then be reformulated as

[

τ −
∂Ψ

∂[[u]]e

]

· ˙[[u]]
e
+ τ · ˙[[u]]

vp
−

∑

i

[ ∂Ψ

∂αvp
i

α̇vp
i +

∂Ψ

∂di

ḋi

]

≥ 0 (3.127)

By taking the Coleman-Noll Entropy Principle into account,it is essential that

τ =
∂Ψ

∂[[u]]e
(3.128)

The hardening traction ini-direction reads

Ri = −
∂Ψ

∂αvp
i

(3.129)

The damage driving force, compare previous chapters, is given as

µ̄i = −
∂Ψ

∂di

(3.130)

48



3.5 Viscoplasticity with Damage

Consequently, the reduced dissipation inequality is formulated as

Dred = τ · ˙[[u]]
vp

+
∑

i

[

Ri α̇
vp
i + µ̄i ḋi

]

≥ 0 (3.131)

With the thermodynamic force being given asSif
i = {τ , Ri, µ̄i}, the interfacial viscoplastic yield

function is introduced as
Φvp

i = Φvp
i (Sif

i ) (3.132)

Please note that, compared to elastoplasticity with damage, this yield function shall not be restricted
to negative or zero values. Nevertheless, some elastic range can be defined by the closure

E if
i := {Sif

i | Φvp
i (Sif

i ) ≤ 0} (3.133)

In the case of inelasticity some plastic threshold is overcome, and the so-called effective excess traction
in i-direction for the undamaged interfacial material fraction is given as

τ̄ ex
i =

{
τ̄i − [Yi(0) − R̄i] if τ̄i ≥ Yi(0) − R̄i

τ̄i + [Yi(0) − R̄i] if τ̄i < −[Yi(0) − R̄i]

}

= [|τ̄i| − [Yi(0) − R̄i]] sign(τ̄i) (3.134)

Motivated by equation (3.134), the viscoplastic yield function is then defined as

Φvp
i (τ̄i) = |τ̄i| − [Yi(0) − R̄i] (3.135)

Incorporating the viscosity ini-direction, an adequate constitutive relation concerningthe rate of the
viscoplastic displacement jump reads as

˙[[ui]]
vp

=
τ̄ ex
i

ηi [1 − di]
(3.136)

As already mentioned in the introduction, the ansatz of Perzyna, see, e.g., Perzyna [142], Perzyna and
Wojno [143] and Chaboche [34] is applied. In this context, a yield function of the format as introduced
in equations (3.134) and (3.135) enters equation (3.136) inthe form

˙[[ui]]
vp

=
1

ηi [1 − di]
Φvp

i (τ̄i) sign(τ̄i) =
1

ηi [1 − di]
Φvp

i (τ̄i)
∂Φvp

i

∂τ̄i

if Φvp
i > 0 (3.137)

being equivalent to

˙[[ui]]
vp

=
〈Φvp

i (τ̄i)〉

ηi [1 − di]

∂Φvp
i

∂τ̄i

=
γ̇vp

i

1 − di

∂Φvp
i

∂τ̄i

=
γ̇vp

i

1 − di

sign(τ̄i) (3.138)

denoting the evolution equation for the rate of the viscoplastic displacement jump and introducing the
penalty parameteṙγvp

i . Accordingly, the rate of the viscoplastic parameter can beexpressed by

α̇vp
i =

〈Φvp
i (τ̄i)〉

ηi [1 − di]

∂Φvp
i

∂R̄i

=
γ̇vp

i

1 − di

(3.139)
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Please note that for viscoplasticity the Kuhn-Tucker optimality conditions of plasticity are not legal.
Nevertheless, some conditions with respect to the penalty parameter and the yield function can be
defined:

γ̇vp
i ≥ 0, γ̇vp

i Φvp
i (Sif

i ) ≥ 0 (3.140)

In view of the rate of the effective tractions, it has to be fulfilled

˙̄τi = ci [ ˙[[ui]] − ˙[[ui]]
vp

] = ci

[
˙[[ui]] −

γ̇vp
i

1 − di

∂Φvp
i

∂τ̄i

]

(3.141)

The free energy is introduced by a quadratic format, readingas

Ψ([[u]]e, αvp
i , di) = Ψeld([[u]]e, di) + Ψvpd(αvp

i , di)

=
1

2
[[u]]e ·

[ ∑

i

[1 − di] C
if,el
i

]

· [[u]]e

+
1

2

∑

i

[1 − di]H
vp
i αvp

i
2 (3.142)

introducing the viscoplastic hardening moduli ini-direction,Hvp
i . Hence, tractions and hardening

tractions follow as
τ =

∑

i

[1 − di] C
if,el
i ·

[
[[u]] − [[u]]vp

]
(3.143)

Ri = −[1 − di] H
vp
i αvp

i (3.144)

Effective tractions and hardening tractions, which are present in the undamaged fraction of the inter-
face material, are given as

τ̄ = Cif,el ·
[
[[u]] − [[u]]vp

]
(3.145)

R̄i = −Hvp
i αvp

i (3.146)

Concerning the quantitiesdi, µi, µ̄i related to Lemaitre-type damage, expressions from section3.4.1
can be adopted for viscoplastic quantities, see equations (3.82), (3.83) and (3.84). For computational
treatment algorithmic expressions are derived in the next section, being closely related to the algorith-
mic aspects concerning elastoplasticity with damage as reviewed in section 3.4.2. Now, the reduced
dissipation inequality is investigated for thermodynamical consistency. Following the investigations
of section 3.4.1, it is found

Dred =
∑

i

[Φvp
i γ̇vp

i
︸ ︷︷ ︸

≥0

+ Yi(0) γ̇vp
i

︸ ︷︷ ︸

≥0

+ µ̄iḋi
︸︷︷︸

≥0

] ≥ 0 (3.147)

Consequently, the dissipation inequality is fulfilled and the traction-separation-law is thermodynami-
cally consistent.
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3.5 Viscoplasticity with Damage

3.5.2 Algorithmic Aspects

To get an update for the viscoplastic displacement jump, theimplicit Euler backward method is once
more applied:

[[u]]vp
n+1 = [[u]]vp

n + ∆t
∑

i

˙[[ui]]
vp
n+1 i = [[u]]vp

n +
∑

i

∆γvp

i(n+1)

1 − di(n)

sign(τ̄i(n+1)) i (3.148)

Effective tractions are then rewritten as

τ̄ n+1 =
∑

i

[

C
if,el
i ·

[
[[u]]n+1 − [[u]]vp

n

]

︸ ︷︷ ︸

τ̄ i,trial

−ci

∆γvp

i(n+1)

1 − di(n)

sign(τ̄i(n+1)) i
]

(3.149)

In analogy to equations (3.100), (3.101) and (3.102) it holds

|τ̄i(n+1)| = |τ̄i,trial| − ci

∆γvp

i(n+1)

1 − di(n)

and sign(τ̄i(n+1)) = sign(τ̄i,trial) (3.150)

The viscoplastic yield function is given as

Φvp

i(n+1) = |τ̄i(n+1)| − [Yi(0) − R̄i(n+1)] (3.151)

Concerning the hardening tractions the Euler backward method renders

R̄i(n+1) = R̄i,trial − Hvp
i

∆γvp

i(n+1)

1 − di(n)

, R̄i,trial = −Hvp
i αvp

i(n) (3.152)

Accordingly, equation (3.151) is rewritten as

Φvp

i(n+1) = |τ̄i(n+1)| − Yi(0) + R̄i,trial − Hvp
i

∆γvp

i(n+1)

1 − di(n)

= |τ̄i,trial| − ci

∆γvp

i(n+1)

1 − di(n)

− Yi(0) + R̄i,trial − Hvp
i

∆γvp

i(n+1)

1 − di(n)

= Φvp
i,trial − [ci + Hvp

i ]
∆γvp

i(n+1)

1 − di(n)

(3.153)

with
Φvp

i,trial = |τ̄i,trial| − [Yi(0) − R̄i,trial] (3.154)

The time-discrete update of the viscoplastic penalty parameter is defined as

∆γvp

i(n+1) = ∆t
Φvp

i(n+1)

ηi

(3.155)
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where∆t denotes the time increment. Combining equations (3.153) and (3.155) yields

∆t

ηi

[

Φvp
i,trial − [ci + Hvp

i ]
∆γvp

i(n+1)

1 − di(n)

]

− ∆γvp

i(n+1) = 0 (3.156)

This is further transformed into

∆γvp

i(n+1) =
Φvp

i,trial

[ci + Hvp
i ]/[1 − di(n)] + ηi/∆t

(3.157)

giving the update of the viscoplastic penalty parameter. Certainly, this is only valid during viscoplastic
evolution. If Φvp

i,trial ≤ 0, all plastic quantities remain unchanged, which has been expressed by
Macaulay-brackets in section 3.5.1. Now, this is algorithmically taken into account by introducing

ζvp
i =

{

0 if Φvp
i,trial ≤ 0

1 if Φvp
i,trial > 0

(3.158)

The viscoplastic penalty parameter is then rewritten as

∆γvp

i(n+1) = ζvp
i

Φvp
i,trial

[ci + Hvp
i ]/[1 − di(n)] + ηi/∆t

(3.159)

Considering equations (3.100), (3.150) and (3.159) results in

τ̄ i(n+1) = τ̄ i,trial − ζvp
i

Φvp
i,trial

1 + Hvp
i /ci + ηi [1 − di(n)]/[ci ∆t]

sign(τ̄i,trial) i (3.160)

Assembling terms of all directions the effective traction vector updatēτ n+1 and the nominal traction
vector updateτ n+1 read as

τ̄ n+1 =
∑

i

τ̄ i(n+1), τ n+1 =
∑

i

[1 − di(n)]τ̄ i(n+1) (3.161)

Now, the direct damage update is computed, in analogy to equations (3.112), (3.113) and (3.114),
yielding

di(n+1) = 1 − exp(ji[µi(0) − µi(n+1)]) (3.162)

with
µi(n+1) = max{µ̄i(n+1)([[u]]en+1, α

vp

i(n+1)), µi(n), µi(0)} (3.163)

and

µ̄i(n+1) = −∂di
Ψn+1 =

1

2
[[u]]en+1 · C

if,el
i · [[u]]en+1 +

1

2
Hvp

i αvp

i(n+1)
2 (3.164)
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3.5 Viscoplasticity with Damage

given: [[u]]n+1, [[u]]vp
n , αvp

i(n), di(n)

1. trial value: compute‖τ̄i,trial‖ ⇒ Φvp
i,trial

2. check yield function: ζvp
i =

{

0 if Φvp
i,trial ≤ 0

1 if Φvp
i,trial > 0

3. traction update: ∆γvp

i(n+1) = ζvp
i

Φvp
i,trial

[ci + Hvp
i ]/[1 − di(n)] + ηi/∆t

⇒ [[u]]vp
n+1, αvp

i(n+1)

4. tangent modulus: C
if,vpd
alg

5. damage update: computeµ̄i(n+1) ⇒ di(n+1)

Table 3.3: Algorithmic procedure for interfacial viscoplasticity with damage

where the elastic displacement jump[[u]]en+1 = [[u]]n+1 − [[u]]vp
n+1 has been incorporated. Next, the

algorithmic tangent modulus is computed. It is given by

C
if,vpd
alg =

∂τ n+1

∂[[u]]n+1
(3.165)

and will be incorporated into a Finite Element code. Equations (3.143) and (3.165) together yield

∂τ n+1

∂[[u]]n+1
=

∑

i

[1 − di(n)]C
if,el
i ·

[

I −
∂[[u]]vp

n+1

∂[[u]]n+1

]

(3.166)

For the further development of equation (3.166), equation (3.148) is incorporated, giving

∂[[u]]vp
n+1

∂[[u]]n+1
=

∑

i

[

∆γvp

i(n+1)

∂[sign(τ̄i(n+1)) i]

∂[[u]]n+1
+ [sign(τ̄i(n+1)) i] ⊗

∂∆γvp

i(n+1)

∂[[u]]n+1

]

[1 − di(n)]
−1 (3.167)

53



3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Equations (3.150), (3.159) and (3.167) together render

∂∆γvp

i(n+1)

∂[[u]]n+1

= ζvp
i

∂
[
|τ̄i,trial|/[[ci + Hvp

i ]/[1 − di(n)] + ηi/∆t]
]

∂[[u]]n+1

= ζvp
i

∂
[
|
[
Cif,el · [[[u]]n+1 − [[u]]vp

n ]
]
· i | /[[ci + Hvp

i ]/[1 − di(n)] + ηi/∆t]
]

∂[[u]]n+1

= ζvp
i

sign(τ̄i,trial)

[1 + Hvp
i /ci]/[1 − di(n)] + ηi/[ci ∆t]

i (3.168)

Considering equations (3.168), (3.119), (3.150)2 and (3.167) renders

∂[[u]]vp
n+1

∂[[u]]n+1

=
∑

i

ζvp
i

1 + Hvp
i /ci + ηi [1 − di(n)]/[ci ∆t]

i ⊗ i (3.169)

Reinserting this into equations (3.166) and (3.165), respectively, yields in the algorithmic tangent
modulus, given by

C
if,vpd
alg =

∑

i

[1 − di(n)]
[

1 −
ζvp
i

1 + Hvp
i /ci + ηi [1 − di(n)]/[ci ∆t]

]

C
if,el
i (3.170)

The most important algorithmic aspects are comprehended inTab. 3.3.

3.5.3 Prototype Examples

Subsequently, demonstrating the functionality of the viscoelastic damage law introduced above, some
prototype examples are presented. The plots have been created by a finite element simulation of a
single lap tensile specimen, with linear elasticity for thebulk and viscoplasticity (with damage) for the
interfacial zone.

In Fig. 3.7 relaxation behaviour is shown on the left hand side whereas creep behaviour is presented
on the right hand side. In both cases damage has been switchedoff to focus on the purely viscoplastic
material law. Additionally, in both cases, an elastic-plastic comparison curve has been plotted, refer-
ring to the case without damping. Concerning relaxation, different starting points have been chosen,
rendering different lines. All lines end before they reach the elastic-plastic comparison curve. This
is due to the fact that the damper needs an infinite amount of time to relax. In contrast, in the case
of creep, the elastic-plastic comparison curve is exceededfor a very large number of creep steps. In
contrast to viscoelasticity no parallel spring is at hand. Consequently, the model allows for infinite
creep displacements.

In Fig. 3.8 damaging behaviour is presented. On the left handside, some displacement controlled
viscoelastic behaviour is plotted with and without damage.Damage is activated at approx. 4 kN,
being visible by the decreasing character of the red curve. On the right hand side, 250 creep steps are
extended by damage. Without it the elastic-plastic comparison curve would not be exceeded here.
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Figure 3.7: One-dimensional exemplary force-displacement plots of viscoplasticity. Left: displace-
ment control. Relaxation behaviour, starting from different points of the loading history.
Right: force control. Creep behaviour, starting from different points of the loading history
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Figure 3.8: One-dimensional exemplary force-displacement plots of viscoplasticity with Lemaitre-
type damage. Left: displacement control. Damage is activated at approx. 4 kN. Right:
force control. Creep behaviour - the elastic straight line is exceeded because damage is
active

3.6 Fatigue

Many technical products are subject to fatigue loading. Consequently, also material interfaces suffer
from fatigue effects. This creates the need of adequate interfacial fatigue models. Generally, it is
distinguished between low-cycle-fatigue and high-cycle-fatigue. Typical cycle numbers concerning
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

low-cycle-fatigue are resident in the range ofO(100) − O(103) while high-cycle-fatigue is on hand
for higher cycle numbers. According to this distinction, different material models are supposable.
Concerning high cycle numbers, a cycle-based formulation is mostly incorporated while for low cycle
numbers a direct retracing of the loading history by resolving single cycles in several loading steps is
practicable. Typical for both possibilities is the fatigue-related application of damage mechanics as
proposed by Lemaitre [90] and Lemaitre and Chaboche [91]. Inview of high-cycle-fatigue, fatigue
damage evolution has often be defined to be stress dependent,see, e.g., Lemaitre and Plumtree [92],
Hua and Socie [68] and Chaboche [35]. However, by further developing the formulation of Paas et al.
[135], Peerlings et al. [140] proposed a strain based formalism being of the same form as the high-
cycle part of the classical strain-based approach to fatigue as described in Manson and Hirschberg
[104] or, respectively, Basquin’s law, see Basquin [8]. It has been adopted in an interfacial context by,
e.g., Robinson et al. [149], Munoz et al. [123] and Erinc et al. [50]. A cohesive low-cycle-fatigue
formalism was developed by Nguyen et al. [127] and was further extended by Arias et al. [2] for
coupled problems, however, without placing emphasis on itsnumerical implementation.

3.6.1 Constitutive Modelling: General Remarks

For the constitutive modelling of fatigue effects, we once more apply Lemaitre-type damage. It is
assumed that by the influence of cyclic loading in the elasticregime of the interface, stiffnesses are
decreased. This clearly leads towards a material modellingwhich is identical to elasticity with damage
where the damage parameter is motivated specifically for thetype of fatigue which is present. The
nominal tractions depend on the displacement jump and the damage variabled ∈ [0, 1[ with ḋ > 0:

τ = τ ([[u]], d) (3.171)

Please note that, in contrast to the decoupled traction-separation laws of previous sections, the damage
evolution is synchronal in all interfacial orthonormal directions. The second law of thermodynamics,
represented by the Clausius-Duhem inequality, is given as

D = Dloc = W − Ψ̇ ≥ 0 (3.172)

Concerning the free energy, dependencies are given as

Ψ = Ψ([[u]], d) (3.173)

with W being the traction power. Equation (3.172) can consequently be reformulated, yielding

[

τ −
∂Ψ

∂[[u]]

]

· ˙[[u]] −
∂Ψ

∂d
ḋ ≥ 0 (3.174)

Incorporating the Coleman-Noll Entropy Principle renders

τ =
∂Ψ

∂[[u]]
(3.175)
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The reduced dissipation inequality is computed straightforwardly and reads

Dred = −
∂Ψ

∂d
ḋ ≥ 0 (3.176)

Again, the free energy relation is introduced in a quadraticformat, reading as

Ψ([[u]], d) =
1

2
[1 − d] [[u]] · Cif,el · [[u]] (3.177)

Simultaneously, nominal tractions follow as

τ = [1 − d] Cif,el · [[u]] (3.178)

The effective tractions are computed by the simple relation

τ̄ = Cif,el · [[u]] (3.179)

The reduced dissipation inequality is consequently rewritten as

Dred =
1

2
[[u]] · Cif,el · [[u]] ḋ ≥ 0 (3.180)

Obviously, it is always positive and thermodynamical consistency is fulfilled.
In the following, two differently motivated fatigue damageevolution formulations will be presented.

The first one is called “Time-Based Fatigue Formulation” andis appropriate for low-cycle-fatigue sim-
ulations while the second one, named “Cycle-Based Fatigue Formulation”, is capable of representing
high-cycle-fatigue loadings. Both methods inhere a commonground which is given by an effective
quantityδ, defined as

δ =
√

β2
s [[us]]2 + β2

t [[ut]]2 + β2
n [[un]]2 (3.181)

with
[[ui]] = [[u]] · i, i = s, t, n (3.182)

andβs, βt andβn denoting material parameters, controlling the influence ofthe projected displacement
jumps onδ while i ∈ {s, t, n} are the already known orthonormal unit vectors characterising the
interface itself. This effective quantity approach is coupled in the interfacial orthonormal directions
and similar to the approach introduced by, e.g., Pandolfi andOrtiz [137], Pandolfi et al. [136], Ortiz
and Pandolfi [132], Cirak et al. [36], Corigliano et al. [42] and others.

3.6.2 Constitutive Modelling: Time-Based Fatigue Formula tion

The Time-Based Fatigue Formulation traces a cyclic loadinghistory not in cycle-by-cycle steps but
in arbitrarily exact time intervals or, respectively, loading segments. One of the first elaborations con-
cerning this matter, considering an unloading-reloading hysteresis for a traction-separation correlation,
was published by Nguyen et al. [127]. Therein, loading stiffness rates have been constructed such that
shakedown effects are prevented. An application to the prediction of fatigue-crack nucleation has been
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provided by Serebrinsky and Ortiz [160] while Arias et al. [2] applied the same elaborations to the
cohesive modelling of ferroelectric fatigue. The materiallaw which is applied to capture low-cycle-
fatigue shall be given as an exponential function, to be specific

d = exp
(

−
α̌

δ̃

)

(3.183)

with α̌ being a positive material parameter. Hereby,δ̃ takes the interpretation as a history-dependent
effective quantity.

3.6.3 Algorithmic Aspects: Time-Based Fatigue Formulatio n

An incremental update for the damage variable is accomplished, with indexn+1 denoting the current
loading step. It is given as

dn+1 = exp
(

−
α̌

δ̃n+1

)

(3.184)

The related history-dependent effective quantityδ̃ is updated as follows:

δ̃n+1 = δ̃n + 〈δn+1 − δn〉, δ̃0 = 0 (3.185)

For loading, the expression in the Macaulay-brackets is positive and the history-dependent effective
quantity is updated whereas, for unloading, it will be retained. Consequently, only an increasingδ
contributes to the damage evolution in this rather simple but efficient formulation. Nevertheless, all
types of cycling, incorporating cyclic compressive, tensile and alternating loads, are time-explicitly
reflected, contributing to the evolution ofd in the same manner. Related, updates for the effective and
nominal traction vectors are given as

τ̄ n+1 = Cif,el · [[u]]n+1, τ n+1 = [1 − dn+1] τ̄ n+1 (3.186)

The algorithmic tangent of the Time-Based Fatigue Formalism is defined as

C
if,tbf
alg =

∂τ n+1

∂[[u]]n+1

(3.187)

Equation (3.186), together with equation (3.187), yields

∂τ n+1

∂[[u]]n+1
= [1 − dn+1] C

if,el − τ̄ n+1 ⊗
∂dn+1

∂[[u]]n+1
(3.188)

For the further development of equation (3.188), equation (3.184) is exploited as

∂dn+1

∂[[u]]n+1
= exp

(

−
α̌

δ̃n+1

)

α̌ δ̃−2
n+1

δ̃n+1

[[u]]n+1
(3.189)
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given: [[u]]n+1, dn

1. damage update: δ̃n+1 = δ̃n + 〈δn+1 − δn〉, δ̃0 = 0

dn+1 = exp
(

−
α̌

δ̃n+1

)

2. traction update: τ n+1 = [1 − dn+1] C
if,el · [[u]]n+1

4. tangent modulus: Cif,tbf
alg

Table 3.4: Algorithmic procedure for interfacial time-based fatigue

In view of equation (3.185), it holds

∂〈δn+1 − δn〉

∂δn+1
= ζ tbf =

{
1 if δn+1 − δn > 0

0 if δn+1 − δn ≤ 0
(3.190)

Furthermore, incorporating equations (3.255) and (3.182), it holds

∂δ̃n+1

∂[[u]]n+1

= ζ tbf δ−1
n+1

∑

i

β2
i [[ui]]n+1, i = s, t, n (3.191)

Inserting the result of equation (3.191) into equation (3.189) renders

∂dn+1

∂[[u]]n+1
= exp

(

−
α̌

δ̃n+1

)

α̌ δ̃−2
n+1 δ−1

n+1 ζ tbf
∑

i

β2
i [[ui]]n+1 (3.192)

This, together with equations (3.188) and (3.187), yields the algorithmic tangent

C
if,tbf
alg = [1 − dn+1] C

if,el − exp
(

−
α̌

δ̃n+1

)

α̌ δ̃−2
n+1 δ−1

n+1 ζ tbf τ̄ n+1 ⊗
∑

i

β2
i [[ui]]n+1 (3.193)

The concisely comprehended algorithmic aspects are given in Tab. 3.4.
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Figure 3.9: Force-displacement plot of time-based fatigue: displacement control

3.6.4 Prototype Example: Time-Based Fatigue Formulation

The exemplary force-displacement plot included here has been computed by applying cyclic displace-
ments to a finite element discretisation of a single lap tensile specimen, with linear elasticity for the
bulk and time-based fatigue for the interfacial zone. As Fig. 3.9 shows, the force decreases with con-
tinued cycling. This is due to the damaging influence, being driven by the history-dependent effective
quantityδ̃.

3.6.5 Constitutive Modelling: Cycle-Based Fatigue Formul ation

The fatigue formulation for high-cycle-fatigue is based ona constitutive integration over many cycles
by means of a cycle numberN . This idea has first been implemented for continua by Paas et al. [135],
Peerlings [139] and Peerlings et al. [140]. Concerning interfaces, similar formulations have been
adopted for uncoupled problems by Robinson et al. [149], Munoz et al. [123] and Erinc et al. [50]. In
the following, it is proceeded along the strategy describedin Peerlings et al. [140], applying it to the
interface. The damage variable is related to the deformation by means of a damage loading function

f(δ, κ) = δ − κ (3.194)

whereκ is a threshold. Thereby, damage evolution will be active if the given effective quantityδ
exceedsκ. Here, the material law is given by the rate of the damage parameterd as

ḋ =

{
h(d, δ) δ̇ if f ≥ 0, ḟ ≥ 0, and d < 1

0 else
(3.195)
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with the evolution function
h(d, δ) = C exp(γ̌ d) δβ̌ (3.196)

andC, β̌ andγ̌ denoting material parameters.

3.6.6 Algorithmic Aspects: Cycle-Based Fatigue Formulati on

Now, assumedt, dt+∆t to be damage parameters corresponding to points in timet andt + ∆t. For
continued loading, integration of equation (3.195) then renders

dt+∆t = dt +

∫ t+∆t

t

ḋ(τ) dτ (3.197)

To avoid the influence of some highly varyingḋ, an approximation of this correlation is not advisable.
Therefore, a sum notation with respect to single cycles in combination with a transformation of inte-
gration limits concerning time and cycle numbers is accomplished. With this in hand and the damage
evolution being active, combining equations (3.195) and (3.197) renders

dN+∆N = dN +
N+∆N∑

k=N

∫ δa,k

κ

h(dk, δk) dδk (3.198)

with N andN + ∆N being the number of performed cycles at points in timet andt + ∆t. Moreover,
δa,k, δk anddk denote the effective parameter amplitude at cyclek, the variable effective parameter
and damage parameter during cyclek. It shall be mentioned that, again, only loading relatedδ shall
contribute to the damage evolution. For the thus obtained expression fordN+∆N neitherδa,k nor dk

would vary much within a sufficiently small increment∆N . Hence, the sum expression in equation
(3.198) can now be approximated. Application of the trapezoidal rule with respect to loading cycles
N andN + ∆N is reasonable, which ends up with

dN+∆N = dN +
1

2
ζcbf

[
Z(dN , δa,N) + Z(dN+∆N , δa,N+∆N)

]
∆N (3.199)

wherein

Z = Ωcbf

δa∫

κ

h(d, δ) dδ (3.200)

In equation (3.199) an additional parameter is introduced to account for subthreshold loading.

