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Abstract

The present thesis is concerned with the simulation of theitay behaviour of both hybrid lightweight
structures and piezoelectric mesostructures, with a apecius on solid interfaces on the meso scale.
Furthermore, an analytical review on bifurcation modesasitmuume-interface problems is included.
The inelastic interface behaviour is characterised byt@pdestic, viscous, damaging and fatigue-
motivated models. For related numerical computationsithitge Element Method is applied. In this
context, so-called interface elements play an importalet rdhe simulation results are reflected by
numerous examples which are partially correlated to erpental data.

Keywords: solid interfaces, bifurcation, ferroelectric fatigue pinigl lightweight structures
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1 Introduction

Progressive developments in technology demand matenidlsgineering structures with increasing
application potential and complexity. In this context,igahterfaces play a decisive role (Butt et
al. [30]). They inhere major influences on the physical prope of both natural and artificially
manufactured materials.

An example for a modern engineering structure is given bynaed hybrid joints of metals and
fibre-reinforced polymers, which are investigated in the@Research Unit 524 “Manufacturing,
Characterisation and Simulation of Welded Lightweighu8tures of Metal/Fibre-Reinforced Poly-
mer Composites”. By the combination of metals and polymeekgery large application field is deve-
loped, including the automotive and aerospace industriat&#® the incorporation of such lightweight
materials contributes to both the economy and the ecologyomtrast to other joining methods, weld-
ing has advantages concerning the surface pretreatmentamafacturing time.

Materials that have one or more properties that can be signify changed in a controlled fash-
ion by external stimuli, such as stress, temperature, or@spH, electric or magnetic fields, are
called “smart materials”. They constitute another field afdarn engineering materials with many
applications, e.g. in sensor or medical technology. Onara#bof smart materials is represented by
ferroelectric ceramics. Applied as sensors, actuatoroage segments, they are present in everyday
life.

The simulation of such modern engineering structures is@uodcally imperative. By the ap-
plication of adequate physical models and subsequent matital treatment, several benefits are
achieved. If a structure can successfully be simulatedntimeber of related experiments can be re-
duced and a prediction of, e.g., the mechanical behaviotwrbes possible. Furthermore, related
scientific fields as, for example, material science can phafih ideas and results generated in the
environment of modelling and simulation.

In view of numerical simulations, solid interfaces can Hated to the meso scale. In this respect,
they constitute a link between some macroscopic surrognehaterials, which are called the bulk
materials, and some microscopic matter which is residetitennterior of the interface domain. Ge-
nerally, compared to the surrounding bulk materials, solieffaces are discontinuities with respect to
their geometrical and physical properties. Concerninghraeics, jumps of stiffnesses or other model-
dependent parameters have to be considered. In order togete failure of such discontinuities, so-
calledtraction-separation-lawsr cohesive lawsan be applied, tracing back to the work of Dugdale
[48] and Barenblatt [7].

Concerning Finite Element Methods (FEM), diverse pos$ikd to account for solid interfaces are
known. A first possibility is given by an embedded discontyapproach. There, discontinuities
are inserted by means of additional degrees of freedom oelément level, see, e.g., Ortiz et al.
[131], Belytschko et al. [15], Klisinski et al. [80], Loftiral Shing [96], Simo and Armero [162]
and Simo et al. [163]. Though arbitrary orientation is peted, the discontinuities are incompatible
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over the element boundaries. Another method is known asEkehded Finite Element Method” —
(XFEM), introduced by Belytschko and Black [14] and Moéesket[121]. It is based on the partition
of unity concept (Melenk and Babuska [109]). Here, the apipnated displacement field is enriched
at the nodes by additional discontinuous functions. Tleegfdiscontinuities are compatible with
the element boundaries, see also Sukumar et al. [172], o#dical. [46] and Wells and Sluys
[186]. The XFEM is applicable to any finite element type butreddes have to be equipped with
the additional degrees of freedom. Some related method$isressed in, e.g., Hansbo and Hansbo
[61, 60], Mergheim and Steinmann [115], Mergheim [113] aneriyheim et al. [114].

In view of predefined failure zones, so-called interfacenalets can be applied (see, e.g., Beer [13],
Needleman [125], Gens et al. [58], Xu and Needleman [193m&d0 and Ortiz [31] and others).
Combined with the appropriate material modelling, integf@lements are systematically used for the
discretisation of zones which are expected to fail. Thougjhdpvery inflexible compared to the other
methods, they inhere decisive advantages concerningrti@isity and the numerical handling if the
failure zone is known a priori. For the example of a purely haetcal problem, the energetically
conjugated quantities are then given by the interfaciatitva vector as known from Cauchy’s Lemma
and Theorem, and the displacement jump over the interfadéelscope of this work, solid interfaces
are reviewed by means of welding zones of tensile specimethg@in boundaries of piezoelectric
ceramics. For both cases, interfaces are predefined zof@tuoé. Consequently, in view of related
numerical computations, interface elements are applied.

Goals of the Study and Modus Operandi

The goals of this study can be structured into three parts.

The first partis concerned with the modelling, the numenmcktae simulation of welded lightweight
structures of metal/fibre-reinforced polymer compositemaestigated in the context of the DFG Re-
search Unit 524. Based on local and integral experimental skts, tensile tests of the related hybrid
lightweight structures shall be simulated. This is achdeseder quasistatic and fatigue-type loading
boundary conditions on the meso scale by means of FEM. Icdm&ext, the welding zone is an a pri-
ori known zone of failure and is consequently discretisethigyabove mentioned interface elements,
whereas the bulk material is discretised by continuum efsndJnder the assumption that most of
the nonlinear constitutive behaviour stems from the iatf adequate material models for both the
bulk and the interface have to be developed. Related, anealifinite element programme has to
be applied to implement these models. As in this case, theepsoof interfacial delamination is of
quite brittle nature, only geometrically linear formutais are accounted for. Interfacial modelling
parameters are verified by data comparison of experimemtsyamerical simulation. Related, all
experimental data is provided by partner projects condectéhe DFG Research Unit 524.

The second part deals with the academic simulation of fatiqpiezoelectric mesostructures. Con-
cerning piezoelectric materials, fatigue is a very comnuaaling type. For this reason, the prediction
of the fatigue behaviour is a very important issue. Relagedranular piezoelectric mesostructure
is discretised by continuum elements for the grains and terfecce elements for the grain bound-
aries. The fatigue behaviour is completely assigned tortexfaces, while the grains are modelled
by a linear ferroelectric material law. In the future, noelar effects as switching can be added to
the grain bulk behaviour, such that the considered mesdramécs serves as a physical sound input
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for multiscale computations on the macro level. For nows salely focussed on the inelastic grain
boundary behaviour which shall be triggered by low- and tigtie fatigue boundary conditions.
Related results have to be discussed and evaluated.

The third part concerns investigations on surface-wave tyfurcation modes in a two-dimensio-
nal non-coherent (cohesive) interface, connecting a s&finite three-dimensional linear bulk with a
rigid substrate. This part serves as an additional activitly respect to the other goals of the study. If
an infinite number of bifurcation modes occurs for a certambination of interfacial and bulk-related
material constitutions, a numerical solution of the bougdalue problem would be considered to be
mesh-dependent. For the uncoupled problem, a linear elaslik and different inelastic interfaces
are considered. For the coupled problem, both the intedadethe bulk are assumed to inhere linear
ferroelectric behaviour.

The goals of the study are aspired by the subsequent modtencipe

Chapter 2 begins with a recapitulation of the mechanical and eleaitbhoundary value problem.
This is followed by a reiteration of all constitutive bulk ohelling aspects which are of relevance in
the scope of this work. Where necessary, algorithmic asfaetdiscussed.

Chapter 3 deals with the constitutive modelling and algorithmic agpef solid interfaces. This in-
cludes elastic, linear ferroelectric, plastic and Leneaiyipe-damaging behaviour as well as low- and
high-cycle-fatigue-related models for both coupled ancowpled problems. Additionally, viscoelas-
tic and viscoplastic cohesive laws coupled to Lemaitreetdamage are discussed as a preliminary
work in the context of the DFG Research Unit 524. Furthermerechanical and electrical interface
conditions are introduced in the beginning of the chapters tcomplementing the boundary value
problem as discussed in chapter 2. Finally, a penalty fasmails presented which prevents the inter-
face from some unphysical self-penetration.

Chapter 4 is concerned with the bifurcation analysis of the uncougleablem. First, an incre-
mental boundary value problem (IBVP) is formulated. Th#s¥aa stationary wave-type ansatz is
applied to the IBVP. The results are exploited with respedrt elastic bulk and inelastic interfacial
traction-separation-laws related to chapter 3. A subs@difircation analysis reveals a finite number
of bifurcation modes for all constitutive cases considered

Chapter 5deals with the bifurcation analysis for a coupled probletmereby the strategy of chapter
4 is adopted. As a result for a linear ferroelectric bulk amérface, no surface wave-type bifurcation
modes occur. However, if interfacial stiffnesses are chosgative, a finite number of bifurcations is
possible.

Chapter 6 includes the discretisation of the weak forms of the uncedipind the coupled problem
by finite elements. Furthermore, the linearisations of ikerdtised weak forms are briefly discussed.
An outline on the issue of interface elements is included.

Chapter 7 contains the simulation of welded lightweight structurémetal/fibre-reinforced poly-
mer composites. First, manufacturing and measuring msthedapplied in the context of the DFG
Research Unit 524 are introduced. This is followed by theg@né&ation of the simulation results con-
cerning quasistatic tensile tests. This includes the stian of thermal impact welded as well as
ultrasonic metal welded tensile specimens. For both matwiag methods, good qualitative and
guantitative agreements of experimental and numerical las been achieved. Both local and inte-
gral data sets have been compared. Subsequently, localtagdal data of preliminary tensile fatigue
tests on ultrasonic metal welded specimens are comparétitasions.
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Chapter 8 begins with a literature survey concerning the issues afqakectric fatigue, grain
boundaries and piezoelectric modelling. This is followgdsbme remarks with respect to the in-
terfacial modelling in the present elaboration. Subsetiyea discretisation of a rectangular PZT
mesostructure which is adopted from a micrograph is pregeserving as an implementation frame-
work for the interfacial fatigue models. Next, results aregented. Different low- and high-cycle-
fatigue motivated boundary conditions are applied comsigdoth mechanical and electrical cycling.
Finally, a detailed discussion deals with the accompligiesdlts.

Chapter 9 closes the work with conclusions and an outlook on possiile¢ activities.



Zusammenfassung

Die progressive technologische Entwicklung benoétigtévialien und Strukturen mit geeignetem Po-
tential und ausreichender Komplexitat. In diesem Zusanirarg spielen Festkorpergrenzschichten
eine entscheidende Rolle (Butt et al. [30]). Die physildien Eigenschaften von naturlichen und
kiuinstlich hergestellten Materialien werden von solchean@schichten in hohem Mal3e beeinflusst.

Ein Beispiel fur eine moderne Ingenieursstruktur stelighride Verbindungen von Metallen und
faserverstarkten Kunststoffen dar. Diese werden im Rahdex DFG-Forschergruppe 524 “Her-
stellung, Eigenschaftsanalyse und Simulation geschesilichtbaustrukturen aus Metall/Faser-
Kunststoff-Verbunden” betrachtet. Durch die Kombinatiwm Metallen und Polymeren werden sehr
breite Anwendungsfelder moglich, insbesondere in deoAubilindustrie und der Luft- und Raum-
fahrttechnik.Okonomische und 6kologische Aspekte spielen dabei eifiget@ende Rolle.

Ein weiteres Beispiel sind sogenannte intelligente Matem, welche mannigfaltige Anwendungs-
moglichkeiten, z.B. in der Sensor- und Medizintechnileten. Eine Untergruppe der intelligenten
Materialien stellen ferroelektrische Keramiken dar. AénSoren, Aktuatoren oder Speicherelemente
haben sie in den Alltag Einzug gehalten.

Die Simulation solcher Ingenieursstrukturen ist, Okorsmi gesehen, zwingend erforderlich. Die
Anwendung geeigneter physikalischer Modelle und derermemaatische Umsetzung ist in vielerlei
Hinsicht von Vorteil. So konnen durch Simulationen Expegnte reduziert werden, und Vorhersagen,
z.B. beziglich des mechanischen Verhaltens, werdeniomddbes Weiteren konnen verwandte wis-
senschaftliche Gebiete von Ideen und Resultaten profitigrelche im Umfeld von Modellierung und
Simulation generiert werden.

Bei numerischen Simulationen kdnnen Festkorpergrénasten auf eine Mesoskala bezogen wer-
den. Im diesem Sinne stellen Sie ein Bindeglied zwischenrasiopischem Gesamtverhalten und
dem mikroskopischen Inhalt der Grenzschicht selbst daglidaen mit den umgebenden Materialien
sind Festkorpergrenzschichten geometrische und pHiggika Diskontinuitaten. In der Mechanik
mussen deshalb Spriinge der Steifigkeiten oder andereelipezbgener Parameter berticksichtigt
werden. Um das Versagen solcher Diskontinuitaten zu bedsn, werden sogenanniteaktions-
Separations-Gesetopelerkohasive Gesetzagerwendet. Diese werden auf Dugdale [48] und Barenblatt
[7] zurckgefuhrt.

Im Rahmen der Finiten Elemente Methode (FEM) sind vers@medvioglichkeiten bekannt, um
Festkorpergrenzschichten mesomechanisch zu beritiggn. Eine Moglichkeit besteht in einem
eingebetteten Diskontinuitaten-Ansatz, wobei Diskaunt&ten durch zusatzliche Freiheitsgrade auf
der Elementebene darstellbar sind, siehe Ortiz et al. [1Bdlytschko et al. [15], Klisinski et al.
[80], Lofti und Shing [96], Simo und Armero [162], und Simoadt [163]. Beliebige Orientierungen
der Diskontinuitaten sind erlaubt, jedoch sind sie inkairigel beziglich der Elementgrenzen. Eine
weitere Methode ist als die Erweiterte Finite Elemente Mdh(XFEM) bekannt, welche von Be-
lytschko und Black [14] und Moés et al. [121] eingefuhrtrae. Dabei wird das approximierte
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Verschiebungsfeld an den Knoten durch zusatzliche diskoierliche Funktionen angereichert, so-
dass die Diskontinuitaten mit den Elementgrenzen korbphsind (Sukumar et al. [172], Dolbow
et al. [46], Wells und Sluys [186]). Die XFEM ist bei beliekig Elementtypen anwendbar, jedoch
mussen alle Knoten mit Zusatzfreiheitsgraden ausgestain. Damit verwandte Methoden sind z.B.
in Hansbo und Hansbo [61, 60], Mergheim und Steinmann [II&gheim [113], und Mergheim et
al. [114] zu finden.

Zur Diskretisierung vordefinierter Versagenszonen kodnsegenannte Grenzschichtelemente ver-
wendet werden (Beer [13], Needleman [125], Gens et al. [88]und Needleman [193], Camacho
und Ortiz [31], und andere). Verglichen mit den oben ervi@hrMethoden sind Grenzschichtele-
mente relativ unflexibel, allerdings sind sie von Vortemsichtlich der einfachen numerischen Im-
plementierung. In der vorliegenden Arbeit werden sowoldr@schichten geschweildter Hybridstruk-
turen als auch Korngrenzschichten piezoelektrischeridideen betrachtet. In beiden Fallen sind die
Grenzschichten vordefinierte Versagenszonen. Fur ngoteriBerechnungen werden deshalb Grenz-
schichtelemente verwendet.

Zielsetzung dieser Arbeit und Modus Operandi

Die Zielsetzung dieser Arbeit kann in drei Bereiche uniecgrt werden.

Der erste Bereich beschaftigt sich mit der Modellierungt Numerik und der Simulation von
geschweildten Leichtbaustrukturen aus Metall/Faser-tstofé-Verbunden, wie sie in der DFG-For-
schergruppe 524 untersucht werden. Basierend auf lokalénniegralen Datensatzen sollen Zug-
Scher-Versuche bezuglich der genannten hybriden Strerkgimuliert werden. Dies wird unter quasi-
statischen und zyklischen Randbedingungen auf der Melkosk#tels FEM umgesetzt. In diesem
Zusammenhang ist die Schweil3zone a priori als Versageasamorunehmen. Entsprechend wird
sie mit Grenzschichtelementen diskretisiert, wahremrdutngebenden Substrate mit Kontinuumsele-
menten diskretisiert werden sollen. Unter der Annahmes dashtlineares Materialverhalten haupt-
sachlich von der Grenzschicht herriihrt, werden geeghterialgesetze fir die Grenzschicht und
ihre Umgebung entwickelt. Diese kommen im Rahmen einedlimieren FEM-Programmes zum
Einsatz. Da der Delaminationsvorgang der Grenzschichisgghbde verlauft, werden nur geometrisch
lineare Methoden verwendet. Die Modellparameter der Gramzht werden durch den Vergleich von
Experimenten und numerischer Simulation verifiziert. Adigerimentelle Daten werden dabei von
den Projektpartnern in der DFG-Forschergruppe 524 zurigerig gestellt.

Im zweiten Bereich soll die Ermidung piezoelektrischersbirukturen simuliert werden. Da
bei piezoelektrischen Materialien zyklische Beanspragam haufig sind, ist die Vorhersage des
Ermudungsverhaltens von immenser Wichtigkeit. Eine kduférner und Korngrenzen definierte
piezoelektrische Struktur wird mit Kontinuumselementéndie Korner und Grenzschichtelementen
fur die Korngrenzen diskretisiert. Wahrend das Ermighwerhalten ganzlich den Korngrenzen beige-
messen wird, werden die Korner mittels eines lineareréektrischen Materialgesetzes modelliert.
Zukunftig sollen auch nichtlineare Effekte wie Domanetlappprozesse bericksichtigt werden, und
die hier betrachtete Mesomechanik soll als Grundlage futtiskalenbetrachtungen herangezogen
werden. Zunachst jedoch soll der Schwerpunkt auf der Sitioul des Korngrenzenverhaltens liegen,
wobei kleine und groRe Zyklenzahlen durch geeignete Medm#riicksichtigt werden. Die daraus
hervorgehenden Resultate werden diskutiert und bewertet.
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Der dritte Bereich betrifft Untersuchungen zu Bifurkasombglichkeiten vom Oberflachenwellen-
typ. Dabei wird eine zweidimensionale, nicht-koharehkighgésive) Grenzschicht betrachtet, welche
einen halbunendlichen dreidimensionalen linearen Begét mit einem starren Substrat verbindet.
Dieser Bereich ist beziglich der anderen ZielsetzungsrZatkatzaktivitat einzuordnen. Falls fur
bestimmte Kombinationen von Festkorper- und Grenzstmaterialverhalten eine unendliche An-
zahl solcher Bifurkationen moglich ist, ware eine nursehie Losung des Randwertproblems netz-
abhangig.

Die Ziele der Arbeit werden durch den folgenden modus opgbramgestrebt:

Kapitel 2 beginnt mit dem mechanischen und dem elektrischen Ranphebiem. Danach folgt
eine Wiederholung von Modellierungsaspekten hinsichtlier in dieser Arbeit relevanten, die Grenz-
schicht umgebenden Materialien. Wo notwendig, werden algdrithmische Aspekte beleuchtet.

Kapitel 3 beschaftigt sich mit der konstitutiven Modellierung urehdalgorithmischen Aspekten
von Festkorpergrenzschichten. Dabei wird elastischestipches und schadigendes Verhalten vom
Lemaitre-Typ betrachtet. Ermidungsbezogene Modeliigine und grof3e Zyklenzahlen werden
sowohl fur das nicht-gekoppelte als auch fiur das gekapptioblem vorgestellt. Des Weiteren wer-
den viskoelastisch-schadigende und viskoplastischeigende Modelle als Vorarbeit im Kontext der
DFG-Forschergruppe 524 diskutiert. Zusatzlich werdenlmaaische und elektrische Grenzschichtbe-
dingungen sowie ein sogenannter Penalty-Formalismusi tietet.

Kapitel 4 enthalt die Bifurkationsanalyse fur ein nicht-gekopgeglProblem. Zunachst wird ein
inkrementelles Randwertproblem formuliert, auf welchiesfnsatz fur stehende Oberflachenwellen
angewendet wird. Die daraus folgenden Resultate werdesichitich eines linear elastischen Fest-
korpers und inelastischen Traktions-Separations-@esetusgewertet, die in Beziehung zu Kapitel
3 stehen. Die anschlie3ende Bifurkationsanalyse zeigis f& alle eingearbeiteten konstitutiven
Gesetze hochstens eine endliche Anzahl von Bifurkatidggichkeiten besteht.

Kapitel 5 enthalt die Bifurkationsanalyse fir ein gekoppeltesbizm, wobei das Vorgehen von
Kapitel 4 Ubernommen wird. Fur lineare ferroelektrisétestkorper und Grenzschichten treten keine
Bifurkationsmoden auf.

Kapitel 6 betrifft die Finite-Elemente-Diskretisierung der schiwa Formen fur nicht-gekoppelte
und gekoppelte Probleme. Linearisierungsaspekte wenglendkskutiert, und ein Abriss zum Thema
der Grenzschichtelemente ist enthalten.

Kapitel 7 beginnt mit einer kurzen Darstellung der Herstellungs- Me$smethoden, die im Rah-
men der DFG-Forschergruppe 524 angewendet werden. AaeBelnid werden die Simulationsergeb-
nisse bezuglich quasistatischer Zug-Scher-Versucheaamampulsgeschweil3ten und ultraschallge-
schweil3ten hybriden Proben besprochen. Eine gute qixaditand quantitativéJbereinstimmung
von Experimenten und Simulation konnte erreicht werders Weiteren werden Datensatze von zy-
klischen Zug-Scher-Vorversuchen an ultraschallgesdbteriProben mit Simulationen verglichen.

Kapitel 8 beginnt mit einer Literaturrecherche zu piezoelektrisdbrentidung, Modellierung und
Korngrenzen. Es folgen einige Anmerkungen zur Grenzstimictellierung, und die Diskretisierung
eines rechteckigen Ausschnitts einer piezoelektrischesagtruktur wird vorgestellt. Die anschliel3end
prasentierten Ergebnisse beziehen sich auf mechanischelektrische Randbedingungen in kleinen
und groR3en Zyklenzahlen. Die Resultate werden diskutredthewertet.

Kapitel 9 fasst die Arbeit zusammen, enthalt Schlussfolgerungereuren Ausblick auf mogliche
zukunftige Aktivitaten.






2 Constitutive Modelling and
Algorithmic Aspects of Selected Bulk
Materials

In the following, some selected bulk material propertiesvadl as related algorithmic aspects will
be briefly investigated. Thus, the focus is set on materidlighvare important in the context of this
work. All constitutive models are formulated geometrigdithear, given in a standard continuum. By
addressing appropriate energy contributions, the métawa are motivated and derived. Expressions
for stresses and tangent moduli are obtained, and, in tsdealgorithmic methods are incorporated.

First of all, a Boundary Value Problem (BVP) is introducedinyg splitted into a mechanical and
an electrical BVP. Then, the material models are discus3é@. starting point is the simple linear
hyperelastic material modelling, adequate for many matedoncerning small strains, e.g. for metals
in the isotropic case. Otherwise, especially fibre-reicddrcomposites inhere an anisotropic material
behaviour. In this regard and for small strains, transvessdropic and orthotropic elasticity are
presented. To overview the diverse field of elasticity, #ndliooks of Ogden [130], Marsden and
Hughes [105] and Ting [177] can be consulted. Next, smais&lastoplasticity with linear isotropic
hardening is concisely described. This material modeleslus describe inelastic behaviour of metals
as a first approximation. Inelastic material modelling iscdissed in detail in the textbooks of, e.g.,
Lemaitre [90], Lemaitre and Chaboche [91] as well as Simotnghes [164]. Finally, introducing
coupled problems, linear ferroelectricity for bulk masésiis described. In this context, switching
effects are not addressed. In order to gain further knovdexigthe issue of electrically-mechanically
coupled problems, the books of Maugin [106], Eringen and dfia{b1], Ikeda [71] and Smith [165]
are advocated.

2.1 Boundary Value Problem

Let B C R" be the configuration of a body of interest, subjected to sgedtbrmations, see Fig. 2.1
for an illustration. Then, position vectors pointing Brare denoted a8 € R", related displacements
and the electrical potential shall be givenwasind, respectivelyp. Considerings, inherent physi-
cal properties can be described as quasi-electrostatis@nde-free, with body forces and external
charges being neglected.
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Figure 2.1: Configuratiof8 and some boundary conditions

2.1.1 Mechanical Boundary Value Problem
The local format of the balance of linear momentum reads as
dive =0 in B (2.2)
with o being the stress tensor. The boundary conditions, see @s@.kE, are given as
u=u, on 0B, T=0-n,=71, on IB, (2.2)

Here, T, are prescribed tractions amd. is the outward normal with respect &&,. Moreover, the
balance of angular momentum implies the symmetry of thestensor, i.e.

oc=o' (2.3)

Stresses are dependent on straiaad, optionally, other quantities, which are summarisgeljbeing
of special relevance in view of coupled problems. Consetlyjamtil some constitutive relations are
specified, stresses are given as

o =ol(e,|e]) (2.4)

with the straing being the symmetric gradient of the displacement veatarhich is the basic kine-
matic assumption.
e=Vi"u (2.5)

10
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2.1.2 Electrical Boundary Value Problem

For the present configuration, mechanical and, moreowetretal fluxes shall be considered. In this
regard, a second balance law to be considered is the Galmsjaasulting from Maxwell’s equations,
given as

dvD=0 in B (2.6)

whereinD is the dielectric displacement. Appropriate boundary domus, see also Fig. 2.1, read as
&=, on 9By, A=-D-np=A, on 0Bp (2.7)

with A, denoting external surface charges ang being the outward normal with respectd,
compare also Kamlah [76], Schroder and Romanowski [158d¢ih [106] and Eringen and Maugin
[51]. In order to close the system of equations, the diaedisplacement vector must be specified.
Generally, it holds

D = D(E,[e]) (2.8)

with E being the electric field vector. The choice [@f depends on some material behaviour to
be selected, especially in the case of electrical-mechhnaupling. Finally, the related kinematic
assumption is expressed by

E=—-Vg® (2.9)

In the subsequent sections equations (2.4) and (2.8) wilpkeified, based on energetically motivated
assumptions.

2.2 Linear Elasticity

In this section some linear hyperelastic material laws aesgnted. For this reason the associated
boundary value problem is reduced to the mechanical casguatiens (2.1)—(2.5). In the context of
elasticity it may be noteworthy to address the differendg/ben hypo- and hyperelasticity. For both
cases stressesare solely dependent on the strains.e.

o =ole) (2.10)

For the case of hypoelasticity, or rather Cauchy Elastititg relation of stress and strain rates is
invertible, but no potential relation for the stresses carspecified. Consequently, Cauchy elastic
materials may dissipate energy in closed strain cycles.fufthrer details see for instance Truesdell
[178] and Ogden [130]. In contrast to this, hyperelastieitywhich is also called Green elasticity —
inheres an invertible stress-strain rate relation, tooaoditionally a potential by means of a strain
energy functionV is present. For such material behaviour the second law afibedynamics results
in

D=Dpe=W—-U=0 (2.11)

11
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reflecting a reversible process, introducing the dissopgtowerD, the stress power) = W and the
free energy powev. In this regard, it holds

U = U(e;[o]), [o] =const. (2.12)
The stress power is expressed by
W=o0c:¢ (2.13)

The combination of equations (2.11) and (2.13) renders

g:e—V=0 (2.14)
and, with equation (2.12) in mind, yields in

[a—g—‘ﬂ e=0 (2.15)

The Coleman-Noll Entropy Principle — for a detailed outlorethis issue see, e.g., Coleman and Noll
[41] as well as Truesdell and Noll [179] — directly implies

oV
- Oe

with o being symmetric as induced by the local form of balance otilxgnomentum. Furthermore,
by

o (2.16)

o=C%:¢ (2.17)
with o 5
el __ — _O' — ely . . .
= e 2 e = e [(C ]Zj/ﬂl e X €; X er X e (218)

the rate relation of stresses and strains is founded on tmhferder Elastic Continuum Tangent
Stiffness Tenso€“. As obvious from equations (2.5) and (2.18) inheres some minor symmetries,
le.

[Ciji = [Cjim = [CM)jaw (2.19)

and, furthermore, major symmetries
[CTijr = [C ki (2.20)

Requesting a linear and positive definite relation of seesd strains, the free energy is specified as
U=W= %e :C?:e >0 Ve#0, [C%;u = const. (2.21)
Consequently, the correlation of stresses and strainsvigtten as
o=C":¢ (2.22)

denoting the constitutive relation. The symmetry proesrofC* allow a reduction fron81 to 21
coefficients. This, together with the symmetries of thessteend strain tensors is exploited by applying

12
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the so-called Voigt notation, giving a compact descriptdoorrelations. Accordingly, Voigt-notated
strainse” and stresses" are related by

o/ =C. " (2.23)

with C¢ = ijl e; ® e; being the Voigt-notated Elastic Continuum Tangent Stgi&ensor. Thereby,
the sequence of indices corresponding to the Voigt notatatl be exemplified by

o1 [Clir [C¥2e [C¥uss [C¥inne [C¥i12s [C¥1nis 11
022 [Ca011 [Co2on [C¥a033 [C¥o212 [C¥azas  [C¥)2013 €22
o33 | _ [C¥s511 [C¥s302 [C¥ss33 [C¥ss12 [C¥s303 [C¥)s313 ' £33 (2.24)
012 [Cio11 [C12o2 [C¥1233 [C¥1212 [C¥igas  [C)vo1s 219
023 [Cag11 [Cosoa [C¥0azzs [C¥os1z [C¥azes  [C¥)os1s 2e93
| 013 | | [Cisn [C¥isa2 [C¥ioss [CYisi2 [C¥ises [C¥ims | | 2613 |

as found in, e.g., Mehlhorn [107], Simo and Hughes [164] amdipd [64]. Other sequences are
described in, for instance, the books of Voigt [184] and $peifil66, 167]. Please note that for linear
elasticity, due to giverC®’ = const., no further algorithmic procedures are necessary.

2.2.1 Isotropic Linear Elasticity

If, in addition to the demands of equation (2.21), direcélondependence for material properties is
assumed, isotropy is at hand. This is the case for the elagfime of, e.g., steel. Therefore, the free
energy is given as

U =V(e) = V(i) (2.25)

depending solely on the strains. This correlation is refingthtroducing an irreducible set of invari-
ants
iez{jl,jg,lg}:{lf,lg,lg} :{61,62,53} with Im:€m I (226)

Form = 1,2, 3, the so-called basic invariants are givenhy the so-called principal invariants are
denoted ag;,, while¢,, are the eigenvalues ef Straightforwardly, stresses can be computed as

ov o Ov Ov
2 T a9 2=, I+ D O, &2 2.27
o e a1, + a]2€+36136 14 +Poge+ P3e ( )

For the sake of linearity, with andy being material parameters —the so-called Lamé-paraseier
shall be
CI)l = )\[1, (I)Q = 2/,L, Cbg =0 (228)

and consequently, the stresses are given as

o=Ml:I|+2ue (2.29)

13
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and the constant Elastic Continuum Tangent Stiffness Tdosthe isotropic case reads as

0 _
e

Concerning the Voigt notation, this is reflected by

Ciso = AT ® T+ 2T (2.30)

[ 2+ A A0 0 0]

A 2u+FX XN 0 00

: A A 2u+X 0 00
Criso _ 2.31
gl 0 0 0 4 0 0 (2.31)

0 0 0 0 p 0

0 0 0 00 u|

2.2.2 Transversely Isotropic Linear Elasticity

Now, transversely isotropic material properties are hgitied. For this class of materials a direction
of anisotropy, denoted b, ||m,|| = 1, and the structure tensdd, = m, ® my are introduced. A
material example for this is found in the elastic regime obeefireinforced composite where all fibres
are aligned in one direction. The free energy allows a rediuggresentation df invariants and reads
as

U = \I[(é‘, mo) = \P(ie, ieMo) = \II(Il, IQ, I3, 14, 15) (232)
with

isMo = {[4,[5} = {8 . ]\4'07572 . MQ} (233)

Again, stresses are computed by differentiating the freeggrwith respect to basic invariants, yield-
ing
ov
Oe
ov ov ov ov ov

= —JT+2—e+3—e’+ —My+ —2[e- M,*¥™
o, T r2an et 3o e o, Mot g 2le Mol

= (I)1I+(I)2€+(I)3€2+¢4M0+(I)52[€'M0]Sym (234)

Due to the assumption of linearity and the symmetry of thestittaContinuum Tangent Stiffness
Tensor, an adequate invariant formulation of the free gnexgletermined. Accordingly, for =
1,...,5, ®; takes the format

@1:)\[1 + 0414, (1)2:2/,“_, q)g:O, (1)4:&[1 + ﬁ[4, (1)5:2[IU||—IMJ_] (235)
atwhich, 11, 11, « and3 denote adequate material constants, leading towards

o=[Ne:IT+ae: Mo I+2u, e+[ae:I+3e: Mo Mo+ 2[u—po]le- Mo+ M,-€] (2.36)

14
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The constant Elastic Continuum Tangent Stiffness Tensothi® transversal isotropic case is then
given as

)
a—': =AM I +a[Ie Mo+ Mo I+ 3Mo® Mo+ 2p IV + 2[py — po ] My (2.37)

A coefficient-explicit representation describes

(Ctra —

1
My = B [0 Moyt + 0aMoy + SiMoyir + 0 Myir) € @ e ® e, @ e (2.38)

If the direction of anisotropy is identified as, = e3, the Voigt-notated equivalent to equation (2.37)
is consequently found as

[ A+ 20, A Ao 0 0 0
A A+2u, Ata 0 0 0
ctre — Ao Adta A+2a+8-2u+4p 0 0 0 (2.39)
J 0 0 0 w000
0 0 0 0 M) 0
L 0 0 0 0 0 My
2.2.3 Orthotropic Linear Elasticity
Finally, let m,, |m,|| = 1 andms, |ms| = 1 be two orthogonal directions of anisotropy, with

structure tensordZ; = m; ® m; and M, = my ® my. This orthotropic model is exemplary for
many fibre-reinforced composites, e.g. for a carbon fibre lygooide canvas. In this case the free
energy can be represented by a reduced numbemofriants, reading as

V= \If(é‘;ml,mQ) - ‘II<Z'872'EM172'8M2) - ‘P<[17[27[37[47[57 [67 [7) (240)
with
ile = {14715} = {6 . M1,€2 . Ml}, 7:5]\/]2 = {16717} = {8 . M2,€2 . MQ} (241)

By differentiating the free energy with respect to basianmants, stresses are computed as

ov
o = —
Oe
ov ov ov
- T rioo AP
on, ' TPon, P or
ov ov ov ov
— I . sym - = A sym
+ 81_4M1+ 8[52[8 Ml] + 8[6 M2+ 8172[8 MQ]

= (I)1I+(I)2€+(I)3€2+(I)4M1+q)52[€'Ml]sym+q)6M2+(I)72[€'MQ]Sym(2.42)
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Following from the assumption of linearity and the symmeitiryhe Elastic Continuum Tangent Stiff-
ness Tensor, an appropriate free energy function detesinas

S =AI1 + i ly, +anls, Po=2u, O3=0, Sy=o1 1 + Bi 1y + P51,

G5 =211, Pg =0y + B3ly + Bols, P7=2p, (2.43)

with A\, i1, a1, e, i1, 2, B1, B2 @and 33 being appropriate material parameters. With this in haed th
stress tensor is rewritten as

o = De:I+aje:Mi+aye: Mo I + 2ue
+ [Q1€II+5182M1+ﬁ361M2]M1 + 2#1[E'M1+M1'€] (244)

+ [Oz2€II+53€IM1+ﬂ2€ZM2]M2 + 2#2[€-M2+M2'€]
Here, the constant Elastic Continuum Tangent Stiffnessdiereads as

B
@”::E%::AI®I + i I®M, + al®M, + 2ulvm

+ oM @I + BiM @M, + BsM; @M, + 21 M, (2.45)

+ oo My®@I + [BsMy@M, + [(oMo®@ My + 2psM,

A coefficient-explicit representation describes

1

My = 5 DMy + GuMaygr + oMy + GpMuyal e @ e @ e @ e (2.46)
1

Mo = 5 DM + GuM@yjr + 0uMen + dpMeal e @ e; @ e, ® e (2.47)

Additionally, form,; = e; andm, = e, denoting the directions of anisotropy, the Elastic Conimu
Tangent Stiffness Tensor in the Voigt notation is represegbly

(AF200+ B +2u+4p1 AMog+as+8s Mo 0 0 0
Aarit+as+Fs A2+ B+ 2044 pg M- 0 0 0
Ccort _ Aoy Ao A 21 0 0 0
Y 0 0 0 [utpatpe] 0 0
0 0 0 0 [4po] 0

I 0 0 0 0 0 [utpal]

(2.48)
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2.3 Elastoplasticity with Linear Isotropic Hardening

Now, an elastoplastic material law with isotropic hardgnmill be presented. In this context an
uncoupled problem is at hand and the boundary value probésieridbed in section 2.1 is again reduced
to equations (2.1)—(2.5), describing the pure mechanase .c

2.3.1 Constitutive Modelling
A kinematic assumption is introduced as
e=¢e“+¢e’ (2.49)
splitting the strains into an elastic paftand a plastic pad”. Stresses are given as
o =o(e’ al) (2.50)

being dependent on the elastic strains and a plastic pagantetaccounting for irreversible plastic ef-
fects. Based on the free energy, the second law of thermaugsalso reflects the so-called principle
of positive dissipation, reading as

D=Djpe=W—-T>0 (2.51)

with

T = (e, ab) (2.52)
and the stress power being given in equation (2.13). The swatbn of equations (2.49), (2.51), and
(2.52) renders

ov : .0V
— : g¢ ceP — —af > .
[a 856] e — o >0 (2.53)
The Coleman-Noll entropy principle, also known as the stadédrgument of rational thermodynam-
ics, implies
ov
= 2.54
o= (2.54)
Next, by defining
ov
R=——— 2.55
Dorr (2.55)

as the so-called internal stress, or, respectively, thedmang stress, a reduced dissipation inequality
turns out to be '
Dyeqg=0:€?P+RA=8S0F >0 (2.56)

introducing the thermodynamic fore@ = {o, R} and the thermodynamic fluf = {7, a”}. Up

to now, this does not contain any statement concerning thstitotive relations — in this regard, an
evolution equation is needed. In order to give considemdtidhe separation of an elastic and a plastic
range, which is present for loads above the yielding poigtelal function is proposed as

P = PP(S) < 0 (2.57)
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The yield function is supposed to be negative in the elaatige and is zero if plasticity evolves. Let
& be a closure of the elastic range, defined as

£:={S|D"(S) <0} (2.58)

The crucial assumption to be incorporated is the well-knpastulate of maximum dissipation, see,
e.g., Hill [65] and Lubliner [98], given as

Dred(s) > Dred(S*) vSt e & (259)

and constituting a constraint maximisation problem, seeoSand Hughes [164]. Therewith, the so-
called associative evolution equations or flow rules

PP (S)

(e (2.60)
. 9P (S)
a o (2.61)

are derived, together with some loading- and unloading itimmg which are also called Kuhn-Tucker
optimality conditions, reading as

5§20, (S <0, FP(S) =0 (2.62)

In equation (2.62);y denotes a Lagrange multiplier. Moreover, related to theyta® of maximum
dissipation, the closure of the elastic rarffygets convex. Please note that the principle of maximum
dissipation does not include the principle of positive igiagon, which has to be checked separately.
In the case of maximum dissipation the so-called plastieq! is identified with the yield function
oP(S). If this associative case is not indicated, some non-aateeievolution equations or flow rules

Dyx

o = 5 927(5) (2.63)
Jo

. L BP(S)

p f— —_—

Q 3R (2.64)

may decide the constitutive behaviour, whére*(S) denotes the plastic potential with?*(S) #
PP (S).
The rate relation concerning stresses is expressed by
0? . 0*

y = ———— : g€ VP 2.
= verwoe e oar @ (2.65)

Otherwise, the rate relation for the hardening stress yield

. 92U . v
= — D Ef — VP 2.
R=—50ae &~ daraawr & (2.66)
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2.3 Elastoplasticity with Linear Isotropic Hardening

Now, a further constitutive assumption is declared by antaedsplit of the free energy function.
(e, aP) = U (e®) + UP(aP) = U (i) + UP(al) (2.67)
For an isotropic linear behaviour in the elastic range, tssilts straightforwardly in

. 1S0 e 150 82\1}
oc=C L EY, C = m (268)

and, concerning the rate of the hardening stress, it is found
o}
daP Do

with H? denoting the hardening modulus. Demanding linear relatiarquadratic format of the free
energy is introduced by

R=—HPar, HP= (2.69)

1 4 1
V(e a?) = e O e 4 S H o) (2.70)

rendering ‘
o=C":e° R=-HPd (2.71)

Moreover, the so-called Prandtl-Reuss terf3@rpulls together the stresses and overall strains, i.e.

| gdry rodr
- __mep . - ep __ viso _ \g—1 is0 . mviso
G=C?.¢ CP=C"—N [(C .—aa}ea[—aa.c ] (2.72)
with )
oor o oDP
— . 180 , P
N= 1 C* o [—6}%} (2.73)

The Prandtl-Reuss tens@f? is in general non-symmetric. Only for associative evolugguations it
inheres minor and major symmetries, see equations (2.19(2aR0).

