
Technische Universität Kaiserslautern
Fachbereich Informatik

AG Datenbanken und Informationssysteme
Prof. Dr.-Ing. Dr. h. c. Theo Härder

A Java Content Repository
backed by the native XML

Database System XTC
JSR 170 compliant implementation

Diploma Thesis

submitted by
Sebastian Prehn

Betreuer:
Prof. Dr.-Ing. Dr. h. c. Theo Härder

Dipl.-Inf. Karsten Schmidt

Day of issue: 21. Feb. 2008
Day of delivery: 31. Jul. 2008

Ich versichere hiermit, dass ich die vorliegende Diplomarbeit mit dem
Thema “A Java Content Repository backed by the native XML Database
System XTC” selbstständig verfasst und keine anderen als die angegebe-
nen Hilfsmittel benutzt habe. Die Stellen, die anderen Werken dem
Wortlaut oder dem Sinn nach entnommen wurden, habe ich durch
die Angabe der Quelle, auch der benutzten Sekundärliteratur, als
Entlehnung kenntlich gemacht.

Hereby I declare that I have self-dependently composed the Diploma
Thesis at hand. The sources and additives used have been marked in
the text and are exhaustively given in the bibliography.

Kaiserslautern, 31. Jul. 2008

Sebastian Prehn

Abstract

JSR 170 spezifiziert die Java Content Repository (JCR) Schnittstelle. Diese
Schnittstelle wird als Standard im Bereich Web-Anwendungen und Content
Management akzeptiert. Sie gliedert sich in Level 1 (lesender Zugriff) and
Level 2 (Lese- und Schreibzugriff) und beschreibt darüber hinaus vier weit-
ere optionale Funktionen. Das in JSR 170 beschriebene hierarchische Daten-
modell weist starke Analogie zu XML auf. Jedoch verwenden die meisten
JCR-Implementierungen relationale Datenbanken. Durch native XML Daten-
banken, wie XTC, können XML-Daten effizient verwaltet werden. Diese Arbeit
beschreibt das Design und die Implementierung eines Level 2 JCRs, welches alle
Anforderungen an die Persistenz mit Hilfe von DOM und XQuery Operationen
auf XML-Dokumenten in XTC erfüllt. Die optionalen Funktionen “Version-
ierung” und “Transaktionen” werden ebenfalls unterstützt. Um die Implemen-
tierung zu testen werden zwei Demo-Anwendungen (Blog & Wiki) entwickelt
und Vergleichstests gegen die Referenzimplementierung angestellt.

JSR 170 specifies the Java Content Repository (JCR) interface. This inter-
face is accepted as a standard in the field of Web Applications and Content
Management. The specification is structured in Level 1 (read-only access) and
Level 2 (read and write access). Furthermore, it specifies four optional fea-
tures. The hierarchic data model described in JSR 170 exhibits strong analogy
to XML. However, most JCR implementations use relational database systems.
Native XML databases, such as XTC, are able to manage XML data efficiently.
This thesis describes the design and implementation of a JCR which meets all
requirements on persistence employing DOM and XQuery operations on XML
documents in XTC. Optional features “Versioning” and “Transactions” are sup-
ported. In order to test the implementation two demo applications (blog & wiki)
are developed and benchmarks are run against the reference implementation.

Contents

List of Figures iii

List of Tables v

List of Listings vii

1 Introduction 1

1.1 Use Case: CoffeeBeen Inc. 1

1.2 Content Repository . 2

1.3 Java Content Repository . 2

1.4 Native XML Storage . 4

2 JCR Specification 7

2.1 Java Specification Request 170 7

2.2 JCR Model . 7

2.3 Level 1 . 8

2.4 Level 2 . 13

3 Design & Project Setup 15

3.1 Two Approaches . 15

3.2 System Architecture . 15

3.2.1 Interface Description . 16

3.2.2 Distribution . 17

3.2.3 XTC JCR Design . 17

3.3 Infrastructure . 19

4 Implementation 21

4.1 Level 1 . 24

4.1.1 JCR Paths . 24

4.1.2 Unique Node Identifier . 24

i

ii Contents

4.1.3 Mapping to XML . 26

4.1.4 Declarative Queries . 27

4.1.5 Type-level Assertion . 35

4.2 Level 2 . 36

4.2.1 Namespace Registry . 36

4.2.2 Transient Repository . 37

4.2.3 Node Types . 42

4.2.4 Import . 42

4.3 Transactions . 46

4.4 Versioning . 46

5 Evaluation 49

5.1 Demo Applications . 49

5.1.1 Deployment on Glassfish 49

5.2 Performance . 51

5.2.1 Data Modification . 56

5.2.2 Navigational Access . 58

5.2.3 Declarative Query . 59

5.2.4 Concurrent Modifications 60

5.2.5 Analysis . 60

6 Conclusion 63

List of Abbreviations 65

Bibliography 67

List of Figures

1.1 Typical setup for WCMS systems 1

1.2 Content Repository as hierarchical storage back-end to a WCMS 2

1.3 Content Repository integration with other systems 3

2.1 Overview of the repository structure 9

2.2 GoF Composite Design Pattern for JCR Item, Node, and Property 9

2.3 Excerpt of a JCR workspace content tree—“CoffeeBeen Inc.” . . 10

2.4 Obtaining a Repository reference via JNDI 11

2.5 Logging into workspace “defaultWorkspace” 12

2.6 Overview: Repository, Session, Workspace 12

3.1 System Overview . 16

3.2 XTC Architecture Overview . 17

3.3 XTC JCR Distribution . 18

3.4 XTC JCR Architecture Overview 20

4.1 Internal interfaces extend JCR interfaces enableing custom inter-
face adaption . 22

4.2 Path: Abstract Syntax Tree (AST) 25

4.3 Visitor pattern applied on JavaCC generated classes 29

4.4 Concrete Rewriting Stages . 30

4.5 Generated visitor interface with signatures for all abstract syntax
tree classes. 31

4.6 Double dispatch mechanism in visitor pattern implementation. . 31

4.7 Path system: PathFactory and assertion types. 35

4.8 XTC JCR Level 2 Design . 44

4.9 Item Lifecycle . 45

4.10 States of the systemview importer 45

4.11 JTA UserTransaction implementation in XTC JCR 46

4.12 Version history of one node and its successor relation 47

iii

iv List of Figures

5.1 Screenshot of the Blog Demo Application (using JBoss Seam) . . 50

5.2 JSF page flow of Blog Demo Application 50

5.3 Screenshot of the Wiki Demo Application (using JBoss Seam) . . 51

5.4 addNode100 in Netbeans Profiler 52

5.5 Optimization steps for benchmark addNode100 (persisting 100
new nodes under a persistent node) 53

5.6 Data Modification Benchmarks 55

5.7 addNode100Deep in Netbeans Profiler 57

5.8 Hotspot analysis of XTC’s appendSubtree operation in Netbeans
Profiler . 57

5.9 Navigational Access Benchmarks 58

5.10 Declarative Query Test Data . 59

List of Tables

2.1 Repository Descriptor of XTC JCR 8

3.1 Software Component Overview 19

4.1 Reserved namespaces in XTC JCR 36

5.1 Optimizations for data modifications. 52

5.2 Test suite: data modification . 56

5.3 Test suite: navigational access . 59

5.4 Test suite: query performance . 60

v

vi List of Tables

List of Listings

2.1 Querying repository features . 7

2.2 Direct node access (workspace: see figure 2.3) 11

2.3 Declarative query (workspace: see figure 2.3) 13

2.4 Creating a new Node and setting a property 13

4.1 JSR 170 and XTC JCR Node interface 23

4.2 XML mapped workspace with one referenceable node named node0 28

4.3 Post condition manifested in return type. 36

4.4 namespaceRegistry.xml . 37

4.5 namespaceRegistry.xml after registerNamespace operation 37

4.6 JSR 170 addNode methods . 39

4.7 JSR 170 setProperty methods . 39

4.8 JSR 170 mixin methods . 42

5.1 getPrefix(String uri) first version (DOM) 54

5.2 getPrefix(String uri) improved version (XQJ) 54

vii

viii List of Listings

Chapter 1

Introduction

1.1 Use Case: CoffeeBeen Inc.

A typical commercial website—a small use case to begin with:

CoffeeBeen Inc. sells Coffee online. On their website the company advertises
itself and its products. Current news are published in a blog system. Customer
feedback gets recorded in form of comments on the product pages and blog
entries. The company’s customer care department services a FAQ section. The
public relations experts author the rest of company’s online presentation.

The website is managed by a Content Management System (CMS), more pre-
cisely, a Web Content Management System (WCMS). As the name suggests,
a WCMS is responsible to manage content (files, images, articles etc.) and to
present it in form of web pages (see figure 1.1).

The software allows multiple users to colaborate concurrently on the web pages.
The users create or modify content elements. On the web front-end the content
elements are merged into the website layout and presented to the users online.

The requirements on a typical WCMS include full-text search, versioning and
a mechanism to handle fine grained concurrent read and write access on the
content. These are needs, a regular filesystem does not sufficiently support.
Therefore, the WCMS requires a system on top of the pure data storage to
handle these common requirements. This system is usually referred to as a
Content Repository.

RepositoryWebserver
/ WCMS

Client www

Figure 1.1: Typical setup for WCMS systems

1

2 Chapter 1. Introduction

Content Repository

WCMS

/
- images/
 - logo.png
- pages/
 - articles/
 - beans.htm
- index.htm

Figure 1.2: Content Repository as hierarchical storage back-end to a WCMS

1.2 Content Repository

A Content Repository (CR) is a hierarchical data store for content. This content
can be anything from primitive datatypes, texts, image files or other binary
documents along with accompanying meta data (see figure 1.2).

While all Content Management Systems must provide some sort of Content
Repository implementation to store their data in1, it is unclear what such a
repository must feature.

David Nuescheler defines a Content Repository as follows: “A Content Reposi-
tory is a high-level information management system that is a superset of tradi-
tional data repositories. A Content Repository implements content services such
as: author based versioning, full textual searching, fine grained access control,
content categorization and content event monitoring. It is these content services
that differentiate a Content Repository from a Data Repository. [Nue06]”

1.3 Java Content Repository

CoffeeBeen Inc., of the initial use case (see chapter 1.1), desires to integrate
their web presentation with other applications of their IT infrastructure. They
need to export the product catalog from their Enterprise Resource Planning
(ERP) software onto the web page. In addition, employees querying the com-
pany’s knowledge management system should also find matches in the online
user comments and FAQ section (see figure 1.3).

It is a common requirement to integrate repository content with other appli-
cations. Content Repositories typically provide an interface for applications
to query and modify the underlying content. There are many CR solutions
on the market. Each one offering its own API to interact with content. Pro-
prietary APIs limit the compatibility to ready-made, vendor specific solutions.
They tightly couple the CR and the integration partner or render the inte-
gration endeavor impossible. Open, but non-standardized APIs, may require

1 For the sake of simplicity the WCMS and Content Repository are viewed as separate com-
ponents. In practice the repository layer might not clearly be separated from the WCMS.
Instead, it might be considered to be part of the system, querying an external database. A
Content Repository, however, is more than just a database or the file system.

1.3. Java Content Repository 3

/
- images/
 - logo.png
- pages/
 - articles/
 - beans.htm
- index.htm

Content Repository

WCMS

ERP System

Knowledge Management
System

export

query

Figure 1.3: Content Repository integration with other systems

custom-made adapter software between each of the integration partners. The
integrators therefore need to conquer the diverse APIs. Application vendors
need to adapt their products to every single API. In summary, the chaos of
APIs makes integration costly in terms of labor, time, and money.

The obvious solution to the integration problem is a common, adequate, and
open interface for content repositories. In an effort to unify the Content Repos-
itory APIs in the Java world a common interface was specified in the Java
Community Process (JCP) under the name Content Repository API for Java
Technology JSR2 170. A Java Content Repository (JCR) is a CR implementa-
tion that complies to the JSR 170 specification 3.

The common interface enables reuse, exchangeability and interchangeability of
the repository layer. It unifies the diverse requirements in the Content Reposi-
tory market in a set of mandatory and optional APIs. The specification is widely
accepted and this suggests that the JSR 170 standardization might lead to a
similar unification observed subsequently to the introduction of the SQL stan-
dard: Today nobody would build a proprietary query language for a relational
database system. [NN04]

With JSR 170 (web) application developers can leverage the power of ready-
made Content Repository solutions interacting with a single open API and with-
out committing themselves to a certain repository implementation.

The customer is not bound to a certain vendor. This leaves a choice to select
either a best-of-breed solution or some other product that integrates well into
the company’s IT infrastructure. The system stays open for integration with
other applications.

Several WCMSs already use JCR repositories, e.g. Magnolia and Alfresco. Even
non-Java WCMS Systems are not excluded. The widespread PHP based open-
source content management system TYPO 3 has published plans to switch to
a JCR in version 5.0 [Dam07].

Java Content Repositories are not limited to be used in the context of Web Con-
tent Management only. Any form of CMS, e.g. Enterprise Content Management
Systems, or any other Java based application can easily utilize the power of JSR
170 compliant implementations as a feature rich storage back-end.

2 Java Specification Request

3 see chapter 2 for a more detailed description of JSR 170

4 Chapter 1. Introduction

There are already several implementations of the JSR 170 pseudo-standard.
Here a list of known implementations, without claiming completeness.

