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Molecular Dynamics features

f i Force acting on the atom i due to all other atoms

mi Mass atom i

ai Acceleration of atom i

ri Vector position of atom i

rj Vector position of atom j

rij Relative position vector of atom i

vi Vector velocity of atom i

U Potential energy function

r0 Lattice constant. Equilibrium position

rc Cut–off radius

φLJ Lennard–Jones potential

ε , σ Parameters of the Lennard–Jones pair potential

φMorse Morse potential

ε , α Parameters of the Morse pair potential

φBuck Buckingham potential

σ ,A ,B Parameters of the Buckingham pair potential

φLJSH Lennard–Jones shifted potential

α, β Additional parameters of the Lennard–Jones

shifted pair potential

φHA Harmonic potential

k Constant parameter for Harmonic potential

ε , r0 , α , Parameters of the EAM potential

β(0) , Z , A

kB Boltzmann constant

∆t Micro molecular dynamics time step

〈W 〉 Virial

g(r) Radial distribution function

ωD Debye frequency

(∆r)2 Mean–square displacement

ci Centrosymmetry parameter

si Slip vector

ρ Density

T Temperature

P Pressure
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Atomistic features

C0 Material lattice configuration

Ct Spatial lattice configuration
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Vi Volume of the Voronoi cell in the material configuration

σi Atomistic stress

γ Shear number

λ Stretch

ei Cartesian basis vectors

Continuum features

ϕ Non–linear deformation map

F Deformation gradient

B0 Material body configuration

Bt Spatial body configuration

X Material position vector in B0

x Spatial position vector in Bt

I Identity tensor

J Jacobian

dX Infinitesimal line elements in B0

dx Infinitesimal line elements in Bt

dV Volume element in B0
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C Right Cauchy–Green tensor
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T0 Desired temperature
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θ Population parameter

θ̂ Estimator

X Arithmetic average or arithmetic mean
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σ2 Population variance of a random variable X

Y n Mean sample

S2 Sample variance
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Abstract

One of the most important challenges in mechanics is the modelling of the phenomeno-

logical mechanical behaviour of crystals, i.e. understanding material phenomena such as

the occurrence ofdislocations, vacancies and micro-cracks and their propagation, in order

to understand more about how and why materials fail. To provide a reasonable and com-

prehensive answer to these questions it is necessary to delve deep into the material taking

into account the behaviour of the atoms, i.e. what happens at the nanoscale.

Thanks to the ongoing rapid increase and affordability of computer power, simulation

methods have become a useful tool in the last decade. Furthermore, they have been

established as a realistic computational option with a broad range of applications in

many branches of science such as fluid mechanics, physics, chemistry, biology, material

science and branches of engineering. Computer methods also have the ability to study

the behaviour of complex systems and allow us to compute their features untractable

with analytical methods. One of these methods is molecular dynamics, which provides an

atomically detailed description of materials. In addition, nowadays it is routinely applied

to predict their physical and chemical properties and to investigate structural, dynamical

and thermodynamical features. Molecular dynamics can also shorten the gap which is

generated by attempting to deduce and measure atomistic quantities directly from the

experiment providing a consistent approach to reproduce microscopic behaviour using

atomistic models.

The molecular dynamics method follows the trajectories of a set of atoms subjected to

several rectrictions involving the solution of the classical equation of motion (Newton’s

equations). In contrast to other simulation methods, molecular dynamics is a deter-

ministic technique since given a set of initial parameters (positions and velocities), the

subsequent time evolution is completely determined by integrating the equations of mo-

tion. However, the modelling of any realistic structure with macroscopic dimensions is

not yet feasible with fully atomistic simulation. This is due to the exhaustive computa-

tional demand and the excessive and often useless data that results, since in large scale

atomistic simulations only a small set of atoms does anything interesting. In addition,

the results can rarely be compared with any direct experimental data since the laboratory

observations of this sort of mechanical problem are usually made at different time and

length scales.

The continuum mechanics approach has dominated the research activity of mechanics in

order to model materials over time and space. The range of application of continuum

models allows an efficient computation of large systems of material but at the expense

of accuracy and including a number of defects. Moreover, physical phenomena such as
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Abstract

dislocations, plastic deformation or crack evolution, among others, cannot be explained

in detail within the continuum mechanics framework.

Generally, the performance of materials cannot be described in a single scale. Different

levels are inevitably involved. Therefore, in recent years many research groups have con-

centrated on developing hybrid approaches with the main objective of combining atomistic

and continuum scales. On the one hand, they want to exploit the advantages of atomistic

simulations to capture the dynamics at the atomistic scale and gain insight into sub–

micron deformational complexity. On the other hand, continuum simulation techniques,

e.g. the finite element method, are involved in capturing the smooth parts of the solution.

Multiscale techniques reduce the number of degrees of freedom, i.e. the computational

cost, and focus only on regions containing interesting information. The key idea is to

use molecular dynamics only in localized regions where the deformation complexity is

significant, while the finite elements method is applied everywhere else surrounding the

atomistic domain. Therefore, the main difficulty is the interplay between accuracy and

efficiency.

At the continuum scale the first–order Cauchy–Born rule, originally proposed by the

French mathematician Augustin Louis Cauchy, and subsequently broaded by the math-

ematician and physicist Max Born, is a standard but efficient kinematic assumption to

introduce atomistic information to the modelling of material behaviour. The essential pos-

tulate states that when a single crystal volume is subjected to a prescribed displacement

at its boundary, all atoms of the volume follow this displacement by an affine deforma-

tion. The application of the Cauchy–Born rule is restricted to sufficiently homogeneous

deformations, at least within the cut–off radius of the atomic interaction. In other words,

this rule is not capable of capturing inhomogeneous deformation of the crystal.

The main motivation of this contribution is to introduce a computational laboratory to

analyse defects and fractures at the sub–micro scale. To this end, we have attempted to

present a continuum–atomistic multiscale algorithm for the analysis of crystalline defor-

mation, i.e. we have combined the above–mentioned Cauchy–Born rule within a finite

element approximation (FEM) on the continuum region with a molecular dynamics (MD)

resolution on the atomistic domain. The aim is twofold: on the one hand the stabil-

ity, i.e. validity of the Cauchy–Born rule and its transition to non–affine deformation

at the micron–scale is studied with the help of molecular dynamics approach to capture

fine–scales features; on the other hand a horizontal FEM/MD, i.e. continuum atomistic

coupling, is envisaged in order to study representative cases of crystalline defects. To cope

with the latter we have introduced a horizontal coupling method for continuum–atomistic

analysis.

The key concept of a horizontal coupling algorithm is to combine an atomistic region and

a continuum domain. The atomistic region capture highly inhomogeneous deformations

surrounded by the continuum region in order to resolve far–field type smooth deforma-

tions. In other words, we will try to interplay accuracy and efficiency in order to study

several atomistic phenomena. Unfortunately, the horizontal coupling thereby produces
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a common difficulty in these hybrid multiscale models in that the correct treatment of

the transition between the atomistic and the continuum regions and thus, the link of

the different scales is a severe problem. This incovenience arises due to the fundamental

incompatibility of the non–local character of the atomistic description and the local con-

tinuum description.

We will seek to address and to respond to the above mentioned objectives in this disser-

tation. In the 1st Chapter we will review some of the standard features on the classical

molecular dynamics method used for the present work. We will give a brief introduction

of some traditional tools such as potentials, algorithms, boundary conditions or statistical

mechanics.

The 2nd chapter will begin by focusing firstly on providing a general overview of the first–

order Cauchy–Born theoretical background. However, the main purpose of this chapter

is the investigation of the rule’s range of validity. We intend to find out the state when

the deformation becomes inhomogeneous, i.e. when the use of this rule is inadequate. In

order to achieve that, a monoatomic crystal lattice subjected to the Cauchy–Born rule

is analysed in conjunction with the molecular dynamics method. Its main objective is

to follow the deformation evolution, i.e. the phase–trajectories of a set of particles in a

lattice in different deformation cases (simple shear, uniaxial extension, pure shear and

dilatation), comparing their positions with the positions of the same atoms in an ideal

homogeneous deformation, i.e. a crystal where the Cauchy–Born rule is applied.

In the 3rd chapter, we will restrict our attention to the features of the continuum–atomistic

multiscale method combining the Cauchy–Born rule within a finite element method with

a molecular dynamics resolution on the atomistic region. The chapter begins with a

summary of the essential aspects concerning the kinematics of the continuum modelling.

Later on, we will deal with the horizontal–coupling hybrid model itself providing a de-

tailed exposition of the transition between the continuum and atomistic domains. Finally,

we will present the acquired results for studing crystalline deformation.

Chapter 4 is devoted to the study of the common difficulties inherent to these hybrid

methods as the spurious wave reflections which arise at the boundary due to the con-

strained boundary conditions. In order to overcome this drawback, a damping zone is

implemented to avoid or reduce their negative influence as much as possible. Previously,

this damping zone has also been applied for extending the study of the Cauchy–Born rule

carried out in Chapter 2.

Finally, Chapter 5 wraps up this work in order to summarize the obtained results as well

as point out possible suggestions about future lines of work. An Appendix provides a

collection of relevant notation. It also briefly sketches significant material concerning the

standard deviation formula devoted to the study of the Cauchy–Born rule and contains

a brief explanation of the atomistic stress used within this contribution. Some notions

about the acoustic tensor are also mentioned.
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Zusammenfassung

Eine der wichtigsten Herausforderungen der Mechanik ist die phänomenologische Beschrei-

bung des mechanischen Verhaltens von Kristallen, wobei insbesondere deren komplexes

Versagensverhaltens, wie zum Beispiel Entstehung und Kinetik von Versetzungen und

Vakanzen, Mikrorissbildung und –ausbreitung von Interesse ist. Um eine angemessene

Antwort auf diese Fragenstellung zu erhalten, ist es notwendig, das mechanische Verhalten

von Kristallen auf der Nanoskala, d.h. unter Berücksichtigung des atomaren Verhaltens,

zu beschreiben.

Aufgrund des permanenten Anstiegs der Rechnenleistung moderner Computer ist die

klassische Molekulardynamik eine geeignete Methode, um das komplexe Verhalten von

Kristallen auf atomaren Ebene zu simulieren. Sie wird inzwischen intensiv zur Prognose

von physikalischen, chemischen und thermodynamischen Eigenschaften von Kristallen und

Molekülen eingesetzt. Molekulardynamik dient weiterhin dazu, experimentelle Ergebnisse

auf atomare Ebene zu interpretieren und ist daher eine konsistente Methode, um das

mikroskopische Verhalten mit Hilfe atomarer Modelle zu reproduzieren.

Die klassische Molekulardynamik ist eine Methode, die unter Verwendung der Newton-

schen Bewegungsgleichungen die Trajektorien eines Ensembles von Teilchen, die vorgegebe-

nen Restriktionen (z.B. Volumen, Energie, Temperatur etc.) unterliegen, berechnet.

Bei der Molekulardynamik handelt es sich um eine deterministische Methode, denn bei

gegebenen Anfangsbedingungen (Positionen und Geschwindigkeiten der N Teilchen) ist

das zeitliche Verhalten des betrachteten Teilchenensembles durch die Integration der Be-

wegungsgleichungen vollständig bestimmt. Allerdings ist es auch mit heutigen Hochleis-

tungsrechnern bei weitem nicht möglich, makroskopische Stoffmengen, wie z.B. Stukturen

im Ingenieurwesen, durch molekulardynamische Simulationen zu beschreiben. Derzeit

kann mit Höchstleitungsrechnern eine Teilchenzahl von einigen 109 Atomen simuliert wer-

den, was im Vergleich zur Avogardro–Zahl (Anzahl der Teilchen pro Mol Stoffmenge) noch

verschwindend gering ist. Außerdem liefern entsprechende Simulationen eine kaum be-

herrschbare Datenmenge, da häufig nur ein kleiner Bereich des betrachteten Ensembles

für meist nur kurze Zeit interessantes Verhalten zeigt.

Hingegen ist die Kontinuumsmechanik im Ingenieurswesen eine sehr erfolgreiche Meth-

ode zur Beschreibung des zeitlichen und räumlichen Deformationsverhaltens von Mate-

rialen. Die Kontinuumsmechanik erlaubt eine effiziente Berechnung von großen Inge-

nieurstrukturen allerdings auf Kosten der Genauigkeit. Es können viele physikalische

Phänomene, die auf der Kristallebene stattfinden, wie z.B. Entstehung und Kinetik von

Versetzungen bei Ermüdung, plastischem Fließen oder Rißbildung, im Rahmen der Kon-

tinuumsmechanik nur sehr ungenau modelliert werden.
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Zusammenfassung

Zur allgemeinen Beschreibung des Verhaltens von Materialien ist daher eine Beschränkung

auf eine Größenskala nicht sinnvoll, sondern es müssen verschiedene Größenskalen betra-

chtet werden. Deswegen haben sich einige Arbeitsgruppen in den letzten Jahren da-

rauf konzentriert, gemischte Methoden zu entwickeln, die eine Kopplung zwischen atom-

istischer und kontinuumsmechanischer Skala als Ziel haben. Einerseits sollen Sie die

Vorteile der Simulation auf atomistischer Ebene ausnutzen, um die dynamischen Ef-

fekte im Kristallgitter einzubeziehen und gleichzeitig einen Einblick in das Mikrodefor-

mationsverhalten des Werkstoffen zu gewinnen. Andererseits werden mit Hilfe der nu-

merischen Kontinuumsmechanik, wie z.B. der Methode der finiten Elemente, jene Bereiche

des Anfangswertproblems gelöst, in denen das atomistische Verhalten nicht von Interesse

ist. Die Entwicklung sogenannter Multiskalenmethoden ermöglicht somit die Anzahl der

Freiheitsgrade und damit den Rechenaufwand zu reduzieren und beschränkt die Anwen-

dung räumlich und zeitlich hochauflösender Methoden auf kleine interessante Bereiche.

Die Hauptidee besteht darin, die Molekulardynamik nur auf einen kleinen Bereich mit

signifikanten Deformationen anzuwenden, während mit der Methode der finiten Elemente

das restliche Gebiet beschrieben wird. Somit gelingt es, Effizienz und Genauigkeit der

Simulation zu verknüpfen.

Auf der Kontinuumsebene ist die Cauchy–Born Regel erster Ordnung Standard, aber

auch eine effiziente kinematische Annahme um atomistiche Information für die Model-

lierung des Materialverhalten einzusetzen. Sie wird von dem französischer Mathematiker

Augustin Louis Cauchy vorgeschlagen and danach von dem deutscher Mathematiker und

Physiker Max Born erweitert. Das Postulat der Cauchy–Born Regel lautet: Werden bei

einen Einkristallvolumen auf dem Rand die Verschiebungen vorgegeben, dann erfahren alle

Atome des Volumens eine affine Deformation. Folglich ist die Anwendung der Cauchy-

Born Regel auf hinreichend homogene Deformationen, zumindest innerhalb des cut–off

Radius der atomaren Interaktion, beschränkt. Anders formuliert ist diese Regel nicht in

der Lage, inhomogene Deformationen von Kristallen zu beschreiben.

Die Hauptmotivation dieser Arbeit ist daher die Entwicklung einer numerischen Meth-

ode, um die Kinetik von Kristalldefekten und Rißbildung auf atomistischem Niveau zu

studieren. Zu diesem Zweck wird ein neuartiger multi–kontinuumsatomistischer Algorith-

mus für die Simulation von Kristalldeformationen präsentiert. D.h. es wurde die oben

genannte Cauchy–Born Regel mit Hilfe der Methode der finiten Elemente im Kontinu-

umsgebiet mit der Methode der Molekulardynamik im atomistischen Gebiet kombiniert.

Hiermit werden folgende zwei Ziele verfolgt: Auf der einen Seite wurde die Stabilität,

d.h. die Gültigkeit der Cauchy–Born Regel und ihr Übergang zu nicht–affinen Deforma-

tionen auf der Mikroskala mit Hilfe der Molekulardynamik untersucht, auf der anderen

Seite wurde eine horizontale Kopplung zwischen FEM und MD, d.h. eine kontinuums–

atomistische Kopplung, vorgenommen, um repräsentative Kristalldefekte zu analysieren.