A further constitutive assumption comprises plastic inpogssibility. That means, only the de-
viatoric part of the stress tensor initiates plastic betwawi This is reflected by the von Mises yield
function

V(S) = p(o) = Yo~ R, (o) =+/3/2]c" (2.74)
being motivated by a one dimensional tension setting, duicong the initial yield stresgj. In view
of the evolution equations, equation (2.74-1) multipligd\#2/3 yields in

o.dev

e = 4N, N:m = el =[ef]™ (2.75)
o-@'U

@ = 4+/2/3 (2.76)
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2 Constitutive Modelling and Algorithmic Aspects of Selected Bulk Materials

2.3.2 Algorithmic Aspects

For the given problem please consider the overall st@atode a known quantity. In order to generate
explicit expressions for stresses it is necessary to integrate the evolution equations nicaiéy.
Here, this is accomplished by the Euler backward methodm& tncrement\t = ¢,,., — t,, between
two discrete points of timg, . ; andt,, shall be given. The related evolution equations then read as

€1 = €+ A1 Nyp (2.77)

p

O = ap+ Ay v/2/3 (2.78)

Recalling that only the deviatoric part of the stressesasiiporated into plastic evolution, and, con-
sequently, the plastic strain tensor is deviatoric itsg#e equation (2.75), with equation (2.71-1) it
holds

o = DNIQI+2ul¥™]:[e — €] =3XeP" + 2u[e — €]

= [BA+2u)e?" 4+ 2u [¢¥ — €P] = P + g% (2.79)
In view of equation (2.77) and for the point of tinhg, 1, this yields in
dev dev

ot =2 (en —eh] = 2 Ay Ny (2.80)

and, furthermore, it holds

ol = BN+ 2u] el = (N +2/3u) [T : e T (2.81)
With ]
o
ot =21 lents —€h), Ny = Haﬁggln = N (2.82)
l

tria

the double contraction of equation (2.80) wiVi,, ; renders the so-called radial return, given as

lonsll = llofull = 20 Ay (2.83)
Furthermore, together with equations (2.71-2), (2.78)(@r#B), the von Mises yield function (2.74-1)
renders
Aypy1 = Py

trial

2H7/3+ 2], @} lotrill = V2/3[Yo — R, R, =—H"al (2.84)

trial — trial

This, together with equation (2.77), can be reiterated @deoto computes? , ; and in combination
with equations (2.79) and (2.80) to computg,; = ai’ﬁ‘l + od,. Please note that for von Mises
plasticity with isotropic linear hardening the Lagrangeltplier A, ; can directly be computed.
Taking equation (2.78) into account, the hardening stiess follows ask,, ., = —H? a?,,,;. In the
case of non-linear hardening an iteration has to be accehggiin order to find somA-~, . ; with

dP(A~,.1) = 0. To solve the boundary value problem at hand, Newton’s nteihapplied. In this
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2.4 Linear Ferroelectricity

context the so-called algorithmic tangent modulus has todmeputed. In general, it is not identical
to the Prandtl-Reuss tensor and is given by

e a n
o= E;: o N+ 2U T QT+ ¢, 1% + ¢;y Ny @ Ny (2.85)
n+1
with
20y,
o = 2 [1 - o “] (2.86)
[Legmem|
Ay,
e o= A [II ZGUHH — [2u+ 2H? /3] (2.87)
o-trial

It inheres minor and major symmetries, see equations (248)(2.20). For a non-associative flow
rule such symmetry would be lost. The aforementioned cenatobns are only valid in the plastic
range. In contrast, for loads in the elastic range the dlyoitc procedure above is replaced by setting

eh =€ on=C":[en1 —eb] (2.88)

whereC'*° denotes the tangent modulus. The Voigt notatiof'6f has been given in equation (2.31).
Finally, the algorithmic procedure is concisely compratezhin Tab. 2.1.

2.4 Linear Ferroelectricity

In the following, a linear ferroelectric material law istiatiuced, being relevant for, e.g., ferroelectric
ceramics as lead zirconate titanate (PZT) close to sabarpblarisation. Consequently, the operating
point of the ferroelectric ceramic is located on a lineaimegof the hysteresis loop. Switching effects
are therefore neglected. Therefore, the material behavsonot explicitly ferroelectric anymore,
but in view of future work, including nonlinear effects asiwhing, the name is retained. For the
given electrical-mechanical coupling the electromectetbhoundary value problem as described in
equations (2.1)—(2.9) has to be solved. Stresses, given as

oc=o(e E) (2.89)

as well as the dielectric displacements
D =D(e, E) (2.90)

shall depend on the straiasind the electric field vectdr. Here, the strain energy functiofn,,.., and
the complementary electric field energy functidf;. . constitute mechanical and electrical potentials
to be incorporated in the second law of thermodynamics]tregun

D =Dy = Wineeh — Wr.. — H =0 (2.91)

elec

Changes of state are reversible since in this case all meeth@md electrical forces are assumed to
be derived from potentials. In equation (2.94),..., denotes the stress power whitg’,, . is identi-
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2 Constitutive Modelling and Algorithmic Aspects of Selected Bulk Materials

given: Ent1, EP, OF

n

1. trial value: computdoie | = &F

trial trial

2. check yield function: ift? . = < 0: goto 3.a), else: goto 3.b)

trial —

3.a) elastic update: o, = e
o1 = C*:le,y —el ]
Cise tangent modulus
q)p

trial

3.b) plastic update: AyE L = S73H" + 251 = e,

ol = N 2/3) L en] I
onl = ohi = 2uAy, N
o _ sph dev

n+l  — Un—l—l + o-n—f—l
Coy tangent modulus

Table 2.1: Algorithmic procedure for bulk elastoplastiaitith linear isotropic hardening

fied with the complementary dielectric displacement povirer ferroelectricity a widely applicable
potential is provided by introducing the electric enthalpgiction /. It allows that the polarisation
can be specified due to fixed electric field inputs as well asss&s due to fixed strains, compare
Smith [165]. For temperature-independent problems thetredeenthalpy function is equivalent to the
electric Gibbs function. By application of the Legendrarsformation, the electric enthalpy can be
correlated to other potentials, e.g. the free energy.

H = H(e, E;mg) = ian(\I/ —E-D), m,=const. (2.92)

Corresponding to section 2.2.2, ferroelectric materialere one direction of anisotropy, denoted
by my, ||mo|| = 1. The structure tensor is given &4, = m, ® m,. The stress power and the
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2.4 Linear Ferroelectricity

complementary dielectric displacement power are expdesge

Wineeh = 0 : €, * =D-E (2.93)

elec

Equations (2.91) and (2.93) together yield
c:é—D-E—H=0 (2.94)
and, incorporating equation (2.92), renders

[a—%—ﬂzm[—p—g—g]ﬂ:o (2.95)

Due to the Coleman-Noll Entropy Principle, it follows

0H 0OH
=— D=-—— 2.96
Oe’ OF (2.96)
The rate relations of stresses and dielectric displacesweitih respect to the strains and the electric
field are given by

o

cg=Cld. ¢ —¢®* . E, D=¢:é+¢-E (2.97)

The associated Ferroelectric Continuum Tangent Tensadsa®

er,e 82[_[ er,el 82H A
Clerel = 9e @ Oe :[Cf “ijnes @ e; @ ey @ e, eA:_&e@@E = [e7]ijre; ® €; @ ey,
0?H 8 ©e *H ®
OE® e  HICHEEIEE ‘T T O9EwoE VT C

(2.98)
The symmetric properties d@/<* are equivalent to properties stated in equations (2.19Y220).
In order to achieve a linear relation of energetically cgajied quantities, the electric enthalpy is
formulated as

1 1
H:§€:Cf”’6l:s—E’-e:e—§E’-e-E (2.99)
Accordingly, the correlations
o=Cl"l. e —¢.E, D=¢:e+¢ E (2.100)

follow straightforwardly. Concerning the other Ferrog¢tecContinuum Tangent Tensors, it holds
lerij = [ekjir €5 = €5 (2.101)

as well as
¢ = [e|rijer ®e; R ey, ol =¢2 = e]rije; ® e; @ ey (2.102)

Here,e is called the third order piezoelectric tensor artknotes the second-order tensor of permittiv-
ity. As found in equation (2.101), symmetric propertie®walt to be represented b8 piezoelectric
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2 Constitutive Modelling and Algorithmic Aspects of Selected Bulk Materials

constants whilé dielectric or permittivity constants are sufficient for argqaete description o€.
Together with the Voigt representationsef ande" as stated in equation (2.24) it holds

o/ =cl. gV e .E, D=e-c"+¢ E (2.103)
At the same time, an adequate Voigt notatiom, afenoted ag, is given as

€111 €122 €133 €112 €123 €131
€ij = €211 €222 €233 €212 €223 €231 (2-104)

€311 €322 €333 €312 €323 €331

Obviously, a Voigt notation oé¢ and E is not indicated while the Voigt notation @<, identified
with /"¢ has already been given in equation (2.24). According ta@fer and Gross [155], an
invariant representation of the electric enthalpy reads

HZH(‘gaE;mO) — H(ieaiEmovisEmo)
- H([b[27[37[47[57J17J27K17K27K37K4)

= Hi(I, 1o, I3, 14, I5) + Ho(J1, Jo) + Hs(Ky, Ko, K3, Ky)  (2.105)
with
Emy = {EZ, E- mo} = {Jla JQ}
ioome = {e:[E@mole: [E®E]e?: [E®E]e: [Eomy) (2.106)

- {Kh K27 K37 K4}

with K3 being redundant but generally important as a natural guyatetimodel higher order effects,
according to Schroder and Gross [155]. With this in hanésses are computed by differentiating the
electric enthalpy with respect to the invariants depicteova:

o0H oH oH oH o0H oH
= — = —7T ) 2 22 —— M 9 . M J5vm
=% ~ an Tt et oo, Mot gr 2l Mol
OH OH OH
T E s 97 o B+ L2l [E o BT
+ 8K1[ ® 1] +8K2 ® +(9K3 e [E® E|
o0H
+ 87 [[3 . [E ® mo]]sym + HE ® mo] . E]Sym] (2107)
4
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2.4 Linear Ferroelectricity

This is further developed, yielding

g = ¢1I+q)2€+q)3€2+¢4M0+(I)52[€'M0]Sym
+ P EQm)"" + P, EQFE + d32[e- [E® E|*™

+ Ofle- [E@mol]"" +[[E©myl - e[| (2.108)

Analogously, dielectric displacements are expressed as

oOH
D = 22
OF
OH OH OH OH 0OH 0OH
- 0 g - e my 22 e B2 X2 g T 2
o5 " T an T oK, =TT T T 0K, ¢ 0K © oK, - M
= —CbloE—(I)llmo—q)gé"'mo—®7€'E—(I)g€2'E—(I)9€2'mo (2109)

The constitutive relations are considered to be linear.s€quently, in order to create constant sym-
metric Ferroelectric Continuum Tangent Tensors, the ealo of an appropriate quadratic enthalpy
function renders

Oy =AL+aly+GJy, Pr=2py, P3=0, y=ali+BL+CJ, P5=2[u —pu]

g =(3, Pr=Ps=Pg=0, DPyg=2v, Pyu=0ChL+Cly+27J (2.110)

with X, w1, g, o, 8, Gi, G, C3, 11 @andry, indicating material parameters. Consequently, this léads

g = [)\[1+Oé[4+§1J2]I+2IUJ_€+[&[1+6[4+62J2]M0
+ Al —pi]le - Mo + G [E @ mo)¥™ (2.111)
D = 2mE—(GhL+GIL+2yn))m— (e my (2.112)

Hence, the Ferroelectric Continuum Tangent Tensors aen@s

Cfer,el _ Ctm (2 . 113)
oD

e = % = —C1m0®I—C2m0®M0—C33* (2114)
D
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2 Constitutive Modelling and Algorithmic Aspects of Selected Bulk Materials

with .
¢ = 5 [m(o)lﬁkj + m(o)jéki] €p R e R e; (2.116)
Finally, if the direction of anisotropy is identified a8, = e3 the Voigt notated piezoelectric tensor

reads as
0 0 0 0 0 €15

;=10 0 0 0 es 0 (2.117)
ez1 ez ez 0 0 0
with .
es1 = —C1, e3=—-CG—CG—GC, €= —§C3 (2.118)
Due to the fact that the Ferroelectric Continuum Tangens®enas well as the stressesand the

dielectric displacement® can be directly computed, no further algorithmic method&ha be dealt
within this section.
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3 Constitutive Modelling and
Algorithmic Aspects of Solid
Interfaces

Subsequently, several geometrically linear interfacoaistitutive models, also referred to as traction-
separation-laws or cohesive laws, are introduced. Suchriabinodels are supposed to be sufficient
to simulate the behaviour of laminar welding interfaces eta/fibre-reinforced polymer composites
under diverse loading conditions as well as grain boundariderroelectric materials under fatigue
loading. Solid interfaces are —approximately— one gedosttimension smaller than the surrounding
continuum. They normally inhere significant differencesiaterial behaviour when compared to the
bulk material. The fact that an interface is bordered byasig$ belonging to the surrounding material
implies the idea of constitutively connecting traction tegs and displacement jumps related to those
surfaces. Accordingly, for a coupled problem, the relatbulielectric displacements and potential
jumps has to be considered additionally.

Constitutive originators are, once more, energy consiaerawith respect to the free energy or the
electric enthalpy function, bearing in mind the second ldwhermodynamics. Stresses and Conti-
nuum Tangent Stiffness Tensors are derived, under spamalderation of algorithmic aspects. For
the bigger part of the traction-separation-laws introduicethis work the constitutive behaviour is
decoupled with respect to an interfacial orthonormal bgstes{s, ¢,n}. It is localised on some
average surface in between the surrounding surfaces, saéihd ¢ being tangential vectors. Such
decoupling is considered to be adequate if the debondingepses are largely dominated by one
failure mode. Due to the fact that many interfacial consitiurelations are strongly kindred to bulk
material laws, for further insight, it shall be referred teettextbooks already stated in chapter 2.
Applications of uncoupled cohesive material laws are foume.g., Tijssens et al. [176], Tijssens et
al. [175], Hanson et al. [62] and Li et al. [94], [93]. In comst, coupled material laws are introduced
in e.g., Xu and Needleman [193], Ortiz and Pandolfi [132]kFedlal. [54], Jin et al. [73], Kroon and
Faleskog [86] and Van den Bosch et al. [45].

Before going into detail concerning such traction-sepanaaws, some mechanical and electrical
complementing conditions with respect to the interfacestaged, in addition to the boundary value
problem discussed above. The first interfacial material tase introduced, i.e. linear elasticity,
provides something of a fundament for subsequent traseparation-laws. Next, this framework
is extended by taking viscous effects into account. Funtioee, elastoplasticity with Lemaitre-type
damage is introduced, being sufficient for the simulatigredg., thermal impact welded tensile spec-
imens. A further viscous material law, viscoplasticity witemaitre-type damage, is discussed there-
after. The incorporation of viscous interfaces is congdeo capture relaxation and creep characteris-
tics. Subsequently, interfacial fatigue is modelled bycadee traction-separation-laws distinguishing
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Figure 3.1: Configuration8*, B, interfacel’ and some interface conditions

between small and large cycle numbers. In this regard, bedcame- and cycle-based fatigue laws
are introduced. By reviewing linear ferroelectricity foetinterface, the coupled problem is taken into
account. Finally, this is extended by time- and cycle-bdagdue laws. To emphasise the function-
ality of the mentioned constitutive relations, prototypamples of relevant quantities are included
where adequate, pointing out the basic constitutive belavi

3.1 Interface Conditions

Without loss of generality leB be splitted into two parts, denoted B and3~. These are bonded
by an interface, witi® denoting the related centre line. Adequate interfacaeadlposition vectors:
are only considered to point onto Furthermore, towards the interface, Bt and3~ be closed by
boundaried™" andI'~, see Fig. 3.1 for a visualisation. With respect to bB8thand 58—, the afore-
mentioned equations (2.1)—(2.9), constituting the boondalue problem, retain all their validity.

3.1.1 Mechanical Interface Conditions
An interface-related traction equilibrium condition reaas
Tr+ +7pr- =0, with 7p+ =0 -np+, 7p- =0 -np- and [o] -npr- =0 (3.1)
see also Fig. 3.1 for illustration. A displacement comphiycondition is given as
ur+ — up- = [u] (3.2)

where[u] denotes the so-called displacement jump.
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3.2 Linear Elasticity

3.1.2 Electrical Interface Conditions

Furthermore, a dielectrical displacement equilibriumditan takes the representation
Ar+ +Ap- =0, with Ap+ = —-D -np+, Ap-=-D-npy- and [D] -npr-=0 (3.3)
while the potential compatibility condition reads as
dpy — Op- = [P] (3.4)

In what follows, it will be identifiedn- = n.

3.2 Linear Elasticity

The linear hyperelastic traction-separation behavioscdeed in this section refers to the uncoupled
boundary value problem. An adequate relation of tractiorsdisplacement jumps therefore reads as

7 =T1([u]) (3.5)

Though the traction vector inheres the same units as the stress tensor, the enenyetmajugate
guantity is chosen to inhere the unit of meter, i.e. the disgpinent jump. This is due to the fact that
strains are given as length differences divided by an inéragth. In the case of an interface the initial
distance between the bordering surfaces is supposed taypemall or even zero. Division by zero
is avoided by only taking the separation of the borderindases into account. Consequently, for
the sake of units, a division by an internal length must berfieht in the constitutive relations. With
W being a displacement jump energy function afd= 1/ denoting the traction power, identical to
equation (2.11), the second law of thermodynamics for arfate reads as

D=Dpe=W—-U=0 (3.6)

Please note that here and in all following sections the sktan of thermodynamics, represented
by the Clausius-Duhem inequality (3.6), shall be sepaydtdifilled for the bulk continuum and the
interface. The free energy of the interface is given as

U = U([u];s, t,n), s,t,n=const. (3.7)

where{s, t, n} is the orthonormal interface base system, witnd¢ denoting orthogonal tangential

vectors of the interface. In what follows, as all furtheririadcial material laws include elasticity, the
dependency on the constant orthogonal tangential vedaegitly assumed and not explicitly stated
anymore. The traction power is expressed by

W=r-[u] (3.8)

29



3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Equations (3.6) and (3.8) together yield

- [u]l—¥ =0
Considering equation (3.7), it holds
ov :

Application of the Coleman-Noll Entropy Principle then gs/

o
Ofu]

The rate relation of tractions and displacement jumps teads as

T =C" . [u]

where the second order Elastic Interfacial Tangent SsBrgensor is given by

~ 02U or :
ifel _ _ _ vifel ]
R L IR I A

Regarding equation (3.13), symmetric properties follow as

if.el _ vifel
Cii” =0}
The free energy is specified by
1

V=W=-[u]-C" [u] >0 V[u]#0, C;/=const.

2

assuming a linear and positive definite relation of tractiand displacement jumps which is given by

T =C . [u]

The traction-separation correlation regarded here slealinear and decoupled with respect to the
interfacial orthonormal syste#s, t, n}. This is clearly a simplification of the general case wheee th
constitutive answer is coupled with respect{tot, n}. An adequate formulation of the free energy

function is given as
U = U([u];s, t,n) = V(i)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

where the coefficients,) compare to the irreducible set of invariants of the tensodae, reading as

n

ipg = {17, 17, 1} with 17 = [[a] - 4]
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3.3 Viscoelasticity with Damage

Consequently, tractions are computed by

o ov o ov
T:m = QaTy[[[u]]-s]s+28Ttif[[[u]]-t]t—i-ZaTqif[[[u]]-n]n
= O [[u] - s]s+ P [[u] - t]t + D, [[u] - n|n (3.19)

Therewith, interfacial material constants are introduged

Uy

b, =c;=-", i=s,1,n (3.20)

ol

with ¢ being elastic stiffnessel,denoting some constant and inherent lengths, as alreadyomed,
andc; being the interfacial stiffness parameters. This rendersractions straightforwardly as

T = Z ¢il[[u] -2)2, i=s,t,n (3.21)

The second order Elastic Interfacial Tangent Stiffnessdethen reads

Cilel = Z clé i=stn (3.22)

)

with .
Cl =ci®i (3.23)

Please note that if the distance between the borderindants is greater than zero, it can be identified
with /,,. Then,c;, can be correlated to the Young’s modulus of the bulk. Evehdfdistance between
the bordering interfaces is close to zero, sdme: 0 can be applied to map the bulk properties on
the interface. Nevertheless, it has to be considered thatthatropic elastic bulk cannot completely
be compared to the interface because the orthonormal diecbimperface is in lack of any transversal
contraction stiffnesses. Otherwise, it can also bé,set 1 as a default. Then, the interfacial normal
stiffnessc,, is exempt from any comparison with the bulk, and numericHicdities resulting from
very smalll; are excluded. Regarding the tangential directions a @iroel with bulk shear moduli

is in principle possible. For further remarks on these issgee, e.g. Willam et al. [188]. In further
examinationsiitis sét = [, = [,, = 1 for convenience, except where explicitly stated otherwise

3.3 Viscoelasticity with Damage

The computational modelling of viscous interfaces is ofcsgleinterest since adhesive connections
gain more and more importance, e.g. in the field of fibre-oetdd polymer composites. In the case
of viscoelasticity, material behaviour is rate-dependeititout equilibrium hysteresis. First theories
have been developed by e.g. Coleman and Noll [39], [40], @aleand Mizel [38] and Mizel and

Wang [120]. For more recent reviews concerning the field steelasticity, see, e.g., Kaliske and
Rothert [75], Reese and Govindjee [147, 148], and Kaliské. [Concerning general textbooks, once
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Figure 3.2: One-dimensional model of viscoelasticity wlitmaitre-type damage, consisting of a
generalised Maxwell element

more, the book of Simo and Hughes [164] is recommended. Incase, a generalised Maxwell
element is chosen as a material model, compare Fig. 3.2.

3.3.1 Constitutive Modelling

As illustrated in Fig. 3.2 the displacement jurfag] is split into an elastic paffs]“ and a viscous part

[u]™ i.e.
[u] = [u]” + [«]™ (3.24)

This is the basic kinematic assumption. Furthermore, thallehspring shall induce a tractiorf®
while the spring serial to the damper induces the tractitn This is the case for all interfacial
orthonormal directiong € {s,t,n}. Again, related material behaviour is decoupled. The dvera

traction then reads as
T=7"4+7" (3.25)

The dependencies of the tractions are given as
7° =7%([u],d;), " =71"([u],d;), i=s,t,n (3.26)

In equation (3.26) the damage parametee [0, 1] is introduced, withd; > 0 and healing effects
being excluded. Itis incorporated in a Lemaitre-type daenamntext, see Lemaitre [90] and Lemaitre
and Chaboche [91]. Fel; — 1, some regarded material tends to be fully damaged and net able

to bear any load. The Clausius-Duhem inequality reads as

D=Dpe=W-U>0 (3.27)
where the free energy of the interface occupies the deperegen

V= U([u], [u], &) (3.28)
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3.3 Viscoelasticity with Damage

The traction power is given as

© LJve

W=r- [[u]] =7%. [[it]]+7’m- [[ﬁ]]e+7'm- [u] (3.29)
In view of the second law of thermodynamics, representedjoaion (3.27), it follows

™ [u] + 7 Ju] + e Ju] — >0 (3.30)

being equivalent to

[ o) [ ] e T Az @

With the Coleman-Noll Entropy Principle in mind, also knoas the standard argument of rational
thermodynamics, it is concluded

ov ov

T T Ol 232

Furthermore, the damage driving force shall be defined as

_ ov
Hi = o4, (3.33)
This yields the reduced dissipation inequality, reading as
Dyea =7 [u]” + > fidi >0 (3.34)
The constitutive assumption of viscoelasticity is givertlg rate dependency
© L ve T
w; — Z_’  a— Tl-m’l: 3.35
[l = Z (3.35)

wherern; > 0 denotes the viscosity ifrdirection. The tractions induced by the spring serial ® th
damper are supposed to be constituted by

= (L= d) e ]’ (3.36)

The bracket term containing becomes zero if; — 1. Such damaging behaviour is indicated by the
dotted line in Fig. 3.2. The rate of this traction is strafghtvardly computed as

=1 —d) & [[wi] — [u] ] (3.37)

7

Please note that damaging behaviour is computed indeptydech thatd; is treated as a constant
in equation (3.36). Equations (3.35) and (3.37) togethadythe differential equation for the damper-
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

serial tractions

L= d) S = (1 dy) & ] (3.38)
Additionally, combining equations (3.24), (3.35) and @.3&n alternative differential equation for the
viscoelastic displacement jump is derived, reading as

i = 22 ] - [, T (339

1

Therein, the relaxation tim&, has been introduced. The free energy is now split into twtspgiven
as

U([ul, [ul, di) = V*([u]) + "([u]", ) (3.40)

LIl [0 - )]l

7

+ Sl [ Yo —d) e - fulf (3.41)

i

N =

and incorporating the Elastic Interfacial Tangent Stifndensors with respect to the parallel spring
C/*> and the damper-serial sprin@'”“""", both at hand for thé-direction. Here, synchronal
damage is assumed for both springs, dependent; orCertainly, an alternative and more general
description is possible if the spring damage evolutionskap distinctly. Because the displacement
jump [u] is considered to be available for direct computation, aimenemental expression far is
possible, which is given as

=[S0 - d) V] ful (3.42)
In order to computer™, algorithmic procedures have to be incorporated, a topiwtuth will be
discussed later on.

The phenomenological Lemaitre-type-damage approaclalseéemaitre [90], Lemaitre and Cha-
boche [91], Jansson and Larsson [72] as well as Larsson arsdala[88], relies on the idea that
the load capacity of some specimen is related to the effectioss-sectional area or rather effective
volume. This is expressed by means of the interfacial darpagemeters; € [0, 1]. If d; — 1, the
material tends to be fully damaged. With respect to the fiatéal orthonormal base systefw, t, n}
three different damage parametérsd,, d,, are distinguished. For the decoupled damage parameters
d; exponential relations are chosen, reading as

di = 1 — exp(ji[pio) — i) (3.43)
The variable;, accountable for the progression of damagg thirection, is computed according to
Hi = max{lai([[u]]a [[u]]e)’ MZ(O)} (344)
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3.3 Viscoelasticity with Damage

and the so-called damage driving force is given by

i = —00,% = S[u] - I ]t + ] - G fu] (3.45)
By equation (3.44) the actual elastic relative displacdrnearrgy is compared to the prior state what
serves as a criterion on whether damage proceeds or noseRtete that the values of the damage
parameters either remain zero or increase monotonicalig. fiked material parameters, are da-
mage thresholds, determining the initiation of damage revlyaepresent the intensity of the damage
evolution.

In view of the reduced dissipation inequality (3.34) thetfssmmand of this inequality can be

reformulated by applying equation (3.35), rendering

Tl = [ 30 bl ] - [ Xl 6] = Y om ] (3.46)

(2 (2

Obviously, this is always positive or zero. In order to fuliéquality (3.34), also the second summand
must be positive or zero. With a closer look on equation (Bi&ways holdsi; > 0. Consequently,
together withd; > 0, the second term of equation (3.34) is positive or zero, &l the reduced
dissipation inequality is fulfilled, providing thermodymé&al consistency.

3.3.2 Algorithmic Aspects

To allow for an easy algorithmic treatment, the evolutiohsiscous and damaging effects are sep-
arated. Firstly, viscous effects are computed, incorjriyatamage parameteits,,), given from the
last computational step, which is denoted by inde¥or the computation of ™ the starting point is
given by equation (3.39). By multiplication with the timecrementAt¢ an algorithmic-incremental
version of equation (3.39) in the sense of the Euler backweethod is obtained, reading as

At [1 — di(n)]

Afu]™ = S e =

At [1 — di(n)]

7 el + Al =A™ (347)

This equation is solved with respect to the viscoelastipldsement jump increment, yielding

ve A1 —dj)] .
Al™ = 7 arg g i+ Al (3.48)
with
The damper-serial tractions are then computed as
Titner) = € (1 = i) [[willnr1 — [we]i5] (3.50)
with
[uilnin = [wl + Alwi]™ (3.51)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

given: [[u]]n-‘rl! [[u]]n ’ dl(n)

1. viscous update:  compute[u]* = [u]),

2. traction update: 77", = Z ' [1 = dig)] [[wilngr — [wa] ]
TR = Z (1 = digw) [
Tnrl = Toy H 705

3. damage update:  compyig, 1) = dint1)

i f,ved

4. tangent modulus: C';;/

Table 3.1: Algorithmic procedure for interfacial viscostiaity with damage

The traction components are then given as
Tl = Z Ti(n+1) 2 Ti??z—f—l) =71 - di(n)] [willnta, Thg1 = Z Titn+1) T (3.52)

Consequently, the overall traction is computed as
Toil = Topr T T (3.53)

With the current viscoelastic displacement jump in handdiage parametél, ) is computed.
It is based on the elastic part of the relative displacempsits, , = [u],1 — [u]:°, and inheres the
straightforward update

ditng1) = 1 — exp(Ji[pio) — Hitm+1)]) (3.54)
with
finr1) = MaX i) ([wlntr, [wlf 1), piemys i) } (3.55)
and
_ B 1 if.el,m e 1 if.el,00
Pitn+1) = —04;¥ni1 = 5[[ ]]n+1 C; ) [[U]]nﬂ + 5[[“’]]n+1 -C [ulnss (3.56)
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3.3 Viscoelasticity with Damage

If damage evolves, it is essential that

Pitnt1) = Fint1)([w]ns1, [u];, 1) (3.57)

The such computed damage parameter then serves as inphg foext computation step. The present
boundary value problem shall be solved by Newton’s methdterdfore, the interfacial algorithmic
tangent modulus is needed. It is given as

: or ; . O]
Cived = 2 =N CT N —dyy ]+ Y L~ di)] [1 @8 — 3.58
alg a[[u]]n+l ; 7 [ ( )] Z % [ ( )] 3[[U]]n+1 ] ( )

With
3[[11,1]];’111 _ At []_ — dz(n)]
Oufnir T+ A1 — dig)]
the algorithmic tangent finally results in

i®i (3.59)

| | . Ty [1 — dig)]
if,ved if,el,00 if,el,m 7 i(n)

= E X 1—d. E ' 3.60

Cts “ | ol + i “ T; + At [1 — di(n)] ( )

)

The algorithmic procedure is reiterated in Tab. 3.1.

3.3.3 Prototype Examples

In this section some prototype examples are presented, rdgratng the functionality of the vis-
coelastic damage law, which has been discussed above. ®tsehalve been created by a finite

4 4

x 10 x 10
27
2L
181
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161
1.6
141
141
1.2F
= = 12
Z Z
@© 1k @
S o L
8 § !
0.8 o8k
0.6 06k
elastic comparison straight line elastic comparison straight line.
04r 10 disp., 50 relaxation steps 0.4r 10 force, 100 creep steps
13 disp., 50 relaxation steps 13 force, 100 creep steps
0.2 16 disp., 50 relaxation steps 0.2 16 force, 100 creep steps
20 disp., 50 relaxation steps 20 force, 100 creep steps
T T N

. . T . . N )
0 0.2 0.4 0.6 0.8 1 0 0.5 1 15 2 25
cross brace displacement [mm] cross brace displacement [mm]

Figure 3.3: One-dimensional exemplary force-displacarmpéots of viscoelasticity. Left: displace-
ment control. Relaxation behaviour, starting from différpoints of the loading history.
Right: force control. Creep behaviour, starting from diéiet points of the loading history
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Figure 3.4: One-dimensional exemplary force-displacenpésts of viscoelasticity with Lemaitre-
type damage. Left: displacement control. Damage is aetivat approx. 15 kN. Right:
force control. Creep behaviour - the elastic straight Imexceeded because damage is
active

element simulation of a single lap tensile specimen, witkdr elasticity for the bulk and viscoelas-
ticity (with damage) for the interfacial zone.