ζcbf =

{
1 if δa > κ

0 else
(3.201)

Furthermore, equation (3.200) contains the parameterΩcbf . It is defined as

Ωcbf =

{
2 for alternating loads, mean load zero
1 for exclusively tensile or compressive loads

(3.202)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Due to the positiveness of the effective displacement jump,Ωcbf = 2 implies that for alternating
loads, the tensile and compressive loading parts have the same consequences on the damage evolution,
assuming that both parts are equal in their norm. In other words, the effect of the tensile part of the
load is put on par with the compressive part. In addition to this simplifying assumption, alternating
loads with mean loads unequal zero are not included in this formulation. Next, according to Peerlings
et al. [140], Heun’s method enables to solve equation (3.199). This is accomplished by incorporating
the Euler forward method. In detail, introducing a predictor valuedp, reading as

dp = dN + Z(dN , δa,N ) ∆N (3.203)

replacesdN+∆N . Finally, equation (3.199) together with (3.203) render the damage update to take the
format

dN+∆N = dN +
1

2
ζcbf

[
Z(dN , δa,N ) + Z(dp, δa,N+∆N)

]
∆N (3.204)

which nicely can be incorporated into a finite element context. The accuracy of this strategy is raised
by diminishing∆N . For κ 6= 0, either the range of cyclic compressive or tensile loads canbe ad-
dressed, or a non-damaging zero-symmetric regime concerning δ is achieved for cyclic alternating
loads. In view of numerical implementation, equation (3.204) is formulated in terms of computation
stepsn + 1 andn, reading as

dn+1 = dn +
1

2
ζcbf

[
Z(dn, δa,n) + Z(dp, δa,n+1)

]
∆N (3.205)

Additionally, a so-called damage cut-off shall be defined via

dn+1 = 0.99 if dn +
1

2
ζcbf

[
Z(dn, δa,n) + Z(dp, δa,n+1)

]
∆N > 0.99 (3.206)

Thereby, the damage parameterd is prevented from exceeding its co-domain[0, 1[. Effective and
nominal tractions follow straightforwardly as described in equation (3.186). According to equation
(3.186) the tractions follow straightforwardly. The algorithmic tangent of the Cycle-Based Fatigue
Formalism is defined as

C
if,cbf
alg =

∂τ n+1

∂[[u]]n+1

(3.207)

Equation (3.186), together with equation (3.207), yields in

∂τ n+1

∂[[u]]n+1
= [1 − dn+1] C

if,el − τ̄ n+1 ⊗
∂dn+1

∂[[u]]n+1
(3.208)

Equation (3.208) is computed by taking equation (3.205) into account:

∂dn+1

∂[[u]]n+1
=

1

2
ζcbf ∆N

∂Z(Dp, δa,n+1)

∂[[u]]n+1
(3.209)

62



3.6 Fatigue

The appropriateZ is computed as

Z(dp, δa,n+1) = Ωcbf

δa,n+1∫

κ

h(dp, δ) dδ = Ωcbf

δa,n+1∫

κ

C exp(γ̌ dp) δβ̌ dδ

= Ωcbf C

β̌ + 1
exp(γ̌ dp)

[
δβ̌+1
a,n+1 − κβ̌+1

]
(3.210)

Accordingly, it follows

∂Z(dp, δa,n+1)

∂[[u]]n+1

= Ωcbf C exp(γ̌ dp) δβ̌
a,n+1

∂δa,n+1

∂[[u]]n+1

(3.211)

where
∂δa,n+1

∂[[u]]n+1
= δ−1

a,n+1

∑

i

β̌2
i [[ui]]n+1 (3.212)

Equations (3.211) and (3.212) together yield

∂Z(dp, δa,n+1)

∂[[u]]n+1
= Ωcbf C exp(γ̌ dp) δβ̌−1

a,n+1

∑

i

β̌2
i [[ui]]n+1 (3.213)

Reinserting equation (3.213) into equation (3.209), the derivative of the damage parameter follows as

∂dn+1

∂[[u]]n+1
=

1

2
ζcbf ∆N Ωcbf C exp(γ̌ dp) δβ̌−1

a,n+1

∑

i

β̌2
i [[ui]]n+1 (3.214)

In the end, by inserting equation (3.214) into equation (3.208), the algorithmic tangent can be com-
puted via equation (3.207) as

C
if,cbf
alg = [1 − dn+1] C

if,el −
1

2
ζcbf ∆N Ωcbf C exp(γ̌ dp) δβ̌−1

a,n+1 τ̄ n+1 ⊗
∑

i

β̌2
i [[ui]]n+1 (3.215)

The most important algorithmic aspects are once more reflected by Tab. 3.5.

3.6.7 Prototype Example: Cycle-Based Fatigue Formulation

The exemplary force-cycle plot included here has been computed by applying a constant displacement
amplitude to a finite element discretisation of a single lap tensile specimen, with linear elasticity for
the bulk and cycle-based fatigue for the interfacial zone. On the left hand side, Fig. 3.10 shows the
force over the cycle number. With growing cycle number, the force decreases due to the damaging
influence of cycle-based fatigue. On the right hand side of Fig. 3.10, a Wöhler-diagram for one Gauss
point is presented, where the life cycle is associated with adamage parameter value ofd = 0.99, see
equation (3.206). The stair-like patterns result from the constant cycle increment∆N .
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

given: [[u]]n+1, dn

1. damage update: ζcbf =

{
1 if δa > κ

0 else

computedp, Z(dn, δa,n), Z(dp, δa,n+1)

dn+1 = dn +
1

2
ζcbf [Z(dn, δa,n) + Z(dp, δa,n+1)]

2. traction update: τ n+1 = [1 − dn+1] C
if,el · [[u]]n+1

4. tangent modulus: Cif,cbf
alg

Table 3.5: Algorithmic procedure for interfacial cycle-based fatigue
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Figure 3.10: Left: force-cycle plot of cycle-based fatigue: displacement control. Right: Wöhler-
diagram for one Gauss point, maximal traction over cycle number

64



3.7 Linear Ferroelectricity

3.7 Linear Ferroelectricity

Also in the context of ferroelectric ceramics as, e.g., PZT,interfaces play an important role. In view
of the microstructure of such a material, grain boundaries are identified as interfaces between grains,
inhering certain properties concerning stiffnesses, coupling phenomena and permittivity. As phase
transformations are supposed to happen in the grain bulk, such effects are excluded concerning the
interface. Furthermore, in accordance to section 2.4, the name of “linear ferroelectricity” shall be
adopted for the present interfacial material law. At first, the tractions of a linear ferroelectric interface
are given in the dependencies

τ = τ ([[u]], E) (3.216)

with E denoting the electric field strength in normal directionn of the interface. The current constitu-
tive formulation assumes decoupled interfacial stiffnesses as proposed in section 3.2 while electrical
and coupling processes are only assumed to happen in the above-mentionedn-direction. As also de-
scribed by equation (3.3), the dielectrical displacement of the interface is given with respect to the
interfacial normal directionn and reads as

Λ = Λ([[u]], E) (3.217)

Here, no dissipation occurs because changes of the interfacial state are reversible since the mechanical
and electrical forces are supposed to be derived from potentials. Consequently, the second law of
thermodynamics reads as

D = Dloc = Wmech −W∗
elec − Ḣ = 0 (3.218)

Again, due to the electrically coupled problem, the electric enthalpy function is incorporated:

H = H([[u]], E; s, t, n) = inf
Λ

(Ψ − EΛ), s, t, n = const. (3.219)

The traction power and the complementary dielectric displacement power are given as

Wmech = τ · ˙[[u]], W∗
elec = ΛĖ (3.220)

Related, the second law of thermodynamics is rewritten as

τ · ˙[[u]] − ΛĖ − Ḣ = 0 (3.221)

Due to the dependencies described in equations (3.216) and (3.217), this is equivalent to

[

τ −
∂H

∂[[u]]

]

· ˙[[u]] +
[

− Λ −
∂H

∂E

]

Ė = 0 (3.222)

Incorporating the Coleman-Noll Entropy Principle rendersthe interfacial tractions and the dielectrical
displacements as

τ =
∂H

∂[[u]]
, Λ = −

∂H

∂E
(3.223)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Consequently, thermodynamical consistency is trivially fulfilled. The rate relations of tractions and
dielectrical displacements with respect to the rates of thedisplacement jumps and the electric field are
given as

τ̇ = Cif,fer,el · ˙[[u]] − eif,△ Ė, Λ̇ = eif · ˙[[u]] + ǫif Ė (3.224)

The associated Ferroelectric Interface Tangent Tensors read as

Cif,fer,el =
∂2H

∂[[u]] ⊗ ∂[[u]]
= Cif,fer,el

ij ei ⊗ ej , eif,△ = −
∂2H

∂[[u]] ∂E
= eif,△

i ei,

eif = −
∂2H

∂E ∂[[u]]
= eif

i ei, ǫif = −
∂2H

∂E ∂E

(3.225)

By introducing an electric enthalpy function in a quadraticformat, compare equation (2.99), reading
as

H =
1

2
[[u]] · C if,fer,el · [[u]] − E eif · [[u]] −

1

2
ǫif E2 (3.226)

the tractions and dielectric displacements of the interface are rewritten as

τ = C if,fer,el · [[u]] − eif E, Λ = eif · [[u]] + ǫif E (3.227)

In this case it holds
eif = eif,△ (3.228)

The electric enthalpy shall also be expressed by a coefficient representation which compares to invari-
ants of the tensorial case.

H = H([[u]], E; s, t, n) = H(i[[u]], iEn, i[[u]]En)

= H(I if
s , I if

t , I if
n , J if , Kif ) = H1(I

if
s , I if

t , I if
n ) + H2(J

if) + H3(K
if ) (3.229)

with
iEn = {E2} = {J if}, i[[u]]En = {[[u]] · nE} = {Kif} (3.230)

Thereby, the stiffness relations as introduced in section 3.2 are adopted and it holdsCif,fer,el = C if,el.
Now, tractions and dielectric displacements are expressedas derivatives with respect to coefficients
comparing to the irreducible set of invariants of the tensorial case:

τ =
∂H

∂[[u]]
= 2

∑

i

∂H

∂I if
i

[[[u]] · i] i +
∂H

∂Kif
E n

=
∑

i

Φi [[[u]] · i] i + Φ[[u]]En E n, i = s, t, n (3.231)

Λ = −
∂H

∂E
= −

∂H

∂Kif
[[u]] · n −

∂H

∂J if
2E = −Φ[[u]]En [[u]] · n − ΦEn 2E (3.232)
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3.8 Linear Ferroelectricity with Fatigue

The evaluation of the quadratic electric enthalpy functionimplies linear constitutive relations. It holds

Φ[[u]]En = −
eif

le
, ΦEn = −

1

2

ǫ0ǫr

lǫ
(3.233)

leading towards

τ =
∑

i

ci

li
[[[u]] · i] i −

eif

le
E n (3.234)

Λ =
eif

le
[[u]] · n +

ǫ0ǫr

lǫ
E (3.235)

The Ferroelectric Interface Tangent Tensors consequentlyread

eif =
eif

le
n, ǫif =

ǫ0ǫr

lǫ
(3.236)

Hereby, the permittivity of the vacuumǫ0 and the relative permittivityǫr are introduced. In what
follows, characteristic lengths are again set asle = lǫ = 1, see chapter 3.2. Furthermore, the interfacial
relation of the electric field strength and the potential jump is now specified as

E = −[[Φ]] (3.237)

Consequently, the tangent relations can then be comprehended as

[
τ

Λ

]

=

[
Cif,el eif

eif −ǫif

]

︸ ︷︷ ︸

C
if,fer

·

[
[[u]]

[[Φ]]

]

(3.238)

3.8 Linear Ferroelectricity with Fatigue

Concerning fatigue in ferroelectric materials, switchingeffects in the grain bulk as well as grain bound-
ary effects play an important role. In this work the fatigue-related degradation of grain boundaries is
in focus. For a ferroelectric ceramic, depending on certaincircumstances, e.g. geometric influences
like notches, low-cycle-fatigue occurs, see for example Westram et al. [187]. Nevertheless, the most
common fatigue type is high-cycle fatigue. As well as for theuncoupled problem time- and cycle
based fatigue concepts will be distinguished, introducingthe damage parameterd ∈ [0, 1[ as the cru-
cial ingredient, see also Utzinger et al. [183, 182]. As a consequence, many details already described
in section 3.6 are adopted.

3.8.1 Constitutive Modelling

The basic material behaviour, neglecting fatigue damage, shall be linear and equivalent to the consti-
tutive relations as described in section 3.7. The dependencies of the fatigue-influenced tractions shall
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

be given as
τ = τ ([[u]], E, d) (3.239)

while the dielectric displacements read

Λ = Λ([[u]], E, d) (3.240)

The Clausius-Duhem inequality is given as

D = Dloc = Wmech −W∗
elec − Ḣ ≥ 0 (3.241)

For the electric enthalpy function, it holds

H = H([[u]], E, d; s, t, n) = inf
Λ

(Ψ − EΛ), s, t, n = const. (3.242)

Once more, traction power and the complementary dielectricdisplacement power read as

Wmech = τ · ˙[[u]], W∗
elec = ΛĖ (3.243)

This, together with equation (3.241) yields in

τ · ˙[[u]] − ΛĖ − Ḣ ≥ 0 (3.244)

In contrast to section 3.7 dissipation is at hand, yielding an additional term in the dissipation inequality.

[

τ −
∂H

∂[[u]]

]

· ˙[[u]] +
[

− Λ −
∂H

∂E

]

Ė −
∂H

∂d
ḋ ≥ 0 (3.245)

By making use of standard arguments, the interfacial reduced dissipation inequality is given as

Dred = −
∂H

∂d
ḋ ≥ 0 (3.246)

with the tractions and dielectric displacements reading as

τ =
∂H

∂[[u]]
, Λ = −

∂H

∂E
(3.247)

Inspired by equations (3.177), (3.226) and the results of section 3.7, the electric enthalpy is introduced
as

H =
1

2
[1 − d] [[u]] · Cif,el · [[u]] − E eif · [[u]] −

1

2
ǫ0ǫr(d) E2 (3.248)

see also Utzinger et al. [183, 182]. Fatigue damage shall, inthis formulation, only affect stiffnesses
and the interfacial permittivity. The tractions and dielectric displacements follow as

τ = [1 − d] Cif,el · [[u]] − eif E, Λ = eif · [[u]] + ǫ0ǫr(d) E (3.249)

whereas the tangents occurring in equation (3.249) have already been stated in equation (3.225).
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3.8 Linear Ferroelectricity with Fatigue

The reduced format of the Clausius-Planck inequality is further specified as

Dred = −
∂H

∂d
ḋ =

[1

2
[[u]] · C if,el · [[u]] +

1

2
ǫ0 E2 ∂ǫr(d)

∂d

]

ḋ = Y ḋ ≥ 0 (3.250)

whereby the driving force is identified withY . Here, healing processes of the damage are excluded.
Consequently, the rate of the damage parameter is constrained by

ḋ ≥ 0 (3.251)

Due to the fact that the driving force constrains the kinetics of the damage parameter evolution, in-
equalities (3.250) and (3.251) indicate

ḋ > 0 for Y > 0 (3.252)

ḋ = 0 for Y ≤ 0 (3.253)

providing thermodynamical consistency. The explicit relation concerningǫr andd shall be linear,
reading as

ǫr(d) = ǫinit
r + [ǫend

r − ǫinit
r ] d (3.254)

Here,ǫinit
r denotes the relative permittivity at the beginning of a damaging process whileǫend

r is the
relative permittivity at the end whend = 1. The fatigue damage evolution is either of the time-based
or the cycle-based type as discussed in section 3.6, see alsoUtzinger et al. [183, 182]. The effective
parameter ansatz described in section 3.6.1 is now expanded, incorporating the electric potential jump.
This has first been done by Arias et al. [2]. Here, the effective parameter reads as

δ =
√

β2
s [[us]]2 + β2

t [[ut]]2 + β2
n [[un]]2 + β2

Φ [[Φ]]2 (3.255)

3.8.2 Algorithmic Aspects: Time-Based Fatigue Formulatio n

The updated traction vector and dielectric displacements of time-based fatigue read

τ n+1 = [1 − dn+1] C
if,el · [[u]]n+1 − En+1 eif , Λn+1 = eif · [[u]]n+1 + ǫ0ǫr(dn+1) En+1 (3.256)

The appropriate algorithmic tangent of the coupled problemat hand is given by

C
if,fer,tbf
alg =





Ctbf
uu c

tbf
uΦ

c
tbf
Φu ctbf

ΦΦ



 (3.257)

The components ofCif,fer,tbf
alg are stated in the below. To compute those components, some auxiliary

computations are carried out:
∂ǫr

∂dn+1
= ǫend

r − ǫinit
r (3.258)
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given: [[u]]n+1, En+1, dn

1. damage update: δ̃n+1 = δ̃n + 〈δn+1 − δn〉, δ̃0 = 0

dn+1 = exp
(

−
α̌

δ̃n+1

)

2. traction update: τ n+1 = [1 − dn+1] C
if,el · [[u]]n+1 − En+1e

if

3. dielectric displacement update:Λn+1 = eif · [[u]]n+1 + ǫ0ǫr(dn+1) En+1

4. tangent modulus: C
if,fer,tbf
alg

Table 3.6: Algorithmic procedure for interfacial ferroelectric time-based fatigue

∂dn+1

∂[[Φ]]n+1
= exp

(

−
α̌

δ̃n+1

)

α̌ δ̃−2
n+1 δ−1

n+1 ζ tbf β2
Φ [[Φ]]n+1 (3.259)

Additionally, equations (3.188), (3.189) and (3.190) hold, as well as equations (3.191) and (3.192).
Finally, it holds

Ctbf
uu =

∂τ n+1

∂[[u]]n+1
= C

if,tbf
alg (3.260)

with the effective quantity as stated in equation (3.255). Moreover, it is

c
tbf
uΦ =

∂τ n+1

∂[[Φ]]n+1
= −[C if,el · [[u]]n+1]

∂dn+1

∂[[Φ]]n+1
+ eif

= − exp
(

−
α̌

δ̃n+1

)

α̌ δ̃−2
n+1 δ−1

n+1 ζ tbf β2
Φ [[Φ]]n+1 [C if,el · [[u]]n+1] + eif (3.261)

The third component is given by

c
tbf
Φu =

∂Λn+1

∂[[u]]n+1

= eif − ǫ0 [[Φ]]n+1
∂ǫr,n+1

∂dn+1

∂dn+1

∂[[u]]n+1

(3.262)

= eif − ǫ0 [ǫend
r − ǫinit

r ] [[Φ]]n+1 exp
(

−
α̌

δ̃n+1

)

α̌ δ̃−2
n+1 δ−1

n+1 ζ tbf
∑

i

β2
i [[ui]]n+1
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while the fourth component is computed as

ctbf
ΦΦ =

∂Λn+1

∂[[Φ]]n+1
= −ǫ0ǫr,n+1(dn+1) − ǫ0 [[Φ]]n+1

∂ǫr,n+1

∂dn+1

∂dn+1

∂[[Φ]]n+1

= −ǫ0ǫr,n+1(dn+1)

− ǫ0 [ǫend
r − ǫinit

r ] [[Φ]]n+1 exp
(

−
α̌

δ̃n+1

)

α̌ δ̃−2
n+1 δ−1

n+1 ζ tbf β2
Φ [[Φ]]n+1 (3.263)

Please note that, due to the non-associated character of thefatigue law incorporated,Cif,fer,tbf
alg turns

out to be in general non-symmetric. A comprehension of the algorithmic procedure is given in Tab.
3.6.

3.8.3 Algorithmic Aspects: Cycle-Based Fatigue Formulati on

Concerning cycle-based fatigue, the update of tractions and dielectric displacements is the same as for
time-based fatigue, see equation (3.256). The algorithmictangent is given by

C
if,fer,cbf
alg =





Ccbf
uu c

cbf
uΦ

c
cbf
Φu ccbf

ΦΦ



 (3.264)

For the subsequent tangent computation, an auxiliary computation is performed as

∂dn+1

∂[[Φ]]n+1

=
1

2
ζcbf ∆N Ωcbf C exp(γ̌ dp) δβ̌−1

a,n+1 β2
Φ [[Φ]]n+1 (3.265)

In view of equations (3.207)–(3.215), the first component iscomputed as

Ccbf
uu =

∂τ n+1

∂[[u]]n+1
= C

if,cbf
alg (3.266)

The second component reads as

c
cbf
uΦ =

∂τ n+1

∂[[Φ]]n+1
= −[C if,el · [[u]]n+1]

∂dn+1

∂[[Φ]]n+1
+ eif

= −
1

2
ζcbf ∆N Ωcbf C exp(γ̌ dp) δβ̌−1

a,n+1 β2
Φ [[Φ]]n+1 [C if,el · [[u]]n+1] + eif (3.267)
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given: [[u]]n+1, En+1, dn

1. damage update: ζcbf =

{
1 if δa > κ

0 else

computedp, Z(dn, δa,n), Z(dp, δa,n+1)

dn+1 = dn +
1

2
ζcbf [Z(dn, δa,n) + Z(dp, δa,n+1)]

2. traction update: τ n+1 = [1 − dn+1] C
if,el · [[u]]n+1 − En+1e

if

3. dielectric displacement update:Λn+1 = eif · [[u]]n+1 + ǫ0ǫr(dn+1) En+1

4. tangent modulus: C
if,fer,cbf
alg

Table 3.7: Algorithmic procedure for interfacial ferroelectric cycle-based fatigue

The third component is computed by

c
cbf
Φu =

∂Λn+1

∂[[u]]n+1

= eif − ǫ0 [[Φ]]n+1
∂ǫr,n+1

∂dn+1

∂dn+1

∂[[u]]n+1

= eif − ǫ0 [ǫend
r − ǫinit

r ] [[Φ]]n+1
1

2
ζcbf ∆N Ωcbf C exp(γ̌ dp) δβ̌−1

a,n+1

∑

i

β2
i [[ui]]n+1 (3.268)

Finally, the fourth component is given as

ccbf
ΦΦ =

∂Λn+1

∂[[Φ]]n+1
= −ǫ0ǫr,n+1(dn+1) − ǫ0 [[Φ]]n+1

∂ǫr,n+1

∂dn+1

∂dn+1

∂[[Φ]]n+1

= −ǫ0ǫr,n+1(dn+1)

− ǫ0 [ǫend
r − ǫinit

r ] [[Φ]]n+1
1

2
ζcbf ∆N Ωcbf C exp(γ̌ dp) δβ̌−1

a,n+1 β2
Φ [[Φ]]n+1 (3.269)

Because of the non-associated character of the fatigue law,C
if,fer,cbf
alg is generally non-symmetric. A
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concise comprehension of the algorithmic procedure is given in Tab. 3.7.

3.9 A Penalty Formulation to Avoid Interfacial
Self-Penetration

In this section a method to avoid self-penetration of the opposing interfacial bordering surfaces is
introduced. In this context self-penetration is identifiedwith negative displacement jumps in normal
direction, i.e.[[un]] < 0. Since self-penetration of solid interfaces is not physical, it has to be guaran-
teed that

[[u(x)]] · n ≥ 0 ∀ x ∈ Γ (3.270)

There are several methods to overcome this problem. Useful is the Nitsche method, see Nitsche [128]
as well as Hansbo and Hansbo [60] where self-penetration is avoided in weak form, corresponding to
the Dirichlet boundary and complementing conditions. For this method a so-called stability param-
eter has to be chosen. Normally, this parameter would be lessthan additional stiffnesses as used for
classical penalty methods, which can lead to bad conditioned systems of equations. Another strategy
is to avoid self-penetration by means of a Lagrange multiplier, see, e.g. [192]. An important disad-
vantage of this method is the enhancement of the global system of equations by further unknowns.
Due to its simplicity, but at the same time being aware of its handicaps, a classical penalty method as
described in, e.g. Bertsekas [24], is applied here. The related strategy is to enhance the free energy or,

τn

[[un]]

Figure 3.11: Exemplary penalty behaviour. For negative normal displacement jumps, normal stiff-
nesses are increased steadily (solid line). The dotted behaviour occurs if applying an
unsteady, constant penalty stiffness
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respectively, the electric enthalpy function by an additional term, leading towards

Ψ∗ = Ψ + Ψ̌, H∗ = H + Ȟ (3.271)

where
Ψ̌ = Ȟ =

q

6
〈−[[u]] · n〉3 (3.272)

For all cases discussed previously, this renders the tractions as

τ ∗
n+1 = τ n+1 + τ̌ n+1 (3.273)

with
τ̌ n+1 = −

q

2
〈−[[u]]n+1 · n〉2 n (3.274)

Accordingly, the tangents are also extended by a further summand, reading as

C∗
alg = Calg + Čalg (3.275)

for the purely mechanical case where

Čalg = q 〈−[[u]]n+1 · n〉n ⊗ n (3.276)

As obsolete in the context of Newton’s Method, this strategyrenders steady tangents with respect to
the relative displacements[[u]], see also Fig. 3.11 for an illustration.
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4 Bifurcation Analysis of Uncoupled
Continuum-Interface Problems

In the mesomechanical modelling of composites, interfacesbetween different layers of materials play
a decisive role, see e.g. Schellekens [152], Miehe and Schr¨oder [118], Larsson and Jansson [88],
Willam et al. [188], Steinmann and Häsner [170] and Utzinger et al. [180]). In particular if non-
coherent interfaces are allowed for, i.e. interfacial displacement jumps can occur, the modelling of an
appropriate traction-separation-law is a major challenge. It may even be reasonable to project all non-
linearities and inelasticities of a problem into the interface law by this type of modelling. As a general
rule, well-established constitutive laws for the bulk can be adapted for the constitutive modelling of
interfaces. Apart from the constitutive modelling itself,however, an issue of interest is to investigate
whether the solution of an incremental boundary value problem (IBVP) incorporating a non-coherent
interface may bifurcate at a certain loading state into stationary wave-type solutions or not.

In this regard, with a view on ill-posedness, it is additionally of interest if the number of possible
bifurcation modes is finite or not. From the mathematical point of view, ill-posedness is either due
to the fact that the underlying boundary-value problem may exhibit an infinite number of linearly
independent solutions or to the fact that the solutions of this boundary-value problem do not depend
continuously on the data. There is also the possibility for the continuous problem that, in order to have
a finite number of linearly independent solutions, and that these solutions depend continuously on the
data, one has to enforce an infinite number of linearly independent conditions over these data. These
are the general three sources for ill-posedness and necessary and sufficient conditions are known in the
case of a linear boundary-value problem for this ill-posedness to occur (Benallal et al. [21], Benallal
and Comi [22]). These conditions are respectively the loss of ellipticity of the governing equations,
the loss of the boundary complementing condition and eventually the loss of the interfacial boundary
condition when the solid is heterogeneous. The first condition is a local condition that only depends
on the rate-independent constitutive equations and implies the singularity of the bulk acoustic tensor.
While also local in nature, the two other conditions involvethe boundary or the interfacial conditions
and imply a kind of compatibility between these boundary (interfacial) conditions and the constitutive
behaviour. The last two conditions may fail in the bulk elliptic regime where they retain all their
importance.

The necessary and sufficient conditions for the IBVP to be well-posed are the ellipticity and the
complementing condition. In what follows, the bulk material is assumed to be linearly elastic. Con-
sequently, the constitutive operator is assumed to be positive definite and, therefore, the ellipticity
condition is satisfied. Regarding the complementing condition, one has to consider both in the gov-
erning equations and in the boundary (interface) conditions the contributions with the highest order
(Benallal [18]). In the field equations this is the full operator as all the terms have the same (second)
order. The boundary conditions that will be adopted here include zeroth order terms (involving the
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4 Bifurcation Analysis of Uncoupled Continuum-Interface Problems

displacement field itself) and first order terms (involving the first gradient of this displacement field).
Therefore, to check the complementing condition, one has todrop the zeroth order terms and consider
only the terms of the highest order. In so doing, one obtains aclassical linear elastic boundary value
problem with classical (homogeneous) Neumann boundary conditions. For this problem the comple-
menting condition is satisfied if the constitutive operatoris positive definite. Nevertheless, bifurcation
into stationary wave-type solutions is not ruled out since in this analysis all terms of arbitrary order
have to be considered.

In what follows, a semi-infinite three-dimensional elasticbulk bonded via a two-dimensional non-
coherent (cohesive) interface to a rigid substrate is considered in a purely mechanical, uncoupled
context. Thereby, the possibility of the solution to bifurcate into stationary surface-wave-type solutions
is investigated. Consequently, we consider in addition to the well-known ellipticity condition in the
bulk, that checks for possible stationary bulk-wave-type solutions and also assures ellipticity of the
constitutive operator, a bifurcation condition that checks for possible stationary surface-wave-type
solutions incorporating traction-separation-laws at theNeumann boundary.

In the bulk, for constitutive behaviours without a lengthscale, the intimate relation between bifurca-
tion into stationary wave-type solutions and localisationof deformation in the bulk is well-known, see
for instance Hill [67], Benallal et al. [19, 20] and Benallal[17]. Fundamental further information on
the topic is also provided by the monographs of, e.g. Biot [27], Ogden [130] anďSilhavỳ [185]. Both
are a consequence of the failure of the ellipticity condition whereby the wavelength of the stationary
wave is arbitrary and thus, in particular, can take zero values. Bifurcation into stationary wave-type so-
lutions at surfaces, coherent interfaces (Rayleigh and Stoneley waves) and their interpretation in terms
of localised deformations was discussed by Benallal et al. [21], Dowaikh and Ogden [47], Needle-
man and Ortiz[126]. Here, both are associated to the failureof the complementing conditions with
vanishing wavelength of the stationary waves in the case of localisation. The bifurcation condition for
non-coherent planar isotropic interfaces was considered by Suo et al. [173] and Bigoni et al. [26].
These studies were, however, restricted to two-dimensional investigations under the plane strain con-
straint. As a consequence, the interfacial plane is necessarily assumed to be isotropic. Additionally,
non-planar interfaces have been considered for a cylindrical setting by Bigoni and Gei [25] based on
a linear relation for the traction-separation rate.