Letzteres wurde durch eine horizontale Kopplung der kontinuums–atomistischen Sim-

ulation erreicht. Das Grundkonzept einer horizontalen Kopplung ist, daß ein atom-

istisches Gebiet zur Erfassung der lokal stark inhomogenen Deformationen von einem

Kontinuumsgebiet umgeben ist, das nur die kleinen Deformationgradienten des Fernfelds
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Zusammenfassung

abzubilden hat. Hierbei verursacht die horizontale Kopplung ein bekanntes Problem hy-

brider Multiskalenmodelle, welches sich in der schwierigen Behandlung des Übergangs

zwischen atomistischer und kontinuumsmechanischer Modellierung niederschlägt. Diese

Schwierigkeit entspringt der fundamentalen Inkompatibilität des nichtlokalen Charakters

der atomistischen Beschreibung und der streng lokalen Beschreibung der klassischen Kon-

tinuumsmechanik.

Oben genannte Ziele geben daher die Struktur dieser Arbeit vor. Im 1. Kapitel werden

die Grundlagen und Eigenschaften der klassischen Molekulardynamik aufgezeigt. Hier-

bei werden einige Grundaussagen in Bezug auf Potentiale, Zeitintegrationsalgorithmen,

Randbedingungen und statistische Mechanik angesprochen.

Das 2. Kapitel konzentriert sich darauf, die Cauchy–Born Regel zu diskutieren und deren

Gültigkeitsbereich zu untersuchen. Ein Schwerpunkt hierbei ist die Charakterisierung des

Übergangs von einer homogenen Deformation zu einer inhomogenen Deformation, d.h.

jener Zustand, der zum Versagen der Cauchy-Born Regel führt. Dies geschieht anhand

von molekulardynamischen Simulationen der Deformationsevolution eines monoatomaren

Kristallgitter. Die Zielsetzung hierbei ist der Vergleich der Deformationsevolution einer

Menge von Teilchen in einem Gitter bei verschiedenen beispielhaften Deformationen (ein-

facher und reiner Schub, einachsiger Zug und Dilatation) mit dem homogenen Deforma-

tionsverhalten eines Kristallgitters.

Im 3. Kapitel wird eine hybride Multiskalen–Methode vorgestellt, die die Cauchy–Born

Regel mit der Methode der finiten Elemente verknüpft, um Fernfeld–Lösungen zu beschrei-

ben, während zur Beschreibung des atomistischen Verhaltens in vergleichsweise kleinen

Regionen (Nahfeld–Lösung) die Molekulardynamik Verwendung findet. Nach einer kurzen

Einführung in die kontinuumsmechanischen Grundlagen, wird die horizontale Kopplung

der Multiskalen–Methode vorgestellt. Dabei steht der Aspekt des Übergangs zwischen

atomistischen Gebiet und Kontinuumsgebiet im Vordergrund. Schließlich werden für aus-

gewählte Deformationen von Kristallgittern numerische Ergebnisse vorgestellt.

Anschließend wird im 4. Kapitel auf einige häufig auftretende Schwierigkeiten eingegan-

gen, die inhärent mit diesen hybriden Multiskalen–Methoden verbunden sind. Hier-

zu zählen fehlerhafte Reflexionen von Wellen am Rand des atomistischen Gebiets auf-

grund der dort vorgenommenen Kopplung zum Kontinuumsgebiet über entsprechende

Verschiebungszwangsbedingungen. Deren negativer Einfluß wird durch eine sogenannte

Dämpfungszone so weit wie möglich reduziert. Diese zusätzliche Dämpfungszone wurde

bereits eingesetzt, um den Gültigkeitsbereich der Cauchy–Born Regel untersuchen zu

können.

Schließlich werden im 5. Kapitel die erzielten Ergebnisse zusammengefasst und ein Aus-

blick auf zukünftige Arbeiten gegeben. Im Anhang wird eine Übersicht über die verwen-

dete Notation und die atomistische Spannung, die in dieser Arbeit Verwendung findet,

gegeben. Des Weiteren wird die verwendete Definition zur Berechnung der Standardab-

weichung im Zusammenhang mit der Cauchy-Born Regel diskutiert.
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1 The Molecular Dynamics Method

1.1 Introduction

Computer simulation techniques have widely increased their applications for solving sci-

entific problems since the 1950’s thanks to the rapid advances in computer power and

accessibility [66]. Figure 1.1 1 displays this advancement in computer power throughout

the past.

1965 20121975 1985 1995 2003

9
10 atoms

8
10 atoms

6
10 atoms

5
10 atoms

2
10 atoms

IBM Almaden Spark "Gigaflop" "Teraflop" "Petaflop"

Year

Computer power

Figure 1.1: Timeline of evolution of computer power from 1960’s to present.

Computers can now investigate the behavior of complex systems and calculate their prop-

erties untractable with analytical methods. Molecular dynamics belong to one of these

methods. It consists of following the evolution of interacting particles in a system in order

to study their structural and dynamic features.

The molecular dynamics approach was first proposed by Alder and Wainwright in 1957

[4,5]. They investigated the interactions of hard spheres in liquids. The subsequence work

of Gibson et al. [60], is considered to be the first molecular dynamics computation employ-

ing finite difference time integration to investigate defects caused by radiation damage.

Later, in 1964 a more realistic study of liquids was conducted by Aneesur Rahman [109].

This work contains many important properties used even today in nanofluidic molecular

dynamics computations. However, the first molecular dynamics simulation applying a

realistic potential appeared ten years later by Rahman together with Stillinger studying

the behavior of liquid water [110]. The algorithms also improved very quickly. In 1967,

1The idea of this figure was taken from the work pursued by Buehler [21]
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1 The Molecular Dynamics Method

Loup Verlet, a French physicist, introduced the device known as Verlet neighbour list and

his Verlet time integration algorithm in the calculation of phase diagram of Argon using

the Lennard–Jones potential [138,139].

Since these first simulations, the influences and applications of molecular dynamics have

rapidly increased in many different scientific fields such as biology, engineering, chemistry

and physics. Specifically, since the purpose of this work focuses on solids, molecular dy-

namis is used to examine the dynamics of atomic-level phenomena that cannot be observed

directly. Nowadays, it is widely used to provide not only structural detailed descriptions

but also dynamic properties of differents types of systems. In addition, macroscopic in-

formation such as pressure, energy, heat capacities, etc..., can be obtained from molecular

dynamics by using statistical mechanics. However, in complex systems where molecu-

lar dynamics is not sufficiently accurate to reproduce the dynamics of molecular systems

and more accurate representation is needed, we can obtain electronic behavior by using

a quantum chemical method, such as Density Functional Theory (DFT approach). This

is known as Ab Initio Molecular Dynamics. With this method the cost of treating the

electronic degrees of freedom is much higher than in classical molecular dynamics. This

implies that Ab Initio Molecular Dynamics is limited to smaller systems and shorter pe-

riods of time.

From now on the present chapter contains a brief overview on the fundamental theoret-

ical foundations of classical molecular dynamics. In addition we will give an introduc-

tion of some traditional tools within molecular dynamics such as potentials, algorithms,

boundary conditions, statistical mechanics and finally visualization methods emphasizing

solids since this is the subject of this work. General references available on the sub-

ject are the classical books [7, 58, 63, 64, 66, 111]. In addition, we refer the reader to the

works [6, 39,48,137] to complete bibliography.

1.2 Fundamental Theoretical Foundations of Classical
Molecular Dynamics Method

The molecular dynamics approach is a step–by–step method which consists of solving

Newton’s classical equation of motion. It is done by using approximate numerical methods

to predict the new atom positions and velocities. Its mathematical formula may be written

for each atom i in a system constituted by N atoms as

mir̈i = f i, (1.2.1)

where mi is its mass and r̈i = d2
ttri its acceleration. f i represents the force on atom i due

to the interactions that all other atoms of the system exert on it.

The positions of the N particles in the system are denoted by {r1, r2, . . . rN} and let

U(r1, r2, . . . rN) define the potential energy of the particles in the system. Once the

10



1.2 Fundamental Theoretical Foundations of Classical Molecular Dynamics Method

potential energy function U(r1, r2, . . . rN) is specified, the next step is to compute the

atomic forces. By definition, the total force f i upon an atom i is the negative gradient of

the potential function with respect to its position ri

f i = −∇ri
U(r1, r2, . . . rN) = − ∂

∂ri

U(r1, r2, . . . rN). (1.2.2)

For examples related to the proper calculation of these forces, see appendix C in reference

[7]. Combining 1.2.1 and 1.2.2 yields:

− ∂

∂ri

U(r1, r2, . . . rN) = mir̈i, (1.2.3)

which relates the derivative of the potential energy function to the changes in position as

a function of time. At the new positions, the atomic forces are recalculated and another

step in time is made. This procedure is repeated several thousand times in a typical

simulation. The equation 1.2.3 governs the basis for a dynamical description of matter

and provides the necessary tools to explain the chemical and physical properties.

A generic molecular dynamics scheme is shown below.

• Read the specific parameters such as tem-

perature, number of particles, density, micro

time step, number of time steps (nstep), etc

..., necessary to run the simulation.

• Initialize positions and velocities and com-

pute initial forces of atoms.

• Loop n=1,2 ..... until nstep.

1. Integrate equation of motion for each

atom.

2. Compute force on each atom.

3. Compute the measured quantities.

4. Compute new time–step. Go back to 1.

• Calculation of the thermodynamical, statical

and dynamical properties from atom trajec-

tories.

End of simulation

Yes

No

End

Read
Initial parameters

Initial positions and velocities

Start simulation

Force computation

r
n+1

i
= r

n

i
+ ∆t v

n

i
+

∆t2

2
a

n

i

w
n+1

i
= v

n

i
+

∆t

2
a

n

i

v
n+1

i
= w

n+1

i
+

∆t

2
a

n+1

i

The next sections will provide a closer view to each aspect of the molecular dynamics

approach explained above.
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1 The Molecular Dynamics Method

1.3 Initialisation

Before starting any molecular dynamics simulation, it is neccessary to assign a set of initial

configurations, i.e. a starting point for each atom i in the system at time t = 0. It must

be done carefully since this could influence the quality of the simulation. There are many

ways to do this depending on the features of the simulated model. In the case of solids,

they are usually taken either from experimental structures or from positions which result

from a previous simulation whenever the number of atoms between simulations remains

constant. However, the most common method is to simply generate the crystal lattice by

placing the particles in their ideal initial positions [64].

Figure 1.2 2 shows three typical types of crystal structures, e.g. Simple Crystal (SC),

Body–Centered Cubic (BCC) and Face–Centered Cubic (FCC) whereas Figure 1.3 3 de-

picts the configuration of the atoms in the plane 〈111〉 for the same structures.

Figure 1.2: Some typical Bravais lattices structures for cubic crystals. (a) Simple Cubic (b)
Body–Centered Cubic structure (c) Face–Centered Cubic structure. The lattice pa-
rameter is denoted by a which represents the length of one of the edges of the cell.
It serves to define the unit cell of a crystal lattice.

The Simple Cubic Crystal (SC) consists of one particle placed on each corner of the cube,

see figure 1.2 (a). Then, each particle is shared between eight adjacent cubes and hence,

the unit cell (UC) contains in total one atom, i.e. UC = (1/8) ∗ 8 = 1. The simple cubic

system has a low density. As a consequence this is a high energy structure and therefore

is rare in nature [77,96].

The Body–Centered Cubic structure (BCC) is typical in elements such as Li, Na, K, V,

Cr, Rb, Fe, Nb, Mo, Cs, Ba, Eu and Ta. It has one atom in the center of the unit cell

in addition to eight other atoms on each corner of the cube. It has in total two atoms

per unit cell UC = (1/8) ∗ 8 + 1 = 2. A primitive cell is used in solid state physics for

describing the crystal structure. It is the minimum cell corresponding to a single lattice

point of a structure with translational symmetry. The primitive vectors a1, a2 and a3

2This figure was taken from the web–side http://en.wikipedia.org/wiki/Cubic crystal system
3This figure was taken from the web–side http://physchem.ox.ac.uk/rkt/tutorials/surfaces/solids.html
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1.3 Initialisation

Figure 1.3: This figure illustrates again the same lattices structures as in the previous figure, i.e.
Simple Cubic, Body–Centered Cubic and Face–Centered Cubic. They are depicted
here in the two–dimensional case showing the plane 〈111〉.

are used to define the primitive cell which in the Body–Centered Cubic structure takes

the format

a1 = −a

2
ex +

a

2
ey +

a

2
ez

a2 =
a

2
ex −

a

2
ey +

a

2
ez

a3 =
a

2
ex +

a

2
ey −

a

2
ez

(1.3.1)

in which a is the lattice parameter and ex, ey and ez are a basis which serves to generate

the lattice [77,96].

Finally, a collection of crystalline structures related to Face–Center Cubic (FCC) lattice

for metals are for instance Copper (Cu), Aluminium (Al), Nickel (Ni), Cobalt (Co) and

Silver (Ag). It has atoms placed on the faces of the cube in addition to eight corner

atoms. Therefore, the unit cell is UC = (1/8) ∗ 8 + (1/2) ∗ 6 = 4. The lattice parameter

is characterized again by a. Hence, the primitive vectors a1, a2 and a3 depend on a as

follows

a1 =
a

2
ey +

a

2
ez

a2 =
a

2
ex +

a

2
ez

a3 =
a

2
ex +

a

2
ey

(1.3.2)

In case of defects another possibility is to place the particles as close as possible to the

equilibrium, i.e. the state which we wish to compute. Afterwards a minimization tech-

nique is applied to bring the system to an energy minimun [106].
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1 The Molecular Dynamics Method

It is necessary to assign to each atom in the system a set of initial velocities in order to

start up the simulation. They are usually taken from a random function such as Maxwell–

Boltzmann distribution [64], see Figure 1.5 (c).

Figure 1.4: On the left, James Clerk Maxwell. (1831–1879). In the middle Ludwig Boltzmann
(1844–1906). The right part of the figure shows a Maxwell–Boltzmann common
distribution for initial velocities.

Thanks to the symmetry of the function, negative and positive velocities are equally

probable. Later, the velocities are scaled to the desired temperature following the relation

for each dimension

p (vi) = e

−mv2
i

2kT , i = x, y, z (1.3.3)

Then, the velocities are corrected in order to conserve a zero overall momentum, i.e.

P =
∑

miv
2
i = 0. With that, the translation of the system is avoided [66]. For details,

we refer the reader to [58].

1.4 The Potential Energy Function

Once the atomic interactions are chosen, the material behavior is determined. Therefore,

the development of an accurate interatomic potential and its proper derivation for a

specific material represents the central issue in molecular dynamics. Three basic questions

must be answered to obtain a potential which reflects the physics of the system.

• Computability: how expensive this potential is to compute energies and forces. It

must be as simple as possible but as complicated as it needs to be.

• Accuracy: how many decimal points you ought to believe.

• Transferability: The possibility to obtain sensible results over a range of systems,

phases or configurations.
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1.4 The Potential Energy Function

The general structure of the potential energy function for a system containing N atoms is

divided into terms depending on the coordinates of individual atoms, pairs, triplets, etc,

see [7]. It takes the general format

U(r1, r2, . . . rN) =
∑

i

V1(ri) +
∑

i,j>i

V2(ri, rj) +
∑

i,j>i,k>i

V3(ri, rj, rk) + . . . (1.4.1)

The function Vm, with m = 1, 2, . . ., is called the m–body potential and rN represents

the vector position of the Nth atom. The first term of the equation 1.4.1 indicates the

effect of an external force field on the system where it is immersed such as gravitational

or electrostatic [88]. In practice, this term is usually ignored. The second term V2 shows

pair–wise interaction depending only on the pair separation rij = |ri − rj| between atoms

i and j . The three–body term involves angle–dependent forces whereas four–body term

includes torsion effects.

Interatomic potentials can be deduced from quantum–mechanics theory solving the Schrö-

dinger equation keeping into account the electronic structure [121]. However, quantum–

mechanics is still limited to short scales in time and length, on the order of a few Angstroms

and picoseconds [27]. They obtain an expression of the energy as a function of the nu-

clei position. But hiding the role of electrons and assuming some empirical interactions

giving maximum priority to realism rather than connections with first–principles, several

interatomic potentials have been developed with different levels of accuracy during the

last decade [22]. They allow us to increase the length and time scales for understanding

nanoscale behaviour.