In Fig. 3.3 relaxation behaviour is shown on the left hané siehereas creep behaviour is presented
on the right hand side. In both cases, damage has been savifftie focus on the purely viscoelastic
material law. Moreover, in both cases, an elastic comparsgmaight line has been plotted, which
refers to the parallel spring. Concerning relaxation giléht starting points have been chosen, render-
ing different lines. All lines end before they reach the #tasomparison straight line. This is due to
the fact that the damper needs an infinite amount of time &xyddeing parallel to some spring. For
the similar reason, in the case of creep, the elastic cosgastraight line is not reached either.

Damaging behaviour is presented in Fig. 3.4. On the left Isahel some displacement controlled
viscoelastic behaviour is plotted with and without damaBamage is activated at approx. 15 kN,
being visible by the decreasing character of the red curve th® right hand side, some creep be-
haviour already shown in Fig. 3.3 is extended by damage. THsti@comparison straight line is now
exceeded due to the damaging influence on the parallel spring

3.4 Elastoplasticity with Damage

In what follows, a traction-separation-law is introducegfresenting elastoplasticity with linear har-
dening, coupled with Lemaitre-type damage. Again, the tituise response is decoupled with re-
spect to the interfacial orthonormal system. For elassiidy in an interfacial context, see, e.g.,
Miehe and Schroder [118]. Concerning damage, an inteffadiaption is given in, e.g., Willam et al.
[188], Jansson and Larsson [72] and Larsson and Janssom@8tontinuum case of elastoplasticity
coupled to damage is discussed in, e.g., Lemaitre [89]. Ma@e the typical textbooks of Simo and
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3.4 Elastoplasticity with Damage

Hughes [164], Lemaitre [90] and Lemaitre and Chaboche [8dJecommended.

3.4.1 Constitutive Modelling

For geometrically linear elastoplasticity a split of kingine quantities is proceeded. Translated to the
interface, this would be a split of the (overall) displacetjemp [u] into an elastic parfu]® and a
plastic parfu[?.

[u] = [u]® + [u]” (3.61)

Tractions are given as
T=7([u]’a},d;), i=stn (3.62)

dependent on the elastic part of the displacement jumptiplparametersy and damage parame-
tersd; (see also section 3.3). The second law of thermodynamicwes dpy the Clausius-Duhem
inequality, reading as

D=Dpe=W-0>0 (3.63)

where the free energy of the interface occupies the deperegen
U = U([u]® ol d;) (3.64)
and)V denotes the traction power, reading as
W=r-[u] =7 [[u] +[u]'] (3.65)

Accordingly, the Clausius-Duhem inequality can be rewntas

[T—iﬁi-@r+71ﬂp—ij§3@+gidY>o (3.66)

The Coleman-Noll entropy principle implies

(2

(3.67)

The so-called interfacial internal stress or, respectj\@rdening traction ir-direction is defined as

ov
;= — 3.68
while the so-called damage driving force shall be given anoee as
ov
[; = — 3.69
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

With this in hand, the reduced dissipation inequality istien as

Dya=7-Tu] +3 [RZ- &+ i di] >0 (3.70)

The thermodynamic force shall be given ﬁy = {7, R;, 1;}. Then, constitutive relations are intro-
duced by means of the interfacial yield function, reading as

PP = Pr(SY) <0 (3.71)

The interfacial yield function is negative in the elastinga and zero if plasticity evolves. The elastic
range shall therefore be defined by the closure

gl = {s | o(s) <0} (3.72)

The postulate of maximum dissipation, as proposed by elg[@3] and Lubliner [98], can be adapted
to the interface, reading as

Drea(SY) > Drea( ST ¥V S € & (3.73)

By the related constraint maximisation problem, see SintidHughes [164], the interfacial associated
evolution equations or, respectively, flow rules follow as

: P P(SH
[u]” = - i - aq)zaf@ ), D [wil? = [u]’ with i=stn (3.74)

i

. if
Y14, oR (3.73)

being decoupled in the interfacial orthonormal base system{s, ¢, n}. The Lagrange multipliers
are denoted a%. The related Kuhn-Tucker optimality conditions of loadawd unloading are given

as

AP >0, STy <0, Arar(ST)=0 (3.76)

The postulate of maximum dissipation does generally notyiritpat dissipation is positive. Ther-
modynamical consistency will be shown later. A quadratierfat of the free energy is introduced
as

U([u]®, ol d;) = W], d;) + vri(a?, d;)

= Sl [0 - a) Ol g S -] el (377)

% 7
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3.4 Elastoplasticity with Damage

introducing the plastic hardening modulidrdirection, H”. This renders the tractions and the hard-
ening tractions as
T=) [1-d]C/" [[u] — [u]’] (3.78)

The so-called effective tractions and effective hardemiagtions, given in the undamaged part of the
interface, are given as ‘
7=Ce. [[u] — [w]?] (3.80)

Ri = —H"o? (3.81)

The formulations for the damage related quantitigs:; andi;, compare section 3.3, are introduced
as

di = 1 — exp(Jji[pico) — pi)) (3.82)

Being accountable for the progression of damagedirection, the variable; is computed according
to

Hi = maX{ﬂi([[u]]e, O‘f)v ,uz(O)} (383)
The damage driving force is given by
i = —0u% = [l Y [ul 4 JHY ol (3.84

Before going into detail concerning algorithmic aspedis, directionally decoupled interfacial yield
functions are specified, mainly inspired by Miehe and Saer$118]:

¥ =] 7-i| [V~ R] <0 (3.85)

with Yy denoting the interfacial yield tractions. Equation (3,86gether with equations (3.74) and
(3.75), then renders

[w]” = - = —sign(z - i) (3.86)
P
& = ﬂ—d (3.87)

In section 2.3, the continuum tangent modulus is given byPitaadtl-Reuss Tensor. Accordingly, for
the interfacial material law as discussed here, an intaifteangent modulus is defined via

F — Ciferd [[12]] (3.88)
It is found by developing the traction rate as

= [1—d]CT" [[w] - [w]’] - d; 7] (3.89)

1
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

If damage evolution is active, it holds

d; = Ji exp(Jiltio) — ,Ui]z [7i - (] — [[’dz']]p] + Hfo}d]] (3.90)

v~
!
di

In order to further develop equations (3.89) and (3.90)r#bes of the plastic displacement jump and
the plastic parameter have to be found. During plastic évoluthe rate of the yield function is given

by

P = 9797 - 7 + O, B’ Ry = 0 (3.91)

The rates of the effective traction and effective hardemiagtion are given as
7= C [lui] — [ul” (3.92)
R, = —H!d? (3.93)

Incorporating this as well as the results from equation®§)8and (3.87) in equation (3.91) renders
after some manipulations the Lagrange multipliers-airection as

LD

A sign(7;) [u,] (3.94)

Therewith, the rates of the plastic displacement jump amrdpilastic parameter are rewritten and
inserted into equations (3.90) and (3.89). Consequehtyirtterfacial tangent modulus is computed
as

0o =3 [ - a1 - ) A P - ] - f}'['/ﬂ i©i (395

Now, the reduced dissipation inequality is regarded onceentoorder to check thermodynamical
consistency. Equations (3.70), (3.78) and (3.80) render

Dmd = T [['U,]]p + Z[RZ Ozf + /11 dz]

= > —di]7 [ulf + Rid! + fi; dy)
D

= YRR + Rt + ud] (3.96)

(2

By incorporating the yield function (3.85) and the Kuhn-Kercoptimality conditions (3.76), equation
(3.96) is rewritten as

Dred - Z[(I)f ﬂ)/f + Y;(O) ’Yf) +w >0 (397)
g =0 >0 >0
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3.4 Elastoplasticity with Damage

Accordingly, the dissipation inequality is fulfilled andettmodynamical consistency is given.

3.4.2 Algorithmic Aspects

Again, a staggered algorithm is used to compute plastic amlade-related quantities. First, the
plastic update is proceeded. Accordingly, the damage peteans assumed to be fixed, given from
the previous computation step. For a discrete timeAtep ¢,,. 1 —t, > 0the implicit Euler backward
method is applied to the rate of the plastic displacemenpjum

[wll,) = [ulf + At Y [ud,, i = [u] +Z ’(”“ T dy SOy (3.98)

7

The effective tractions can, accordingly, be written as

A AVt .
Tntl = Z [?;f’el [l — [[u]]ﬁl—cz‘ 1+d:;,j SIgN(7;(n+1)) ’L] (3.99)

,L‘ Vv
Ti,trml

The effective traction iri-direction is then given as

_ _ A/yf(nJrl) . _ .
Ti(n+1) = Titrial = Ci 1—7d() SigN(Ti(n11)) 2 (3.100)
from which we conclude
A p( 3
. . _ z n+ . _ _
U= Yrial;  Ti(n+1) TG 1—7d() SIQN(Ti(n+1)) = Tijtrial (3.101)

Equation (3.101)is equivalent to

_ — D _

Titrial | — _ Ti(nt1) A%(nﬂ) Ti(n+1)
|Ti,t7’ial| - |7__ |
i(n+1)

|Tint1)| + €5 (3.102)

|7 trial 1 — din) |Tignt)|

Based on this relation, together with> 0 andAyﬁnH) > 0, we obtain after some transformation
p

A%(nﬂ)

T dyny and  sigi7ig,1)) = SIGN(7i trial) (3.103)

|7_-i(n+l)| = |7_—i,trial| —C
During plastic evolution it is essential to satisfy the giebndition

(I)f(n—kl) = |Titns)| — Yio) — Ri(n-{-l)] =0 (3.104)
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Furthermore, the Euler backward method results in

> > P Afyﬁ”*’l) D D _p
Ritnt1) = Ritria — H; 1_7%, Ripriat = —H; o, (3.105)
and o
Pyi(n—l—l)
p — AP
Yin+1) = Yi) T T g diom (3.106)
Equations (3.103), (3.104) and (3.105) render the explitate for the Lagrange multiplier.
P qu,trial []' - dl(ﬂ)] . P _ _
A/yi(n'i‘l) - ¢ + HP with q)i,trial = |Ti,tm‘al| - [YZ(O) - Ri,trial] (3107)

Of course, only if®?, ., > 0, plasticity evolves. If®}

i < 0, all plastic quantities remain un-
changed. This is taken into account by introducing

0 if r. <0
ep itrial —
G = { 1 if 7 i > 0 (3.108)
and setting
AA~P _ ~ep q)f,trial [1 - dl(n)] 3.109
Yitnt1) = Gi ot H (3.109)
Combining equations (3.100), (3.101), (3.103) and (3.1,Gv¢ end up with
7_-i(n+1) - ’T_i,trial - CSPHLI% Sigr(’fi,trial) 1 (3110)

The effective traction vector update, ., is then given by assembling terms of all directions as well
as the nominal traction vector updatg, ;.

Tnt1 = Z Ti(n+1); Tntl = Z[l — diw)|Tin11) (3.111)

Concerning the damage quantities, the update is now coesdygwomputed by incorporating the
current plastic or, respectively, elastic displacememigiiu]; ., = [u],11 — [u]} ., yielding

din+1) = 1 — exp(Ji[pio) — Hin+1)]) (3.112)

with
Hint1) = MaX{ ity ([w]5, 41, Oéf(nﬂ)), [i(n)» Hi(0) } (3.113)

and
flin+1) = =0, = ey, G a4 S H ) 3.114
Fitnt1) = =04 Un1 = 5[[u]]n+1'ci ulig + §Hz' Xi(nt1) (3.114)
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3.4 Elastoplasticity with Damage

given: [w]ni1, [u]?, O‘f(n)’ di(n)

1. trial value: COMPUtET; 1| = ¥

i,trial

0 if (I);Ztrial S 0

2. check yield function: (;* = {

it e ., >0
: e CI)Ii)tm'al[l - dz(n)]
3. traction update: AVipyny =G — . = [ulni o

4. tangent modulus: ~ C*

5. damage update: compuyig, 1) = dimt1)

Table 3.2: Algorithmic procedure for interfacial elastagticity with damage

When solving the obtained set of nonlinear equations witlasstcal Newton scheme, the so-called
algorithmic tangent
i (77' 1
Ciert = L 3.115
5 Fful (G119
is required to compute the global tangent matrix of the fiaieament code. Using equations (3.78) in
the given algorithmic context together with (3.115) gives

OT 41 if.el a[[u]]fhtl
_ 1 — dym]C - T — 3.116
Sl = 2l dioo) [ 8[[u]]n+1] (3.116)

7

To further develop equation (3.116), we observe from equg.98)

(9A*yf(n 1)
Olu]ns

uly 1 p OSIONTi(ny)) 7]
Olu]nsa - Z [A%(HH) Olu]nsa

Combining equations (3.101), (3.103) and (3.117) renders

+ S9N i 1) 1] © | 0= diw) ™ @117)

7
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aA’yﬁn—f—l) o e g a[|7ti,trial|/[ci+HfH
a[[“]]n—f—l - C@ [1 dz(n)] a[[u]]n—i-l
o[ [CP - [[ulnsr — [ul?]] -4 | /[ci + H!
e O s ] e 7]
= Cfp[l—di(m]%mi (3.118)

where(;” has been evaluated at the beginning of the algorithmic pitwee Furthermore, it holds

a[SIQr(%’L trial) 7'] a[i—z trial/Hi—i trial H] a/l'
s — ’ ? — = 0 3.119
Oulns1 Oulns1 INu]ns1 ( )
Considering equations (3.118), (3.119) and (3.117) theesgi
oulb 4 Gt
ntl _ S S A2
al s Z T i®i (3.120)
Reinserting these results finally renders
if,epd Ciep if,el
Cily™ =D [ — din)] [1 1+ Hf"’/ci] c/ (3-121)

7

The algorithmic procedure is once more reflected by Tab. 3.2.

3.4.3 Prototype Example

Now, a prototype example is presented which demonstragdsitictionality of the elastoplastic dam-
age law discussed above. The plot has been created by a ferberg simulation of a single lap
tensile specimen, with linear elasticity for the bulk anasébplasticity with damage for the interfacial
zone. In Fig. 3.5 the plastic behaviour begins at approx0®8Whereas damaging occurs at 7000 N.
Obviously, the damage law induces some softening behawidnich is also observed in the unloading
behaviour.

3.5 Viscoplasticity with Damage

In this section the material model of interfacial viscopigs/ with Lemaitre-Type damage is dis-
cussed. This constitutive relation reflects rate-depenidéerfacial material behaviour with equilib-
rium hysteresis. In our case the ansatz of Perzyna, segPergyna [142], Perzyna and Wojno [143]
and Chaboche [34] is applied. In this context a yield surfssgarates an elastic and a viscoplastic
domain. The framework of this theory includes classicabitéty as a special case. An adequate
one-dimensional model is depicted in Fig. 3.6. Other apgresa of viscoplasticity are given by an
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6000
12 disp. loading, 9 unloading
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19 disp. loading, 11 unloading
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Figure 3.5: One-dimensional exemplary force-displacegmkts of elastoplasticity with damage

abandonment of yield criteria and an uniform formulatiohef viscoplastic evolution, see, e.g., Hart
[63] and Miller [119], and a split of stresses into an ratdapendent and a rate-dependent viscoplastic
part as proposed by, e.g., Krempl [83] and Krempl and Boroo[&#4].

For some more recent achievements in the field of viscoplgssee, e.g., Ortiz and Stainier [133]
and Espinosa et al. [52].

3.5.1 Constitutive Modelling
Again, a split of the overall displacement jump into an etaand a plastic part is carried out.
[u] = [u]® + [u]™ (3.122)
The traction vector is given as
T =71([u]% ", di), i=s,t,n (3.123)

It depends on the elastic part of the displacement jump, sdseeplastic parameters” and some
damage parametetis. The Clausius-Duhem inequality reads as

D=Dpe=W-02>0 (3.124)
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[}
A
[}

[u]* [u]”

Figure 3.6: One-dimensional model of viscoplasticity

with the free energy of the interface, reading as

U =U([u]® o, d;)

The traction power is denoted by

- _op

W=7 fu] =7 ([u] +[u]"]

The Clausius-Duhem inequality can then be reformulated as

e ] Bl Bl - 3 [+ e d] 20

By taking the Coleman-Noll Entropy Principle into accouhts essential that

)

- ov
- Olu
The hardening traction ixdirection reads
ov
= gam

7

The damage driving force, compare previous chapters, engig

_ oy
i = ad,
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3.5 Viscoplasticity with Damage

Consequently, the reduced dissipation inequality is fdated as

Dya=7-[u]” +3 [RZ- &+ i di] >0 (3.131)

With the thermodynamic force being given aﬁ = {7, R;, ii;}, the interfacial viscoplastic yield
function is introduced as ‘
O = 7(S)7) (3.132)

Please note that, compared to elastoplasticity with dapthgeyield function shall not be restricted
to negative or zero values. Nevertheless, some elastie reargbe defined by the closure

& = {8 | ay(sY) < 0) (3.133)

In the case of inelasticity some plastic threshold is overecand the so-called effective excess traction
in ¢-direction for the undamaged interfacial material fracti® given as

_ 7i—Yio—R) if & > Y- R _ S
£ — — . — = il — YZ — Rz Si i 3.134

Motivated by equation (3.134), the viscoplastic yield fioic is then defined as

(%) = |7l — [Yio) — Ri] (3.135)

Incorporating the viscosity ig-direction, an adequate constitutive relation concertirggrate of the
viscoplastic displacement jump reads as

vp 77—633
= 3.136
]] i [1 - di] ( )

As already mentioned in the introduction, the ansatz ofy#exzsee, e.g., Perzyna [142], Perzyna and
Wojno [143] and Chaboche [34] is applied. In this contextiedd/function of the format as introduced
in equations (3.134) and (3.135) enters equation (3.13)efiorm

[ui

: ]]vp 1 1 oP;”

1 = g W) signm) = e @7 (7 it o 3.137
bl = gy & (VST = g () g T A0 (3.137)
being equivalent to
o (®P()) 0B AP o 4P
bl = ni[1—d;| 07 C1—d; 01, 1—d, sign(7;) (3.138)

denoting the evolution equation for the rate of the viscsitadisplacement jump and introducing the
penalty parametey,”. Accordingly, the rate of the viscoplastic parameter camjgessed by

o _ (D(T) 0% 4"

g = 3.139
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Please note that for viscoplasticity the Kuhn-Tucker optity conditions of plasticity are not legal.
Nevertheless, some conditions with respect to the penaltgnpeter and the yield function can be
defined:

BP0, AT eR(ST) >0 (3.140)
In view of the rate of the effective tractions, it has to bdifieid
S (T L
T, = ¢ [[ui] — [wi] ] = ¢ |[wi] T d o (3.141)
The free energy is introduced by a quadratic format, read#ng
U([ul®, i, di) = T[], d;) + T(a), di)
1 e if,el e
= Sl [ Y -d] P [ul
1 v vp2
+ 5> dlH A (3.142)

i

introducing the viscoplastic hardening moduliddirection, H;”. Hence, tractions and hardening
tractions follow as '
=Y [1—d]C/ [[u] - [u]”] (3.143)

Effective tractions and hardening tractions, which ares@ne¢ in the undamaged fraction of the inter-
face material, are given as
7 =C" [[u] — [u]™] (3.145)
Ry = —H"a}" (3.146)
Concerning the quantitieg, u;, ji; related to Lemaitre-type damage, expressions from se8tibi
can be adopted for viscoplastic quantities, see equat®8g), (3.83) and (3.84). For computational
treatment algorithmic expressions are derived in the reptian, being closely related to the algorith-
mic aspects concerning elastoplasticity with damage aswed in section 3.4.2. Now, the reduced
dissipation inequality is investigated for thermodynaahimonsistency. Following the investigations
of section 3.4.1, it is found

Drea = D B 37 + Vi) 31" + fuds] > 0 (3.147)
‘ >0 >0 >0

Consequently, the dissipation inequality is fulfilled ahd traction-separation-law is thermodynami-
cally consistent.
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3.5 Viscoplasticity with Damage

3.5.2 Algorithmic Aspects

To get an update for the viscoplastic displacement jumpintipdicit Euler backward method is once
more applied:

[l = [ul? + At [ul%y i = [u] ”MZ ’(”“ T g S i) (3.148)

Effective tractions are then rewritten as

AP

Tot1 = Z [\Céf’el [l = [[u]]ff’l 1_#;:1) SIgN(7Ti(n41)) ¢ (3.149)

i -V

Ti,trml

In analogy to equations (3.100), (3.101) and (3.102) it bold

_ _ AW;)(Z;H) oo S
|Ti(n+1)| - |7—i,t7’ial| — G 1—7d() and Slng’i(TL+l)) - Slgr(Ti,trial) (3150)

The viscoplastic yield function is given as
(I):(pn+l |7_'i(n+1)| - [Yi(o) - Ri(nJrl)] (3.151)

Concerning the hardening tractions the Euler backward otetbnders

> 5 AViry) =
Ritni1y = Ririal — H” ———= R pia=—H" o (3.152)
' 1-— dz(n) ’ i(n)
Accordingly, equation (3.151) is rewritten as
_ Ayl
q);)pn = |77—i(7’b+1)| - Y;(O) + Ri,trial - szp M
(n+1) 1= dign)
Ay, _ AP
- Z(n‘i’l) up ’L(TL+1)
= |Tiprial| —Ci7—>— —Y; Ritriat — H'? ———
|T7t ll ¢ 1 — dz(n) (0) + sbrial ‘ 1 — dz(n)
Aitn
= CI);}I;Twl [Cl + va] 1%6;1) (3153)
i(n)
with i
(I)fzz;"zal |7_—i,tTi0«l| - [Y;(O) - Ri,trial] (3154)
The time-discrete update of the viscoplastic penalty patams defined as
o
i(n+1
AP = Ar ) (3.155)

i
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

whereAt denotes the time increment. Combining equations (3.158)&155) yields

At AVZ}(I;H)
— | — e, + H” — ANP =0 3.156
;i i,trial [C + 1 ] 1 — dz(n) P)/z(n-i-l) ( )
This is further transformed into
PP
A’va _ i,trial (3 157)

) e + HP)J[L - di(ny] + ni/ At

giving the update of the viscoplastic penalty parametertaiigy, this is only valid during viscoplastic
evolution. If®» .~ < 0, all plastic quantities remain unchanged, which has be@nesged by

i,trial

Macaulay-brackets in section 3.5.1. Now, this is algorittatly taken into account by introducing

i,trial — (3 ) 158)

o f0H @ <0
Pl @, >0

The viscoplastic penalty parameter is then rewritten as
.
Ayt =7 - i (3.159)
i(n+1) [Ci + H, p]/[l _ di(n)] + m/At

Considering equations (3.100), (3.150) and (3.159) result

vp
i,trial

1 + Hivp/ci + n; [1 — di(n)]/[cz- At]

SION(T; rial) © (3.160)

Ti(n+1) = Titrial — Cz

Assembling terms of all directions the effective tractia@ttor update,, ., and the nominal traction
vector updater,, ., read as

Tntl = Z Ti(nt1); Tntl = Z[l — di(n)]‘]_-i(n+1) (3.161)

Now, the direct damage update is computed, in analogy totemsa(3.112), (3.113) and (3.114),
yielding

ditnt1) = 1 — exp(Jiltio) — Himr1)]) (3.162)

with
fitn+1) = M i) ([ulf 1, 50, 0))s i) i) } (3.163)

and
7 = =0 = Lupe Pl [l + S HP O 3.164
Pitnt1) = —04; Uni1 = 5[[u]]n+l'ci ul £ §Hi Qi(nt1) (3.164)
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3.5 Viscoplasticity with Damage

given: [w]ni1, [uli?, O‘:(I;)’ di(n)

1. trial value: COMPUtdT; 4| = .7

i,trial

0 if P <0

itrial —

it o >0

2. check yield function: (;” = {
i,tria
up

H . v v i,trial v v
3. raction update:  Avgy) = (" o+ H)/[1— digw] + /A bl @i

4. tangent modulus: ~ C*"

5. damage update: compuig, 1) = dimt1)

Table 3.3: Algorithmic procedure for interfacial viscogti@ity with damage

where the elastic displacement jurfw]’,, = [u].+1 — [u],’; has been incorporated. Next, the

algorithmic tangent modulus is computed. It is given by

Cif,vpd o aTnJrl

alg - a[[u]]n—f—l (3165)

and will be incorporated into a Finite Element code. Equeti8.143) and (3.165) together yield

aTﬂ+1 if,el a[[u]]zljl—l
_—intl 1 —din)|C T — "= 3.166
Dul,ey — 2~ IO [T G (3.166)

For the further development of equation (3.166), equatsof4@8) is incorporated, giving

vp

8A#)/z(n—l—l)
a[[“’]]?ﬂ-l

lu] by _ Z [A o OlSIONTins1)) 4]

. -1
Ol L e P [ 11— di) ™ @.267)

+ [SIgN(Ti(n+1)) 3] @

i
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Equations (3.150), (3.159) and (3.167) together render

OAY; (i) o | Titrical /le: + H"/[1 = digmy) + i/ At]]
a[[u]]m-l ‘ a[[“]]?ﬂ-l

_ o O[] [C7 - [[u]ner — [ P)] -4 | /lles + HPY/[L = digny] + 0/ At]
- a[[“’]]?ﬂ-l

— (v SigN(7; trial) )
= AT - i)+l AT (3.168)

Considering equations (3.168), (3.119), (3.150)d (3.167) renders

Oulily 3 i G" i®i (3.169)
Olulnyr o 1+ H"ei+ i [1 = dign)] /s A]

Reinserting this into equations (3.166) and (3.165), rethpady, yields in the algorithmic tangent
modulus, given by

vp
Cifvrd _ 1—dyn] |1 - Si Cihel 3.170
alg Z[ ()] [ L+ H"/ei4+n; [1 — diw)]/[e; At]] ° ( )

(2

The most important algorithmic aspects are comprehendé&alin3.3.

3.5.3 Prototype Examples

Subsequently, demonstrating the functionality of theadastic damage law introduced above, some
prototype examples are presented. The plots have beerdreata finite element simulation of a
single lap tensile specimen, with linear elasticity for lbludk and viscoplasticity (with damage) for the
interfacial zone.

In Fig. 3.7 relaxation behaviour is shown on the left hane sitiereas creep behaviour is presented
on the right hand side. In both cases damage has been switfltedocus on the purely viscoplastic
material law. Additionally, in both cases, an elastic-ptasomparison curve has been plotted, refer-
ring to the case without damping. Concerning relaxatioffieidint starting points have been chosen,
rendering different lines. All lines end before they reakt é&lastic-plastic comparison curve. This
is due to the fact that the damper needs an infinite amouning to relax. In contrast, in the case
of creep, the elastic-plastic comparison curve is exceéuted very large number of creep steps. In
contrast to viscoelasticity no parallel spring is at han@n§zquently, the model allows for infinite
creep displacements.

In Fig. 3.8 damaging behaviour is presented. On the left Isae] some displacement controlled
viscoelastic behaviour is plotted with and without dama@amage is activated at approx. 4 kN,
being visible by the decreasing character of the red curveth® right hand side, 250 creep steps are
extended by damage. Without it the elastic-plastic consparcurve would not be exceeded here.
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Figure 3.7: One-dimensional exemplary force-displacaméots of viscoplasticity. Left: displace-
ment control. Relaxation behaviour, starting from différpoints of the loading history.
Right: force control. Creep behaviour, starting from diéiet points of the loading history
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Figure 3.8: One-dimensional exemplary force-displacenpéwts of viscoplasticity with Lemaitre-
type damage. Left: displacement control. Damage is aetivat approx. 4 kN. Right:
force control. Creep behaviour - the elastic straight Imexceeded because damage is
active

3.6 Fatigue

Many technical products are subject to fatigue loading. Seguently, also material interfaces suffer
from fatigue effects. This creates the need of adequatefacial fatigue models. Generally, it is
distinguished between low-cycle-fatigue and high-cyfalegue. Typical cycle numbers concerning
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

low-cycle-fatigue are resident in the range®@£10°) — O(10%) while high-cycle-fatigue is on hand
for higher cycle numbers. According to this distinctionffelient material models are supposable.
Concerning high cycle numbers, a cycle-based formulasanastly incorporated while for low cycle
numbers a direct retracing of the loading history by resw\single cycles in several loading steps is
practicable. Typical for both possibilities is the fatigigdated application of damage mechanics as
proposed by Lemaitre [90] and Lemaitre and Chaboche [91}idw of high-cycle-fatigue, fatigue
damage evolution has often be defined to be stress depesdent.g., Lemaitre and Plumtree [92],
Hua and Socie [68] and Chaboche [35]. However, by furtheeliging the formulation of Paas et al.
[135], Peerlings et al. [140] proposed a strain based fasmabeing of the same form as the high-
cycle part of the classical strain-based approach to fategidescribed in Manson and Hirschberg
[104] or, respectively, Basquin’s law, see Basquin [8].dsbeen adopted in an interfacial context by,
e.g., Robinson et al. [149], Munoz et al. [123] and Erinc et[&0]. A cohesive low-cycle-fatigue
formalism was developed by Nguyen et al. [127] and was furéx¢ended by Arias et al. [2] for
coupled problems, however, without placing emphasis omutserical implementation.

3.6.1 Constitutive Modelling: General Remarks

For the constitutive modelling of fatigue effects, we oncerenapply Lemaitre-type damage. It is
assumed that by the influence of cyclic loading in the elastijtme of the interface, stiffnesses are
decreased. This clearly leads towards a material modeilimgh is identical to elasticity with damage

where the damage parameter is motivated specifically fotyipe of fatigue which is present. The

nominal tractions depend on the displacement jump and timagda variable € [0, 1] with d>0:

7 =71([u],d) (3.171)

Please note that, in contrast to the decoupled tractioaragpn laws of previous sections, the damage
evolution is synchronal in all interfacial orthonormaletitions. The second law of thermodynamics,
represented by the Clausius-Duhem inequality, is given as

D=Dpe=W-U>0 (3.172)
Concerning the free energy, dependencies are given as
U = U([u],d) (3.173)
with 1V being the traction power. Equation (3.172) can consequéetleformulated, yielding

[7- _ %} a] — Z_\id >0 (3.174)

Incorporating the Coleman-Noll Entropy Principle renders

ov

= Ol (3.175)
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The reduced dissipation inequality is computed straighiéodly and reads

ov .
Dyed = ——d > 17
red 57 d>0 (3.176)

Again, the free energy relation is introduced in a quadifatimat, reading as

W ([ul, d) = % 1 —d[u] - C* - [u] (3.177)

Simultaneously, nominal tractions follow as
r=[1—dC". [u] (3.178)
The effective tractions are computed by the simple relation
7 =C" . [u] (3.179)

The reduced dissipation inequality is consequently résrias

1 | .
Drea =5 [u] - €' - [u] d >0 (3.180)

Obviously, it is always positive and thermodynamical cetesicy is fulfilled.

In the following, two differently motivated fatigue damageolution formulations will be presented.
The first one is called “Time-Based Fatigue Formulation” esrppropriate for low-cycle-fatigue sim-
ulations while the second one, named “Cycle-Based Fatiguaiation”, is capable of representing
high-cycle-fatigue loadings. Both methods inhere a comgraund which is given by an effective
guantityd, defined as

6 = /2 [T + B2 [l + 52 [P (3.181)
with
[w,] =[u] -2, i=st,n (3.182)

andg,, 5; andg, denoting material parameters, controlling the influenddeprojected displacement
jumps ond while ¢ € {s,t,n} are the already known orthonormal unit vectors charadteyithe
interface itself. This effective quantity approach is dedpin the interfacial orthonormal directions
and similar to the approach introduced by, e.g., Pandolfi@utiz [137], Pandolfi et al. [136], Ortiz
and Pandolfi [132], Cirak et al. [36], Corigliano et al. [42jchothers.

3.6.2 Constitutive Modelling: Time-Based Fatigue Formula  tion

The Time-Based Fatigue Formulation traces a cyclic loadistpry not in cycle-by-cycle steps but

in arbitrarily exact time intervals or, respectively, laaglsegments. One of the first elaborations con-
cerning this matter, considering an unloading-reloadiysidresis for a traction-separation correlation,
was published by Nguyen et al. [127]. Therein, loadingséiffs rates have been constructed such that
shakedown effects are prevented. An application to thagired of fatigue-crack nucleation has been
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provided by Serebrinsky and Ortiz [160] while Arias et al] §plied the same elaborations to the
cohesive modelling of ferroelectric fatigue. The matelaaV which is applied to capture low-cycle-
fatigue shall be given as an exponential function, to beiipec

«

d = exp ( . 5) (3.183)

with & being a positive material parameter. Herebjakes the interpretation as a history-dependent
effective quantity.

3.6.3 Algorithmic Aspects: Time-Based Fatigue Formulatio n

An incremental update for the damage variable is accongadisiith index» + 1 denoting the current
loading step. Itis given as

dpy1 = exp ( _ ¢ 1) (3.184)
n+

The related history-dependent effective quantity updated as follows:
Ont1 = On + (Ony1 — 0n), 0 =0 (3.185)

For loading, the expression in the Macaulay-brackets igipesaand the history-dependent effective
quantity is updated whereas, for unloading, it will be ne¢gi. Consequently, only an increasihg
contributes to the damage evolution in this rather simpleeffficient formulation. Nevertheless, all
types of cycling, incorporating cyclic compressive, ténsind alternating loads, are time-explicitly
reflected, contributing to the evolution @in the same manner. Related, updates for the effective and
nominal traction vectors are given as

Tos1 = CP  [u]nr, Toor = [1 — dpsa] Tost (3.186)

The algorithmic tangent of the Time-Based Fatigue Formalgsdefined as

~ orT
iftbf _ nl 3.187
Calg ulns1 ( )
Equation (3.186), together with equation (3.187), yields
a’7'n+1 i _ 3dn+1
— N —d, | CP -7, @ 3.188
Iu]n+ | 1l o Iu]nta ( )
For the further development of equation (3.188), equatsoh84) is exploited as
Odly 11 @\ o Ong
———— =exp| — = a 3.189
g~ P (" 5 O (5:489)
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given: [u]nst, dn

1. damage update: 6,1 = b, + (01 — 0n), 0 =0

Q
dn+1=6XP<— = )
n+1

2. traction update: 7,1 = [1 — dpyt] CF - [u] s

if,tbf

4. tangent modulus: C;;/

Table 3.4: Algorithmic procedure for interfacial time-leddatigue

In view of equation (3.185), it holds

D01 = 8) _ ap _ [ 11 Guia=8,>0
0041 0 if 6,41 -0, <0

Furthermore, incorporating equations (3.255) and (3.1i88plds

aSnJrl

Ou]nsq =" oh Z@Q [wilnir, i=s,t,n

Inserting the result of equation (3.191) into equation§9)Irenders

————— =exp ( - Sd ) dS;fl 57;11 ¢ 2@2 [wilnr

n+1

This, together with equations (3.188) and (3.187), yiethdsalgorithmic tangent

7 1 f.e (67 . T— — _
Cajle’gtbf = [1 = dpt] O —exp < = ) 045ni1 57141-1 T @ Z@Q [widnr

The concisely comprehended algorithmic aspects are givéah. 3.4.

(3.190)

(3.191)

(3.192)

(3.193)
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Figure 3.9: Force-displacement plot of time-based fatigiigplacement control

3.6.4 Prototype Example: Time-Based Fatigue Formulation

The exemplary force-displacement plot included here has bemputed by applying cyclic displace-
ments to a finite element discretisation of a single lap tersgiecimen, with linear elasticity for the
bulk and time-based fatigue for the interfacial zone. As Bi§ shows, the force decreases with con-
tinued cycling. This is due to the damaging influence, beimged by the history-dependent effective
guantityd.