Open-source implementations:

• Apache Jackrabbit4—Reference Implementation (RI)

• Toshiro JCR

• Jeceira

• Alfresco

Commercial products:

• Content Repository Extreme (CRX) of Day Software AG

• Oracle Beehive Java Content Repository API5

1.4 Native XML Storage

The way a JCR stores data permanently is not predefined by the specification.
The reference implementation, e.g., comes with several implementations for their
persistence storage layer. The different implementations allow the reference
implementation to be backed e.g. by a relational database or simple XML
files. Doubtless to say, the most prominent approach for production use is the
mapping to relational databases. This is due to the wide availability of powerful
relational database systems.

However, mapping the hierarchy of the JCR content tree into a hierarchical
format, more precise XML [BPS00], seems to be the most natural, straight
forward approach. The specification even relies on XML as in- and export
format for the complete repository. This shows that the expressiveness of XML
fits JCR content very well.

The use of simple XML files in the filesystem is not acceptable6. With pure
XML files no fine grained concurrent access would be possible. It is impossible
to guarantee the ACID properties or only at the cost of locking the whole file,
eliminating any concurrent access.

Since the requirements on the JCR include typical database requirements, it
makes sense to manage the XML data in a database system as well. In order
to store JCR data in such a database, the system must be capable of handling
XML data and support at least the following features:

• in document (subtree) modifications (update, delete)

• in document fine grained transactional control

4 http://jackrabbit.apache.org

5 http://www.oracle.com/technology/products/beehive/examples/jcr.html

6 Jackrabbit’s XML file persistence store is not recommended for production use due to the
lack of performance.

1.4. Native XML Storage 5

• XPath and XQuery interface (problem: standardization of interface)

This already outrules several XML-enabled database systems that can only store
whole XML files as unstructured text values as their finest granulate or cannot
modify subtrees.

In XML-enabled databases where XML data is “shredded” into tables, struc-
tural information in the tree-based schema is modeled by joins between tables
in the relational schema. XML queries are converted into SQL queries over
the relational tables, and even simple XML queries often get translated into
expensive sequences of joins in the underlying relational database. [JAKC+02]

In contrast, specially tailored XML database systems potentially provide effi-
cient data structures and indexes, efficient handling of XML queries, and support
for sophisticated transaction handling on XML documents.

The upcoming solution for XML storages are therefore native XML database
systems. These are systems designed from scratch, that do not internaly map
XML to relational tables or object structures, but implement real tree data
structures and corresponding query operators on these structures.

Overview native XML database systems, without claiming completeness:

eXist open-source database management system entirely built on XML tech-
nology7

Oracle Berkeley DB XML open-source XML database with XQuery-based
access8

MonetDB open-source database system for high-performance applications in
data mining, OLAP, GIS, XML Query, text and multimedia retrieval9

Natix [FHK+02] persistent XML storage, including high-performance docu-
ment import and export, access via DOM [DOM] and SAX [SAX] in-
terfaces, transaction processing with recovery, and scalable evaluation of
XPath 1.0 [CD99] queries.

Sedna open-source native XML database10

Tamino [Sch01] commercial native XML database system of Software AG.

Timber [JAKC+02] open-source database system based on TAX (Tree Al-
gebra for XML) that is for manipulating XML data in form of forests of
labeled ordered trees11.

XTC [HH07] closed-source native XML database system of AG DBIS TU
Kaiserslautern.

7 http://exist.sourceforge.net

8 http://www.oracle.com/database/berkeley-db/xml/index.html

9 http://monetdb.cwi.nl/

10http://modis.ispras.ru/sedna

11http://www.eecs.umich.edu/db/timber

6 Chapter 1. Introduction

Our research group has developed the XML Transaction Coordinator (XTC) as
native XML database prototype system [HH07]. XTC seems suitable to support
a JCR to XML mapping efficiently.

The JCR implementation is expected to gain performance through XTC’s native
tree data structures (including its powerful labeling schemes), physical opera-
tors, and optimized transaction handling. Thus, this JCR implementation will
be implemented as an additional layer on top of XTC enhanceing the system
by a JCR interface. Meanwhile XTC’s concepts are put to the test through a
real-life application.

Chapter 2

JCR Specification

2.1 Java Specification Request 170

JSR 170: Content Repository for JavaTMtechnology API is a Java Specification
Request (JSR)1 lead by David Nuescheler of Day Software AG. His effort started
February 2002 and the specification was finally released on 17. June 2005. The
latest maintenance release version 1.0.1 dates back to 24. April 2006, the version
that is used in this work.

The specification is structured in two compliance levels (Level 1 and Level 2)
and describes four optional features (Versioning, Transactions, Locking, Obser-
vation). Level 1 is mandatory for every JCR. In order to find out what levels and
features a repository supports, the repository can be queried (see the following
code listing 2.1 and the output given in table 2.1).

1 for (S t r ing key : r e p o s i t o r y . getDescr iptorKeys ()) {
2 System . out . p r i n t l n (key + ” :\ t ” + r epo s i t o r y .

g e tDe s c r i p to r (key)) ;
3 }

Listing 2.1: Querying repository features

This chapter will not delve into details, but will give an overview of the spec-
ification along with a basic example. Please refer to the specification docu-
ment [Nue06] for more information.

2.2 JCR Model

A JCR accommodates one or more workspaces. A workspace has a name and
represents a tree of items (see figure 2.1). The JSR 170 specification models
this tree according to the GoF2 Composite Design Pattern [GHJV95]. An item

1 JSR 170 in Java Community Process (JCP) http://www.jcp.org

2 Gang of Four

7

8 Chapter 2. JCR Specification

Key Value
query.xpath.doc.order: true
query.xpath.pos.index: true
level.1.supported: true
level.2.supported: true
jcr.specification.version: 1.0
jcr.repository.vendor.url: http://wwwlgis.informatik.uni-kl.de
jcr.specification.name: Content Repository for Java Technology API
jcr.repository.name: XTC JCR
jcr.repository.vendor: AG DBIS, TU Kaiserslautern, Germany
jcr.repository.version: 0.1
option.versioning.supported: true
option.query.sql.supported: false
option.transactions.supported: true
option.locking.supported: false
option.observation.supported: false

Table 2.1: Repository Descriptor of XTC JCR

is either a node or a property (see figure 2.2). Each node has a name and an
arbitrary number of child items. Each property has a name and additionally
stores values. So in summary: Workspaces and nodes structure the repository
while properties store the data.

JCR nodes and properties are typed. A property must be of a primitive type:
BOOLEAN, DOUBLE, LONG, STRING, DATE, BINARY, or REFERENCE.
Each node must be of a primary type and can have several mixin types. A node
type (primary or mixin) defines which child items must exist, are allowed to
exist, or are automatically created. It defines, furthermore, which child items
are user-editable and whether the node can have same named siblings as child
nodes. For more details on the type system see the specification [Nue06] and
chapter 4.2.3.

Figure 2.3 shows an example of such a workspace content tree. The root node is
the only node that has an empty name. All other nodes carry names. Note that
all these names in this example are prefixed with “cb:”. This arbitrarily chosen
prefix stands for CoffeeBean, the name of the imaginary company. Custom
prefixes allow to separate namespaces in JCR, analogous to XML namespaces.
As previously said, nodes and properties are typed. The nodes in this example
could be of type “nt:unstructured”, the least restrictive and default node type.
In this example you can, furthermore, observe properties of type STRING and
DATE.

2.3 Level 1

Level 1 specifies a Java Content Repository with read access. This enables
storage systems to expose their content through the standardized JCR interface.
In order to keep the barrier low, the Level 1 specification is intentionally fairly
easy to implement.

2.3. Level 1 9

[root]

Property

Node

[root]

anotherWorkspace

defaultWorkspace

Repository

Figure 2.1: Overview of the repository structure

Figure 2.2: GoF Composite Design Pattern for JCR Item, Node, and Property

Level 1 of the specification requires the following features [Nue06]:.

• Retrieval and traversal of nodes and properties

• Reading the values of properties

• Remapping of transient namespaces

• Export to XML/SAX

• Query facility with XPath syntax

• Discovery of available node types

• Discovery of access control permissions

10 Chapter 2. JCR Specification

[root]
|— cb:pages
| |— cb:articles
| | |— cb:beans
| | | |— cb:title = “A couple of coffee beans every morning”
| | | |— cb:date = “2008-05-13T15:39:03:010Z“
...
| | |— cb:milk
| | | |— cb:title = “Put milk in your coffee”
| | | |— cb:date = “2008-05-12T16:31:04:052Z“
...
| | |— cb:sugar
| | | |— cb:title = “Some people like sugar in their coffee”
| | | |— cb:date = “2008-04-11T06:15:12:452Z“
...
| | | |— cb:comments
| | | | |— cb:comment
| | | | | |— cb:author = “pure81”
| | | | | |— cb:subject = “I don’t like sugar with my coffee”
| | | | | |— cb:text = ...
| | | | |— cb:comment
| | | | | |— cb:author = “sweety84”
| | | | | |— cb:subject = “Sugar is a must have”
| | | | | |— cb:text = ...
...
|
|— products
...

Figure 2.3: Excerpt of a JCR workspace content tree—“CoffeeBeen Inc.”

The specification comes with a set of defined Java interfaces3. These interfaces
shield the repository client from any implementation specific details. The first
three interfaces a JCR user gets in contact with are: Repository, Session, and
Workspace.

A Repository instance is the first entry point into JCR. It allows to query the
features of a concrete JCR implementation and to login into a workspace. How
an instance of this type is obtained is not specified. A common solution is to
retrieve a reference via a JNDI4 service (see figure 2.4).

After logging into the Repository a client receives an object of type Session
(see figure 2.5). An instance of type Workspace is accessible via the session
object. Workspace and Session have a one to one relationship (see figure 2.6).
The difference between a session and a workspace is only of importance to Level
2 implementations. In a Level 1 implementation, the session grants direct
access to content items, i.e. nodes and properties, while the workspace instance
allows to obtain a manager to run queries against the repository. That means

3 Java package javax.jcr.*

4 Java Naming and Directory Interface

2.3. Level 1 11

Figure 2.4: Obtaining a Repository reference via JNDI

a repository can be queried in two forms: navigational or declarative.

The navigational access via the Session works by directly traversing top-down
from node to node and from node to property through the content tree. This
form of access is used to navigate to content via known workspace structures
(see listing 2.2).

1 Node root = s e s s i o n . getRootNode () ;
2 Node beans = root . getNode (”cb : pages /cb : a r t i c l e s /beans”) ;
3 Property t i t l e = beans . getProperty (”cb : t i t l e ”) ;
4 System . out . p r i n t l n (t i t l e . g e tS t r i ng ()) ;

Listing 2.2: Direct node access (workspace: see figure 2.3)

Declarative queries over the Workspace interface are useful when the content
position in the workspace structure is unknown, i.e. for searching the repository.
For example, to find all comments of user “sweety84” a JCR XPath query can
be issued via the QueryManager (see listing 2.3).

A query specifies a subset of nodes within a workspace that meet the stated
constraints. The constraints fall into three categories: [Nue06]

• Path constraint: This limits the returned nodes to certain subtrees in the
workspace.

• Property constraint: This limits the returned nodes to those with partic-
ular properties having particular values.

• Type constraint: This limits the returned nodes to those with particular
primary or mixin node type.

12 Chapter 2. JCR Specification

Figure 2.5: Logging into workspace “defaultWorkspace”

Figure 2.6: Overview: Repository, Session, Workspace

Queries can be expressed in a SQL or XPath [BBC+07] like syntax. The XPath
syntax is required, while the SQL syntax is optional. In the following work
we will only concentrate on XPath style queries, since SQL queries will not be
supported by this implementation.

The JCR XPath query syntax is very similar to the original XPath syntax, but
with a reduced complexity. In order to express path constraints three out of the
13 XPath axes5 are supported in the location steps:

• child axis: abbreviated syntax “/”, the default axis

• descendant-or-self axis: abbreviated syntax “//”

• attribute axis: abbreviated syntax “@” (JCR properties are treated like
XML attributes)

Only the abbreviated syntax is supported. XPath style axis selection “::” is not
supported. Support for other axes is not required.

5 XPath axes according to specification [BBC+07]: ancestor, ancestor-or-self, attribute, child,
descendant, descendant-or-self, following, following-sibling, namespace, parent, preceding,
preceding-sibling, self

2.4. Level 2 13

1 Workspace ws = s e s s i o n . getWorkspace () ;
2 QueryManager qm = ws . getQueryManager () ;
3 Query q = qm. createQuery (”//cb : comment [@cb : author=\”

sweety84 \”] ” ,Query .XPATH) ;
4 QueryResult r e s u l t = q . execute () ;
5
6 NodeIterator i t e r a t o r = r e s u l t . getNodes () ;
7 while (i t e r a t o r . hasNode ()) {
8 Node n = i t e r a t o r . nextNode () ;
9 System . out . p r i n t l n (n . getName ()) ;

10 }

Listing 2.3: Declarative query (workspace: see figure 2.3)

Property constraints are expressed as XPath predicates with the abbreviated
syntax “@” for XML attributes, as in: [@cb:author = ”sweety84”]. Operators
in a predicate are: (=, !=, <, <=, >, >=). Functions that can be used are for
example: not() and jcr:like(). The positional square bracket index notation of
XPath is optional in a JCR, but will be supported by this implementation.

Type constraints can be expressed in a location step with the XPath function el-
ement(elementname, typename). The typename corresponds JCR node types.
The query //element(* , nt:file) would select all file resources with arbitrary
name, for example.