In the following parts of this section we will summarize the main features of some of the

most common potentials, with theirs weakness and strengths. We will start with the most

simple and computationally least expensive pair potentials such as Lennard–Jones, Morse

or Buckingham, to the more sophisticate multi–body potentials proposed by Finnis and

Sinclair [54] or Daw et al. [11,56] in order to capture the electronic structure of real solids.

1.4.1 The Pair Potentials

Figure 1.5: On the left Lennard Jones (1894–1954). In the middle Philip M. Morse (1903-1985).
On the right Edgar Buckingham (1867–1940)
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1 The Molecular Dynamics Method

The simplest choice in order to describe the physics of a system is via pair–potentials which

are represented by the second term V2(ri, rj) in the equation 1.4.1. Higher–order terms, in

the same Equation 1.4.1, do not contribute much compared to pair–interactions and thus,

they are usually neglected in molecular dynamics computations. However, their effects

are included into an effective pair potential V effective
2 in order to reduce computational

cost, such that the potential energy reads

U(r) ≈
∑

i

V1(ri) +
∑

i,j>i

V effective
2 (rij = |ri − rj|). (1.4.2)

As a consequence, this effective potential depends on the temperature, density and other

quantities of the system. From here on, we present several popular pair–potentials. We

will represent them by φ(rij) where i, j = 1, ..., N with i 6= j. N is the number of

neighbouring atoms for atom i, which are usually reduced to the second or third closest

atoms thanks to the introduction of a cut–off radius. This allows us to save computational

demand. A typical pair–wise potential and probably the most commonly used model is

the Lennard–Jones potential. It was proposed by the mathematician Lennard Jones [82].

It is given by the expression

φ(rij) = 4ǫ

[[
σ

rij

]12

−
[

σ

rij

]6
]

. (1.4.3)

The parameter σ scales the length and represents the distance to zero in the potential

function and the parameter ǫ scales the energy of the atomic bonds and indicates the

energy at the minimum in the potential, see Figure 1.6.

The dimension of σ is equal to several Angstroms (Å), in that 1 Å= 10−10 m, whereas

the dimension of ǫ is typically equal to 10−19 . . . 10−18 Joule (J). Sometimes, it is more

convenient to use a smaller energy unit such as an electron volt (eVol), see Apendix D.

The term with power 12 in Equation 1.4.3 dominates at shorter distances and represents

atomic repulsion among atoms that are close each other. When the electronic clouds that

surround the atoms start to overlap, the energy of the system increases abruptly. Never-

theless, the term with power 6 dominates at large distance and represents the attractive

interactions adding cohesion to the system.

The Lennard–Jones potential is derived from the Van der Waals interaction forces. There-

fore, only materials that can be modelled fairly well are the weakly interacting rare gases

such as Argon or Xenon. Despite this limitation, it is widely used for modelling solids,

liquids or clusters when the main purpose is to study a general class of effects and not

any particular potential’s feature. Due to their simplicity, two body potentials provide

a short computing time and the advantage of being easy to deal with them due to the

few parameter involved for describing materials. The derivative of the Lennard–Jones

potential φ(rij) with respect to the vector distance ri of atom i provides the forces acting

on i
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Figure 1.6: Lennard–Jones potential and Harmonic potential (dashed line). Note that the Har-
monic potential is a suitable approximation when the particles are around the equi-
librium position.

F i = −∂φ(rij)

∂ri

=
48ǫ

σ

[(
σ

rij

)13

−
(

σ

rij

)7

0.5

]
rij

rij

. (1.4.4)

A second pair potential is the Morse potential used for describing the covalent bond

proposed by Philip M. Morse in 1929, see [94]. It is given by the expression 1.4.5 in terms

of the lattice parameters r and r0 and the further fitting constants ǫ and α

φ(rij) = ǫ

[
e
2α

“

1− rij

r0

”

− 2e
α

“

1− rij

r0

”

]
. (1.4.5)

Again, the first term dominates the atomic repulsion at small distances between atoms

and the second term governs the attraction at large distances. As can be seen in figure

1.7 the Morse potential has the same curvature as the Lennard–Jones potential at the

bottom for α = 6 but a harder repulsion at large distances [125].

From the computational viewpoint this potential is more expensive than the Lennard–

Jones potential due to the exponential term but more realistic for simulating certain

materials. The corresponding force can be expressed as

F i = −∂φ(rij)

∂ri

= 2ǫα

[
e
2α

“

1− rij

r0

”

− 2e
α

“

1− rij

r0

”

]
rij

rij

. (1.4.6)
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Figure 1.7: On the left, the Buckingham, Morse and Lennard–Jones potentials. The value α
chosen to bring the Morse potential to the same equilibrium distance r0 = 0.286 nm
as the Lennard–Jones is α = 6. For the Buckingham potential the corresponding
parameters are A = 1

2 − ǫ, B = σ6, α = 3
1

2
−ǫ

and α = 6. On the right the derivatives

of the same potentials are displayed. Note that the minimun of the potential energy
functions coincide with the state where the forces render a value equal to zero.

Another popular pair potential is the Buckingham potential, defined by the physicist

Edgar Buckingham as

φ(rij) = Ae
α

“

1− rij

r0

”

− B

r6
ij

, (1.4.7)

with the force acting upon i

F i = −∂φ(rij)

∂ri

=

[
Aα e

α
“

1− rij

r0

”

− 6B

r7
ij

]
rij

rij

. (1.4.8)

The repulsive part of the curve comes from the exponential term in the function. The

attractive part derives from the r6
ij term and is a response to the dispersion forces some-

times called Van der Waals attraction. A drawback of the Buckingham potential is that

it becomes strongly attractive at short distances. Keep in mind that the parameters for

pair potentials are often derived by fitting the calculed lattice energy at zero temperature

to the crystal sublimation energy [116].

The above–mentioned potentials 1.4.3, 1.4.5 and 1.4.7, are nonlinear functions of the

radius rij. Therefore, it is sometimes useful to use the so–called harmonic potential (refer

back to Figure 1.6). The mathematical formula reads

φ(rij) = a0 +
1

2
k (rij − r0)

2 , (1.4.9)
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where a0 is a constant parameter, r0 is the equilibrium position and k represents the

spring constant which has the following connection to the parameters ǫ and σ for the case

of Lennard–Jones potential

k =
24ǫ

σ2

[
26 · 2−14

6 − 7 · 2−8

6

]
. (1.4.10)

The Cut–off Radius of the Potential Function

An important issue related to compute the internal forces arises due to the imposition

of the truncation in the potential functions, Equations 1.4.3, 1.4.5 or 1.4.7. Taking into

account the interactions of each current atom i with all others in the system, the computa-

tional demand required is (N2−N)/2 where N is the number of atoms in the model. This

can be very expensive even for systems with a small number of particles. Therefore, in

practical simulations the introduction of a cut–off radius allows us to reduce significantly

the computational effort. The main idea consists of imposing a maximum value of the

modulus of the radius vector. Thus, the sum over all the atoms in the body is replaced

by interaction only with its nearest neighbours and the number of terms involved is re-

duced to nN/2, with n being the number of atoms into the cut–off radius. The truncated

potential can be written as follows

U(r) =

{
V (r) r ≤ rcut-off

0 r > rcut-off
(1.4.11)

In others words, if the interatomic distances are greater than a certain value, the inter-

actions are simply set to zero. However, it produces a break in the continuity of the

potential function at the cut–off separation causing a small step in the energy function

as atoms move in and out of the cut–off. This has two consequences. On the one hand

it can lead to large fluctuations in the energy during the simulation, i.e. a distortion

could arise in the conservation energy. On the other hand, the interactive forces between

the atoms are also affected producing anomalous structural features [39]. Although these

effects do not cause much disturbance because the cut–off is chosen to make the jump in

the energy and force extremely small, a factor fc can be introduced to assure continuity in

the truncated potential as following V (r) = fc(r) V (r). This provides a smooth transition

as can be seen in Figure 1.8.

This truncation function may be applied to any potential energy function. For instance all

that is required is to add two terms. See the equation 1.4.12 for the case of Lennard–Jones

potential.

φ(rij) = 4ǫ

[[
σ

rij

]12

−
[

σ

rij

]6
]

+ αrij + β rij < rcut−off , (1.4.12)

where α and β are the constants to be fitted. Firstly, α is derived so that the force at

the cut–off radius is zero. β is than chosen so that the potential function is zero at the
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Figure 1.8: The Lennard–Jones and Lennard–Jones shifted potentials. Note how the value of shifted
potential is 0 when r = rcut−off , in this case rcut−off = 2r0 = 0.5720 nm, being r0 = 0.286

nm fitted to Aluminium.

cut–off [39]. This is refered to the shift cut–off method, see [15]. The are many other

ways to obtain a shifted force function and assure a smooth transition, but this is the

simplest method. In the next section another example of truncation function fc is shown.

Another possibility is the Switch cut–off method which conserves the usual form of the

potential function until a value is leaded until zero. The setback to this method is that it

suffers from strong forces perturbing the equilibrium.

1.4.2 Many–Body Potentials

The idea behind many–body potentials is to introduce the higher–order terms of the po-

tential function 1.4.1 and thereby incorporate more detailed information about the bonds

among atoms. Essentially, they attempt not only to consider the simple distance between

two neighbour atoms, but also capture its local environment accounting for the bond

formation, their topology and spatial arrangement [85]. They are typically used in simu-

lations of solids and complex molecular structures.

Some traditional formulations to express many–body interactions have been suggested e.g.

by Stillinger and Weber [124]. They provide a good description for materials in order to

model covalent bonds in silicon’s diamond crystal structures. They proposed a potential

with two– and three–particle terms as

φ(1 . . . N) =
∑

i,j

V2(i, j) +
∑

i,j,k

V3(i, j, k)

=
∑

i,j

ǫf2

(rij

σ

)
+
∑

i,j,k

ǫf3

(ri

σ
,
rj

σ
,
rk

σ

)
, (1.4.13)
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1.4 The Potential Energy Function

where ǫ and σ are introduced here to make the potential dimensionless, see also [116].

The two–body term was discussed in the previous section. The three–particle interaction

are deduced from the equation

f3

(ri

σ
,
rj

σ
,
rk

σ

)
= h (rij, rik, θjik) + h (rji, rjk, θijk) + h (rki, rkj, θikj) , (1.4.14)

with

h (rij, rik, θjik) = λe

(
γ

rij − a
+

γ

rik − a

)
(

cos (θjik) +
1

3

)2

. (1.4.15)

Here, θjik represents the angle between the vectors rij and rik. The potential parameters

are γ and λ. The function h is computed when the length of the vectors are smaller than

the cut–off considered and it is zero otherwise. The drawback of this description is that it

cannot be applied for non–tetrahedral crystals. Moreover, it does not provide the crystal

cohesive energy [116].

Another popular many–body potential was proposed by Tersoff [132, 133]. This is also

widely used for modelling silicon and other covalent materials. The potential function has

the appearance as if it would be a pair potential

E =
∑

i

Ei =
1

2

∑

i6=j

Vij, (1.4.16)

where Vij takes the format Vij = fc(rij)aij fr(rij) + bij fA(rij). E is the total energy con-

sisting of the pair contributions. There are two parts that can be distinguished in this

equation which are an attractive part described by fA(rij) and a repulsive part repre-

sented by fr(rij). Both forces are approximated by exponential functions as for the Morse

potential equation 1.4.5.

fr(r) = Ae−λ1r

fA(r) = −Be−λ2r (1.4.17)

fc(r) =






1 r < R − D

1
2
− 1

2
sin
[π(r − R)

D

]
R − D < r < R + D

0 r > R + D

where fc(r) is a suitable function which confines the interaction within the cut–off radius

considered. A and B are constants and aij and bij are bond order parameters, see Se-

lezenev et al. [116]. The Tersoff potential is widely used for a wide range of models. But,

it is not easy to parameterize in the angular part. A large number of empirical parameters

are needed.

To complete the bibliography we refer the reader to the potential function suggested by

Finnis and Sinclair [53,54]. A review pertaining to these potential functions was done by

Carlsson [25].
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1 The Molecular Dynamics Method

The Embedded Atom Method (EAM)

The embedded atom method (EAM) is currently the popular choice for modelling metallic

systems. The embedded atom method overcomes the lack of information which arises by

using only pair–potentials adding an extra term to embed an atom in the background

electron density of its neighbours. Thus, it requires more computational work than using

only a standard pair–potential function. In the embedded atom method proposed by

Foiles, Baskes and Daw [10,11,56] the energy is typically given in the form

Etot =
∑

i

Ei =
∑

i

[
Fi (ρi) +

1

2

∑

i6=j

φ (rij)

]
. (1.4.18)

Here, Fi (ρ̄i) specifies the embedded energy function of atom i in the environment with

the local electron density ρ̄i =
∑

j ρj (rij) created by the electrons of all other atoms

of the system. The distance rij between atoms i and j and φ (rij) is the pair potential

function describing the short range nuclear repulsion. Again, φ (rij) and ρj (rij) are a

short range function with a cut–off distance limited to the first few neighbours. The

EAM has performed particularly well to model phenomena such as crack growth [11],

grain boundary structure and diffusivity [99].

1.5 Integrator

Due to the deterministic character of the equations of motion and the complicated nature

of the potential energy since it is a function of the positions which constitute the system,

no analytical solution can be found. Therefore, once the initial positions, velocities and

forces at time zero are fixed it is necessary to apply approximate numerical methods.

They yield the trajectories of the particles in the system and predict the new atom po-

sitions, velocities and forces at any time in the simulation and bring the system in the

desired equilibrium. In this section, we will undertake this problem presenting different

algorithms.

Before choosing which algorithm must be used, it should satisfy some fundamental re-

quirements and criteria in order to be a good numerical method for the simulation of the

system. One of the best general references is [58].

• Accuracy: how accurate is the description of the atomic motion.

• Stability: how well it conserves the system’s energy, momentum, angular momentum

and temperature while avoiding the fluctuations on them.

• Simplicity: How easy it is to write the computer code for the system.

• Speed: how fast it calculates the atomic motion and the interactive forces.

• Economy: how many computing resources, e.g. memory, are neccessary to memorize

positions, velocities, forces.
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1.5 Integrator

There are several established numeric schemes for integrating the equations of motion.

The common algorithms are the Euler, the Verlet, the Leap–Frog , the velocity–Verlet

and the Gear or Beeman algorithms. Several of these schemes are described here with

more detail.

Verlet Algorithm

Maybe, the most commonly used group of integration algorithms among molecular dy-

namics programmers are the different versions of the Verlet algorithm. There are three

forms, attributed to Verlet [138,139], which differ slightly in their usefulness but are still

essentially equivalent in accuracy and stability. We concentrate here only on the Ver-

let and the velocity–Verlet algorithm, that is used for the simulations performed in the

present work. It is derived by using a Taylor expansion of the position variable r of the

particles around some moment in time tn. We take the previous (tn − ∆t) and subsequent

(tn + ∆t) times steps

r (tn + ∆t) = r (tn) + ∆t ṙ (tn) +
1

2
∆t2 r̈ (tn) +

1

6
∆t3

...
r (tn) + O

(
(tn)4) .

r (tn − ∆t) = r (tn) − ∆t ṙ (tn) +
1

2
∆t2 r̈ (tn) − 1

6
∆t3

...
r (tn) + O

(
(tn)4) .

(1.5.1)

Here, ṙ represents the velocities of each atom in the system. r̈ is the acceleration and
...
r the

third derivative of the position. Finally, O
(
(tn)4) is the error of fourth–order introduced

into the integration of the equations of motion. The ∆t is the length of the time step used

for the numerical integration which relates two close steps in the simulation, see Figure

1.9.

tn−2 tn−1 tn tn+1 tn+2

∆t

Figure 1.9: Time–step length ∆t between two consecutives steps in a molecular dynamics simulation.
A typical time–step size used in numerical integration is set to 10−14 . . . 10−16 seconds.