3.6.5 Constitutive Modelling: Cycle-Based Fatigue Formul ation

The fatigue formulation for high-cycle-fatigue is basedeoconstitutive integration over many cycles
by means of a cycle numbéf. This idea has first been implemented for continua by Pads[éG&],
Peerlings [139] and Peerlings et al. [140]. Concerningrfates, similar formulations have been
adopted for uncoupled problems by Robinson et al. [149], d&wat al. [123] and Erinc et al. [50]. In
the following, it is proceeded along the strategy describdéleerlings et al. [140], applying it to the
interface. The damage variable is related to the deformdyomeans of a damage loading function

f(o,k)=0—kK (3.194)

whererx is a threshold. Thereby, damage evolution will be activané given effective quantity
exceeds:. Here, the material law is given by the rate of the damagenpeiexd as

d_{h(d,é)é if f>0, f>0, and d<1

3.195
0 else ( )
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with the evolution function )
h(d,8) = Cexp(7d) 6” (3.196)

andC, 3 and¥ denoting material parameters.

3.6.6 Algorithmic Aspects: Cycle-Based Fatigue Formulati on

Now, assumel;, d;, »; t0 be damage parameters corresponding to points in#iame¢ + At. For
continued loading, integration of equation (3.195) therdess

AL
dtJrAt = dt + / d(T) dT (3197)
t

To avoid the influence of some highly varyidgan approximation of this correlation is not advisable.
Therefore, a sum notation with respect to single cycles mhioation with a transformation of inte-
gration limits concerning time and cycle numbers is accashpd. With this in hand and the damage
evolution being active, combining equations (3.195) antiq3) renders

N-+AN

6a,k
dveav=dy+ > [ bl d) &, (3.198)
k=N YR

with N andN + AN being the number of performed cycles at points in ttraedt + At. Moreover,
dak» 0 @andd;, denote the effective parameter amplitude at cycléhe variable effective parameter
and damage parameter during cyklelt shall be mentioned that, again, only loading relateshall
contribute to the damage evolution. For the thus obtain@tession ford . Anx neitherd, ; nor d;
would vary much within a sufficiently small incremeAtN. Hence, the sum expression in equation
(3.198) can now be approximated. Application of the trapgadaule with respect to loading cycles
N andN + AN is reasonable, which ends up with

1
dysay = dy + 3 ¢ [Z(dw, 0an) + Z(dNsan, San+an)] AN (3.199)

wherein 5
7 = Qb /h(d, 9) dd (3.200)

In equation (3.199) an additional parameter is introduoegttount for subthreshold loading.

1 if  d,>k
= . 201

¢ { 0 else (3.201)
Furthermore, equation (3.200) contains the paranietgr It is defined as

Qebl _ { 2 for alternating loads, mean load zero

. . . (3.202)
1 for exclusively tensile or compressive loads
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Due to the positiveness of the effective displacement jufifp, = 2 implies that for alternating
loads, the tensile and compressive loading parts have the sansequences on the damage evolution,
assuming that both parts are equal in their norm. In othedsydhe effect of the tensile part of the
load is put on par with the compressive part. In addition te #implifying assumption, alternating
loads with mean loads unequal zero are not included in thmsdtation. Next, according to Peerlings
et al. [140], Heun’s method enables to solve equation (3.IB8is is accomplished by incorporating
the Euler forward method. In detail, introducing a predistalued,, reading as

dy = dy + Z(dy, 6,n) AN (3.203)

replacesiy ay. Finally, equation (3.199) together with (3.203) render damage update to take the
format

1
dyian = dy + 3 (M Z(dn, ban) + Z(dp, danan)] AN (3.204)

which nicely can be incorporated into a finite element cont€ke accuracy of this strategy is raised
by diminishingAN. Forx # 0, either the range of cyclic compressive or tensile loadsb=ad-
dressed, or a non-damaging zero-symmetric regime comgesnis achieved for cyclic alternating
loads. In view of numerical implementation, equation (328 formulated in terms of computation
stepsn + 1 andn, reading as

1
dngr = dn + 3 ¢ Z(dy, Oan) + Z(dp, Spsr)| AN (3.205)
Additionally, a so-called damage cut-off shall be defineal vi
. 1
dpi1 =099 if d,+ 3 ¢ [Z(dn, ban) + Z(dp, Sans1)] AN > 0.99 (3.206)

Thereby, the damage parametkrs prevented from exceeding its co-domdinl1[. Effective and
nominal tractions follow straightforwardly as describadeiquation (3.186). According to equation
(3.186) the tractions follow straightforwardly. The algbmic tangent of the Cycle-Based Fatigue

Formalism is defined as

; or
if,ebf n+1

Equation (3.186), together with equation (3.207), yietds i

87’ +1 ; _ c?d 1
n — 1 - dn sz,el — T ® n+ 3.208
Ou]ni1 : +1 ! Ou]nia ( )
Equation (3.208) is computed by taking equation (3.20%) atcount:
adn-f—l 1 bf aZ(Dpy(;a n+1)
—— = —-(“ AN : 3.209
Ofuly 2 Ol (5:209)
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3.6 Fatigue

The appropriate’ is computed as

Oa,n+1 Oa,n+1
Z(dy, byn1) = QY / h(d,,8) ds = Qf / Cexp(¥d,) 6° ds
- QbeVLeXp(ﬁdp) [5’6+_1H HB—H] (3.210)
ﬁ—i—l a,n

Accordingly, it follows

(9Z(dp, 5(1 n+1) b . 85(1 n+1
N e L N O 1S fC exp ’}/d (an (3211)
a[[u]]n—i—l ( ) i a[[ ]]n-i-l
where 95
a,n+1 —1 22
— 2 T 212
Olu]nia a1 ;@ s ¢ )
Equations (3.211) and (3.212) together yield
02y unin) _ bt ¢ exp(d,) 6751, Z B2 1] s (3.213)

a[[u]]n-i-l
Reinserting equation (3.213) into equation (3.209), thevdeve of the damage parameter follows as

adn-i—l

e f AN QP C exp(7d,) 67 wil, 3.214
Oulpsr C p(¥ an+1 Zﬂ +1 ( )

In the end, by inserting equation (3.214) into equation8)2the algorithmic tangent can be com-
puted via equation (3.207) as

1],C 1],€e ]' C C
clel =1 —d, | C? — QbeANQbeexp(vd)5an+17n+1®25 w1 (3.215)

alg

The most important algorithmic aspects are once more retldnt Tab. 3.5.

3.6.7 Prototype Example: Cycle-Based Fatigue Formulation

The exemplary force-cycle plot included here has been comdgay applying a constant displacement
amplitude to a finite element discretisation of a single E&pstle specimen, with linear elasticity for
the bulk and cycle-based fatigue for the interfacial zona.tl@ left hand side, Fig. 3.10 shows the
force over the cycle number. With growing cycle number, thed decreases due to the damaging
influence of cycle-based fatigue. On the right hand side @f &i10, a Wohler-diagram for one Gauss
point is presented, where the life cycle is associated withraage parameter value = 0.99, see
equation (3.206). The stair-like patterns result from thestant cycle incremenf V.
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

given: [u]nst, dn

1 if dg > K

1. D =
damage update: ( {0 else

computed,, Z(d,, 64n), Z(dp, 0gn+1)

1
dn+1 =d, + §Cbe[Z(dm 5a,n) + Z(dpa (5a7n+1)]
2. traction update: 7,y = [1 — dnyi] CP - [u],ps

4. tangent modulus: C7"’

Table 3.5: Algorithmic procedure for interfacial cycledea fatigue
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Figure 3.10: Left: force-cycle plot of cycle-based fatigulisplacement control. Right: Wohler-
diagram for one Gauss point, maximal traction over cycle loemm
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3.7 Linear Ferroelectricity

3.7 Linear Ferroelectricity

Also in the context of ferroelectric ceramics as, e.g., Héferfaces play an important role. In view
of the microstructure of such a material, grain boundaniesaentified as interfaces between grains,
inhering certain properties concerning stiffnesses, oggphenomena and permittivity. As phase
transformations are supposed to happen in the grain butk sfiects are excluded concerning the
interface. Furthermore, in accordance to section 2.4, #menof “linear ferroelectricity” shall be
adopted for the present interfacial material law. At firlsg tractions of a linear ferroelectric interface
are given in the dependencies
T =71([u],E) (3.216)

with E denoting the electric field strength in normal direnth of the interface. The current constitu-
tive formulation assumes decoupled interfacial stiffiessss proposed in section 3.2 while electrical
and coupling processes are only assumed to happen in the-atewionedq-direction. As also de-
scribed by equation (3.3), the dielectrical displacemérihe interface is given with respect to the
interfacial normal directiom and reads as

A = A([u], E) (3.217)

Here, no dissipation occurs because changes of the intdrtate are reversible since the mechanical
and electrical forces are supposed to be derived from patentConsequently, the second law of
thermodynamics reads as

D= Dloc - Wmech - ee —H =0 (3218)

elec

Again, due to the electrically coupled problem, the eleatnthalpy function is incorporated:
H = H([u],E;s,t,n) = in(\I/ — EA), s,t,n = const. (3.219)

The traction power and the complementary dielectric dgt@ent power are given as

Wineen =7 - [u], W, =AE (3.220)

elec

Related, the second law of thermodynamics is rewritten as
- [u] —AE—H=0 (3.221)
Due to the dependencies described in equations (3.216Ba2t/(), this is equivalent to

[ _ OH E=0 (3.222)

a[[uﬂ}'[[ﬁ]]*[_A_a_E

Incorporating the Coleman-Noll Entropy Principle rendéesinterfacial tractions and the dielectrical
displacements as

6H} .

om_ on
ou]’ ~ OE

T =

(3.223)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

Consequently, thermodynamical consistency is trivialiififed. The rate relations of tractions and
dielectrical displacements with respect to the rates otitbglacement jumps and the electric field are
given as

F=CIrd [u] — et B, A=eV [u]+ e E (3.224)
The associated Ferroelectric Interface Tangent Tensadsag
< 0?’H ; : 0?’H A
sz,fer,el _ _ C?f,fer,el : ) ifA _ z'f7A ;
ulco] v ©®% € o[uoE & ©¥
(3.225)
. PH it . 0*H
el = — =e; €, el = —
OF 0[u] OFE OF

By introducing an electric enthalpy function in a quadrétionat, compare equation (2.99), reading
as

H = % [u] - CHFeret [u] — E e - [u] — %a‘f E? (3.226)
the tractions and dielectric displacements of the inter&e rewritten as
r=Crd [u]—e' B, A=eV [u] +éE (3.227)
In this case it holds
el =eif> (3.228)

The electric enthalpy shall also be expressed by a coeffi@pnesentation which compares to invari-
ants of the tensorial case.

= H(I, 07 1l g7 KTy = Hy(I7 L7 1)) + Hy(JY) + Hy(KY) - (3.229)

with . .
ipn = {E*} ={J"}, ipgen = {[u] - n B} = {K} (3.230)
Thereby, the stiffness relations as introduced in sectidmBe adopted and it holds™/ /"< = ¢/,

Now, tractions and dielectric displacements are expreasetkrivatives with respect to coefficients
comparing to the irreducible set of invariants of the teis@ase:

OH OH OH
= ——— =2 : Q)i+ ——F
T [u] Z a[;f [[w] - 4] + KT n
= > ¥ [[u]-i]i+ Ppp. En, i=stn (3.231)
OH  0H OH

~295 = kv M- a5
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3.8 Linear Ferroelectricity with Fatigue

The evaluation of the quadratic electric enthalpy functioplies linear constitutive relations. It holds

etf 1 €,
o =——, &g, =— 3.233
[u] En le ) En 9 le ( )
leading towards
. if
Ci 4. €
T = EZ l—i[[[u]]-z]z—zEn (3.234)
etf €0Er
A= T [u] - n + ; E (3.235)
The Ferroelectric Interface Tangent Tensors consequesrdty
; €if : €o€yr
el =—mn, = (3.236)

Hereby, the permittivity of the vacuumy and the relative permittivity, are introduced. In what
follows, characteristic lengths are again set.as [, = 1, see chapter 3.2. Furthermore, the interfacial
relation of the electric field strength and the potentialpusinow specified as

E=—[?] (3.237)

Consequently, the tangent relations can then be compretersd

{H - { fffl _(Z; } ' { H } (3.238)

3.8 Linear Ferroelectricity with Fatigue

Concerning fatigue in ferroelectric materials, switchéfigcts in the grain bulk as well as grain bound-
ary effects play an important role. In this work the fatigeéated degradation of grain boundaries is
in focus. For a ferroelectric ceramic, depending on certaitcumstances, e.g. geometric influences
like notches, low-cycle-fatigue occurs, see for examplasivéen et al. [187]. Nevertheless, the most
common fatigue type is high-cycle fatigue. As well as for theeoupled problem time- and cycle
based fatigue concepts will be distinguished, introdutirgdamage parametére [0, 1] as the cru-
cial ingredient, see also Utzinger et al. [183, 182]. As aseguence, many details already described
in section 3.6 are adopted.

3.8.1 Constitutive Modelling

The basic material behaviour, neglecting fatigue damaga| ke linear and equivalent to the consti-
tutive relations as described in section 3.7. The depeneent the fatigue-influenced tractions shall

67



3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

be given as
T =71([u], E,d) (3.239)

while the dielectric displacements read
A =A(Ju], E,d) (3.240)

The Clausius-Duhem inequality is given as

D = Dipe = Wineeh — Wipee — H >0 (3.241)
For the electric enthalpy function, it holds
H = H([u],E,d;s, t,n) = in(\II — EA), s,t,n = const. (3.242)

Once more, traction power and the complementary dieledisiglacement power read as

Wineen = T - [u], W, = AE (3.243)

elec

This, together with equation (3.241) yields in
- [u] —AE—H>0 (3.244)

In contrast to section 3.7 dissipation is at hand, yieldimg@ditional term in the dissipation inequality.

E—2=d>0 (3.245)

0
[T_ = ad

Sl e [0~

By making use of standard arguments, the interfacial redld@ssipation inequality is given as

E)H}- OH .

oH .
Dyeg = ———d > .24
red 8d d_o (3 6)

with the tractions and dielectric displacements reading as

OH OH
_OoH oy oH 247
T O]’ OE (3.247)

Inspired by equations (3.177), (3.226) and the resultsaif@e3.7, the electric enthalpy is introduced
as

H= % 1—d[u] C’ . [u] — Ee’ - [u] - %eoer(d) E? (3.248)

see also Utzinger et al. [183, 182]. Fatigue damage shathisnformulation, only affect stiffnesses
and the interfacial permittivity. The tractions and dietexcdisplacements follow as

T=[1—-dC" [u] —e'E, A=¢e" [u]+ee(dE (3.249)

whereas the tangents occurring in equation (3.249) hagadrbeen stated in equation (3.225).
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3.8 Linear Ferroelectricity with Fatigue

The reduced format of the Clausius-Planck inequality ithierr specified as

OH . 1 : 1 e, (d)

g |z . if.el - 2 r
D;eq 5 d [2 [u] - C [u] + 5 eF 5
whereby the driving force is identified witti. Here, healing processes of the damage are excluded.

Consequently, the rate of the damage parameter is coredrain

d=Yd>0 (3.250)

d>0 (3.251)

Due to the fact that the driving force constrains the kireet€the damage parameter evolution, in-
equalities (3.250) and (3.251) indicate

d>0 for Y >0 (3.252)

d=0 for Y <0 (3.253)
providing thermodynamical consistency. The explicit tiela concerninge, andd shall be linear,
reading as

e,(d) = emt 4 [ecnd — it q (3.254)

(s T

Here, " denotes the relative permittivity at the beginning of a dgimg process whilec"? is the
relative permittivity at the end wheh= 1. The fatigue damage evolution is either of the time-based
or the cycle-based type as discussed in section 3.6, se&asmer et al. [183, 182]. The effective
parameter ansatz described in section 3.6.1 is now expamdedporating the electric potential jump.
This has first been done by Arias et al. [2]. Here, the effeqhi@rameter reads as

5 = /02 [l + 5 [wil? + 32 L] + 53 [@]? (3.255)

3.8.2 Algorithmic Aspects: Time-Based Fatigue Formulatio n

The updated traction vector and dielectric displacemeiisne-based fatigue read
Tpt1 = [1 - dn+1] ce [[U]]nﬂ —Enn eif, Apy1 = el [[u]]nJrl + €o€r(dn+1) Enia (3-256)
The appropriate algorithmic tangent of the coupled prokdéhmand is given by

Ctf et
. uu uP
sz,fer,tbf — (3.257)

alg
thf thf
Cou  Cod

The components of’}:/*"*/ are stated in the below. To compute those components, soxi@au

computations are carried out:

Be, b
_ cend _ _ini 2
3dm € e (3.258)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

given: [u]ns1, Engas dy
1. damage update: Ons1 = 0n + (Opi1 — 0n), 0o =0
a
dni1 =e€xp | — =
(-7-)
2. traction update: Tos1 = [1 = dpir] CP - [u] gy — Eppre'’

3. dielectric displacement updated,, ; = €/ - [u],.11 + €06, (dpi1) Enia

4. tangent modulus: Ci{éfembf

Table 3.6: Algorithmic procedure for interfacial ferroetiec time-based fatigue

adn—i—l o Q CF9 o1 bf g2
d],n T ( - E) @ Opty Oty € 03 [Pl (3.259)

Additionally, equations (3.188), (3.189) and (3.190) hald well as equations (3.191) and (3.192).
Finally, it holds

or,, ‘
Cul = 73[[2]] ++11 =i (3.260)

with the effective quantity as stated in equation (3.255prédbver, it is

or . od .
thf _ n+1 _ ifel n+1 if
Coi 78[[@]]%1 C [w]nid] FE. +e

Q N — if,e 7
= —exp (= =) a8 6.0 ¢ B3 [0 [CF - [ulw] + e (3:261)
n+1

The third component is given by

tbf n+1 if rn+1 n+1
C = — =€’ — d n 3.262
du a[[ ]] . €o [[ ]] +1 9d ) 9[[ ]] . ( )

n+1

. y N\ . z9
= el — e[ — "] [Pl exp ( S ) 0,2 0,1 € 2@2 [l
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3.8 Linear Ferroelectricity with Fatigue

while the fourth component is computed as

aer,n—l—l adn—i—l
i 8dn+1 a[[q)]]TH»l

oA,
Chp = 8[[@7]]:1 = —€0€rm+1(dnt1) — €0 [P]

= —€0€r,n+1(dn+1)

L (6% ~_ _
— e[ — it [,y exp ( -~ )ozanfl 6L ¢ B2 [0, (3.263)

n+1

Please note that, due to the non-associated character fattitiee law incorporated; ]/ turns

out to be in general non-symmetric. A comprehension of tgerghmic procedure is given in Tab.
3.6.

3.8.3 Algorithmic Aspects: Cycle-Based Fatigue Formulati on

Concerning cycle-based fatigue, the update of tractiodslalectric displacements is the same as for
time-based fatigue, see equation (3.256). The algorittamgent is given by
| cul e
culert = (3.264)
chb cb
C@z{ C<I>£
For the subsequent tangent computation, an auxiliary ctetipa is performed as

8dn+1
a[[q)]]nJrl

In view of equations (3.207)—(3.215), the first componerbisiputed as

1 '_
=3 ¢ AN QP C exp(7d,) 0041 B2 [@] 0 (3.265)

87’ 1 ;
Ccof — M gt 3.266
[ a[[u]]n+1 alg ( )
The second component reads as
or . od 4
cbf _ n+1 — if,el . n+1 if
Cuo 8[[q)]]n+l [C [[u]]n+1] a[[q)]]n+1 te

1 5 , 4
= —5 (Y ANQYC exp(idy) 4 B [@lnir [CF - [ulnn] + € (3.267)
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

given: [u]ns1s Engr, dn
1 if 0g > K
1. damage update: f = ¢
geup ¢ {O else

Compl-":aipa Z<dna 5a,n)7 Z<dpa 5a,n+1)

1
dn+1 = dn + §C6bf[Z(dn7 5a,n) + Z<dp7 5a,n+1)]
2. traction update: Tos1 = [1 — dp] CT - [u] sy — Enirel?
3. dielectric displacement updaten,,,; = e/ - [u],11 + e, (dny1) Byt

4. tangent modulus: C;{vgf er,cbf

Table 3.7: Algorithmic procedure for interfacial ferroetiec cycle-based fatigue

The third component is computed by

oA\ , Oe od
cbf ntl _ _if rn1 n+1
c = =e"’ — ¢ |P],
bu 8[[u]]n+1 0 |I ]] + 3dn+1 8[[u]]n+1

| . 1
= el — e[ = ] [@]rs 5 VAN OV C exp(7dy) 0] Z B [winsr (3.268)

T

Finally, the fourth component is given as

OA Oe od
cbf n+1 _ d d rn+1 n+1
C(I)(I) a[[q)]]n—i_l €0€T,7’L+1( 7’L+1) [[ ]]n—l—l adn+1 aﬂ ]]n+1

= —€0€rn+1 (dn+1)

o 1
€0 [€end - GWt] [®]n+1 B} Cbe AN Q' C exp(7 dp) 55n+1 ﬁcp [@]5+1 (3.269)

Because of the non-associated character of the fatiguegiy"’ is generally non-symmetric. A
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3.9 A Penalty Formulation to Avoid Interfacial Self-Penetration

concise comprehension of the algorithmic procedure isgndab. 3.7.

3.9 A Penalty Formulation to Avoid Interfacial
Self-Penetration

In this section a method to avoid self-penetration of theosppg interfacial bordering surfaces is
introduced. In this context self-penetration is identifigith negative displacement jumps in normal
direction, i.e.[u,] < 0. Since self-penetration of solid interfaces is not physithas to be guaran-
teed that

[u(z)] n>0 V xel (3.270)

There are several methods to overcome this problem. UsefiaéiNitsche method, see Nitsche [128]
as well as Hansbo and Hansbo [60] where self-penetratioroided in weak form, corresponding to
the Dirichlet boundary and complementing conditions. s thethod a so-called stability param-
eter has to be chosen. Normally, this parameter would behessadditional stiffnesses as used for
classical penalty methods, which can lead to bad condtieystems of equations. Another strategy
is to avoid self-penetration by means of a Lagrange mudtipSee, e.g. [192]. An important disad-
vantage of this method is the enhancement of the globalmsysteequations by further unknowns.
Due to its simplicity, but at the same time being aware of @sdicaps, a classical penalty method as
described in, e.g. Bertsekas [24], is applied here. Theéelstrategy is to enhance the free energy or,

Tn

A

Figure 3.11: Exemplary penalty behaviour. For negativenabrdisplacement jumps, normal stiff-
nesses are increased steadily (solid line). The dottedvimeivaoccurs if applying an
unsteady, constant penalty stiffness
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3 Constitutive Modelling and Algorithmic Aspects of Solid Interfaces

respectively, the electric enthalpy function by an addiilderm, leading towards

U*=U+V, H*=H+H (3.271)
where ] )
V=1 = % (—[u] - n)? (3.272)
For all cases discussed previously, this renders the drectis
Toi1 = Totl T Tog (3.273)
with ¢
Pl = -5 (—[u]nsr - m)2n (3.274)

Accordingly, the tangents are also extended by a furthensamal, reading as

Zlg = Calg + Calg (3275)
for the purely mechanical case where
Calg =q <_[[u]]n+1 : n> nyn (3276)

As obsolete in the context of Newton’s Method, this strateggyders steady tangents with respect to
the relative displacemenfs], see also Fig. 3.11 for an illustration.
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4 Bifurcation Analysis of Uncoupled
Continuum-Interface Problems

In the mesomechanical modelling of composites, interfaedween different layers of materials play
a decisive role, see e.g. Schellekens [152], Miehe ando8ehi{118], Larsson and Jansson [88],
Willam et al. [188], Steinmann and Hasner [170] and Utzmefeal. [180]). In particular if non-
coherent interfaces are allowed for, i.e. interfacial @ispment jumps can occur, the modelling of an
appropriate traction-separation-law is a major challetigmay even be reasonable to project all non-
linearities and inelasticities of a problem into the inded law by this type of modelling. As a general
rule, well-established constitutive laws for the bulk candalapted for the constitutive modelling of
interfaces. Apart from the constitutive modelling itsélfwever, an issue of interest is to investigate
whether the solution of an incremental boundary value gmoklIBVP) incorporating a non-coherent
interface may bifurcate at a certain loading state intao@taty wave-type solutions or not.

In this regard, with a view on ill-posedness, it is additibyaf interest if the number of possible
bifurcation modes is finite or not. From the mathematicahpof view, ill-posedness is either due
to the fact that the underlying boundary-value problem muyilet an infinite number of linearly
independent solutions or to the fact that the solutions isfllbundary-value problem do not depend
continuously on the data. There is also the possibilityfierdontinuous problem that, in order to have
a finite number of linearly independent solutions, and thasé solutions depend continuously on the
data, one has to enforce an infinite number of linearly inddpat conditions over these data. These
are the general three sources for ill-posedness and negaessbsufficient conditions are known in the
case of a linear boundary-value problem for this ill-possdnto occur (Benallal et al. [21], Benallal
and Comi [22]). These conditions are respectively the |dsdlipticity of the governing equations,
the loss of the boundary complementing condition and eadiytthe loss of the interfacial boundary
condition when the solid is heterogeneous. The first comlis a local condition that only depends
on the rate-independent constitutive equations and i e singularity of the bulk acoustic tensor.
While also local in nature, the two other conditions invallre boundary or the interfacial conditions
and imply a kind of compatibility between these boundarye(ifacial) conditions and the constitutive
behaviour. The last two conditions may fail in the bulk diipregime where they retain all their
importance.

The necessary and sufficient conditions for the IBVP to bd-p@ded are the ellipticity and the
complementing condition. In what follows, the bulk matersaassumed to be linearly elastic. Con-
sequently, the constitutive operator is assumed to beiposlefinite and, therefore, the ellipticity
condition is satisfied. Regarding the complementing camditone has to consider both in the gov-
erning equations and in the boundary (interface) condstibve contributions with the highest order
(Benallal [18]). In the field equations this is the full openaas all the terms have the same (second)
order. The boundary conditions that will be adopted hertude zeroth order terms (involving the
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4 Bifurcation Analysis of Uncoupled Continuum-Interface Problems

displacement field itself) and first order terms (involvihe first gradient of this displacement field).
Therefore, to check the complementing condition, one hdsdp the zeroth order terms and consider
only the terms of the highest order. In so doing, one obtaitiassical linear elastic boundary value
problem with classical (homogeneous) Neumann boundarglitons. For this problem the comple-
menting condition is satisfied if the constitutive operasquositive definite. Nevertheless, bifurcation
into stationary wave-type solutions is not ruled out sint¢his analysis all terms of arbitrary order
have to be considered.

In what follows, a semi-infinite three-dimensional elastidk bonded via a two-dimensional non-
coherent (cohesive) interface to a rigid substrate is demed in a purely mechanical, uncoupled
context. Thereby, the possibility of the solution to bifateinto stationary surface-wave-type solutions
is investigated. Consequently, we consider in additiorh&owell-known ellipticity condition in the
bulk, that checks for possible stationary bulk-wave-typkitsons and also assures ellipticity of the
constitutive operator, a bifurcation condition that chedér possible stationary surface-wave-type
solutions incorporating traction-separation-laws atNleeimann boundary.

In the bulk, for constitutive behaviours without a lengihsg the intimate relation between bifurca-
tion into stationary wave-type solutions and localisabbdeformation in the bulk is well-known, see
for instance Hill [67], Benallal et al. [19, 20] and Benal[al7]. Fundamental further information on
the topic is also provided by the monographs of, e.g. Bio},[@gden [130] ancfSiIhavy [185]. Both
are a consequence of the failure of the ellipticity conditrchereby the wavelength of the stationary
wave is arbitrary and thus, in particular, can take zeroealBifurcation into stationary wave-type so-
lutions at surfaces, coherent interfaces (Rayleigh andef#y waves) and their interpretation in terms
of localised deformations was discussed by Benallal et2l], Dowaikh and Ogden [47], Needle-
man and Ortiz[126]. Here, both are associated to the fadfitbe complementing conditions with
vanishing wavelength of the stationary waves in the casedaflisation. The bifurcation condition for
non-coherent planar isotropic interfaces was consideye8uwm et al. [173] and Bigoni et al. [26].
These studies were, however, restricted to two-dimenkiowastigations under the plane strain con-
straint. As a consequence, the interfacial plane is negsaasumed to be isotropic. Additionally,
non-planar interfaces have been considered for a cylialdsetting by Bigoni and Gei [25] based on
a linear relation for the traction-separation rate.

Please note that it is well-established that for rate-iedeljent local continua in the presence of soft-
ening and/or non-associative flow, numerical results mayidpaly sensitive to the space discretisation
as present within a, for example, finite element contexts Tinesh dependency is often observed in
the analysis of localisation phenomena and is generalijpatéd to the lack of a length scale in the
continuous description of the constitutive behaviouraBkshed methods to overcome the problem of
mesh sensitivity in a continuum are, e.g. higher gradiesee-Muhlhaus and Aifantis [122], de Borst
and Muhlhaus [44], Peerlings et al. [141], Steinmann [168#nzel and Steinmann [112], Svedberg
and Runesson [174], Liebe et al. [95], Benallal and Comi [@2j Askes et al. [5] — or non-local
continua — see, e.g., Bazant and Pijaudier-Cabot [12] ezl [11]. All these formulations include
a material lengthscale which renders the problem well-gos&'hether similar enhancements of a
softening interface formulation are necessary has to lestigated carefully by checking if solutions
with wave numbek = oo are possible.

The subsequent elaborations are believed to be a first siegyds the prediction of the above-
mentioned space discretisation sensitivities, see algmg#r et al. [181]. Accordingly, interfacial
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4.1 Incremental Boundary Value Problem

traction-separation-laws, as introduced in chapter 3,lévplay a decisive role. Incorporated in a
finite element context, sensitivities would only stem frdme tnterface, as in this context, the bulk is
modelled linearly elastic.

4.1 Incremental Boundary Value Problem

Consider a semi-infinite space of bulk material being bondadh non-coherent cohesive interface
layer to a rigid substrate. In the following, a quasi-stat@remental boundary value problem (IBVP)
with small strain kinematics is assumed.
Accordingly, the balance of linear momentum in the semmitdi space is here given by means of
the incremental stress tensier
divio =0 (4.1)

and the underlying kinematics are represented by relatioggmental straine to incremental dis-
placementswu, namely
de = V" ou (4.2)

The constitutive relation, witl being the incremental constitutive operator, conseqyéeakies the
format
do =C: e (4.3)

so that combining equations (4.1), (4.2) and (4.3), for a bgemeous state, renders the quasi-static
incremental balance of linear momentum, volume forcesgoereglected, as

divioc =div(C: Vg ou) =[C: VgVgou]: I =0 (4.4)

whereby use of the minor symmetry Gfhas been made.
Next, Neumann boundary conditions for the bulk are definkd:incremental stress tensar of
the bulk and the incremental traction veciter of the interface are related by

0o -n =0T (4.5)

The corresponding constitutive law for the interface, lelsthed as traction-separation-law, defines
in terms of the incremental displacement jufidip]. By analogy with equation (4.3§;*/ denotes the
interfacial incremental constitutive operator so that

6T = CY - [ou] (4.6)

4.2 Stationary Wave-Type Ansatz for the Displacements

The correspondence between bifurcation phenomena amhstigt wave-type solutions is well-esta-
blished and documented in the classical mechanics literadee the references cited before. Accord-
ingly, an incremental stationary wave-type ansatz#ois given as

du(x) = exp(ilk - &) m 4.7)
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4 Bifurcation Analysis of Uncoupled Continuum-Interface Problems

whereinm is the amplitude vector ands the imaginary unit. The two remaining vectorial contribu
tions arek = k + ik*, which is the complex wave vector, composed of a real pard an imaginary
partk™. Moreover, the argument itself (on the right hand side) isotled byz(x) with 02 /0x = 1.
Based on this ansatz, equation (4.7) may be rewritten mqniecedy as

du(x) = exp(ilk - & + ik™ - T)) m = exp(—k* - &) exp(ik - &) m (4.8)

Thus,k* is responsible for a possible decaydaf whereage controls the waviness @fu. In view of
equation (4.2), the wave-type ansatz yields

Vzou=iexp(ik-Z))mek (4.9)
for the first gradient of the incremental displacement wttikesecond gradient results in
VeVzgou=—exp(ik-Z)mekek (4.10)
With these relations in hand, equation (4.4) is rewritten as
C:mekREK]: I=Q -m=20 (4.11)
wherein the complex second order tengbis defined as (fofe| denoting a vectorial quantity)
Q-lo]=[C:[[o]@K] -k (4.12)

The overall solution condition for equation (4.11) — to beafic, non-trivial solutions fofn — corre-
sponds to
det@ =0 (4.13)

In general, equation (4.13) characterises the first cadftr the occurrence of stationary wave-type
solutions in the format (4.7). Please note that, to this fpdiaundary conditions have not yet been
incorporated. In the following, we specify constitutivdateons entering equation (4.3) and (4.6),
respectively. The bulk is assumed to be isotropic linealdgtee while the interface is allowed to
additionally account for inelastic effects. Special engiiavill be placed on interface-related station-
ary wave-type solutions. Since the traction-separat@on+hight incorporate, say, tangential stress
contributions, such stationary waves are in general obéirmipic nature.

4.3 Isotropic Linear Elastic Bulk Material

Since this work focusses on interface relations, the bulteral is restricted to be isotropic and linear
elastic, i.e. '
C=MRI+2ulY" =C" (4.14)

Accordingly,@ can explicitly be expressed as

Q=N+ukek+ulk- kI (4.15)
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4.3 |sotropic Linear Elastic Bulk Material

bulk

® émplitude
T b/ -T interface

rigid substrate

Figure 4.1: Graphical illustration of essential quangitielated to the interfacial zone

Next, solutions of equation (4.13) are sought. Straightéod calculation of the underlying eigen-
value-problem of) renders the eigenvalues (two of them being identical) as

v =2+ N [k - k] v =uvy=ulk -k (4.16)

This analysis results in
det Q = 1*[2p + N[k - k> =0 (4.17)

4.3.1 Incremental Ellipticity Condition for the Bulk Mater ial

Focussing solely on the bulk material, let the wave veétaoincide with an arbitrary real-valued
unit-vector. In this regard, equation (4.17) is reduced to

det Q = 124 + N = det Q° (4.18)

with [2, + A] being interpreted as a compression wave speed in the buile wicharacterises a
bulk shear wave speed. The (incremental) condition of ltygbr rather strong Legendre-Hadamard
ellipticity for the bulk material itself results in® := signimin(q¢?, g5, ¢5)) lgs | > 0 with ¢7” = Q7

5 = Q%05 — Q%5Q5, andgd = det Q°, see also Schroder et al. [157]. This is assumed to hold in
the following. Hence, stationary wave-type solutions sexclusively from interfacial effects.