2.4 Level 2

A Level 2 implementation is a Level 1 repository that supports the content to
be modified. A new child node can easily be created:

1 Node newNode = a r t i c l e s . addNode (”cb : hot summer”) ;
2 newNode . se tProper ty (”cb : t ex t ” , ”A n i c e summer day . ”) ;
3 s e s s i o n . save () ;

Listing 2.4: Creating a new Node and setting a property

Each session keeps a virtual local copy of the repository which is called a tran-
sient repository. Changes to items are initially made in that transient repository,
visible only to the current session.

These are the Level 2 methods that write to the transient repository :

• Node: addNode, setProperty, orderBefore, addMixin, removeMixin

• Property : setValue

• Item: remove

• Session: move, importXML

• Query : storeAsNode

14 Chapter 2. JCR Specification

Modified items are transient, since the modifications are discarded when the
session is closed. Within a session the changes on an item’s subtree stay transient
until they are made persistent by calling save on that item. Calling the refresh
method discards all transient changes on the item and its subtree. The transient
repository keeps all transient items and shadows the actual persistent items,
when accessed through that session. This means the user of the session sees the
repository as if the changes were already applied.

One could get the idea that save corresponds to a commit and refresh corre-
sponds to rollback in traditional transactions. However, note that the scope of
save or refresh on an item is limited to the item’s subtree. Consequently, a
partial save and a partial refresh of the work must be supported. This concept
differs from the all or nothing (Atomicity) approach known from traditional
transactions and inhibits a straight forward mapping to database transactions.

Chapter 3

Design & Project Setup

3.1 Two Approaches

The aim of this work is to design and implement a Java Content Repository
on top of the native database system XTC. This is why the development name
of this implementation is “XTC JCR”. The first design decision to make was
whether to extend an existing solution or create an implementation from scratch.

The Apache Jackrabbit 1 project provides the reference implementation of the
JSR 170 specification. This open-source project is build in a modular fashion
and supports multiple plugable storage back-ends. The first idea was to extend
that implementation with an XTC specific persistence back-end. This approach
has the advantage that major parts of the specification must not be reimple-
mented but are already supported by Jackrabbit. Furthermore, the reference
implementation supports all optional features out of the box.

However, the persistence manager interface of the reference implementation is
relatively primitive. It is operated through many levels of abstraction. Us-
ing this interface the full power of XTC could not be leveraged. This concerns
mainly the native hierarchic data structure and the native XPath query support
that XTC offers. The alternative approach is a complete reimplementation of
JSR 170 from scratch. A newly designed implementation, ready-made specifi-
cally for XTC, promises to take full advantage of XTC’s features2.

The first major design decision in this project was made in favor of the second
approach, a new implementation from scratch.

3.2 System Architecture

The XTC JCR system is implemented on top of the XTC Server. It connects
to the server via the XTCDriver interface and implements the JSR 170 API

1 http://jackrabbit.apache.org/

2 As a nice side-effect a new implementation can leaverage modern Java 1.6 features.

15

16 Chapter 3. Design & Project Setup

Figure 3.1: System Overview

specification (see UML3 component diagram figure 3.1). Both JSR 170 API
and XTC Server are given. The XTC JCR component is the target of this
work.

3.2.1 Interface Description

The JSR 170 interface stands for the standardized JCR interface described in
chapter 2. This interface is fully specified in the JSR 170 specification [Nue06].

The XTCDriver is a proprietary interface, functionally similar to the JDBC
standard for relational databases, yet specifically tailored to the needs of a
native XML database system. The XTCDriver lets clients access XTC’s DOM
RMI and API RMI top-level interface services (see figure 3.2). Via API RMI
XQuery [CBa] statements can be issued and data can be transfered in both
directions as serialized XML. DOM RMI grants DOM based access for read
and write access. The XTCDriver is defined by the DBIS group, but can be
customized to specific XTC JCR needs.

3 All UML diagrams in this thesis adhere to UML version 2.0 [OMG03] and recommendations
given in [Oes05].

3.2. System Architecture 17

Transaction Log File Container Files Temp. Files

Transaction Manager I/O Manager

Buffer Manager

Temp. File Manager

File Services

Propagation Control

Index Manager Catalog Manager

Record Manager
Access Services

Node Manager

Path Processing
Node Processing
Services

Lock Manager

Transaction Services

XML Manager

XML Processing Services

XSLT Processor

OS File System

Interface Services
HTTP Agent FTP Agent DOM RMI SAX RMI API RMI

L 1

L 2

L 3

L 4

L 5

X
T

C
 S

er
ve

r

XQuery Processor

Figure 3.2: XTC Architecture Overview

3.2.2 Distribution

The XTCDriver interface is a remote RMI interface. This also allows the XTC
JCR implementation itself to be run on distributed remote clients. While the
XTC JCR session is designed to run in a single client thread, multiple XTC JCR
session instances can access the same repository concurrently. This way the
system is designed for scaleability in terms of concurrency which is only limited
by the number of concurrent transactions XTC can handle. All JCR internal
work (maintaining the transient repository) is done locally and in parallel on
the client machines which are synchronized by the XTC database system.

This design enables client applications to directly integrate the XTC JCR im-
plementation as a library. At the same time XTC JCR can be deployed as
a resource in a Java EE container (Application Server), letting multiple ap-
plications in the container acquire sessions and work with the repository (see
deployment diagram 3.3).

3.2.3 XTC JCR Design

Internally XTC JCR is structured in components. Nesting of sub components
in large components is common practice in software development. However, it
is not easy to “guess” a good component design. In this work an engineering
approach is taken to systematically find the sub components in which the system
is split up. The component boundaries are cut following the idea of software
categories A,R,T,0 or “blood groups” (see chapter four of [Sie04]).

18 Chapter 3. Design & Project Setup

Figure 3.3: XTC JCR Distribution

Software category A stands for “application software“, T stands for “technical
software“, R stands for “transformation software”, and 0 is primitive software
available for example via the runtime environment. Just like blood groups,
software categories cannot be mixed arbitrarily, since the software would clod
up to one big unmaintainable chunk otherwise. A good design separates A from
T software. This is because A and T change at different rates. A software
modification in the database connection code, for example, should not effect
a use cases implementation. The software components should use the least
common denominator, which is predominantly 0 software, to communicate. This
way no unnecessary dependencies arise. In cases where the a application object
(e.g. a customer object) needs to be transformed into a technical object (e.g.
an entry in a table or XML file) R software comes into play. R software only
transforms objects back and forth and connects both worlds.

In this fashion the JSR 170 is implemented in software components of type A
(see figure 3.4). There are several A sub components that deal with specific
behavior, such as query processing, path processing, transactions, etc. (see
table 3.1). This achieves a high coherence within the components and a low
coupling between the components. Additionally, these components can be tested
independently from one another. All XTC specific behavior is encapsulated
in the T typed persistence component. The R type component JCR2XML
transforms JCR objects into an XML representation and vice versa.

3.3. Infrastructure 19

Component SW-Category Responsibility
JSR 170 Impl A XTC Java Content Repository (JCR)

top level implementation: Session,
Workspace, Namespace Registry, Tran-
sient Repository etc.

Query A Creation and management of JCR
Queries (XPath).

Path A Parsing, validation and transformation
of JCR paths.

NodeType A Implementation of JCR node type sys-
tem.

Transaction A JTA compliant implementation of a
UserTransaction. (Implements optional
feature: Transactions)

Value A Creation, validation and transformation
of JCR Values.

Versioning A Workspace versioning. (Implements op-
tional feature: Versioning)

JCR2XML R Conversion from JCR content tree to
XML tree and vice versa, including
query rewriting to fit the internal XML
repository format.

JNDI T Publishing and configuration of the
repository as JNDI resource.

Persistence T Decoupling from XTC specific interface.
Low-level Transaction and Persistence
managers.

Table 3.1: Software Component Overview

3.3 Infrastructure

The infrastructure for this project consists of a T60 Lenovo laptop computer
as test and development platform. It runs the XTC Server and a Glassfish
application server to demonstrate XTC JCR demo applications in a Java EE
container environment.

The application is developed using the well known Netbeans IDE in conjunc-
tion with subversion as a version and configuration management system. De-
velopment follows a test driven approach using Netbean’s integrated JUnit4

functionality for automated testing.

XTC JCR is a subproject resident in the overall XTC project. In cooperation
with the XTC team the Trac system is used to report XTC related bugs and
cooperate via the integrated wiki system.

4 http://www.junit.org/

20 Chapter 3. Design & Project Setup

Figure 3.4: XTC JCR Architecture Overview

Chapter 4

Implementation

The implementation is done in the Java programming language which is obvious
for a Java Content Repository. However, XTC Server and XTC JCR rely on
Java 1.6 and are not backwards compatible. The first major difference to the
reference implementation. Java 1.6 includes Generics and Enumerations as well
as XML related tools (e.g. JAXB) that simply were not present at the time of
writing the specification. Therefore, the interfaces do stipulate arrays instead of
typed lists and integer constants instead of enumerations. Although the specified
interfaces cannot be changed, XTC JCR internally operates these new features
and maps the old fashioned interfaces onto the modern implementations. This
practice helps to avoid casting and makes the whole application typesafe.

This implementation takes an elegant approach to implement the JSR 170 in-
terfaces (see figure 4.1): For internal processing the types specified by JSR 170
need to be extended with custom methods. These helper methods are part of the
interface of the implementing class. However, instead of programming against
the implementation of the JSR types, another approach is taken. Between the
JSR type and the concrete implementation an additional level of abstraction is
introduced in form of an internal interface. By extending the given JCR inter-
face with an internal interface, against which all application code is written, the
code stays free of dependencies to the implementing classes. This is useful for
unit testing, since this way dummy implementations for the internal interfaces
can be written. Furthermore, do these interfaces allow to override the JSR 170
method signatures and provide a more specialized return type.

Listing 4.1 demonstrates this practice by showing how method addNode of
javax.jcr.Node is specialized in xtc.jcr.NodeInternal to return the more specific
type NodeInternal. This practice helps to avoid type casting and encourages
reuse of existing functionality.

In order to implement all required parts of the specification a test driven de-
velopment approach is put in practice. A second source folder exists containing
a copy of the package structure in which the test cases for each package are
inserted. Prior to implementation black box tests are written for each method
of the JSR 170 interface1. During the implementation more tests are added, as

1 These stubs are generated automatically by the IDE.

21

22 Chapter 4. Implementation

Figure 4.1: Internal interfaces extend JCR interfaces enableing custom interface
adaption

required, to cover complicated paths in the program flow. Complete path cov-
erage is not claimed. The test driven development strategy cannot guarantee
complete freedom from defects. Inspired by the statistical testing approach the
most common cases are reflected in the tests predominantly. Finally, 420 JUnit
tests give adequate confidence that the implementation complies to the JSR 170
specification.

23

1 // JSR 170 Node i n t e r f a c e
2 package javax . j c r ;
3 public interface Node {
4 public Node addNode (St r ing re lPath) throws . . . ;
5 . . .
6 }
7
8 // XTC JCR Node i n t e r f a c e
9 package xtc . j c r ;

10 import javax . j c r . Node ;
11 public interface NodeInternal extends I temInterna l , Node {
12 @Override
13 public NodeInternal addNode (St r ing re lPath) throws . . . ;
14 . . .
15 }

Listing 4.1: JSR 170 and XTC JCR Node interface

24 Chapter 4. Implementation

4.1 Level 1

4.1.1 JCR Paths

A JCR workspace is a tree that can be navigated by the client programs. In
order to specify the navigation steps JCR paths must be provided2. In the
JSR 170 interface these paths are provided in form of strings. Eventually, these
strings must be parsed and checked for validity before they can be interpreted
on top of the tree data. To do so, the Path component takes responsibility in
managing JCR paths, names, and name patterns.

The specification provides EBNF grammars, defining the correct syntax of
paths, names, and name patterns.

path ::= abspath | relpath
abspath ::= ’/’ relpath | ’/’
relpath ::= pathelement | relpath ’/’ pathelement
pathelement ::= name | name ’[’ number ’]’ | ’..’ | ’.’
number ::= /* An integer > 0 */
name ::= [prefix ’:’] simplename
simplename ::= onecharsimplename | twocharsimplename | threeormorecharname
onecharsimplename ::= /* Any Unicode character except:

’.’, ’/’, ’:’, ’[’, ’]’, ’*’, ’’’, ’"’, ’|’
or any whitespace character */

twocharsimplename ::= ’.’ onecharsimplename | onecharsimplename ’.’
| onecharsimplename onecharsimplename

threeormorecharname ::= nonspace string nonspace
prefix ::= /* Any valid non-empty XML NCName */
string ::= char | string char
char ::= nonspace | ’ ’
nonspace ::= /* Any Unicode character except:

’/’, ’:’, ’[’, ’]’, ’*’, ’’’, ’"’, ’|’
or any whitespace character */

namePattern ::= disjunct {’|’ disjunct}
disjunct ::= part [’:’ part]
part ::= ’*’ | [’*’] fragment {’*’ fragment}[’*’]
fragment ::= char {char}

This small grammar is implemented in hand-written, very efficient parsers. The
path parser converts the input string into an abstract syntax tree of the form
displayed in figure 4.2.

Within the Path component further processing is done in PathFactory imple-
menting the commonly known factory pattern [GHJV95]. The abstract syntax
tree can be transformed into a NormalizedPath or, if applicable, into a Canon-
icalPath instance (see figure 4.7 in chapter 4.1.5). NormalizedPath instances
are guaranteed to contain only leading PathParentElements and no PathCur-
rentElements or trailing slashes. CanonicalPath instances are guaranteed to be
canonical, i.e. normalized and absolute. More on that in chapter 4.1.5.