Adding these two equations together yields the update formula for the positions as

r (tn + ∆t) + r (tn − ∆t) = 2r (tn) + ∆t2r̈ (tn)2 + O
(
(tn)4) , (1.5.2)

and arranging into a more conventional format renders

r (tn + ∆t) ≈ 2r (tn) − r (tn − ∆t) + ∆t2r̈ (tn)2 + O
(
(tn)4) , (1.5.3)

23



1 The Molecular Dynamics Method

which is the basic form of the Verlet algorithm. The Equation 1.5.3 is correct except for

errors in the order of O
(
(tn)4) which represents fourth–order and higher terms in the

Taylor expansion. If the velocities are needed to estimate the kinetic energy, they can be

derived by subtracting these two original Taylor series, i.e. Equations 1.5.1 giving

ṙ (tn) =
r (tn + ∆t) − r (tn − ∆t)

2∆t
+ O

(
(tn)2) . (1.5.4)

The velocities are subjected to errors of order O
(
(tn)2). A better way to use the Verlet

scheme is to implement the velocity–Verlet variant, see examples of application in [105,

128]. Mathematically this is equivalent but from a computational viewpoint it is superior,

with a higher precision. Moreover, the handling of the velocities is better than in the other

forms of the Verlet algorithm. The velocity–Verlet algorithm stores particle coordinates,

velocities, and accelerations at the same time. It takes the form

rn+1
i = rn

i + ∆tvn
i +

∆t2

2
fn

i .

vn+1
i = vn

i +
∆t

2

[
fn

i + fn+1
i

]
.

(1.5.5)

We will reiterate the sequence of the velocity–Verlet algorithm for understanding facilities,

see Table 1.1.

Loop over the number of total time steps

1. Compute new positions

rn+1
i = rn

i + hvn
i +

h2

2
fn

i

wi = vn
i +

h

2
fn

i

2. Compute new forces

fn+1
i =

∑

j 6=i

fn+1
ij

3. Compute new velocities

vn+1
i = wi +

h

2
fn+1

i

5. Compute new time-step. Go to 1.

Table 1.1: Sequence of implementation of the velocity–Verlet algorithm. On the right the French
physicist Loup Verlet (1931–).

Starting with the initial conditions of the positions and velocities, one can calculate the

initial forces. The new positions are computed at the full step. Then, the velocities are
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1.5 Integrator

calculated at mid–step. The new forces are obtained thanks to the new positions. In

the end, the complete computation of the velocities can be done at the full step. The

implementation is also described graphically in figure 1.104

Figure 1.10: Illustration of the velocity–Verlet integration scheme. The initial conditions are given by the
positions ri, velocities ṙi and forces r̈i at time t. In the first step the new positions at time
t + ∆t are computed. In the second step at time t + ∆t

2
the velocities are calculated. Then,

the new forces acting upon the particles at their new positions are determinated after a full
time step t + ∆t. In the closing fourth step the new velocities ṙi(t + ∆t) are realized.

This allows the calculation of coordinates and particle velocities in one time step. How-

ever, it also requires the accelerations to be stored in the computer since the velocity

vector must be computed in two steps. Despite this drawback, it is a very compact algo-

rithm and easy to program. Due to its time reversibility it conserves the energy very well

avoiding excessive drift.

Alternative more sophisticated algorithms are the Beeman and the predictor–corrector

Gear schemes. They are more accurate due to a higher order of ∆t. Therefore, they

reduce the error in the integration and present fewer fluctuations in the total energy

compared to the above–mentioned algorithms. However, they require a large amount of

computer memory due to the large time needed to bridge the simulation until the desired

equilibrium state. For more details see for example [58,137].

Verlet Neighbour List

In order to reduce the computational demand, Verlet conceived a technique called the

Verlet neighbour list [138, 139]. This method consists of creating a list for each particle

with its neighbours that are inside a radius rlist bigger than the rcut-off, see Figure 1.11.

4This figure was taken from the work pursued by Nicholas Thomas Wilson in the web–side

http://nickwilson.co.uk/research/bham.ac.uk/PhD/node28.html1084
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1 The Molecular Dynamics Method

Rcutoff

Rlist Rlist

Rcutoff

(a) (b)

Figure 1.11: Verlet neighbour list to the force calculation in a molecular dynamics simulation. For clarity,
the situation in two dimensions is shown. The white and red particles inside the dashed
circle constitute the neighbours of Verlet List (figure a). The same particles after a certain
number of steps (figure b). The list must be reconstructed before the particles in blue have
entered in the cut–off sphere (dashed circle)

Instead of evaluating distances between each particle and the rest of N − 1 particles, the

method checks the distances only among the particles included in this list. The neighbour

list will be reconstructed after a certain number of steps. In low–temperature solids, where

the particles do not move too much in two consecutive time steps, it is possible to carry

out a simulation with only a few updates or even any at all. Nonetheless, simulations

of liquids normally need to be updated more frequently. A typical value of ∆r is set to

∆r = rlist − rcut-off ≈ 1.5 Å [7]. In summary, a small ∆r needs frequent updates of the

list. On the contrary a large ∆r renders large lists and thus more computations. The

time saving is significant for systems between 500 and 5000 particles. For systems with

more than 5000 particles, there are other techniques as a link–cell–list which is used in

conjunction with the Verlet list, see [7]. In this work, where velocities are considerably

low, we will take a radius rlist = 1.1 rcut-off. That allows us to perform the simulation

saving computational time.

1.6 Choice of the Micro Molecular Dynamics Time–Step

The election of the optimum time step ∆t in molecular dynamics is clearly one of the

crucial or rather delicate tasks that can lead to the success of the simulation since the

propagation of the equation of motion is calculated in discrete intervals of time. The time

step affects the evolution of the errors during the simulation [48]. Two criteria must be

followed, see Liu et al. [88] and Bishop et al. [15].

• The time step should be short enough relative to the time it takes for the whole

simulation, so that the simulation of the system is realistic and the accuracy of the

algorithm increases.
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1.6 Choice of the Micro Molecular Dynamics Time–Step

• The time step should be made as long as possible, so that increment in time permits

longer simulations, increasing the efficiency.

Unfortunately, there is not a fixed criterion or equation to choose ∆t. One possibility

is that the time scale is normally determined by calculating the maximal oscillation fre-

quency of the crystal, which correspond to the Debye frequency [60].

F −F

x1 x2

r

Figure 1.12: Example of interaction between two atoms described via the Lennard–Jones po-
tential in the one–dimensional case.

Let’s suppose two particles with the same mass in one–dimension, see Figure 1.12. These

particles interact via the Lennard–Jones potential, equation 1.4.3 with interatomic dis-

tance r. We assume that they oscillate close to the equilibrium separation r0 with very

small amplitude. Then, the objective is to obtain the value r0, which results from condi-

tion dr φLJ

∣∣∣
r=r0

= 0. The first derivative of the Lennard–Jones potential with respect to

the separation distance r must be zero at the equilibrium position r = r0. The derivative

of the Lennard–Jones potential takes the format

dφLJ

dr
= −24ε

σ

[
2
[σ
r

]13
−
[σ
r

]7]
. (1.6.1)

We then obtain the searched value of the equilibrium distance related to the parameter

σ, i.e. r0 = 6
√

2σ. As we have mentioned above, we suppose that the particles oscillate

around r0, with harmonic motion. Then, the Harmonic potential energy and its first

derivative can be expressed as

φHP = a0 +
1

2
k (rij − r0)

2 , (1.6.2)
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dφHP

dr
= k rij, (1.6.3)

extending until the second derivative in the harmonic and Lennard–Jones potentials in

order to calculate the parameter k results

d2φHP (rij)

d2r

∣∣∣∣∣
r0

= k

d2φLJ(rij)

d2r

∣∣∣∣∣
r0

≈ 72ǫ

r2
0






⇛ k =
72ǫ

r2
0

. (1.6.4)

Here, we reiterate the equation of motion of atoms i and j using the gradient of the

Harmonic potential

mr̈i = −k rij.

mr̈j = −k rji.
(1.6.5)

Subtracting these two equations and taking into account that rij = −rji yields

m(r̈i − r̈j) = −2 k rij, (1.6.6)

which is the classical equation of the simple harmonic oscillator. The general solution is

given by

r(t) = A cos(ωt + δ), (1.6.7)

where A is the amplitud and δ is the phase. They are determined by the initial conditions.

Solving this equation results in

ω =

√
k

m
=⇒ ω =

√
72ε

mr0
2
, (1.6.8)

where ω is the sought characteristic frequency of the oscillations that gives us a criterion

for selecting the time step. ω is also called Debye frequency ωD. The time step ∆t in the

Verlet algorithm is usually chosen to be 10 or 100 times shorter than the period of the

highest frequency vibration in the simulation [32].

∆t = 0.1 ÷ 0.01 · ωD
−1 (1.6.9)

In order to control the proper choice of the time step others authors, such as Heer-

mann [66], recommends that the fluctuations in the total energy should not exceed a

percentage of the fluctuations in the potential energy. On the other hand, Gibson et
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1.7 Boundary Conditions

al. [60] states that the forces must not vary by too large a fraction of itself in one time

step. Some practical examples for choosing the time step may be found in the works

pursued by Gumbsch et al. [61] and Vitek and Egami [141].

For this work a constant time step is implemented as usual in molecular dynamics but it is

possible to use a variable value of the time step to improve the efficiency of the simulation

adapted to the required problem as Liu and co–workers proposed, see [88].

1.7 Boundary Conditions

Due to the limitation of the speed of execution in any molecular dynamics program and

the prohibitively computational demand required for a large size model, the simulations

are usually performed only for a few number of atoms far away from a macroscopic piece

of matter. Therefore the imposition of periodic boundary conditions is a clever trick (and

also the most popular choice) which enable us to perform a finite relatively small system

acting as if it would be an infinite region in size. Figure 1.135 on the left illustrates the

basic idea of periodic boundary conditions (PBC).

Figure 1.13: On the left the Figure shows Periodic boundary conditions. The center box is shown
with its first periodic images. The circle round molecule in red is the cut–off ra-
dius. On the right the figure shows rigid boundary conditions. The black atoms are
considered as constrained atoms while the white circles are considered as uncon-
strained particles.

With periodic boundary conditions, one removes the negative surface effects that arise.

This is done because the atoms near the boundary have fewer neighbours than the atoms

placed inside. The idea is to enclose the particles in a central box and replicate in all

directions filling the whole space [39,66]. Thus, every particle in the cube has a duplicate

in each surrounding cell. Furthermore, if an atom leaves any face of the box, another

atom immediately emerges from the opposite face replacing it. This ensures that the

5This figure was taken from internet under http://www.compsoc.man.ac.uk/ lucky/Democritus/Theory/pbc-

mi.html
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1 The Molecular Dynamics Method

atoms can move in all directions without encountering a fixed boundary and the number

of atoms are conserved. In addition, the atoms close to the boundary not only interact

with their neighbours inside, but also with their images in the nearby boxes. Surface

effects have also been removed from the modelled system. This method simplifies the set

up of molecular dynamics and is therefore commonly used, see [7, 48].

Other possibilities are to simulate a system without imposing any boundary conditions

[137]. This kind of test is only valid for cluster simulations in which the evolution of a

number atoms are followed without any surface restriction. However, we will use in our

case another kind of boundary conditions, the fixed boundary conditions. This surrounds

the perimeter of the cell and does not allow atoms to cross the cell. They assure that the

atoms in the middle (white circles), see figure 1.13 on the right, have a complete set of

interatomic neighbours. Therefore, the rigid boundary must have a width at least greater

than the cut–off radius used to compute the interactive forces. Rigid boundary conditions

are normally used when one wants to limit the degrees of freedom of the system.

1.8 Errors in Molecular Dynamics

The errors in a molecular dynamic simulation appear due to the propagation of the equa-

tions of motion that are calculated in discrete intervals of time ∆t using finite differ-

ence [48,64]. Two kinds of errors can be distinguished:

• Truncation errors: they are related to the accuracy of the finite difference method

and how close the solution obtained by the finite difference method is to the real

solution. They are associated to the first non–zero term omitted on the Taylor

series necessary to deduce the finite difference. Therefore, higher order methods

have smaller truncation errors.

• Round–off errors: they refer to the implementation of the algorithm and the number

of digits retained in the calculations.

Both errors are related to the time step (∆t). If ∆t is very large, the truncation errors

dominate. Therefore, it can be reduced by decreasing ∆t. On the other hand, the round–

off errors also decrease with ∆t but at a slower rate. Therefore, they dominate at small ∆t

but the problems arise because the number of calculations required to reach the desired

equilibrium increase and hence, the global round–off error. A very small time step requires

large simulations and long scale process although the accuracy of the integration increases.

A long time step allows longer simulation time decreasing the accuracy. For this, a

compromise must be found.

1.9 Molecular Dynamics at Constant Temperature

The first simulations were performed for systems where the energy is a constant in time

for a given boundary conditions. This statistical ensemble is called the microcanonical

ensemble (NVE) where the number of particles N , the volume V and E are kept constant.
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However, to broaden the applicability of molecular dynamics it is often interesting to per-

form simulations for studying the behaviour of systems in other ensembles, for example

systems where the temperature and/or the pressure are maintained constant [13], rather

than keep constant the energy and volume.

Here we concentrate on the so–called canonical ensemble (NVT) where the number of

particles N , the volume V and temperature T are maintained constant. Several methods

have been proposed and applied to impose these constraints. The simplest form em-

ployed in molecular dynamics, but adequate for the purpose of obtaining the required

temperature, is the temperature scaling or also called velocity scaling. The idea consists

of driving the simulation towards the prescribed temperature by multiplying the velocity

of every atom by a factor of λ =
√

Treq

T (t)
until the prescribed value has been achieved.

Treq is the required temperature and T (t) is the instantaneous temperature. The method

usually tries to correct the temperature rescaling as infrequently as possible to minimize

the influence on the trajectories of the atoms at regular intervals during the equilibration

period. However, rescaling in every step in order to keep the reference temperature was

carried out for instance by Woodcock [149] or Evans [50].

There are some other sophisticated approaches for controlling temperature or pressure in

a simulation without having such drastic effects on the molecular motion. These meth-

ods include e.g. the Berensen thermostat [13], Andersen thermostat [8] and Nose–Hoover

thermostat [72,100], where the system is coupled to a heat bath that imposes the desired

temperature. For a general overview we refer here to [58].

1.10 Evaluation of Physical Properties

Molecular Dynamics generates the phase–trajectories of a set of atoms in time. In order to

run a molecular dynamics simulation it is necessary to arrange a number of steps. So far we

have explained how the initial coordinates and velocities were chosen. We also described

several potential functions and the numerical method needed to start up the simulation.

Then, during the simulation there is a period called the equilibration process in which

the system is periodically scaled to reach the desired state. Afterwards, the simulation

continues several times (production phase) where the coordinates and velocities of every

single particle are saved. That can take several pico–seconds to nano–seconds. It is during

this period where the molecular dynamics simulation provides a huge amount of data at

the atomistic scale which should be extracted and interpreted. Here is where statistical

mechanics comes into play [51, 73]. It provides the theoretical basis to draw observable

macroscopic features from microscopic information. The properties can be divided in

thermodynamic, static and dynamic. Thermodynamic time dependence properties such

as pressure, energy, etc. can be displayed graphically. One axis corresponds to time

and the quantity of interest is monitored in the other axis. Structural properties can

be evaluated using some quantities as mean–square displacement or radial distribution

function. Finally, molecular dynamics allows us to directly compute dynamic properties
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1 The Molecular Dynamics Method

such as the velocity autocorrelation function, the diffusion coefficient or the vibrational

state density.

1.10.1 Thermodynamical Properties

In the context of molecular dynamics, macroscopic properties are obtained as time aver-

ages of instantaneous microscopic mechanical properties. For example, the temperature

of the system T , making use of the classic equipartition theorem6, is nothing more than

a quantity of the average kinetic energy given by

〈Ekin〉 =
1

2

N∑

i

miv
2
i =

3

2
NkBT. (1.10.1)

The kinetic energy denoted by Ekin and 〈Ekin〉 represents the kinetic energy time aver-

age. N is the number of atoms included in the system and kB is the Boltzmann con-

stant7. Adding this measure to the potential energy U we may deduce the total energy

E = U + Ekin.

The average pressure p is estimated by the virial theorem, which connects kinetic and

potential energy by

pV = NkBT + 〈W 〉 , (1.10.2)

where 〈W 〉 =
1

3

〈
N∑

i

ri · F i

〉
is known as the virial of the system, ri being the position

of particle i and F i the forces upon i. Other important Thermodynamical quantities are

for instance the specific heat or entropy. We refer the reader to [58].