Please note that it is well-established that for rate-independent local continua in the presence of soft-
ening and/or non-associative flow, numerical results may behighly sensitive to the space discretisation
as present within a, for example, finite element context. This mesh dependency is often observed in
the analysis of localisation phenomena and is generally attributed to the lack of a length scale in the
continuous description of the constitutive behaviour. Established methods to overcome the problem of
mesh sensitivity in a continuum are, e.g. higher gradients –see Mühlhaus and Aifantis [122], de Borst
and Mühlhaus [44], Peerlings et al. [141], Steinmann [168], Menzel and Steinmann [112], Svedberg
and Runesson [174], Liebe et al. [95], Benallal and Comi [22]and Askes et al. [5] – or non-local
continua – see, e.g., Bažant and Pijaudier-Cabot [12] and Bažant [11]. All these formulations include
a material lengthscale which renders the problem well-posed. Whether similar enhancements of a
softening interface formulation are necessary has to be investigated carefully by checking if solutions
with wave numberk ≡ ∞ are possible.

The subsequent elaborations are believed to be a first step towards the prediction of the above-
mentioned space discretisation sensitivities, see also Utzinger et al. [181]. Accordingly, interfacial
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4.1 Incremental Boundary Value Problem

traction-separation-laws, as introduced in chapter 3, would play a decisive role. Incorporated in a
finite element context, sensitivities would only stem from the interface, as in this context, the bulk is
modelled linearly elastic.

4.1 Incremental Boundary Value Problem

Consider a semi-infinite space of bulk material being bondedvia a non-coherent cohesive interface
layer to a rigid substrate. In the following, a quasi-staticincremental boundary value problem (IBVP)
with small strain kinematics is assumed.

Accordingly, the balance of linear momentum in the semi-infinite space is here given by means of
the incremental stress tensorδσ

div δσ = 0 (4.1)

and the underlying kinematics are represented by relating incremental strainsδε to incremental dis-
placementsδu, namely

δε = ∇sym
x δu (4.2)

The constitutive relation, withC being the incremental constitutive operator, consequently takes the
format

δσ = C : δε (4.3)

so that combining equations (4.1), (4.2) and (4.3), for a homogeneous state, renders the quasi-static
incremental balance of linear momentum, volume forces being neglected, as

div δσ = div(C : ∇x δu) = [C : ∇x∇x δu] : I = 0 (4.4)

whereby use of the minor symmetry ofC has been made.
Next, Neumann boundary conditions for the bulk are defined: the incremental stress tensorδσ of

the bulk and the incremental traction vectorδτ of the interface are related by

δσ · n = δτ (4.5)

The corresponding constitutive law for the interface, established as traction-separation-law, definesδτ
in terms of the incremental displacement jump[[δu]]. By analogy with equation (4.3),Cif denotes the
interfacial incremental constitutive operator so that

δτ = C if · [[δu]] (4.6)

4.2 Stationary Wave-Type Ansatz for the Displacements

The correspondence between bifurcation phenomena and stationary wave-type solutions is well-esta-
blished and documented in the classical mechanics literature, see the references cited before. Accord-
ingly, an incremental stationary wave-type ansatz forδu is given as

δu(x) = exp(i[k · x̃]) m (4.7)
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4 Bifurcation Analysis of Uncoupled Continuum-Interface Problems

whereinm is the amplitude vector andi is the imaginary unit. The two remaining vectorial contribu-
tions arek = ǩ + ik∗, which is the complex wave vector, composed of a real partǩ and an imaginary
partk∗. Moreover, the argument itself (on the right hand side) is denoted byx̃(x) with ∂x̃/∂x = I.
Based on this ansatz, equation (4.7) may be rewritten more explicitly as

δu(x) = exp(i[ǩ · x̃ + ik∗ · x̃]) m = exp(−k∗ · x̃) exp(i ǩ · x̃) m (4.8)

Thus,k∗ is responsible for a possible decay ofδu whereašk controls the waviness ofδu. In view of
equation (4.2), the wave-type ansatz yields

∇x δu = i exp(i[k · x̃]) m ⊗ k (4.9)

for the first gradient of the incremental displacement whilethe second gradient results in

∇x∇x δu = − exp(i[k · x̃]) m ⊗ k ⊗ k (4.10)

With these relations in hand, equation (4.4) is rewritten as

[C : [m ⊗ k ⊗ k]] : I = Q · m = 0 (4.11)

wherein the complex second order tensorQ is defined as (for[•] denoting a vectorial quantity)

Q · [•] = [C : [[•] ⊗ k]] · k (4.12)

The overall solution condition for equation (4.11) – to be specific, non-trivial solutions form – corre-
sponds to

det Q
.
= 0 (4.13)

In general, equation (4.13) characterises the first condition for the occurrence of stationary wave-type
solutions in the format (4.7). Please note that, to this point, boundary conditions have not yet been
incorporated. In the following, we specify constitutive relations entering equation (4.3) and (4.6),
respectively. The bulk is assumed to be isotropic linearly elastic while the interface is allowed to
additionally account for inelastic effects. Special emphasis will be placed on interface-related station-
ary wave-type solutions. Since the traction-separation-law might incorporate, say, tangential stress
contributions, such stationary waves are in general of anisotropic nature.

4.3 Isotropic Linear Elastic Bulk Material

Since this work focusses on interface relations, the bulk material is restricted to be isotropic and linear
elastic, i.e.

C = λI ⊗ I + 2µ I
sym = C

iso (4.14)

Accordingly,Q can explicitly be expressed as

Q = [λ + µ] k ⊗ k + µ [k · k]I (4.15)
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x0

x x̃
n

st
τ −τ

τ = σ · nbulk

interface

rigid substrate

amplitude

x̃ · n

Figure 4.1: Graphical illustration of essential quantities related to the interfacial zone

Next, solutions of equation (4.13) are sought. Straightforward calculation of the underlying eigen-
value-problem ofQ renders the eigenvalues (two of them being identical) as

ν0 = [2µ + λ] [k · k] ν1 = ν2 = µ [k · k] (4.16)

This analysis results in
det Q = µ2[2µ + λ][k · k]3

.
= 0 (4.17)

4.3.1 Incremental Ellipticity Condition for the Bulk Mater ial

Focussing solely on the bulk material, let the wave vectork coincide with an arbitrary real-valued
unit-vector. In this regard, equation (4.17) is reduced to

det Q = µ2[2µ + λ] = det Q3 (4.18)

with [2µ + λ] being interpreted as a compression wave speed in the bulk, while µ characterises a
bulk shear wave speed. The (incremental) condition of stability or rather strong Legendre-Hadamard
ellipticity for the bulk material itself results inq3 := sign(min(q3

1 , q3

2 , q3

3 )) |q3

3 | > 0 with q3

1 = Q3

11,
q3

2 = Q3

11Q
3

22 − Q3

12Q
3

21 andq3

3 = det Q3, see also Schröder et al. [157]. This is assumed to hold in
the following. Hence, stationary wave-type solutions stemexclusively from interfacial effects.

4.3.2 Specification of the Wave Vector

Let x0 denote the position vector to the origin of a local interfacial orthonormal base system{s, t, n}.
Furthermore, we introducẽx(x) = x − x0 as the argument entering equation (4.7), in other words,
the position vector with respect to the local coordinate system. For convenience of the reader, Fig.
4.1 gives a graphical illustration of essential quantitiesrelated to the interfacial zone. As visualised,
small deformation conditions are assumed with the interfacial surfaces remaining parallel. As a con-
sequence, the bulk normal and the normal vectorn of the local interfacial base system turn out to be
collinear. Since the wave vector is in general not aligned with any of the base vectors{s, t, n}, it turns
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4 Bifurcation Analysis of Uncoupled Continuum-Interface Problems

out to be convenient to introduce

k = k1 e1 + k2 e2 + k3 e3 with kj = ǩj + i k∗
j and j = 1, 2, 3 (4.19)

with {e1, e2, e3} being the Cartesian base system. Bounded solutions requirestationary waves to
decay towards the bulk material. For the problem at hand, as displayed in Fig. 4.1, the decay direction
must coincide with the normal directionn of the interface. Assuming the interface to be able to
bifurcate and the bulk, as discussed above, to be (incrementally) elliptic, the harmonic direction –
which in the classical dynamics literature is often referred to as the propagation direction – of the
stationary wave lies in the plane spanned by the base vectorss andt. In addition, lete3

.
= n so thate1

ande2 span the same space ass andt. Incorporating the essential decay characteristics rendersk · e3

to be purely imaginary, i.e.k3 = ik∗
3 (recall thati k enters equation (4.7)). Without loss of generality,

we setǩ2 = 0 as well ask∗
2 = 0 in the progression of this work. In other words,e1 determines the

tangential direction ofk according to which stationary surface-wave-type solutions might occur with
decay effects being excluded for this direction such thatk1 = ǩ1. Consequently, the wave vector
allows representation as

k = ǩ1e1 + ik∗
3e3 (4.20)

In order to abbreviate notations, and in view of subsequent considerations, the wave vector coefficients
are re-named ašk1 = k, k∗

3 = −ν. Additionally,ζ = e1 · x̃ as well asη = e3 · x̃ are introduced and,
moreover, a decay functionw(η) is defined via

δu(x) = exp(i[k · x̃]) m = exp(ν η) m
︸ ︷︷ ︸

w(η)

exp(ik ζ) (4.21)

For a not yet specified bulk material, equation (4.21) leads to a representation of the incremental
balance of linear momentum (4.4) by means of three second order tensorsQ0, Q1, andQ2 = Q3,
namely

Q2 · w
′′ + ik Q1 · w

′ − k2 Q0 · w = 0 (4.22)

with
Q0 · [•] := [C : [[•] ⊗ e1]] · e1

Q1 · [•] := [C : [[•] ⊗ e3]] · e1 + [C : [[•] ⊗ e1]] · e3

Q2 · [•] := [C : [[•] ⊗ e3]] · e3

(4.23)

Equation (4.22) is a system of ordinary differential equations of second order inη. It is treated by
reformulation as an ordinary differential equation systemof first order, to be solved by well-known
strategies. Equation (4.22) can then be rewritten as

w′′ + ik Q−1
2 · Q1 · w

′ − k2 Q−1
2 · Q0 · w = 0 (4.24)
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Having a linear elastic bulk material in mind, as reviewed insection 4.3, the (acoustic-type) tensors in
equation (4.23) read as

Q0 = [λ + µ] e1 ⊗ e1 + µI

Q1 = [λ + µ] [e3 ⊗ e1 + e1 ⊗ e3]

Q2 = [λ + µ] e3 ⊗ e3 + µI

(4.25)

By applying the Sherman-Morrison formula, the inverse ofQ2 is thus found as

Q−1
2 =

1

µ
I −

[λ + µ]

µ2 + µ[λ + µ]
e3 ⊗ e3 (4.26)

4.3.3 Reformulation as a First Order System

Now, we define

z =

[
w

w′

]

(4.27)

With this in hand, equation (4.24) is rewritten as

z′ =





0 I

k2 Q−1
2 · Q0 −ik Q−1

2 · Q1





︸ ︷︷ ︸

A

·z (4.28)

For the system at hand, a fundamental system of six linearly independent solutions is required. At
first, the eigenproblem ofA is analysed. With

z =





m

νm





︸ ︷︷ ︸

g

exp(νη) (4.29)

equation (4.28) is equivalent to
[A − ν I6] · g = 0 (4.30)

compare appendix A. The eigenvaluesν are found by

det(A − ν I6) = −[k2 − ν2]3
.
= 0 (4.31)

which is an equation of degree six inν rendering

νI = ν1 = ν2 = ν3 = −k, νII = ν4 = ν5 = ν6 = k (4.32)

In the following, all eigenvectors and generalised eigenvectors are represented in terms of their coeffi-
cients with respect to a six-dimensional Cartesian base system{e1, ..., e6}. The associated eigenspaces

81



4 Bifurcation Analysis of Uncoupled Continuum-Interface Problems

are given by

gI = ω1























0

−
1

k

0

0

1

0























+ ω2























i

k

0

−
1

k

−i

0

1























, gII = ω3























0

1

k

0

0

1

0























+ ω4























i

k

0

1

k

i

0

1























, ω1, ω2, ω3, ω4 ∈ C (4.33)

Obviously, we have two eigenvalues with an algebraic multiplicity of three and two corresponding
eigenspaces, each inhering a geometric multiplicity of two. This induces the necessity to compute two
further generalised eigenvectors, both linearly independent with respect to the four linearly indepen-
dent eigenvectors which are chosen as
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(4.34)
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After straightforward computations, the generalised eigenvectors are obtained
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(4.35)

4.3.4 Bounded Solution

Proceeding along equations (A.3) and (A.4), the general solutionz of the first order system is derived.
The linear independence of fundamental solutions is checked by computing the so-called Wronski
determinantw = det Z(η) of the associated fundamental matrixZ. Necessarily,w 6= 0 has to be
fulfilled, being the case for the system at hand. The first three components of the general solution
vectorz, being expressed in coefficients with respect to the Cartesian base system{e1, e2, e3}, are
then identical with the solutionw(η) of the second order system from equation (4.22), reading as

w(η) = exp(−kη)


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(4.36)

This solution has six constantsc = [c1, c2, c3, c4, c5, c6]
t ∈ C6. To achieve a bounded solution, only

stationary waves decaying towards the bulk material may be considered. In this regard,k is chosen
to be positive, and consequently, all non-decaying solutions are neglected. Therefore, only terms with
decaying exponential factors are left. Expressed in coefficients with respect to the Cartesian base
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system{e1, e2, e3}, this leads towards

w(η) = exp(−kη)
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(4.37)

An equivalent strategy would be to choosek to be negative and, again, neglect the resulting non-
decaying solution parts. Considering equations (4.21) and(4.37) and renaming the ansatz constants
asa = [a0, a1, a2]

t ∈ C3 renders after some transformations the incremental displacements as

δu(x) = exp(k[iζ − η])
[[

a0 + a1kη − a1
2µ

[µ + λ]

]
e1 + a2e2 + i

[
a0 + a1kη + a1

]
e3

]

(4.38)

Being a linear combination of fundamental solutions, this solution trivially fulfils the PDE (4.1).

4.4 Traction Boundary Conditions at the Interface

In this section special emphasis is placed on traction-separation-laws relating the interface behaviour
to the bulk response via Cauchy’s theorem. Based on equations reviewed in section 4.1 and recalling
thatn = e3, one obtains

δσ · e3 = δτ = C if · δu at x̃ · e3 = η = 0 (4.39)

with the rigid substrate being fixed in space. Here we associate Cif with the tangent of a linear
comparison solid (Hill [66]), i.e. unloading is neglected.To further specifyδσ, as determined by
equations (4.3), (4.2) and (4.14), yielding

δσ = λ[∇x δu : I]I + µ[∇x δu + ∇t
x δu] (4.40)

we first compute the gradient ofδu by means of the representation highlighted in equation (4.38), and
secondly, this result combined with (4.40) yields the relation sought or rather the boundary traction at
the interface as

δσ · e3

∣
∣
η=0

=

[

−
2µk[−a1µ + a0[µ + λ]]

µ + λ
e1 − a2µk e2

− i
2µk[a1λ + a0[µ + λ]]

µ + λ
e3

]

exp(ikζ) (4.41)

Consequently, the traction-separation-laws are directlyrelated to boundary conditions of the Neumann-
type, i.e.δσ · e3 = δτ at η = 0. In the following, interfacial constitutive relations areincorporated,
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which are assumed to decouple with respect to the interface base system{s, t, n}, see Fig. 4.1, and,
accordingly, may reflect anisotropic constitutive response.

4.5 Interfacial Traction-Separation-Laws and Bifurcatio n
Analysis

The second order interfacial constitutive operatorC if shall allow representation with respect to the
orthonormal base system{s, t, n}. Related interfacial constitutive parametersρs = ρ∗s

ls
, ρt =

ρ∗t
lt

and

ρn = ρ∗n
ln

generally inhere length parametersls, lt, andln, which, for the sake of convenience, are again
set equal to one here. The constitutive traction-separation-law for a linear-comparison-material-like
interface reads

δτ = Cif · [[δu]] = [ρs s ⊗ s + ρt t ⊗ t + ρn n ⊗ n] · [[δu]]

=:
∑

i

ρi i ⊗ i · [[δu]] with i = s, t, n and i = s, t, n (4.42)

with the incremental constitutive operator being given by

Cif =
∑

i

ρi i ⊗ i =
∑

i

C
if
i (4.43)

Note thatCif shall be of diagonal format so that the constitutive behaviour is decoupled with respect to
the local interfacial coordinate system{s, t, n}. Concerning the loading branch, different constitutive
relations as elasticity, elastoplasticity, damage and elastoplasticity with damage can be expressed by
Cif , see appendix B. Placing particular emphasis on the interface, i.e.η = 0, equation (4.43) renders
together with equation (4.38) andn = e3

Cif · δu
∣
∣
η=0

=
[ [

a0 − a1
2µ

µ + λ

]
[ρs s ⊗ s + ρt t ⊗ t] · e1

+ a2 [ρs s ⊗ s + ρt t ⊗ t] · e2

+ i [a0 + a1]ρn e3

]

exp(ikζ) (4.44)

By inserting equations (4.44) and (4.41) into equation (4.39), we end up with

[

−
2µk[−a1µ + a0[µ + λ]]

µ + λ
I + [a0 − a1

2µ

µ + λ
][ρs s ⊗ s + ρt t ⊗ t]

]

· e1

+
[

− a2µkI + a2[ρs s ⊗ s + ρt t ⊗ t]
]

· e2

+ i
[[

−
2µk[a1λ + a0[µ + λ]]

µ + λ
+ [a0 + a1]ρn

]
I
]

· e3 (4.45)

= 0
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To obtain non–trivial solutions, at least one non-vanishing ansatz constant from the seta0, a1 and
a2 must be at hand. For further investigations it turns out to beconvenient to relate{s, t, n} and
{e1, e2, e3} via

{s, t, n} = P · {e1, e2, e3} with P · P t = I and det P = 1 (4.46)

More specificly, the rotation tensorP (θe3) can be referred to, e.g.{e1, e2, e3} so that

P = Pij ei ⊗ ej with Pij =





cos θ − sin θ 0

sin θ cos θ 0

0 0 1



 (4.47)

With this transformation in hand, straightforward computations enable to reformulate equation (4.45)
in terms of a homogeneous linear system of equations with respect to the ansatz constantsa =
[a0, a1, a2]

t, reading as
B · a = 0 (4.48)

with B including the entries as stated in appendix C. Non–trivial solutions of equation (4.48) with
k > 0 according to the assumption preceding equation (4.37) reflect possible stationary surface-wave-
type solutions of the IBVP as discussed above. Consequently, a bifurcation into a stationary surface-
wave-type solution is possible if

det B = [4µ[2µk + ρn] [µk + ρs] [µk + ρt]

+ [λρn + µ[2kλ + ρn]]

[4µ2k2 + 2ρsρt + 3µk[ρs + ρt] − µk[ρs − ρt] cos(2θ)]
.
= 0 (4.49)

for k > 0.

4.6 Results

After incorporating a general traction-separation-law for the interface, some consequences are now
discussed. Special attention is given to the role of interfacial material parametersρs, ρt, ρn.

4.6.1 General Considerations

Equation (4.49) is a cubic equation ink. Recall thatk is real by definitions highlighted in section
4.3.2 and was chosen to be positive in section 4.3.4. In this regard, the number of bifurcation modes is
one, two, three or zero. This depends, as well as the wave numberk itself, on the choice of the ansatz
direction θ, and on the material coefficients. Corresponding to the finite number of solutions, the
given problem remains well-posed as expected. Consequently, in view of numerical applications, for
instance in a finite element context, mesh-sensitivity-related problems are only expected fork ≡ ∞,
representing vanishing wave length solutions. In view of the analytical solutions of equation (4.49),
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for the general case, they would occupy too much space, so theauthors abandon to list them here.
On the other hand, if the problem is simplified by settingρs = ρt, being the case for a transversely
isotropic interface with anisotropic directionn = e3, the solutions of equation (4.49) reduce as

kI = −
ρt

µ
(4.50)

kII =
1

8[µ3 + µ2λ]

[

− g −
√

g2 − 4[4µ3 + 4µ2λ][3µρnρt + λρnρt]
]

(4.51)

kIII =
1

8[µ3 + µ2λ]

[

− g +
√

g2 − 4[4µ3 + 4µ2λ][3µρnρt + λρnρt]
]

(4.52)

with
g = 4µ2ρn + 2µλρn + 4µ2ρt + 2µλρt (4.53)

Certainly, those results do no longer depend onθ. For a linear elastic bulk it always holds thatK =
λ+ 2

3
µ > 0 andµ > 0. Assuming thatρs = ρt > 0 andρn > 0, an analysis of equations (4.50), (4.51)

and (4.52) shows that no real positive wave numbers can occurfor this choice and bifurcation is ruled
out. If the interface is assumed to be isotropic, i.e.ρs = ρt = ρn, solutions further boil down to

k1 = −
ρn

µ
(4.54)

k2 = −
ρn

2µ
(4.55)

k3 = −
[3µ + λ]ρn

2µ[µ + λ]
(4.56)

With all interfacial material parameters chosen to be positive, again, no real positive wave numbers
can occur for this choice and no bifurcation will occur.

4.6.2 Examples

Now, the solutions of equation (4.49) shall be analysed for some examples of different interfacial
material coefficients, reflecting an orthotropic material behaviour. In the following, the Lamé constants
will be chosen asµ = 50000 MPa andλ = 100000 MPa.

Orthotropic Interface with Positive Coefficients ρs, ρt, ρn

In this example, the planar constitutive coefficients are chosen to capture orthotropic response via
ρs = 20000 MPa/m andρt = 40000 MPa/m whereas the normal constitutive coefficient is given by
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ρn = 100000 MPa/m. Equation (4.49) shows thatdet B depends on the angleθ. The plot ofk1,2,3(θ)
for det B = 0, which is displayed in Fig. 4.2, reveals that no real positive wave number exists and,
accordingly, a bifurcation into stationary surface-wave-type solutions is not possible.

Another Orthotropic Interface with Positive Coefficients ρs, ρt, ρn

In this example, the planar constitutive coefficients are chosen asρs = 100000 MPa/m andρt = 40000
MPa/m whereas the normal constitutive coefficient is given by ρn = 20000 MPa/m. det B depends
on the angleθ. Plottingk1,2,3(θ) for det B = 0, as displayed in Fig. 4.3, shows that, once more,
no real positive wave number exists and, accordingly, a bifurcation into stationary surface-wave-type
solutions is not at hand.

Orthotropic Interface with Negative ρs and Positive ρt, ρn

In this example, the planar constitutive coefficients are given asρs = −20000 MPa/m, which cor-
responds to softening,ρt = 40000 MPa/m andρn = 100000 MPa/m. Fig. 4.4 shows that for any
angleθ exactly one stationary surface-wave-type bifurcation with an appropriate wave numberk1 is
possible. Maximum wave numbers are given forθ ∈ {π/2, 3π/2}, corresponding to the characteristic
directions of the underlying orthotropic symmetry.

Orthotropic Interface with Negative ρt and Positive ρs, ρn

This example is referred toρs = 20000 MPa/m,ρt = −40000 MPa/m, which represents softening,
andρn = 100000 MPa/m. Fig. 4.5 shows that, depending onθ ∈ [0, 2π], always one stationary
surface-wave-type solution exists. The particular valuesθ ∈ {0, π} render maximum wave numbers.

Orthotropic Interface with Negative ρs, ρt and Positive ρn

Here,ρs = −20000 MPa/m andρt = −40000 MPa/m, which represents orthotropic in plane softening,
together withρn = 100000 MPa/m. Fig. 4.6 shows that for allθ ∈ [0, 2π] two wave numbers exist
which are related to bifurcations into stationary surface-wave-type solutions. Once more,θ ∈ {0, π}
reflects maximum wave numbers.

Orthotropic Interface with Positive Planar Constitutive C oefficients ρs, ρt and a
Negative Normal Coefficient ρn

In contrast to those elaborations highlighted above, we nowconsider a softening response with respect
to the normal interface direction. The overall behaviour ofthe interface remains orthotropic as charac-
terised by the coefficientsρs = 20000 MPa/m,ρt = 40000 MPa/m andρn = −100000 MPa/m. As a
result directly observable in Fig. 4.7, bifurcation into stationary surface-wave-type solutions is always
possible concerning one wave number, with maximum wave numbers given atθ ∈ {0, π}.
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Orthotropic Interface with Negative ρs, ρn and Positive ρt

Continuing to investigate on different parameter combinations, letρs = −20000 MPa/m,ρt = 40000
MPa/m andρn = −100000 MPa/m. It can be clearly seen in Fig. 4.8 that for allθ ∈ [0, 2π], two
wave numbersk can be related to stationary surface-wave-type solutions.Maximum wave numbers
are again obtained forθ ∈ {0, π}.

Orthotropic Interface with Negative ρt, ρn and Positive ρs

Furthermore, assume the parametersρi to take the valuesρs = 20000 MPa/m,ρt = −40000 MPa/m
andρn = −100000 MPa/m. From related results displayed in Fig. 4.9 we conclude that two stationary
surface-wave-type solutions are present for allθ ∈ [0, 2π]. Maximum values ofk are reflected by
θ ∈ {π/2, 3π/2}.

Orthotropic Interface with All Negative Coefficients ρs, ρt, ρn

Finally, the last example deals with an orthotropic interface with all ρi assumed to be negative, i.e.
ρs = −20000 MPa/m,ρt = −40000 MPa/m andρn = −100000 MPa/m. Fig. 4.10 shows that for
θ ∈ [0, 2π] always three stationary surface-wave-type solutions are at hand. Here, extremal values of
k are obtained for anglesθ ∈ {π/2, 3π/2}, once more reflecting the characteristic directions of the
underlying orthotropy.
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Figure 4.2: Plot ofk1,2,3(θ) for ρs = 20000 MPa/m,ρt = 40000 MPa/m andρn = 100000 MPa/m
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Figure 4.3: Plot ofk1,2,3(θ) for ρs = 100000 MPa/m,ρt = 40000 MPa/m andρn = 20000 MPa/m

 

 

θ

k

0 π/2 π 3π/2 2π
−1.5

−1

−0.5

0

0.5

Figure 4.4: Plot ofk1,2,3(θ) for ρs = −20000 MPa/m,ρt = 40000 MPa/m andρn = 100000 MPa/m
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Figure 4.5: Plot ofk1,2,3(θ) for ρs = 20000 MPa/m,ρt = −40000 MPa/m andρn = 100000 MPa/m
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Figure 4.6: Plot ofk1,2,3(θ) for ρs = −20000 MPa/m,ρt = −40000 MPa/m andρn = 100000 MPa/m
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Figure 4.7: Plot ofk1,2,3(θ) for ρs = 20000 MPa/m,ρt = 40000 MPa/m andρn = −100000 MPa/m
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Figure 4.8: Plot ofk1,2,3(θ) for ρs = −20000 MPa/m,ρt = 40000 MPa/m andρn = −100000 MPa/m
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Figure 4.9: Plot ofk1,2,3(θ) for ρs = 20000 MPa/m,ρt = −40000 MPa/m andρn = −100000 MPa/m
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Figure 4.10: Plot ofk1,2,3(θ) for ρs = −20000 MPa/m,ρt = −40000 MPa/m andρn = −100000
MPa/m
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4.7 Discussion

The main goal of this chapter was to elaborate the possibility of the bifurcation of an incremental
boundary value problem (IBVP) into stationary surface wavemodes. The related continuum-interface
problem has been formulated by means of an infinite linear elastic bulk half space which is bonded to
a rigid substrate via a non-coherent cohesive interface layer. For the interface, a traction-separation-
law being decoupled in its response with respect to an interfacial orthonormal base system{s, t, n}
has been investigated. Thus, investigations previously reported in the literature, which in particular
focussed on transversely isotropic responses, have been extended to a three-dimensional orthotropic
interfacial constitutive law. Thereby, the anisotropy maybe either deformation-induced, as expected
from inelastic response, or already be present within the elastic regime.

The condition for the onset of bifurcation could be generalised asdet B
.
= 0. Here,B is a ma-

trix inhering various properties of interest. In the case ofbifurcation stationary surface-wave-type
solutions manifest in the interfacial plane as surface waves. Moreover, the specific incremental con-
stitutive relations of the bulk and of the interface are represented via the, in general non-constant,
material coefficients. As an interesting side aspect,B preserves its formal structure independent of
the material parameters of the particular traction-separation-law as long as the interfacial constitutive
law is decoupled with respect to some local orthonormal frame {s, t, n}. In this regard, the surface
ansatz used has been endowed with an angleθ which determines the harmonic direction of the wave
and enters the definition ofB as an additional argument.