4.3.2 Specification of the Wave Vector

Let x, denote the position vector to the origin of a local interforthonormal base systefs, t, n}.
Furthermore, we introducé(x) = x — x, as the argument entering equation (4.7), in other words,
the position vector with respect to the local coordinatéesys For convenience of the reader, Fig.
4.1 gives a graphical illustration of essential quantitedated to the interfacial zone. As visualised,
small deformation conditions are assumed with the inteafatrfaces remaining parallel. As a con-
sequence, the bulk normal and the normal veata@f the local interfacial base system turn out to be
collinear. Since the wave vector is in general not aligneti amy of the base vectofs, ¢, n}, itturns
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4 Bifurcation Analysis of Uncoupled Continuum-Interface Problems

out to be convenient to introduce
k=Fk e + ko €2+k363 with kj :]ij—l-lk; and 7= 1,2,3 (419)

with {e;, es, e} being the Cartesian base system. Bounded solutions resfaitienary waves to
decay towards the bulk material. For the problem at handispéaged in Fig. 4.1, the decay direction
must coincide with the normal direction of the interface. Assuming the interface to be able to
bifurcate and the bulk, as discussed above, to be (increthgnelliptic, the harmonic direction —
which in the classical dynamics literature is often reférte as the propagation direction — of the
stationary wave lies in the plane spanned by the base vectordt. In addition, lete; = n so thate;
ande, span the same spacesaandt. Incorporating the essential decay characteristics rsrkdees

to be purely imaginary, i.eks = ik3 (recall thati k enters equation (4.7)). Without loss of generality,
we setk, = 0 as well asks = 0 in the progression of this work. In other words, determines the
tangential direction ok according to which stationary surface-wave-type soliomght occur with
decay effects being excluded for this direction such fhat= k;. Consequently, the wave vector
allows representation as

k= kie, + ikies (4.20)
In order to abbreviate notations, and in view of subsequamiderations, the wave vector coefficients
are re-named as, = k, k5 = —v. Additionally,( = e; - € as well as) = e3 - ¢ are introduced and,

moreover, a decay functiam(n) is defined via
du(x) = exp(ilk - &]) m = exp(vn) m exp(ik () (4.21)
—_———
w(n)

For a not yet specified bulk material, equation (4.21) leada tepresentation of the incremental
balance of linear momentum (4.4) by means of three secoret tedsors,,, Q,, andQ, = Q°,
namely

Q, w+ikQ, w -k Q, w=0 (4.22)
with
Qo [o] = [C:[[oJ®el]l e
Q- [¢] = [C:[[oJoes] e+ [C:[o]®ei]l e; (4.23)
Q. [o] = [C:[[o]®@es]] es

Equation (4.22) is a system of ordinary differential eqoiagi of second order in. It is treated by
reformulation as an ordinary differential equation systafirst order, to be solved by well-known
strategies. Equation (4.22) can then be rewritten as

w' +ik Q' -Q,-w — K Q' -Qy-w=0 (4.24)
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4.3 |sotropic Linear Elastic Bulk Material

Having a linear elastic bulk material in mind, as reviewedeugtion 4.3, the (acoustic-type) tensors in
equation (4.23) read as

Q = Mtple®e +pul
Q = Mtulles®er +e®es) (4.25)
Q, = MNpul es®@es +pul

By applying the Sherman-Morrison formula, the inverséXfis thus found as

_ 1 A+ p
ER ) R o B 4.26
@ = p e (4.26)
4.3.3 Reformulation as a First Order System
Now, we define
w
z = { , } (4.27)
w
With this in hand, equation (4.24) is rewritten as
0 1
Z' = z (4.28)
Q- Qy —ikQy Q|
A

For the system at hand, a fundamental system of six lineadgpendent solutions is required. At
first, the eigenproblem ofl is analysed. With

m
z = exp(vn) (4.29)
rm
N——
g
equation (4.28) is equivalent to
[A—vIg) - g=0 (4.30)

compare appendix A. The eigenvalueare found by
det(A—vIs) =—[k* -1 =0 (4.31)
which is an equation of degree six#rendering
vi=v=v=13=—k, vp=wu=vs=v5==Fk (4.32)

In the following, all eigenvectors and generalised eigetws are represented in terms of their coeffi-
cients with respect to a six-dimensional Cartesian bagemsye;, ..., es }. The associated eigenspaces
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are given by

g; = wi + Wy

0

o | .

1

Y

g = w3

=}

o

0

o | .

| =

~.

1

, Wi, we,ws,wy €C (4.33)

Obviously, we have two eigenvalues with an algebraic miitity of three and two corresponding
eigenspaces, each inhering a geometric multiplicity of thias induces the necessity to compute two

further generalised eigenvectors, both linearly independith respect to the four linearly indepen-
dent eigenvectors which are chosen as

0

1
k

V1 =

82

Vo =

o | .

V3 =

e}

o

Uy =

| =

~.

(4.34)



4.3 |sotropic Linear Elastic Bulk Material

After straightforward computations, the generalised migetors are obtained

1 2 ] [ 1 2 ]
k2 1+ A k2 + A
0 0
1 1
v; = ko v} = K (4.35)
3+ A @ 3p+ A
E p4+ A Ep+A
0 0

4.3.4 Bounded Solution

Proceeding along equations (A.3) and (A.4), the generatisol z of the first order system is derived.
The linear independence of fundamental solutions is clieblyecomputing the so-called Wronski
determinantv = det Z(n) of the associated fundamental maté#x Necessarilyww # 0 has to be
fulfilled, being the case for the system at hand. The firstetlo@mponents of the general solution
vector z, being expressed in coefficients with respect to the Cardsase systerfe;, e,, e3}, are
then identical with the solutiow(7) of the second order system from equation (4.22), reading as

i 2 i 2ip
R ET Y “ TR+ N
1 1
w(n) =  exp(—kn) —ap |+ exp(kn) Ca
1 1 1 1
I T %% i kT Rz
- -
CSE C6E
+  nexp(—kn) 0 | + 7 exp(kn) 0 (4.36)
1 1
i _CSE | i C6E |

This solution has six constants= [cy, co, c3, ¢4, 5, c6]° € CO. To achieve a bounded solution, only
stationary waves decaying towards the bulk material mayobsidered. In this regard, is chosen

to be positive, and consequently, all non-decaying satstare neglected. Therefore, only terms with
decaying exponential factors are left. Expressed in coeffiis with respect to the Cartesian base
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4 Bifurcation Analysis of Uncoupled Continuum-Interface Problems

system{e, ey, e}, this leads towards

i c L c _Zip ] [ i
kR [+ A S
1
w(n) = exp(—kn) —ar | exp(—kn) 0 (4.37)
1 1 el
i Tep T %% L Tk

An equivalent strategy would be to choosdo be negative and, again, neglect the resulting non-
decaying solution parts. Considering equations (4.21)(4r&¥) and renaming the ansatz constants
asa = |ag, a1, as]' € C? renders after some transformations the incremental dispiants as

du(x) = exp(k[i¢ —n)]) [[ao + arkn — alﬁ}el + asey + i[ao + a kn + al] 63] (4.38)

Being a linear combination of fundamental solutions, tlisison trivially fulfils the PDE (4.1).

4.4 Traction Boundary Conditions at the Interface

In this section special emphasis is placed on tractionraéipa-laws relating the interface behaviour
to the bulk response via Cauchy’s theorem. Based on eqsateiewed in section 4.1 and recalling
thatn = es3, one obtains

bo-es=0r=C" . 6u at ZT-e3=n=0 (4.39)

with the rigid substrate being fixed in space. Here we asto@@ with the tangent of a linear
comparison solid (Hill [66]), i.e. unloading is neglecteto further specifydo, as determined by
equations (4.3), (4.2) and (4.14), yielding

do = ANVgdu: II + p[Va du + Vi dul (4.40)

we first compute the gradient 6i. by means of the representation highlighted in equatior8{4&hd
secondly, this result combined with (4.40) yields the iefasought or rather the boundary traction at
the interface as

2uk|—ayp + aglp + A
50.63]77:0: _ 2ukl 15+)\0[M Hel—azukeg

. 2uk[ay A + aglp + A
o+ A

es| exp(ik() (4.41)

Consequently, the traction-separation-laws are direethted to boundary conditions of the Neumann-
type, i.e.do - e3 = o7 atn = 0. In the following, interfacial constitutive relations areorporated,
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4.5 Interfacial Traction-Separation-Laws and Bifurcation Analysis

which are assumed to decouple with respect to the interfase $ystends, t, n}, see Fig. 4.1, and,
accordingly, may reflect anisotropic constitutive resgons

4.5 Interfacial Traction-Separation-Laws and Bifurcatio n
Analysis

The second order interfacial constitutive opera@f shall allow representation with respect to the
orthonormal base systefs, t, n}. Related interfacial constitutive parametggs= ‘l’— pr = % and

Pn = ‘1’7 generally inhere length parametérs;, andi,,, which, for the sake of convenience, are again
set equal to one here. The constitutive traction-separddi@ for a linear-comparison-material-like
interface reads

o1 =C7 . [ou]=[pss@s+ptRt+p,nRn]- [du]
=Y pi@i-[fu] with i=stn and i=stmn (4.42)

with the incremental constitutive operator being given by

C’=> piwi=) C/ (4.43)

)

Note thatC"/ shall be of diagonal format so that the constitutive behanidecoupled with respect to
the local interfacial coordinate systefs, ¢, n}. Concerning the loading branch, different constitutive
relations as elasticity, elastoplasticity, damage anstepdasticity with damage can be expressed by
C'/, see appendix B. Placing particular emphasis on the imierfae.n = 0, equation (4.43) renders
together with equation (4.38) and= e;

i 2p
Cf'(S'U,}n:O:[ [ ao—alm}[038®s+ptt®t]-el

+ axfpss@s+ptRt]- ey
+ ilag + a1]pn 63] exp(ik() (4.44)

By inserting equations (4.44) and (4.41) into equationg}.&e end up with

2uk[—ayp + aglp + Al 2u
- I+ a0 — ar—p. ' t]-
[ S + [ag aluJMHP s®s+ptat) e

+ [—azukI+a2[pss®s+ptt®t]} - e

, 2uklay A + aglp + Al
' [[_ pt A

+ [ag + a1 pn] I} e (4.45)

= 0
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To obtain non-trivial solutions, at least one non-vanighamsatz constant from the sef, a; and
a; must be at hand. For further investigations it turns out tadevenient to relatds, ¢, n} and
{61, €9, 63} via

{s,t,n} = P -{ej,es,es} with P-P'=I and detP=1 (4.46)

More specificly, the rotation tensd@?(0es) can be referred to, e.de;, e, e3} so that

cos — siné# 0
P=PFPje®e; with Pj;=/| sinf cos f 0 (4.47)
0 0 1

With this transformation in hand, straightforward compiatas enable to reformulate equation (4.45)
in terms of a homogeneous linear system of equations witbertgo the ansatz constanis =
[ag, a1, as]’, reading as

B-a=0 (4.48)
with B including the entries as stated in appendix C. Non-trivadlitons of equation (4.48) with
k > 0 according to the assumption preceding equation (4.37 cteftessible stationary surface-wave-

type solutions of the IBVP as discussed above. Consequearijurcation into a stationary surface-
wave-type solution is possible if

det B = [4u[2pk + p,] [k + ps] [uk + pi]
+ [Aon + 26X + ]
(402K + 2papi + Bpk[ps + pi] — pklps — pi] cos(26)]
= 0 (4.49)

for k > 0.

4.6 Results

After incorporating a general traction-separation-lawtfee interface, some consequences are now
discussed. Special attention is given to the role of intéafanaterial parameters,, p;, p,.

4.6.1 General Considerations

Equation (4.49) is a cubic equation in Recall thatk is real by definitions highlighted in section
4.3.2 and was chosen to be positive in section 4.3.4. Inégiard, the number of bifurcation modes is
one, two, three or zero. This depends, as well as the wave enunmtself, on the choice of the ansatz
direction#, and on the material coefficients. Corresponding to theefinitmber of solutions, the
given problem remains well-posed as expected. Conseguantliew of numerical applications, for
instance in a finite element context, mesh-sensitivitgtezl problems are only expected foe oo,
representing vanishing wave length solutions. In view efdhnalytical solutions of equation (4.49),

86
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for the general case, they would occupy too much space, sauim@rs abandon to list them here.
On the other hand, if the problem is simplified by setting= p;, being the case for a transversely
isotropic interface with anisotropic direction= e, the solutions of equation (4.49) reduce as

ho— P (4.50)
7
ki = L [ — g — Vg2 — 4[4 + 42N [Bupnp: + /\pnpt]] (4.51)
81 + p?A]

b = 1 V9% — 443 + 42N[3 A 4.52
Ill—m—g‘i‘ 9> — Al + 4PN [Bppnpe + Apnpi] (4.52)

with
9 = 420 + 20Npp + A1 i + 2p\p; (4.53)

Certainly, those results do no longer depend/oifror a linear elastic bulk it always holds thit =
A+ %M > 0 andp > 0. Assuming thap, = p, > 0 andp,, > 0, an analysis of equations (4.50), (4.51)
and (4.52) shows that no real positive wave numbers can dacthis choice and bifurcation is ruled
out. If the interface is assumed to be isotropic, pe= p; = p,, solutions further boil down to

o= - (4.54)
7

by = (4.55)
2
B+ Alpn

b 4.56

’ 2ufp + Al (4.59)

With all interfacial material parameters chosen to be pasitagain, no real positive wave numbers
can occur for this choice and no bifurcation will occur.

4.6.2 Examples

Now, the solutions of equation (4.49) shall be analysed éones examples of different interfacial
material coefficients, reflecting an orthotropic materataviour. In the following, the Lamé constants
will be chosen ag = 50000 MPa and\ = 100000 MPa.

Orthotropic Interface with Positive Coefficients Pss Pty Pr

In this example, the planar constitutive coefficients areseim to capture orthotropic response via
ps = 20000 MPa/m andp, = 40000 MPa/m whereas the normal constitutive coefficient is given b
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prn. = 100000 MPa/m. Equation (4.49) shows th&it B depends on the angbe The plot ofk; 5 3(6)
for det B = 0, which is displayed in Fig. 4.2, reveals that no real positikave number exists and,
accordingly, a bifurcation into stationary surface-wéaype solutions is not possible.

Another Orthotropic Interface with Positive Coefficients Pss Pt Pr

In this example, the planar constitutive coefficients a@seim ag, = 100000 MPa/m andy, = 40000
MPa/m whereas the normal constitutive coefficient is givemwb = 20000 MPa/m. det B depends
on the anglg. Plottingk; »3(6) for det B = 0, as displayed in Fig. 4.3, shows that, once more,
no real positive wave number exists and, accordingly, atsfion into stationary surface-wave-type
solutions is not at hand.

Orthotropic Interface with Negative  p, and Positive p;, p,

In this example, the planar constitutive coefficients akegiasp, = —20000 MPa/m, which cor-
responds to softening, = 40000 MPa/m andp,, = 100000 MPa/m. Fig. 4.4 shows that for any
angled exactly one stationary surface-wave-type bifurcatiorhvaibh appropriate wave numbky is
possible. Maximum wave numbers are givendar {r /2,37 /2}, corresponding to the characteristic
directions of the underlying orthotropic symmetry.

Orthotropic Interface with Negative  p; and Positive p,, p,

This example is referred tp, = 20000 MPa/m, p, = —40000 MPa/m, which represents softening,
andp, = 100000 MPa/m. Fig. 4.5 shows that, depending ®re [0, 27|, always one stationary
surface-wave-type solution exists. The particular vatues{0, 7} render maximum wave numbers.

Orthotropic Interface with Negative  p,, p; and Positive p,

Here,p, = —20000 MPa/m and, = —40000 MPa/m, which represents orthotropic in plane softening,
together withp,, = 100000 MPa/m. Fig. 4.6 shows that for &l € [0, 27| two wave numbers exist
which are related to bifurcations into stationary surfa@e-type solutions. Once more e {0, 7}
reflects maximum wave numbers.

Orthotropic Interface with Positive Planar Constitutive C oefficients p,, p, and a
Negative Normal Coefficient p,

In contrast to those elaborations highlighted above, wecmvwgider a softening response with respect
to the normal interface direction. The overall behaviouthefinterface remains orthotropic as charac-
terised by the coefficienis, = 20000 MPa/m,p; = 40000 MPa/m andp,, = —100000 MPa/m. As a
result directly observable in Fig. 4.7, bifurcation intatstnary surface-wave-type solutions is always
possible concerning one wave number, with maximum wave eusngiven at € {0, 7}.
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Orthotropic Interface with Negative  p,, p, and Positive p,

Continuing to investigate on different parameter combams, letp, = —20000 MPa/m,p;, = 40000
MPa/m andp, = —100000 MPa/m. It can be clearly seen in Fig. 4.8 that for@lE [0, 27|, two
wave numberg can be related to stationary surface-wave-type solutiddeximum wave numbers
are again obtained far € {0, 7}.

Orthotropic Interface with Negative  p;, p,, and Positive p,

Furthermore, assume the paramejer® take the valuep, = 20000 MPa/m,p, = —40000 MPa/m
andp,, = —100000 MPa/m. From related results displayed in Fig. 4.9 we corethdt two stationary
surface-wave-type solutions are present fordalt [0,27]. Maximum values of: are reflected by
0 € {m/2,3m/2}.

Orthotropic Interface with All Negative Coefficients Pss Pts P

Finally, the last example deals with an orthotropic integfavith all p; assumed to be negative, i.e.
ps = —20000 MPa/m,p, = —40000 MPa/m andp,, = —100000 MPa/m. Fig. 4.10 shows that for

6 € |0, 27] always three stationary surface-wave-type solutionstared. Here, extremal values of
k are obtained for angles € {7/2,37/2}, once more reflecting the characteristic directions of the
underlying orthotropy.

02t
—0.4
06 - . )

—0.81" -

—1.27

—1.4 0 /2 T 0 3r/2 s

Figure 4.2: Plot of; 2 5(0) for ps = 20000 MPa/m,p; = 40000 MPa/m andp,, = 100000 MPa/m
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—047

—0.8

—1.27

—-167

0 /2 - 0 37/2 27

Figure 4.3: Plot of; 5 5(0) for p; = 100000 MPa/m,p, = 40000 MPa/m andp,, = 20000 MPa/m

0.5

—-1.5

0 7r./2 T g 3m/2 27

Figure 4.4: Plot of:; 5 5(6) for p, = —20000 MPa/m,p, = 40000 MPa/m andp,, = 100000 MPa/m
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0 /2 T g 3m/2 27

Figure 4.5: Plot of; » 5(0) for p, = 20000 MPa/m,p, = —40000 MPa/m andp,, = 100000 MPa/m

Figure 4.6: Plot of; 5 5(#) for ps = —20000 MPa/m,p, = —40000 MPa/m andp,, = 100000 MPa/m
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1.5 7

0 7r./2 - 0 37/2 27

Figure 4.7: Plot of:; 5 5(6) for p, = 20000 MPa/m, p, = 40000 MPa/m andp,, = —100000 MPa/m

1.5 7
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0.5 B B
~2 -7 T~ 77 Tt
0
=051 - T
-1 : : : '
0 /2 T g 3m/2 27

Figure 4.8: Plot of; » 5(#) for p, = —20000 MPa/m,p, = 40000 MPa/m andp,, = —100000 MPa/m
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Figure 4.9: Plot of; 5 5() for ps = 20000 MPa/m,p, = —40000 MPa/m andp,, = —100000 MPa/m
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Figure 4.10: Plot of; 2 5(0) for ps
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—20000 MPa/m, p, = —40000 MPa/m andp,, = —100000
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4.7 Discussion

The main goal of this chapter was to elaborate the possilafithe bifurcation of an incremental
boundary value problem (IBVP) into stationary surface wanagles. The related continuum-interface
problem has been formulated by means of an infinite lineatielaulk half space which is bonded to
a rigid substrate via a non-coherent cohesive interfacer.|dyor the interface, a traction-separation-
law being decoupled in its response with respect to an extef orthonormal base systefm, t, n}
has been investigated. Thus, investigations previouglgrted in the literature, which in particular
focussed on transversely isotropic responses, have béemdexl to a three-dimensional orthotropic
interfacial constitutive law. Thereby, the anisotropy nii@yeither deformation-induced, as expected
from inelastic response, or already be present within tastiel regime.

The condition for the onset of bifurcation could be gensediaslet B = 0. Here, B is a ma-
trix inhering various properties of interest. In the caseibdircation stationary surface-wave-type
solutions manifest in the interfacial plane as surface waloreover, the specific incremental con-
stitutive relations of the bulk and of the interface are espnted via the, in general non-constant,
material coefficients. As an interesting side aspé&tipreserves its formal structure independent of
the material parameters of the particular traction-semardaw as long as the interfacial constitutive
law is decoupled with respect to some local orthonormal &&m ¢, n}. In this regard, the surface
ansatz used has been endowed with an ahgllich determines the harmonic direction of the wave
and enters the definition d8 as an additional argument.

Straightforward computations renderdet B = 0 to be cubic ink; ;3 — additional arguments
being the anglé as well as specific values pf related to the incremental constitutive state while the
elastic bulk parameters are fixed. Consequently, theséaeatsp, determine if stationary surface-
wave-type solutions are admissible. As a result based dnatwzag the derived equation of interest,
up to three distinct solutions are obtained and, as expgeuateltposedness is generally conserved.
In this regard, various combinations of specific valuesgonave been studied in detail. It thereby
turned out that extremal wave numbeérsorrespond to directiors which are systematically related
to the interfacial axes of orthotropy. Moreover, the exasphdicated that for all positive;, no
stationary surface-wave-type solutions occur. The alesehstationary surface-wave-type solutions
is even analytically obvious for transversal isotropy dhea planar isotropy, and full isotropy in the
interface, provided that; > 0. Then, the present system is positive definite and the celatEjueness
of the solution is in line with results of Radi et al. [145] a@Géi et al. [57].
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5 Bifurcation Analysis of Coupled
Continuum-Interface Problems

With the elaborations for the uncoupled problem in hand,cegter 4, the question of bifurcation
into stationary wave-type solutions is now extended to thepted problem. The basics have already
been discussed at the beginning of chapter 4. Up to now, thritledge of the author, there are no
related publications that specifically deal with electreamanically coupled problem in this context.
Accordingly, the modus operandi is in line with chapter 4r the bulk, a linear ferroelectric material
is assumed, while the interface will be chosen as incrertigtiteear and ferroelectric.

5.1 Incremental Coupled Boundary Value Problem

Again, a semi-infinite space of bulk material is bonded vi@a-noherent cohesive interface layer to a
rigid substrate. The associated incremental boundarevyaioblem (IBVP) is quasi-electrostatic and
source-free, with body forces and external charges beiggaied. It inheres small strain kinematics
and is electrically-mechanically coupled.

The balance of linear momentum yields

divéo =0 (5.1)

whereas the second balance equation is given as a consedfehe maxwell equations:

diviD =0 (5.2)
Kinematics are represented by
de = V3E"ou (5.3)
and, respectively,
OE = —Vgod (5.4)

According to the coupled problem, the constitutive relasiare given as
do=C:0e—¢ -0E (5.5)

and
0D =¢:de+e€-0F (5.6)

where the piezoelectric tensoand the permittivity tensat have been already introduced in chapter
2, see equations (2.97), (2.98) and (2.102). Exploitingraginy properties, combination of equations
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

(5.1)—(5.6) consequently render

divéc = [C:VgVzou|: I+ VeVedd:e=0 (5.7)

Considering the Neumann boundary conditions, the incréshstress tensafo of the bulk and the
incremental traction vectadrr of the interface are related by

do-n =0T (5.9)
Additionally, the electrical Neumann boundary conditisrgiven as
0D -n = A (5.10)

The related interfacial constitutive law is discussed ictisa 5.5.

5.2 Stationary Wave-Type Ansatz

By investigating stationary wave-type solutions, the gi8VP is checked for bifurcation possibili-
ties, see also section 4.2. An appropriate ansatz in vieleahicremental displacements and potential
reads as

du(x) = exp(ilk - &]) m,, 00(x) = exp(i[k - Z]) mae (5.11)

Please note that the wave vector is assumed to be identichbtb incremental displacements and
the incremental potential. To the opinion of the authors ikia reasonable first simplification. A
comprehending formulation is given by

Jv(x) = exp(ilk - &) m,, v = {gg } . m, = {Z@ } (5.12)

where, compare section 4.2, the complex wave veeter k + ik* is a composition of a real pakt
and an imaginary pakt”. Gradients follow straightforwardly as

Vg du =i exp(ilk - &) m, @k, Vg d® =i exp(i[k - &]) mo k (5.13)
and
VeVgou=—exp(ilk-Z))m, 0k k,  VgVgdd=—exp(ik-Z))mek®k (5.14)
Accordingly, equations (5.14pand (5.14) together with equations (5.7) and (5.8) yield

C:mOkRKk|]: IT+mek®k]:e=0 (5.15)
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5.3 Linear Ferroelectric Bulk Material

as well as
[m, kK| :e]: IT—€:[kxklme=0 (5.16)
This is comprehended as
Quu qu<I> my
=Q -m,=0 (5.17)
ds, doo me

where,[e] denoting an appropriate quantity, it holds

oo = —€:k®k qu=kRk:e

(5.18)
Qo, =k® ke Q.. o] =[C:[[¢|] K] -k
Equation (5.17) is equivalent to
1 *
Q= — que ®qo,] My =Q" - m, =0 (5.19)
dod
Analogous to section 4.2, non-trivial solutions with resipge m,, exist if
1
det Q" = det Q,, [1 — dog 200 Qo dus] =0 (5.20)
PP

Subsequently, the bulk is assumed to reflect linear ferctddoehaviour, and both mechanical isotropy
and transversal isotropy are addressed. Similar to chdpstationary surface wave-type bifurcation
modes are investigated with respect to the interface, wélsh reflects some linear and coupled be-
haviour.

5.3 Linear Ferroelectric Bulk Material

To account for the coupled problem discussed in this chaptenear ferroelectric bulk material is
assumed. As an extension, both the isotropic and trangveos@pic mechanical behaviour are in-
corporated. The mechanical constitutive operator is thasen as eithet = C*° in the isotropic
case, see equation (2.30), or@s- C'"*, see equation (2.37). Independent of the choice of theyurel
mechanical behaviour, the piezoelectric terissrgiven in equation (2.114) whereas the permittivity
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

tensore has been stated in equation (2.115). Consequently, it capdisfied

oo = 271k -k +27[myg - k]? (5.21)
Qo = qo, = —[G [mo - K]k + Glmo - k]*mo + %Hmo - k)k + [k - klmy)] (5.22)
Qrl = DN+ukok+plk- kI (5.23)

tra - — A[k:@k:]—i—oz[[mok]k®m0+[m0k]m0®k]+5[m0k]2mo®mo

+ [k R+ k@ K]+ [ — po][[mo - KT+ [my - kJk @ my

For the mechanically isotropic case, the determinai@p ©ofs computed as

1
2mik - k + 272[my - k]?]

det Q" = 122+ N[k - k? [1—u

A+

ST )\[Cl + G

[[mo TR+ 2GG + GG+ %Cg -

AL
0B oo G o -

A+
2+ A

[C1 4 (3]2¢,]

1, A p o [mg- K% .
Lo ke H - 5.25
Please note that, despite of mechanical isotropy, thedksttric directionm, is still present. The
factoru®[2u + N[k - k] has already been discovered in section 4.3, including thptieity condition

of the bulk, see section 4.3.1 For convenience, the detamhfor the transversal isotropic case is not
discussed here.

5.3.1 Specification of the Wave Vector

Following the strategy of section 4.3.2, the wave vectogamaspecified ak = ke, —ives. Accord-
ingly, the wave ansatz for the incremental displacemendstia@ incremental potential is rewritten,
reading as

du(x) = exp(vn) m, exp(ik (), 0®(x) = exp(vn) me exp(ik () (5.26)
(1) (n)
W \7 We
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5.3 Linear Ferroelectric Bulk Material

With this in hand, the balance of linear momentum is expikase

Qs - Wy +1kQ, - W, — k2Q0uu Wy + GoupWe + kG ,eWe — kQQou<1>w<I> =0 (5.27)
Furthermore, the second balance equation (5.2) is rewiite

Qog - Wy, + 1k g, - W), — K Qop, - Wy + Qoo W + ikqioe W — K qoos we = 0 (5.28)

Next, equations (5.27) and (5.28) are combined as

Q, w! +ikQ, - w, — kQ,-w, =0 (5.29)
where
w, = [wy; we) (5.30)
and
QOuu qOu@ Qluu q1u<I> QQuu q2u<I>
QO = ) Ql = ) QQ = (531)
dop, G000 qdip, G100 423, G200

With qoue = Ghour G1us = 9o, @NAGy,e = ghe,. FOr the unspecified electrically coupled problem,
it is essential

Qou 0] = [C:[e]@el]] e
Q- [o] = [C:[e]@es]]- e + [C:[[e]®ei]] - es
Qo - [0] = [C:[o]@es]]-e
o> — [6 ® 61] e
qiue — [63 & € + () (024 83] 4 (532)
Qs = lez®es:e
oo = —€: [61 ® 61]
Qloe = —€:les®@e+ e R e
Goe = —€:|e3® e
Equation (5.29) is reformulated as
w, +ikQy" - Q- w, —k°Qy" - Qy-w, =0 (5.33)
The inverse of), is found as
Q' =— (5.34)
—Aopy - QQ_ulu 1
with
X = @260 — qogpy, - QQ_ulu “qoye (5.35)
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

If the bulk is isotropic concerning its purely mechanicah&eour, withm, = e; denoting the direc-
tion of ferroelectric anisotropy, it holds

QOuu = [)‘ + :u] e e + :uI
Quu = MNtplles®er +e ® e
QQuu = [)‘ + :u] €3 & €3 + :uI

1
dowe = —3 (zes3

1

Qe = —[C1+ 3 (3] e (5.36)
Qo = —[C1+C+(3les
Qoo = 27
gioe = 0
Goe = 2[n+ 79

Otherwise, if transversal isotropy is at hand with respec¢hé purely mechanical behaviour, and the
overall direction of anisotropy is identified witlh, = e3, it is essential

Qo = I +AN+piles®@e + [ +p)es®es
Qluu [)\ +a+ ILLH] [61 ®es+e;3® 61] (537)
Qos = I +N+20+8—2u1 +3ples® es

5.3.2 Reformulation as a First Order System

Next, define
2= { W } (5.38)
wv
Rewriting equation (5.33) as a first order system, comparecsse4.3.3, renders
0 I,
P— z (5.39)
FQy'Qy —ikQ@y - Q
A

In this regard, the fundamental system must inhere eigbatiy independent solutions. With

m,
z = exp(vn) (5.40)
vm,
——
g
equation (5.39) is equivalent to
[A—viIg]-g=0 (5.41)
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5.3 Linear Ferroelectric Bulk Material

A=0.0630 %102 [N/m?] ey =0.0397 x10? [A s/m?]
1 =0.0222 %102 [N/m?] eV, =0.2879 x10? [A s/m?]
4 =0.0196 x10'2 [N/m?] eV, =0.1197 x10? [A s/m?]
¢=0.0007 x10'2 [N/m?] en =17152  x10-12 [A2sY/[kg m?]]
n=0.0018  x10'2 [N/m?] €33 = 18685 x 1012 [A%sY/[kg mP]

Table 5.1: Material parameters in the bulk

For convenience, the solution of the eigenproblem reflebtedquation (5.41) is subsequently sim-
plified by inserting numerical values for the incorporatedtenial parameters. The material param-
eters are chosen similarly to a typical ferroelectric matgPIC151, manufactured by Pl Ceramic,
Lederhose, Germany). For the transversal isotropic casedte specified in Tab. 5.1. The material
parameters used in the present context follow as

1 €11 — €33

G = —ez1, C2=e3 +2e5—e33, (3=—2€5 Y= —5hn 2= 5

(5.42)

. . . , . 1
For the academic case of mechanical isotropy the Lamé aoinstis chosen ag = §[m + -

In order to enable numerical treatment, in the computatitresunit of time has been expressed by
[s] = 10%[ms]. In what follows, the bulk units are no longer given explicifThe eigenvalues for the
isotropic case are computed as

V= —]{3, Vy = k’, Vs = —091171{5, Vy = 091171{5,

5.43
vs = —0.9760k, vg=0.9760k, v; = —1.0670k, vz = 1.0675k ( )

For the transversal isotropic case, the eigenvalues aea by

v = —1.0645k, vy = 1.0645k, 15 = —1.2105k, vy = 1.2105k,
vs = [—0.9024 4 i0.0124)k,  vg = [0.9024 — i0.0124]k, (5.44)
vr = [—0.902492 — 0.0124205]k,  vs = [0.902492 + i0.0124205]k

Obviously, for both cases, eigenvalues are distinct andraipairwise different signs. The related
eigenvectors are given in appendix D.

5.3.3 Bounded Solution

In view of the fact that all eigenvalues and eigenvectorsgd@stnct, the general solution can be con-
structed without computing generalised eigenvectorsated| for the associated Wronski-determinant,
it holdsw # 0. For abbreviation, the general solution is not given hengly Gtationary waves which
decay towards the bulk material are considered. In thiseaspnly terms with a negative real part
exponent are relevant. For a mechanically isotropic butkfthally renders the overall decay function
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

as
[ 0 —incg/k
_ | Wu _ —c1/k 0
w, = {MJ = exp(nn) o | +expsn) Qes
] 0 —Q3c3/k
iQGC5/l{3 i91107/k
0 0
5.45
+oepan) | g Ik +explvm) | Ik (5.45)
i —9865/k —91367//{

For full mechanically transversal isotropy the overallaetunction is consequently given by

0 [ iQQCg/l{?
. w,y, . Qlcl/k’ 0
w, = { v } = exp(vn) o | T explsn) Qs
L 0 ] L 9403/16
[ Q7C5//<I ] 91207/16
0 0
+  exp(v + exp(v 5.46
p(vsn) Ogses/k p(v7n) —Quser/k ( )
L 9905/]{7 ] Q14C7/l{3

In both cases, the constamtscs, cs5, ¢; are taken from the vector of complex ansatz constants giyen b
c = [e1, 09, C3, ¢4, C5, Cg, C7, cg]'. It IS incorporated in the context of the general solutiohich has not
been given in detail. Please note that, because of the cerojpéeacter of the eigenvalues in the fully
transversal isotropic case, the decay behaviour in the @atirection is additionally characterised by
some periodicity. To obtain the incremental displacemants$ the incremental electrical potential,
results above are merged as

du = w, exp(ik(), 0P = we exp(ik() (5.47)

5.4 Boundary Conditions at the Interface

Because of the numerical character of the incrementalatisphents and the electrical potential, only
the most important steps of the computation are highlighd¢ad = 0, as already discussed in section
4.4, stresses and tractions fulfil

=0T (5.48)

50- €3 ’77:0
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5.5 Interfacial Constitutive Law and Bifurcation Analysis

Furthermore, dielectric displacements of the bulk andnieriace come together as
6D - e ’77=0 = §A (5.49)

Incremental stresses and dielectrical displacementsamputed by inserting equation (5.47) into
equations (5.5) and (5.6). The incremental interfaciahgjtias are computed as

or or

T = gy 1Pl + g 09 (5.50)
OA OA
oA = g 9l + g 09 (5.51)

5.5 Interfacial Constitutive Law and Bifurcation Analysis

In what follows, a incrementally linear ferroelectric tt@n-separation-law is applied, yielding

_ sz,el res .sz,tra _ ezf
ofu] A T
(5.52)
oN A y
— =e"" , - = —¢
Olu] o]

In view of the fact that a globally linear behaviour is chastre tangent operators have been de-
noted adequately, see section 3.7. In analogy to sectignedtations (5.48) and (5.49) are re-
iterated, yielding a homogeneous linear system of equatwith respect to the ansatz constants
a = [CL(), ay, as, (l3] = [Cl, C3, Cs, C7]t, reading as

B-a=0 (5.53)

For mechanical isotropy and transversal isotropy, theim#dris given in appendix E. The condition
to have stationary surface waves, compare also sectiors&énsequently identified with

det B = 0 (5.54)

5.6 Results

For simplification, the interfacial permittivity and coupd parameter are identified with numerical

values, reading as

A2t ‘ As
if — 1 6
- el =5x10°5. (5.55)

Moreover, the interface is considered to be planar isotrofth i1, = 1,. Consequently, the interfacial
mechanical behaviour is decoupled transversally isotrefih respect to its orthonormal base system.
Thereby, the direction of anisotropy is identified with Several choices qgi, = 1, 1, have been

¢f =5x%x 1073
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5 Bifurcation Analysis of Coupled Continuum-Interface Problems

isotropic bulk transversal isotropic bulk

s = 1y = 5 x 10'° kg/[m? %], p,, = 10 x 10% kg/[m? §%]

kr = —284758 — 41156 kr = —289597 — 121660
krr = —284758 4141156 krr = —289557 41421660
krrr = —238903 krrr = —239364
kry = —140356 kry = —146784

s = prp = 10 x 10 kg/[m? ], p,, = 5 x 10% kg/[m? §%]

kr = —477806 kp = —478728
kip = —279552 — 104524 kip = —282630 4 1105925
kir = —279552 4+ 0104524 kir = —282630 — 105925
kry = —173918 kry = —181131

ps =y = —5 x 101° kg/[m? ], p,, = 10 x 10' kg/[m? ]

Er = —286099 — 30043 kr = —293127 — 116294
ki = —286099 + 430043 krr = —293127 4116294
krrp = 140400 krrr = 143589
kry = 238903 kry = 239364

s = 11y = 5 % 10 kgl[m? 2], i, = —10 x 10' kg/[m? 2]

kr = —238903 kr = —239364

krr = —179085 — 450559 krr = —179258 4 55598
krrr = —179085 4 450559 krrr = —179258 — 155593
kry = 111845 kry = 117113

ps =y = —5 x 10'° kg/[m? ], p, = —10 x 10'° kg/[m?* ]

kr = —240916 kr = —239825
krr = 86226 ki = 89531
krrp = 186438 krrr = 192124
Ery = 238903 kry = 239364

Table 5.2: Wave numbers for different choices«of= 1, 11,, decimal places are neglected
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5.7 Discussion

computed, see Tab. 5.2 for the results. In all cases, thenliei@nt of B took the format of

1

det B = =

[kr — K)[krr — k)lkrrr — K[k — k] =0 (5.56)

with kp, ki1, ki1, kv denoting the roots of the polynomial. Please note that ému#b.56) is not
fulfilled for £ — oo, for whichdet B — 1. As a consequence, no infinite wave number can be deduced
from equation (5.56). As Tab. 5.2 reveals, for posifive= 1, 1, and both the mechanically isotropic
and transversal isotropic bulk no real positivare present. Accordingly, no stationary surface wave-
type bifurcations occur in such cases. The case of a phyaighllinear ferroelectric interface is
consequently included there. However, if some stiffnesstants are chosen to be negative, real
positive wave numbers occur and stationary surface wave-gglutions are possible.