1.10.2 Structural Properties

Radial Distribution Function

The radial distribution function (RDF) or commonly written as g(r) is a function to reveal

the atomic structure of the simulated system defined by [7,90]

g(r) =
n(r)

4πρr2∆r
, (1.10.3)

6The equipartition theorem was proposed initially by James Clerk Maxwell and broaden later by Lud-

wig Boltzmann. It states that in an equilibrium system, its internal kinetic energy will distribute

itself evenly and each component of the average kinetic energy contribute in the same way to the

temperature.
7The Boltzmann constant kB , named after the physicist Ludwing Boltzmann, is a physical constant

relating temperature to energy. Its value is kB = 1.38062 · 10−23Joule/K = 8.617380 · 105eV ol/K

32
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in which ∆r is the width of a shell at distance r and n(r) is the mean number of atoms

in this shell. The radial distribution function is basically a measure to describe how the

atoms are packed around each other, i.e. it is proportional to find two atoms separated by

distance r. The technique consists of constructing a number of concentric spheres (circles

in two dimensions ) with the same width ∆r around a chosen atom i, see Figure 1.14.

r

∆r

Figure 1.14: Schematic representation of constructing the radial distribution function. For the
sake of representation a two dimensional case is depicted. ∆r represents the
width of a shell at distance r.

In each shell the number of atoms are counted and stored in the course of the computation.

In the end, the average number of atoms contained in each shell is calculated according

to the equation 1.10.3. The radial distribution function is usually displayed against the

separation distance r. In a solid, the atoms are placed in certain cells repeated infinite

times in each direction of the lattice. Then, the probability of finding an atom at these

distances is very high, whereas in those distances that they do not coincide with these

positions the probability is very low. Therefore, the function g(r) will have narrow peaks

separated by regions near zero. These peaks appear with regularity in the function of

radial distribution. In liquids, g(r) shows an alternation between maximum and minimum,

but when the separation distance r increases g(r) is getting plane and constant, more

and more like a gas. In gases, the particles are dispersed and in continuous movement.

Consequently, the probability of finding the particles in some place is uniform within the

simulated box, i.e. is the same for any distance. Therefore the function g(r) is constant.

Practical examples can be found in [39].

The Mean–Square Displacement (MSD)

In order to check the behaviour of the atoms in our simulations, Haile [64] offers a tool

for monitoring the evolution of a quantity, called the mean–square displacement, for

distinguishing a solid from other phases. The mean–square displacement at time t is

given by
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(∆r)2 (t) =
1

N

N∑

i

[ri (t) − ri (0)]2 , (1.10.4)

where N is the total number of atoms in the system, ri (t) is the position vector of the

ith atom at time t and ri (0) represents the position vector of the same ith atom but at

time t = 0, i.e. the initial configuration.

A plot is constructed of the average square displacement for all particles versus time. In

a solid one should expect that the mean–square displacement stays essentially constant.

In a liquid the mean–square displacement versus time should show a linear increase in

(∆r)2 (t) with time.

1.10.3 Dynamical Properties

The Velocity Autocorrelation Function (VAF)

A correlation function correlates values of a property at two different points in space as

well as in time [73]. If we consider the same point in space but at two different times we

define that as the autocorrelation function. In summary, time correlation functions deter-

mines how the value of a property at a given time is related with its value at an earlier time.

One of the simplest known examples of a correlation function is the velocity autocorrela-

tion function (VAF), which measures the velocity of an atom with subscript i at time t

with the velocity of the same atom i at time t = 0. The function is defined by

CV AF (t) =
〈vi (t) · vi (0)〉〈

(vi (0))2〉 . (1.10.5)

The velocity autocorrelation function gives us an idea about the effect of the interatomic

forces on the atom’s motion. The final result of the VAF is an average of all the VAF

computed during the simulation. A typical plot is displayed at the final velocity autocor-

relation function for all particles versus time.

If the VAF figure is almost horizontal, than this reveals that the Newton’s law keeps the

initial state, i.e. the atom’s velocities are the same in the course the simulation. That

implies that very weak forces are acting in the system. If the interactive forces are small

but not negligible, one expects the VAF to decrease gradually revealing the presence of

weak forces, which is typical in gases. However, the density in solids of the system in-

creases because the atoms are packed closely together. The positions of these atoms are

energetically stable and there is a balance between repulsive and attractive forces. There-

fore, the atoms cannot escape easily and they oscillate around these equilibrium positions.

Plotting in this case the VAF reveals a function that oscillates strongly from positive to

negative decaying in time due to perturbative forces and disturbing the oscillatory mo-

tion. In liquids, the interactive forces are much weaker and therefore the VAF may show
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an oscillation before decaying rapidly to zero, see for details [39]. Note there exists oth-

ers parameters to study dynamical properties such as the diffusion coefficient which is

deduced from the mean–square displacement using the Einstein relation. See [34, 62] for

more details.

1.11 Visualization Methods

Some visualization techniques have been developed in the last years. They have the mis-

sion of filtering out the useful information from the amount of data generated during the

molecular dynamics simulation. They also allow us to interpret the atomic configurations

which results for the characterization of defects. These methods are an efficient tool to

assist the statistical mechanics and provide help with understanding the complex phe-

nomena such as dislocations, defects, etc... at the sub-micronscale.

In order to identify crystal defects within the molecular dynamics samples is the energy

method in which the potential energy is monitored. It allows to delve into the material

to discover imperfections in the lattice. This method only displays the atoms which po-

tential energy go beyond a certain threshold. That reduces the exhibited atoms for visual

facilities. That is used for example in the works done by Gumbsch and coworkers [61],

Zhou et al. [155] and Gao et. al [23]. It is quite easy to implement but is distorted by the

temperature, i.e. the thermal fluctuations of the particles.

Another avanced method is the centrosymmetry parameter. This construction goes back

to the work of Kelchner et al. [76]. The main idea is to sum the pair opposite vectors of

an atom i and then the square of this sum is added with the rest of neighbours of this

atom i. The centrosymmetry parameter for each atom in the lattice is defined as

ci =
6∑

i=1

|ri + ri+6|2 , (1.11.1)

where ri is vector position of atom i and ri+6 is its opposite neigbour. It gives us an

idea if an atom is close to a defect and can distinguish among differents defects. The

mayor drawback is that the centrosymmetry method can not provide information about

the Burgers vector [22].

Another helpful technique is the so–called slip vector approach introduced by Zimmerman

et al. [157]. It is used as a criterium to study the dislocation nucleation during the

nanoidentation process of a Au crystal. The slip vector of an atom i is defined as

si = − 1

ns

n∑

j 6=i

(
rij − Rij

)
, (1.11.2)

where n is the number of closest neighbours to atom i and ns denotes the number of

slipped neighbours. The relative vectors rij and Rij represent the relative distances be-

tween atoms i and j in the current and initial configuration respectively. Unlike the

35



1 The Molecular Dynamics Method

centrosymmetry parameter the slip vector gives information about the Burgers vector.

Moreover, it is not only limited to symmetric configurations but also to any microstruc-

ture. This technique is only applicable if we have a reference configuration.

Another approach to study structural changes is the near neighbour technique or also

called the common neighbor analysis developed by Honeycutt and Andersen [71]. The

philosophy behind is to analyses the symmetry of the closest neighbours of a certain

atom in any material in order to identify microstructural defects (cores, vacancies, dis-

locations,...). A similar idea was proposed by Wen et al. [148]. They studied cracking

processes of fcc nickel and bcc iron in an atomistic model. In order to identify different

defects during the deformation they suggested a method based on the relative movement

of atoms. They introduced the deformation index (DI) defined by ui = max(|rij − r0
ij|),

where rij is the current relative position between i and j and r0
ij is the initial relative

position between the same atoms. The symbol j refers to the nearest neighbours of atom i.

To analyze atomic structures e.g. phase transitions, some other methods have been pro-

posed such as the local order parameter approach due to Volkov et al. [142], the Voronoi

analysis by Brostow [19] and the pair analysis method by Andersen [65, 71]. A review

comparing and dealing with some of these approaches was done by Da–Qi Yu et al. [41]

and Ju li [83, 84]. Finally, we report that some authors used the virial stress to display

mechanical properties at the nano level, see Appendix B.
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2 On Aspects of the Cauchy–Born
rule and Atomistics

2.1 Introduction

It is well–known that the macroscopic mechanical deformation is a manifestation or rather

a consequence of the interaction and organization of a collection of particles, e.g. atoms

of crystal lattices, in the microstructure. Therefore, the main goal of many research ac-

tivities has been to study the complex behaviour at the nanoscale to understand how and

why materials fail. In order to investigate this subject we need an atomistic informed

model for capturing fine–scale features without exhaustive computational demand. The

popular Cauchy–Born rule is essentially a homogenization technique in the continuum

mechanics that provides an elegant formulation to bridge atomistic processes from mi-

cronscale to macroscale, see Tadmor [129]. This classical but essential rule goes back to

the French mathematician Augustin Louis Cauchy and subsequently generalized by the

mathematician/physicist Max Born, see photos below.

Figure 2.1: Left: Augustin–Louis Cauchy (1789–1857). Right: Max Born (1882–1970)

Cauchy expounded the hypothesis that the atoms displace according to macroscopic de-

formation. He assumed that atomic and continuum motion are the same [28–31,49]. Born

realized that this does not always occur and modified the postulate. Born put forward

that only the skeletal structure of a crystalline lattice is moving according to macrosco-

scopic deformation 1. Then, the internal atoms fit their positions in the lattice in order

to reach the equilibrium [17,18].

The Cauchy–Born rule states that when subjected to a prescribed displacement of its

boundary, all atoms of a single crystal volume will follow this displacement, see Mil-

stein [93], Ericksen [49], Zanzotto [152], Sunyk and Steinmann [127]. We consider the

1We refer here the reader for a deeply explanation of the terms skeletal vs. internal to the work [152]
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2 On Aspects of the Cauchy–Born rule and Atomistics

Cauchy–Born prescription as a constrained atomistic deformation. The Cauchy–Born

rule describes with reasonable accuracy the crystal behaviour as long as the unconstrained

atomistic deformation, as predicted by an atomistic calculation, remains nearly homoge-

neous (even when slightly perturbed). However, this assumption fails when the defor-

mation becomes inhomogeneous. One approach to handle the transition between the

constrained Cauchy–Born rule deformation and an unconstrained lattice statics is repre-

sented by the quasicontiuum approach [118]. Different multiscale methods are compared

by Curtin and Miller [40]. In the above works failure of the Cauchy–Born approximation

is attributed to the magnitude of the deformation gradient.

The main objective of the present chapter focuses on investigating the stability, i.e. the

range of validity of this kinematic assumption restricted to a monatomic crystal with

fcc structure. In other words, we wish to determinate the state when a transition to

non–affine deformation occurs. For this we use the advantages of the molecular dynamics

method to capture instabilities.

The work presented here is organized as follows: Firstly, a short overview over the kinemat-

ics in continuum mechanics is presented for further clarity. Also the first–order Cauchy–

Born rule is introduced. We will summarize the main features of the atomistic failure

criteria needed for the study of the Cauchy–Born rule. Then, we will provide some

numerical results to analysis its failure under different types of deformation comparing

different orientations of the lattice and number of atoms.

2.2 The First–Order Cauchy–Born Rule.

This section focuses on introducing the conceptual idea of the Cauchy–Born rule. We

commence with a short description of the kinematics aspects restricted to classical lattice

statics. That allows us to outline the main features of this standard assumption as well

as the drawbacks involved.

riRi

rjRj

rijRij jj ii

ϕ(X)
C0 Ct

Figure 2.2: Graphical representation of a crystal lattice under homogeneous deformation. C0

and Ct denote the undeformed and deformed crystal lattice configuration. Rij and
rij are the relative distance vectors between the atoms i and j in C0 and Ct respec-
tively.
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2.2 The First–Order Cauchy–Born Rule.

Let us consider a lattice configuration consisting in N interacting particles for a monatomic

crystal, see Figure 2.2. The kinematics are typically represented by the relative distance

vector between two atoms labelled i and j in the crystallite body, i.e. Rij in the material

lattice configuration C0 and rij in the spatial lattice configuration Ct.

Rij = Ri − Rj with Rij = |Rij| , (2.2.1)

rij = ri − rj with rij = |rij| , (2.2.2)

where Ri and Rj are the position vectors of the atoms i and j in the material configu-

ration respectively and ri and rj are the position vectors of the same atoms but in the

spatial configuration.

In continuum mechanics a body is considered as a collection of material points. In this

context, let ϕ(X) denote the non–linear deformation map which relates material points

X in the material configuration B0 to points x = ϕ(X) in the current configuration Bt,

see Figure 2.3.

rijRij

j j

ii

F

ϕ(X)

CtC0

B0 Bt

Figure 2.3: (First order) Cauchy–Born rule for the case of homogeneous deformation. C0 and Ct

denote the undeformed and deformed crystal lattice configuration. B0 and Bt are the
material and spatial configurations of continuum mechanics. The scale transition is
given by the Cauchy–Born rule.

This Figure illustrates a schematic representation of the kinematics of continuum mechan-

ics and the Cauchy–Born rule for the case of homogeneous deformation. The two–point

tensor F represents the local continuum deformation gradient, see upper part of Figure

2.3. It defines a linear tangent map given by
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2 On Aspects of the Cauchy–Born rule and Atomistics

F = ∇Xϕ =
∂ϕ

∂X
. (2.2.3)

The key idea is to imagine an infinite defect free monatomic single crystal subjected to

homogeneous deformation [102]. Under this condition, the Cauchy–Born rule postulates

that the infinite crystal is deformed according to the above local deformation gradient,

Equation 2.2.3. Mathematically speaking, the relative atomic distance rij in the spatial

configuration Ct results from the corresponding relative atomic distance Rij in the material

configuration C0 by the application of the deformation gradient F . Then, the Cauchy–

Born rule is defined as

rij = F · Rij. (2.2.4)

Thanks to the recent rapid advances in computer power and accessibility, molecular dy-

namics simulations have been developed very fast in the last few years. It becomes a

powerful tool for exploring the features of structures, providing an atomically detailed

description at the nanoscale, see [3, 98]. In order to investigate where the use of the

Cauchy–Born rule becomes inadequate, we need to find out when the deformation be-

comes inhomogeneous. Therefore, the introduction of the molecular dynamics method is

necessary for providing a detailed atomistic description. The main goal of this contribu-

tion consists of using the advantages of this numerical simulation technique to investigate

the validity of the Cauchy–Born rule and its transition to inhomogeneous deformation.

The validity of the Cauchy–Born rule has also been studied analytically by Friesecke and

Theil [59] and using the acoustic tensor as a continuum failure criteria by Sunyk and

Steinmann [126].

So far we have introduced some of the essential tools within the continuum mechanics

framework. In the next section, we will focus our attention on explaining in detail the

atomistic failure criterion established to the study of the Cauchy–Born rule’s validity.

2.3 Atomistic Failure Criteria

The Cauchy–Born assumption describes the behaviour of an atomic system within the

range of homogeneous deformation with fair accuracy. However, its major drawback is

that it fails when the deformation becomes inhomogeneous. In other words, the Cauchy–

Born rule is blind to detect nano defects [130]. Therefore, the purpose of this work consists

of investigating the range of its applicability, i.e. find out the state of onset of instabilities.

To this end, the introduction of an atomistic failure criterion is needed. This atomistic

criterion in the sense of molecular dynamics allow us to capture the deformation com-

plexity as well as atomic displacement.

Before explaining the methodology used here for studying the Cauchy–Born rule, let us

start depicting the basic geometry set up for the simulations performed with molecular

dynamics approach. See figure 2.4.
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(a)

(b)

(c)

Figure 2.4: An example of the simulation models for 0 degree in the lattice orientation. The
Figure (a) contains 256 atoms, the Figure (b) has 1024 atoms and the Figure (c)
4096. The black atoms are obliged to obey the Cauchy–Born rule, whereas the
bright atoms are unconstrained.

Without loss of generality, we consider a two–dimensional case of a face centred cubic fcc

crystal for the 〈111〉 plane of a monatomic system, see Figure 2.5. For the sake of simplicity

the lattices with an orientation of 0 degree are shown. Note that the simulations were also

performed to others orientations, 15 and 30 degrees, see Figure 2.6. In the physical domain

two different spatial regions can be distinguished. On the boundary (black circles), the

atoms are constrained and forced to follow the Cauchy–Born rule. They are also used as

boundary condition for the simulation (its distance must be at least the cut–off radius

considered for computing the interactive forces). On the other hand, the atoms inside
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(bright circles) represent the region of interest. This region is formed by 64, 528 and 2997

atoms for the case of 256, 1024 and 4096 atoms in the respectively model.