4.1.2 Unique Node Identifier

A typical access pattern in a JCR is to acquire the root node and to navigate
via the DOM-like direct access methods through the workspace tree. These
navigation steps are typically not enclosed by a large transaction. Thus, it is
possible that the node acquired gets modified, moved, deleted, or substituted

2 JCR paths are used in direct access methods and differ from JCR queries (see chapter 4.1.4).

4.1. Level 1 25

Figure 4.2: Path: Abstract Syntax Tree (AST)

by a concurrent session. In order to correctly handle these situations the im-
plementation requires a mechanism to identify a node unambiguously across
transaction boundaries. Only with such an unique node identifier is it possible
to find the corresponding node to the local node reference in the database.

The first approach was to use the absolute canonical JCR Path. However, these
paths are not stable. As soon as same name siblings are allowed the index of
a location step can change. Even worse—the name of a node is not sufficient.
Name, index, and node type would need to be stored as unique identifier, since
another session could have substituted a node with same name but different
type. The check for equality would need to recurse up to the root node and
would be very expensive. In order to prevent this, the whole repository would
need to be locked which is not an option either. The identity check is a very
common operation. Therefore, this approach was discarded.

A second idea was to use XTC’s DeweyIDs [HH07]. A DeweyID is a stable
marker for a position in an XML document. Hence, same name siblings would
be no problem. In order to test the identity, a DeweyID comparison could serve
as necessary, yet insufficient, condition—a quick a-priori check. In a second,
more expensive step, names and node-types would still need to be checked along
the conanical path up to the root node. This approach was discarded for the
same reason as the latter one.

As a third approach referenceable nodes and their universal unique identifier

26 Chapter 4. Implementation

(UUID) property jcr:uuid were considered. Checking equality on a UUID is a
very quick operation. Additionally, this approach has another advantage. The
specification supports moving of nodes, thus changing their position. It turns
out that position, as part of a unique identifier, is actually not adequate. This
renders the first two approaches even more useless. This approach still has three
drawbacks. The first one is obvious. Not every node is referenceable. This could,
however, be enforced by the implementation and is legal by the specification.
The second is a minor performance issue. The jcr:uuid is a JCR property.
Depending on the mapping in XML the cost of retrieving the jcr:uuid value is
almost equal to the cost of retrieving a JCR property. The third drawback is
the KO criterion. During moving of a node the implementation must internally
rebuild a copy of the moved node. For the time of this operation there exist two
logically identical nodes with the same jcr:uuid which must not be.

The final solution is an internal XTC JCR specific UUID. In this implementation
every node in a workspace has an immutable UUID. The only drawback here
is the increased data volume. The advantages are that this concept is powerful
enough to handle relocation of nodes and that the check for equality is extremely
fast. From a system design standpoint this identifier is a nice solution since
it does not mix technical aspects of XTC, such as the DeweyID, with JCR
application specific aspects, such as a node id. At the same time does XTC
accelerate this concept transparently behind the scene. When stored as an
XML attribute (see chapter 4.1.3) XTC can leverage the power of an attribute
index that, very efficiently, finds the node according to its uuid.

4.1.3 Mapping to XML

The specification distinguishes between two XML views on a workspace, doc-
ument view and system view. The document view discards some information,
such as property arity. It is the format against which JCR XPath queries are
virtually run. The system view includes all externally visible information in the
repository. It is meant to be an exchange format between repositories.

Neither document nor system view appear to be well suited as storage for-
mat. The system view maintains the distinction between node and property as
sv:node and sv:property elements. This is really redundant information, since
the properties must have a jcr:type attribute, and nodes must never have a
jcr:type attribute. Furthermore, this format is not optimized for XPath query
syntax. The document view is problematic when it comes to handling multi-
valued properties. Multivalued property values are serialized as one string with
space as a delimiter. Obviously a regular space needs to be escaped. When
importing document view from other sources it is unclear whether the values
are escaped multivalue properties or not. More important, this mapping makes
answering XPath queries very problematic. XPath and JCR expect a predicate
to match a multivalue property when one value of the property matches.

For these reasons this implementation uses an optimized mapping, called “inter-
nal view”, as internal storage format. The format is a mixture of document and
system view. It combines the completeness of the system view and the readable
structure of the document view and adds some internal attributes to manage
the repository.

4.1. Level 1 27

Please see the specification for details on how system and document view are
mapped. Listing 4.2 shows an example of a workspace mapped to internal view.
The internal mapping is constructed as follows3:

1. The root of the workspace becomes the XML element jcr:root, analogous
to the system view.

2. Nodes are mapped to XML elements of the node’s name, similar to doc-
ument view. Each node element carries a xtcjcr:uuid attribute with a
unique identifier. This unique identifier helps to identify them over trans-
actional boundaries (see chapter 4.1.2). Additionally, a xtcjcr:definition
attribute carries encoded information on the node’s definition, i.e. the
declaring node type, the type name, and the required primary types.

3. Properties are mapped to child elements of their parent node element.
These elements also carry the name of the property. This name is identical
to the attribute name in document view. Yet, the property is represented
as an element just like in system view. Additionally, these elements have a
xtcjcr:type attribute. This attribute differs slightly from the system view’s
jcr:type attribute, that stores the type as string. xtcjcr:type stores the cor-
responding integer constant. Another attribute xtcjcr:multiValued carries
a boolean value. This value is true in case the property is a multivalued
property. The value of a property is mapped to a sv:value child element
with its value as text node, just like in system view. In case of a mul-
tivalued property the property can contain multiple such sv:value child
elements in order of the value array returned by Property.getValues().

4.1.4 Declarative Queries

The JCR XPath query language is a subset of XPath 2.0 [BBC+07]. The spec-
ification supplies a grammar that specifies the JCR query language which is
virtually interpreted on the document view XML representation of the Content
Repository. In order to process this language and run queries on XTC’s internal
XML representation of the workspace a query rewriting engine is required that
transforms the original query into a query on the internal format.

The query rewriting engine consists of a parser and rewriting stages. The parser
generates an abstract syntax tree. The rewriting stages transform this tree
into a tree that represents an XQuery statement, applicable to the underlying
workspace document in XTC.

The parser and the accompanying lexer were generated from the supplied gram-
mar using JavaCC4. In order to transform the abstract syntax tree a generic
transformation framework was implemented. Each rewriting stage (see fig-
ure 4.4) gets registered in the rewriter. For each query the rewriter applies
all stages in sequence of their registration. Each rewriting stages takes the ab-
stract syntax tree of the prior stage as input and returns the transformed syntax
tree.

3 The namespace xtcjcr is reservered to XTC JCR specific names.

4 https://javacc.dev.java.net

28 Chapter 4. Implementation

1 < j c r : r o o t x t c j c r : u u i d=”a6af9bd9−9c5b−4b5e−9d87−d47d8ea65ade”
x t c j c r : d e f i n i t i o n=” xtc j c r : r oo tDec l a r i ngType / x t c j c r : r o o t / [
x t c j c r : r o o t] ”>

2 <j c r :pr imaryType x t c j c r : t y p e=”7” xt c j c r :mu l t iVa lued=” f a l s e ”>
3 <s v : v a l u e>
4 x t c j c r : r o o t
5 </ sv : va l u e>
6 </ jcr :pr imaryType>
7 <j c r :mix inTypes x t c j c r : t y p e=”7” xt c j c r :mu l t iVa lued=” true ” />
8 <node0 x t c j c r : u u i d=”804b8272−cec2−44b7−b949−c47a4a3375e8 ”

x t c j c r : d e f i n i t i o n=” x t c j c r : r o o t / : ∗/ [n t :ba s e] ”>
9 <j c r :mix inTypes x t c j c r : t y p e=”7” xt c j c r :mu l t iVa lued=” true ”>

10 <s v : v a l u e>
11 m ix : r e f e r en c e ab l e
12 </ sv : va l u e>
13 </ jc r :mix inTypes>
14 <j c r :pr imaryType x t c j c r : t y p e=”7” xt c j c r :mu l t iVa lued=” f a l s e ”>
15 <s v : v a l u e>
16 nt :uns t ruc tu r ed
17 </ sv : va l u e>
18 </ jcr :pr imaryType>
19 < j c r : u u i d x t c j c r : t y p e=”1” xt c j c r :mu l t iVa lued=” f a l s e ”>
20 <s v : v a l u e>
21 c0b12360−8b0a−4cf7−9505−e67a05c3898f
22 </ sv : va l u e>
23 </ j c r : u u i d>
24 </node0>
25 </ j c r : r o o t>

Listing 4.2: XML mapped workspace with one referenceable node named node0

The rewriting stages are realized following the Visitor pattern [GHJV95] (see
figure 4.3). The Visitor pattern enables supplementary addition of operations
to classes which implementation cannot be changed. It is convenient to leave
the implementation of the abstract syntax tree classes untouched, since they are
generated via JavaCC. Instead of distributing the implementation of one rewrit-
ing stage into several classes of the abstract syntax tree, the implementation fits
coherently into a single rewriting stage class. The code for each rewriting rule
is nicely separated from all other rules.

The rewriter executes each stage as shown in figure 4.6. In the abstract syn-
tax tree all references to child nodes are of type MySimpleNode. In order to
determine the visitor’s visit5 method according to the real parameter type a
double-dispatch mechanism is used. As a default behavior for all visit methods
a depth-first traversal of the syntax tree is implemented via recursive descent in
the AbstractXPathAdapterVisitor.

5 See the figure 4.5 for an overview of all visitor methods.

4.1. Level 1 29

Figure 4.3: Visitor pattern applied on JavaCC generated classes

30 Chapter 4. Implementation

Figure 4.4: Concrete Rewriting Stages

4.1. Level 1 31

Figure 4.5: Generated visitor interface with signatures for all abstract syntax
tree classes.

Figure 4.6: Double dispatch mechanism in visitor pattern implementation.

32 Chapter 4. Implementation

The rewriting stages in order of application are:

RewriteColumnSpecifier JCR queries support column specifiers, selecting
the properties, to be returned in the table-like query result. This rewrite
rule determines all column specifiers, for later use in the result, and re-
moves them from the query.
Example: //cb:articles/@title
into //cb:articles

RewriteRelativePath Relative queries are always interpreted relative to the
repository’s root node. Therefore, all relative paths are transformed into
absolute paths.
Example: cb:pages/cb:articles/*[@author = ”sweety84“]
into: /jcr:root/cb:pages/cb:articles/*[@author = ”sweety84“]

RewriteNodeTest In order to ensure that the resulting XML elements are all
JCR nodes, and not elements representing a JCR property, a node test
predicate is appended to all node steps. The predicate test consists of a
test for the jcrxtc:uuid attribute which every node element must carry.
Example: //cb:articles/cb:pages
into //cb:articles[@jcrxtc:uuid]/cb:pages[@xtcjcr:uuid]

RewriteElementTest The type test in form of element(name,type) is rewrit-
ten into a predicate on node step name. The predicate consists of a list
of ”or“ concatenated string comparisons of jcr:primaryType child against
all subtypes of type.
Example: //element(abc,nt:base)
into //abc[jcr:primaryType = ”nt:base” or jcr:primaryType=”...”]

RewritePropertyExistenceTest JCR properties are internally stored as XML
child elements. Each such element has a xtcjcr:type property storing the
property type as an integer. When a predicate tests property existence
the predicate has to be rewritten from [@$propertyName$] into [$proper-
tyName$/@xtcjcr:type]6.

RewritePropertyTest JCR properties are internally stored as XML child el-
ements. Each element representing a JCR property contains a list of
sv:value child elements. When a property value is compared to a literal in
a predicate, this rewriting rule transforms @$propertyName$ into $prop-
ertyName$/sv:value. For multi valued properties the semantic of such a
comparison is: at least one value in the list must match. The transforma-
tion preserves this semantic.

RewriteXPathToXQuery The XPath query and the order by clause are
translated into an XQuery FLWOR7 expression.

6 Each child element contains itself a list of sv:value child elements. The ”sv:value“ child
element must not be used to test property existence, since multi valued properties may
exist with a list of empty values.

7 FOR LET WHERE ORDERBY RETURN (FLWOR)

4.1. Level 1 33

RewriteJcrScore The order by clause in a JCR query supports a function
called jcr:score(). The semantics of this function is left to the implemen-
tation. Since XTC does not support a fuzzy matching, a match score
cannot be computed. Thus, this function must be ignored in the query.
Example: //cb:articles order by jcr:score() ascending
into //cb:articles order by ascending

The specification provides EBNF grammars, defining the correct syntax of JCR
queries.