Straightforward computations rendereddet B
.
= 0 to be cubic ink1,2,3 – additional arguments

being the angleθ as well as specific values ofρi related to the incremental constitutive state while the
elastic bulk parameters are fixed. Consequently, these coefficientsρi determine if stationary surface-
wave-type solutions are admissible. As a result based on evaluating the derived equation of interest,
up to three distinct solutions are obtained and, as expected, well-posedness is generally conserved.
In this regard, various combinations of specific values forρi have been studied in detail. It thereby
turned out that extremal wave numbersk correspond to directionsθ, which are systematically related
to the interfacial axes of orthotropy. Moreover, the examples indicated that for all positiveρi, no
stationary surface-wave-type solutions occur. The absence of stationary surface-wave-type solutions
is even analytically obvious for transversal isotropy or rather planar isotropy, and full isotropy in the
interface, provided thatρi > 0. Then, the present system is positive definite and the related uniqueness
of the solution is in line with results of Radi et al. [145] andGei et al. [57].
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With the elaborations for the uncoupled problem in hand, seechapter 4, the question of bifurcation
into stationary wave-type solutions is now extended to the coupled problem. The basics have already
been discussed at the beginning of chapter 4. Up to now, to theknowledge of the author, there are no
related publications that specifically deal with electro-mechanically coupled problem in this context.
Accordingly, the modus operandi is in line with chapter 4. For the bulk, a linear ferroelectric material
is assumed, while the interface will be chosen as incrementally linear and ferroelectric.

5.1 Incremental Coupled Boundary Value Problem

Again, a semi-infinite space of bulk material is bonded via a non-coherent cohesive interface layer to a
rigid substrate. The associated incremental boundary value problem (IBVP) is quasi-electrostatic and
source-free, with body forces and external charges being neglected. It inheres small strain kinematics
and is electrically-mechanically coupled.

The balance of linear momentum yields

div δσ = 0 (5.1)

whereas the second balance equation is given as a consequence of the maxwell equations:

div δD = 0 (5.2)

Kinematics are represented by
δε = ∇sym

x δu (5.3)

and, respectively,
δE = −∇xδΦ (5.4)

According to the coupled problem, the constitutive relations are given as

δσ = C : δε − et · δE (5.5)

and
δD = e : δε + ǫ · δE (5.6)

where the piezoelectric tensore and the permittivity tensorǫ have been already introduced in chapter
2, see equations (2.97), (2.98) and (2.102). Exploiting symmetry properties, combination of equations
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(5.1)–(5.6) consequently render

div δσ = [C : ∇x∇x δu] : I + ∇x∇x δΦ : e = 0 (5.7)

div δD = [∇x∇x δu : e] : I + ǫ : ∇x∇x δΦ = 0 (5.8)

Considering the Neumann boundary conditions, the incremental stress tensorδσ of the bulk and the
incremental traction vectorδτ of the interface are related by

δσ · n = δτ (5.9)

Additionally, the electrical Neumann boundary condition is given as

δD · n = δΛ (5.10)

The related interfacial constitutive law is discussed in section 5.5.

5.2 Stationary Wave-Type Ansatz

By investigating stationary wave-type solutions, the given IBVP is checked for bifurcation possibili-
ties, see also section 4.2. An appropriate ansatz in view of the incremental displacements and potential
reads as

δu(x) = exp(i[k · x̃]) mu, δΦ(x) = exp(i[k · x̃]) mΦ (5.11)

Please note that the wave vector is assumed to be identical for both incremental displacements and
the incremental potential. To the opinion of the author, this is a reasonable first simplification. A
comprehending formulation is given by

δv(x) = exp(i[k · x̃]) mv, δv =

[
δu

δΦ

]

, mv =

[
mu

mΦ

]

(5.12)

where, compare section 4.2, the complex wave vectork = ǩ + ik∗ is a composition of a real parťk
and an imaginary partk∗. Gradients follow straightforwardly as

∇x δu = i exp(i[k · x̃]) mu ⊗ k, ∇x δΦ = i exp(i[k · x̃]) mΦ k (5.13)

and

∇x∇x δu = − exp(i[k · x̃]) mu ⊗ k ⊗ k, ∇x∇x δΦ = − exp(i[k · x̃]) mΦ k ⊗ k (5.14)

Accordingly, equations (5.14)1 and (5.14)2 together with equations (5.7) and (5.8) yield

[C : [m ⊗ k ⊗ k]] : I + mΦ [k ⊗ k] : e = 0 (5.15)
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as well as
[[mu ⊗ k ⊗ k] : e] : I − ǫ : [k ⊗ k] mΦ = 0 (5.16)

This is comprehended as





Quu quΦ

qΦu qΦΦ



 ·





mu

mΦ



 = Q · mv = 0 (5.17)

where,[•] denoting an appropriate quantity, it holds

qΦΦ = −ǫ : k ⊗ k quΦ = k ⊗ k : e

qΦu = k ⊗ k : e Quu · [•] = [C : [[•] ⊗ k]] · k

(5.18)

Equation (5.17) is equivalent to

[Quu −
1

qΦΦ
quΦ ⊗ qΦu] · mu = Q∗ · mu = 0 (5.19)

Analogous to section 4.2, non-trivial solutions with respect tomv exist if

det Q∗ = det Quu [1 −
1

qΦΦ

qΦu · Q
−1
uu · quΦ]

.
= 0 (5.20)

Subsequently, the bulk is assumed to reflect linear ferroelectric behaviour, and both mechanical isotropy
and transversal isotropy are addressed. Similar to chapter4, stationary surface wave-type bifurcation
modes are investigated with respect to the interface, whichalso reflects some linear and coupled be-
haviour.

5.3 Linear Ferroelectric Bulk Material

To account for the coupled problem discussed in this chapter, a linear ferroelectric bulk material is
assumed. As an extension, both the isotropic and transversal isotropic mechanical behaviour are in-
corporated. The mechanical constitutive operator is thus chosen as eitherC = Ciso in the isotropic
case, see equation (2.30), or asC = Ctra, see equation (2.37). Independent of the choice of the purely
mechanical behaviour, the piezoelectric tensore is given in equation (2.114) whereas the permittivity
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

tensorǫ has been stated in equation (2.115). Consequently, it can bespecified

qΦΦ = 2γ1k · k + 2γ2[m0 · k]2 (5.21)

quΦ = qt
Φu = −[ζ1 [m0 · k]k + ζ2[m0 · k]2m0 +

1

2
[[m0 · k]k + [k · k]m0]] (5.22)

Qiso
uu = [λ + µ]k ⊗ k + µ[k · k]I (5.23)

Qtra
uu = λ[k ⊗ k] + α[[m0 · k]k ⊗ m0 + [m0 · k]m0 ⊗ k] + β[m0 · k]2m0 ⊗ m0

+ µ⊥[[k · k]I + k ⊗ k] + [µ‖ − µ⊥][[m0 · k]2I + [m0 · k]k ⊗ m0

+ [k · k]m0 ⊗ m0 + [m0 · k]m0 ⊗ k] (5.24)

For the mechanically isotropic case, the determinant ofQ∗ is computed as

det Q∗ = µ2[2µ + λ][k · k]3
[

1 −
1

µ[2γ1k · k + 2γ2[m0 · k]2]

[

[m0 · k]2[ζ2
1 + 2ζ1ζ3 + ζ2ζ3 +

3

4
ζ2
3 −

λ + µ

2µ + λ
[ζ1 + ζ3]

2]

+
[m0 · k]4

k · k
[2ζ1ζ2 + ζ2

2 + ζ2ζ3 −
λ + µ

2µ + λ
[ζ1 + ζ3]2ζ2]

+
1

4
ζ2
3k · k −

λ + µ

2µ + λ
ζ2
2

[m0 · k]6

[k · k]2

]]
.
= 0 (5.25)

Please note that, despite of mechanical isotropy, the ferroelectric directionm0 is still present. The
factorµ2[2µ + λ][k · k]3 has already been discovered in section 4.3, including the ellipticity condition
of the bulk, see section 4.3.1 For convenience, the determinant for the transversal isotropic case is not
discussed here.

5.3.1 Specification of the Wave Vector

Following the strategy of section 4.3.2, the wave vector is again specified ask = ke1 − iνe3. Accord-
ingly, the wave ansatz for the incremental displacements and the incremental potential is rewritten,
reading as

δu(x) = exp(ν η) mu
︸ ︷︷ ︸

wu(η)

exp(ik ζ), δΦ(x) = exp(ν η) mΦ
︸ ︷︷ ︸

wΦ(η)

exp(ik ζ) (5.26)
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5.3 Linear Ferroelectric Bulk Material

With this in hand, the balance of linear momentum is expressed as

Q2uu · w
′′
u + ikQ1uu · w

′
u − k2Q0uu · wu + q2uΦw′′

Φ + ikq1uΦw′
Φ − k2q0uΦwΦ = 0 (5.27)

Furthermore, the second balance equation (5.2) is rewritten as

q2Φu · w′′
u + ikq1Φu · w′

u − k2q0Φu · wu + q2ΦΦ w′′
Φ + ikq1ΦΦ w′

Φ − k2q0ΦΦ wΦ = 0 (5.28)

Next, equations (5.27) and (5.28) are combined as

Q2 · w
′′
v + ikQ1 · w

′
v − k2Q0 · wv = 0 (5.29)

where
wv = [wu; wΦ] (5.30)

and

Q0 =





Q0uu q0uΦ

q0Φu q0ΦΦ



 , Q1 =





Q1uu q1uΦ

q1Φu q1ΦΦ



 , Q2 =





Q2uu q2uΦ

q2Φu q2ΦΦ



 (5.31)

with q0uΦ = qt
0Φu, q1uΦ = qt

1Φu andq2uΦ = qt
2Φu. For the unspecified electrically coupled problem,

it is essential
Q0uu · [•] := [C : [[•] ⊗ e1]] · e1

Q1uu · [•] := [C : [[•] ⊗ e3]] · e1 + [C : [[•] ⊗ e1]] · e3

Q2uu · [•] := [C : [[•] ⊗ e3]] · e3

q0uΦ = [e1 ⊗ e1] : e

q1uΦ = [e3 ⊗ e1 + e1 ⊗ e3] : e

q2uΦ = [e3 ⊗ e3] : e

q0ΦΦ = −ǫ : [e1 ⊗ e1]

q1ΦΦ = −ǫ : [e3 ⊗ e1 + e1 ⊗ e3]

q2ΦΦ = −ǫ : [e3 ⊗ e3]

(5.32)

Equation (5.29) is reformulated as

w′′
v + ikQ−1

2 · Q1 · w
′
v − k2Q−1

2 · Q0 · wv = 0 (5.33)

The inverse ofQ2 is found as

Q−1
2 =

1

χ





Q−1
2uu + [Q−1

2uu · q2uΦ] ⊗ [q2Φu · Q−1
2uu] −Q−1

2uu · q2uΦ

−q2Φu · Q−1
2uu 1



 (5.34)

with
χ = q2ΦΦ − q2Φu · Q

−1
2uu · q2uΦ (5.35)
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

If the bulk is isotropic concerning its purely mechanical behaviour, withm0 = e3 denoting the direc-
tion of ferroelectric anisotropy, it holds

Q0uu = [λ + µ] e1 ⊗ e1 + µI

Q1uu = [λ + µ] [e3 ⊗ e1 + e1 ⊗ e3]

Q2uu = [λ + µ] e3 ⊗ e3 + µI

q0uΦ = −
1

2
ζ3 e3

q1uΦ = −[ζ1 +
1

2
ζ3] e1

q2uΦ = −[ζ1 + ζ2 + ζ3] e3

q0ΦΦ = 2γ1

q1ΦΦ = 0

q2ΦΦ = 2[γ1 + γ2]

(5.36)

Otherwise, if transversal isotropy is at hand with respect to the purely mechanical behaviour, and the
overall direction of anisotropy is identified withm0 = e3, it is essential

Q0uu = µ⊥I + [λ + µ⊥] e1 ⊗ e1 + [µ‖ + µ⊥] e3 ⊗ e3

Q1uu = [λ + α + µ‖][e1 ⊗ e3 + e3 ⊗ e1]

Q2uu = µ‖I + [λ + 2α + β − 2µ⊥ + 3µ‖] e3 ⊗ e3

(5.37)

5.3.2 Reformulation as a First Order System

Next, define

z =

[
wv

w′
v

]

(5.38)

Rewriting equation (5.33) as a first order system, compare section 4.3.3, renders

z′ =





0 I4

k2 Q−1
2 · Q0 −ik Q−1

2 · Q1





︸ ︷︷ ︸

A

·z (5.39)

In this regard, the fundamental system must inhere eight linearly independent solutions. With

z =





mv

νmv





︸ ︷︷ ︸

g

exp(νη) (5.40)

equation (5.39) is equivalent to
[A − ν I8] · g = 0 (5.41)
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5.3 Linear Ferroelectric Bulk Material

λ = 0.0630 ×1012 [N/m2] eV
31 = 0.0397 ×102 [A s/m2]

µ⊥ = 0.0222 ×1012 [N/m2] eV
33 = 0.2879 ×102 [A s/m2]

µ‖ = 0.0196 ×1012 [N/m2] eV
15 = 0.1197 ×102 [A s/m2]

ζ = 0.0007 ×1012 [N/m2] ǫ11 = 17152 ×10−12 [A 2s4/[kg m3]]
η = 0.0018 ×1012 [N/m2] ǫ33 = 18685 ×10−12 [A 2s4/[kg m3]]

Table 5.1: Material parameters in the bulk

For convenience, the solution of the eigenproblem reflectedby equation (5.41) is subsequently sim-
plified by inserting numerical values for the incorporated material parameters. The material param-
eters are chosen similarly to a typical ferroelectric material (PIC151, manufactured by PI Ceramic,
Lederhose, Germany). For the transversal isotropic case they are specified in Tab. 5.1. The material
parameters used in the present context follow as

ζ1 = −e31, ζ2 = e31 + 2e15 − e33, ζ3 = −2e15, γ1 = −
1

2
ǫ11, γ2 =

ǫ11 − ǫ33

2
(5.42)

For the academic case of mechanical isotropy the Lamé constant µ is chosen asµ =
1

2
[µ⊥ + µ‖].

In order to enable numerical treatment, in the computations, the unit of time has been expressed by
[s] = 103[ms]. In what follows, the bulk units are no longer given explicitly. The eigenvalues for the
isotropic case are computed as

ν1 = −k, ν2 = k, ν3 = −0.9117k, ν4 = 0.9117k,

ν5 = −0.9760k, ν6 = 0.9760k, ν7 = −1.0675k, ν8 = 1.0675k
(5.43)

For the transversal isotropic case, the eigenvalues are given by

ν1 = −1.0645k, ν2 = 1.0645k, ν3 = −1.2105k, ν4 = 1.2105k,

ν5 = [−0.9024 + i0.0124]k, ν6 = [0.9024 − i0.0124]k,

ν7 = [−0.902492 − i0.0124205]k, ν8 = [0.902492 + i0.0124205]k

(5.44)

Obviously, for both cases, eigenvalues are distinct and inhere pairwise different signs. The related
eigenvectors are given in appendix D.

5.3.3 Bounded Solution

In view of the fact that all eigenvalues and eigenvectors aredistinct, the general solution can be con-
structed without computing generalised eigenvectors. Related, for the associated Wronski-determinant,
it holdsw 6= 0. For abbreviation, the general solution is not given here. Only stationary waves which
decay towards the bulk material are considered. In this respect, only terms with a negative real part
exponent are relevant. For a mechanically isotropic bulk this finally renders the overall decay function
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

as

wv =

[
wu

wΦ

]

= exp(ν1η)








0

−c1/k

0

0








+ exp(ν3η)








−iΩ1c3/k

0

Ω2c3/k

−Ω3c3/k








+ exp(ν5η)








iΩ6c5/k

0

−Ω7c5/k

−Ω8c5/k








+ exp(ν7η)








iΩ11c7/k

0

−Ω12c7/k

−Ω13c7/k








(5.45)

For full mechanically transversal isotropy the overall decay function is consequently given by

wv =

[
wu

wΦ

]

= exp(ν1η)








0

Ω1c1/k

0

0








+ exp(ν3η)








iΩ2c3/k

0

Ω3c3/k

Ω4c3/k








+ exp(ν5η)








Ω7c5/k

0

Ω8c5/k

Ω9c5/k








+ exp(ν7η)








Ω12c7/k

0

−Ω13c7/k

Ω14c7/k








(5.46)

In both cases, the constantsc1, c3, c5, c7 are taken from the vector of complex ansatz constants given by
c = [c1, c2, c3, c4, c5, c6, c7, c8]

t. It is incorporated in the context of the general solution, which has not
been given in detail. Please note that, because of the complex character of the eigenvalues in the fully
transversal isotropic case, the decay behaviour in the normal direction is additionally characterised by
some periodicity. To obtain the incremental displacementsand the incremental electrical potential,
results above are merged as

δu = wu exp(ikζ), δΦ = wΦ exp(ikζ) (5.47)

5.4 Boundary Conditions at the Interface

Because of the numerical character of the incremental displacements and the electrical potential, only
the most important steps of the computation are highlighted. At η = 0, as already discussed in section
4.4, stresses and tractions fulfil

δσ · e3

∣
∣
η=0

= δτ (5.48)
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5.5 Interfacial Constitutive Law and Bifurcation Analysis

Furthermore, dielectric displacements of the bulk and the interface come together as

δD · e3

∣
∣
η=0

= δΛ (5.49)

Incremental stresses and dielectrical displacements are computed by inserting equation (5.47) into
equations (5.5) and (5.6). The incremental interfacial quantities are computed as

δτ =
∂τ

∂[[u]]
· [[δu]] +

∂τ

∂[[Φ]]
[[δΦ]] (5.50)

δΛ =
∂Λ

∂[[u]]
· [[δu]] +

∂Λ

∂[[Φ]]
[[δΦ]] (5.51)

5.5 Interfacial Constitutive Law and Bifurcation Analysis

In what follows, a incrementally linear ferroelectric traction-separation-law is applied, yielding

∂τ

∂[[u]]
= C if,el resp.C if,tra,

∂τ

∂[[Φ]]
= eif ,

∂Λ

∂[[u]]
= eif,t,

∂Λ

∂[[Φ]]
= −ǫif

(5.52)

In view of the fact that a globally linear behaviour is chosen, the tangent operators have been de-
noted adequately, see section 3.7. In analogy to section 4.5, equations (5.48) and (5.49) are re-
iterated, yielding a homogeneous linear system of equations with respect to the ansatz constants
a = [a0, a1, a2, a3] = [c1, c3, c5, c7]

t, reading as

B · a = 0 (5.53)

For mechanical isotropy and transversal isotropy, the matrix B is given in appendix E. The condition
to have stationary surface waves, compare also section 4.5,is consequently identified with

det B
.
= 0 (5.54)

5.6 Results

For simplification, the interfacial permittivity and coupling parameter are identified with numerical
values, reading as

ǫif = 5 × 10−3 A2 s4

kg m4 eif = 5 × 106 A s
m3 , (5.55)

Moreover, the interface is considered to be planar isotropic withµs = µt. Consequently, the interfacial
mechanical behaviour is decoupled transversally isotropic with respect to its orthonormal base system.
Thereby, the direction of anisotropy is identified withn. Several choices ofµs = µt, µn have been
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

isotropic bulk transversal isotropic bulk

µs = µt = 5 × 1015 kg/[m2 s2], µn = 10 × 1015 kg/[m2 s2]

kI = −284758 − i41156 kI = −289597 − i21660

kII = −284758 + i41156 kII = −289557 + i21660

kIII = −238903 kIII = −239364

kIV = −140356 kIV = −146784

µs = µt = 10 × 1015 kg/[m2 s2], µn = 5 × 1015 kg/[m2 s2]

kI = −477806 kI = −478728

kII = −279552 − i104524 kII = −282630 + i105925

kIII = −279552 + i104524 kIII = −282630 − i105925

kIV = −173918 kIV = −181131

µs = µt = −5 × 1015 kg/[m2 s2], µn = 10 × 1015 kg/[m2 s2]

kI = −286099 − i30043 kI = −293127 − i16294

kII = −286099 + i30043 kII = −293127 + i16294

kIII = 140400 kIII = 143589

kIV = 238903 kIV = 239364

µs = µt = 5 × 1015 kg/[m2 s2], µn = −10 × 1015 kg/[m2 s2]

kI = −238903 kI = −239364

kII = −179085 − i50559 kII = −179258 + i55598

kIII = −179085 + i50559 kIII = −179258 − i55593

kIV = 111845 kIV = 117113

µs = µt = −5 × 1015 kg/[m2 s2], µn = −10 × 1015 kg/[m2 s2]

kI = −240916 kI = −239825

kII = 86226 kII = 89531

kIII = 186438 kIII = 192124

kIV = 238903 kIV = 239364

Table 5.2: Wave numbers for different choices ofµs = µt, µn, decimal places are neglected
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5.7 Discussion

computed, see Tab. 5.2 for the results. In all cases, the determinant ofB took the format of

det B =
1

k4
[kI − k][kII − k][kIII − k][kIV − k]

.
= 0 (5.56)

with kI , kII , kIII , kIV denoting the roots of the polynomial. Please note that equation (5.56) is not
fulfilled for k → ∞, for whichdet B → 1. As a consequence, no infinite wave number can be deduced
from equation (5.56). As Tab. 5.2 reveals, for positiveµs = µt, µn and both the mechanically isotropic
and transversal isotropic bulk no real positivek are present. Accordingly, no stationary surface wave-
type bifurcations occur in such cases. The case of a physicaland linear ferroelectric interface is
consequently included there. However, if some stiffness constants are chosen to be negative, real
positive wave numbers occur and stationary surface wave-type solutions are possible.

5.7 Discussion

In the current chapter elaborations of chapter 4 have been extended to the coupled problem. In this
context the strategies of chapter 4 have been adopted in order to investigate the possibility of station-
ary surface wave-type solutions for either the incrementaldisplacements or the incremental electrical
potential. For simplification, all material parameters have been substituted by numerical values. The
bulk parameters have been chosen similarly to a common piezoelectric ceramic where the interfacial
permittivity and coupling parameter have been chosen positive for physical reasons. Relating the bulk
and the interface rendersdet B

.
= 0, resulting in four different wave numbersk. For positive inter-

facial stiffness parametersµs = µt, µn, no stationary surface wave-type solutions occurred as no real
positive wave numbers could be found. In contrast, if one or more of the above parameters are chosen
negative, bifurcation modes are possible. Nevertheless, as well as for the uncoupled problem, the num-
ber of bifurcation modes is finite for the values of material parameters which have been incorporated
here, and, additionally no wave numbersk → ∞ occur.
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6 Finite Element Discretisation

In the context of this work, laminar welded metal-/fibre-reinforced polymer composites as well as
ferroelectric mesostructures are simulated. Thereby, thecomputational tool is given by the geometri-
cally linear Finite Element Method (FEM). Typical textbooks referring to FEM are, e.g., Zienkiewicz
[195], Bathe [10], Reddy [146] and Hughes [69]. Some books especially referring to nonlinear Finite
Elements have been written by Wriggers [191] and Belytschkoet al. [16]. For a more mathemati-
cal view on this issue, see Braess [28]. For uncoupled problems, three-dimensional simulations are
conducted whereas for the coupled problem, two-dimensional examples are computed. Related, ad-
equate three- or two-dimensional continuum finite elementsare incorporated for the discretisation of
the bulk. Interfaces are discretised by so-called interface elements, taking into account the fact that
the interfaces considered here are a-priori-known delamination zones. Thus, interface elements com-
bined with appropriate material models are systematicallyused to model zones which are expected to
delaminate. Embedded between standard continuum elements, interface elements have no numerical
width. They are designed to model material interfaces and donot possess typical deficiencies (as for
instance ill-conditioned tangent operators) of continuumelements with a very high ratio of length and
height.

The energetically conjugate quantities of the interface are tractionsτ and relative displacement
jumps[[u]], and, respectively, dielectric displacementsΛ and electric potential jumps[[Φ]]. To include
those jumps within a finite element context, the dependencies of [[u]] and[[Φ]] on absolute degrees of
freedomu andΦ must be incorporated. Considering interface elements, thestarting point are the dis-
placement vectors at surrounding nodes, given at the lower and the upper side of a continuum element.
First, the relative displacements between those nodes are computed, rendering displacement jump vec-
tors at the interfacial nodes. Subsequently, it is interpolated over those jumps. The same principle is
applied in view of the coupled problem where an additional degree of freedom, the electrical potential,
is encountered. Accordingly, electric potential jumps would be interpolated. In Fig. 6.1, a sketch of a
four-noded bilinear and a two-noded linear interface element is given. Surrounding nodes are marked
by a circle whereas interfacial nodes are indexed with romannumbers in the sketch to mark the dif-
ference with respect to the surrounding nodes. For some references concerning interface elements,
see, e.g., Beer [13], Needleman [125], Gens et al. [58], Schellekens [152], Schellekens and de Borst
[153], Steinmann and Betsch [169], Alfano and Crisfield [1],Larsson and Jansson [88], Segurado and
LLorca [159], Steinmann and Häsner [170], Utzinger et al. [180] and others. In view of localisation
and mesh dependencies, some preliminary investigations have been discussed in chapters 4 and 5, see
also Utzinger et al. [181]. In what follows, body forces are generally neglected.
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Figure 6.1: Schematic sketch of a one-dimensional (left) and two-dimensional (right) interface ele-
ment

6.1 Uncoupled Problems

For the uncoupled problem the displacementsu and the displacement jumps[[u]] over the interface
contribute to the virtual work representation by means of their virtual counterpartŝu and[[û]], which
are interpreted as test functions. Related to the balance oflinear momentum, the principle of virtual
work renders one weak equation, reading as

G =

∫

B\Γ

ε̂(û) : σ(u) dV +

∫

Γ

[[û]] · τ ([[u]]) dA

−

∫

∂Bσ

û · τ p dA = 0 and u = up on ∂Bu (6.1)

In equation (6.1) integration areas are separated with respect to the bulk, denoted asB, the bulk Neu-
mann boundary∂Bσ , the bulk Dirichlet boundary∂Bu and the interface, identified withΓ. Accounting
for the three-dimensional problem, infinitesimal volume and surface elements are denoted as dV and,
respectively, dA.

6.1.1 Continuum Elements

For the discretisation of a three-dimensional bulk, trilinear eight-noded continuum elements are used,
inhering the ansatz functions

NN(ξ1, ξ2, ξ3) =
1

8
[1 + ξ1Nξ1][1 + ξ2Nξ2][1 + ξ3Nξ3] (6.2)
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6.1 Uncoupled Problems

where the indexN denotes the number of the node andξ1N , ξ2N , ξ3N are the nodal coordinates. The
interpolation variables are given byξ1, ξ2, ξ3 ∈ [−1, 1]. The approximated displacements and dis-
placement test function follow straightforwardly as

uh(ξ1, ξ2, ξ3) =

8∑

N=1

uN NN(ξ1, ξ2, ξ3), ûh(ξ1, ξ2, ξ3) =

8∑

N=1

ûN NN(ξ1, ξ2, ξ3) (6.3)

Adopting standard notation, approximated quantities are endowed with anh-index. Accordingly, in
Voigt notation, strains and the strain testfunction followas

εV = [uh
1,x; u

h
1,y; u

h
1,z; u

h
1,y + uh

2,x; u
h
2,z + uh

3,y; u
h
1,z + uh

3,x] = Bce8 · u
N (6.4)

ε̂V = [ûh
1,x; û

h
1,y; û

h
1,z; û

h
1,y + ûh

2,x; û
h
2,z + ûh

3,y; û
h
1,z + ûh

3,x] = Bce8 · û
N (6.5)

with uN = [u1; u2; u3; u4; u5; u6; u7; u8] andûN = [û1; û2; û3; û4; û5; û6; û7; û8] being the dis-
placements at the element nodes (analogousûN ). The element operator matrixBce8 is given in ap-
pendix F. Applying this discretisation with respect to equation (6.1) on the domain of a continuum
element renders the associated discrete virtual work contribution and the element residuum as

Gce,h =

∫

Bce

ûN,t · Bt
ce8 · σ

V (uh) dVce, f ce =

∫

Bce

Bt
ce8 · σ

V (uh) dVce (6.6)

Linearisation of the virtual work contribution then renders an incremental relation on the approximated
continuum element level, reading as

∆Gce,h = ûN,t ·

[
∫

Bce

Bt
ce8 · C · Bce8 dVce

]

︸ ︷︷ ︸

K
ce

·∆uN (6.7)

6.1.2 Interface Elements

Interfaces which are embedded in between two bulk material fractions are discretised by interface
elements. For the uncoupled problem, a three-dimensional scenario is considered. Related, the inter-
face elements are two-dimensional, interpolating the displacement jump of the surrounding nodes by
means of a bilinear four-noded ansatz. The ansatz functionsare given by

NN(ξ1, ξ2) =
1

4
[1 + ξ1Nξ1][1 + ξ2Nξ2] (6.8)

The interpolation variables are denoted byξ1, ξ2 ∈ [−1, 1]. The approximated displacement jump and
displacement jump test function are then given by

[[u]]h(ξ1, ξ2) = Bie4 · u
N , [[û]]h(ξ1, ξ2) = Bie4 · û

N (6.9)
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whereuN = [u1; u2; u3; u4; u5; u6; u7; u8] and ûN = [û1; û2; û3; û4; û5; û6; û7; û8] are the dis-
placements at the surrounding element nodes, ditto forûN . Again, the element operator matrixBie4

is given in appendix F. To obtain the associated discrete virtual work contribution and the interface
element residuum, the interfacial discretisation on the domain of an interface element, together with
equation (6.1), renders

Gie,h =

∫

Γie

ûN,t · Bt
ie4 · τ ([[u]]h) dAie, f ie =

∫

Γie

Bt
ie4 · τ ([[u]]h) dAie (6.10)

Linearisation of the virtual work contribution then renders an incremental relation on the approximated
interface element level, reading as

∆Gie,h = ûN,t ·

[
∫

Γie

Bt
ie4 · C

if · Bie4 dAie

]

︸ ︷︷ ︸

K
ie

·∆uN (6.11)

6.2 Coupled Problems

For an electrically coupled problem, the displacementsu, the electric potentialΦ as well as the jump
quantities[[u]] and[[Φ]] are considered to contribute to the virtual work representation by means of their
virtual counterparts. These can be interpreted as test functions û, Φ̂, [[û]] and [[Φ̂]]. The principle of
virtual work renders two weak equations, one related to the balance of linear momentum, the second
reflecting the Gaussian law, namely

Gu =

∫

B\Γ

ε̂(û) : σ(u, Φ) dA +

∫

Γ

[[û]] · τ ([[u]], [[Φ]]) dS

−

∫

∂Bσ

û · τ p dS = 0 and u = up on ∂Bu (6.12)

GΦ =

∫

B\Γ

Ê(Φ̂) · D(u, Φ) dA +

∫

Γ

Ê([[Φ̂]]) Λ([[u]], [[Φ]]) dS

+

∫

∂BD

Φ̂ Λp dS = 0 and Φ = Φp on ∂BΦ (6.13)

Within equations (6.12) and (6.13), integration areas are separated with respect to the bulk, denoted as
B, the bulk Neumann boundaries∂Bσ and∂BD, the bulk Dirichlet boundaries∂Bu and∂BΦ and the
interfaceΓ. In view of the two-dimensional problem, infinitesimal areaand line elements are denoted
as dA and dS.