Figure 2.5: Ilustrative figure of a fcc structure and the plane 〈111〉.

Two types of simulations have been performed in order to compare the accuracy of the

results. They are detailed below.

1. The philosophy of the first type of computations is to study the stability against

small perturbations in the sense of Lyapunov. The simulation procedure is di-

vided in macro steps and micro iterations. In each macro step the Cauchy–Born

rule is prescribed in a predictor step to the whole domain (in the constrained and

unconstrained atoms). Then, a slight perturbation, this is a small initial random

velocities following a Maxwell distribution is given only to the unconstrained atoms

with the purpose of checking if the atoms recover the homogeneous configuration.

Afterwards, a molecular dynamics simulation is performed using the velocity scaling

method. It consists of rescaling the system temperature (velocities) of the uncon-

strained atoms in a proportional manner at regular intervals during the equilibration

period until 0 K temperature [137]. If the instantaneous temperature exceeds a cer-

tain tolerance limit, then the temperature is rescaled. This part of the simulation is

performed in 2000 micro steps. Once the system achieves the internal equilibrium

another macro step or rather a deformation according to the Cauchy–Born rule is

once again applied to the whole domain. With these macro steps and micro molec-

ular dynamic iterations we attempt to check the stability of this assumption, i.e.

find out the point in which this rule becomes inadequate due to instabilities.

2. The second type of simulations were also performed iteratively in macro steps and

micro molecular dynamics simulations. The main difference to the other procedure

is that in each macro step the Cauchy–Born rule is only applied on the boundary

(not in the whole domain). In other words, only the constrained atoms are obliged

to track the Cauchy–Born rule in order to generate deformation. After a macro

step a molecular dynamics simulation is performed using again the velocity scaling

method. An initial perturbation is applied to the unconstrained atoms in order to

forced them to follow the deformation occurred on the boundary. Then, we relax

the system temperature (velocities) in a proportional manner at regular intervals

until a 0 K temperature is reached [137]. In this case the relaxation procedure takes

approximately 4500 micro time steps because of the time necessary to accommodate
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the atoms or rather to bring the system in a new quasistatic position. Once again

a macro step is done. Only the atoms on the boundary are forced to follow the

Cauchy–Born rule. The simulation continues with these macro increments and

micro iterations until the prescribed deformation or the transition to non–affine

deformation is achieved.

The choice of the number of macro steps is a compromise related to the choice of the total

number of molecular dynamics time steps in each macro step (do not confuse with the

micro–molecular dynamics time step ∆t). Given a prescribed deformation, if we select a

large number of macrosteps to achieve this deformation, i.e. the leap between two consec-

utive macrosteps is relatively small, we do not need a large number of molecular dynamics

time steps in order to relax the system. On the contrary, in the case of taking a small

number of macrosteps, i.e. if we choose a relative bigger leap between two consecutive

macrosteps, we are forced to select a large number of molecular dynamics steps in order

to relax the system.

As we have mentioned earlier, the key goal is to study the range where the Cauchy–Born

rule is applicable or in others words, find out the state where the deformation becomes

inhomogeneous. Therefore, the position of each atom i in the lattice of each macrostep for

both types of computations is followed during the ensuing deformation by the molecular

dynamics. We compute the standard deviation 2, denoted by sd, in each macroscopic

deformation step according to the equation

sd =

√√√√ 1

N − 1

N∑

i=1

[
rCB

i − rMD
i

]2
. (2.3.1)

The position rCB
i of the atom i indicates the constrained position in a lattice under the

prescription of homogeneous deformation or rather the Cauchy–Born rule. rMD
i is the po-

sition of the same atom i but in a lattice where the unconstrained molecular dynamics are

considered after perturbation. N represents the number of constrained and unconstrained

atoms in our model. Summarizing, the standard deviation compares the position of each

atom i in our system with itself as if it displaces as an ideal Cauchy–Born deformation.

That gives us an idea about the behaviour of the system during the deformation process.

2.4 On the Validity of the Cauchy–Born Rule in the Two
Dimensional Case. Numerical Results.

In order to investigate the limitations of the Cauchy–Born rule and the transition to non–

affine deformation, several types of deformation such as simple shear, uniaxial extension,

pure shear and dilatation have been performed. Different lattice orientations adopting

the values 0, 15 and 30 degrees were also considered to compare results as visualized in

Figure 2.6.

2See details of the standard deviation in Appendix A
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α α

α

(a) (b) (c)

Figure 2.6: Different orientations of the lattice in two dimensional case for a 〈111〉 plane. The lattice
orientation αo = 0 is represented in the figure a. The orientations αo = 15 and αo = 30 are
shown in figure b and c respectively.

To study convergence (like in the case of mesh refinement) the simulations must be per-

formed with a varying number of unconstrained atoms. The number of atoms which

compose the lattice take the values 256, 1024 and 4096 particles, see Figure 2.4. The

lattice constant r0 in the reference configuration has the value r0 = 0.286 nm and the

cut–off radius rc considered is rc = nr0 with n = 3. That means, that we considered the

atoms included in a circle with a radius 3 r0 as we can see in Figure 2.7. This allows us to

reduce the computational effort (the reasons to choose this cut–off radius are explained

later for each case of deformation).

rci

Figure 2.7: Representation of the cut–off radius rc considered in our simulations that limit the summation
range of the interatomic forces to a domain around the atom i.

For the present work, the Lennard–Jones potential, Equation 1.4.3, is considered for the

molecular dynamics computations. The parameters σ and ǫ, that are fitted to Aluminium

in our computations, are obtained from the table 2.1 of reference [125] for the value n = 3

and deduced from the values given in [42]. We reiterate this table here, see Table 2.1.
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n Number atoms ε (nN · nm) σ (nm)

1 6 0.1913 0.2547

2 12 0.1729 0.2569

3 18 0.1706 0.2572

4 24 0.1701 0.2573

5 30 0.1699 0.2573

Table 2.1: Parameters ε and σ of the Lennard
– Jones pair potential. The first
column represents the number of
next neighbours considered in the
lattice configuration. The second
column indicates the number of
atoms included in the correspond-
ing cut–off radius considered.

The equations of motion are solved numerically using the velocity–Verlet algorithm. This

yields the trajectories of the particles described by the positions, velocities and accel-

erations when they change with respect to time. The Verlet neighbour list is used for

computing the interactive forces, see Section 1.5. The sphere radius for each atom is

rlist = 1.1 rc. This rlist combined with the cut–off radius, substantially reduces the com-

putational time for the purpose of this work. The molecular dynamics (micro) step is

set to 1.0 × 10−15sec in both types of simulations. Finally, the step size between two

consecutive macro steps during the molecular dynamics simulation are shown in the table

2.2.

Type of deformation Cauchy–Born rule & Molecular dynamics

Molecular dynamics

simple shear △α = π/5000 △α = π/12000

uniaxial extension △λ = 1.002σ △λ = 1.0004σ

pure shear △λ = 1.0015σ △λ = 1.0004σ

dilatation △λ = 1.0015σ △λ = 1.0004σ

Table 2.2: The first column shows the type of deformation performed, simple shear, uniaxial exten-
sion, pure shear and dilatation. The second column of the table shows the step size be-
tween two consecutives macro steps for these cases of considered deformation. Here, the
Cauchy–Born rule was applied in the whole system. The third column represents the step
size between two consecutives macro steps for the same cases of deformation. But here, the
Cauchy–Born rule is only applied on the boundary.

Several cases of deformation are presented in the next section. In the first case, a simple

shear deformation has been performed. In the second case an uniaxial extension has been

computed. In the end, a pure shear deformation and dilatation deformation have been

analysed to complete this study.
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2.4.1 Simple Shear Deformation

The simple shear deformation is characterisied by the deformation gradient

F = I + γ [e1 ⊗ e2] , (2.4.1)

where ei, i = 1, 2 are the Cartesian basis vectors, I denotes the identity tensor and the

factor γ represents the shear number γ = tan (α), see Figure 2.8.

Figure 2.8: Material and spatial crystallite configuration for simple shear deformation. In the top row
a homogeneous deformation state of the constrained atoms corresponds to the validity of
the Cauchy–Born rule. In the bottom row an inhomogeneous deformation state of the un-
constrained atoms indicates the loss of validity of the Cauchy–Born rule. For the sake of
representation the results for only 256 atoms and 0 degrees lattice orientation are shown.
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Figure 2.8 represents the shear deformation evolution for different values of γ. For simple

shear deformation, the atoms are forced to displace tangentially. For sake of representa-

tion, the lattice depicted in Figure 2.8 shows a configuration with only 256 atoms with

orientation 0 degrees.

Simple Shear Deformation and the Influence of the Cut–Off Radiu s.

The choice of the cut–off radius is a crucial issue in any atomistic simulation using po-

tential functions, particularly in molecular dynamics due to the influence in the compu-

tational demand. Therefore, several simulations were performed in order to determine

the proper cut–off radius for our next computations. The characteristics of the lattice

are: 5320 atoms, divided in 2997 unconstrained atoms and 2323 constrained atoms with

lattice orientation 0 degree, see Figure 2.6 (a). All simulations were computed with the

same micro molecular dynamics time step, equal to 1.0 × 10−15sec and the same number

of macro steps. The parameters σ and ǫ of the Lennard–Jones potential (1.4.3) are chosen

according to the Table 2.1 of the reference [125] for different values of the cut–off radius

(see also Table 2.1).
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Figure 2.9: Standard deviation for simple shear deformation using Lennard–Jones potential comparing
different cut–off radius for 0 degree lattice orientation. The cut–off radius correspond of
n = 3 seems to be a good approximation to compute the interactive forces.

Figure 2.9 shows the evolution of the standard deviation versus the shear number γ

for several values of cut–off radius. It is easy to recognize that the standard deviation

converges to a shear number of γ = 0.144 when the cut–off radius is increased and

more atoms are considered for computing the interactive forces. Of course with that

the accuracy increases but at the expense of the computational demand. It may also

be observed that the difference between n = 3 and n = 5 is insignificant. Therefore,

hereafter the cut–off radius for the simple shear deformation case is chosen to be n = 3.

That represents the next three neighbours or rather 36 atoms altogether at the beginning

of the simulation, see Figure 2.7. That allows us to significantly reduce the computational

effort without too much loss of accuracy.

47



2 On Aspects of the Cauchy–Born rule and Atomistics

Simple Shear Deformation for Lennard–Jones Potential.

Figure 2.10 shows the evolution of the standard deviation versus the shear number γ. We

wish to check the influence of the number of atoms when they are progressively increased

in the lattice. The orientations considered were 0, 15 and 30 degrees. In each figure, it

can be seen that from a shear number of γ = 0 to a shear number between γ = 0.14

and γ = 0.16, depending on the number of atoms considered in our model, the standard

deviation has a value approximately constant and equal to zero.
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Figure 2.10: Standard deviation versus the shear number γ for simple shear deformation using
Lennard–Jones potential comparing 256, 1024, 4096 number of atoms for 0, 15 and 30
degrees lattice orientation. The shear number that marks deviation from the Cauchy–Born
rule converges with higher numbers of unconstrained atoms.

Thus, the unconstrained lattice follows essentially the homogeneous deformation, i.e. the

Cauchy–Born rule renders stable atomic positions. From this deformation state, the value

of the standard deviation increases dramatically, indicating the limit of the Cauchy–

Born rule where the deformation starts to be inhomogeneous. In all of them, the shear
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number that marks deviation from the Cauchy–Born rule converges with higher number

of unconstrained atoms to a value close to γ ≈ 0.14 as can be seen in the detailed figures

placed on them.
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Figure 2.11: Standard deviation versus the shear number γ for simple shear deformation using
Lennard–Jones potential comparing 0, 15, 30 degrees lattice orientations for 256, 1024
and 4096 atoms. The shear number that marks deviation from the homogeneous defor-
mation is approximately independent of the orientation considered.

Figure 2.11 depicts the evolution of the standard deviation versus the shear number γ

comparing different lattice orientations containing different numbers of atoms. From a

shear number of γ = 0 until a shear number between γ = 0.14 and γ = 0.16, depending on

the orientation, the standard deviation is approximately equal to zero. Thus, the uncon-

strained lattice follows the Cauchy–Born rule during this period. From this deformation,

the standard deviation indicates divergence and its value increases steeply, displaying the

limit of the applicability of the Cauchy–Born rule.
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Figures 2.12 and 2.13 show the evolution of the standard deviation versus the shear num-

ber γ using in this case the second type of computations, this is where the Cauchy–Born

rule is only applied on the boundary in each macro step whereas molecular dynamics is

used in the unconstrained atoms.

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Shear number

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

0.1 0.11 0.12 0.13 0.14 0.15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Orientation = 0

Number of atoms = 4096

Number of atoms = 1024

Number of atoms = 256

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

Shear number

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

0.11 0.12 0.13 0.14 0.15
0

0.02

0.04

0.06

0.08

0.1 Orientation = 15

Number atoms = 1024

Number atoms = 4096

Number atoms = 256

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

Shear number

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

0.105 0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

 Orientation = 30

Number of atoms = 4096

Number of atoms = 1024

Number of atoms = 256

Figure 2.12: Standard deviation for simple shear deformation using Lennard–Jones potential comparing
256, 1024, 4096 number of atoms for 0, 15 and 30 degrees lattice orientation. Here, the
second type of simmulations is used.

The comparison in Figure 2.12 was performed for a different number of atoms in the

model with lattice orientations 0, 15 and 30 degrees as done in Figure 2.10 while figure

2.13 shows the behaviour of the model comparing different number of atoms in three

types of lattice orientation (0, 15 and 30 degrees) as in Figure 2.11. The deformation

state where the Cauchy–born rule becomes inadequate occurs approximately at the same

state as acquired in the simulations performed before, see Figures 2.10 and 2.11. The

convergence occurs when we take into account a higher number of unconstrained atoms

to a value close to γ ≈ 0.135 which marks the onset of instabilities. It is also possible
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to observe that the value of the shear number γ varies from a range of γ ≈ 0.135 to

γ ≈ 0.155 depending on the number of atoms considered. Nevertheless, the failure of the

Cauchy–Born is almost achieved at the same point independently of the lattice orientation.
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Figure 2.13: Standard deviation versus the shear number γ for simple shear deformation using
Lennard–Jones potential comparing 0, 15, 30 degrees lattice orientations for 256, 1024
and 4096 atoms. Here, the second type of simmulations is used.

The result using a continuum failure criterion is displayed in Appendix C Figure C.1. The

acoustic tensor reveals a γ ≈ 0.142 which corresponds to the limit of the elastic domain.

Note that numerical analysis such as molecular dynamics tries to estimate round–off

errors using algorithms. That means they use finite digits to represent infinite digits of

real numbers. Therefore the results within the molecular dynamics approach render a

range of γ to indicate the elastic limit and not an exact value as the result obtained

within the continuum mechanics approach.
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2.4.2 Uniaxial Extension

The uniaxial extension deformation (without any lateral contraction) is characterized by

the deformation gradient

F = I + [λ − 1] e1 ⊗ e1, (2.4.2)

where ei, i = 1 is the Cartesian basis vector, I is the second order identity and the factor

λ represents the stretch.

Figure 2.14: Material and spatial crystallite configuration for uniaxial extension deformation. In the top
row a homogeneous deformation state of the unconstrained atoms corresponds to the
validity of the Cauchy–Born rule. In the bottom row an inhomogeneous deformation state
of the unconstrained atoms indicates the loss of validity of the Cauchy–Born rule.
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Figure 2.14 represents the uniaxial extension deformation evolution for differents values

of λ. For the uniaxial extension deformation, the atoms are obliged to move horizontally

without vertical contraction. For the sake of representation the results for only 256 atoms

with orientation 0 degrees are shown.

Uniaxial Extension Deformation and the Influence of the Cut–o ff Radius.

To check the influence of the cut–off radius in an uniaxial extension deformation, several

simulations containing 5320 atoms in a 0 degree orientation were performed using the

values of σ and ǫ of the Lennard–Jones potential function, Equation 1.4.3, exposed in

Table 2.1. The computations were performed for the same micro time step and the same

number of macro steps. Figure 2.15 depicts the standard deviation versus the stretch λ

with different options in the cut–off distance. It can be appreciated that with a higher

number of atoms considered in the cut–off radius the accuracy increases being negligible

the difference between n = 3 and n = 5. Therefore, the cut–off radius considered for the

next simulations within the uniaxial extension case is n = 3 which represents the next

three neighbours. That allows us to significantly reduce the computational cost.
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Figure 2.15: Standard deviation versus the stretch λ for uniaxial extension deformation using Lennard–
Jones potential while comparing different cut–off radius in a 0 degree lattice orientation.
The figure exhibits that for n = 3 and n = 5 the standard deviation shows no difference.
That means that the cut–off radius n = 3 is a good approximation for computing the inter-
active forces.
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Uniaxial Extension Deformation for Lennard–Jones.