ExprComment ::= "(:" (ExprCommentContent | ExprComment)* ":)"
ExprCommentContent ::= Char
IntegerLiteral ::= Digits
DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)
DoubleLiteral ::= (("." Digits) | (Digits ("." [0-9]*)?)) ("e" | "E")

("+" | "-")? Digits
StringLiteral ::= (’"’ ((’"’ ’"’) | [^"])* ’"’) | ("’" (("’" "’") | [^’])* "’")
Digits ::= [0-9]+
NCName ::= [http://www.w3.org/TR/REC-xml-names/#NT-NCName]
QName ::= [http://www.w3.org/TR/REC-xml-names/#NT-QName]
Char ::= [http://www.w3.org/TR/REC-xml#NT-Char]
XPath ::= Expr?
Expr ::= ExprSingle
ExprSingle ::= OrExpr
OrExpr ::= AndExpr ("or" AndExpr)*
AndExpr ::= InstanceofExpr ("and" InstanceofExpr)*
InstanceofExpr ::= TreatExpr
TreatExpr ::= CastableExpr
CastableExpr ::= CastExpr
CastExpr ::= ComparisonExpr
ComparisonExpr ::= RangeExpr ((GeneralComp | GeneralComp) RangeExpr)?
RangeExpr ::= AdditiveExpr
AdditiveExpr ::= MultiplicativeExpr (("+" | "-") MultiplicativeExpr)*
MultiplicativeExpr ::= UnaryExpr
UnaryExpr ::= ("-" | "+")* UnionExpr
UnionExpr ::= IntersectExceptExpr (("union" | "|") IntersectExceptExpr)*
/* Note that support for a UnionExpr of attributes in the
last location step is optional*/

IntersectExceptExpr ::= ValueExpr
ValueExpr ::= PathExpr
PathExpr ::= ("/" RelativePathExpr?)

| ("//" RelativePathExpr)
| RelativePathExpr

RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*
StepExpr ::= AxisStep | FilterStep
AxisStep ::= (ForwardStep) Predicates
FilterStep ::= PrimaryExpr Predicates
ContextItemExpr ::= "."
PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr |

ContextItemExpr | FunctionCall
Predicates ::= ("[" Expr "]")*
GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="
ForwardStep ::= AbbrevForwardStep
AbbrevForwardStep ::= "@"? NodeTest
NodeTest ::= KindTest | NameTest
NameTest ::= QName
Wildcard ::= "*" | <NCName ":" "*"> | <"*" ":" NCName>
Literal ::= NumericLiteral | StringLiteral
NumericLiteral ::= IntegerLiteral | DecimalLiteral |

DoubleLiteral
ParenthesizedExpr ::= "(" Expr? ")"
FunctionCall ::= <QName "("> (ExprSingle ("," ExprSingle)*)? ")"
KindTest ::= ElementTest
ElementTest ::= <"element" "(">

| (ElementNameOrWildcard (","
TypeNameOrWildcard?))? ")"

ElementName ::= QName
AttributeName ::= QName
TypeName ::= QName

34 Chapter 4. Implementation

ElementNameOrWildcard ::= ElementName | "*"
TypeNameOrWildcard ::= TypeName | "*"
JCRXPathExpr ::= (XPath OrderByClause?)?
OrderByClause ::= "order by" OrderSpecList
OrderSpecList ::= OrderSpec ("," OrderSpec)*
OrderSpec ::= ("@" AttributeName OrderModifier) |

(ScoreFunction OrderModifer)
OrderModifier ::= ("ascending" | "descending")?
ScoreFunction ::= "jcr:score(" ParamList ")"
ParamList ::= /* 0..* comma separated parameters */

4.1. Level 1 35

Figure 4.7: Path system: PathFactory and assertion types.

4.1.5 Type-level Assertion

In general, public methods that can be called from an unknown context, such
as a JCR client, must perform a number of validation steps each time they are
called. Typically this includes a sanity check of the current context and input
parameter validation against the specification. For methods that are called from
within the implementation only, the context is known and the methods can be
designed by contract, omitting these checks. This chapter presents an elegant
approach that uses Java’s type system to explicitly enforce assertions on the
input parameters statically, without runtime overhead, in a design by contract
situation. This idea is inspired by the “Trusted Kernel” approach demonstrated
on functional programming languages [KS07].

Such a situation arises for example when a canonical JCR Path value is expected
as an input value. A naive implementation could design a method to accept
a String value as a parameter. The type String does not even ensure that
the character sequence is a valid path, nor does it ensure that the path is
canonical. A better approach could be to encapsulate a parsed path in a class
and equip the class with boolean properties: isNormalized(), isCanonical(), etc.
However, these properties would still need to be checked at several places at
runtime. Instead, the requirement on the input parameter can be made explicit
by expecting a value of a specialized type: CanonicalPath (see figure 4.7).

Concrete path instances are created using an implementation of the factory pat-
tern [GHJV95]. All path parsing and assertion checking is done in the factory
and within the Path component. Finally, NormalizedPath instances are guar-
anteed to have only leading .. and no . or trailing /. CanonicalPath instances
are guaranteed to be canonical, i.e. normalized and absolute. Another elegant
effect of using these types (see figure 4.7) is that part of the post condition of
a method can be manifested in the returned type. For example the following
method signature does guarantee that the returned path is canonical.

The same approach is followed for the implementation of JCR names and name
patterns.

36 Chapter 4. Implementation

1 public CanonicalPath createCommonAncestorPath (
CanonicalPath cSourcePath , CanonicalPath cDestPath) ;

Listing 4.3: Post condition manifested in return type.

4.2 Level 2

The implementation of a level 2 repository focuses on the development of a
namespace registry and operations on the transient repository layer. In general,
read write functionality also imposes the need for transaction management.
These topics are dealt with in this chapter.

Figure 4.8 shows the design and interconnections of the XTC JCR components.
The transactional behavior is controlled via the TransactionManager interface
from within the application components in JCR 170 Impl. The PersistenceM-
anager interface is operated from the JCR2XML layer.

4.2.1 Namespace Registry

A JCR contains a namespace system modeled analogously to XML’s names-
paces. The namespace registry maps shorthand prefixes to namespaces. Names-
paces are URIs. All JCR names may have a prefix, delimited by a single colon
character indicating their namespace. This way naming collisions can be min-
imized. This fact is exploited by the specification and by this implementation
in that certain namespaces are reserved to JCR and XTC JCR. All reserved
namespaces are listed in table 4.1.

Prefix URI Namespace Description

jcr http://www.jcp.org/jcr/1.0 namespace for items defined by
built-in node types

nt http://www.jcp.org/jcr/nt/1.0 namespace for built-in primary
node types

mix http://www.jcp.org/jcr/mix/1.0 namespace for built-in mixin node
types

xml http://www.w3.org/XML/1998/
namespace

namespaces that must not be rede-
fined and should not be used (read
http://www.w3.org/TR/REC-
xml-names/#ns-qualnames)

(empty prefix and uri) default namespace (empty uri)
xmlns http://www.w3.org/2000/xmlns prefix to declare namespaces
sv http://www.jcp.org/jcr/sv/1.0 namespace used in the system view

XML serialization format
xsd http://www.w3.org/2001/

XMLSchema
XML schema namespace

xsi http://www.w3.org/2001/
XMLSchema-instance

XML schema instance namespace

xtcjcr http://wwwlgis.informatik.uni-
kl.de/jcr/xtcjcr/1.0

namespace used in the internal
view XML serialization format

Table 4.1: Reserved namespaces in XTC JCR

4.2. Level 2 37

Neither the prefix nor the URI of a reserved namespace may be redefined. Every
Level 1 repository must contain a namespace registry and support jcr, nt, mix,
xml and the empty prefix. A Level 2 repository must futhermore support the
registration of custom namespaces.

The namespace registry is global to all workspaces in a repository. XTC does
not provide special features to handle namespaces. Hence, this feature was
implemented in a straight forward fashion. All prefix to URI mappings are
maintained in an XML file named namespaceRegistry.xml on the XTC server.
All sessions query this central resource and resolve prefixes to URIs and vice
versa. However, as an optimization, the reserved mappings are kept as con-
stants in the code and custom namespace mappings are cached for the time of
a transaction to avoid unnecessary and expensive network traffic.

Listing 4.4 shows two imaginary custom namespaces.

1 <?xml version=” 1 .0 ”?>
2 <r e g i s t r y>
3 <namespace p r e f i x=”abc” u r i=” ht tp : // example . com/abc”/>
4 <namespace p r e f i x=” de f ” u r i=” ht tp : // example . com/ def ”/>
5 </ r e g i s t r y>

Listing 4.4: namespaceRegistry.xml

It is not supported to remove a URI from the namespace registry, since it cannot
be made sure that this URI is not in use in another session. For example unreg-
isterNamespace(“abc”) would result in an exception. This behavior corresponds
to the behavior of the reference implementation. For the same reason it is not
possible to remap an existing prefix to a new URI, since this would incorporate
removing the old URI from the registry.

It is still possible to remap another prefix to an existing URI. For example
registerNamespace(“hij”,“http://example.com/abc”) would succeed and result
in the mapping shown in listing 4.5.

1 <?xml version=” 1 .0 ”?>
2 <r e g i s t r y>
3 <namespace p r e f i x=” h i j ” u r i=” ht tp : // example . com/abc”/>
4 <namespace p r e f i x=” de f ” u r i=” ht tp : // example . com/ def ” />
5 </ r e g i s t r y>

Listing 4.5: namespaceRegistry.xml after registerNamespace operation

4.2.2 Transient Repository

The specification stipulates a transient and a persistent layer. Changes in a
session are transient, meaning invisible to other sessions. They stay visible
to the current session only up to the point in time when they are saved via
Item.save() or Session.save(). A save on an item persists all the changes on this
item and the underlying subtree. A save on the session persists all changes in
the workspace and is equivalent to a save on the root node (see chapter 2.4).

As a theoretical basis a state machine for each item’s state was developed.
Figure 4.9 shows how an item can have a representation in either the transient

38 Chapter 4. Implementation

repository or in the persistent repository. There are also situations where an
item can have a persistent and a transient representation simultaneously.

During all operations, such as retrieval of child items, retrieval of item paths, or
addition, removal, or modification of items, all transient changes in the current
session must be respected as if they were already applied to the repository. This
renders attempts to map retrieval operations directly to XTC impossible, since
transient and persistent items need to be merged. For example retrieval of a
node’s JCR path can only be answered from within the session. Nodes along the
path could be transient or same name sibling nodes could have been inserted or
removed in the transient repository increasing or decreasing indexes along the
path.

The implementation is designed to manage transient representations of items in
the TransientRepository instance of a session. This object contains two Java
maps: transientNodes and transientProperties. These maps can be thought
of as partial functions.

tansientNodes : NodeId → NodeInternal

transientProperties : NodeId×Name → PropertyInternal

As invariants for transientNodes and transientProperties the implementation
guarantees:

∀n ∈ NodeInternal :
n.itemState ∈ {CHANGED,NEW, DESTROY ED}
⇔ n ∈ transientNodes(NodeId)

∀p ∈ PropertyInternal :
p.itemState ∈ {CHANGED,NEW, DESTROY ED}
⇔ p ∈ transientProperties(NodeId,Name)

This means that all nodes referenced in the map are valid transient nodes and
all transient nodes are unexceptionally registered in the map. The same holds
for JCR properties. Thanks to the bijective mapping between NodeId and
NodeInternal it is simple and efficient to find out whether a persistent node
with a certain nId ∈ NodeId has a transient representation. It only has to be
tested whether there exists a mapping so that transientNodes(nId) is defined.
If this is the case the transient version of the node shadowing the persistent
node can directly be retrieved from the map: transientNodes(nId).

For the implementation of transientNodes a java.util.LinkedHashMap was cho-
sen. This implementation of the Map interface is even more powerful than the
notion of a function as it is able to preserve insertion order. This is neces-
sary to replay all transient operations in correct order on a subtree save. The
use of HashMap requires an efficient implementation of the NodeId.hashCode()
method. For that reason does every NodeId instance precompute the hash code
during construction and merely return that constant value on hashCode() invo-
cation.

4.2. Level 2 39

Node.addNode

New nodes can only be created by adding them as new child nodes under an
existing (transient or persistent) node. The root node does always exist. The
implementation ensures that the root node cannot be deleted.

1 // JSR 170 Node i n t e r f a c e
2 package javax . j c r ;
3 public interface Node {
4 public Node addNode (St r ing re lPath) throws . . . ;
5 public Node addNode (St r ing relPath , S t r ing

primaryNodeTypeName) throws . . .
6 . . .
7 }

Listing 4.6: JSR 170 addNode methods

The JCR node interface contains two addNode signatures (see listing 4.6). The
relPath parameter in both methods can actually be a relative path to the parent
node of the node to be added, appended with the name desired for the new node.
An index at the last step is not allowed. New nodes are always appended last
to the list of child nodes.

The first method is actually equivalent to calling the second method with null as
second parameter. The implementation maps each method call in this fashion
to the second method signature.

In case that the primaryNodeTypeName is null the implementation tries to
automatically determine the appropriate node type by looking at the parent’s
definition and the name of the new node. In cases where a primaryNodeType-
Name is provided it is checked whether this nodetype is allowed to be applied.

Once a new Node instance is created it is registered in the transientNodes map
with item state NEW.

In order to manage the parent child relation for NEW nodes, each node main-
tains a list of all NEW child nodes. New child nodes are added to that list in
creation order. Since this list must be modified on an addNode operation, the
parent node is added to transientNodes having item state CHANGED.

Node.setProperty

1 // JSR 170 Node i n t e r f a c e
2 package javax . j c r ;
3 public interface Node {
4 setProper ty (S t r ing name , Value value , int type) throws

. . .
5 . . .
6 }

Listing 4.7: JSR 170 setProperty methods

40 Chapter 4. Implementation

JCR properties are designed to be typed. The JCR node interface contains
14 setProperty signatures. They provide convenient ways of setting property
values of different property types. If a value of a different type is provided
a best-effort conversion is conducted or an exception is thrown. The basic
procedure, which is common to all setProperty methods, starts with retrieving
the property, if it exists, or creating a new property of the specified type and
name. In a second step the application of the new value is delegated to the
Property.setValue method described in chapter 4.2.2.

If the parent node of the property is not already a transient node, it is regis-
tered in the transientNodes under item state CHANGED. If the property did
not exist before, it gets registered in transientProperties under the item state
NEW.