6.2.1 Continuum Elements

For the discretisation of a two-dimensional continuum, in this context, bilinear four-noded and linear
three-noded continuum elements are considered. For the bilinear four-noded element, ansatz functions
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read as

NN(ξ1, ξ2) =
1

4
[1 + ξ1Nξ1][1 + ξ2Nξ2] (6.14)

with the interpolation variablesξ1, ξ2 ∈ [−1, 1]. Displacements and displacement test functions are
approximated by

uh(ξ1, ξ2) =

4∑

N=1

uN NN(ξ1, ξ2), ûh(ξ1, ξ2) =

4∑

N=1

ûN NN(ξ1, ξ2) (6.15)

The electric potential and its testfunction are approximated by

Φh(ξ1, ξ2) =

4∑

N=1

ΦN NN(ξ1, ξ2), Φ̂h(ξ1, ξ2) =

4∑

N=1

Φ̂N NN (ξ1, ξ2) (6.16)

Formulated in Voigt notation, the strains and the strain test function read as

εV = [uh
1,x; u

h
1,y; u

h
1,y + uh

2,x] = Bce4 · u
N (6.17)

ε̂V = [ûh
1,x; û

h
1,y; û

h
1,y + ûh

2,x] = Bce4 · û
N (6.18)

whereuN = [u1; u2; u3; u4] and ûN = [û1; û2; û3; û4] denote the displacements at the element
nodes. The electric field vector and its testfunction, compare Schröder and Gross [155] and Schröder
and Romanowski [158], follow as

E = −[Φh
,x; Φ

h
,y] = −Ace4 · Φ

N (6.19)

Ê = [Φ̂h
,x; Φ̂

h
,y] = Ace4 · Φ̂

N
(6.20)

whereΦN = [Φ1; Φ2; Φ3; Φ4] andΦ̂
N

= [Φ̂1; Φ̂2; Φ̂3; Φ̂4] is the electric potential at the element nodes.
For a linear material, a symmetric stiffness matrix is also achieved if signs in equations (6.20) and
(2.7)2 are reversed. The element operator matricesBce4 andAce4 are given in appendix F. Concerning
three-noded linear elements, the ansatz functions are given as

N1 = 1 − ξ1 − ξ2, N2 = ξ1, N3 = ξ2 (6.21)

Again, the interpolation variables are given byξ1, ξ2 ∈ [−1, 1]. Displacements and displacement test
functions are approximated by

uh(ξ1, ξ2) =
3∑

N=1

uN NN(ξ1, ξ2), ûh(ξ1, ξ2) =
3∑

N=1

ûN NN(ξ1, ξ2) (6.22)
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6 Finite Element Discretisation

Furthermore, the electric potential and its testfunction are approximated by

Φh(ξ1, ξ2) =

3∑

N=1

ΦN NN(ξ1, ξ2), Φ̂h(ξ1, ξ2) =

3∑

N=1

Φ̂N NN (ξ1, ξ2) (6.23)

Accordingly, the strains and strain testfunctions are rendered as

εV = [uh
1,x; u

h
1,y; u

h
1,y + uh

2,x] = Bce3 · u
N (6.24)

ε̂V = [ûh
1,x; û

h
1,y; û

h
1,y + ûh

2,x] = Bce3 · û
N (6.25)

The displacements at the element nodes are given byuN = [u1; u2; u3] andûN = [û1; û2; û3]. The
electric field vector and the related test function are givenby

E = −[Φh
,x; Φ

h
,y] = −Ace3 · Φ

N (6.26)

Ê = [Φ̂h
,x; Φ̂

h
,y] = Ace3 · Φ̂

N
(6.27)

with ΦN = [Φ1; Φ2; Φ3] andΦ̂
N

= [Φ̂1; Φ̂2; Φ̂3] denoting the electric potential at the element nodes.
For the element operator matricesBce3 andAce3, see appendix F. On the domain of a three-noded
continuum element, the associated discrete virtual work contribution and the residuum are given, with
respect to equation (6.12), as

Gce,h
u =

∫

Bce

ûN,t · Bt
ce3 · σ

V (uh, Φh) dAce, f ce
u =

∫

Bce

Bt
ce3 · σ

V (uh, Φh) dAce (6.28)

and, furthermore, concerning equation (6.13), it holds

Gce,h
Φ =

∫

Bce

Φ̂
N,t

· At
ce3 · D(uh, Φh) dAce, f ce

Φ =

∫

Bce

At
ce3 · D(uh, Φh) dAce (6.29)

Incremental relations on the approximated continuum element level are rendered by linearisation of
the associated virtual work contribution, reading as

∆Gce,h
u = ûN,t ·

[
∫

Bce

Bt
ce3 · Cuu · Bce3 dAce

]

︸ ︷︷ ︸

K
ce

uu

·∆uN +ûN,t ·

[
∫

Bce

−Bt
ce3 · CuΦ · Ace3 dAce

]

︸ ︷︷ ︸

K
ce

uΦ

·∆ΦN

(6.30)
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and

∆Gce,h
Φ = Φ̂

N,t
·

[
∫

Bce

At
ce3 · CΦu · Bce3 dAce

]

︸ ︷︷ ︸

K
ce

Φu

·∆uN+Φ̂
N,t

·

[
∫

Bce

−At
ce3 · CΦΦ · Ace3 dAce

]

︸ ︷︷ ︸

K
ce

ΦΦ

·∆ΦN

(6.31)
Similar expressions are obtained for four-noded bilinear elements. The element stiffness matrix and
the element residuum follow as

Kce =





Kce
uu Kce

uΦ

Kce
Φu Kce

ΦΦ



 , f ce =





f ce
u

f ce
Φ



 (6.32)

6.2.2 Interface Elements

Next, emphasis is placed on the discretisation of interfaces in a two-dimensional surrounding contin-
uum. Based on linear interfacial ansatz functions

N1 =
1

2
[1 − ξ], N2 =

1

2
[1 + ξ] (6.33)

depending on the interpolation variableξ ∈ [−1, 1], the approximations of the displacements and of
the appropriate test functions are given as

[[u]]h(ξ) = Bie2 · u
N , [[û]]h(ξ) = Bie2 · û

N (6.34)

whereuN = [u1; u2; u3; u4] and ûN = [û1; û2; û3; û4] are the displacements at the surrounding
element nodes. The electric potential jump and its testfunction are approximated by

[[Φ]]h(ξ) = aie2 · Φ
N , [[Φ̂]]h(ξ) = aie2 · Φ̂

N
(6.35)

The electric field strength over the interface and its testfunction is then given as

E = −[[Φ]]h = −aie2 · Φ
N (6.36)

Ê = [[Φ̂]]h = aie2 · Φ̂
N

(6.37)

with the potential at the surrounding nodesΦN = [Φ1; Φ2; Φ3; Φ4] andΦ̂
N

= [Φ̂1; Φ̂2; Φ̂3; Φ̂4]. Once
more, the element operator matricesBie2 and aie2 are given in appendix F. On the domain of a
two-noded interface element, the associated discrete virtual work contribution and the residuum under
consideration of equation (6.12) are given as

Gie,h
u =

∫

Γie

ûN,t · Bt
ie2 · τ ([[u]]h, [[Φ]]h) dSie, f ie

u =

∫

Γie

Bt
ie2 · τ ([[u]]h, [[Φ]]h) dSie (6.38)
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Furthermore, with respect to equation (6.13), it holds

Gie,h
Φ =

∫

Γie

Φ̂
N,t

· at
ie2 Λ([[u]]h, [[Φ]]h) dSie, f ie

Φ =

∫

Γie

at
ie2 Λ([[u]]h, [[Φ]]h) dSie (6.39)

The incremental relations on the approximated interface element level are then rendered by linearisa-
tion of the associated virtual work contribution, yielding

∆Gie,h
u = ûN,t ·

[
∫

Γie

Bt
ie2 · C

if
uu · Bie2 dSie

]

︸ ︷︷ ︸

K
ie

uu

·∆uN + ûN,t ·

[
∫

Γie

Bt
ie2 · c

if
uΦ · aie2 dSie

]

︸ ︷︷ ︸

k
ie

uΦ

·∆ΦN

(6.40)
and

∆Gie,h
Φ = Φ̂

N,t
·

[
∫

Γie

at
ie2 · c

if
Φu · Bie2 dSie

]

︸ ︷︷ ︸

k
ie

Φu

·∆uN + Φ̂
N,t

·

[
∫

Γie

at
ie2 · c

if
ΦΦ · aie2 dSie

]

︸ ︷︷ ︸

kie
ΦΦ

·∆ΦN

(6.41)
Please note that for the formulation as given in equation (6.41), the interfacial tangentscif

Φu andcif
ΦΦ

have to be computed with respect to the electric potential jump [[Φ]] . The element stiffness matrix and
the element residuum follow as

Kie =





K ie
uu kie

uΦ

kie
Φu kie

ΦΦ



 , f ie =





f ie
u

f ie
Φ



 (6.42)

6.3 Additional Remarks

All interfacial integrals are computed by transformation of the integral domain into a reference element
domain. The such obtained expressions are then numericallyintegrated by means of the standard two-
point Gauss-integration technique. Utilising an assemblyalgorithm, the global stiffness matrices and
residua are subsequently computed to be implemented in a nonlinear finite element context. The
mentioned technique of the Gauss-integration turned out tobe sufficient in all cases. Oscillating
constitutive responses, as described by Schellekens and deBorst [153], have not been observed.
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7 Application I – Laminar Welded
Metal-/Fibre-Reinforced Polymer
Composites

In the course of technological progression an increasing application of lightweight structures is ob-
served, inducing new innovative product developments in various fields of industry. Especially hybrid
lightweight structures of metal-/fibre-reinforced polymer composites are of interest, e.g., in the scope
of automotive and aerospace engineering. As a key technology, such composites essentially contribute
to economical and ecological issues. To realise joints of metals and fibre-reinforced polymers, new
joining technologies are investigated and optimised. Regarding the loading behaviour of such com-
posites, the joining zone is of crucial importance as it is considered to be an a priori known zone of
delamination. To reduce the number of experiments and in order to contribute to the improvement of
the joining technologies, benchmark tests concerning suchstructures are computationally modelled
and numerically simulated.

In section 7.1 two different methods of joining are shortly introduced, i.e. Thermal Impact Welding
(TIW) and Ultrasonic Metal Welding (UMW). Furthermore, some measuring and analysis methods
are concisely explained. Then, tensile tests of thermal impact welded PEEK/steel single lap tensile
specimens have been simulated quasistatically by application of FEM, see section 7.2. For the steel
substrates elastoplasticity with linear isotropic hardening has been applied (see section 2.3) while the
very thin welding zone (including a PEEK inlay) has expediently been modelled by an interfacial
traction-separation-law, i.e. elastoplasticity with damage, see section 3.4. Consequently, in the sense
of chapter 6, the joining partners are discretised by 8-noded continuum elements and the welding
interface is discretised by four-noded interface elements. Integral and local datasets of the experiment
and the simulation are compared. Thereafter, section 7.3 includes some integral data comparison of a
quasistatic test of an ultrasonic metal welded tensile specimen whereas for the substrates continuum
elements are applied again, with orthotropic elasticity for CF-PA66 and elastoplasticity with linear
isotropic hardening for the aluminium. The interface discretisation and modelling is adopted from the
previous section. Furthermore, in section 7.4, a preliminary comparison of global and local datasets
for a fatigued tensile specimen manufactured by ultrasonicmetal welding is presented. Modelling and
discretisation techniques concerning the substrates are adopted from the previous section, while the
welding interface is modelled by the cycle-based fatigue law as discussed in section 3.6.

7.1 Manufacturing and Measuring

Since fibre-reinforced thermoplastic materials offer a great potential for lightweight design and con-
struction, they are increasing in use. They feature high specific stiffness, strength, and impact resis-
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7 Application I – Laminar Welded Metal-/Fibre-Reinforced Polymer Composites

tance as well as an excellent resistance against many chemical agents. Furthermore, many polymeric
composite materials exhibit very good tribological properties, i.e. a low wear rate and low coefficients
of friction, see Häger and Friedrich [59], Friedrich et al.[56], Beringer et al. [23] and Naga [124].
However, the limits of today’s composites can be pushed evenfurther by combining their advan-
tages with the properties of traditional construction materials, e.g. thermal conductivity or strength.
Moreover, the use of composite materials in more and more applications requires reliable, strong and
easy-to-use methods of joining metal parts with composite structures. Thus, the development of new
joining techniques for metals and thermoplastic polymericresins is, as well as the related testing and
analysis, an active field of research in the scope of the DFG Research Unit 524.

7.1.1 Thermal Impact Welding

Amongst others, Thermal Impact Welding (TIW) is a novel technique for joining thermoplastics with
steel which is developed by a partner project at the Institutfür Verbundwerkstoffe GmbH (IVW) in
Kaiserslautern. At the IVW, manufacturing and related force-displacement testing is resident. De-
veloping such a new joining method necessitates a thorough investigation of the stability and repro-
ducibility of the process. At the same time, it must be ensured that the manufactured components are
free of flaws. In the technical literature only few reports concerning a hot press process for joining
thermoplastics with metals can be found. Two of those rare papers are Oster et al. [134] and Krüger
and Meyer [87]. Oster et al. [134] describe how a hot press process (i.e. Thermal Impact Welding)
can be employed to manufacture flat samples for tribologicalexperiments.

Poly(-ether-ether)-ketone (PEEK) is a heavy-duty industrial thermoplastic resin, which is widely
used in sophisticated applications. Its mechanical and thermal properties are in the upper range com-
pared to other commercially available polymeric materials(Ehrenstein et al. [49]). It is a semi-
crystalline thermoplastic with a melting temperature of 334 ◦C and a glass transition temperature
of 143◦C. The maximum continuous utilisation temperature of PEEK is 260◦C. Furthermore, PEEK
features a high specific stiffness and strength, an outstanding resistance to chemical agents, and can ex-
hibit a maximum degree of crystallinity of 48%. The present compound is reinforced with an amount
of 10 wt.% short carbon fibres. Moreover, a total of approx. 20wt.% of various micro-particles
(graphite and PTFE) are added to the formulation of the compound to improve the mechanical pro-
perties. As the metallic counterpart in the joining process, the mild steel DC01 (German standard, also
referred to as DIN EN 10131 or material number 1.0330) exhibits a Young’s modulus E of approxi-
mately 165 GPa, a yield strength Rp 0,2 of 145 MPa and a tensile strength Rm of approximately 290
MPa. The steel substrates were grit-blasted before having been thermally welded. It is believed that
the enhanced surface roughness after grit-blasting facilitates the bonding of the polymeric compound
to the metal substrate due to mechanical hooking of the polymer. Furthermore, blasting leads to a
chemical activation of the surface layer, thus ameliorating the adhesion between the two materials to
be joined. In the TIW process the metallic substrates together with a PEEK-layer are inserted into a
hot press, see Fig. 7.1. The parts to be joined are then heatedto 380◦C, a temperature above the melt-
ing temperature of the PEEK-compound. Once the PEEK has melted, a pressure is applied to the setup
and the heating of the hot press is switched off. As the temperature drops, the PEEK becomes more
and more viscous. During this process the pressure on the parts to be joined needs to be maintained
because a decrease in joining pressure could result in cavities or shrink holes in the polymer, thus
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Figure 7.1: Schematic representation of the hot press process

leading to a reduced strength of the PEEK-layer and weak bonding to the metal substrates. Shortly
before the PEEK eventually solidifies, the pressure needs tobe increased in order to compensate the
shrinkage due to crystallisation of the polymer. The specimens remain in the hot press until the tem-
perature of the setup drops below 300◦C to make sure that the polymeric compound solidifies and the
removal of the still hot specimens does not influence the strength of the weld. The geometry of such a
specimen is given in Fig. 7.2.

7.1.2 Ultrasonic Metal Welding

Ultrasonic Metal Welding (UMW) is, according to Balle et al.[6], already established in industrial
manufacturing (Ehrenstein [49], Wodara [190], Potente [144]). However, up to now, mainly similar
materials have been joined by UMW. The method of UMW is substantially different to the method of
TIW, inhering low temperatures and energy inputs as well as ashort welding time.

Here, joining partners are given by AlMg3 and the thermoplastic composite material CF-PA66.
Manufacturing and related force-displacement testing is resident at the Institute of Materials Science
and Engineering (WKK) at the University of Kaiserslautern.The aluminium exhibits a Young’s mod-
ulus E of approximately 70 GPa, a yield strength Rp 0,2 of 175 MPa and a tensile strength Rm of
approximately 250 MPa. The PA66 is reinforced with carbon fibres, inhering a volume of approx.
48 %. The compound is manufactured in an autoclave process where an Atlas 1/4-fabric is created.
CF-PA66 generally shows a orthotropic elastic behaviour. The material constants have been passed
by a partner project manufacturing the CF-PA66. Expressed in the parameters as discussed in section
2.2.3, the orthotropic behaviour is specified byλ = 4555 MPa,α1 = −3263 MPa,α2 = −3263 MPa,
β1 = 51466 MPa,β2 = 51466 MPa,β3 = 7524 MPa,µ = −1000 MPa,µ1 = 1900 MPa,µ2 = 1900
MPa. The main components of an UMW system are given in Fig. 7.3(Balle et al. [6]). It consists of an
ultrasonic generator (1), a converter (2), a booster (3) andthe welding tool which is called sonotrode
(4). A 50 Hz main voltage is converted into a high frequency alternating voltage output of 20 kHz
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7 Application I – Laminar Welded Metal-/Fibre-Reinforced Polymer Composites

Figure 7.2: Single lap tensile specimen as manufactured by TIW

Figure 7.3: The process machinery of Ultrasonic Metal Welding (Balle [6])
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Figure 7.4: Single lap tensile specimen as manufactured by UMW

by an ultrasonic generator. This converter uses the reversed piezoelectrical effect, transforming the
high frequency voltage into mechanical oscillations. The necessary oscillation amplitude in the weld-
ing zone which is between 5 to 50µm is achieved by an appropriate booster and sonotrode design.
A static pressure (7) and the welding energy by means of ultrasonic shear waves are simultaneously
applied to the joining partners (5) which are fixed to an anvil(6). In the course of this process, the
PA66 matrix is forced out of the welding zone. Related, the aluminium gets very close to the carbon
fibres. It could be proved that both an intermolecular contact as well as a mechanical interlocking are
accomplished by UMW (Balle et al. [6]). The typical geometryof a such manufactured specimen is
displayed in Fig. 7.4

7.1.3 Displacement and Strain Analysis

In order to produce integral force-displacement-curves, tensile test specimens manufactured by TIW
and UMW are tested with a tensile testing machine by the project partners in the context of the DFG
Research Unit 524. The test setup is displayed in Fig. 7.5. The single lap tensile specimens are
mounted into the chuck jaw of the testing machine. The tests are conducted at a constant cross head
speed. During the tests a data acquisition programme continously records the tensile forces and the
elongation.

To specify the theoretical model, it is necessary to comparenot only force-displacement-curves.
For a more detailed verification of the simulation, a locallyresolved optical measurement method
is applied to obtain local displacement and strain fields. Therefore, the in-plane and out-of-plane
deformation is recorded, using modern optical measurementtechniques based on Electronic Speckle
Pattern Interferometry (ESPI) (Cloud [37], Busse et al. [29]). By ESPI, such data fields are achieved
for all three dimensions and for different loadings at any point of the specimen surface. ESPI (Fig.
7.6) uses a laser which is split into a reference beam and a beam for the purpose of object illumination.
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Figure 7.5: Tensile test setup

Figure 7.6: Principle of ESPI
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After the recombination of the two beams, the SPECKLE pattern (Fig. 7.7) is obtained that correlates
with the roughness of the observed object. The phaseΦ between the two laser beams depends on
the optical path lengths. The deformation of the object changes this length, and correlating pictures
before and after loading enables the elimination of the unknown phaseΦ. The result is the phase
angle∆ which directly corresponds to the deformation of the object. The accuracy of the measured
phase angle depends only on the geometrical setup and the wavelength of the laser used. The achieved
sensitivity based on a Q300 ESPI system by Dantec Ettemeyer (see Yang and Ettemeyer [194]) is better
then 0.1µm in all directions. Computing the gradient in space of the displacement field determines
the strain contribution in every point of the object surface. Additionally to ESPI, the so-called Digital
Image Correlation (DIC) is applied to obtain local displacement and strain fields. For detailed remarks
concerning the method of DIC, it is referred to, e.g., Friebeand Winter [55], Winter [189] as well as
Kornmann and Kröplin [82].

Figure 7.7: SPECKLE pattern of a circular loaded plate

7.2 Simulation of Tensile Tests of Thermal Impact Welded
PEEK/Steel Single Lap Tensile Specimens

In order to predict the mechanical properties of more complex PEEK-steel components to be manu-
factured by the method of TIW in the future, for now, simulation techniques focus on single lap tensile
tests. As such, the developed models shall permit the determination of the strength as well as inelas-
tic properties of the joint in order to reduce the number of experiments. Using the Finite Element
Method (FEM) for simulation, the importance of so-called interface elements must be emphasised.
The representation of the loading behaviour of the weld interface is essentially based on appropriate
material models for the interface elements which is chosen to be elastoplastic with damaging effects,
see section 3.4. The steel substrate is modelled by elastoplasticity with linear isotropic hardening. The
local and integral empirical data resulting from testing and analysis is consequently used to verify the
FEM-based numerical modelling.
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Figure 7.8: Force-displacement-curve of a thermal impact welded single lap tensile specimen (left),
normal stress in loading directionσxx, loadstep 25/30 (right)

7.2.1 Results

As can be seen in Fig. 7.8, the experimentally obtained macroscopic force-displacement-curve is
nicely reproduced by the simulation whereby a model with 5208 elements has been applied, with 120
interface elements for the discretisation of the welding zone. The chosen material parameters for the
steel substrate are: Young’s Modulus 166900 MPa, Poisson Ratio 0.3, yield stress 140.3 MPa and
hardening modulus 95 MPa while suitable material parameters for the interface are:cs = ct = 35211
MPa/m,cn = 100000 MPa/m,Y0s = Y0t = Y0n = 21.5 MPa/m,Hs = Ht = Hn = 150 MPa/m,µ0s = µ0t

= µ0n = 0.059 MPa m, andjs = jt = jn = 130 (MPa m)−1. Three zones can be identified from Fig. 7.8:
an elastic zone, an elastoplastic zone and a damaged zone. According to the appropriate model and
set of material parameters, the simulated force-displacement-curve fits to the experimental data. The
first zone is given by an elastic straight line. In the second zone, beginning at a force of approximately
4500 N, elastoplastic hardening effects in both the bulk andthe interface occur. Identifying the third
zone which begins at approximately 7000 N, a softening behaviour of the specimen can be seen due to
interfacial damage activity, followed by complete failure. Since integral-type-data is essentially one-
dimensional, local analyses using Electronic Speckle Pattern Interferometry (ESPI) are additionally
performed. Based on two-dimensional data fields, comparisons between ESPI and numerical simula-
tions constitute an important part of the validation procedure so that the set of material parameters is
not determined from purely one-dimensional measurements.To be specific, using different material
parameters, similar one-dimensional force-displacementcurves can be generated. The optical analy-
ses with ESPI shown here are applied to the narrow side of the specimen and are supported during
the entire loading history. Here, Figs. 7.9-7.11 are referred to loadstep 25/30. Concerning simulation
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Figure 7.9: ESPI image of a displacement offset in loading direction (left), corresponding simulation
loadstep 25/30 (right)

details, the discretisation of the mesh is throughout shownin the undeformed configuration. Note that
the interface itself is not displayed in the results becauseof its dimensional deficiency. Placing em-
phasis on Fig. 7.9, one observes quantitative agreements between experimental and simulation results
concerning deformations in loading direction. In Fig. 7.10, the so-called out-of-plane deformation
(bending displacement) is shown. By analogy with Fig. 7.9 good quantitative similarities are ob-
served. Finally, strain distributions in loading direction are compared in Fig. 7.11. Apart from the
distinct qualitative similarity of the ESPI image and the simulation quantities are in good agreement.

7.2.2 Discussion

First, it has to be mentioned that the quality of the ESPI result is influenced by smoothing data, and
by the fact that the specimen turns out of the fixed observation frame which is shown here, due to
the torque induced by the geometry. Besides this, a possiblereason for differences may be that in the
process of TIW, PEEK leaks out of the interfacial zone and accumulates at the corners, which is not
accounted for in the simulation. This possibly causes that in the simulation result, maximum strains
occur slightly shifted compared to the ESPI image. Consequently, by using interfacial elastoplasticity
with Lemaitre-type-damage, the phenomenological simulation of global force-displacement-curves is
successfully recaptured. One-dimensional integral-typedata as well as two-dimensional data, espe-
cially local displacements, have quantitatively been captured. Good qualitative and, up to some degree,
also quantitative similarities occur when comparing localstrains in loading direction.
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Figure 7.10: ESPI image of a displacement offset in out-of-plane direction (left), corresponding sim-
ulation loadstep 25/30 (right)
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Figure 7.11: ESPI image based strains in loading direction (left), corresponding simulation loadstep
25/30 (right)
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Figure 7.12: Force-displacement-curve of a ultrasonic metal welded single lap tensile specimen (left);
normal stress in loading directionσxx, loadstep 25/30 (right)

7.3 Simulation of Tensile Tests of Ultrasonic Metal Welded
CF-PA66/AlMg 3 Single Lap Tensile Specimens

For the same motivation as for TIW, investigations for now concentrate on single lap tensile tests. The
interface has again been modelled by elastoplasticity withdamage, while the aluminium is modelled
by elastoplasticity with linear isotropic hardening. For CF-PA66, orthotropic elasticity is assumed.

7.3.1 Results

Fig. 7.12 shows that the macroscopic force-displacement-curve of the experiment is reproduced by
the simulation. Here, a model with 984 elements has been applied, with 16 interface elements for the
discretisation of the sonotrode contact area. The aluminium substrate is modelled by means of the
following material parameters: A Young’s Modulus of 70580 MPa, a Poisson Ratio of 0.33, a yield
stress of 175.3 MPa and a hardening modulus of 3500 MPa. Interfacial material parameters are given
ascs = ct = 190 MPa/m,cn = 540 MPa/m,Y0s = Y0t = Y0n = 33 MPa/m,Hs = Ht = Hn = 115 MPa/m,
µ0s = µ0t = µ0n = 5.9 MPa m andjs = jt = jn = 50 (MPa m)−1. According to Fig. 7.8, an elastic zone,
an elastoplastic zone and a damaged zone are identified. The elastoplastic zone begins at approx. 3000
N, where elastoplastic hardening effects in both the bulk and the interface occur. The damaged zone
is relatively narrow and begins at approx. 4100 N. At the end of the loading history, a very a brittle
behaviour is present.
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7.3.2 Discussion

Integral data of a statistically confirmed force-displacement plot has been captured by the simulation
very nicely. Nevertheless, unlike in section 7.2, a local comparison could not yet be conducted. There-
fore, the recording of two-dimensional data fields by optical analysis methods as, e.g., ESPI is needed.
This is of primary interest in order to verify the parametersof the simulation.