5.7 Discussion

In the current chapter elaborations of chapter 4 have betem@ad to the coupled problem. In this
context the strategies of chapter 4 have been adopted intordesestigate the possibility of station-
ary surface wave-type solutions for either the incremetitgdlacements or the incremental electrical
potential. For simplification, all material parametersdaeen substituted by numerical values. The
bulk parameters have been chosen similarly to a common glszoic ceramic where the interfacial
permittivity and coupling parameter have been chosenipgesar physical reasons. Relating the bulk
and the interface rendedst B = 0, resulting in four different wave numbeks For positive inter-
facial stiffness parameters = u., 1., NO Stationary surface wave-type solutions occurred agalo r
positive wave numbers could be found. In contrast, if one orenof the above parameters are chosen
negative, bifurcation modes are possible. Neverthelssged as for the uncoupled problem, the num-
ber of bifurcation modes is finite for the values of materiaigmeters which have been incorporated
here, and, additionally no wave numbérs- oc occur.
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6 Finite Element Discretisation

In the context of this work, laminar welded metal-/fibreaferced polymer composites as well as
ferroelectric mesostructures are simulated. Therebycangoutational tool is given by the geometri-
cally linear Finite Element Method (FEM). Typical textbaoleferring to FEM are, e.g., Zienkiewicz
[195], Bathe [10], Reddy [146] and Hughes [69]. Some book®eisilly referring to nonlinear Finite
Elements have been written by Wriggers [191] and Belytsattkal. [16]. For a more mathemati-
cal view on this issue, see Braess [28]. For uncoupled pnadhyl¢hree-dimensional simulations are
conducted whereas for the coupled problem, two-dimenkmamnples are computed. Related, ad-
equate three- or two-dimensional continuum finite elemargsncorporated for the discretisation of
the bulk. Interfaces are discretised by so-called interielements, taking into account the fact that
the interfaces considered here are a-priori-known delanan zones. Thus, interface elements com-
bined with appropriate material models are systematicegd to model zones which are expected to
delaminate. Embedded between standard continuum elenm@etsace elements have no numerical
width. They are designed to model material interfaces andadgossess typical deficiencies (as for
instance ill-conditioned tangent operators) of continieiements with a very high ratio of length and
height.

The energetically conjugate quantities of the interface tesictions and relative displacement
jumps[u], and, respectively, dielectric displacementand electric potential jumpgP]. To include
those jumps within a finite element context, the dependsrafigu] and [®] on absolute degrees of
freedomu and® must be incorporated. Considering interface elementstdréng point are the dis-
placement vectors at surrounding nodes, given at the lomettee upper side of a continuum element.
First, the relative displacements between those nodewarputed, rendering displacement jump vec-
tors at the interfacial nodes. Subsequently, it is intexfeal over those jumps. The same principle is
applied in view of the coupled problem where an additiongrde of freedom, the electrical potential,
is encountered. Accordingly, electric potential jumps lddee interpolated. In Fig. 6.1, a sketch of a
four-noded bilinear and a two-noded linear interface el@meegiven. Surrounding nodes are marked
by a circle whereas interfacial nodes are indexed with romanbers in the sketch to mark the dif-
ference with respect to the surrounding nodes. For someerefes concerning interface elements,
see, e.g., Beer [13], Needleman [125], Gens et al. [58], I&dens [152], Schellekens and de Borst
[153], Steinmann and Betsch [169], Alfano and Crisfield [Hrsson and Jansson [88], Segurado and
LLorca [159], Steinmann and Hasner [170], Utzinger et 4B(] and others. In view of localisation
and mesh dependencies, some preliminary investigatiomestie®en discussed in chapters 4 and 5, see
also Utzinger et al. [181]. In what follows, body forces aemgrally neglected.
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upper continuum element

upper continuum 8 !
3 element 4 5 4 — n6 o
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lower continuum element

Figure 6.1: Schematic sketch of a one-dimensional (left) tawo-dimensional (right) interface ele-
ment

6.1 Uncoupled Problems

For the uncoupled problem the displacemeiatand the displacement jumfa] over the interface
contribute to the virtual work representation by means efrthirtual counterpartg and[«], which
are interpreted as test functions. Related to the balanteesir momentum, the principle of virtual
work renders one weak equation, reading as

G = /B\F é(ﬁ):a(u)dV+/[[ﬁﬂ-7-([[u]])dA

r

- / w-17,dA=0 and w=w, on 0B, (6.1)
0B,

In equation (6.1) integration areas are separated witleot$p the bulk, denoted & the bulk Neu-
mann boundaryl,, the bulk Dirichlet boundary5, and the interface, identified with Accounting
for the three-dimensional problem, infinitesimal volume aarface elements are denoted &sahd,
respectively, dl.

6.1.1 Continuum Elements

For the discretisation of a three-dimensional bulk, taneight-noded continuum elements are used,
inhering the ansatz functions

Nu(61,6,65) = g1+ Evelll + En6al[1 + Eanti) 62)
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6.1 Uncoupled Problems

where the index; denotes the number of the node &g, {&on, &35 are the nodal coordinates. The
interpolation variables are given gy, &,,&3 € [—1,1]. The approximated displacements and dis-
placement test function follow straightforwardly as

8 8
w'(6,6,8) = ) un Na(6r,6,&),  a"(61,6,6) = ) an Nu(6,6,6)  (6:3)
N=1

N=1

Adopting standard notation, approximated quantities adowed with ant-index. Accordingly, in
Voigt notation, strains and the strain testfunction follasv

Vi _ [ h o, h o,k ok h ., h h ., h hoy_ N
€ - [ul,a:7 ul,y? ul,z? ul,y + u2,x7 u?,z + u3,y7 ul,z + u3,a:] - BC@S U (64)
P N N RS P S Gk ooh . — N
€ - [u1m7u1y7ulz7u1y+u2x7 22+u3y7 lz+u3m]_BC€8'u (65)
. ~ N N A A A A A A A . .
with u = [u1; u; us; uy; us; ug; ur; ug) anda’™ = [@y; Go; Us; wy; Us; Ug; Ur; Ug) being the dis-

placements at the element nodes (analogolls The element operator matri..s is given in ap-
pendix F. Applying this discretisation with respect to eta (6.1) on the domain of a continuum
element renders the associated discrete virtual work ibomiwn and the element residuum as

Gce,h:/ ANt BZeS (o ('Uzh) ces Ce / BceS 0- )d‘/ce (66)

Linearisation of the virtual work contribution then renglan incremental relation on the approximated
continuum element level, reading as

N (6.7)

J/

AG™ h ﬁ [/ BceS C- BceS d‘/ce

K-
6.1.2 Interface Elements

Interfaces which are embedded in between two bulk matematibns are discretised by interface
elements. For the uncoupled problem, a three-dimensiceaksio is considered. Related, the inter-

face elements are two-dimensional, interpolating theldcgment jump of the surrounding nodes by
means of a bilinear four-noded ansatz. The ansatz funcaiengiven by

Ny(&1, &) = ! [1 + &in& [l + Eanéa) (6.8)

The interpolation variables are denotedéhyé, € [—1, 1]. The approximated displacement jump and
displacement jump test function are then given by

[u](&1, &) = Biea-u®,  [@]"(&, &) = Biey - @ (6.9)
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6 Finite Element Discretisation

whereu™ = [uy; uo; us; wy; us; Ue; w7 us) AN @Y = [dby; Uy; s; Uy Us; Ug; Ur; U] are the dis-
placements at the surrounding element nodes, dittafar Again, the element operator mati,.,

is given in appendix F. To obtain the associated discretealiwvork contribution and the interface
element residuum, the interfacial discretisation on theaa of an interface element, together with
equation (6.1), renders

Gie,h - /I‘ '&'N’t ’ B§e4 : T([[u]]h) e Ze / Bze4 T ) dAie (6'10)

Linearisation of the virtual work contribution then renslan incremental relation on the approximated
interface element level, reading as

AG™h = Nt [ / B!, CY . Bj,dA.| -Au” (6.11)

J/

Kze

6.2 Coupled Problems

For an electrically coupled problem, the displacementthe electric potentiab as well as the jump
quantitiegu] and[®] are considered to contribute to the virtual work repregentdy means of their
virtual counterparts. These can be interpreted as testifunsaii, &, [@] and[®]. The principle of
virtual work renders two weak equations, one related to Hiarze of linear momentum, the second
reflecting the Gaussian law, namely

G, = /B\F é(u) : o(u,d) dA+/[[ﬁ]] 1 ([u], [®])dS

r

- / w-1,dS=0 and w=wu, on 0B, (6.12)
0Bs
Go = [ B(®)Dw®)da+ [ B(18)A(ul. [3]) S
B\l r
+ / dA,dS=0 and ®=d, on By (6.13)
o0Bp

Within equations (6.12) and (6.13), integration areas epasated with respect to the bulk, denoted as
B, the bulk Neumann boundarié#, andoBp, the bulk Dirichlet boundaried3,, and0Bs and the
interfacel’. In view of the two-dimensional problem, infinitesimal agead line elements are denoted
as d4 and os.

6.2.1 Continuum Elements

For the discretisation of a two-dimensional continuum hiis tontext, bilinear four-noded and linear
three-noded continuum elements are considered. For ihe&ilfour-noded element, ansatz functions
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read as

Ny (§1,82) = i[l + &n&][1 + Eonéol (6.14)

with the interpolation variableg, £, € [—1, 1]. Displacements and displacement test functions are
approximated by

4

51752 Z un NN 51752) 51752 = Z 51,52 (6-15)

= N=1

The electric potential and its testfunction are approxeddty

4
(&, &) = Z Oy Ny(&r, &), O"(&,6) = Z dy Ny (&1, 6) (6.16)

N=1

Formulated in Voigt notation, the strains and the straibftesction read as

€V - [ufll,m7 u}ll,y; u}ll,y + ug,m] - Bc€4 : uN (617)
év = [a?xva?yva?y+u21] :Bce4"&N (618)

whereu” = [uy; uy; us; uy] and oy = [wy; Uo; uz; wy) denote the displacements at the element
nodes. The electric field vector and its testfunction, cam@throder and Gross [155] and Schroder
and Romanowski [158], follow as

E = —[0;0)]= A " (6.19)

~ ~ N

E = [0t = A -® (6.20)

where®" = [@;; y: Dy; O] and®’ = [®,; By; By; Dy4] is the electric potential at the element nodes.
For a linear material, a symmetric stiffness matrix is alsbieved if signs in equations (6.20) and
(2.7), are reversed. The element operator matriBgs andA.., are given in appendix F. Concerning
three-noded linear elements, the ansatz functions are gse

Ni=1-&§ &, No=&, Ny=§& (6.21)

Again, the interpolation variables are givenyyé, € [—1, 1]. Displacements and displacement test
functions are approximated by

3
51752 Z un NN 51752) 51752 = Z (135 51, 52 (6-22)
N=1
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6 Finite Element Discretisation

Furthermore, the electric potential and its testfuncti@napproximated by

3
&1, &) = ZchNN (6,&), "&,&) =) oy Ny(6, &) (6.23)

N=1

Accordingly, the strains and strain testfunctions are eeed as
eV = [ ul iul, +ul,] = Bees - u” (6.24)

h

= [ul :):7 ah

1y?u1y+u2 gg] == BceS 'il’N (625)

The displacements at the element nodes are given'by= [u;; uy; us) anda” = [ty; Uo; us]. The
electric field vector and the related test function are glwgn

E = —[0"; 0" =-A.y " (6.26)

~ ~ N

E = [¢,0"]= A d (6.27)

with @Y = [;; y; By andd’" = [®,; ®,; D3] denoting the electric potential at the element nodes.
For the element operator matricék..; and A...3, see appendix F. On the domain of a three-noded
continuum element, the associated discrete virtual workrdmution and the residuum are given, with
respect to equation (6.12), as

G;ah :/ 'ljl;N’t . Bie3 (o (U (I)h) dAcea ce / Bce3 o (uhaq)h) dAce (628)

ce

and, furthermore, concerning equation (6.13), it holds
Gt = / & Al D(u", o) dA,., / Al .- D(u" ®")dA,. (6.29)

Incremental relations on the approximated continuum ehgrevel are rendered by linearisation of
the associated virtual work contribution, reading as

AGe = 4™t [ B!, C., - B.3dA.| -AuM +a™" [ / —B', Cuo- AsdA, | -ADY
BCE ce

N J/ J/

-~ -~

K K,
uy ud

(6.30)
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and

Nt

Aie3 ‘AUN—F@NJ/‘ / _AZ&'% ’ C‘P@ ’ Ace3 dAce AéN
BCE ce

. / . /

Vv Vv
ce ce
K<I>u K(I)d)

AGSI)e’h - é ' C<I>u : Bce3 dAce

(6.31)
Similar expressions are obtained for four-noded bilindaments. The element stiffness matrix and
the element residuum follow as

K%, K ri
K¢ — ’ fce — (632)
KSI)eu Kflib SI)e

6.2.2 Interface Elements
Next, emphasis is placed on the discretisation of integfata two-dimensional surrounding contin-
uum. Based on linear interfacial ansatz functions

1 1
N1=§[1—5]7 N2:§[1+f] (6.33)

depending on the interpolation varialflec [—1, 1], the approximations of the displacements and of
the appropriate test functions are given as

[u]"(€) = Biez - u”,  [a]"(§) = Bica - o (6.34)

whereu = [wy; uy; us; ug] anda” = [a;a,; Gg; 0y are the displacements at the surrounding
element nodes. The electric potential jump and its testfon@are approximated by

=N

[2]"(€) = @ier - B, [2]"(€) = Qier - P (6.35)
The electric field strength over the interface and its testfion is then given as
E = —[0]" = —ajum " (6.36)

A - AN

E = [9]"= @ -P (6.37)

with the potential at the surrounding node§ = [®; ®y; Oy; ] andd — [®,; By; y; D4]. Once
more, the element operator matricBs., and a;., are given in appendix F. On the domain of a
two-noded interface element, the associated discretgavintork contribution and the residuum under
consideration of equation (6.12) are given as
Gt = [ @Bl r(ul @) ds, 5= [ Bloer(ul[0]')ds.  (638)
I Fie

ie
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6 Finite Element Discretisation

Furthermore, with respect to equation (6.13), it holds

Gi{f’h - / @NJ/ ' a’geQ A([[u]]ha [[q)]]h) dSi67 g - / a'262 A([[u]]hv [[q)]]h) dSZ (639)
r

ie ie

The incremental relations on the approximated interfaemeht level are then rendered by linearisa-
tion of the associated virtual work contribution, yielding

AGZe’h = ’lA,l,N’t . [/ BE@Q . CZJ; . BieQ dSie 'A'U/N + '&N’t . [/ B;‘feQ . Czq) * Qje2 dSie A@N
Fie Fie
K:fu k;‘f@
(6.40)
and
AGiIf’h -3¢ / Qe - Cgu * Biep S | -Au’ + & / Qo - Cgcp C@ier dS;e | APV
Fie Fie
(6.41)

Please note that for the formulation as given in equatiofil{ the interfacial tangents/ andc,
have to be computed with respect to the electric potentiapjfiP| . The element stiffness matrix and
the element residuum follow as

infu kff@ | fie
K = , fc= (6.42)

ie ie ie
k@u k‘ixb P

6.3 Additional Remarks

Allinterfacial integrals are computed by transformatidthe integral domain into a reference element
domain. The such obtained expressions are then numernictdtyrated by means of the standard two-
point Gauss-integration technique. Utilising an assermalgprithm, the global stiffness matrices and
residua are subsequently computed to be implemented in laneanfinite element context. The
mentioned technique of the Gauss-integration turned ounetsufficient in all cases. Oscillating
constitutive responses, as described by Schellekens aBdrde[153], have not been observed.
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7 Application | — Laminar Welded
Metal-/Fibre-Reinforced Polymer
Composites

In the course of technological progression an increasiqdicgiion of lightweight structures is ob-
served, inducing new innovative product developmentsiioua fields of industry. Especially hybrid
lightweight structures of metal-/fibre-reinforced polyncemposites are of interest, e.g., in the scope
of automotive and aerospace engineering. As a key techyjaaogh composites essentially contribute
to economical and ecological issues. To realise joints dhlmend fibre-reinforced polymers, new
joining technologies are investigated and optimised. Rbgg the loading behaviour of such com-
posites, the joining zone is of crucial importance as it isstdered to be an a priori known zone of
delamination. To reduce the number of experiments and iardodcontribute to the improvement of
the joining technologies, benchmark tests concerning strcictures are computationally modelled
and numerically simulated.

In section 7.1 two different methods of joining are shortiyroduced, i.e. Thermal Impact Welding
(TIW) and Ultrasonic Metal Welding (UMW). Furthermore, sermeasuring and analysis methods
are concisely explained. Then, tensile tests of thermahohwelded PEEK/steel single lap tensile
specimens have been simulated quasistatically by applicat FEM, see section 7.2. For the steel
substrates elastoplasticity with linear isotropic hardgmas been applied (see section 2.3) while the
very thin welding zone (including a PEEK inlay) has expetliebeen modelled by an interfacial
traction-separation-law, i.e. elastoplasticity with daye, see section 3.4. Consequently, in the sense
of chapter 6, the joining partners are discretised by 8-dammtinuum elements and the welding
interface is discretised by four-noded interface elemdntsgral and local datasets of the experiment
and the simulation are compared. Thereafter, section ¢l@das some integral data comparison of a
guasistatic test of an ultrasonic metal welded tensileispatwhereas for the substrates continuum
elements are applied again, with orthotropic elasticity@6-PA66 and elastoplasticity with linear
isotropic hardening for the aluminium. The interface désisation and modelling is adopted from the
previous section. Furthermore, in section 7.4, a prelinyic@mparison of global and local datasets
for a fatigued tensile specimen manufactured by ultrasowial welding is presented. Modelling and
discretisation techniques concerning the substratesdmgted from the previous section, while the
welding interface is modelled by the cycle-based fatigueda discussed in section 3.6.

7.1 Manufacturing and Measuring

Since fibre-reinforced thermoplastic materials offer aagpotential for lightweight design and con-
struction, they are increasing in use. They feature higkiipestiffness, strength, and impact resis-
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7 Application | — Laminar Welded Metal-/Fibre-Reinforced Polymer Composites

tance as well as an excellent resistance against many chlesgients. Furthermore, many polymeric
composite materials exhibit very good tribological prasy, i.e. a low wear rate and low coefficients
of friction, see Hager and Friedrich [59], Friedrich et f6], Beringer et al. [23] and Naga [124].
However, the limits of today’s composites can be pushed éher by combining their advan-
tages with the properties of traditional construction mats, e.g. thermal conductivity or strength.
Moreover, the use of composite materials in more and morkcappns requires reliable, strong and
easy-to-use methods of joining metal parts with compositetires. Thus, the development of new
joining techniques for metals and thermoplastic polymesgins is, as well as the related testing and
analysis, an active field of research in the scope of the DFs&&teh Unit 524.

7.1.1 Thermal Impact Welding

Amongst others, Thermal Impact Welding (TIW) is a novel t@gle for joining thermoplastics with
steel which is developed by a partner project at the Indfiiluverbundwerkstoffe GmbH (IVW) in
Kaiserslautern. At the IVW, manufacturing and related ésdisplacement testing is resident. De-
veloping such a new joining method necessitates a thoraugdsiigation of the stability and repro-
ducibility of the process. At the same time, it must be engtinat the manufactured components are
free of flaws. In the technical literature only few report:icerning a hot press process for joining
thermoplastics with metals can be found. Two of those rapegsaare Oster et al. [134] and Kriger
and Meyer [87]. Oster et al. [134] describe how a hot pressqa® (i.e. Thermal Impact Welding)
can be employed to manufacture flat samples for tribologixpériments.

Poly(-ether-ether)-ketone (PEEK) is a heavy-duty indalsthermoplastic resin, which is widely
used in sophisticated applications. Its mechanical anairtileproperties are in the upper range com-
pared to other commercially available polymeric mater{&@krenstein et al. [49]). It is a semi-
crystalline thermoplastic with a melting temperature off 38 and a glass transition temperature
of 143°C. The maximum continuous utilisation temperature of PEERG0°C. Furthermore, PEEK
features a high specific stiffness and strength, an outstgnelsistance to chemical agents, and can ex-
hibit a maximum degree of crystallinity of 48%. The preseshpound is reinforced with an amount
of 10 wt.% short carbon fibres. Moreover, a total of approx. wa® of various micro-particles
(graphite and PTFE) are added to the formulation of the camg@do improve the mechanical pro-
perties. As the metallic counterpart in the joining pro¢céss mild steel DCO1 (German standard, also
referred to as DIN EN 10131 or material number 1.0330) exhidiYoung’s modulus E of approxi-
mately 165 GPa, a yield strength K} of 145 MPa and a tensile strength, Rf approximately 290
MPa. The steel substrates were grit-blasted before haweg thermally welded. It is believed that
the enhanced surface roughness after grit-blastingtiei the bonding of the polymeric compound
to the metal substrate due to mechanical hooking of the padyrRurthermore, blasting leads to a
chemical activation of the surface layer, thus ameliogative adhesion between the two materials to
be joined. In the TIW process the metallic substrates tagyetlith a PEEK-layer are inserted into a
hot press, see Fig. 7.1. The parts to be joined are then hieed&0°C, a temperature above the melt-
ing temperature of the PEEK-compound. Once the PEEK hasteatpressure is applied to the setup
and the heating of the hot press is switched off. As the teatpes drops, the PEEK becomes more
and more viscous. During this process the pressure on ti tpaoe joined needs to be maintained
because a decrease in joining pressure could result ineswit shrink holes in the polymer, thus
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Figure 7.1: Schematic representation of the hot press gsoce

leading to a reduced strength of the PEEK-layer and weakibgrd the metal substrates. Shortly
before the PEEK eventually solidifies, the pressure neells iacreased in order to compensate the
shrinkage due to crystallisation of the polymer. The speasremain in the hot press until the tem-
perature of the setup drops below 3@to make sure that the polymeric compound solidifies and the
removal of the still hot specimens does not influence thegtheof the weld. The geometry of such a
specimen is given in Fig. 7.2.

7.1.2 Ultrasonic Metal Welding

Ultrasonic Metal Welding (UMW) is, according to Balle et 46], already established in industrial
manufacturing (Ehrenstein [49], Wodara [190], Potentel[L4However, up to now, mainly similar
materials have been joined by UMW. The method of UMW is suiisiHly different to the method of
TIW, inhering low temperatures and energy inputs as well stsoat welding time.

Here, joining partners are given by AlMa@nd the thermoplastic composite material CF-PAG6.
Manufacturing and related force-displacement testingsgdent at the Institute of Materials Science
and Engineering (WKK) at the University of Kaiserslautefhe aluminium exhibits a Young’s mod-
ulus E of approximately 70 GPa, a yield strengtjy Rof 175 MPa and a tensile strength, Fof
approximately 250 MPa. The PAG66 is reinforced with carboneBbinhering a volume of approx.
48 %. The compound is manufactured in an autoclave processevem Atlas 1/4-fabric is created.
CF-PA66 generally shows a orthotropic elastic behaviodre material constants have been passed
by a partner project manufacturing the CF-PA66. Expresséaa parameters as discussed in section
2.2.3, the orthotropic behaviour is specified )by 4555 MPa,a; = —3263 MPa,a; = —3263 MPa,

(1 = 51466 MPa, 3, = 51466 MPa, 33 = 7524 MPa, = —1000 MPa, i1, = 1900 MPa, 1o = 1900
MPa. The main components of an UMW system are given in Fig(BaBe et al. [6]). It consists of an
ultrasonic generator (1), a converter (2), a booster (3)thadvelding tool which is called sonotrode
(4). A 50 Hz main voltage is converted into a high frequendgrakting voltage output of 20 kHz
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Figure 7.2: Single lap tensile specimen as manufactured\Wy T
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1. ultrasonic generator 5. joining partner
2. piezoelectrical converter 6. anvil
3. booster 7. force transmission

4. sonotrode

Figure 7.3: The process machinery of Ultrasonic Metal WejdBalle [6])
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Figure 7.4: Single lap tensile specimen as manufactured\dWU

by an ultrasonic generator. This converter uses the redgrnezoelectrical effect, transforming the
high frequency voltage into mechanical oscillations. Theassary oscillation amplitude in the weld-
ing zone which is between 5 to 5@ is achieved by an appropriate booster and sonotrode design
A static pressure (7) and the welding energy by means ofsaliia shear waves are simultaneously
applied to the joining partners (5) which are fixed to an a(®jl In the course of this process, the
PAG66 matrix is forced out of the welding zone. Related, therahium gets very close to the carbon
fibres. It could be proved that both an intermolecular cardaaavell as a mechanical interlocking are
accomplished by UMW (Balle et al. [6]). The typical geometfya such manufactured specimen is
displayed in Fig. 7.4

7.1.3 Displacement and Strain Analysis

In order to produce integral force-displacement-curvessite test specimens manufactured by TIW
and UMW are tested with a tensile testing machine by the ptg@artners in the context of the DFG
Research Unit 524. The test setup is displayed in Fig. 7.% dihgle lap tensile specimens are
mounted into the chuck jaw of the testing machine. The teste@nducted at a constant cross head
speed. During the tests a data acquisition programme @iy records the tensile forces and the
elongation.

To specify the theoretical model, it is necessary to compateonly force-displacement-curves.
For a more detailed verification of the simulation, a locakgolved optical measurement method
is applied to obtain local displacement and strain fieldseré&fore, the in-plane and out-of-plane
deformation is recorded, using modern optical measureteehhiques based on Electronic Speckle
Pattern Interferometry (ESPI) (Cloud [37], Busse et al])2By ESPI, such data fields are achieved
for all three dimensions and for different loadings at aninpof the specimen surface. ESPI (Fig.
7.6) uses a laser which is split into a reference beam andm fwedahe purpose of object illumination.
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Figure 7.5: Tensile test setup
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Figure 7.6: Principle of ESPI
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After the recombination of the two beams, the SPECKLE patteig. 7.7) is obtained that correlates
with the roughness of the observed object. The pHagetween the two laser beams depends on
the optical path lengths. The deformation of the object gkarthis length, and correlating pictures
before and after loading enables the elimination of the omknphased. The result is the phase
angleA which directly corresponds to the deformation of the objdt¢te accuracy of the measured
phase angle depends only on the geometrical setup and tledangth of the laser used. The achieved
sensitivity based on a Q300 ESPI system by Dantec Ettemsgeiang and Ettemeyer [194]) is better
then 0.1um in all directions. Computing the gradient in space of th@ldisement field determines
the strain contribution in every point of the object surfagdditionally to ESPI, the so-called Digital
Image Correlation (DIC) is applied to obtain local displaeant and strain fields. For detailed remarks
concerning the method of DIC, it is referred to, e.g., Friahd Winter [55], Winter [189] as well as
Kornmann and Kroplin [82].

-

Figure 7.7: SPECKLE pattern of a circular loaded plate

7.2 Simulation of Tensile Tests of Thermal Impact Welded
PEEK/Steel Single Lap Tensile Specimens

In order to predict the mechanical properties of more compIEEK-steel components to be manu-
factured by the method of TIW in the future, for now, simuattechniques focus on single lap tensile
tests. As such, the developed models shall permit the detation of the strength as well as inelas-
tic properties of the joint in order to reduce the number giegkments. Using the Finite Element
Method (FEM) for simulation, the importance of so-calletenface elements must be emphasised.
The representation of the loading behaviour of the weldfiate is essentially based on appropriate
material models for the interface elements which is chogdretelastoplastic with damaging effects,
see section 3.4. The steel substrate is modelled by elastapty with linear isotropic hardening. The
local and integral empirical data resulting from testing analysis is consequently used to verify the
FEM-based numerical modelling.
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Figure 7.8: Force-displacement-curve of a thermal impadted single lap tensile specimen (left),
normal stress in loading direction,,., loadstep 25/30 (right)

7.2.1 Results

As can be seen in Fig. 7.8, the experimentally obtained nsaomc force-displacement-curve is
nicely reproduced by the simulation whereby a model with&2@ments has been applied, with 120
interface elements for the discretisation of the weldingezolhe chosen material parameters for the
steel substrate are: Young’s Modulus 166900 MPa, Poisstio B&, yield stress 140.3 MPa and
hardening modulus 95 MPa while suitable material pararadterthe interface are:, = ¢; = 35211
MPa/m,c, = 100000 MPa/mYy, = Yy, = Yy, = 21.5 MPa/ImH, = H, = H,, = 150 MPa/m s = j1o¢

= lig, = 0.059 MPam, ang, = j, = j, = 130 (MPam)'. Three zones can be identified from Fig. 7.8:
an elastic zone, an elastoplastic zone and a damaged zooerdig to the appropriate model and
set of material parameters, the simulated force-displacémurve fits to the experimental data. The
first zone is given by an elastic straight line. In the secamkz beginning at a force of approximately
4500 N, elastoplastic hardening effects in both the bulkthednterface occur. Identifying the third
zone which begins at approximately 7000 N, a softening hehawf the specimen can be seen due to
interfacial damage activity, followed by complete failu®ince integral-type-data is essentially one-
dimensional, local analyses using Electronic SpecklesRatnterferometry (ESPI) are additionally
performed. Based on two-dimensional data fields, compasibetween ESPI and numerical simula-
tions constitute an important part of the validation pragedso that the set of material parameters is
not determined from purely one-dimensional measuremd8mde specific, using different material
parameters, similar one-dimensional force-displaceroentes can be generated. The optical analy-
ses with ESPI shown here are applied to the narrow side ofpeeirmen and are supported during
the entire loading history. Here, Figs. 7.9-7.11 are refitto loadstep 25/30. Concerning simulation
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Figure 7.9: ESPI image of a displacement offset in loadimgation (left), corresponding simulation
loadstep 25/30 (right)

details, the discretisation of the mesh is throughout shiovifne undeformed configuration. Note that
the interface itself is not displayed in the results becaists dimensional deficiency. Placing em-
phasis on Fig. 7.9, one observes quantitative agreememisd® experimental and simulation results
concerning deformations in loading direction. In Fig. 7.l so-called out-of-plane deformation
(bending displacement) is shown. By analogy with Fig. 7.8dyquantitative similarities are ob-

served. Finally, strain distributions in loading directiare compared in Fig. 7.11. Apart from the
distinct qualitative similarity of the ESPI image and theaglation quantities are in good agreement.

7.2.2 Discussion

First, it has to be mentioned that the quality of the ESPIItesunfluenced by smoothing data, and
by the fact that the specimen turns out of the fixed obsemdteame which is shown here, due to
the torque induced by the geometry. Besides this, a poggbs®n for differences may be that in the
process of TIW, PEEK leaks out of the interfacial zone andiandates at the corners, which is not
accounted for in the simulation. This possibly causes th#te simulation result, maximum strains
occur slightly shifted compared to the ESPI image. Consattyydy using interfacial elastoplasticity
with Lemaitre-type-damage, the phenomenological sinmanaif global force-displacement-curves is
successfully recaptured. One-dimensional integral-tyg@ as well as two-dimensional data, espe-
cially local displacements, have quantitatively beenwuagat. Good qualitative and, up to some degree,
also quantitative similarities occur when comparing Istedins in loading direction.
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Figure 7.10: ESPI image of a displacement offset in outlafip direction (left), corresponding sim-
ulation loadstep 25/30 (right)
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Figure 7.11: ESPI image based strains in loading directeft) (corresponding simulation loadstep
25/30 (right)
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Figure 7.12: Force-displacement-curve of a ultrasoni@hvetlded single lap tensile specimen (left);
normal stress in loading direction,,., loadstep 25/30 (right)

7.3 Simulation of Tensile Tests of Ultrasonic Metal Welded
CF-PA66/AIMg 3 Single Lap Tensile Specimens

For the same motivation as for TIW, investigations for nowaantrate on single lap tensile tests. The
interface has again been modelled by elastoplasticity datinage, while the aluminium is modelled
by elastoplasticity with linear isotropic hardening. Fdf-BA66, orthotropic elasticity is assumed.

7.3.1 Results

Fig. 7.12 shows that the macroscopic force-displacemeamnecof the experiment is reproduced by
the simulation. Here, a model with 984 elements has beeneapplith 16 interface elements for the
discretisation of the sonotrode contact area. The alummrsubstrate is modelled by means of the
following material parameters: A Young's Modulus of 7058®%) a Poisson Ratio of 0.33, a yield
stress of 175.3 MPa and a hardening modulus of 3500 MPafdniar material parameters are given
asc, = ¢; = 190 MPa/mg,, = 540 MPa/m Yy, = Yo, = Yy, =33 MPa/m,H, = H, = H, = 115 MPa/m,
Los = for = fon = 5.9 MPam and, = j; = j, = 50 (MPam)*. According to Fig. 7.8, an elastic zone,
an elastoplastic zone and a damaged zone are identified |adte@astic zone begins at approx. 3000
N, where elastoplastic hardening effects in both the butkthe interface occur. The damaged zone
is relatively narrow and begins at approx. 4100 N. At the entthe loading history, a very a brittle
behaviour is present.

125



7 Application | — Laminar Welded Metal-/Fibre-Reinforced Polymer Composites

7.3.2 Discussion

Integral data of a statistically confirmed force-displaeatplot has been captured by the simulation
very nicely. Nevertheless, unlike in section 7.2, a locahparison could not yet be conducted. There-
fore, the recording of two-dimensional data fields by optcelysis methods as, e.g., ESPI is needed.
This is of primary interest in order to verify the parametafrghe simulation.

7.4 Simulation of Tensile Fatigue Tests of Ultrasonic Metal
Welded CF-PA66/AIMg 5 Single Lap Tensile Specimens

Subsequently, two experimental results of tensile fattgats of Ultrasonic Welded CFK-PAG66/AIMg
single lap tensile specimens are compared to simulatiohs. aluminium substrate is modelled by
elastoplasticity with linear isotropic hardening while foF-PAG6, orthotropic elasticity is assumed.
The welding interface is modelled by cycle-based fatigudissussed in section 3.6. Here, only pre-
liminary experimental results achieved by the LehrstunlRéssourcengerechte ProduktEntwicklung
(RPE) at the University of Kaiserslautern could be incogbed. In view of the fact that the experi-
mental setup is quite difficult to handle, for this time, slation shall not remodel reality but rather
is interpreted as a tool to evaluate the experimental esGkrtainly, the simulation will not display
reality until it is verified with statistically proven data.