Property.setValue

After setting the value of property the implementation makes sure the property
is transient. In case of a null value the property gets marked as DESTROYED.
In the other case the property stays in state NEW or turns from state PER-
SISTENT to CHANGED. Finally, the implementation ensures that the parent
node of the property is transient and that the invariants for transientNodes
and transientProperties hold.

Item.remove

The effect of removing an item depends on whether the item has a persistent
representation or not. In cases where the item only has a transient represen-
tation, when item state equals NEW, all traces of that item are removed from
the transient repository, and the item is treated as if had never existed. The
item gets marked as INVALIDATED in order to inhibit any further operation
on that instance.

Items that do have a persistent representation are set to item state DESTROYED.
When removing a node it is made sure that this destroyed node is registered
in transientNodes. When removing a property that has a persistent represen-
tation it is made sure that the parent node, which must have a persistent rep-
resentation as well, is registered in transientNodes in item state CHANGED.
The property itself is registered in transientProperties.

Node.orderBefore

The specification allows reordering of child nodes. The method Node.orderBefore
allows to place a child node in front of another child node (called orderBefore
move). When a null value is provided instead of a destination name the child
node is moved to the end of the child node list.

The transientNodes map preserves insertion order, but it cannot be used to
manage child node order.

OrderBefore moves are not commutative. Depending on the order of how the
orderBefore moves are applied different permutations can be produced. Each

4.2. Level 2 41

node therefore keeps a history of orderBefore moves on its children. As soon as a
orderBefore operation is applied the parent node changes into a transient state.
Whenever child nodes of such a node are retrieved and on save the orderBefore
history is replayed and the child node list is sorted according to these moves.

The addNode operation always appends new nodes last. All orderBefore entries
in the history prior to that addition stay intact, but all histroy entries that move
a child node to the end of the list must be rewritten to move the node in front
of the new node.

The history must be rewritten as well when a child node gets removed. In
this case all entries having the removed node as a destination node must be
redirected to the next child node in the list.

Other transient operations

All other transient operations can be performed by delegation to the methods
above. These methods are:

• Node: addMixin, removeMixin (see chapter 4.2.3)

• Session: move , importXML (see chapter 4.2.4)

• Query : storeAsNode

Session.save & Item.save

Save on a session is equivalent to calling save on the root node. In general
save can be called on any item. This item must not be of state INVALI-
DATED, NEW, or DESTROYED or an exception will be thrown. Thus, states
CHANGED and PERSISTENT are allowed. If the item is a property the saving
of the property’s value(s) is performed and the property’s transient state reverts
to PERSISTENT. The other case (the item is a node) is much more compli-
cated. In this case all changes in the underlying subtree must be persisted. The
implementations does this in the following steps:

1. When a node gets moved it is internally represented as removing the node
at its old position and inserting a copy of that node in the new position.
A save on either of these two internal nodes must include the fellow node.
Thus, the save must be called on a common ancestor. This implementation
calls this the fellowNode constraint. In this first step the program finds all
transient nodes affected by this save and checks the fellowNodes constraint.

2. transientNodes and transientProperties are cleaned from all transient
nodes and properties that belong to subtrees of DESTROYED nodes af-
fected by this save. While doing so a referential integrity check is per-
formed. This is an expensive operation that finds all referenceable nodes
in the subtree of each DESTROYED node.

3. All transient nodes are traversed in insertion order and changes are per-
sisted. It is noteworthy that there exist different methods of inserting new
nodes. New subtrees are inserted as a whole in form of serialized XML.
Changes are applied via DOM methods.

42 Chapter 4. Implementation

4. All orderBefore histories of nodes of node state CHANGED are replayed
and the order of child nodes is changed in XTC. The orderBefore history
of NEW nodes must not be replayed here since it was already respected
in the last step when the child nodes were inserted as part of the subtree
serialization.

5. In the last step all transient nodes and properties affected by this save
operation are removed form the transient maps.

4.2.3 Node Types

The JSR 170 specification defines a node type system in chapter 6.7 that must
support single inheritance. Please see the specification for a detailed explanation
on the type system.

The supported standard node types are configured in an XML file8 taken from
the reference implementation. In order to process this file an XML Schema9 was
reverse engineered that describes the structure of the node type configuration
file. This implementation takes advantage of Java Architecture for XML Binding
(JAXB)10 technology, specified in JSR 222 [Kaw06]. JAXB is part of Java SE
version 1.6. Using JAXB Java classes were generated using the schema file.
These classes automatically unmarshal the node definitions in XML. Using some
“glue code” the generated bindings were used to implement the required JCR
type system.

1 // JSR 170 Node i n t e r f a c e
2 package javax . j c r ;
3 public interface Node {
4 public void addMixin (S t r ing mixinName) throws . . .
5 public void removeMixin (S t r ing mixinName) throws . . .
6 . . .
7 }

Listing 4.8: JSR 170 mixin methods

Mixins are types that can be added and removed after creation. A node can
have multiple mixin types. Node.addMixin and Node.removeMixin (see list-
ing 4.8) are internally mapped to the multivalued property jcr:mixinTypes. So
genreally no special treatment is required. However, there exists hardcoded be-
havior for mixin type mix:referenceable, since here UUIDs must be genereated
automatically.

4.2.4 Import

A Level 2 repository must support import of serialized content in form of plain
XML or SAX Parser events. Internally plain XML input is parsed so the imple-

8 see file builtin nodetypes.xml

9 see file nodetypes.xsd

10https://jaxb.dev.java.net/

4.2. Level 2 43

mentation only has to deal with the generated SAX Parser events as input. Two
formats are supported: System View and Document View import. The imple-
mentation automatically determines the appropriate import mechanism. The
software is implemented in a fashion utilizing the Strategy Pattern [GHJV95],
i.e. once the import format is detected all actions are delegated to the appro-
priate strategy (systemview or documentview importer).

The systemview importer is a state machine, reacting on events during parsing
of the imported document. The state graph is illustrated in figure 4.10. This
automat is implemented using the State Pattern [GHJV95]. The reason why
there are six states instead of only three is that a node can only be created
once it is known where it is supposed to be created at. In the specification
several behaviors of how to handle duplicated UUIDs are specified. To handle
these behaviors the UUID of a referenceable node must be known prior to its
creation. The state machine needs to “wait” for the jcr:uuid property which
comes at third position in each serialized node in system view import format.

44 Chapter 4. Implementation

Figure 4.8: XTC JCR Level 2 Design

4.2. Level 2 45

Figure 4.9: Item Lifecycle

Figure 4.10: States of the systemview importer

46 Chapter 4. Implementation

Figure 4.11: JTA UserTransaction implementation in XTC JCR

4.3 Transactions

The way the JCR interface is designed synchronization problems can arise when
the repository is modified concurrently. Lost Update and Inconsistent Read are
possible. In order to avoid these problems the specification proposes transaction
support as an optional feature. Instead of specifying another transaction API
the JSR 170 delegates to the Java Transaction API (JTA) [CM02] specifica-
tion. JTA stipulates a UserTransaction interface that allows for user managed
transactions, i.e. the client application controls the transactional behavior. It,
furthermore, specifies how distributed transactions are handled in a container
managed environment, such as a Java enterprise application server.

XTC does not yet provide a JTA interface. The current driver interface supports
begin, commit, and rollback of a transaction. Yet it lacks a prepare method
which would be vital to implement a two phase commit protocol as specified for
distributed transactions. Therefore, only the simpler UserTransaction interface
(see figure 4.11) is implemented. This implementation itself is straight forward.
The required methods are delegated directly to the driver interface.

4.4 Versioning

Versioning is an optional feature in the JSR 170 specification. The Versioning
component in a JCR allows state changes of workspace nodes to be recorded as
versions in a common repository version storage. At a later point, JCR users can
browse and restore these versions. The versioning system is modeled after the
Workspace Versioning and Configuration Management (WVCM) API defined
by JSR 147 [Nue06, Cle07].

The component in a repository where all version data is stored is called ver-
sion storage. Each versionable node, determined by the presence of mixin type
mix:versionable, has a versionHistory in the version storage under which all

4.4. Versioning 47

V V

V V

V

V

V

VH

VH: version history
V: version

successor relation
parent-child relation

Figure 4.12: Version history of one node and its successor relation

versions of this node are stored. There is only one central version storage in-
stance for all workspaces. The reason why the version storage is common to all
workspaces becomes apparent in repositories that support multiple workspaces,
like XTC JCR. Nodes can have multiple representations in different workspaces,
affiliated by a common UUID. These representations represent branched ver-
sions of the same node, and thus they share a common version history across
workspaces.

Among these versions predecessor and successor relations are kept. These rela-
tions form acyclic directed graphs (see figure 4.12).

The versioning system introduces a checkout / checkin mechanism. Versionable
nodes and their non-versionable subtree11 have read-only protection until they
are checked out. Once all modifications on a node are made persistent via a save
call, the client calls checkin and a new version is created. During checkin the
read-only state is automatically restored. Note that the read-only mechanism
inhibits concurrent modifications on a node within a workspace.

What is stored in a version depends on the node type of the versionable node and
its non-versionable subtree. More precisely, every child node and property def-
inition specifies the version behavior via the OnParentVersion attribute. This
attribute determines the behavior when the parent node is checked in. The
attribute value is one of the following constants (see [Nue06] chap. 8.2.11) :

COPY This and all descendent items are copied to the version storage.

VERSION For properties and non-versionable child nodes VERSION has the
same effect as COPY. For a versionable child node a reference to its version
history is stored and recursion in the subtree stops.

11A versionable node can have versionable and non-versionable descendants. All versionable
descendants have their own versionHistory and are handled individually by the versioning
system. Thus, for each versionable node the versioning system must manage the non-
versionable part of its subtree.

48 Chapter 4. Implementation

INITIALIZE A new item will be created in the version. This is ignored in
the reference implementation and XTC JCR. (same as IGNORE)

COMPUTE A new item will be computed in the version. This is ignored in
the reference implementation and XTC JCR. (same as IGNORE)

IGNORE The item is simply skipped and not versioned.

ABORT On presents of such a child item checkin is aborted.

The use of VERSION results in incremental versioning, while COPY creates
full and redundant copies.

The version storage is modeled as special JCR workspace, called versionStor-
age. This enables reuse of the type system, the query engine, and workspace
mappings.

Each workspace session has access to an exclusive versionStorage session which
is instantiated in parallel. However, the second session runs in the same per-
sistence context, sharing the same XTC connection (PersitenceManager) and
XTC transaction (TransactionManger).

The version storage must be accessible from each workspace under
/jcr:system/jcr:versionStorage. The direct access methods and query processing
delegate transparently to the central versionStorage workspace when needed.

The system is equipped with a Versioning component. This component han-
dles the “direct to workspace“ checkout / checkin mechanism and implements
the read-only protection (isCheckedOut) for versioned nodes and their non-
versionable subtree.

By definition of the mixin type mix:versionable each versionable node has a
property isCheckedOut. The versioning implementation reads and sets this prop-
erty directly on the workspace, without going through the transient layer. When
this flag is set to false no modification is performed on this node. Protected
by an XTC transaction this flag realizes the global read-only protection. In
this case, the specification also requires all non-versionable descendants to be
read-only. For each modification on a non-versionable node the read-only check
recurses up the path towards the root node. The path must be checked for the
next versionable parent and its isCheckedOut property. This sounds expensive,
but in practice the following optimization rule applies.

If this check encounters a modified parent P the check can terminate, no matter
if P is versionable or not. This is why: If there is no versionable node on the
root path, this optimization is correct. No read-only protection applies at all.
If there exists a versionable node on the root path, let V be the first versionable
parent of P . P is equal to V or P is in the subtree of V . In both cases V must
have been checked out prior to P ’s modification and cannot yet be checked in,
since prior to a checkin all modifications in the subtree must be persisted.

Up to now the implementation supports read-only protection, creation of ver-
sions, and browsing of the version graph. Restore and several cross workspace
methods, such as merge, are not implemented yet, due to the lack of time.

Chapter 5

Evaluation

5.1 Demo Applications

Two demo applications were developed. Prior to implementation of XTC JCR
they were built using the reference implementation as a JCR back-end. XTC
JCR was then used as a drop in replacement for Jackrabbit.

5.1.1 Deployment on Glassfish

Web applications are one important field of application for Java Content Repos-
itories. It is therefore natural that both demo applications are web applications
as well. In the test setup these applications are run on the open-source appli-
cation server Glassfish1.

The reference implementation, Jackrabbit, and XTC JCR are registered as JNDI
resources. This way the JCR back-end of the demo applications can be switched
transparently.

XTC JCR only has very few external dependencies. In order to run it on the
server the following libraries must be put into the application server’s classpath.2

PWD Common.jar Common utilities for String manipulation.

xercesImpl.jar Contains required XMLChar class.

XTCdriver.jar The XTC driver.

jcr-1.0.jar The JCR API.

XTC JCR.jar The XTC JCR implementation.

For instructions on how to deploy Jackrabbit please see the online manual at
the project’s official website3.