7.4 Simulation of Tensile Fatigue Tests of Ultrasonic Metal
Welded CF-PA66/AlMg 3 Single Lap Tensile Specimens

Subsequently, two experimental results of tensile fatiguetests of Ultrasonic Welded CFK-PA66/AlMg3

single lap tensile specimens are compared to simulations. The aluminium substrate is modelled by
elastoplasticity with linear isotropic hardening while for CF-PA66, orthotropic elasticity is assumed.
The welding interface is modelled by cycle-based fatigue asdiscussed in section 3.6. Here, only pre-
liminary experimental results achieved by the Lehrstuhl f¨ur Ressourcengerechte ProduktEntwicklung
(RPE) at the University of Kaiserslautern could be incorporated. In view of the fact that the experi-
mental setup is quite difficult to handle, for this time, simulation shall not remodel reality but rather
is interpreted as a tool to evaluate the experimental results. Certainly, the simulation will not display
reality until it is verified with statistically proven data.

7.4.1 Results

The material parameters of the substrates have been adoptedfrom section 7.3. Keeping in mind that
high-cycle-fatigue behaviour is at hand, the aforementioned cycle-based fatigue formulation, including
a penalty formalism as discussed in section 3.11, is incorporated for the interface. The basic interfacial
material parameters are given byβs = βt = 0.2, βn = 1, α = 10, β = 1, κ = 0. For experiment 1, the
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Figure 7.13: Strains over cycle number, experiment 1 and simulation (left), experiment 2 and simula-
tion (right)
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7.4 Sim. of Tensile Fatigue Tests of Ultrasonic Metal Welded CF-PA66/AlMg3 Specimens

Experiment 1 (∆N = 4000, 16 load steps)
stiffness 1 cs(1) = ct(1) = 190 MPa/m cn(1) = 540 MPa/m q = 5400 MPa/m C = 0.0027

stiffness 2 cs(2) = ct(2) = 10 cs(1) cn(2) = 10 cn(1) q = 54000 MPa/m C = 0.175

stiffness 3 cs(3) = ct(3) = 100 cs(1) cn(3) = 100 cn(1) q = 540000 MPa/m C = 6.06

Experiment 2 (∆N = 14000, 14 load steps)
stiffness 1 cs(1) = ct(1) = 190 MPa/m cn(1) = 540 MPa/m q = 5400 MPa/m C = 0.0009

stiffness 2 cs(2) = ct(2) = 10 cs(1) cn(2) = 10 cn(1) q = 54000 MPa/m C = 0.0582

stiffness 3 cs(3) = ct(3) = 100 cs(1) cn(3) = 100 cn(1) q = 540000 MPa/m C = 2.0

Table 7.1: Interfacial stiffnesses, penalty and fatigue parameters for experiments 1 and 2

strain in loading direction is plotted over the cycle numberin Fig. 7.13 on the left hand side, while the
right hand side features experiment 2. In order to approach the experimental results, three simulations
with different interfacial stiffnesses have been conducted for each experiment. The results are also
displayed in Fig. 7.13. Related material parameters are given in Tab. 7.1. Obviously, the (lowest)
stiffnesses 1 as adopted from the tensile test simulation ofsection 7.3 do not fit the experimental
strain-cycle curves of Fig. 7.13. For both experiments, theglobal data, given as strain-cycle curves,
is the better approximated the higher the stiffnesses are chosen. Nevertheless, for even very high
interfacial stiffnesses, the experimental curves cannot be reached. Additional local data recorded by
the Digital Image Correlation (DIC) is compared with the simulation in Fig. 7.14. All pictures are
valid for (the lowest) stiffnesses 1 at 2/3 of the cyclic loading history, what is also denoted in Fig. 7.13.
On the left hand side of Fig. 7.14, the strains in loading directionεxx for experiment 1 and, below, the
simulation result are shown, while the right hand side features the strains in loading directionεxx for
experiment 2 (above) and the simulation result (below). Thesimulation results are qualitatively similar
for both experiments. Concerning experiment 2 on the right hand side of Fig. 7.14, experimental and
simulation results clearly diverge. In contrast, for experiment 1 which is depicted on the left hand side
of Fig. 7.14, at least a qualitative tendency is observable.The strain field on the aluminium substrate
resulting from DIC measurements is minimal at the upper side, while it is maximal at the lower side.
This is roughly reflected by the simulation.

7.4.2 Discussion

First, it has to be noted that experiments 1 and 2 show very different results. Both specimens have
been cycled with a loading amplitude of 2 kN. Concerning the strain-cycle curves of Fig. 7.13, this is
partially due to the clip-on strain gauge that has been applied over different distances for experiments
1 and 2, which certainly has been considered in the simulation. Nevertheless, especially the locally
resolved experimental data is differing. The specimen usedfor experiment 1, as a preliminary test, has
been cycled before with low amplitudes and very high cycle numbers without revealing any inelastic
behaviour. It is questionable how this has to be interpretedin light of the comparison of experiment 1
and 2.
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Figure 7.14: Above: DIC image of strains in loading direction at 2/3 of the cyclic loading history,
experiment 1 (left), experiment 2 (right). Below: strains in loading direction, simulation
of experiment 1 with stiffnessci(1) (left), and strains in loading direction, simulation of
experiment 2 also with stiffnessci(1) (right)
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7.4 Sim. of Tensile Fatigue Tests of Ultrasonic Metal Welded CF-PA66/AlMg3 Specimens

In view of the simulation, only the sonotrode contact area has been discretised by means of interface
elements. Normally, during the process of UMW, the polyamide melts and induces an extended contact
area, which is not accounted for in the simulation. Furthermore, for numerical reasons, a very steep
rise of the strains as observed in Fig. 7.13 for both experiments at the end of the cyclic loading history,
could not yet be generated.

From Fig. 7.13, it can be concluded that either the substrates are modelled too soft or that the clip-
on strain gauge data is in need of improvement. A rise of interfacial stiffnesses does not seem to solve
this problem completely. Moreover, the results of section 7.3 would suggest the lowest interfacial
stiffnesses. The divergence of experimental data as indicated by Figs. 7.13 and 7.14 means that the
experimental setup is not yet reproducible. Despite the fact that for experiment 1 a cyclic prehistory
has been at hand, the differences are quite immense. Nevertheless, the local data of the first experiment
given by the strain field in loading direction is roughly reproduced in the simulation.

In order to improve the experiments and to reduce the variation of the results, a new clamping tool is
currently developed at the Institute of Materials Science and Engineering (WKK) at the University of
Kaiserslautern. This, as well as a comparison of specimens with the same prehistory and an identical
application of the clip-on strain gauge is needed. To sum up,the setup of experiment 1 seems to
approach the numerical simulation more than experiment 2, and the cycle-based fatigue law which
is applied to the interface is principally applicable for the simulation of such fatigue experiments as
given here.
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8 Application II – Piezoelectric
Mesostructures

In recent years, smart materials have occupied a decisive role in many fields of engineering sci-
ence. They can be subdivided into several subclasses, e.g.,piezoelectric solids, shape memory alloys,
electro-rheostatic and magneto-rheostatic fluids, to namebut a few. By means of their revolutionary
properties, smart materials expand technical possibilities, in turn giving new inspiration to their own
evolution. An obvious example is the continuing downsizingof the application scales, being docu-
mented by developments related to nanotechnology. Depending on the type of application, use can be
made of both the direct as well as the inverse piezoelectric effect. Furthermore, so-called ferroelectric
materials are a subcategory of piezoelectric materials. They inhere the ability that domain states can
be modified by loadings of sufficient magnitude. In any case, cyclic loading conditions are common,
resulting in fatigue-related degradation of the various material properties.

In this respect and in addition to laminar welded lightweight structures, piezoelectric ceramics are
another class of modern engineering materials occurring inthis work. In the following, a polycrys-
talline mesostructure of PZT is discretised by triangular continuum elements for the grains and by
interface elements for the grain boundaries. The continuummaterial law is linear ferroelectric, see
section 2.4, while the interfacial material law is basically linear and decoupled but endowed with a
penalty formalism and two different fatigue damage evolutions. The first type is suitable for low-
cycle-fatigue, while the second type captures high-cycle-fatigue. These material laws have been dis-
cussed in section 3.8. The constitutive model of the interface is artificial in nature, due to missing
reliable information on the exact grain boundary behaviourfor fatigue-type loading (Utzinger et al.
[183, 182]). It is designed to place emphasis on grain boundary effects and is believed to be a first
step towards a sound physics-based model of real fatigue processes as, e.g., observed near the elec-
trodes for electric loading. First, section 8.1 includes the results of a literature survey on the issues
of piezoelectric fatigue, grain boundaries and material modelling. This is followed in section 8.2 by
some remarks concerning the interfacial modelling in the present elaboration. A discretisation of a
rectangular PZT mesostructure which is adopted from a micrograph is introduced in section 8.3, serv-
ing as a framework for the implementation of the cohesive models examined before. Representative
numerical results are presented in section 8.4. Thereby, different low- and high-cycle-fatigue moti-
vated boundary conditions are applied considering both mechanical and electrical cycling. Finally, the
results are discussed in section 8.5. Please note that all considerations in this chapter are reviewed for
a two-dimensional problem.
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8.1 Literature Survey

Concerning fatigue life, many physical processes, occurring on different scales, are of interest. Ac-
cording to the literature, there are two types of fatigue, the first being due to embrittlement and the
second resulting from fatigue crack growth (Lupascu [99]).In Daining et al. [43] it was found for
PZT that for cyclic electric loading with an amplitude far below the coercitive field strengthEc, the
evolution and propagation of parallel microcracks is observed. With the amplitude getting closer to
Ec, macrocracks are emerging. Due to diffusion processes, thebehaviour of piezoelectric materials
is rate dependent (Lohkämper et al. [97]) and, consequently, fatigue effects are in general subject to
cyclic frequency loading (Schorn et al. [154]). Depending on the particular application being consid-
ered, either low-cycle-fatigue or high-cycle-fatigue effects are observed. In this regard, geometrical
influences as, e.g., notches (Westram et al. [187]), can leadto a very limited fatigue life. For elec-
tric loading, fatigue related influences are highly concentrated at the electrodes. Certainly, in view
of oscillating loading conditions close to some operating point near to the polarisation saturation, the
high-cycle-loading type is most common. However, on the micro scale, domain switching within
the grains, grain boundary effects and their interactions all together cause the fatigue properties of a
ferroelectric material on the meso scale.

In the current chapter, focus is placed on grain boundaries,amongst others being relevant when
considering electrical properties of a ferroelectric ceramic (Knauer [81]) and playing a crucial role in
the fatigue behaviour (Lupascu [99]). The smaller the grains are, the larger the influence of the grain
boundaries on the global behaviour of the material becomes (Schaumburg [151]). Consequently, grain
boundaries are of crucial importance on the nano scale (Rühle [150]). They are mechanically weak
(Lupascu [99]) and reveal a lower permittivity than the grain bulk (Bast [9]). Additionally, amorphous
structures in the grain boundaries emerging under fatigue loading conditions (Lupascu [99]) suggest
very reduced coupling effects. According to Schaumburg [151], driving forces for the defect structure
of grain boundaries are the electrostatical potential, thedegradation of elastic strain energy and the
formation of associated defects with dipole character.

To reduce the number of experiments, various simulation tools can be applied. Furthermore, by
relating simulations and experimental results further insight can be gained. In this context, the Fi-
nite Element Method makes a model of the mesostructure accessible to simulation. There are several
suggestions for thermodynamically motivated constitutive models for the bulk, see e.g. Kamlah [76],
Kamlah and Böhle [77], Schröder and Gross [155], Schröder and Romanowski [158], Klinkel [78, 79]
and Mehling et al. [108], mostly incorporating switching phenomena, see also Arockiarajan et al.
[4], Arockiarajan and Menzel [3], Menzel et al. [110] and references cited therein. In view of Finite-
Element discretisations of polycrystalline mesostructures, it is well-established to generate appropriate
meshes by utilisation of the Voronoi-tessellation (Espinosa and Zavattieri [53], Sfantos and Aliabadi
[161]). Additionally, though restricted in its applications, the Boundary-Element-Method can be ap-
plied to discretise grain boundaries (Sfantos and Aliabadi[161]), thereby omitting the computational
costs induced by discretised grains.

Grain boundaries are very narrow zones, being located in between surrounding grains. In this
work they are identified as a priori known zones of delamination. Hence, combined with appropriate
constitutive models, it is obvious that interface elementsshould be used systematically to model the
intergranular weak zones, see also Cannmo et al. [33, 32]. Interface elements are one dimension
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smaller than surrounding continuum elements, thereby avoiding bad-conditioned stiffness matrices as
obtained for too narrow continuum elements (Schellekens and de Borst [153], Utzinger et al. [180]).
In this context, concerning the numerical modelling of interfaces, see also the approach based on reg-
ularised discontinuities by Jansson and Larsson [72] and Larsson and Jansson [88]. To simulate grain
boundaries in ceramics, Espinosa and Zavattieri [53] incorporated a bilinear, irreversible cohesive law
in an interfacial Finite-Element context. Concerning fatigue damage, the reader is referred to the in-
vestigations by, e.g., Paas et al. [135] and Peerlings et al.[140]. In these works evolution criteria for
non-piezoelectric bulk materials under cyclic loading aredeveloped, especially suited for high-cycle-
fatigue. Similar formulations have been proposed by Robinson et al. [149], Munoz et al. [123] and
Erinc et al. [50] for non-piezoelectric interfaces. A cohesive low-cycle-fatigue formalism was devel-
oped by Nguyen et al. [127], and further extended by Arias et al. [2] for coupled problems, however,
without placing emphasis on its numerical implementation.For a detailed discussion concerning these
issues see chapter 3.

8.2 Modelling Aspects

In order to concentrate on grain boundary effects, a linear coupled material law is incorporated for
the grains. Accordingly, an operating point close to a saturated polarisation is assumed and switch-
ing effects are neglected. Furthermore, any rate dependencies are excluded. In view of the grain
boundaries or rather interfaces, the quantities of displacements and electric potential are replaced by
jump-quantities over the interface, i.e. the displacementjump and the electric potential jump, due
to reasons discussed in the introduction of chapter 3. The starting point for the subsequent elabora-
tions is a linear and coupled interfacial material behaviour. As a penetration of the opposite surface
lines should be avoided for obvious physical reasons, an adequate penalty formalism as introduced in
section 3.11 is additionally considered. Furthermore, to account for fatigue effects, a change of con-
stitutive tensors is incorporated in the subsequent elaborations. This is accomplished by incorporating
fatigue-dependent Lemaitre-type damage as discussed in section 3.8.

In grain boundaries, foreign atoms and impurities are deposited, not fitting into the stable crystal
configuration of the grains. Additionally, secondary phases can occur (Schaumburg [151]), resulting
in a more or less heterogeneous consistency. As already mentioned, amorphous structures in the grain
boundaries emerge under fatigue loading conditions. Basedon these informations, a piezoelectric cou-
pling mechanism is considered to be of a very reduced intensity. Consequently, the interfacial coupling
factor will be set to zero. Depending on certain doping conditions, grain boundaries might become
highly charged interface layers (Lupascu [99]). In that event, capacitor-type interfacial material laws
could be applied, which is of interest concerning future research.

From the experimental point of view it could not yet been clarified how the grain boundary permit-
tivity changes under fatigue loading conditions. The permittivity is defined as the polarisation capabil-
ity of a medium. An argument for a decreasing permittivity could be that given dipolar structures are
destroyed by some kind of fatigue-related erosion, or that the intergranular medium is endowed with
e.g. oxygen vacancies, eventually diffusing out of the bulkunder fatigue loading (Lupascu [99]). In
view of the permittivity-decreasing influence of cracks, the present model only accounts for a very re-
duced broadening of grain boundaries. The phenomenon of microcracking is not yet fully understood
and is still subject of intense discussion, see Lupascu [99]and references cited therein. Moreover,

133



8 Application II – Piezoelectric Mesostructures

shaking and aligning of ions due to fatigue loading conditions as well as some hypothetical increase
of the ion concentration in the grain boundaries due to cyclic loading would suggest an increasing
permittivity. For the present work, a simplified electricalenthalpy approach as given in section 3.8
has been made. Chemical potentials as well as any fluxes, diffusion phenomena or dipolar charges
are neglected, but certainly play a role and consequently motivate further research and enhanced mod-
elling approaches. Due to the unclear physical circumstances for the grain boundary permittivity, an
artificial but simple linear relation dependent to the damage parameter is applied as given in equation
(3.254).

8.3 Discretisation

To enlighten the functionality of the fatigue-related material laws of section 3.8, a piezoelectric meso-
structure, imported from Nuffer et al. [129], is discretised with finite elements. In a nonlinear finite
element algorithm, low- and high-cycle-fatigue related constitutive relations are reflected by means
of algorithmic tangent moduli. Then, the discretisation can be subjected to different low- and high-
cycle-fatigue-motivated boundary conditions. The present mesostructure, shown in Fig. 8.1 on the
left hand side, is a micrograph of PIC 151, manufactured by PICeramic, Lederhose, Germany. It
has been generated by a scanning electron microscope (SEM).PIC 151 is a standard material for
actuators and suitable for low-power ultrasonic transducers and low-frequency sound transducers. On
the right hand side of Fig. 8.1 an adequate discretisation ofthis mesostructure is highlighted. Grains
are represented by continuum elements and are red-coloured. A pragmatic choice are linear triangular
elements, geometrically defined by some point inside the grain and the grain polygon. The dark-
blue-coloured interface elements are given at every grain boundary as one side of the related grain
polygons, whereby each interface element is surrounded by two triangular elements. Please note
that a discretisation of polycrystalline grain boundariesby means of interface elements has also been
introduced by Cannmo et al. [33, 32]. In this two-dimensional approximation of a real mesostructure,
concerning the micrograph on the left hand side of Fig. 8.1, surfaces of underlying grains, apparent
as black areas, are treated as voids in the related discretisation. See the right hand side of Fig. 8.1.
In the following, different low- and high-cycle-fatigue-motivated boundary conditions are applied to
the discretisation shown on the right hand side of Fig. 8.1, considering mechanical and electrical
cycle loading. Both the time-based and the cycle-based model are incorporated, and, consequently,
compared. As a starting point, the material parameters of the grains, or respectively, the bulk material,
have already been highlighted in Tab. 5.1. All material parameters of the bulk are related to PIC 151.
Concerning the material parameters of the interface, no specific stiffness or permittivity values could
be retrieved from the literature. Based on Lupascu [99] and Bast [9], grain boundaries are supposed
to be mechanically weaker than grains and, moreover, seem toinhere a lower permittivity. In this
chapter, the internal length of the interface is a default value and set asl = 0.3× 10−6 [m], related
to the width of a grain boundary. Consequently, stiffnessesand permittivities have been academically
chosen as

cs = cn =
[Ctra]33

10 l
, q =

[Ctra]33
l

, ǫinit
r = αinit [ǫ]33

ǫ0 l
, ǫend

r = αend [ǫ]33
ǫ0 l

(8.1)
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8.4 Results

Figure 8.1: Micrograph of PIC 151 (left, courtesy by Prof. D.C. Lupascu, see Nuffer et al. [129])
and finite element discretisation (right). Continuum elements are coloured red, interface
elements are dark blue. The green spot marks the Gauss point where the damage variables
for Fig. 8.20 and 8.21 are saved

with coupling effects in the interface being neglected. In the examples to be shown, an interfacial
permittivity varying with the damage has been assumed, in accordance with equations (3.250)–(3.253)
andαinit = 1/10. The material parameters incorporated in the effective quantity δ are chosen asβs

= 1 [m−1], βn = 1 [m−1], and βΦ = 0.01 [A s3/[kg m2]]. The comparatively low influence of the
electric potential jump is considered to reflect the underlying physical behaviour, as the mechanical
and electrical disruption of the grain boundary is considered to be dominant due to mechanical effects.
Please note that, to improve numerical accuracy, it is necessary to express the unit of time as [s] =
103 [ms] for all computational input parameters. Furthermore,it shall be noted that due to the non-
associated character of the incorporated fatigue law, the interface element stiffness matrixKie turns
out to be in general non-symmetric.

8.4 Results

In the following, some representative numerical results are illustrated and described. For the grain
boundaries, time- and cycle-based models are applied as well as increasing and decreasing permittivi-
ties. Concerning the boundary conditions, both mechanicaland electrical cycling are incorporated.
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8.4.1 Time-Based Fatigue Computations

In the examples of this section the time-based material law is applied, see section 3.8. The FE-
discretisation introduced in the above serves as input for anonlinear FE-programme, together with
appropriate boundary conditions. The material parameter has been chosen asα = 4× 10−7.

Displacement Loading

The boundary conditions of the first example are schematically shown in Fig. 8.2. On the right
hand side, it can be seen that on the upper boundary of the rectangular model cyclic displacements
are applied. On the left hand side of Fig. 8.2, the same cyclicdisplacements are plotted over the
number of loading steps. The cyclic load is applied such thatit is always in the global range of tensile
loading, with 14 loading steps for each cycle, and 288 steps in total to simulate 20 cycles including
one additional loading step for the first loading sequence. The resulting stresses in vertical direction
in the bulk, denoted asσyy, are displayed in Fig. 8.3 while the electric field in vertical direction in the
bulk, Ey, is shown in Fig. 8.4. In both figures, snapshots are taken after the first loading amplitude
(
.
= 0 cycles), 5 and 20 cycles, all of them being marked in Fig. 8.2by red circles. Fig. 8.3 shows

that the stressesσyy decrease under continued cycling. This clearly accompanies a damage-related
stiffness decrease. With a damage-induced increasing permittivity in mind (αend = 3/10) and only
considering electric effects, the electric potential jumpover the interface would tend to decrease,
and in consequence, a related fraction of the electric field in the bulk would increase to compensate
this. Hence, the fraction of strains in the bulk related to this is raised by some amount. In turn,
this raises the displacement jumps in the interface, supporting damage evolution. For the current
βΦ ≪ βs = βn, mostly the displacement jump contributes to the damage. Considering the overall
constitutive answer, the decreasing absolute value of the electric field componentEy as shown in Fig.
8.4 seems to be due to the dominant influence of decreasing interfacial stiffnesses. For a lower stiffness
in the interface, strains in the bulk decrease. Simultaneously, also a large reduction of the absolute
value of the electric fieldEy will occur. The prevailing role of stiffnesses seems to be induced by the
mechanical boundary conditions of cyclic displacement loading, while at the same time, at the upper
boundary of the specimen, the electric potential boundary condition is free. Therefore, the electrical
field behaviour in the bulk is dominated by the mechanical response, leading to decreasing values of
Ey due to decreasing stiffnesses.

For similar boundary conditions (see Fig. 8.5) and a decreasing permittivity (αend = 1/100), the
electric potential jump would tend to increase. Consequently, this effect does not assist the bulk strains
to increase, and therefore, in the sense of the correlationsdescribed in the above, this effect does not
support the damage evolution. With Fig. 8.6 revealing solely a slight influence of this effect for the
stressesσyy, the electric fieldEy given in Fig. 8.7 shows a smaller decrease as compared to Fig.8.4.

Electric Potential Loading

In contrast, for a cyclic electric potential, adequate boundary conditions are found in Fig. 8.8. Again,
7 loading steps are chosen for loading and unloading within one cycle, resulting in 288 loading steps
for 20 cycles including one more loading step in the first loading sequence. Moreover, Fig. 8.9 and
8.10 display snapshots after the first loading amplitude (.

= 0 cycles), 5 and 20 cycles. The interfacial
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permittivity is considered to increase, i.e.αend = 3/10. Concerning the electric field component in
vertical directionEy, Fig. 8.10 shows that the absolute value ofEy increases with continued cycling.
This can be related to increasing permittivities in the interfaces. With a cyclic electric potential given
as a boundary condition, no displacements are prescribed for the upper boundary. Therefore, it is
considered that electric fatigue effects superpose mechanical-related effects concerning the absolute
value of the electric field componentEy. This is not the case for the stressesσyy, displayed in Fig.
8.9. There, mechanical influences still prevail and stresses are reduced with continued cycling.

8.4.2 Cycle-Based Fatigue Computations

Concerning cycle-based fatigue, the boundary conditions are essentially similar to the boundary con-
ditions of section 8.4.1, with a difference concerning the number of cycles and the numerical imple-
mentation. The appropriate material law is discussed in section 3.8. Material parameters have been
chosen as C = 1.5× 109, β = 1 andγ = 0.

Displacement Loading

For the case of cyclic displacement loading, boundary conditions are given in Fig. 8.11. In view of the
numerical implementation, displacements are applied in the first loading step. In subsequent loading
steps, the displacements, given at the upper boundary, are fixed. For each loading step,∆N = 105

cycles are assumed to take place, resulting in 4.1× 106 cycles distributed on 41 loading steps. This is
illustrated on the left hand side of Fig. 8.11. Snapshots aretaken after 105, 3.1× 106 and 4.1× 106

cycles. At first, increasing interfacial permittivities are assumed (αend = 3/10). Stresses in vertical
directionσyy are given in Fig. 8.12 while the electric field component in vertical directionEy is
displayed in Fig. 8.13. As Fig. 8.12 reveals, stressesσyy decrease due to decreasing stiffnesses induced
by cycle-based fatigue. Simultaneously, the absolute values of the vertical electric field componentEy

also decrease. This seems to be due to the superposition of electric effects by mechanical effects as
described before, caused by dominant mechanical boundary conditions.

For identical boundary conditions (Fig. 8.14) and a decreasing permittivity withαend = 1/100, the
damage evolution is, again, less pronounced. This is understood by comparing the stressesσyy of Fig.
8.12 and Fig. 8.15 and the electric field componentEy of Fig. 8.13 and Fig. 8.16. As observed from
Fig. 8.15 and Fig. 8.16, this effect is even more significant for the cycle-based fatigue than for the
time-based fatigue.

Electric Potential Loading

In view of electric potential loading, boundary conditionsare illustrated in Fig. 8.17. Again, each
loading step represents∆N = 105 cycles as explained in section 8.4.2. In this context, snapshots are
once more taken after 105, 3.1× 106 and 4.1× 106 cycles. Interfacial permittivities are considered to
increase, i.e.αend = 3/10. The corresponding plots of the stresses in vertical direction σyy are given
in Fig. 8.18 while the vertical component of the electric field Ey is displayed in Fig. 8.19, revealing
increasing absolute values ofEy corresponding to increasing interfacial permittivities.According to
the precedent examples, electrical effects seem to match the intensity of mechanical effects concerning
the absolute value of the electric field componentEy. Moreover, it emerges that concerning the stresses
σyy, mechanical influences still prevail and stresses are reduced with continued cycling.
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Figure 8.2: Loading history (left) and boundary conditions(right, cyclic displacements): increasing
interfacial permittivity

Figure 8.3: σyy [MPa] after 0 (left), 5 (middle) and 20 (right) cycles

Figure 8.4: Ey [MV/m] after 0 (left), 5 (middle) and 20 (right) cycles
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Figure 8.5: Loading history (left) and boundary conditions(right, cyclic displacements): decreasing
interfacial permittivity

Figure 8.6: σyy [MPa] after 0 (left), 5 (middle) and 20 (right) cycles

Figure 8.7: Ey [MV/m] after 0 (left), 5 (middle) and 20 (right) cycles
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Figure 8.8: Loading history (left) and boundary conditions(right, cyclic electric potential): increasing
interfacial permittivity

Figure 8.9: σyy [MPa] after 0 (left), 5 (middle) and 20 (right) cycles

Figure 8.10:Ey [GV/m] after 0 (left), 5 (middle) and 20 (right) cycles
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Figure 8.11: Loading history (left) and boundary conditions (right, cyclic displacements): increasing
interfacial permittivity

Figure 8.12:σyy [MPa] after 105 (left), 3.1× 106 (middle) and 4.1× 106 (right) cycles

Figure 8.13:Ey [102 kV/m] after 105 (left), 3.1× 106 (middle) and 4.1× 106 (right) cycles
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Figure 8.14: Loading history (left) and boundary conditions (right, cyclic displacements): decreasing
interfacial permittivity

Figure 8.15:σyy [MPa] after 105 (left), 3.1× 106 (middle) and 4.1× 106 (right) cycles

Figure 8.16:Ey [102 kV/m] after 105 (left), 3.1× 106 (middle) and 4.1× 106 (right) cycles
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Figure 8.17: Loading history (left) and boundary conditions (right, cyclic electric potential): increas-
ing interfacial permittivity

Figure 8.18:σyy [MPa] after 105 (left), 3.1× 106 (middle) and 4.1× 106 (right) cycles

Figure 8.19:Ey [GV/m] after 105 (left), 3.1× 106 (middle) and 4.1× 106 (right) cycles
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8.5 Discussion

Subsequently, some important aspects concerning the aboveresults are discussed. Specifically, the
time- and the cycle-based fatigue evolution are compared, the role of the interfacial weighting factors is
discussed, the influence of increasing and decreasing interfacial permittivities is compared and finally,
some notes on the grain structure and the discretisation influence are given.