7.4.1 Results

The material parameters of the substrates have been adoptedection 7.3. Keeping in mind that
high-cycle-fatigue behaviour is at hand, the aforememtiicycle-based fatigue formulation, including
a penalty formalism as discussed in section 3.11, is incatpd for the interface. The basic interfacial
material parameters are given By= 5, = 0.2, 5, = 1,a = 10, 8 = 1, k = 0. For experiment 1, the
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Figure 7.13: Strains over cycle number, experiment 1 andlsition (left), experiment 2 and simula-
tion (right)
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Experiment 1 AN = 4000, 16 load steps)
stiffness 1 ¢,y = ¢i1) = 190 MPa/m  ¢,,(1) = 540 MPa/m ¢ = 5400 MPa/m (' = 0.0027
stiffness 2 Cs(2) = Ci(2) = 10 Cs(1) Cn(2) = 10 Cn(1) q = 54000 MPa/m C =0.175
stiffness 3 Cs(3) = Cy(3) = 100 Cs(1) Cn(3) = 100 Cn(1) g = 540000 MPa/m C' = 6.06

Experiment 2 AN = 14000, 14 load steps)
stiffness 1 ¢,1) = ;1) = 190 MPa/im  ¢,,(1) = 540 MPa/m ¢ = 5400 MPa/m C = 0.0009
stiffness 2 Cs(2) = Ci(2) = 10 Cs(1) Cn(2) = 10 Cn(1) q = 54000 MPa/m (C = 0.0582
stiffness 3 Cs(3) = Cy(3) = 100 Cs(1) Cn(3) = 100 Cn(1) q = 540000 MPa/m C = 2.0

Table 7.1: Interfacial stiffnesses, penalty and fatiguapeeters for experiments 1 and 2

strain in loading direction is plotted over the cycle numingfig. 7.13 on the left hand side, while the
right hand side features experiment 2. In order to apprdaekexperimental results, three simulations
with different interfacial stiffnesses have been condadidte each experiment. The results are also
displayed in Fig. 7.13. Related material parameters arengiv Tab. 7.1. Obviously, the (lowest)
stiffnesses 1 as adopted from the tensile test simulaticgeofion 7.3 do not fit the experimental
strain-cycle curves of Fig. 7.13. For both experimentsgiobal data, given as strain-cycle curves,
is the better approximated the higher the stiffnesses avseth Nevertheless, for even very high
interfacial stiffnesses, the experimental curves caneaelached. Additional local data recorded by
the Digital Image Correlation (DIC) is compared with the slation in Fig. 7.14. All pictures are
valid for (the lowest) stiffnesses 1 at 2/3 of the cyclic lmaphistory, what is also denoted in Fig. 7.13.
On the left hand side of Fig. 7.14, the strains in loadingdios ¢, for experiment 1 and, below, the
simulation result are shown, while the right hand side festthe strains in loading directian, for
experiment 2 (above) and the simulation result (below). Sitreilation results are qualitatively similar
for both experiments. Concerning experiment 2 on the rigindrside of Fig. 7.14, experimental and
simulation results clearly diverge. In contrast, for exment 1 which is depicted on the left hand side
of Fig. 7.14, at least a qualitative tendency is observabte strain field on the aluminium substrate
resulting from DIC measurements is minimal at the upper,sidéle it is maximal at the lower side.
This is roughly reflected by the simulation.

7.4.2 Discussion

First, it has to be noted that experiments 1 and 2 show vefgrdiit results. Both specimens have
been cycled with a loading amplitude of 2 kN. Concerning thaiis-cycle curves of Fig. 7.13, this is
partially due to the clip-on strain gauge that has been egver different distances for experiments
1 and 2, which certainly has been considered in the simulatdevertheless, especially the locally
resolved experimental data is differing. The specimen tmeekperiment 1, as a preliminary test, has
been cycled before with low amplitudes and very high cyclebers without revealing any inelastic
behaviour. It is questionable how this has to be interpregtdight of the comparison of experiment 1
and 2.
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Figure 7.14: Above: DIC image of strains in loading direntiat 2/3 of the cyclic loading history,
experiment 1 (left), experiment 2 (right). Below: straindaading direction, simulation
of experiment 1 with stiffnesg;;) (left), and strains in loading direction, simulation of
experiment 2 also with stiffnesg; (right)
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In view of the simulation, only the sonotrode contact aresalyeen discretised by means of interface
elements. Normally, during the process of UMW, the polyasmigélts and induces an extended contact
area, which is not accounted for in the simulation. Furtl@enfor numerical reasons, a very steep
rise of the strains as observed in Fig. 7.13 for both experiswat the end of the cyclic loading history,
could not yet be generated.

From Fig. 7.13, it can be concluded that either the substet modelled too soft or that the clip-
on strain gauge data is in need of improvement. A rise offiatéal stiffnesses does not seem to solve
this problem completely. Moreover, the results of sectidh would suggest the lowest interfacial
stiffnesses. The divergence of experimental data as itedlday Figs. 7.13 and 7.14 means that the
experimental setup is not yet reproducible. Despite thetfeat for experiment 1 a cyclic prehistory
has been at hand, the differences are quite immense. Nele=shthe local data of the first experiment
given by the strain field in loading direction is roughly reguced in the simulation.

In order to improve the experiments and to reduce the vanati the results, a new clamping tool is
currently developed at the Institute of Materials Scienue Bngineering (WKK) at the University of
Kaiserslautern. This, as well as a comparison of speciméhgie same prehistory and an identical
application of the clip-on strain gauge is needed. To sumthg setup of experiment 1 seems to
approach the numerical simulation more than experimenh@,tle cycle-based fatigue law which
is applied to the interface is principally applicable foe tsimulation of such fatigue experiments as
given here.
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8 Application Il — Piezoelectric
Mesostructures

In recent years, smart materials have occupied a decisleeimanany fields of engineering sci-
ence. They can be subdivided into several subclassespiezpglectric solids, shape memory alloys,
electro-rheostatic and magneto-rheostatic fluids, to name few. By means of their revolutionary
properties, smart materials expand technical possésliin turn giving new inspiration to their own
evolution. An obvious example is the continuing downsizaidhe application scales, being docu-
mented by developments related to nanotechnology. Depegiodi the type of application, use can be
made of both the direct as well as the inverse piezoeledtacte Furthermore, so-called ferroelectric
materials are a subcategory of piezoelectric materialgy Tihere the ability that domain states can
be modified by loadings of sufficient magnitude. In any cagelicloading conditions are common,
resulting in fatigue-related degradation of the variousamal properties.

In this respect and in addition to laminar welded lightweiginuctures, piezoelectric ceramics are
another class of modern engineering materials occurrirtgignwork. In the following, a polycrys-
talline mesostructure of PZT is discretised by triangulamtmiuum elements for the grains and by
interface elements for the grain boundaries. The continmaterial law is linear ferroelectric, see
section 2.4, while the interfacial material law is basigdithear and decoupled but endowed with a
penalty formalism and two different fatigue damage evohsi The first type is suitable for low-
cycle-fatigue, while the second type captures high-cYaliggue. These material laws have been dis-
cussed in section 3.8. The constitutive model of the interfa artificial in nature, due to missing
reliable information on the exact grain boundary behaviouifatigue-type loading (Utzinger et al.
[183, 182]). It is designed to place emphasis on grain boynetfhects and is believed to be a first
step towards a sound physics-based model of real fatiguegses as, e.g., observed near the elec-
trodes for electric loading. First, section 8.1 includes tésults of a literature survey on the issues
of piezoelectric fatigue, grain boundaries and materiatieiong. This is followed in section 8.2 by
some remarks concerning the interfacial modelling in thesent elaboration. A discretisation of a
rectangular PZT mesostructure which is adopted from a myiegah is introduced in section 8.3, serv-
ing as a framework for the implementation of the cohesive el®dxamined before. Representative
numerical results are presented in section 8.4. Thereligremt low- and high-cycle-fatigue moti-
vated boundary conditions are applied considering bottam@cal and electrical cycling. Finally, the
results are discussed in section 8.5. Please note thatelidsyations in this chapter are reviewed for
a two-dimensional problem.
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8.1 Literature Survey

Concerning fatigue life, many physical processes, ocagron different scales, are of interest. Ac-
cording to the literature, there are two types of fatigue, first being due to embrittlement and the
second resulting from fatigue crack growth (Lupascu [99)) Daining et al. [43] it was found for
PZT that for cyclic electric loading with an amplitude far®@& the coercitive field strength., the
evolution and propagation of parallel microcracks is obsér With the amplitude getting closer to
E., macrocracks are emerging. Due to diffusion processedyehaviour of piezoelectric materials
is rate dependent (Lohkamper et al. [97]) and, conseqydatigue effects are in general subject to
cyclic frequency loading (Schorn et al. [154]). Dependimgtloe particular application being consid-
ered, either low-cycle-fatigue or high-cycle-fatigueeets are observed. In this regard, geometrical
influences as, e.g., notches (Westram et al. [187]), canteadvery limited fatigue life. For elec-
tric loading, fatigue related influences are highly conced at the electrodes. Certainly, in view
of oscillating loading conditions close to some operatiompnear to the polarisation saturation, the
high-cycle-loading type is most common. However, on thermgcale, domain switching within
the grains, grain boundary effects and their interactidin®gether cause the fatigue properties of a
ferroelectric material on the meso scale.

In the current chapter, focus is placed on grain boundaaiesngst others being relevant when
considering electrical properties of a ferroelectric oga(Knauer [81]) and playing a crucial role in
the fatigue behaviour (Lupascu [99]). The smaller the graire, the larger the influence of the grain
boundaries on the global behaviour of the material beco®@saumburg [151]). Consequently, grain
boundaries are of crucial importance on the nano scalel@JiB0]). They are mechanically weak
(Lupascu [99]) and reveal a lower permittivity than the graiilk (Bast [9]). Additionally, amorphous
structures in the grain boundaries emerging under fatigadihg conditions (Lupascu [99]) suggest
very reduced coupling effects. According to Schaumburd [1&riving forces for the defect structure
of grain boundaries are the electrostatical potential dégradation of elastic strain energy and the
formation of associated defects with dipole character.

To reduce the number of experiments, various simulatiotstcan be applied. Furthermore, by
relating simulations and experimental results furtheigimscan be gained. In this context, the Fi-
nite Element Method makes a model of the mesostructure sibbe$o simulation. There are several
suggestions for thermodynamically motivated constitutivodels for the bulk, see e.g. Kamlah [76],
Kamlah and Bohle [77], Schroder and Gross [155], Schradd Romanowski [158], Klinkel [78, 79]
and Mehling et al. [108], mostly incorporating switchinggmomena, see also Arockiarajan et al.
[4], Arockiarajan and Menzel [3], Menzel et al. [110] andawfnces cited therein. In view of Finite-
Element discretisations of polycrystalline mesostruesyit is well-established to generate appropriate
meshes by utilisation of the Voronoi-tessellation (Espaand Zavattieri [53], Sfantos and Aliabadi
[161]). Additionally, though restricted in its applicatis, the Boundary-Element-Method can be ap-
plied to discretise grain boundaries (Sfantos and Aliapkgil]), thereby omitting the computational
costs induced by discretised grains.

Grain boundaries are very narrow zones, being located wdmst surrounding grains. In this
work they are identified as a priori known zones of delamoratHence, combined with appropriate
constitutive models, it is obvious that interface elemestiisuld be used systematically to model the
intergranular weak zones, see also Cannmo et al. [33, 32¢rfdice elements are one dimension
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smaller than surrounding continuum elements, therebydawpibad-conditioned stiffness matrices as
obtained for too narrow continuum elements (SchellekedsdenBorst [153], Utzinger et al. [180]).
In this context, concerning the numerical modelling of ifdees, see also the approach based on reg-
ularised discontinuities by Jansson and Larsson [72] amssba and Jansson [88]. To simulate grain
boundaries in ceramics, Espinosa and Zavattieri [53] ip@@ted a bilinear, irreversible cohesive law
in an interfacial Finite-Element context. Concerningdag damage, the reader is referred to the in-
vestigations by, e.g., Paas et al. [135] and Peerlings §t40]. In these works evolution criteria for
non-piezoelectric bulk materials under cyclic loading @egeloped, especially suited for high-cycle-
fatigue. Similar formulations have been proposed by Rabiret al. [149], Munoz et al. [123] and
Erinc et al. [50] for non-piezoelectric interfaces. A coliedow-cycle-fatigue formalism was devel-
oped by Nguyen et al. [127], and further extended by Arias.dRafor coupled problems, however,
without placing emphasis on its numerical implementatfeor.a detailed discussion concerning these
issues see chapter 3.

8.2 Modelling Aspects

In order to concentrate on grain boundary effects, a lineapled material law is incorporated for
the grains. Accordingly, an operating point close to a sdéd polarisation is assumed and switch-
ing effects are neglected. Furthermore, any rate depereteace excluded. In view of the grain
boundaries or rather interfaces, the quantities of digplents and electric potential are replaced by
jump-quantities over the interface, i.e. the displacemeamip and the electric potential jump, due
to reasons discussed in the introduction of chapter 3. Tdréirgg point for the subsequent elabora-
tions is a linear and coupled interfacial material behawids a penetration of the opposite surface
lines should be avoided for obvious physical reasons, aquade penalty formalism as introduced in
section 3.11 is additionally considered. Furthermore ctmant for fatigue effects, a change of con-
stitutive tensors is incorporated in the subsequent eddioms. This is accomplished by incorporating
fatigue-dependent Lemaitre-type damage as discussedtiors8.8.

In grain boundaries, foreign atoms and impurities are di&gabsnot fitting into the stable crystal
configuration of the grains. Additionally, secondary ptsasan occur (Schaumburg [151]), resulting
in a more or less heterogeneous consistency. As alreadyanedf amorphous structures in the grain
boundaries emerge under fatigue loading conditions. Basé¢dese informations, a piezoelectric cou-
pling mechanism is considered to be of a very reduced irtier@3onsequently, the interfacial coupling
factor will be set to zero. Depending on certain doping cbons, grain boundaries might become
highly charged interface layers (Lupascu [99]). In thatrgyeapacitor-type interfacial material laws
could be applied, which is of interest concerning futureassh.

From the experimental point of view it could not yet beenifikza how the grain boundary permit-
tivity changes under fatigue loading conditions. The p#raity is defined as the polarisation capabil-
ity of a medium. An argument for a decreasing permittivitylcbbe that given dipolar structures are
destroyed by some kind of fatigue-related erosion, or thaintergranular medium is endowed with
e.g. oxygen vacancies, eventually diffusing out of the lurikler fatigue loading (Lupascu [99]). In
view of the permittivity-decreasing influence of crack® gresent model only accounts for a very re-
duced broadening of grain boundaries. The phenomenon obanacking is not yet fully understood
and is still subject of intense discussion, see Lupascu §8d]references cited therein. Moreover,
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shaking and aligning of ions due to fatigue loading condgias well as some hypothetical increase
of the ion concentration in the grain boundaries due to cyloading would suggest an increasing
permittivity. For the present work, a simplified electrieadthalpy approach as given in section 3.8
has been made. Chemical potentials as well as any fluxeasidiff phenomena or dipolar charges
are neglected, but certainly play a role and consequenttiyvate further research and enhanced mod-
elling approaches. Due to the unclear physical circums&far the grain boundary permittivity, an
artificial but simple linear relation dependent to the daenpgrameter is applied as given in equation
(3.254).

8.3 Discretisation

To enlighten the functionality of the fatigue-related nmetidaws of section 3.8, a piezoelectric meso-
structure, imported from Nuffer et al. [129], is discretisgith finite elements. In a nonlinear finite
element algorithm, low- and high-cycle-fatigue relateaistdutive relations are reflected by means
of algorithmic tangent moduli. Then, the discretisation && subjected to different low- and high-
cycle-fatigue-motivated boundary conditions. The préseesostructure, shown in Fig. 8.1 on the
left hand side, is a micrograph of PIC 151, manufactured bZ&iamic, Lederhose, Germany. It
has been generated by a scanning electron microscope (FH®)151 is a standard material for
actuators and suitable for low-power ultrasonic transthiaad low-frequency sound transducers. On
the right hand side of Fig. 8.1 an adequate discretisatighisimesostructure is highlighted. Grains
are represented by continuum elements and are red-coloi@@gmatic choice are linear triangular
elements, geometrically defined by some point inside theagrad the grain polygon. The dark-
blue-coloured interface elements are given at every graimbary as one side of the related grain
polygons, whereby each interface element is surroundedvbytriangular elements. Please note
that a discretisation of polycrystalline grain boundabgsneans of interface elements has also been
introduced by Cannmo et al. [33, 32]. In this two-dimensi@pproximation of a real mesostructure,
concerning the micrograph on the left hand side of Fig. 8uifases of underlying grains, apparent
as black areas, are treated as voids in the related distretis See the right hand side of Fig. 8.1.
In the following, different low- and high-cycle-fatigueativated boundary conditions are applied to
the discretisation shown on the right hand side of Fig. 8dahswering mechanical and electrical
cycle loading. Both the time-based and the cycle-based havdaencorporated, and, consequently,
compared. As a starting point, the material parameterseaftains, or respectively, the bulk material,
have already been highlighted in Tab. 5.1. All material peeters of the bulk are related to PIC 151.
Concerning the material parameters of the interface, noifgpstiffness or permittivity values could
be retrieved from the literature. Based on Lupascu [99] aask [P], grain boundaries are supposed
to be mechanically weaker than grains and, moreover, seenhéoe a lower permittivity. In this
chapter, the internal length of the interface is a defadlievand set ag= 0.3 x 10°° [m], related

to the width of a grain boundary. Consequently, stiffnessespermittivities have been academically
chosen as

[Ctra]?)g [Ctra]g?)
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8.4 Results

Figure 8.1: Micrograph of PIC 151 (left, courtesy by Prof.CDLupascu, see Nuffer et al. [129])
and finite element discretisation (right). Continuum elataeare coloured red, interface
elements are dark blue. The green spot marks the Gauss gwne whe damage variables
for Fig. 8.20 and 8.21 are saved

with coupling effects in the interface being neglected. Ha examples to be shown, an interfacial
permittivity varying with the damage has been assumed,doraance with equations (3.250)—(3.253)
anda™* = 1/10. The material parameters incorporated in the effectiventityad are chosen as,
=1[m™], 8, =1[m!], and 3, = 0.01 [A $/[kg m?*]]. The comparatively low influence of the
electric potential jump is considered to reflect the undegyphysical behaviour, as the mechanical
and electrical disruption of the grain boundary is congddo be dominant due to mechanical effects.
Please note that, to improve numerical accuracy, it is sacgdo express the unit of time as [s] =
10° [ms] for all computational input parameters. Furthermdrshall be noted that due to the non-
associated character of the incorporated fatigue law,rtegface element stiffness mati ™ turns
out to be in general non-symmetric.

8.4 Results

In the following, some representative numerical resulesitwstrated and described. For the grain
boundaries, time- and cycle-based models are applied hasvelcreasing and decreasing permittivi-
ties. Concerning the boundary conditions, both mechaaitdlelectrical cycling are incorporated.
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8.4.1 Time-Based Fatigue Computations

In the examples of this section the time-based material &applied, see section 3.8. The FE-
discretisation introduced in the above serves as input foordinear FE-programme, together with
appropriate boundary conditions. The material parametgeibeen chosen as=4 x 1077,

Displacement Loading

The boundary conditions of the first example are scheméatishlown in Fig. 8.2. On the right
hand side, it can be seen that on the upper boundary of thengadar model cyclic displacements
are applied. On the left hand side of Fig. 8.2, the same cyliiplacements are plotted over the
number of loading steps. The cyclic load is applied suchitha&lways in the global range of tensile
loading, with 14 loading steps for each cycle, and 288 stepstal to simulate 20 cycles including
one additional loading step for the first loading sequende rEsulting stresses in vertical direction
in the bulk, denoted as,,, are displayed in Fig. 8.3 while the electric field in vertidaection in the
bulk, E,, is shown in Fig. 8.4. In both figures, snapshots are takam #fe first loading amplitude
(= 0 cycles), 5 and 20 cycles, all of them being marked in Fig. .2ed circles. Fig. 8.3 shows
that the stresses,, decrease under continued cycling. This clearly accompamigamage-related
stiffness decrease. With a damage-induced increasingitpigityrin mind (a*¢ = 3/10) and only
considering electric effects, the electric potential juoyer the interface would tend to decrease,
and in consequence, a related fraction of the electric frelthé bulk would increase to compensate
this. Hence, the fraction of strains in the bulk related tis ik raised by some amount. In turn,
this raises the displacement jumps in the interface, sudingodamage evolution. For the current
fe < (s = [,, mostly the displacement jump contributes to the damagensi@ering the overall
constitutive answer, the decreasing absolute value ofiéutrie field component’, as shown in Fig.
8.4 seems to be due to the dominant influence of decreasarigaial stiffnesses. For a lower stiffness
in the interface, strains in the bulk decrease. Simultaslgpalso a large reduction of the absolute
value of the electric fieldy, will occur. The prevailing role of stiffnesses seems to wkiced by the
mechanical boundary conditions of cyclic displacemendilog, while at the same time, at the upper
boundary of the specimen, the electric potential boundangition is free. Therefore, the electrical
field behaviour in the bulk is dominated by the mechanicgdoese, leading to decreasing values of
E, due to decreasing stiffnesses.

For similar boundary conditions (see Fig. 8.5) and a deagrgggermittivity ("¢ = 1/100), the
electric potential jump would tend to increase. Consedyghis effect does not assist the bulk strains
to increase, and therefore, in the sense of the correlatiessribed in the above, this effect does not
support the damage evolution. With Fig. 8.6 revealing gaeslight influence of this effect for the
stresses,,, the electric fieldz, given in Fig. 8.7 shows a smaller decrease as compared t8 Big.

Electric Potential Loading

In contrast, for a cyclic electric potential, adequate luarg conditions are found in Fig. 8.8. Again,
7 loading steps are chosen for loading and unloading withenaycle, resulting in 288 loading steps
for 20 cycles including one more loading step in the first lngdequence. Moreover, Fig. 8.9 and
8.10 display snapshots after the first loading amplitud® cycles), 5 and 20 cycles. The interfacial
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permittivity is considered to increase, i.e"? = 3/10. Concerning the electric field component in
vertical directionE,, Fig. 8.10 shows that the absolute valugtfincreases with continued cycling.
This can be related to increasing permittivities in theriiatees. With a cyclic electric potential given
as a boundary condition, no displacements are prescrilretthdoupper boundary. Therefore, it is
considered that electric fatigue effects superpose mecdilamelated effects concerning the absolute
value of the electric field compone#i,. This is not the case for the stressgsg, displayed in Fig.
8.9. There, mechanical influences still prevail and stease reduced with continued cycling.

8.4.2 Cycle-Based Fatigue Computations

Concerning cycle-based fatigue, the boundary conditiomessentially similar to the boundary con-
ditions of section 8.4.1, with a difference concerning thenber of cycles and the numerical imple-
mentation. The appropriate material law is discussed itige8.8. Material parameters have been
chosenas C=1.5% 10°, 3 =1 andy =0.

Displacement Loading

For the case of cyclic displacement loading, boundary ¢ are given in Fig. 8.11. In view of the
numerical implementation, displacements are appliederfitst loading step. In subsequent loading
steps, the displacements, given at the upper boundaryxack fFor each loading step N = 10°
cycles are assumed to take place, resulting in4110 cycles distributed on 41 loading steps. This is
illustrated on the left hand side of Fig. 8.11. Snapshotsaien after 19, 3.1 x 10° and 4.1x 10°
cycles. At first, increasing interfacial permittivitiessaassumedo"? = 3/10). Stresses in vertical
directiono,, are given in Fig. 8.12 while the electric field component imtical direction £, is
displayedin Fig. 8.13. As Fig. 8.12 reveals, stressgslecrease due to decreasing stiffnesses induced
by cycle-based fatigue. Simultaneously, the absoluteegaddithe vertical electric field componefif
also decrease. This seems to be due to the superpositioacdiieleffects by mechanical effects as
described before, caused by dominant mechanical boundadjtons.

For identical boundary conditions (Fig. 8.14) and a dedngggermittivity with o = 1/100, the
damage evolution is, again, less pronounced. This is utaierdy comparing the stresseg, of Fig.
8.12 and Fig. 8.15 and the electric field compongnof Fig. 8.13 and Fig. 8.16. As observed from
Fig. 8.15 and Fig. 8.16, this effect is even more significanttfie cycle-based fatigue than for the
time-based fatigue.

Electric Potential Loading

In view of electric potential loading, boundary conditica® illustrated in Fig. 8.17. Again, each
loading step representsN = 10° cycles as explained in section 8.4.2. In this context, dmatssare
once more taken after 103.1 x 10° and 4.1x 10° cycles. Interfacial permittivities are considered to
increase, i.ea"? = 3/10. The corresponding plots of the stresses in vertical doget,, are given

in Fig. 8.18 while the vertical component of the electricdiél, is displayed in Fig. 8.19, revealing
increasing absolute values 8, corresponding to increasing interfacial permittivitiédscording to

the precedent examples, electrical effects seem to magchtdnsity of mechanical effects concerning
the absolute value of the electric field compon&pnt Moreover, it emerges that concerning the stresses
oy, mechanical influences still prevail and stresses are egtiwith continued cycling.
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Figure 8.2: Loading history (left) and boundary conditigright, cyclic displacements): increasing
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Figure 8.5: Loading history (left) and boundary conditigright, cyclic displacements): decreasing
interfacial permittivity

Figure 8.7: £, [MV/m] after O (left), 5 (middle) and 20 (right) cycles

139



8 Application Il — Piezoelectric Mesostructures

Electric potential [GV]
N

®>0

|
|
|
d = free |

| ® = free
\ \
\ \

150 200
Loading Step

Figure 8.8: Loading history (left) and boundary conditi@mnght, cyclic electric potential): increasing
interfacial permittivity

Figure 8.10: £, [GV/m] after O (left), 5 (middle) and 20 (right) cycles

140



8.4 Results

P = free
MRS
\ \

\ \
d = free | | & = free

Displacement [m]
o o o o o

2 25 3
Cycles

Figure 8.11: Loading history (left) and boundary condisidright, cyclic displacements): increasing
interfacial permittivity

Figure 8.13:F, [10* kV/m] after 10 (left), 3.1 x 10° (middle) and 4.1x 10 (right) cycles
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Figure 8.14: Loading history (left) and boundary condisd@nght, cyclic displacements): decreasing
interfacial permittivity

Figure 8.16:F, [10* kV/m] after 10 (left), 3.1 x 10° (middle) and 4.1x 10° (right) cycles
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8.5 Discussion

Subsequently, some important aspects concerning the absults are discussed. Specifically, the
time- and the cycle-based fatigue evolution are companedgale of the interfacial weighting factors is
discussed, the influence of increasing and decreasindanigrpermittivities is compared and finally,
some notes on the grain structure and the discretisatiaremde are given.

8.5.1 Comparison of the Time-Based and the Cycle-Based Fati  gue
Evolution

First of all, it is noteworthy that for the two fatigue-daneagvolutions described in section 3.8 dif-
ferent functional dependencies are incorporated. Thist miearly result in different types of the
damage evolution. In Fig. 8.20 the damage parameter iplotter the number of load steps for the
time-based fatigue examples of section 8.4.1 for incregsarmittivities. The damage parameter
is displayed for the Gauss point marked in Fig. 8.1. The s&fems result from the fact that only
for loading, the damage parameter is updated. Moreovey rédognised that the damage evolution
for cyclic electric potential loading is more progressihart for cyclic displacement loading. The
dependencies for cycle-based fatigue are shown in Fig.. &8ase note that, for the Gauss point
considered, the damage cut-off is reached aftex 30 cycles for displacement loading. However,
different evolution techniques for time-based and cy@seul fatigue damage lead to different evolu-
tions concerning, e.g., stresses or the electric field compis. Furthermore, the cycle-based fatigue
evolutions seem to provide more freedom to be fitted to erpental data due to a larger number
of material parameters. In this context, only academic Etrans are accomplished. Comparisons
with experiments would give further information on the greability of the models. Indeed, before
considering comparisons with measurements, further feignt attributes of ferroelectric material
behaviour, for example switching effects, should addaibnbe included in the computational formu-
lation. The results are further supported by plots of thedesrat the upper nodes, where the cyclic
boundary conditions are applied. In Fig. 8.22 the sum of pfiar nodal forces is plotted over the
loading steps for the time-based simulation with increggarmittivities and displacement loading.
In accordance to the degressive damage evolution showrgin&20, the forces also decrease de-
gressively. In contrast, for the cycle-based simulatiothivicreasing permittivities and displacement
loading, the forces progressively decrease, as Fig. 8\@&l® This is in line with the progressive
damage increase for displacement loading shown in Fig.. 8.21

8.5.2 Neglected Coupling Effects in the Interface and the Ro  le of g, 3,
and (e

With the numerical examples discussed above, interfacapling effects have been neglected in
order to model the very reduced coupling abilities occgriatong the amorphous grain boundaries.
Direct consequences thereof are as follows: If cyclic dispiment boundary conditions are applied to
an interface and, at the same time, electric potential bayncbnditions at the top of the specimen
are free, mostly the interfacial displacement jumps ardeclyovhereas the electric potential jumps
are affected in a smaller amount, not being coupled to thgattement jumps. From this it can be

144



8.5 Discussion

0.9F -
0.8 _
0.7} /

0.6 /

0.4
0.3r!
0.2

l
|
0.1y
|

0 1 1 1 1 1 J
0 50 100 150 200 250 300

load step

Figure 8.20: Time-based fatigue: damage paraméwrer number of load steps. Solid line: dis-
placement loading, dotted line: electric potential logdin

concluded that displacement jumps and stiffnesses in teeface will dominate the stresses and the
electric field in the bulk, triggered by interfacial effectBhe interfacial electric potential jumps are
then influenced by the damage variable and the related chafngermittivity and, as inherent to
the overall solution of the coupled BVP, the bulk itself. Elehowever, the electric potential jump
influences the bulk only in a small amount. Moreover, maingpthcement jumps would contribute
to the damage evolution. Analogous effects occur when theharecal boundary conditions at the
top of the specimen are free and a cyclic electric potergiapplied. Then, mainly electric potential
jumps would contribute to the damage evolution and bulloastare dominated by interfacial electric
potential jumps and permittivities. Nevertheless, no eratthich degrees of freedom are cycled, the
associated damage variable will always be applied to betintlerfacial stiffnesses and permittivities.
What clearly influences the weighting of displacement octele potential jumps concerning damage
evolution are the parametefs, (5, and 35, see also equation (3.255). In the current wagtk,has
been chosen much smaller thdn (5, which is considered to reflect some physics of piezoceramic
grain boundaries. Consequently, the role of the electriemg@l jump and of varying permittivities is
reduced as compared to the influence of the displacementamehpeduced stiffnesses.

These correlations are generally reflected by the simula&sults. For cyclic displacements com-
bined with the time-based or the cycle-based fatigue madesses,, are decreasing due to de-
creasing stiffnesses. Simultaneously, the absolute \@fldlee electric field component, is also
decreasing due to the dominant role of interfacial dispteex® jumps — the electric potential at the
upper boundary is free. For cyclic electric potentials aathlfatigue models, the absolute values of
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Figure 8.21: Cycle-based fatigue: damage paraméterer number of cycles. Solid line: displace-
ment loading, dotted line: electric potential loading

the electric field components, rise with continued cycling, which can be correlated to thethant
role of the interfacial electric potential jumps and theatetl increase of permittivities which has been
assumed in those examples. In view of the stresggsmechanical influences still prevail, and a
decrease is observed, due to the small valué,ofnd the electric-field-induced increase of the bulk
strains, promoting increasing interfacial displacemantps.

8.5.3 Influence of Increasing and Decreasing Interfacial Pe  rmittivities

For both the time-based and the cycle-based fatigue commgaincreasing and decreasing inter-
facial permittivities have been investigated for cyclisglacement boundary conditions. Concerning
the overall constitutive behaviour, the cyclic displacetgundary conditions induce that the over-
all electric field is triggered by the strains, both decnegawvith increasing damage with respect to
the cycling history. The damage is directly influenced byititerfacial jump quantities. Due to the
small weighting factofis, the direct influence of the potential jump and the permités is of minor
significance; nevertheless, they still indirectly influertbe overall damage, though being strongly
superposed by mechanical effects.

For increasing permittivities, the electric potential jpiover the interface would tend to decrease.
Hence, a related fraction of the electric field in the bulk Womcrease to compensate this and the
related fraction of bulk strains would then be raised by sam®@unt due to piezoelectric coupling.
As a consequence, this raises the displacement jumps imtédaice, which supports the damage
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evolution. In contrast, for decreasing permittivitiese tblectric potential jump over the interface
would tend to increase, causing a certain fraction of th& Btrains to decrease. Such behaviour
would decrease the displacement jumps in the interfac&anesg the damage evolution to some
amount. Consequently, such effects are indicated in thdtse®ue to the circumstances discussed in
the above, for decreasing permittivities, stresggsand the electric field componeat, decrease less
than for increasing permittivities, which stems from thstrained damage evolution.

8.5.4 Influence of Grain Structure and Discretisation

For the micrograph considered, compare Fig. 8.1, a voidasent in the middle of the discretisa-
tion. For cyclic displacements and both fatigue models, dsptecially for the cycle-based fatigue
evolution, fatigue-motivated damage starts in an arearartite mentioned void, compare Figs. 8.12,
8.13, 8.15 and 8.16. Concerning the discretisation of tmiwoum, linear triangular elements have
been applied, inhering rather poor approximation abditempared to the application of higher order
ansatz functions or finer meshes. Nevertheless, the dsaieh used turns out to reflect all important
properties of the academic example investigated.

8.5.5 Additional Remarks

In this chapter, a SEM-obtained mesostructure (Nuffer.ef1&9]) of the piezoelectric material PIC
151 has been discretised by applying linear triangularefielements for the grains and linear in-
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terface elements for the grain boundaries. Different teipading-motivated boundary conditions
have been applied to the discretisation. In this contextsadttempt has been made to model such
a structure, emphasising the grain boundary behaviouiir{gkz et al. [183, 182]). For the grains,
or rather the bulk material, a linearly coupled material lzas been implemented. Concerning the
grain boundaries, discretised by interface or, respdgtigehesive-type elements, two different mate-
rial models have been considered: the first appropriate ptdag low-cycle-fatigue and the second
material model being able to reflect high-cycle-fatiguedwebur. For the bulk, PIC 151-like material
parameters have been incorporated. In view of the intertateffective parametérhas been incor-
porated into the fatigue-motivated damage evolution,dpasademic in nature due to missing reliable
information on the exact physical processes in grain boueslander fatigue loading. Electrical and
mechanical effects have been decoupled concerning ther lresponse. The first interfacial material
model, reflecting low-cycle-fatigue behaviour, is of an exential format. It has been entitled “time-
based fatigue formulation” and explicitly tracks the laaglhistory of single cycles. In contrast, a
second interfacial material model, also being of an exptalktihough of different format, captures
high-cycle-fatigue behaviour by directly incorporatingeatain number of cycles. It has been entitled
as “cycle-based fatigue formulation”. For an accurate deson of those interfacial fatigue laws, see
section 3.8. The related damage parameisrconstrained by the driving force in a thermodynamical
consistent framework. For the chosen academic exampl@sad out that the proposed assumptions
of a fatigue-related decrease of interfacial mechanieatitvns and varying permittivities are reflected
in the results. So far, the literature does not clearly reggperimental results concerning the per-
mittivity behaviour under fatigue-related loading boundeonditions. Anyhow, literature reveals that
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grain boundary permittivity is generally lower than therpétivity of the grains.

In view of the fact that only permittivities and stiffnessae accounted for in this work, it is clear
that realistic grain boundaries must inhere further andencomplex phenomena under fatigue load-
ing than those incorporated here. In this context, it is sg@g/ to prospect for new experimental
results and to improve knowledge concerning the fatigleted grain boundary behaviour. As this
is just a first step towards an integral modelling of a fat@ypeezoelectric mesostructure, nonlinear
effects as phase transformations have to be included inulkecbnstitutive response in the future to
account for ferroelectric effects. To model polarisati@ntshing of domain structures, e.g., internal
variable methods can be applied (e.g., Lynch and McMeeKiiod ]Jj Lynch [100], Arockiarajan et
al. [4], Arockiarajan and Menzel [3] as well as Menzel et &1(Q]). Finally, when the mesome-
chanical material models are accurate enough, an incdrpoiato multiscale computations could be
accomplished.

149






O Conclusions

The goals of the present work have been structured in threg pa

According to the introduction, the first part was concernéti the modelling, the numerics and the
simulation of welded lightweight structures of metal/flveenforced polymer composites. In chapter
2, material laws for the substrates have been discussaddinglisotropic, transversal isotropic and
orthotropic elasticity as well as linear elastoplastieiiyh linear isotropic hardening. Concerning the
welding interface, elastoplasticity with Lemaitre-typgnadage as well as a high-cycle-fatigue related
traction-separation-law have been introduced in chapiteo8der to be incorporated into current sim-
ulations. Furthermore, a low-cycle-fatigue related imeseparation-law as well as viscoelasticity
with Lemaitre-type damage and viscoplasticity with Lemeaitype damage have been discussed in
view of future applications. For all the mentioned cohesaxes, prototype examples have been ac-
complished, showing the functionality of the models. Ma@ma penalty method has been introduced
in order to avoid an unphysical self-penetration of therfam®e. Adequate finite element procedures
have been discussed in chapter 6. For both the interfacehartultk, element stiffness matrices and
residua have been deduced. After an excursion with respetdhufacturing and measuring methods,
chapter 7 deals with the comparison of experimental datanangerical simulations which are ac-
complished by means of the above models in the context of Erean FEM-programme. Concerning
thermal impact welded tensile specimens, a very good agreeai local and integral data sets was
demonstrated. For ultrasonic metal welded tensile spesmeomparison based on integral data has
successfully been accomplished. Furthermore, local aedial data was compared with simulations
for a preliminary tensile fatigue test with a ultrasonic atetelded tensile specimen. The simulations
partially corresponded to the experimental data, but &urgtatistically confirmed experiments have
to be conducted.