1 https://glassfish.dev.java.net/

2 On Linux it is sufficient to symlink these jar files into the domains library folder.

3 http://jackrabbit.apache.org/

49

50 Chapter 5. Evaluation

Figure 5.1: Screenshot of the Blog Demo Application (using JBoss Seam)

Figure 5.2: JSF page flow of Blog Demo Application

5.2. Performance 51

Figure 5.3: Screenshot of the Wiki Demo Application (using JBoss Seam)

The first demo application is a simple blogging system (see figure 5.1). It allows
the blogger to publish an article. Other users are able to comment on the article
(see figure 5.2). This application demonstates the basic Level 1 and Level 2
capabilities of a Java Content Repository : browsing and editing content. The
second demo application is a simple form of a wiki system (see figure 5.3).
It allows articles to be created and edited, as well. Its main purpose is to
demonstrate a JCR’s optional feature ”Versioning“. For each page a version
history is kept—a central feature in a wiki system. Via the version history
(see screenshot 5.3) users can access all past versions of an article, a protection
against intentional or non-intentional fraud.

5.2 Performance

In order to evaluate performance, XTC JCR was benchmarked against Jackrab-
bit RI version 1.4. XTC JCR is designed to run on distributed clients accessing
XTC as the central database. The reference implementation supports different
deployment models. In order to obtain fair results, the reference JCR must also
support multiple distributed clients. Deployment model number three, ”Repos-
itory Server“4, is the only feasible model in this context. A Model 3 deployment
runs Jackrabbit’s repository instance as a standalone server. All clients connect
to the server via network (RMI, WebDav, etc.).

The test environment includes XTC and XTC JCR on the one hand, a Jackrab-
bit RMI server backed by a PostgreSQL5 database on the other.

The tests were designed to investigate the performance of content modifica-

4 The other Jackrabbit deployment models are: ”Application Bundle“ (Model 1), ”Shared
J2EE Resource“ (Model 2)

5 http://www.postgresql.org

52 Chapter 5. Evaluation

Figure 5.4: addNode100 in Netbeans Profiler

tion, direct data access, and declarative data retrieval. Each test was run five
times. The results presented here are the averaged test duration measurements.
A Lenovo T606 Laptop computer running Java7 version 1.6 served as testing
platform.

The first benchmarking results were really disappointing 8. Netbeans integrated
profiler helped to find the bottlenecks in the XTC JCR code and to optimize
the system.

Optimization Description

No Opt. Initial version without optimization.
Cache NS Map Caching of namespaces (prefix to URI mapping) in each

transaction.
Cache WS & NS
Doc

Caching of workspace and namespace DOM document in
each transaction.

Long TA Long transaction for the time of addNode operation.
Div. Opt. Several small optimizations in methods: getPrefix, getURI,

and hasProperty.
XTC Caching Meta data caching in XTC enabled.
NodeTypeManager
Opt.

Item types are constant in JSR 170. Computed result (e.g.
matching node types) can be cached.

Table 5.1: Optimizations for data modifications.

One major problem is Remote Method Invocation (RMI) overhead. XTC JCR
runs in the client JVM. Performance suffers a great deal when many RMI calls
to the XTC system are required in order to fulfill the client’s request. Each
RMI call comes with an additional overhead for transmitting data over the
network and is significantly slower than a local method call. The way JSR 170

6 Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz, 2GB RAM; x86 64 Linux 2.6.25-gentoo-r5

7 Java(TM) SE Runtime Environment (build 1.6.0 07-b06) Java HotSpot(TM) 64-Bit Server
VM (build 10.0-b23, mixed mode)

8 26 seconds (!) for the first run of test addNode100, see 5.5

5.2. Performance 53

No Opt.
Cache NS Map

Cache WS & NS Doc
Long TA

Div. Opt.
XTC Caching

NodeTypeManager Opt.

0

5

10

15

20

25

30

26

12
10,9

9,6 9,3

6,9
6,3

Benchmark: addNodes100

optimization

d
u

ra
tio

n
 [s

]

Figure 5.5: Optimization steps for benchmark addNode100 (persisting 100 new
nodes under a persistent node)

is designed, some of these remote calls cannot be avoided. JCR namespaces
are potentially instable, due to the ability to remap namespaces. Only for the
time of a transaction can the system assume that the namespace mapping is
constant. However, JCR operations are not required to be enclosed by a global
transaction. Remapping of a namespace prefix is a very uncommon operation,
but still, in the worst case XTC JCR must query the database for the current
namespace mapping in each JCR operation.

A series of optimization steps (see figure 5.5 and explanation in table 5.1) helped
to alleviate this effect. Network latency is a typical problem in distributed
applications. The typical solution is caching. Caching of namespace mappings
and DOM documents (version storage document, workspace document, and
namespace document) for the time of one transaction allowed to reduce the
time for data modification tests by over 75%.

Further optimizations in the code target the minimization of network traffic.
When designing interfaces for remote operation, it is good practice to combine
all required data as parameters in a specially designed method signature, over
setting parameters via several invocations of more general remote methods.
The same holds for the return type of the remote operation. It is more efficient
to transfer the required data at once than calling simple getter-methods on
a remote result object. However, this requires the request to be specifically
tailored to the required information.

The early XTC JCR implementation used XQuery statements to retrieve DOM
nodes. Retrieving a child node or an attribute value of a result node requires
RMI calls again. During profiling it turned out that it is more efficient to tailor
the XQuery statement specifically to the required data. Fetching the result as
serialized string is faster than using DOM operations on the result nodes.

As a third improvement DOM queries were substituted with calls to a brand

54 Chapter 5. Evaluation

new API of the XTC system. Java Specification Request 225 [Mel07] defines
the XQuery API for Java (XQJ). XTC supports an XQJ-like interface which
allows to avoid parsing of the result string.

The getPrefix method of the namespace registry serves as a good example. The
first version (see simplified code in listing 5.1) finds the DOM node representing
the prefix to URI mapping in the namespace registry document. In a second
RMI call the prefix attribute value is returned. The improved version (see
simplified code in listing 5.2) uses a FLWOR XQuery statement to return the
required data directly.

1 St r ing query = ”doc (\” namespaceRegistry . xml\”) / r e g i s t r y /
namespace [@uri=\”” + ur i + ” \ ”] [1] ” ;

2 // f i r s t RMI c a l l
3 Node node = this . pers i s tenceManager . getXQueryFirstMatch (

this . getNamespaceRegistryDocument () , query) ;
4
5 i f (node == null) return null ;
6 // second RMI c a l l
7 return this . pers i s tenceManager . getAttr ibuteValue (node ,

PREFIX) ;

Listing 5.1: getPrefix(String uri) first version (DOM)

1 St r ing query = ” f o r $v in doc (\” namespaceRegistry . xml\”) /
r e g i s t r y /namespace [@uri=\””+ur i+” \ ”] [1] / @pref ix re turn
<n p r e f i x =\”{ fn : data ($v)}\”/>” ;

2
3 Sequence sequence = this . pers i s tenceManager .

getXQueryJSR225 (query) ;
4
5 for (Item i : sequence) {
6 i f (i . getType () == ItemType .NODETYPE ATTRIBUTE) {
7 return i . g e tS t r i ng () ;
8 }
9 }

10 return null ;

Listing 5.2: getPrefix(String uri) improved version (XQJ)

The getPrefix and getURI methods were accelerated by 70% from 17.85ms to
5.23ms on average. In this fashion the implementations of the workspace and
namespace mapping layers were revised. Queries were rewritten to take advan-
tage of XQJ. XTC’s query processor was extended by functions fn:node-name
and jcr:depth to allow faster computation in the server with less network over-
head. As a result the getNodeByNodeId query was accelerated by 82% from
101ms to 18ms on average.

5.2. Performance 55

XTC JCR RI

0

1000

2000

3000

4000

5000

6000

7000

addNode100

save()
addNode()

d
u

ra
tio

n
 [m

s
]

XTC JCR RI

0

1000

2000

3000

4000

5000

6000

7000

addNode100DefNS

save()
addNode()

d
u

ra
tio

n
 [m

s
]

XTC JCR RI

0

1000

2000

3000

4000

5000

6000

7000

addNodeDeep100

save()
addNode()

d
u

ra
tio

n
 [m

s
]

XTC JCR RI

0

1000

2000

3000

4000

5000

6000

7000

addNodeDeep100DefNS

save()
addNode()

d
u

ra
tio

n
 [m

s
]

Figure 5.6: Data Modification Benchmarks

56 Chapter 5. Evaluation

Test Description

addNode100 Persists 100 nodes as direct child nodes of a persis-
tent node. This results in 100 append operations in
XTC.

addNode100DefNS Same as addNode100, but the names of the new
nodes do not carry a namespace prefix.

addNodeDeep100 Persists 100 nodes under a persistent node. Each
new node is as a child of the previously added node.
All 100 nodes are appended as a serialized string.
This results in a single subtree add operation in
XTC.

addNodeDeep100DefNS Same as addNodeDeep100, but the names of the new
nodes do not carry a namespace prefix.

Table 5.2: Test suite: data modification

5.2.1 Data Modification

AddNode100 is one of four tests, designed to measure data modification perfor-
mance (see table 5.2). The results in figure 5.6 show how instable namespace
mappings influence the overall performance of XTC JCR. Everytime a prefix
must be resolved an expensive RMI call to XTC must be made. The com-
parison of the test run with qualified names (on the left) to the test run with
unprefixed names (on the right) demonstrates the cost of prefix to URI resol-
vation in each transaction. The test shows also that the addNode operation
called with an unprefixed name is of equal speed to the RI pendant (figure 5.6
addNode100DefNS).

In XTC JCR the major part of the time is spent in the save() method. This
is only partly due to the RMI overhead, as described previously. The impact
of RMI overhead can be quantified when comparing addNode100(DefNS) to
addNodeDeep100(DefNS) (top to bottom). Test addNode100 uses 100 append-
Subtree RMI calls to append one JCR node each call. Test addNodeDeep100
uses only one appendSubtree invocation to append the whole subtree of 100 se-
rialized JCR nodes. The difference of approximately three seconds makes up
about 50% of the total time.

Looking at profiling report of addNode100Deep (figure 5.7) it becomes clear that
most of the time is spent during the appendSubtree execution which delegates di-
rectly to the remote operation in XTC. During a longer running profiling session
of XTC (see profiling report figure 5.8) the writeLog() method was identified
as a bottleneck. It turns out that writing the log entries for the insertSubtree
method is more than ten times slower than the actual insertSubtree operation.
XTC currently uses physical logging to ensure ACID properties. This logging
strategy copies a page to the log on each modification within the page. This is
slow since it results in a lot of IO overhead. Currently, the implementation of
a new physiological logging system is in progress. Physiological logging saves
snapshots of pages and only logs logical operations on the data. It will result in
a faster writeLog() operation.

The profiling report 5.4 of the addNode100 test reveals more potential for per-
formance improvements. Test addNode100 invokes the query in getDomNode-
ByUUID 100 time which takes up 1.5 seconds. Getting the DOM node by its

5.2. Performance 57

Figure 5.7: addNode100Deep in Netbeans Profiler

Figure 5.8: Hotspot analysis of XTC’s appendSubtree operation in Netbeans
Profiler

58 Chapter 5. Evaluation

Persistent Transient

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

bottomUp (absolute)

XTC JCR
RI

d
u

ra
tio

n
 [m

s
]

Persistent Transient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bottomUp (%)

RI
XTC JCR

Persistent Transient

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

topDown (absolute)

XTC JCR
RI

d
u

ra
tio

n
 [m

s
]

Persistent Transient

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

topDown (%)

RI
XTC JCR

Figure 5.9: Navigational Access Benchmarks

UUID is a very common operation, since all data editing must still be made via
the DOM interface. The query in hasPropertyById takes up 2 seconds. Prior to
insertion of a new node the system must check for a conflicting property node
with the same name as the node. Currently, index support is not yet avail-
able. With index support enabled the time for these operations is expected to
drop dramatically. An index for all xtcjcr:uuid attributes will allow the query
processor to find a node by its UUID much quicker. Index support is actually
a major feature that the whole XTC JCR design relies on. It is expected to
speed up almost all queries and thus the implementation as a whole. At the
time of writing index integration into the XQuery processor and into the data
manipulation system is in progress.

5.2.2 Navigational Access

Navigational access was tested using two tests described in table 5.3. These
tests are designed to measure direct access speed by traversing through the
JCR content tree of depth 101 top to bottom and vice versa. The results in
figure 5.9 show that XTC JCR is slower on persistent nodes, while it is faster, by
about the same magnitude, on transient nodes compared to the RI. Once index
support is available the persistent results are expected to improve drastically,

5.2. Performance 59

Test Description

topDown 100 Node.getNode (returns a child node) invocations (run on
a transient and a persistent content tree)

bottomUp 100 Node.getParent (returns the parent node) invocations
(run on a transient and a persistent content tree)

Table 5.3: Test suite: navigational access

[root]

node
1_1

node
1_10

node
2_1

node
3_1

node
3_10

node
3_2

node
3_3

node
3_4

node
3_5

node
3_6

node
3_7

node
3_8

node
3_9

d = 3

f = 5

Figure 5.10: Declarative Query Test Data

since finding a node by its UUID is crucial to both getNode and getParent.

Furthermore, one can observe that the reference implementation shows similar
access speeds for persistent and transient access. This is due to caching mech-
anisms. In Jackrabbit data modifications are directly written to the persistent
back-end. However, the content itself stays cached and can quickly be retrieved
without employing the database at all. Jackrabbit assumes hereby that it has
exclusive write access to the database.

5.2.3 Declarative Query

In order to test query performance of a JCR implementation a suite of ten
queries (see table 5.4) is run on a workspace filled with test data. The test data
consists of a ten-ary9 tree of depth three (see figure 5.10). Each node has two
properties: depth d and fan f. Depth d holds an integer value representing the
depth level of the current node. Fan f is an integer property valued from one
to ten, designed as a simple index for each child node. The node names are
constructed as noded f.