Figures 2.16 shows the standard deviation versus the stretch λ depicting different lat-

tice orientations in order to see the influence of using different numbers of unconstrained

atoms for studying the stability of the Cauchy–Born rule.
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Figure 2.16: Standard deviation versus the stretch λ for uniaxial extension deformation using Lennard–
Jones potential comparing 256, 1024, 4096 number of atoms for 0, 15 and 30 degrees
lattice orientation. The stretch λ which marks deviation from an affine deformation tends
to be λ ≈ 1.14 converging with a higher number of unconstrained atoms.

Obviously, from a λ = 1 to roughly a stretch value between λ = 1.12 and λ = 1.14,

the standard deviation estimation is approximately equal to zero and constant. As an

interpretation during this period, the deformation remains homogeneous and stable. The

particles behave as if they displace homogeneously. From this deformation state, the value

of the standard deviation increases drastically. In other words, this value indicates again

the limit where the Cauchy–Born rule starts to fail and the deformation becomes inho-
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mogeneous due to instabilities. In each figure the stretch number that marks deviation

from the ideal homogenous deformation converges with a higher number of unconstrained

atoms to a near value of λ ≈ 1.14 as can be distinguished in the detailed figures.

Figure 2.17 represents again the standard deviation versus the stretch λ but for a different

number of unconstrained atoms comparing different lattice orientations.
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Figure 2.17: Standard deviation for uniaxial extension deformation using Lennard–Jones potential com-
paring 0, 15, 30 degrees lattice orientation with 256, 1024 and 4096 atoms. The stretch
value that marks deviation from homogeneous deformation independently converges from
the lattice orientation.

In the range from a λ = 1 until a stretch value between 1.12 and 1.15, the value of the

standard deviation is almost equal to zero. During this period, the deformation remains

homogeneous and the usage of the Cauchy–Born rule as a homogenization technique is

adequate. From this deformation state, the value of the standard deviation diverges in-

dicating the onset of instabilities.
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In order to compare results the same simulations but using the second type of computa-

tions are presented in Figures 2.18 and 2.19 . We reiterate, the Cauchy–Born rule is only

applied on the boundary in each macro step which act as a rigid wall whereas molecular

dynamics is used in the unconstrained atoms with the purpose of capturing instabilities.
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Figure 2.18: Standard deviation versus the stretch λ for uniaxial extension deformation using Lennard–
Jones potential comparing 256, 1024, 4096 number of atoms for 0, 15 and 30 degrees
lattice orientation. Here the second type of computations is applied in order to compare
results.

These figures depict again the evolution of the standard deviation versus the stretch λ.

We discovered that a deformation state where the Cauchy–born rule becomes inadequate

occurs earlier as before, approximately around the stretch value λ ≈ 1.12 and even for

an orientation 15 degrees the value is λ ≈ 1.115. The range of validity is less which

mark Figures 2.16 and 2.17. In this context the modelling of material behaviour within a
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Cauchy–Born approximation is restricted to this λ.
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Figure 2.19: Standard deviation for uniaxial extension deformation using Lennard–Jones potential com-
paring 0, 15, 30 degrees lattice orientation with 256, 1024 and 4096 atoms. Here the
second type of computations is applied in order to check if both computations render the
same results.

To compare results an Appendix C is placed at the end of this work where the correspond-

ing results using the acoustik tensor are expounded. For uniaxial extension deformation

the limit of the elastic domain corresponds to the stretch value λ = 1.12 for 0 and 15

degress in the lattice while λ = 1.137 for orientation 30 which agree with the values

acquired before with molecular dynamics. Mention that the molecular dynamics results

suffer from round–off errors since numerical algorithms are used. Despite this both ap-

proaches reveal similar results.
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2.4.3 Pure Shear Deformation

The Pure Shear deformation is characterised by the deformation gradient

F = I + [λ − 1] e1 ⊗ e1 +
[
λ−1 − 1

]
e2 ⊗ e2, (2.4.3)

where the factor λ represents the stretch and I as the identity tensor.

Figure 2.20: Material and spatial crystallite configuration with a lattice orientation α = 0 subjected to
pure shear deformation. The values λ = 1.08 and λ = 1.11 , which yield a homogeneous
deformation state, verify the Cauchy–Born rule. The values λ = 1.135 and λ = 1.183 gen-
erate a inhomogeneous deformation state and indicate the loss of stability of the Cauchy–
Born rule.
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Figure 2.20 represents the positions of the unconstrained and constrained atoms for dif-

ferent values of λ. Here the specimen is forced to move horizontally but with vertical

contraction. For the sake of representation the results for only 256 atoms with orientation

0 degrees are shown.

Pure Shear Deformation and the Influence of the Cut–Off Radius.

Again a study of the cut–off radius is needed to strike a balance between accuracy and

efficiency in further computations. That means, we need to use an appropriate cut–off

radius for computing the interactive forces among the particles without losing effectiveness

in studying the Cauchy–Born rule. In order to achieve that, we have performed several

simulations displayed in Figure 2.21.
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Figure 2.21: Standard deviation for pure shear deformation using Lennard–Jones potential comparing
different cut–off radius for 0 degrees of the lattice orientation. The cut–off radius corre-
spond to n = 3 has been revealed as a good approximation to compute the interactive
forces.

The model contains 5320 atoms in a 0 degree orientation. 2323 of them are used as

constrained atoms. They also act as a rigid wall and they are placed around 2997 uncon-

strained atoms in the remaining interior region where the standard molecular dynamics

approach is used. The different values of σ and ǫ in the Lennard–Jones potential func-

tion, Equation 1.4.3, are displayed in Table 2.1. The computations were performed for

the same micro time step (∆t) and the same number of macro steps. As we increase the

number of atoms within the cut–off radius, i.e. when n goes from n = 1 to n = 5, we find

out that the simulations yield the same homogeneous deformation state for n = 3 as well

as for n = 5. In other words, both verify the Cauchy–Born rule for the same range of
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validity and diverges nearly at the same value of λ. Therefore, the election of the cut–off

radius is clear and renders n = 3. With that we tackle our objective without losing much

accuracy due to the cut–off radius approximation.

Pure Shear Deformation for Lennard–Jones.

In the Figure 2.22 the standard deviation versus the stretch λ is represented again con-

fronting different number of unconstrained atoms in lattice orientations 0, 15 and 30

degrees. Here, the first type of simulations in the sense of Lyapunov are used.
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Figure 2.22: Standard deviation versus the stretch λ for pure shear deformation using Lennard–Jones
potential comparing 256, 1024, 4096 number of atoms for 0, 15 and 30 degrees lattice
orientation. The stretch λ which marks deviation from a homogeneous deformation con-
verges with higher number of atoms.

Clearly, in the range from a λ = 1 until a stretch value between λ = 1.08 and λ = 1.11,

the value of the standard deviation is approximately equal to zero. In this period, the
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simulation produces homogeneous deformation and the atoms move as predicted by the

Cauchy–Born assumption. Constrained and unconstrained atoms render affine displace-

ment fields. Nevertheless, this deformation state marks the onset of complex atomistic

behaviour impossible to model within the Cauchy–Born rule. It is easy to recognize that

the standard deviation converges to a constant value when a higher number of atoms is

increased.

In Figure 2.23 the comparison is done for different orientations using 256, 1024 and 4096

atoms. In this case it may be distinguished that the loss of stability in the Cauchy–Born

rule, i.e. the failure point, does not occur at the same state as in the previous deformation

cases such as simple shear or uniaxial extension. The range where the Cauchy–Born rule

fails due to instabilities varies from λ = 1.075 to a value of λ = 1.095.
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Figure 2.23: Standard deviation for pure shear deformation using Lennard–Jones potential comparing
0, 15, 30 degrees lattice orientation with 256, 1024 and 4096 atoms. The stretch λ which
marks deviation is different depending on the orientation considered.
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The outcomes using the second type of simulations where the constrained and uncon-

strained particles are treated independently are exhibited in Figures 2.24 and 2.25. Again,

they reveal similar results as in Figures 2.22 and 2.23. The limit of the stretch λ which in-

dicates the range of applicability of the Cauchy–Born rule converges to a value λ ≈ 1.085

for an orientation of 0 degree and λ ≈ 1.075 for an orientation of 30 degrees when the

number of atoms were increased.
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Figure 2.24: Standard deviation versus the stretch λ for pure shear deformation using Lennard–Jones
potential comparing 256, 1024, 4096 number of atoms for 0, 15 and 30 degrees lattice
orientation. Here the second type of computation is applied.

Figures 2.24 and 2.25 are performed using the second type of simulations using molecular

dynamics in order to compare the results displayed in figures 2.22 and 2.23. Again, the

limit of the stretch λ, which indicates the range of applicability of the Cauchy–Born rule,

tends to a value of λ ≈ 1.085 for a 0 degree orientation, λ ≈ 1.075 for a 30 degrees
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orientation and λ ≈ 1.07 considering 15 degrees orientation when the number of atoms

were increased. In Figure 2.25 may be appreciated that the starting failure state for ori-

entations 15 and 30 degrees occur at λ ≈ 1.075 whereas for 0 degrees at λ ≈ 1.085 as in

the previous figures, i.e. 2.22 and 2.23.
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Figure 2.25: Standard deviation for pure shear deformation using Lennard–Jones potential comparing
0, 15, 30 degrees lattice orientation with 256, 1024 and 4096 atoms. Here the second type
of computation is applied in order to check if both computations render same results.

The result using the acoustic tensor within the continuum mechanics framework can be

found in Appendix C Figure C.3. The acoustik tensor or rather the study of the loss of

rank 1 convexity reveals values of the stretch equal to λ = 1.0705 for lattice orientations

30 and 15 and λ = 1.085 for lattice orientations 0. They coincide with the beginning

of the critical deformation state. They agree with the results obtained with molecular

dynamics although round–off errors are involved in these computations.
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2.4.4 Dilatation Deformation

The dilatation deformation is characterised by the deformation gradient

F = I + [λ − 1] e1 ⊗ e1 + [λ − 1] e2 ⊗ e2, (2.4.4)

where ei, i = 1, 2 are the Cartesian basis vectors, I denotes again the identity tensor and

the factor λ represents the stretch

Figure 2.26: Material and spatial crystallite configuration with a lattice orientation α = 0 subjected to
dilation. The values λ = 1.10 and λ = 1.11 , which yield a homogeneous deformation state,
verify the Cauchy–Born rule. The values λ = 1.115 and λ = 1.12 generate a inhomoge-
neous deformation state and indicate the loss of stability of the Cauchy–Born rule.
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Figure 2.26 depicts the dilatation deformation evolution for different values of λ. The

atoms are obliged to move horizontally with vertical extension. For the sake of represen-

tation the results for only 256 atoms are illustrated.

Dilatation Deformation and the Influence of the Cut–off Radi us.

In practical applications, the interaction radius is chosen to reduce the summation over

the interacting atoms to the closest neighbours. Thus, we reduce the computational

demand without attaining unstable or unphysical results. In order to select a proper

cut–off distance within the dilatation deformation and with the purpose of studying the

stability of the Cauchy–Born rule, several simulations were carried out using the Lennard–

Jones potential function, Equation 1.4.3. Again the parameters σ and ǫ were taken from

the Table 2.1. The computations were performed for the same micro time step and the

same number of macro steps. The lattice is configured with 5320 atoms in a 0 degree

orientation as in the other cases of deformation.
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Figure 2.27: Standard deviation for dilatation deformation using Lennard–Jones potential comparing the
cut–off radius for 0 degrees of the lattice orientation. The difference between n = 3 and
n = 5 is negligible. Therefore, n = 3 seems to be a good election to calculate the interactive
forces during the simulation.

Figure 2.27 represents the standard deviation versus the stretch λ with different choices for

n, i.e. how many particles are incorporated in the cut–off radius. This figure reveals that

as the number of atoms taken into account for computing the interactive forces increases,

the stretch λ converges to λ = 1.115. Consequently, we observe that the difference between

n = 3 and n = 5 is negligible. Therefore, in order to interplay accuracy but at the same

time effectiveness the choice of the cut–off radius in the next computations is adopted to

be n = 3.
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Dilatation Deformation for Lennard–Jones.

Figure 2.28 depicts the evolution of the standard deviation versus the stretch λ using a

progressively higher number of atoms for different lattice orientations, 0, 15 and 30 de-

grees.
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Figure 2.28: Standard deviation for dilatation deformation using Lennard–Jones potential comparing
256, 1024, 4096 number of atoms for 0, 15 and 30 degrees lattice orientation. The stretch
value λ ≈ 1.11 marks the onset of instabilities and converges with a higher numbers of
atoms.

Obviously, in the range between a shear number value λ = 1 and a shear number approx-

imately between λ = 1.11 and λ = 1.12 the standard deviation renders a value nearly

equal to zero. That means that the dilatation deformation process yields homogeneous

behaviour verifying the Cauchy–Born rule within this period. From this deformation

state, the value of the standard deviation increases abruptly, indicating the state of initial
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instabilities or rather the point where the rule starts to fail. In regard to the influence of

the number of atoms, this figure reveals insignificant importance of that. This means the

starting failure state is almost the same.

Figure 2.29 reproduces the evolution of the standard deviation versus the stretch λ. Here,

the main purpose is to examine the possible influence of having different lattice configu-

rations on the stability of the Cauchy–Born rule against perturbations.
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Figure 2.29: Standard deviation for dilatation deformation using Lennard–Jones potential comparing 0,
15, 30 degrees lattice orientation with 256, 1024 and 4096 atoms. The stretch λ which
marks deviation is practically the same independent of the orientation considered.

From a stretch of λ = 1 until a stretch between λ = 1.11 and λ = 1.12, depending on

the number of atoms considered in our model, the standard deviation gives us a value

approximately equal to zero. Thus, this regime corresponds to the period in which the
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Cauchy–Born rule is adequate for describing material behaviour, i.e. the unconstrained

lattice follows affine homogeneous deformation. From this deformation state, the value of

the standard deviation increases steeply, pointing out the boundary of its applicability.

Note that the bifurcated regime starts almost at the same deformation state indepen-

dently of the orientation considered.

Again the results monitored before are compared with the results obtained using the sec-

ond type of computations in which constrained and unconstrained particles are updated

separately. This is done in order to confront whether both types of simulations indicate

the same state of transition to an inhomogeneous deformation or to ascertain the range

of validity of the Cauchy–born rule for the dilatation deformation case.
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Figure 2.30: Standard deviation for dilatation deformation using Lennard–Jones potential comparing
256, 1024, 4096 number of atoms for 0, 15 and 30 degrees lattice orientation.
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We distinguish in Figure 2.30 that from a stretch value of λ = 1 to λ ≈ 1.1 for 0, 15 and 30

degrees lattice orientations for the standard deviation give us the validity of the Cauchy–

Born rule. This result agrees well with the one achieved in the simulation performed

before, see Figure 2.28. The same occurs comparing Figures 2.31 and 2.29. It turns out

that both computations reveal the onset of instabilities at the same state λ ≈ 1.11. From

this point, once again the standard deviation value increases drastically because from this

point the system is not stable anymore.
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Figure 2.31: Standard deviation for dilatation deformation using Lennard–Jones potential comparing 0,
15, 30 degrees lattice orientation with 256, 1024 and 4096 atoms.

The corresponding result within the continuum mechanics can be seen in Appendix C

Figure C.4. The value where the instabilities begin is λ = 1.1131. This result agrees with

the results exhibited above. Note that the simulations performed with molecular dynamics

suffer from round–off errors since we use approximation equations and/or algorithms to

estimate the trajectories of the atoms.
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2.5 Summary

A study on the validity of the Cauchy–Born rule and its transition to an inhomogeneous

deformation was undertaken using atomistics in the sense of molecular dynamics which

can capture complex nanoscale behaviour as well as atomistic displacement. Parallel to

the use of molecular dynamics, the results obtained here can be compared to a classical

continuum mechanics approach using the acoustic tensor. This was done by Sunyk and

Steinmann [126] and later included in Steinmann et al. [123]. They only provide results

for the deformation cases simple shear and uniaxial extension limited for 0 and 30 de-

grees orientation respectively. Therefore we have included an appendix, see Appendix

C, in order to complete the results acquired so far with molecular dynamics. Note that

the purpose of this work or rather this appendix is not to delve into the acoustic tensor

concept used to study material stability.