8.5.1 Comparison of the Time-Based and the Cycle-Based Fati gue
Evolution

First of all, it is noteworthy that for the two fatigue-damage evolutions described in section 3.8 dif-
ferent functional dependencies are incorporated. This must clearly result in different types of the
damage evolution. In Fig. 8.20 the damage parameter is plotted over the number of load steps for the
time-based fatigue examples of section 8.4.1 for increasing permittivities. The damage parameterd
is displayed for the Gauss point marked in Fig. 8.1. The step patterns result from the fact that only
for loading, the damage parameter is updated. Moreover, it is recognised that the damage evolution
for cyclic electric potential loading is more progressive than for cyclic displacement loading. The
dependencies for cycle-based fatigue are shown in Fig. 8.21. Please note that, for the Gauss point
considered, the damage cut-off is reached after 30× 105 cycles for displacement loading. However,
different evolution techniques for time-based and cycle-based fatigue damage lead to different evolu-
tions concerning, e.g., stresses or the electric field components. Furthermore, the cycle-based fatigue
evolutions seem to provide more freedom to be fitted to experimental data due to a larger number
of material parameters. In this context, only academic simulations are accomplished. Comparisons
with experiments would give further information on the practicability of the models. Indeed, before
considering comparisons with measurements, further significant attributes of ferroelectric material
behaviour, for example switching effects, should additionally be included in the computational formu-
lation. The results are further supported by plots of the forces at the upper nodes, where the cyclic
boundary conditions are applied. In Fig. 8.22 the sum of all upper nodal forces is plotted over the
loading steps for the time-based simulation with increasing permittivities and displacement loading.
In accordance to the degressive damage evolution shown in Fig. 8.20, the forces also decrease de-
gressively. In contrast, for the cycle-based simulation with increasing permittivities and displacement
loading, the forces progressively decrease, as Fig. 8.23 reveals. This is in line with the progressive
damage increase for displacement loading shown in Fig. 8.21.

8.5.2 Neglected Coupling Effects in the Interface and the Ro le of βs, βn

and βΦ

With the numerical examples discussed above, interfacial coupling effects have been neglected in
order to model the very reduced coupling abilities occurring along the amorphous grain boundaries.
Direct consequences thereof are as follows: If cyclic displacement boundary conditions are applied to
an interface and, at the same time, electric potential boundary conditions at the top of the specimen
are free, mostly the interfacial displacement jumps are cycled, whereas the electric potential jumps
are affected in a smaller amount, not being coupled to the displacement jumps. From this it can be
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Figure 8.20: Time-based fatigue: damage parameterd over number of load steps. Solid line: dis-
placement loading, dotted line: electric potential loading

concluded that displacement jumps and stiffnesses in the interface will dominate the stresses and the
electric field in the bulk, triggered by interfacial effects. The interfacial electric potential jumps are
then influenced by the damage variable and the related changeof permittivity and, as inherent to
the overall solution of the coupled BVP, the bulk itself. Here, however, the electric potential jump
influences the bulk only in a small amount. Moreover, mainly displacement jumps would contribute
to the damage evolution. Analogous effects occur when the mechanical boundary conditions at the
top of the specimen are free and a cyclic electric potential is applied. Then, mainly electric potential
jumps would contribute to the damage evolution and bulk actions are dominated by interfacial electric
potential jumps and permittivities. Nevertheless, no matter which degrees of freedom are cycled, the
associated damage variable will always be applied to both the interfacial stiffnesses and permittivities.
What clearly influences the weighting of displacement or electric potential jumps concerning damage
evolution are the parametersβs, βn andβΦ, see also equation (3.255). In the current work,βΦ has
been chosen much smaller thanβs, βn which is considered to reflect some physics of piezoceramic
grain boundaries. Consequently, the role of the electric potential jump and of varying permittivities is
reduced as compared to the influence of the displacement jumpand reduced stiffnesses.

These correlations are generally reflected by the simulation results. For cyclic displacements com-
bined with the time-based or the cycle-based fatigue model,stressesσyy are decreasing due to de-
creasing stiffnesses. Simultaneously, the absolute valueof the electric field componentEy is also
decreasing due to the dominant role of interfacial displacement jumps – the electric potential at the
upper boundary is free. For cyclic electric potentials and both fatigue models, the absolute values of
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Figure 8.21: Cycle-based fatigue: damage parameterd over number of cycles. Solid line: displace-
ment loading, dotted line: electric potential loading

the electric field componentsEy rise with continued cycling, which can be correlated to the dominant
role of the interfacial electric potential jumps and the related increase of permittivities which has been
assumed in those examples. In view of the stressesσyy, mechanical influences still prevail, and a
decrease is observed, due to the small value ofβΦ and the electric-field-induced increase of the bulk
strains, promoting increasing interfacial displacement jumps.

8.5.3 Influence of Increasing and Decreasing Interfacial Pe rmittivities

For both the time-based and the cycle-based fatigue computations, increasing and decreasing inter-
facial permittivities have been investigated for cyclic displacement boundary conditions. Concerning
the overall constitutive behaviour, the cyclic displacement boundary conditions induce that the over-
all electric field is triggered by the strains, both decreasing with increasing damage with respect to
the cycling history. The damage is directly influenced by theinterfacial jump quantities. Due to the
small weighting factorβΦ, the direct influence of the potential jump and the permittivities is of minor
significance; nevertheless, they still indirectly influence the overall damage, though being strongly
superposed by mechanical effects.

For increasing permittivities, the electric potential jump over the interface would tend to decrease.
Hence, a related fraction of the electric field in the bulk would increase to compensate this and the
related fraction of bulk strains would then be raised by someamount due to piezoelectric coupling.
As a consequence, this raises the displacement jumps in the interface, which supports the damage
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Figure 8.22: Time-based fatigue: upper nodal forces over load steps

evolution. In contrast, for decreasing permittivities, the electric potential jump over the interface
would tend to increase, causing a certain fraction of the bulk strains to decrease. Such behaviour
would decrease the displacement jumps in the interface, restraining the damage evolution to some
amount. Consequently, such effects are indicated in the results. Due to the circumstances discussed in
the above, for decreasing permittivities, stressesσyy and the electric field componentEy decrease less
than for increasing permittivities, which stems from the restrained damage evolution.

8.5.4 Influence of Grain Structure and Discretisation

For the micrograph considered, compare Fig. 8.1, a void is present in the middle of the discretisa-
tion. For cyclic displacements and both fatigue models, butespecially for the cycle-based fatigue
evolution, fatigue-motivated damage starts in an area around the mentioned void, compare Figs. 8.12,
8.13, 8.15 and 8.16. Concerning the discretisation of the continuum, linear triangular elements have
been applied, inhering rather poor approximation abilities compared to the application of higher order
ansatz functions or finer meshes. Nevertheless, the discretisation used turns out to reflect all important
properties of the academic example investigated.

8.5.5 Additional Remarks

In this chapter, a SEM-obtained mesostructure (Nuffer et al. [129]) of the piezoelectric material PIC
151 has been discretised by applying linear triangular finite elements for the grains and linear in-
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Figure 8.23: Cycle-based fatigue: upper nodal forces over cycles

terface elements for the grain boundaries. Different fatigue-loading-motivated boundary conditions
have been applied to the discretisation. In this context, a first attempt has been made to model such
a structure, emphasising the grain boundary behaviour (Utzinger et al. [183, 182]). For the grains,
or rather the bulk material, a linearly coupled material lawhas been implemented. Concerning the
grain boundaries, discretised by interface or, respectively, cohesive-type elements, two different mate-
rial models have been considered: the first appropriate by capturing low-cycle-fatigue and the second
material model being able to reflect high-cycle-fatigue behaviour. For the bulk, PIC 151-like material
parameters have been incorporated. In view of the interface, an effective parameterδ has been incor-
porated into the fatigue-motivated damage evolution, being academic in nature due to missing reliable
information on the exact physical processes in grain boundaries under fatigue loading. Electrical and
mechanical effects have been decoupled concerning the linear response. The first interfacial material
model, reflecting low-cycle-fatigue behaviour, is of an exponential format. It has been entitled “time-
based fatigue formulation” and explicitly tracks the loading history of single cycles. In contrast, a
second interfacial material model, also being of an exponential though of different format, captures
high-cycle-fatigue behaviour by directly incorporating acertain number of cycles. It has been entitled
as “cycle-based fatigue formulation”. For an accurate description of those interfacial fatigue laws, see
section 3.8. The related damage parameterd is constrained by the driving force in a thermodynamical
consistent framework. For the chosen academic examples it turned out that the proposed assumptions
of a fatigue-related decrease of interfacial mechanical tractions and varying permittivities are reflected
in the results. So far, the literature does not clearly reveal experimental results concerning the per-
mittivity behaviour under fatigue-related loading boundary conditions. Anyhow, literature reveals that

148



8.5 Discussion

grain boundary permittivity is generally lower than the permittivity of the grains.
In view of the fact that only permittivities and stiffnessesare accounted for in this work, it is clear

that realistic grain boundaries must inhere further and more complex phenomena under fatigue load-
ing than those incorporated here. In this context, it is necessary to prospect for new experimental
results and to improve knowledge concerning the fatigue-related grain boundary behaviour. As this
is just a first step towards an integral modelling of a fatigued piezoelectric mesostructure, nonlinear
effects as phase transformations have to be included in the bulk constitutive response in the future to
account for ferroelectric effects. To model polarisation switching of domain structures, e.g., internal
variable methods can be applied (e.g., Lynch and McMeeking [101], Lynch [100], Arockiarajan et
al. [4], Arockiarajan and Menzel [3] as well as Menzel et al. [110]). Finally, when the mesome-
chanical material models are accurate enough, an incorporation into multiscale computations could be
accomplished.
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The goals of the present work have been structured in three parts.
According to the introduction, the first part was concerned with the modelling, the numerics and the

simulation of welded lightweight structures of metal/fibre-reinforced polymer composites. In chapter
2, material laws for the substrates have been discussed including isotropic, transversal isotropic and
orthotropic elasticity as well as linear elastoplasticitywith linear isotropic hardening. Concerning the
welding interface, elastoplasticity with Lemaitre-type damage as well as a high-cycle-fatigue related
traction-separation-law have been introduced in chapter 3in order to be incorporated into current sim-
ulations. Furthermore, a low-cycle-fatigue related traction-separation-law as well as viscoelasticity
with Lemaitre-type damage and viscoplasticity with Lemaitre-type damage have been discussed in
view of future applications. For all the mentioned cohesivelaws, prototype examples have been ac-
complished, showing the functionality of the models. Moreover, a penalty method has been introduced
in order to avoid an unphysical self-penetration of the interface. Adequate finite element procedures
have been discussed in chapter 6. For both the interface and the bulk, element stiffness matrices and
residua have been deduced. After an excursion with respect to manufacturing and measuring methods,
chapter 7 deals with the comparison of experimental data andnumerical simulations which are ac-
complished by means of the above models in the context of a nonlinear FEM-programme. Concerning
thermal impact welded tensile specimens, a very good agreement of local and integral data sets was
demonstrated. For ultrasonic metal welded tensile specimens a comparison based on integral data has
successfully been accomplished. Furthermore, local and integral data was compared with simulations
for a preliminary tensile fatigue test with a ultrasonic metal welded tensile specimen. The simulations
partially corresponded to the experimental data, but further statistically confirmed experiments have
to be conducted.

The goal of the second part has been the academic simulation of piezoelectric mesostructures un-
der fatigue-motivated boundary conditions. For the grain bulk, a linear ferroelectric material law has
been introduced in chapter 2. In chapter 3, low- and high-cycle-fatigue motivated ferroelectric cohe-
sive laws have been discussed. These, together with the discretisation of the coupled weak forms and
the deduction of element stiffness matrices and residua in chapter 6, have been incorporated in the
simulations presented in chapter 8. A piezoelectric mesostructure obtained by scanning electron mi-
croscopy has there been subjected to mechanical and electrical low- and high-cycle fatigue boundary
conditions. The results have been discussed, revealing a sound impression concerning the computed
boundary value problems. Additionally, a literature survey concerning the issues of piezoelectric fa-
tigue, grain boundaries and piezoelectric modelling has been conducted in the beginning of chapter
8.

The goals of the third part concerned investigations on surface-wave type bifurcation modes in a
two-dimensional non-coherent (cohesive) interface, connecting a semi-infinite three-dimensional lin-
ear bulk with a rigid substrate. For the uncoupled problem this has been discussed in chapter 4.
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Therein, the bulk material has been chosen to be linear isotropic elastic, while for the interface, inelas-
tic behaviour in an incrementally linear context has been assumed. For the case of positive interfacial
material constants no bifurcations occurred, while for negative constants, a maximum of three bifur-
cation possibilities is present. For the coupled problem asdiscussed in chapter 5, a linear ferroelectric
bulk material has been assumed. For simplification, and in addition to the transversal isotropic elas-
tic part of the bulk material behaviour, the latter has been complemented by isotropic elasticity. The
interface constitutive behaviour has been chosen to be incrementally linear ferroelectric. In contrast
to chapter 4, for all material parameters, numerical valueshave been inserted. Generally, for the pa-
rameters chosen, a maximal number of four surface wave-typebifurcation modes is possible. Though,
if the interfacial stiffness parameters are chosen positive, no such bifurcations occur. Consequently,
for both the uncoupled and the coupled problem, the number ofsurface-wave type bifurcation modes
is finite, with respect to the incorporated simplifications and chosen parameters. Accordingly, related
numerical solutions of the boundary value problem are not considered to be mesh-dependent.

The execution of the tasks related to this work is additionally documented in several refereed journal
publications (Utzinger et al. [180], Utzinger et al. [181],and Utzinger et al. [183]).

Outlook

During the thorough elaborations in view of the goals of thiswork, new questions and inspirations for
future works emerged. These are subsequently listed.

• For a more accurate simulation of the metallic substrates, geometrically nonlinear formulations
are supposable. Especially multiplicative elastoplasticity is of interest (e.g. Schröder et al.
[156], Menzel et al. [111] and Steinmann et al. [171]).

• In order to improve simulation parameters, advanced elaborations on the identification of mate-
rial parameters are contemplated (Mahnken and Stein [102, 103]).

• For further verification of the applied cohesive laws, also mode-I and mode-III tests as well as
mixed-mode tests are imperative.

• The constitutive response of some of the proposed interfacial models is decoupled with respect
to projections ontos, t andn. Otherwise, e.g. in the case of elastoplasticity with Lemaitre-type
damage, coupled formulations would entail local iterations in order to solve for the Lagrange
multipliers from the set of nonlinear equations. From the algorithmic point of view, then it would
not be significantly more expensive to additionally accountfor nonlinear hardening effects.

• The viscous models introduced in chapter 3 could not yet be verified by comparisons with ex-
periments. Comparative creep and relaxation tests would therefore be of interest.

• In view of the preliminary fatigue tests and the related simulations, statistically proven experi-
mental data is required. Then, further simulations have to be conducted.

• In the scope of the DFG Research Unit 524, the manufacturing of component parts including
the mentioned welding methods is planned. In this respect, geometrically nonlinear cohesive
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laws have to be considered to simulate the large deformations of semi-finished parts (see e.g.
Steinmann and Betsch [169], Larsson and Jansson [88]).

• Taking a complete interfacial decohesion into account, fragmentation methods are supposed, see
e.g. Pandolfi and Ortiz [138].

• Another interesting point concerning the DFG Research Unit524 is the thermal coupling of
both the bulk and the interface (Steinmann and Häsner [170], Krol [85], Miehe [117], Ibrahim-
begovic et al. [70]). With this in hand, heat conduction processes and residual stresses could be
simulated.

• The welding zone could also be regarded on the micro scale. Then, microscopic material be-
haviour could be projected onto the meso scale by means of multiscale methods.

• In order to model polarisation switching of domain structures, for example, internal variable
methods can be applied (e.g., Lynch and McMeeking [101], Lynch [100], Arockiarajan et al.
[4], Arockiarajan and Menzel [3], Menzel et al. [110]).

• In the context of ferroelectric fatigue, it is a matter of ongoing research to implement cohe-
sive laws possibly substantially different to the ones presented in this work. In this regard, a
capacitor-like behaviour of the interface is investigated. Additionally, fracture energy related
models are possible.

• When the mesomechanical material models which are applied to the mesostructure are accurate
enough, an incorporation into multiscale computations canbe considered.

• The evolution of the interfacial permittivity could also bedirectly motivated from the dissipation
inequality.

• The discretisation methods concerning polycrystalline mesostructures could also be applied to
other materials, e.g. metals, maybe also in the context of multiscale applications.

• Concerning future research on the issue of bifurcation, theconnection of two deformable bodies
by a non-coherent interface is of interest.

• In view of the uncoupled problem, inelastic and also furtheranisotropic bulk responses could be
investigated as well.

• Concerning the coupled problem, different wave vectors with respect to the incremental dis-
placement and electrical potential ansatz are supposable.

• Moreover, the comparison of the bifurcation-related theoretical elaborations as given in chapters
4 and 5 with numerical, for instance finite element based simulations is both promising and
relevant in view of engineering applications.
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A Solving 2nd Order Differential
Equations

The general and complete solution of somep-dimensional ordinary differential equation system of
first order of the formy′(η) = M · y(η) is defined as

y(η) = Y (η) · c with Y (η) = [y1(η), y2(η), ...yp(η)] and c ∈ Cp (A.1)

where fundamental solutionsyi(η), constituting the fundamental matrixY (η), are constructed by
means of a base system of eigenvectorsv, and, if needed, generalised eigenvectorsv∗. Generalised
eigenvectorsv∗ of level l related to an eigenvalueυ of M can be computed by solving

[M − υIn]l · v∗ = 0 (A.2)

with In being an × n second-order identity-tensor. Fundamental solutions based on eigenvectorsv
related to the eigenvalueυ of M are constructed as

y(η) = exp(υη)v (A.3)

while fundamental solutions based on generalised eigenvectorsv∗ of level l related to the eigenvalue
υ of M are constructed as

y(η) = exp(υη)
[

v∗ + η[M − υIn] · v∗ + ... +
ηl−1

[l − 1]!
[M − υIn]l−1 · v∗

]

(A.4)

This strategy can be found in, e.g., the book of Meyberg and Vachenauer [116] and is required for the
efforts undertaken.
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B Examples for the Bifurcation-Related
Interfacial Constitutive Operator

The incremental interfacial constitutive operatorC if can be motivated by the loading branches of
elastic and inelastic traction-separation-laws. It relates the incremental quantities or rates of tractions
and displacement jumps by

δτ = C if · [[δu]] (B.1)

For elastoplasticity with damage, the interfacial tangentmodulus has been computed in section 3.4,
reading as

Cif,epd =
∑

i

[

[1 − di]ci

[

1 −
1

1 + Hp
i /ci

]

− d′
i

[

τ̄ 2
i

[

1 −
1

1 + Hp
i /ci

]

−
R̄i |τ̄i|

1 + Hp
i /ci

]]

︸ ︷︷ ︸

ρ
epd
i

i ⊗ i (B.2)

see section 3.4 for further explanation. If damage evolution is not active (di = 0, ḋi = 0), this reduces
to

C if,ep =
∑

i

ci

[

1 −
1

1 + Hp
i /ci

]

︸ ︷︷ ︸

ρ
ep
i

i ⊗ i (B.3)

Otherwise, if damage is active and plasticity is switched off (Hp
i → ∞, αp

i = 0), the interfacial tangent
modulus is given by

C if,ed =
∑

i

[

[1 − di]ci − d′
i τ̄

2
i

]

︸ ︷︷ ︸

ρed
i

i ⊗ i (B.4)

Accordingly, if all inelastic effects are excluded, the elastic tangent is rendered as

Cif,el =
∑

i

ci i ⊗ i (B.5)

Please note that for active damage, the parametersρed
s , ρed

t , andρed
n depend on the deformation history.

Recapitulating, the interfacial material parametersρi depend on the specific interfacial material law:

ρi =







ci elasticity
ρep

i elastoplasticity
ρed

i elasticity with damage
ρepd

i elastoplasticity with damage

(B.6)
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C Linear Homogeneous Equation
System Matrix B, Uncoupled Problem

Here, the entries ofB are given as

B11 = −2µk − [ρs cos2 θ + ρt sin
2 θ] (C.1)

B12 =
2µ2k

µ + λ
+

2µ

µ + λ
[ρs cos2 θ + ρt sin

2 θ] (C.2)

B13 = −[ρs − ρt] cos θ sin θ (C.3)

B21 = −[ρs − ρt] cos θ sin θ (C.4)

B22 =
2µ

µ + λ
[ρs − ρt] cos θ sin θ (C.5)

B23 = −µk − [ρt cos2 θ + ρs sin2 θ] (C.6)

B31 = −[2µk + ρn] (C.7)

B32 = −
1

µ + λ
[λρn + µ[2kλ + ρn]] (C.8)

B33 = 0 (C.9)
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D Eigenvectors of the Ferroelectric
System Matrix A

For some mechanically isotropic material, the eigenvectors are given as

v1 =

















0

−1/k

0

0

0

1

0

0

















, v2 =

















0

1/k

0

0

0

1

0

0

















, v3 =

















−iΩ1/k

0

Ω2/k

−Ω3/k

iΩ4

0

−Ω5

1

















, v4 =

















−iΩ1/k

0

−Ω2/k

Ω3/k

−iΩ4

0

−Ω5

1

















,

v5 =

















iΩ6/k

0

−Ω7/k

−Ω8/k

−iΩ9

0

Ω10

1

















, v6 =

















iΩ6/k

0

Ω7/k

Ω8/k

iΩ9

0

Ω10

1

















, v7 =

















iΩ11/k

0

−Ω12/k

−Ω13/k

−iΩ14

0

Ω15

1

















, v8 =

















iΩ11/k

0

Ω12/k

Ω13/k

iΩ14

0

Ω15

1

















(D.1)

where

Ω1 = 0.8300, Ω2 = 1.1568, Ω3 = 1.0967, Ω4 = 0.7568, Ω5 = 1.0547,

Ω6 = 7.8819, Ω7 = 7.9757, Ω8 = 1.0245, Ω9 = 7.6934, Ω10 = 7.7850,

Ω11 = 4.1545, Ω12 = 3.5782, Ω13 = 0.9367, Ω14 = 4.4353, Ω15 = 3.8200

(D.2)
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D Eigenvectors of the Ferroelectric System Matrix A

Otherwise, if the bulk inheres fully transversal isotropy,eigenvectors read as

v1 =

















0

Ω1/k

0

0

0

1

0

0

















, v2 =

















0

−Ω1/k

0

0

0

1

0

0

















, v3 =

















iΩ2/k

0

Ω3/k

Ω4/k

iΩ5

0

Ω6

1

















, v4 =

















iΩ2/k

0

−Ω3/k

−Ω4/k

−iΩ5

0

Ω6

1

















,

v5 =

















Ω7/k

0

Ω8/k

Ω9/k

Ω10

0

Ω11

1

















, v6 =

















Ω7/k

0

−Ω8/k

−Ω9/k

−Ω10

0

Ω11

1

















, v7 =

















Ω12/k

0

Ω13/k

Ω14/k

Ω15

0

Ω16

1

















, v8 =

















Ω12/k

0

−Ω13/k

−Ω14/k

−Ω15

0

Ω16

1

















(D.3)

with

Ω1 = −0.9394, Ω2 = 3.0904, Ω3 = −2.2530, Ω4 = −0.8261, Ω5 = −3.7409,

Ω6 = 2.7273, Ω7 = −1.2209 + i0.2551, Ω8 = −0.0709 − i1.4872,

Ω9 = −1.1078 − i0.0152, Ω10 = 1.0986 − i0.2454, Ω11 = 0.0824 + i1.3413,

Ω12 = 1.2209 + i0.2551, Ω13 = −0.0709 + i1.4872, Ω14 = −1.1078 + i0.0152,

Ω15 = −1.0986 − i0.2454, Ω16 = 0.0824 − i1.3413

(D.4)
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E Linear Homogeneous Equation
System Matrix B, Coupled Problem

For mechanical isotropy, the entries ofB are given as

B11 = [µs − µt] cos θ sin θ/k (E.1)

B12 = −i [µν3Ω1 − µkΩ2 + e15kΩ3 − Ω1[µs cos2 θ + µt sin
2 θ]]/k (E.2)

B13 = −i [−µν5Ω6 + µkΩ7 + e15kΩ8 + Ω6[µs cos2 θ + µt sin
2 θ]]/k (E.3)

B14 = −i [−µν7Ω11 + µkΩ12 + e15kΩ13 + Ω11[µs cos2 θ + µt sin
2 θ]]/k (E.4)

B21 = [µs sin2 θ + µt cos2 θ − µν1]/k (E.5)

B22 = i [µs − µt]Ω1 sin θ cos θ/k (E.6)

B23 = −i [µs − µt]Ω6 sin θ cos θ/k (E.7)

B24 = −i [µs − µt]Ω11 sin θ cos θ/k (E.8)

B31 = 0 (E.9)

B32 = λΩ1 + [2µν3Ω2 + λν3Ω2 − µnΩ2 + eifΩ3 − e33ν3Ω3]/k (E.10)

B33 = −[kλΩ6 + 2µν5Ω7 + λν5Ω7 − µnΩ7 − eifΩ8 + e33ν5Ω8]/k (E.11)

B34 = −[kλΩ11 + 2µν7Ω12 + λν7Ω12 − µnΩ12 − eifΩ13 + e33ν7Ω13]/k (E.12)

B41 = 0 (E.13)

B42 = e31Ω1 + [−eifΩ2 + e33ν3Ω2 − ǫifΩ3 + ǫ33ν3Ω3]/k (E.14)

B43 = −[e31kΩ6 − eifΩ7 + e33ν5Ω7 + ǫifΩ8 − ǫ33ν5Ω8]/k (E.15)

B44 = −[e31kΩ11 − eifΩ12 + e33ν7Ω12 + ǫifΩ13 − ǫ33ν7Ω13]/k (E.16)
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E Linear Homogeneous Equation System Matrix B, Coupled Problem

Otherwise, if the bulk inheres fully transversal isotropy,the entries ofB read as

B11 = −[µs − µt]Ω1 cos θ sin θ/k (E.17)

B12 = i [ν3µ‖Ω2 + k[µ‖Ω3 + e15Ω4] − µsΩ2 cos2 θ − µtΩ2 sin2 θ]/k (E.18)

B13 = [ν5µ‖Ω7 + ik[µ‖Ω8 + e15Ω9] − µsΩ7 cos2 θ − µtΩ7 sin2 θ]/k (E.19)

B14 = [ν7µ‖Ω12 + ik[µ‖Ω13 + e15Ω14] − µsΩ12 cos2 θ − µtΩ12 sin2 θ]/k (E.20)

B21 = [−µtΩ1 cos2 θ − µsΩ1 sin2 θ + Ω1ν1µ‖]/k (E.21)

B22 = −i[µs − µt]Ω2 cos θ sin θ/k (E.22)

B23 = −[µs − µt]Ω7 cos θ sin θ/k (E.23)

B24 = −[µs − µt]Ω12 cos θ sin θ/k (E.24)

B31 = 0 (E.25)

B32 = −[α + λ]Ω2 + [2α + β + λ + 4µ‖ − 2µ⊥]ν3Ω3/k (E.26)

− [µnΩ3 + eifΩ4]/k + e33ν3Ω4/k (E.27)

B33 = i[α + λ]Ω7 + [2α + β + λ + 4µ‖ − 2µ⊥]ν5Ω8/k (E.28)

− [µnΩ8 + eifΩ9]/k + e33ν5Ω9/k (E.29)

B34 = i[α + λ]Ω12 + [2α + β + λ + 4µ‖ − 2µ⊥]ν7Ω13/k (E.30)

− [µnΩ13 + eifΩ14]/k + e33ν7Ω14/k (E.31)

B41 = 0 (E.32)

B42 = −[e31kΩ2 + eifΩ3 − e33ν3Ω3 − ǫifΩ4 + ǫ33ν3Ω4]/k (E.33)

B43 = [ie31kΩ7 − eifΩ8 + e33ν5Ω8 + ǫifΩ9 − ǫ33ν5Ω9]/k (E.34)

B44 = [ie31kΩ12 − eifΩ13 + e33ν7Ω13 + ǫifΩ14 − ǫ33ν7Ω14]/k (E.35)
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F Element Operator Matrices

In what follows, the element operator matrices as introduced in chapter 6 are given.