XTC JCR is a little slower when data is accessed direcly via the content structure
as in queries number one and two. Queries number three through eight show

9 n-ary trees are trees where each node has n child nodes.

60 Chapter 5. Evaluation

no. Query result XTC JCR RI
size [ms] [ms]

1 //node3 1 100 72.0 30.8
2 //jcr:root/queryTest//node3 2 100 130.6 32.8
3 //*[@d = 3 and @f = 2] 100 3104.4 70.2
4 //*[@d = 1]//*[@d = 3] 1000 4158.6 491.4
5 //*[*/@d = 3] 100 3443.6 29.2
6 //*[@d = 1]/*[@d = 2]/*[@d = 3] 1000 3349.2 262.4
7 //*[@d >= 1]/*[@d >= 2]/*[@d >= 3] 1000 3312.2 234.0
8 //*[@d >= 2]/*[@d >= 3] 1100 3305.6 228.8
9 //*[node3 1] 100 1287.4 n.a.
10 //*[node3 1 and node3 2] 100 1466.0 n.a.

Table 5.4: Test suite: query performance

how the reference implementation profits from its Lucene10 index. As soon as
XTC’s index support and holistic twig join [Hüh08] support is available to the
XQuery processor these results are expected to change in favor of XTC JCR.

Queries nine and ten cannot be handled by the current reference implementa-
tion. Query nine returns after about 500ms and query ten computes for several
minutes. Both queries return the erroneous result size of -1. XTC JCR returns
correct results in a reasonable amount of time.

5.2.4 Concurrent Modifications

All prior tests have been run without using optional feature ”Transactions“. Run
with a single global transaction for each test, XTC JCR performs addNode100,
addNode100Deep, topDown (Persistent), and bottomUp (Persistent) about 500ms
faster. In these cases the implementation profits of caching and the reduced
overhead for opening and closing many small transactions. The other tests are
not affected significantly.

XTC is designed to handle concurrent read and write access on XML data well.
In a last test the performance of concurrent access by multiple clients to the
repository was to be tested. This comparison could not be conducted since
Jackrabbit currently does not support transactions via the RMI interface.

5.2.5 Analysis

It turns out that Jackrabbit is faster in modifying data. The reference imple-
mentation is implemented as a central repository with a very thin client layer.
This layer only delegates the client’s requests to the remote repository server.
This way the additional costs for network transfer are limited to transmitting
the request and the response. The gathered data shows that this is clearly an
advantage when modifying content. The reference implementation profits from
having the central control over the repository data. It can therefore leverage
caching mechanisms across transaction boundaries.

10http://lucene.apache.org/

5.2. Performance 61

XTC JCR plays out its advantage when processing transient items. These are
managed in the client allowing for extraordinary speed. Most of the processing
is done in the client allowing the system to scale very well. The comparison be-
tween Jackrabbit and XTC JCR documents the difference between a local and
a distributed repository implementation. Furthermore, is shows that XTC’s
appendSubtree method is currently very slow and that Jackrabbit’s caching so-
lution is effective. Unfortunately, it turns out that the comparison is not helpful
to evaluate the feasibility of the main approach which is to use a native XML
database system as a back-end. The potential of a native XML database system
as a back-end can hereby neither be concluded, nor is the approach invalidated.

XTC JCR is the first proof of concept implementation. If XTC JCR assumed
exclusive use of the database back-end, the same cache optimizations could be
employed as in the RI. Certainly, in this case, the design decision of where to put
the client server gap in XTC JCR should be reconsidered. XTC JCR connects
to the server transparently via RMI. Hence, integrating XTC JCR in XTC as
another interface running in the same JVM would be possible without changing
the overall system design. A thin remote client layer, equivalent to Jackrabbit’s
RMI solution, would need to be implemented.

62 Chapter 5. Evaluation

Chapter 6

Conclusion

This thesis has given an overview of the JSR 170 specification, the foundation of
Java Content Repositories. The specification is supported by major businesses1

and JCR implementations are running in production environments. In short,
JSR 170 is an accepted standard in the field of web application development
and content management.

Although the typical setup of a JCR system is backed by a relational database,
there exists an obvious analogy between JCR’s hierarchic content structure and
XML. The specification even exploits this fact by choosing XML as import and
export format. This conceptual similarity suggests a closer analysis of how such
data could be managed in a native XML database system, such as XTC.

In this work the Java Content Repository XTC JCR has been designed and
implemented on top of XTC. The level of abstraction between the JCR data
model and XML is so thin that all required JCR operations on persistent data
could be mapped to DOM operations and XQuery in a straight forward fashion.
Herby the approach has been proven feasible.

Modern software engineering principles have been applied to ensure high quality
and maintainability of the software. The implementation has been tested and
put to use in two small demo applications. Benchmarks against the Apache
Jackrabbit reference implementation have shown where XTC JCR is situated in
terms of performance. XTC JCR scales well and performs very well on transient
operations. The current test results for persistent content modification and
persistent content retrieval are disappointing. However, XTC JCR is designed
for features that are currently not enabled in XTC. XTC is under constant
development. These coming features will speed up XTC and XTC JCR. Then
the tests should be rerun. Once the timings for modification and retrieval are
under control the distributed design might even be of a great advantage.

This project has shown how elegantly the JCR data model maps to XML. It
proves that the native XML database system XTC is a capable persistence back-
end and shows how XML native database systems can be employed effectively

1 Laird Popkin, 3path, Remy Maucherat, Dirk Verbeeck, ATG, Day Software, Deloitte Con-
sulting, Hewlett-Packard, IBM, Nat Billington, Oyster Partners, SAP Portals, Software
AG

63

64 Chapter 6. Conclusion

in areas traditionally reigned by relational databases.

Lessons learned are:

• Network overhead must not be neglected. RMI calls are expensive. Hereby
it was found that serialized results, such as Strings or XQJ result types,
are generally faster than navigational access via DOM over the network.

• Test Driven Development has been very helpful. This way it was possible
to control project progress and defect rate. Additionally, it helped to test
the XTC system.

• Good tooling is valuable. The Netbeans IDE proved very helpful in: code
editing, subversion management, unit testing, refactoring, and profiling.

Besides the constant improvement of XTC that is taking place currently, a few
new issues should be addressed.

• XTC JCR full JTA support. XTC currently lacks JTA compliance. The
major deficit is the lack of the prepare statement required for the two
phase commit protocol.

• XTC JCR full versioning support. Not all methods (such as update and
merge) of this feature are implemented, yet.

• Futher testing and profiling of XTC and XTC JCR under realistic condi-
tions using JCR client applications.

• Namespace support in XTC. Instead of resolving namespaces in the XTC
JCR layer the XTC itself should handle the prefix to URI mapping. For
the current XTC JCR implementation this would be very beneficial in
terms of performance.

• Further support for XQuery functions2 are required for production use.

• XQJ prepared statements support. This would speed up navigational
access in XTC JCR.

2 http://www.w3.org/TR/xpath-functions/

List of Abbreviations

ACID Atomicity Consistency Isolation Durability
API Application Programming Interface
AST Abstract Syntax Tree
CMS Content Management System
CR Content Repository
DOM Document Object Model
EE Enterprise Edition
ERP Enterprise Resource Planning
FAQ Frequently Asked Questions
FLWOR For Let Where Order by Return
GIS Geographic Information System
GoF Gang of Four
IDE Integrated Development Environment.
IO Input Output
JAXB Java Architecture for XML Binding
JCP Java Community Process
JCR Java Content Repository
JNDI Java Naming and Directory Interface
JSF Java Server Faces
JSR Java Specification Request
JTA Java Transaction API
JVM Java Virtual Machine
OLAP On-Line Analytical Processing
RMI Remote Method Invocation
SAX Simple API for XML
SQL Standard Query Language
TAX Tree Algebra for XML
UML Unified Modeling Language
WCMS Web Content Management System
WVCM Workspace Versioning and Configuration Management
XML Extensible Markup Language
XQJ XQuery API for Java
XTC XML Transaction Coordinator

65

66 Chapter 6. Conclusion

Bibliography

[BBC+07] Berglund, A. ; Boag, S. ; Chamberlin, D. ; Fernndez, M. F.
; Kay, M. ; Robie, J. ; Simon, J.: XML Path Language (XPath)
2.0. W3C Recommendation. http://www.w3.org/TR/xpath20/.
Version: Jan 2007

[BPS00] Bray, T. ; Paoli, J. ; Sperberg-McQueen (Eds), C. M.: “Ex-
tensible Markup Language (XML) 1.0 (2nd Edition)”. W3C Rec-
ommendation. citeseer.ist.psu.edu/bray00extensible.html.
Version: 2000

[CBa] Chamberlin, Don ; Berglund, Anders ; al., Scott B.: XQuery
1.0: An XML Query Language. http://www.w3.org/TR/xquery/

[CD99] Clark, James ; DeRose, Steve: XML Path Language (XPath).
http://www.w3.org/TR/xpath/. Version: Nov 1999

[Cle07] Clemm, Geoffrey: JSR 147: Workspace Versioning and Config-
uration Management. http://jcp.org/en/jsr/detail?id=147.
Version:Mar 2007

[CM02] Cheung, Susan ; Matena, Vlada: Java Transaction
API (JTA). http://java.sun.com/javaee/technologies/jta/
index.jsp. Version: Nov 2002

[Dam07] Dambekalns, Karsten: A Content Repository for TYPO3 5.0.
TYPO3 Developer Days 25.-29.04.2007, Dietikon / Switzerland.
http://www.typo3.org/fileadmin/teams/5.0-development/
t3dd07-karsten-jcr%.pdf. Version: Apr 2007

[DOM] Document Object Model. http://www.w3.org/DOM/

[FHK+02] Fiebig, T. ; Helmer, S. ; Kanne, C.-C. ; Moerkotte, G.
; Neumann, J. ; Schiele, R. ; Westmann, T.: Anatomy
of a native XML base management system. In: The VLDB
Journal 11 (2002), Nr. 4, S. 292–314. http://dx.doi.
org/http://dx.doi.org/10.1007/s00778-002-0080-y. – DOI
http://dx.doi.org/10.1007/s00778–002–0080–y. – ISSN 1066–8888

[GHJV95] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ; Vlissides,
John: Design patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley Professional, 1995

67

68 Bibliography

[HH07] Haustein, Michael ; Härder, Theo: An efficient infras-
tructure for native transactional XML processing. In: Data
Knowl. Eng. 61 (2007), Nr. 3, S. 500–523. http://dx.doi.
org/http://dx.doi.org/10.1016/j.datak.2006.06.015. – DOI
http://dx.doi.org/10.1016/j.datak.2006.06.015. – ISSN 0169–023X

[Hüh08] Hühner, Stefan: Entwicklung von Pfadoperatoren und deren In-
tegration in eine physische XML-Algebra, Technische Universitt
Kaiserslautern, Diplomarbeit, Mar 2008

[JAKC+02] Jagadish, H. V. ; Al-Khalifa, S. ; Chapman, A. ; Lak-
shmanan, L. V. S. ; Nierman, A. ; Paparizos, S. ; Pa-
tel, J. M. ; Srivastava, D. ; Wiwatwattana, N. ; Wu,
Y. ; Yu, C.: TIMBER: A native XML database. In: The
VLDB Journal 11 (2002), Nr. 4, S. 274–291. http://dx.doi.
org/http://dx.doi.org/10.1007/s00778-002-0081-x. – DOI
http://dx.doi.org/10.1007/s00778–002–0081–x. – ISSN 1066–8888

[Kaw06] Kawaguchi, Kohsuke: JSR 222: JavaTM Architecture for XML
Binding (JAXB) 2.0. http://jcp.org/en/jsr/detail?id=222.
Version:Dec 2006

[KS07] Kiselyov, Oleg ; Shan, Chung-Chieh: Lightweight Static Ca-
pabilities. In: Electronic Notes in Theoretical Computer Science
174 (2007), June, Nr. 7, 79–104. http://dx.doi.org/10.1016/j.
entcs.2006.10.039. – DOI 10.1016/j.entcs.2006.10.039

[Mel07] Melton, Jim: JSR 225: XQuery API for Java (XQJ) 1.0. http:
//jcp.org/en/jsr/detail?id=225. Version: Oct 2007

[NN04] Nuescheler, David ; Negelmann, Björn: E-Interview mit
David Nuescheler von Day Software AG zu den Zielen und Ergeb-
nissen der JSR 170 Initiative. http://www.competence-site.
de/cms.nsf/8AFB25D13061A6BDC1256EE1003C57E3/%$File/
davidnuescheler.pdf. Version: Jul 2004

[Nue06] Nuescheler, David: JSR 170: Content Repository for Java
technology API (Release version 1.0.1). http://jcp.org/en/jsr/
detail?id=170. Version: Apr 2006

[Oes05] Oestereich, Bernd: Analyse und Design mit UML 2. Oldenbourg
Verlag München, 2005

[OMG03] OMG: Unified Modeling Language. http://www.omg.org/uml/.
Version: 2003

[SAX] Simple API for XML. http://sax.sourceforge.net/

[Sch01] Schöning, Harald: Tamino - A DBMS designed for XML. In:
Proceedings of the 17th International Conference on Data Engi-
neering. Washington, DC, USA : IEEE Computer Society, 2001. –
ISBN 0–7695–1001–9, S. 149–154

[Sie04] Siedersleben, Johannes: Moderne Software-Architektur. Dpunkt
Verlag, 2004. – ISBN 3898642925