The goal of the second part has been the academic simuldtmezamelectric mesostructures un-
der fatigue-motivated boundary conditions. For the grailk,ba linear ferroelectric material law has
been introduced in chapter 2. In chapter 3, low- and highecfatigue motivated ferroelectric cohe-
sive laws have been discussed. These, together with thetilésdion of the coupled weak forms and
the deduction of element stiffness matrices and residuaapter 6, have been incorporated in the
simulations presented in chapter 8. A piezoelectric mescisire obtained by scanning electron mi-
croscopy has there been subjected to mechanical and ed¢triv- and high-cycle fatigue boundary
conditions. The results have been discussed, revealingralsmpression concerning the computed
boundary value problems. Additionally, a literature syreencerning the issues of piezoelectric fa-
tigue, grain boundaries and piezoelectric modelling hanlmnducted in the beginning of chapter
8.

The goals of the third part concerned investigations onaserivave type bifurcation modes in a
two-dimensional non-coherent (cohesive) interface, eoting a semi-infinite three-dimensional lin-
ear bulk with a rigid substrate. For the uncoupled probleis tfas been discussed in chapter 4.
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Therein, the bulk material has been chosen to be lineaoisiotelastic, while for the interface, inelas-
tic behaviour in an incrementally linear context has beaui@ed. For the case of positive interfacial
material constants no bifurcations occurred, while foratig constants, a maximum of three bifur-
cation possibilities is present. For the coupled problemtissussed in chapter 5, a linear ferroelectric
bulk material has been assumed. For simplification, and ditiad to the transversal isotropic elas-
tic part of the bulk material behaviour, the latter has beemmemented by isotropic elasticity. The
interface constitutive behaviour has been chosen to benmentally linear ferroelectric. In contrast
to chapter 4, for all material parameters, numerical vahs& been inserted. Generally, for the pa-
rameters chosen, a maximal number of four surface wavebiypecation modes is possible. Though,
if the interfacial stiffness parameters are chosen p@sitio such bifurcations occur. Consequently,
for both the uncoupled and the coupled problem, the numbsurddce-wave type bifurcation modes
is finite, with respect to the incorporated simplificationsl@hosen parameters. Accordingly, related
numerical solutions of the boundary value problem are nosictered to be mesh-dependent.

The execution of the tasks related to this work is additigmddcumented in several refereed journal
publications (Utzinger et al. [180], Utzinger et al. [18&hd Utzinger et al. [183]).

Outlook

During the thorough elaborations in view of the goals of thigk, new questions and inspirations for
future works emerged. These are subsequently listed.

e For a more accurate simulation of the metallic substratsygtrically nonlinear formulations
are supposable. Especially multiplicative elastoplégtis of interest (e.g. Schroder et al.
[156], Menzel et al. [111] and Steinmann et al. [171]).

¢ In order to improve simulation parameters, advanced etdiloms on the identification of mate-
rial parameters are contemplated (Mahnken and Stein [118).1

e For further verification of the applied cohesive laws, alsader| and mode-Ill tests as well as
mixed-mode tests are imperative.

e The constitutive response of some of the proposed intaifatddels is decoupled with respect
to projections ont®, t andn. Otherwise, e.g. in the case of elastoplasticity with Lereatype
damage, coupled formulations would entail local iteradgiamorder to solve for the Lagrange
multipliers from the set of nonlinear equations. From tlgmathmic point of view, then it would
not be significantly more expensive to additionally accdannonlinear hardening effects.

e The viscous models introduced in chapter 3 could not yet biéee by comparisons with ex-
periments. Comparative creep and relaxation tests woelétbre be of interest.

¢ In view of the preliminary fatigue tests and the related datans, statistically proven experi-
mental data is required. Then, further simulations havestodnducted.

¢ In the scope of the DFG Research Unit 524, the manufactufirgmponent parts including
the mentioned welding methods is planned. In this respedmgtrically nonlinear cohesive
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laws have to be considered to simulate the large deformabbsemi-finished parts (see e.g.
Steinmann and Betsch [169], Larsson and Jansson [88]).

Taking a complete interfacial decohesion into accoungfrantation methods are supposed, see
e.g. Pandolfi and Ortiz [138].

Another interesting point concerning the DFG Research B2dt is the thermal coupling of
both the bulk and the interface (Steinmann and Hasner [K#0] [85], Miehe [117], Ibrahim-
begovic et al. [70]). With this in hand, heat conduction msses and residual stresses could be
simulated.

The welding zone could also be regarded on the micro scalen,Trhicroscopic material be-
haviour could be projected onto the meso scale by means discale methods.

In order to model polarisation switching of domain struesjrfor example, internal variable
methods can be applied (e.g., Lynch and McMeeking [101],chyji00], Arockiarajan et al.
[4], Arockiarajan and Menzel [3], Menzel et al. [110]).

In the context of ferroelectric fatigue, it is a matter of ongy research to implement cohe-
sive laws possibly substantially different to the ones @nésd in this work. In this regard, a
capacitor-like behaviour of the interface is investigatédiditionally, fracture energy related
models are possible.

When the mesomechanical material models which are apmligebtmesostructure are accurate
enough, an incorporation into multiscale computationslEnonsidered.

The evolution of the interfacial permittivity could also tieectly motivated from the dissipation
inequality.

The discretisation methods concerning polycrystallinsosé&uctures could also be applied to
other materials, e.g. metals, maybe also in the context dtisnale applications.

Concerning future research on the issue of bifurcationctimmection of two deformable bodies
by a non-coherent interface is of interest.

In view of the uncoupled problem, inelastic and also furtr@sotropic bulk responses could be
investigated as well.

Concerning the coupled problem, different wave vector$ watspect to the incremental dis-
placement and electrical potential ansatz are supposable.

Moreover, the comparison of the bifurcation-related tk&oal elaborations as given in chapters
4 and 5 with numerical, for instance finite element based kitimns is both promising and
relevant in view of engineering applications.
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A Solving 2nd Order Differential
Equations

The general and complete solution of somdimensional ordinary differential equation system of
first order of the formy’(n) = M - y(n) is defined as

y(n) =Y (n)-c with Y ()= [y,(n),y.(n),..y,(n)] and ceC’ (A1)

where fundamental solutiong, (), constituting the fundamental matri¥ (), are constructed by
means of a base system of eigenvectarand, if needed, generalised eigenvectors Generalised
eigenvectore* of level! related to an eigenvalueof M can be computed by solving

[M — vl -v* =0 (A.2)

with I,, being an x n second-order identity-tensor. Fundamental solutionsdbas eigenvectors
related to the eigenvalueof M are constructed as

y(n) = exp(vn)v (A.3)

while fundamental solutions based on generalised eigéogag” of level [ related to the eigenvalue
v of M are constructed as

-1

= 1]

y(n) = exp(vn) [v* +n[M —oul,]-v" + ... + (M — oI, v*] (A.4)

This strategy can be found in, e.g., the book of Meyberg amth&aauer [116] and is required for the
efforts undertaken.
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B Examples for the Bifurcation-Related
Interfacial Constitutive Operator

The incremental interfacial constitutive operat@t/ can be motivated by the loading branches of
elastic and inelastic traction-separation-laws. It edahe incremental quantities or rates of tractions
and displacement jumps by

6T = CY - [6u] (B.1)

For elastoplasticity with damage, the interfacial tangeotulus has been computed in section 3.4,
reading as

L e e e s I pos

7: NS >
Vv
epd
Pi

see section 3.4 for further explanation. If damage evatigaot active ¢; = 0, d; = 0), this reduces
to

. 1 ..
Cifer — Zfz [1 — THQD/C@} 11 (B.3)

s

i’
Otherwise, if damage is active and plasticity is switchdd Bf — oo, o = 0), the interfacial tangent
modulus is given by

cmwz§jh1—wq—dﬁﬂi®i (B.4)

o NS g
i ~~

p§?
Accordingly, if all inelastic effects are excluded, thestiatangent is rendered as
CH =N "ciwi (B.5)

Please note that for active damage, the paramgtérs;?, andp? depend on the deformation history.
Recapitulating, the interfacial material paramejgrdepend on the specific interfacial material law:

i elasticity
ps? elastoplasticity

i = . . B.6
P ol elasticity with damage (8:6)
p** elastoplasticity with damage
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C Linear Homogeneous Equation
System Matrix B, Uncoupled Problem

Here, the entries dB are given as

Bin = —2uk —[p,cos’ 0 + p;sin® 0] (C.1)
B, = j/fli\ + qu_/:)\ [ps cos® 0 + p; sin” 0] (C.2)
Bis = —[ps— pi]cosfsind (C.3)
Bay = —[ps — pi] cosfsind (C.4)
By, = 2 [ps — pi] cos @ sin @ (C.5)
[+ A
Bos = —uk — [picos® 6+ p,sin® 0] (C.6)
By = —[2uk + py] (C.7)
By = ———[D\pu+ 2N+ ] ()
p+ A
Bss = 0 (C.9)
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D Eigenvectors of the Ferroelectric
System Matrix A

For some mechanically isotropic material, the eigenvecoe given as

[0 ] [0 ] [ —iQy /k ] [ —iQy [k ]
~1/k 1/k 0 0
0 0 Oy /k — O /k
U = ! ;U2 = ! L _.QS/k y Vg = Qg/k )
0 0 1y —i€)y
1 1 0 0
0 0 —Qs —Qs
0 0 1 1
[ iQg/k | [ i /K | [ iy k] i k|
0 0 0 0
—Q /k Qs /k —Qyy/k 1y /e
—Qs/k Os/k -3 /k O3/k
vs = —z'Q/g U6 z'Q/g o UTE —i§21/4 rUs T i§21/4 (©-1)
0 0 0 0
Mo Qo s s
1 1 1 1
where

2y =0.8300, €y =1.1568, 3 =1.0967, 4 =0.7568, 5 = 1.0547,
Qg = 7.8819, Q7 =7.9757, g =1.0245, g =7.6934, = 7.7850, (D.2)
Qll - 41545, 912 - 35782, ng - 09367, 914 - 44353, 915 - 38200
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D Eigenvectors of the Ferroelectric System Matrix A

Otherwise, if the bulk inheres fully transversal isotrogigenvectors read as

V1 =

Vs =

with
Ql -

—0.9394,

O = 2.7273,
Q9 = —1.1078 — i0.0152,

Q9 = 1.2209 + 40.2551,

Vg =

Q, = 3.0904,
Q7 = —1.2209 + i0.2551,

Q15 = —1.0986 — 0.2454,

162

93:

—2.2530,

Q10 = 1.0986 — 20.2454,
Q3 = —0.0709 + 71.4872,

[ iy /k |
0
Q3 /k
Q4 /k
i

Q4 - —08

Q6 = 0.0824 —¢1.3413

Vg =

261,

Qs = —0.0709 — ¢1.4872,
Q7 = 0.0824 + 41.3413,
Q14 = —1.1078 4-70.0152,

[ iy k]
0
—Qs3/k
— Q4 /k
—i€)s

Qs = —3.7409,

(D.3)

(D.4)



E Linear Homogeneous Equation
System Matrix B, Coupled Problem

For mechanical isotropy, the entriesi®fare given as

Bii = [ps— ] cosOsinf/k (E.1)
Bio = —i[ursQ — pkQy + e15kQs — O [ps cos® 0 + p, sin’ 0] /k (E.2)
Bis = —i[—pvsQs + pkQr + e15kQs 4 Qg[ps cos? 0 + i, sin® 0]] /k (E.3)
Bu = —i[—pvrQu + pkQs + e1skQs + Qi [ps cos® 6 4 py sin® 6]] /k (E.4)
Boy = [ussin® @+ py cos® 0 — py]/k (E.5)
Boe = i[us — 1) sin® cosO/k (E.6)
Bos = —i[us — )% sin® cosO/k (E.7)
Boy = —i[us — 1] sinf cosf/k (E.8)
By = 0 (E.9)
Bsy = A+ 20150 + Mgy — 11,5 + €7 Qs — e531505] /k (E.10)
Bss = —[kAQg + 2057 + AvsQr — 1, Q7 — € Qg + essv5] /k (E.11)
By, = —[kAQu1 + 2u07Q0 + Mg — s — e Qs + ega7 Q5] /k (E.12)
By = 0 (E.13)
Byp = e + [—eifﬂz + 33150 — €70 + €3313823] /K (E.14)
Bis = —[esikQs — eV Q7 4 eg305Q7 + €7 Qg — €33050s] [k (E.15)
Bu = —[esikQu — eV Qo + essvr Qg + €7 Qs — e3307Q13] /K (E.16)
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E Linear Homogeneous Equation System Matrix B, Coupled Problem

Otherwise, if the bulk inheres fully transversal isotrohye entries oB read as

164

—[ps — ]2y cosOsin 6/ k

i (s Qo + ks + e15] — 11595 cos® 6 — 1, Qy sin® 6] /k
s 11y Q7 + k[ Qs + e15Q0] — 1107 cos® 0 — 11,7 sin® 0] /k

[1/7,u||ng + Zk?[u“ng + 615914] — ﬁLsQlQ COS2 6) — LLthQ sin2 0]/]{7

[— 101 cos? O — 11, sin? 0 + Q) /k

—i[ps — pg) Q2 cos O sin O/ k

—[ps — )27 cosOsin 6/ k

— s — ]2 cos @ sin 0/ k

0

—la+NQ + 2a+ B+ A+ 4p — 201303 /k
(10,25 4 € Q) [k + es3v3Q [k

ila+ NQr + 20 + B+ X+ 4py — 20 JvsQs /k
(10,2 + € Q) [k + e3305Q0 [k

i+ Ao + 2004+ 6+ X+ 4pyp — 200 Qi3 /K
[1ns + €7 Qa] [k + essvrQua/k

0

—[es1kQs + €7 Qs — es3150 — €/ Qy + e33050] /K
lies1kQr — e Qg + ea3vsQs + € Qg — e33050] /k

[ieg1 kS g — €if913 + eg3v7823 + Eifﬂm — €337 4] /K

(E.17)
(E.18)
(E.19)
(E.20)
(E.21)
(E.22)
(E.23)
(E.24)
(E.25)
(E.26)
(E.27)
(E.28)
(E.29)
(E.30)
(E.31)
(E.32)
(E.33)
(E.34)

(E.35)



F Element Operator Matrices

In what follows, the element operator matrices as introdusehapter 6 are given.

N 0 0
0 Ny, 0
BceS - [NlaN27N37N47N57N67N77N8]7 Wlth Nz: ’ (Fl)
Niy Nix 0
0 Ni. Niy
_Nz,z 0 Nz,x_
Niz O
Bce4 = [Nl,NQ,N37N4], with Nz: 0 Ni,y (FZ)
Ni,y Ni,a:
Niz O
BceS == [Nl,NQ,Ng], W|th Nz: 0 Ni,y (FS)
Ni,y Ni,x
N; 0 0
Biy = [-N1,—N3, —N3, —Ny4,Ni,Ny, N3, Ny, with N;=|0 N; 0 |[(F4)
0O 0 N
. N; 0
Bieo = [-Ni,—N3, Ny, Ny], with N, = 0 N (F.5)
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F Element Operator Matrices

Aces = [N1,N3, N3, Ny, with N, = [%x} (F.6)
(5
. N; 2
Ace3 = [Nl,NQ,Ng], with .Z\]Z:|:]\/v7 :| (F?)
5y
Q0 = [_Nla_N2aN27Nl] (F-S)
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G Nomenclature

Let a Cartesian base system resident in an Euclidian spaoérbduced ade, ey, e3}, and further-
more, it holds Einstein’s summation convention whiledenotes the Kronecker Delta. In this work,
scalars or zeroth order quantities are denoted by non-lyoidhsls as e.g.q, o, or A. Furthermore,
vectors or, respectively, first order quantities are indiddby small bold symbola = a,e;. Second
order tensors are given as capital bold symbbls- A;;e; ® e; with exception ofe, o ande, being
second order tensors, aitland D, being vectors, due to common notation. Third order tenas
specified in the Schwabach style in small letters as|a|;;;e; ® e; ® e; while fourth order tensors are
denoted by blackboard-style bold symbals= [A];;.e; ® e; ® e, ® ;. First, some related calculation
rules are introduced as

contraction ¢c = a-b c = ab;
c = A'b ¢ = Aijb;
¢ = A-B Cij = AiBy
¢c = A-b cijk = [Alijrb
double contraction c = A:B c = A;B;
C = Cij = [AlijuBu
dyadic product C = a®b Cij = ab;
¢ = A®b clije = Aijbg
C = A®B [Clijt = AijBu
transpose A= Ajje; e = Ae; Qe

at = [a]kijel- ® €; X e, = [a]ijkek Xe R €;
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G Nomenclature

In the following, identity tensors are defined.
I = 5ij e X €;

Il = 5ij5klei®ej®ek®el

1
[sym = 5[5zk5]l + (5ﬂ5jk] e e e e
skw 1
i = 5[5ik5jl —dudjpl €, R e; ®ep @ e
h 1 1
IR = —I®I:_5ij5klei®ej®ek®el
n n
]Idev = Jsvm _ Hsph

With e being some relevant quantity, brackéis denote mathematical groupings, intervals and the
so-called index notation, parentheges denote functional dependencies and curly brackejsare
used in the context of sets and to indicate some index natafiouble bracket$e] denote a jump of
some relevant argument, while the so-called Macaulaykietaare defined as

Macaulay-brackets (.):{ 5 :: °
[ ]

Furthermore, some frequently used indices and notatiostesll below.

o ! inverse ° derivation with respect to time
olev deviatoric part Ae finite increment with respect to time
o approximated quantity de increment with respect to time
ik tensorial indices e testquantity

o, 90 point of timen < n + 1

®, . 1,%n,4+1) Pointoftimen +1>n

oy guantity afterN cycles

oNLAN quantity afterNV + AN cycles

o quantity at timef

A quantity at timef + At

., prescribed quantity

ol spherical part

osym symmetric part

of transposed

®, il trial quantity

oV Voigt notation
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G Nomenclature

The symbols being used in this work are given below, sorterdogth, first, second, third and fourth
order quantities, and miscellaneous quantities.

Zeroth Order Quantities

Qo, A1, a2

C

C1, C2, C3, Cy, C5, Cg, C7, C8

Cr
Crr

Cs, Ct,y Cp

*

*
cs, Ci,Cr

S
m m
el c
o0 o0
e, c
cbf

Coq

u
ie,h
G,

Gyt

AGce,h
AGie,h
AGEh

m
n

o0
n

complex ansatz constants

material constant, cycle-based fatigue

complex ansatz constants

shortcut, Prandtl-Reuss Tensor

shortcut, Prandtl-Reuss Tensor

interfacial stiffness parameters

interfacial elastic stiffnesses

interfacial elastic stiffnesses, damper-serial spanagiscoelasticity
interfacial elastic stiffnesses, parallel spriagviscoelasticity
electrical-electrical component &}/ "/

electrical-electrical component 61/

damage parameter, synchronous conc. the interf. orth@e. syestem
damage parameter during cyéle

damage predictor value- cycle-based fatigue

damage parameters, decoupled conc. the interf. orthoa.dyatsem
dissipation power

local part of dissipation power

reduced dissipation power

electric field strength over the interface

damage loading function, cycle-based fatigue

shortcut

virtual work of the uncoupled problem

virtual work resulting from the balance of linear momentum
virtual work resulting from the Gaussian law

virtual work of the uncoupled problem for one continuum ed&mn
virtual work of the uncoupled problem for one interface edein
virtual work res. from the balance of lin. mom. for one conéneent
virtual work res. from the balance of lin. mom. for one intexé element
virtual work resulting from the Gaussian law for one continuelement
virtual work resulting from the Gaussian law for one intedalement
linearisation ofG<*"

linearisation ofGy"

linearisation ofG¢e"
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G Nomenclature

AGieh
AGE"
AGE"

HP, HP, H?
e, HYY, H?
H

Jre

i

I,

13

L

Jif

Jo

Jss Jts Jn

k

ey kg, s

/fl, krr, krrr, krv
kj
k;
Ko
Kif

dood
0199
Q200
doo

170

linearisation ofGGic:"

linearisation ofG""

linearisation ofG;"

evolution function, cycle-based fatigue

electric enthalpy function

electric enthalpy function in mechanical basic invariants
electric enthalpy function in electric basic invariants
electric enthalpy function in coupled basic invariants
plastic hardening modulus

plastic hardening moduli of the interface
viscoplastic hardening moduli of the interface
penalty part of the electric enthalpy function
penalty-extended electric enthalpy function
imaginary unit

basic invariants, elasticity

principal invariants, elasticity

coefficients, interfacial elasticity

coefficients, interfacial ferroelectricity

electric basic invariants, ferroelectricity

intensities of damage evolution

real part of the first cartesian coefficient of the wave veéatave number

some cartesian coefficient of the wave vector
wave numbers (roots aelet(B))
real part of some cartesian coefficient of the wave vector

imaginary part of some cartesian coefficient of the waveorect

electrical-electrical part o™

coefficients, interfacial ferroelectricity

coupled basic invariants, ferroelectricity
interfacial inherent lengths

interfacial inherent length

amplitude of the incremental electrical potential
cycle number, cycle-based fatigue

ansatz function

cycle increment, cycle-based fatigue
penalty-stiffness parameter

electrical-electrical part of,

electrical-electrical part of,

electrical-electrical part of,

electrical-electrical part of the complex acoustic-typesor



G Nomenclature

R
R, Ry, R,
R, R, R,
Rs,triala Rt,triala Ry, irial
T, Ty, T,
At =ty 11—ty
ln
tn+1
w
W
W, Wineen
clec
W, Winech
elec
Y
Yo
Ys0); Ye0); Yn(0)
A
o0 ,00
(Ip
al af ol

vp vp vp
O

(0%
6!ﬁ1’52’53
Br o B
B

=@

g

gl

YA
AP A
g

S Sy D
[}

internal stress = hardening stress

nominal internal tractions = nominal hardening tractions
effective internal tractions = effective hardening trans
effective internal tractions = effective hardening trans, trial values
relaxation times

time increment

< tpy1, point of time

> t,, point of time

Wronski-determinant

electrical potential decay function

strain/displacement jump energy function
complementary electric field energy function
stress/traction power

complementary dielectric displacement power

driving force, ferroelectric interfacial fatigue

yield stress

interfacial yield tractions

antiderivative of the cycle-based fatigue evolution fumct
elastic material constants

plastic parameter

plastic parameters of the interface

viscoplastic parameters of the interface

time-based fatigue material parameter

elastic material constants

fatigue material parameters: displacement jump weigHhaotprs
fatigue material parameter: electric potential jump wéighfactor
cycle-based fatigue material parameter

cycle-based fatigue material parameter

Lagrange multiplier, elastoplastic bulk

Lagrange multipliers, elastoplastic interface

penalty parameters, viscoplastic interface

ferroelectric material constant

ferroelectric material constant

effective quantity

history-dependent effective quantity

effective quantity amplitude

effective quantity during cyclé

effective quantity amplitude for cycle
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G Nomenclature

Ctbf
chf

"

&

n

Nsy Nty Tin,

2

Hsy Hts Hn

Hs(0)5 Ht(0)5 Hn(0)
Fss it s fln

H

220
v

Yy, V1,V9,V3,V4, V5,V

v, vir

£
51752753

61]\77 52]\/7 63]\7

172

Ferroelectric Interfacial Electrical-Electrical Tangen
permittivity of the vacuum

relative permittivity

relative permittivity at the beginning of the fatigue histo
relative permittivity at the end of the fatigue history
eigenvalues of

shortcut fore; - &

ferroelectric material constant

ferroelectric material constant

ferroelectric material constant

interfacial time-based fatigue evolution switch
interfacial cycle-based fatigue evolution switch
interfacial plastic evolution switch

interfacial viscoplastic evolution switch

shortcut fore; - @

viscosities

angle in the interfacial plane (spanneddgndt)
threshold, cycle-based fatigue

Lamé-parameter, elastic material constant
dielectric displacement in the interface

dielectric displacement &t~

dielectric displacement at"

Lamé-parameter, elastic material constant

elastic material constant

elastic material constant

damage progression parameters

damage thresholds

damage driving forces

elastic material constant

elastic material constant

eigenvalue/negative imag. part of the first cart. coeffhefwave vector

eigenvalues

multiple eigenvalues
interpolation variable
interpolation variables
nodal coordinates



G Nomenclature

P, pgd, ped
P, i’y piF
perd, pt? perd
Pes> Pis Pry

ps 9 pt7 pn

-

Pr-

Pry

Dy, Do, ...

O, Dy, O,
Dp,

Dy

Pry1En

P

P>

o, B, Gr

@p p p
s,trial? ~ titrial’ ~ n,trial

vp vp vp
CI)S ) q)t ’ q)n
q)vp q)vp vp

s,trial? ~ titrial’ ~ n,trial

[@]

P
\:[[OO

Wi, w2, W3, Wy
chf

Qla QQ) QS?
N

interfacial constitutive parameters, elasticity with daye
interfacial constitutive parameters, elastoplasticity
interfacial constitutive parameters, elastoplasticitthwlamage
interfacial constitutive quantities

interfacial constitutive parameters

time variable

part of the yield functionb?

electrical potential

electrical potential af ~

electrical potential af+

combinations of material parameters

expressing interfacial material parameters, elasticity
expressing an interfacial material parameter, ferroatett
electric potential at element nodé

expressing an interfacial material parameter, ferrogtaist
plastic yield function and potential, associative

plastic potential, non-associative

interfacial plastic yield functions

interfacial plastic trial yield functions

interfacial viscoplastic yield functions

interfacial viscoplastic trial yield functions

electric potential jump over the interface

shortcut in the context of coupled bifurcation

free energy function

elastic part of the free energy function
elastic-damaging part of the free energy function
elastoplastic part of the free energy function
plastic-damaging part of the free energy function
damper-serial part of the free energy functienviscoelasticity
viscoplastic-damaging part of the free energy function
penalty part of the free energy function
penalty-extended free energy function

parallel part of the free energy functies viscoelasticity
complex parameters

interfacial cycle-based fatigue loading switch

auxiliary quantity in the context of coupled bifurcation
shortcut in the context of plasticity
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G Nomenclature

First Order Quantities

a

Q2

€1,€9,€3

€1,€9,€3,€4,€5,€¢

€;, €5, €L, €
e'’
eif,A
E
fce
fce
u

ce
[ii]

fie
fie
u
ie

P
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vector of complex constants

element operator matrix for a linear two-noded interfaeerant
vector of complex constants

electrical-mechanical component@t//“"/
mechanical-electrical component@ﬁ’qf erebf
electrical-mechanical component@ﬁ’qf ertvf
mechanical-electrical component@ﬁ":f entvf

dielectric displacement vector

vectors of the three-dimensional cartesian base system
vectors of the six-dimensional cartesian base system
vectors of the cartesian base system

Ferroelectric Interfacial Electromechanical Tangenttdec
Ferroelectric Interfacial Auxiliary Tensor

electric field vector

continuum element residuum

mechanical part of the continuum element residuum
electrical part of the continuum element residuum
interface element residuum

mechanical part of the interface element residuum
electrical part of the interface element residuum
eigenvector

eigenspaces

complex wave vector

real part of the complex wave vector

imaginary part of the complex wave vector
mechanical-electrical part d&&*

electrical-mechanical part & *

amplitude vector

amplitude vector of the incremental displacements
overall amplitude vector, including:,, andmsg

directions of anisotropy

outward normal vector a5

outward normal vector of5,

outward normal vector o8~ at the interface

outward normal vector o™ at the interface

normal vector in the interfacial orthonormal base system
interfacial trial direction



G Nomenclature

dous
91ua
920us
Qoou
91ou
920y
quo
dou
s

Strial
t
ttrial
u

V1, U2, U3, V4, U5, Vg, U7, Ug
* 0%

V1,0V,

w

wy,

wy

X

Lo

x

z

mechanical-electrical part @,

mechanical-electrical part @),

mechanical-electrical part @,

electrical-mechanical part @p,

electrical-mechanical part @@,

electrical-mechanical part @),

mechanical-electrical part of the complex acoustic-tygresor
electrical-mechanical part of the complex acoustic-tygresor
tangential vector in the interfacial orthonormal baseeayst
interfacial trial direction

tangential vector in the interfacial orthonormal baseeayst
interfacial trial direction

displacement vector

displacement vector &t~

displacement vector at*

displacement vector at element nadle

displacement vector containing aily

linearisation increment af

displacement jump over the interface

elastic part of the displacement jump

plastic part of the displacement jump

viscous (elastic) part of the displacement jump

viscous (plastic) part of the displacement jump
eigenvectors

generalised eigenvectors

decay function, solution of the first order diff. equatiost®m
decay function of displacements

overall decay function

position vector to some point of interest

position vector to the interfacial orthonormal system
argument of the wave-type ansatz

solution of some first order differential equation system
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G Nomenclature

176

(nominal) traction vector

effective traction vector

traction of damper-serial spring viscoelasticity
outward traction af'—

outward traction af'*

penalty part of traction

penalty-extended traction

traction of parallel springs- viscoelasticity
effective trial tractions

excess tractiors- viscoplasticity
displacement vector containing dlly
linearisation increment ap”’



G Nomenclature

Second Order Quantities

A
Aces
Aces
B
B..s
Bees
B.e;
Bica
Bi.:
C

Cel
c
C,
Ca
Cy,
Cip
cif

Cif,ed
Cif,el
Cif,el,m
Cif,el,oo
C'ifep
Cif,epd
.fepd
Cay”
Cif,fer
Cif,fer,el
’ ) 7tb
cifgs
Cif?fer,cbf
s
if,ve
Cal
Cif?vpd

alg

Cfer
Ciso
Cort
b
col
tb
Cui

system matrix of some first order differential equation eyst

element operator matrix for a bilinear four-noded contmuelement

element operator matrix for a linear three-noded continelement

system matrix of some homogeneous linear equation system

element operator matrix for a trilinear eight-noded comtim element

element operator matrix for a bilinear four-noded contimuelement

element operator matrix for a linear three-noded continelement

element operator matrix for a bilinear four-noded integfatement

element operator matrix for a linear two-noded interfaeersint

Voigt-notated Continuum Tangent Stiffness Tensor

Voigt-notated Elastic Continuum Tangent Stiffness Tensor

interfacial incremental constitutive operator/tangéiftreess tensor
mechanical-mechanical interfacial tangent tensor

mechanical-electrical interfacial tangent tensor

electrical-mechanical interfacial tangent tensor

electrical-electrical interfacial tangent tensor

algorithmic tangent modulus of the interfacial cycle-lth&gigue formalism
interfacial tangent modulus for elasticity with damage

Elastic Interfacial Tangent Stiffness Tensor

Elastic Interfacial Tangent Stiffness Tensor, dampeiakspring=- viscoelasticity
Elastic Interfacial Tangent Stiffness Tensor, paralleirgp=- viscoelasticity
interfacial tangent modulus for elastoplasticity

interfacial tangent modulus for elastoplasticity with dega

algorithmic tangent modulus of interfacial elastoplastizith damage

Linear Ferroelectric Interfacial Tangent Tensor

mechanical-mechanical part of the Linear Ferroel. Intgalalangent Tensor
algorithmic tangent modulus of the interf. ferroelectmoe-based fatigue formalism
algorithmic tangent modulus of the interf. ferroelectycle-based fatigue formalism
algorithmic tangent modulus of the interf. time-basedjiagi formalism
algorithmic tangent modulus of interf. viscoelasticitytvdamage

algorithmic tangent modulus of interf. viscoplasticitytvdamage

\oigt-notated Ferroelectric Continuum Tangent Tensorcmatrt, stiffness tensor
\oigt-notated isotropic Elastic Continuum Tangent Sefs Tensor
Voigt-notated orthotropic Elastic Continuum Tangentf8&gs Tensor
mechanical-mechanical componeni@f) /"

mechanical-mechanical componeni@f] /"""
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G Nomenclature

CtT‘a
Cuu
Cuo
Cs,
C(I)(I)
Cay

*
alg

e

I

I,

K-
ce

K,
ce

K3
ce

Ky,
ce
oP

Kie
K,

M, M,, M,
N

P = P(fes3)
Q

Q

Q..

1S0
uu
tra
U

QO: Q17 Q2
Qouu

Qi

Qs

Q<> =Q,
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Voigt-notated transversal isotropic Elastic Continuumdgent Stiffness Tensor
Voigt-notated mechanical-mechanical continuum tangamgdr
Voigt-notated mechanical-electrical continuum tangensor
Voigt-notated electrical-mechanical continuum tangensor
Voigt-notated electrical-electrical continuum tangeartgor

penalty part of algorithmic tangent modulus

penalty-extended algorithmic tangent modulus

\oigt-notated Ferroelectric Continuum Tangent Tensouptiog part, perm. tensor
second order identity tensor

n x n second order identity tensor

stiffness matrix of a continuum element

mechanical-mechanical part & “

mechanical-electrical part &

electrical-mechanical part &

electrical-electrical part ai

stiffness matrix of an interface element

mechanical-mechanical part &

structure tensors

direction of plasticity

rotation tensor

complex acoustic-type tensor

auxiliary tensor

mechanical-mechanical part of the complex acoustic-tgpedr
mechanical-mechanical part of the complex acoustic-tgpedr, isotropy
mechanical-mechanical part of the complex acoustic-tgpedr, transv. isotropy
complex acoustic-type tensors

mechanical-mechanical part 6,

mechanical-mechanical part F,

mechanical-mechanical part ¢,

acoustic tensor of the bulk

fundamental matrix

Ferroelectric Continuum Tangent Tensor: electric pantisvity tensor
strain tensor

elastic part of the strain tensor

plastic part of the strain tensor

stress tensor



G Nomenclature

Third Order Quantities

¢  Ferroelectric Continuum Tangent Tensor: coupling pagzpelectric tensor
¢* ferroelectric auxiliary tensor
¢~ ferroelectric auxiliary tensor

Fourth Order Quantities

C incremental constitutive operator of the bulk

ce Elastic Continuum Tangent Stiffness Tensor

C» Prandtl-Reuss Tensor

(ijg algorithmic tangent modulus of bulk elastoplasticity

Cler Ferroelectric Continuum Tangent Tensor: mechanical paffess tensor
Cise isotropic Elastic Continuum Tangent Stiffness Tensor

Cort orthotropic Elastic Continuum Tangent Stiffness Tensor

Ctra transversal isotropic Elastic Continuum Tangent Stiffnésnsor

M transversal isotropic auxiliary tensor

M, M, orthotropic auxiliary tensors

179



G Nomenclature

Miscellaneous Quantities

B configuration of a body of interest

B~ part of B, complementing t&8™

Bt part of B, complementing td3~

Be.e part of B related to a continuum element

0Bp electrical Neumann boundary 5f

0B, mechanical Dirichlet boundary &

0By electrical Dirichlet boundary oB

0B, mechanical Neumann boundary®f

C set of complex numbers

(6 n-dimensional complex vector space

const. some constant quantity

dA infinitesimal surface element

ds infinitesimal line element

dv infinitesimal volume element

dA.. infinitesimal surface element of a continuum element
dv,. infinitesimal volume element of a continuum element
dA;, infinitesimal surface element of an interface element
ds; infinitesimal line element of an interface element

& closure of the elastic range

gl el €Y
iEmoa Z.EEmO

iu]

le

e M,

Z.é‘]WlJ Z.é‘]\/fg

r

r-

r+

Fie

RTL

S, &

Sit, s, st

decoupled closures of the interfacial elastic ranges

sets of invariantss- ferroelectricity
set of coefficients= interfacial elasticity

sets of coefficientss interfacial ferroelectricity

set of invariants=- isotropic elasticity

set of invariants=- transversal isotropic elasticity

sets of invariantss- orthotropic elasticity
centre line of an interface

boundary of3~ towards the interface
boundary of3* towards the interface
part of " related to an interface element
n-dimensional real-valued vector space
thermodynamic forces

interfacial thermodynamic forces

Sil= SiF* Sif+  interfacial thermodynamic forces
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