Bce8 = [N 1, N 2, N 3, N4, N 5, N 6, N 7, N 8], with N i =












Ni,x 0 0

0 Ni,y 0

0 0 Ni,z

Ni,y Ni,x 0

0 Ni,z Ni,y

Ni,z 0 Ni,x












(F.1)

Bce4 = [N 1, N 2, N 3, N4], with N i =





Ni,x 0

0 Ni,y

Ni,y Ni,x



 (F.2)

Bce3 = [N 1, N 2, N 3], with N i =





Ni,x 0

0 Ni,y

Ni,y Ni,x



 (F.3)

Bie4 = [−N 1,−N 2,−N 3,−N 4, N 1, N 2, N 3, N 4], with N i =





Ni 0 0

0 Ni 0

0 0 Ni



 (F.4)

Bie2 = [−N 1,−N 2, N 2, N1], with N i =

[
Ni 0

0 Ni

]

(F.5)
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F Element Operator Matrices

Ace4 = [N 1, N 2, N 3, N 4], with N i =

[
Ni,x

Ni,y

]

(F.6)

Ace3 = [N 1, N 2, N 3], with N i =

[
Ni,x

Ni,y

]

(F.7)

aie2 = [−N1,−N2, N2, N1] (F.8)
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G Nomenclature

Let a Cartesian base system resident in an Euclidian space beintroduced as{e1, e2, e3}, and further-
more, it holds Einstein’s summation convention whileδij denotes the Kronecker Delta. In this work,
scalars or zeroth order quantities are denoted by non-bold symbols as e.g.,a, α, or A. Furthermore,
vectors or, respectively, first order quantities are indicated by small bold symbolsa = aiei. Second
order tensors are given as capital bold symbolsA = Aijei ⊗ ej with exception ofε, σ ande, being
second order tensors, andE andD, being vectors, due to common notation. Third order tensorsare
specified in the Schwabach style in small letters asa = [a]kijek⊗ei⊗ej while fourth order tensors are
denoted by blackboard-style bold symbolsA = [A]ijklei⊗ej ⊗ek⊗el. First, some related calculation
rules are introduced as

contraction c = a · b c = aibi

c = A · b ci = Aijbj

C = A · B Cij = AikBkj

c = A · b cijk = [A]ijklbl

double contraction c = A : B c = AijBij

C = A : B Cij = [A]ijklBkl

dyadic product C = a ⊗ b Cij = aibj

c = A ⊗ b [c]ijk = Aijbk

C = A ⊗ B [C]ijkl = AijBkl

transpose At = Aijej ⊗ ei = Ajiei ⊗ ej

a
t = [a]kijei ⊗ ej ⊗ ek = [a]ijkek ⊗ ei ⊗ ej
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G Nomenclature

In the following, identity tensors are defined.

I = δij ei ⊗ ej

I ⊗ I = δijδkl ei ⊗ ej ⊗ ek ⊗ el

I
sym =

1

2
[δikδjl + δilδjk] ei ⊗ ej ⊗ ek ⊗ el

Iskw =
1

2
[δikδjl − δilδjk] ei ⊗ ej ⊗ ek ⊗ el

Isph =
1

n
I ⊗ I =

1

n
δijδkl ei ⊗ ej ⊗ ek ⊗ el

Idev = Isym − Isph

With • being some relevant quantity, brackets[•] denote mathematical groupings, intervals and the
so-called index notation, parentheses(•) denote functional dependencies and curly brackets{•} are
used in the context of sets and to indicate some index notation. Double brackets[[•]] denote a jump of
some relevant argument, while the so-called Macaulay-brackets are defined as

Macaulay-brackets 〈•〉 =

{
• if • > 0

0 if • ≤ 0

Furthermore, some frequently used indices and notation is listed below.

•−1 inverse
•dev deviatoric part
•h approximated quantity
•ijkl tensorial indices
•n, •(n) point of timen < n + 1

•n+1, •(n+1) point of timen + 1 > n

•N quantity afterN cycles
•N+∆N quantity afterN + ∆N cycles
•t quantity at timet
•t+∆t quantity at timet + ∆t

•p prescribed quantity
•sph spherical part
•sym symmetric part
•t transposed
•trial trial quantity
•V Voigt notation

•̇ derivation with respect to time
∆• finite increment with respect to time
δ• increment with respect to time
•̂ test quantity

168



G Nomenclature

The symbols being used in this work are given below, sorted byzeroth, first, second, third and fourth
order quantities, and miscellaneous quantities.

Zeroth Order Quantities

a0, a1, a2 complex ansatz constants
C material constant, cycle-based fatigue
c1, c2, c3, c4, c5, c6, c7, c8 complex ansatz constants
cI shortcut, Prandtl-Reuss Tensor
cII shortcut, Prandtl-Reuss Tensor
cs, ct, cn interfacial stiffness parameters
c∗s, c

∗
t , c

∗
n interfacial elastic stiffnesses

cm
s , cm

t , cm
n interfacial elastic stiffnesses, damper-serial spring⇒ viscoelasticity

c∞s , c∞t , c∞n interfacial elastic stiffnesses, parallel spring⇒ viscoelasticity
ccbf
ΦΦ electrical-electrical component ofC

if,fer,cbf
alg

ctbf
ΦΦ electrical-electrical component ofC

if,fer,tbf
alg

d damage parameter, synchronous conc. the interf. orthon. base system
dk damage parameter during cyclek

dp damage predictor value⇒ cycle-based fatigue
ds, dt, dn damage parameters, decoupled conc. the interf. orthon. base system
D dissipation power
Dloc local part of dissipation power
Dred reduced dissipation power
E electric field strength over the interface
f damage loading function, cycle-based fatigue
g shortcut
G virtual work of the uncoupled problem
Gu virtual work resulting from the balance of linear momentum
GΦ virtual work resulting from the Gaussian law
Gce,h virtual work of the uncoupled problem for one continuum element
Gie,h virtual work of the uncoupled problem for one interface element
Gce,h

u virtual work res. from the balance of lin. mom. for one cont. element
Gie,h

u virtual work res. from the balance of lin. mom. for one interface element
Gce,h

Φ virtual work resulting from the Gaussian law for one continuum element
Gie,h

Φ virtual work resulting from the Gaussian law for one interface element
∆Gce,h linearisation ofGce,h

∆Gie,h linearisation ofGie,h

∆Gce,h
u linearisation ofGce,h

u
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G Nomenclature

∆Gie,h
u linearisation ofGie,h

u

∆Gce,h
Φ linearisation ofGce,h

Φ

∆Gie,h
Φ linearisation ofGie,h

Φ

h evolution function, cycle-based fatigue
H electric enthalpy function
H1 electric enthalpy function in mechanical basic invariants
H2 electric enthalpy function in electric basic invariants
H3 electric enthalpy function in coupled basic invariants
Hp plastic hardening modulus
Hp

s , H
p
t , H

p
n plastic hardening moduli of the interface

Hvp
s , Hvp

t , Hvp
n viscoplastic hardening moduli of the interface

Ȟ penalty part of the electric enthalpy function
H∗ penalty-extended electric enthalpy function
i imaginary unit
I• basic invariants, elasticity
I∗
• principal invariants, elasticity

I if
s , I if

t , I if
n coefficients, interfacial elasticity

J if coefficients, interfacial ferroelectricity
J• electric basic invariants, ferroelectricity
js, jt, jn intensities of damage evolution
k real part of the first cartesian coefficient of the wave vector/wave number
k1, k2, k3 some cartesian coefficient of the wave vector
kI , kII , kIII , kIV wave numbers (roots ofdet(B))
ǩj real part of some cartesian coefficient of the wave vector
k∗

j imaginary part of some cartesian coefficient of the wave vector
kie

ΦΦ electrical-electrical part ofK ie

Kif coefficients, interfacial ferroelectricity
K• coupled basic invariants, ferroelectricity
ls, lt, ln interfacial inherent lengths
lǫ interfacial inherent length
mΦ amplitude of the incremental electrical potential
N cycle number, cycle-based fatigue
NN ansatz function
∆N cycle increment, cycle-based fatigue
q penalty-stiffness parameter
q0ΦΦ electrical-electrical part ofQ0

q1ΦΦ electrical-electrical part ofQ1

q2ΦΦ electrical-electrical part ofQ2

qΦΦ electrical-electrical part of the complex acoustic-type tensor
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G Nomenclature

R internal stress = hardening stress
Rs, Rt, Rn nominal internal tractions = nominal hardening tractions
R̄s, R̄t, R̄n effective internal tractions = effective hardening tractions
R̄s,trial, R̄t,trial, R̄n,trial effective internal tractions = effective hardening tractions, trial values
Ts, Tt, Tn relaxation times
∆t = tn+1 − tn time increment
tn < tn+1, point of time
tn+1 > tn, point of time
w Wronski-determinant
wΦ electrical potential decay function
W , Wmech strain/displacement jump energy function
W ∗

elec complementary electric field energy function
W,Wmech stress/traction power
W∗

elec complementary dielectric displacement power
Y driving force, ferroelectric interfacial fatigue
Y0 yield stress
Ys(0), Yt(0), Yn(0) interfacial yield tractions
Z antiderivative of the cycle-based fatigue evolution function
α,α1,α2 elastic material constants
αp plastic parameter
αp

s , α
p
t , α

p
n plastic parameters of the interface

αvp
s , αvp

t , αvp
n viscoplastic parameters of the interface

α̌ time-based fatigue material parameter
β,β1,β2,β3 elastic material constants
βs, βt, βn fatigue material parameters: displacement jump weightingfactors
βΦ fatigue material parameter: electric potential jump weighting factor
β̌ cycle-based fatigue material parameter
γ̌ cycle-based fatigue material parameter
γ̇ Lagrange multiplier, elastoplastic bulk
γ̇p

s , γ̇
p
t , γ̇

p
n Lagrange multipliers, elastoplastic interface

γ̇vp
s , γ̇vp

t , γ̇vp
n penalty parameters, viscoplastic interface

γ1 ferroelectric material constant
γ2 ferroelectric material constant
δ effective quantity
δ̃ history-dependent effective quantity
δa effective quantity amplitude
δk effective quantity during cyclek
δa,k effective quantity amplitude for cyclek
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ǫif Ferroelectric Interfacial Electrical-Electrical Tangent
ǫ0 permittivity of the vacuum
ǫr relative permittivity
ǫinit
r relative permittivity at the beginning of the fatigue history

ǫend
r relative permittivity at the end of the fatigue history

ε• eigenvalues ofε
ζ shortcut fore1 · x̃

ζ1 ferroelectric material constant
ζ2 ferroelectric material constant
ζ3 ferroelectric material constant
ζ tbf interfacial time-based fatigue evolution switch
ζcbf interfacial cycle-based fatigue evolution switch
ζep
i interfacial plastic evolution switch

ζvp
i interfacial viscoplastic evolution switch

η shortcut fore3 · x̃

ηs, ηt, ηn viscosities
θ angle in the interfacial plane (spanned bys andt)
κ threshold, cycle-based fatigue
λ Lamé-parameter, elastic material constant
Λ dielectric displacement in the interface
ΛΓ− dielectric displacement atΓ−

ΛΓ+ dielectric displacement atΓ+

µ Lamé-parameter, elastic material constant
µ1 elastic material constant
µ2 elastic material constant
µs, µt, µn damage progression parameters
µs(0), µt(0), µn(0) damage thresholds
µ̄s, µ̄t, µ̄n damage driving forces
µ‖ elastic material constant
µ⊥ elastic material constant
ν eigenvalue/negative imag. part of the first cart. coeff. of the wave vector
ν0, ν1, ν2, ν3, ν4, ν5, ν6 eigenvalues
νI , νII multiple eigenvalues
ξ interpolation variable
ξ1, ξ2, ξ3 interpolation variables
ξ1N , ξ2N , ξ3N nodal coordinates
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ρed
s , ρed

t , ρed
n interfacial constitutive parameters, elasticity with damage

ρep
s , ρep

t , ρep
n interfacial constitutive parameters, elastoplasticity

ρepd
s , ρepd

t , ρepd
n interfacial constitutive parameters, elastoplasticity with damage

ρ∗
s, ρ

∗
t , ρ

∗
n interfacial constitutive quantities

ρs, ρt, ρn interfacial constitutive parameters
τ time variable
ϕ part of the yield functionΦp

Φ electrical potential
ΦΓ− electrical potential atΓ−

ΦΓ+ electrical potential atΓ+

Φ1, Φ2, ... combinations of material parameters
Φs, Φt, Φn expressing interfacial material parameters, elasticity
ΦEn expressing an interfacial material parameter, ferroelectricity
ΦN electric potential at element nodeN

Φ[[u]]En expressing an interfacial material parameter, ferroelectricity
Φp plastic yield function and potential, associative
Φp,⋆ plastic potential, non-associative
Φp

s , Φ
p
t , Φ

p
n interfacial plastic yield functions

Φp
s,trial, Φ

p
t,trial, Φ

p
n,trial interfacial plastic trial yield functions

Φvp
s , Φvp

t , Φvp
n interfacial viscoplastic yield functions

Φvp
s,trial, Φ

vp
t,trial, Φ

vp
n,trial interfacial viscoplastic trial yield functions

[[Φ]] electric potential jump over the interface
χ shortcut in the context of coupled bifurcation
Ψ free energy function
Ψel elastic part of the free energy function
Ψeld elastic-damaging part of the free energy function
Ψep elastoplastic part of the free energy function
Ψepd plastic-damaging part of the free energy function
Ψm damper-serial part of the free energy function⇒ viscoelasticity
Ψvpd viscoplastic-damaging part of the free energy function
Ψ̌ penalty part of the free energy function
Ψ∗ penalty-extended free energy function
Ψ∞ parallel part of the free energy function⇒ viscoelasticity
ω1, ω2, ω3, ω4 complex parameters
Ωcbf interfacial cycle-based fatigue loading switch
Ω1, Ω2, Ω3, ... auxiliary quantity in the context of coupled bifurcation
ℵ shortcut in the context of plasticity
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First Order Quantities

a vector of complex constants
aie2 element operator matrix for a linear two-noded interface element
c vector of complex constants
c

cbf
Φu electrical-mechanical component ofC

if,fer,cbf
alg

c
cbf
uΦ mechanical-electrical component ofC

if,fer,cbf
alg

c
tbf
Φu electrical-mechanical component ofC

if,fer,tbf
alg

c
tbf
uΦ mechanical-electrical component ofC

if,fer,tbf
alg

D dielectric displacement vector
e1, e2, e3 vectors of the three-dimensional cartesian base system
e1, e2, e3, e4, e5, e6 vectors of the six-dimensional cartesian base system
ei, ej, ek, el vectors of the cartesian base system
eif Ferroelectric Interfacial Electromechanical Tangent Vector
eif,∆ Ferroelectric Interfacial Auxiliary Tensor
E electric field vector
f ce continuum element residuum
f ce

u mechanical part of the continuum element residuum
f ce

Φ electrical part of the continuum element residuum
f ie interface element residuum
f ie

u mechanical part of the interface element residuum
f ie

Φ electrical part of the interface element residuum
g eigenvector
gI , gII eigenspaces
k complex wave vector
ǩ real part of the complex wave vector
k∗ imaginary part of the complex wave vector
kie

uΦ mechanical-electrical part ofK ie

kie
Φu electrical-mechanical part ofK ie

m amplitude vector
mu amplitude vector of the incremental displacements
mv overall amplitude vector, includingmu andmΦ

m0, m1, m2 directions of anisotropy
nD outward normal vector of∂BD

nσ outward normal vector of∂Bσ

nΓ− ≡ n outward normal vector ofB− at the interface
nΓ+ outward normal vector ofB+ at the interface
n normal vector in the interfacial orthonormal base system
ntrial interfacial trial direction
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q0uΦ mechanical-electrical part ofQ0

q1uΦ mechanical-electrical part ofQ1

q2uΦ mechanical-electrical part ofQ2

q0Φu electrical-mechanical part ofQ0

q1Φu electrical-mechanical part ofQ1

q2Φu electrical-mechanical part ofQ2

quΦ mechanical-electrical part of the complex acoustic-type tensor
qΦu electrical-mechanical part of the complex acoustic-type tensor
s tangential vector in the interfacial orthonormal base system
strial interfacial trial direction
t tangential vector in the interfacial orthonormal base system
ttrial interfacial trial direction
u displacement vector
uΓ− displacement vector atΓ−

uΓ+ displacement vector atΓ+

uN displacement vector at element nodeN

uN displacement vector containing alluN

∆uN linearisation increment ofuN

[[u]] displacement jump over the interface
[[u]]e elastic part of the displacement jump
[[u]]p plastic part of the displacement jump
[[u]]ve viscous (elastic) part of the displacement jump
[[u]]vp viscous (plastic) part of the displacement jump
v1, v2, v3, v4, v5, v6, v7, v8 eigenvectors
v∗

1, v
∗
2 generalised eigenvectors

w decay function, solution of the first order diff. equation system
wu decay function of displacements
wv overall decay function
x position vector to some point of interest
x0 position vector to the interfacial orthonormal system
x̃ argument of the wave-type ansatz
z solution of some first order differential equation system
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τ (nominal) traction vector
τ̄ effective traction vector
τm traction of damper-serial spring⇒ viscoelasticity
τΓ− outward traction atΓ−

τΓ+ outward traction atΓ+

τ̌ penalty part of traction
τ ∗ penalty-extended traction
τ∞ traction of parallel spring⇒ viscoelasticity
τ̄ trial effective trial tractions
τ̄ ex excess traction⇒ viscoplasticity
ΦN displacement vector containing allΦN

∆ΦN linearisation increment ofΦN
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Second Order Quantities

A system matrix of some first order differential equation system
Ace4 element operator matrix for a bilinear four-noded continuum element
Ace3 element operator matrix for a linear three-noded continuumelement
B system matrix of some homogeneous linear equation system
Bce8 element operator matrix for a trilinear eight-noded continuum element
Bce4 element operator matrix for a bilinear four-noded continuum element
Bce3 element operator matrix for a linear three-noded continuumelement
Bie4 element operator matrix for a bilinear four-noded interface element
Bie2 element operator matrix for a linear two-noded interface element
C Voigt-notated Continuum Tangent Stiffness Tensor
Cel Voigt-notated Elastic Continuum Tangent Stiffness Tensor
C if interfacial incremental constitutive operator/tangent stiffness tensor
C if

uu mechanical-mechanical interfacial tangent tensor
C

if
uΦ mechanical-electrical interfacial tangent tensor

C
if
Φu electrical-mechanical interfacial tangent tensor

C
if
ΦΦ electrical-electrical interfacial tangent tensor

C
if,cbf
alg algorithmic tangent modulus of the interfacial cycle-based fatigue formalism

C if,ed interfacial tangent modulus for elasticity with damage
C if,el Elastic Interfacial Tangent Stiffness Tensor
C if,el,m Elastic Interfacial Tangent Stiffness Tensor, damper-serial spring⇒ viscoelasticity
C if,el,∞ Elastic Interfacial Tangent Stiffness Tensor, parallel spring⇒ viscoelasticity
C if,ep interfacial tangent modulus for elastoplasticity
C if,epd interfacial tangent modulus for elastoplasticity with damage
C

if,epd
alg algorithmic tangent modulus of interfacial elastoplasticity with damage

C if,fer Linear Ferroelectric Interfacial Tangent Tensor
C if,fer,el mechanical-mechanical part of the Linear Ferroel. Interfacial Tangent Tensor
C

if,fer,tbf
alg algorithmic tangent modulus of the interf. ferroelectric time-based fatigue formalism

C
if,fer,cbf
alg algorithmic tangent modulus of the interf. ferroelectric cycle-based fatigue formalism

C
if,tbf
alg algorithmic tangent modulus of the interf. time-based fatigue formalism

C
if,ved
alg algorithmic tangent modulus of interf. viscoelasticity with damage

C
if,vpd
alg algorithmic tangent modulus of interf. viscoplasticity with damage

Cfer Voigt-notated Ferroelectric Continuum Tangent Tensor: mech. part, stiffness tensor
C iso Voigt-notated isotropic Elastic Continuum Tangent Stiffness Tensor
Cort Voigt-notated orthotropic Elastic Continuum Tangent Stiffness Tensor
Ccbf

uu mechanical-mechanical component ofC
if,fer,cbf
alg

Ctbf
uu mechanical-mechanical component ofC

if,fer,tbf
alg
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Ctra Voigt-notated transversal isotropic Elastic Continuum Tangent Stiffness Tensor
Cuu Voigt-notated mechanical-mechanical continuum tangent tensor
CuΦ Voigt-notated mechanical-electrical continuum tangent tensor
CΦu Voigt-notated electrical-mechanical continuum tangent tensor
CΦΦ Voigt-notated electrical-electrical continuum tangent tensor
Čalg penalty part of algorithmic tangent modulus
C∗

alg penalty-extended algorithmic tangent modulus
e Voigt-notated Ferroelectric Continuum Tangent Tensor: coupling part, perm. tensor
I second order identity tensor
In n × n second order identity tensor
Kce stiffness matrix of a continuum element
Kce

uu mechanical-mechanical part ofKce

Kce
uΦ mechanical-electrical part ofKce

Kce
Φu electrical-mechanical part ofKce

Kce
ΦΦ electrical-electrical part ofKce

Kie stiffness matrix of an interface element
Kie

uu mechanical-mechanical part ofK ie

M , M 1, M 2 structure tensors
N direction of plasticity
P = P (θe3) rotation tensor
Q complex acoustic-type tensor
Q∗ auxiliary tensor
Quu mechanical-mechanical part of the complex acoustic-type tensor
Qiso

uu mechanical-mechanical part of the complex acoustic-type tensor, isotropy
Qtra

uu mechanical-mechanical part of the complex acoustic-type tensor, transv. isotropy
Q0, Q1, Q2 complex acoustic-type tensors
Q0uu mechanical-mechanical part ofQ0

Q1uu mechanical-mechanical part ofQ1

Q2uu mechanical-mechanical part ofQ2

Q3 = Q2 acoustic tensor of the bulk
Z fundamental matrix
ǫ Ferroelectric Continuum Tangent Tensor: electric part, permittivity tensor
ε strain tensor
εe elastic part of the strain tensor
εp plastic part of the strain tensor
σ stress tensor
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Third Order Quantities

e Ferroelectric Continuum Tangent Tensor: coupling part, piezoelectric tensor
e
∗ ferroelectric auxiliary tensor
e
△ ferroelectric auxiliary tensor

Fourth Order Quantities

C incremental constitutive operator of the bulk
Cel Elastic Continuum Tangent Stiffness Tensor
C

ep Prandtl-Reuss Tensor
C

ep
alg algorithmic tangent modulus of bulk elastoplasticity

Cfer Ferroelectric Continuum Tangent Tensor: mechanical part,stiffness tensor
Ciso isotropic Elastic Continuum Tangent Stiffness Tensor
Cort orthotropic Elastic Continuum Tangent Stiffness Tensor
C

tra transversal isotropic Elastic Continuum Tangent Stiffness Tensor
M transversal isotropic auxiliary tensor
M1, M2 orthotropic auxiliary tensors
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Miscellaneous Quantities

B configuration of a body of interest
B− part ofB, complementing toB+

B+ part ofB, complementing toB−

Bce part ofB related to a continuum element
∂BD electrical Neumann boundary ofB
∂Bu mechanical Dirichlet boundary ofB
∂BΦ electrical Dirichlet boundary ofB
∂Bσ mechanical Neumann boundary ofB

C set of complex numbers
Cn n-dimensional complex vector space
const. some constant quantity
dA infinitesimal surface element
dS infinitesimal line element
dV infinitesimal volume element
dAce infinitesimal surface element of a continuum element
dVce infinitesimal volume element of a continuum element
dAie infinitesimal surface element of an interface element
dSie infinitesimal line element of an interface element
E closure of the elastic range
E if

s , E if
t , E if

n decoupled closures of the interfacial elastic ranges
iEm0

, iεEm0
sets of invariants⇒ ferroelectricity

i[[u]] set of coefficients⇒ interfacial elasticity
iEn, i[[u]]En sets of coefficients⇒ interfacial ferroelectricity
iε set of invariants⇒ isotropic elasticity
iεM0

set of invariants⇒ transversal isotropic elasticity
iεM1

, iεM2
sets of invariants⇒ orthotropic elasticity

Γ centre line of an interface
Γ− boundary ofB− towards the interface
Γ+ boundary ofB+ towards the interface
Γie part ofΓ related to an interface element
Rn n-dimensional real-valued vector space
S, S∗ thermodynamic forces
Sif

s ,Sif
t ,Sif

n interfacial thermodynamic forces
Sif,∗

s ,Sif,∗
t ,Sif,∗

n interfacial thermodynamic forces
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Kleben und Dichten, 42:31–34, 1998.

[88] R. Larsson and N. Jansson. Geometrically non-linear damage interface based on regularized
strong discontinuity.Int. J. Numer. Methods Engng., 54:473–497, 2002.

[89] J. Lemaitre. Coupled elasto-plasticity and damage. Constitutive equations.Comput. Methods
Appl. Mech. Engrg., 51:31–49, 1985.

[90] J. Lemaitre.A Course on Damage Mechanics. Springer, 1994.

[91] J. Lemaitre and J.-L. Chaboche.Mechanics of Solid Materials. Cambridge University Press,
1994.

[92] J. Lemaitre and A. Plumtree. Application of damage concepts to predict creep-fatigue failures.
ASME J. Eng. Mat. Tech., 101:284–292, 1979.

[93] S. Li, M.D. Thouless, A.M. Waas, J.A. Schroeder, and P.D. Zavattieri. Use of a cohesive-zone
model to analyze the fracture of a fiber-reinforced polymer-matrix composite.Compos. Sci.
Technol., 65:537–549, 2005.

[94] S. Li, M.D. Thouless, A.M. Waas, J.A. Schroeder, and P.D. Zavattieri. Use of mode-I cohe-
sive zone models to describe the fracture of an adhesively-bonded polymer-matrix composite.
Compos. Sci. Technol., 65:281–293, 2005.

186



Bibliography

[95] T. Liebe, A. Menzel, and P. Steinmann. Theory and numerics of a thermodynamically consistent
framework for geometrically non-linear gradient plasticity. Int. J. Engng. Sci., 41:1603–1629,
2003.

[96] H.R. Lofti and P.B. Shing. Embedded representation of fracture in concrete with mixed finite
elements.Int. J. Numer. Methods Engng., 38:1307–1325, 1995.

[97] R. Lohkämper, H. Neumann, and G. Arlt. Internal bias inacceptor-doped BaTiO3 ceramics:
Numerical evaluation of increase and decrease.J. Appl. Phys., 68:4220–4224, 1990.

[98] J. Lubliner. A maximum-dissipation principle in generalized plasticity.Acta Mech., 52:225–
237, 1984.

[99] D.C. Lupascu.Fatigue in Ferroelectric Ceramics and Related Issues. Springer, 2004.

[100] C.S. Lynch. On the development of multiaxial phenomenological constitutive laws for ferro-
electric ceramics.J. Intelligent Mat. Systems Struct., 9:555–563, 1998.

[101] C.S. Lynch and R.M. McMeeking. Finite strain ferroelectric constitutive laws.Ferroelectrics,
160:177–184, 1994.

[102] R. Mahnken and E. Stein. A unified approach for parameter identification of inelastic mate-
rial models in the frame of the finite element method.Comput. Methods Appl. Mech. Engrg.,
136:225–258, 1996.

[103] R. Mahnken and E. Stein. Parameter identification for finite deformation elasto-plasticity in
principal directions.Comput. Methods Appl. Mech. Engrg., 147:17–39, 1997.

[104] S.S. Manson and M.H. Hirschberg.Fatigue: An Interdisciplinary Approach. Syracuse Univer-
sity Press, 1964.

[105] J.E. Marsden and T.J.R. Hughes.Mathematical Foundations of Elasticity. Dover, 1994.

[106] G.A. Maugin.Continuum Mechanics of Electromagnetic Solids. North-Holland, 1988.

[107] G. Mehlhorn.Der Ingenieurbau, Band 4: Werkstoffe, Elastizitätstheorie. Ernst & Sohn, 1997.

[108] V. Mehling, Ch. Tsakmakis, and D. Gross. Phenomenological model for the macroscopical
material behavior of ferroelectric ceramics.J. Mech. Phys. Solids, 55:2106–2141, 2007.
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