In each figure presented here, the state from where the deformation becomes inhomo-

geneous, the value of the standard deviation increases dramatically. This indicates the

limits of the Cauchy–Born rule. That is because from this point the system is no longer

stable and the difference among the positions of the unconstrained and constrained atoms

increases drastically. Thus, the results in the post–bifurcated regime is an artefact that

is heavily influenced by the boundary conditions and thus of no particular relevance in

the present context. Furthermore it is worth to comment that the departures from the

Cauchy–Born rule occur at different strains in simple shear and in the other modes. Fi-

nally, the dependence of the cut–off radius on the form of the interatomic potential plays

an important role in these simulations. That is intensely discussed in the work pursued

by Sunyk [125]. There, it is studied the choice of the cut–off by comparing the strain

energy density, W0, for different integer scaling factors. It is recognizable that the energy

converges to a constant value with the increasing the scaling factor.

For the dynamic case to be investigated in Chapter 4 the interface between the constrained

and unconstrained atoms produces another problem which it relates to the pulses initiated

in the dynamic domain and reflected at the interface due to the constrained atoms. This

then behaves as a rigid boundary avoiding the smooth absorption of these waves. Such

phenomenon was noted by Doll and Adelman [43] and Holmes and Belytschko [69]. It is

also interesting to broaden the simulations using several techniques developed recently,

e.g. by Cai et al [24], Holian and Ravelo [67], Qu and al [107] in order to avoid or reduce

these spurious reflections.

It is important to remark that the atoms in Figures 2.8, 2.14, 2.20 and 2.26 are coloured

using the atomic level stress, see details in Appendix B. Specifically, according to the

expresion, B.2, which provides the average virial stress over an effective volume. Actually,

the meaning of the colour in the present context ist irrelevant for us since the goal is not

to describe the state of the stress of the atoms in the system but to find out the limit

of the Cauchy–Born rule validity. Expression B.2 is only used in order to distinguish

the constrained and unconstrained atoms during the simulation. Finally, it is worth to

comment that the unconstrained atoms are coloured according to the scalar product, i.e.
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the trace of Equation B.2, which it is related to the hydrostatic pressure. Nevertheless,

it would be possible to colour Figure 2.8 with a shear stress, since we studied a shear

deformation case, instead of with the trace (the volumetric stress) for a much more precise

description of the differents states.
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3 Horizontal Coupling in Continuum
Atomistics

3.1 Introduction

The phenomenological mechanical behaviour of materials reveals a strong multiscale de-

pendence, at the spatial scale as well as the temporal scale, see Figure 3.11. For instance,

at the fundamental level, features of crystalline solids may be attributed to electronic inter-

actions which obey first principles such as the Schrödinger equation. However, quantum–

mechanics is still limited to short scales in time and length. Ignoring the role of electrons

and assuming some empirical interactions allow us to increase the length and time scales

until the atomistic level, where molecular dynamics or Monte Carlo simulations may be

performed for describing crystal structures. Beyond the atomic scale, we encounter meso-

scopic theories (such as crystal plasticity) dealing with grain boundaries or dislocation

mechanics. Finally, the continuum mechanics framework dominates at the material scale

to model mechanical properties [147]. From now on, we restrict our attention to molecular

dynamics and continuum mechanics methods.

Quantum
Mechanics

fs ns

nm

ms

mm

s

m

Time Scales

µm
Length Scales

Dynamics
Mesoscopic
Theories

ContinuumMolecular
Mechanics

Figure 3.1: Schematic representation giving an overview over the typical length and times
scales for different simulations tools. From the quantum mechanics methods at
the sub–micronscale, to molecular dynamics and montecarlo, as well as mesoscale
methods (crystal plasticity or coarse grains approaches) until classical continuum
theories e.g. finite element method (FEM).

1The idea of this figure was taken from the work pursued by Buehler [21]
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3 Horizontal Coupling in Continuum Atomistics

Thanks to the ongoing constant advances in computational power and accessibility the

range of applications of molecular dynamics approach is rapidly increasing. The earlier

works were done by Rahman [109] dealing with only a few hundred atoms whereas several

researchers have recently performed large size systems, simulations including up to one

billon atoms [2, 3]. It has also become a realistic computational option for simulating a

variety of physical problems and analyse of traditionaly complex atomic phenomena such

as dislocations [26, 118], phase transitions [91, 117], cracks opening and fracture [61, 68],

that had been impossible to deal with thus far, see figure 3.2. Furthermore, molecular

dynamics with empirical potentials nowadays plays a key role to model large length scale

associated to the plastic process in materials [22].

DISLOCATIONVACANCYCRACK

Figure 3.2: Representation of the typical atomic phenomena which occur in materials such as
cracks opening, vacancies as well as dislocations.

Nevertheless, the length and time scales are still limited. For example traditional time

scales are of order of 10−15 seconds which is used for 10 nm length scales. In addition,

the relaxation time required varies for each different property. An example would be a

model near a phase transition which become slower and therefore need a relaxation time

beyond the time achievable by a simulation. Furthermore, the realistic modelling of a

macroscopic problem is not yet feasible with a fully atomistic simulation due to the ex-

haustive computational demand and the excessive and often useless data which results

at the end. In large scale atomistic calculations only a small set of atoms does anything

interesting. Another problem associated with molecular dynamics is the comparison of

results obtained from simulations with real experiments because these are carried out in

much longer length and time scales.

On the contrary, the continuum mechanics framework has dominated the research activity

of mechanics over the past decades to predict material behaviour in time and space. The

range of application of continuum models allows us to efficiently compute large systems

of material speaking in terms of stresses and strains but at the expense of suffering lack

of accuracy, discretization errors and including a number of uncertainties in the precision

of the simulations (how good the constitutive model is).
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3.1 Introduction

The purpose of the present work is to introduce a coupling constitutive model for multi-

scale analysis combining the traditional molecular dynamics approach as atomistic method

and finite element method based on the Cauchy–Born rule as continuum approach. The

physical domain is divided in two spatial regions. A schematic representation of the geom-

etry used in this model is depicted in figure 3.3. One is the atomistic domain represented

by the white circles. It contains the critical region of study where molecular dynamics

is used. This region is embedded in the continuum domain represented by the square

elements.

 Molecular dynamics
 Based on Pair Potentials

 Finite Element Method
 Based on The Cauchy−Born Rule

Figure 3.3: Representative coupling model between an atomistic region in the sense of molec-
ular dynamics based on pair–potentials and continuum using finite element method
based on the Cauchy–Born rule.

This produces a common difficulty in these hybrid models due to the fundamental incom-

patibility of the non–local character of the atomistic description and the local continuum

description [40]. In the continuum modelling the kinematics are characterized by the

so–called Cauchy–Born rule [129], which provides an elegant formulation to bridge in-

formation between atomistic and continuum models. The Cauchy–Born rule prescribes

atomistic positions in the strained crystal by the application of the local deformation

gradient. The application of the Cauchy–Born rule requires sufficiently homogeneous de-

formation as it was studied in the previous chapter.

Note that the main goal of numerous researchers has also been to provide a computational

solution for the analysis of deformation processes at different length and time scales in

a unified framework as well as to pursue homogenization approaches. Therefore, we will

review some of the strategies proposed so far before introducing the model suggested here.
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3 Horizontal Coupling in Continuum Atomistics

3.2 Short Overview over the Atomistic/Continuum
Coupling Techniques

In the last few years several scale bridging techniques have appeared in order to solve the

problem related with the lack of microstructural information in continuum models. They

also try to overcome the limitations of the prohibitive computational demand of a fully

macroscopic atomistic simulation. Here is where hybrid models come into play. They

attempt to provide a computational solution to analyze physical phenomena at different

length and time scales in a unified framework.

A very popular approach is the Quasicontinuum method (QC), see e.g. Tadmor [129],

Shenoy et al. [118] and Tadmor et al. [131]. The idea is to simulate a macro system

under non–linear deformation using molecular mechanics. Some selected atomic degrees

of freedom are removed and interpolated from a subset of representative atoms similar to

finite element interpolation. The constitutive law is based on these representative atoms

governed by the Cauchy–Born rule which force these atoms to deform according to the

local continuum deformation gradient. Summarizing, the degrees of freedom are substan-

tially reduced and atomistic resolution is only maintained in domains where defects play

a key role. A recent review on the current state of the method is provided in Miller and

Tadmor [92]. The classical version of the quasicontinuum was restricted to zero tempera-

ture simulations. Recently, however, the method was extended to finite temperatures [44].

An analytical approach developed recently is the tight–binding (FE/MD/TB) method or

also called MAAD proposed by Abraham, Broughton, Bernstein and Kaxiras [1,20]. The

simulation system is composed of three different parts. A continuum region where linear

finite elements are applied. Then, near the crack tip, an atomistic region where molecular

dynamics is used and a quantum mechanics region in which the tight–binding model is

used to model bond breaking in silicon. In order to couple each domain, the authors

introduced handshake regions where they overlap and thereby transmit the information

from one domain to the other.

Another effective method is the so called CADD model proposed by Shilkrot et al.

[119, 120]. The philosophy consists of a continuum region in which an atomistic domain

is embedded. This computational method allows to transfer dislocations from atomistics

to the continuum domain combining atomistic and discrete dislocation mechanics.

The finite element and atomistic model (FEAT) is historically the earliest method of such

models. It was developed by Kohlhoff et al. [78] in order to simulate crack propagation in

b.c.c. crystals. Finally, the CLS approach of Rudd and Broughton [114, 115] formulated

a coarse–grained method which attempt to derive an effective Hamiltonian for a set of

coarse–grained variables. This method exhibits good results for one–dimensional models

but it is still difficult to compute. A fundamental review comparing the methods men-

tioned so far was pursued by Curtin and Miller [40].
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In the end, we also refer the reader to an alternative hybrid method developed by Liu and

co–workers [143,144] called scale bridging. The idea is that the finite elements exists ev-

erywhere, this is in the entire computational domain, even where the molecular dynamics

is applied. Other models dealing with this topic are the works done by Weinan et al. [46],

Rodney [112], Mortensen et al. [95], Belytschko et al. [12, 151], Rafii-Tabar et al. [108]

and more recently Kwon and Jung [80] and Zhennen and Xiurum [153].

The layout of the present chapter is as follows: The main definitions and tools of contin-

uum modelling, applications and limitations of the Cauchy–Born rule are given in Section

3.3. Section 3.4 presents in detail the coupling method. Lastly, numerical examples are

displayed in Section 3.5, followed by the conclusions, which close the chapter.

3.3 Essentials of Continuum Mechanics Framework.
The First–Order Cauchy–Born Rule.

In order to introduce terminology and notation, a short summary of the governing kine-

matics aspects corresponding to the spatial motion problem within the continuum me-

chanics framework is described. An overview of the tools applied in the present work for

the continuum–atomistic modelling are also outlined in this section. In this context, the

(first–order) Cauchy–Born rule studied in the previous chapter is reiterated as a homog-

enization technique to bridge atomistic and continuum scales.

3.3.1 Kinematics of Continuum Mechanics

In continuum mechanics a body is considered as a collection of material points. In this

context, let ϕ(X) denote the non–linear deformation map which relates material points

X in the material configuration B0 of a physical particle to spatial points x in the spatial

configuration Bt of the same physical particle as

x = ϕ(X). (3.3.1)

Figure 3.4 illustrates a schematic representation of the pointwise kinematics of continuum

mechanics.

The linear tangent map associated to the spatial motion is represented by the two–point

tensor F , Equation 3.3.2, known as the local continuum deformation gradient.

F = ∇Xϕ =
∂ϕ

∂F
. (3.3.2)

The deformation gradient F plays a crucial role in continuum mechanics since it serves

as a transformation rule [70]. For instance, it transforms infinitesimal line elements of the

material tangent space TB0 to infinitesimal line elements of the spatial tangent space TBt
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Figure 3.4: Spatial motion nonlinear deformation map and the deformation gradient. Further-
more, the transformations of line, area and volume elements in the material config-
uration, B0, and spatial configuration, Bt, are plotted.

dx = FdX. (3.3.3)

Then, the determinant of the deformation gradient F , i.e. the spatial motion Jacobian

is denoted by J = detF . Since the deformation gradient is invertible, its determinat is

needed to be nonzero J 6= 0. The Jacobian relates volume elements dv and dV from the

spatial configuration to the material configuration respectively

J =
dv

dV
. (3.3.4)

The transformation of the area elements da in the spatial configuration to dA in the

material configuration is possible thanks to the Nanson’s formula as follows

da = JF−tdA. (3.3.5)

F−t being the transpose of the inverse deformation gradient F . The area elements are

defined by the use of the material and spatial normal vectors N and n respectively

dA = N dA. (3.3.6)

da = n da. (3.3.7)

The deformation gradient can also be used to describe the constitutive response of the

continuum. For instance, typical strain measures are defined by the right Cauchy–Green

tensor C = F t · F and the left Cauchy–Green tensor b = F · F t, see [16,70,122].

For hyperelastic material response, the stored strain energy density per unit volume W

in B0 is given by
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3.3 Essentials of Continuum Mechanics Framework. The First–Order Cauchy–Born Rule.

W0 = W0(F ; X) (3.3.8)

which is a function of the deformation gradient F and in general of the reference place-

ment X.

We now reiterate the familiar quasi–static balance of momentum which reads

DivP + b0 = 0 (3.3.9)

Equation 3.3.9 involves the spatial motion Piola stress tensor P . It is a two point tensor

generated by the first derivative of the strain energy density W0(F ; X) with respect to

the deformation gradient F

P = ∇F W0 =
∂W0

∂F
(3.3.10)

The Piola transformation of P renders the Cauchy stress σt = J−1 P F t and the Piola–

Kirchhoff stress S = F−1 P .

x = ϕ(X)

F ,

B0 Bt

P
S σ

Figure 3.5: Kinematics of the spatial motion problem. B0 represents the material configuration
whereas Bt representes the spatial or also known as current configuration.

The fourth order tangent operator L is a consequence of the linearization of the stress

tensor P . It relates the increment in P to the increment in the deformation gradient. It

is defined as the second derivative of the strain energy with respect to the deformation

gradient.

L
.
=

∂2W0

∂F ⊗ ∂F
(3.3.11)
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3.3.2 Atomistic Constitutive Modelling

In order to facilitate further discussion, we briefly reiterate the description of the classical

lattice statics outlined in the previous chapter 2. We imagine an infinite defect-free crystal

consisting of N interacting atoms. The kinematics of this crystallite body is traditionally

represented by the distance among the particles included in the system. Let us consider

any two atoms labelled i and j. The relative distances Rij and rij between these two

atoms in the material configuration C0 and in the spatial configuration Ct respectively, see

bottom part of Figure 2.3, are

Rij = Ri − Rj with Rij = |Rij| , (3.3.12)

rij = ri − rj with rij = |rij| , (3.3.13)

where Ri, Rj are the position vectors of atoms i and j in the material configuration and

rj and ri the position vectors of the same atoms but in the spatial configuration. We

assume that the total internal energy Eint of the crystal can be defined as the sum of all

energy contributions of the atoms which compose the lattice

Eint =
∑

i

Ei, (3.3.14)

in which Ei is the i–atom energy contribution which typically depends on the distances

among the N atoms Ei = Ei(ri1, · · · , riN). Despite all shortcomings mentioned in chapter

1 and for the sake of efficiency and simplicity, we will restrict the contribution in the

energy to two–body interactions. Thus, the energy contribution Ei of the atom i can be

characterized as

Ei =
1

2

∑

j 6=i

φ(rij), (3.3.15)

where φ(rij) represents again the pair potential function which governs the interactomic

mechanical behaviour. Typical examples were discussed in chapter 1. Here, we reiterate

the well–known Lennard–Jones potential energy function which reads

φ(rij) = 4ǫ

[[
σ

rij

]12

−
[

σ

rij

]6
]

, (3.3.16)

with the atomic separation rij = | rij |. The symbols σ and ǫ are parameters which must

be fitted to the considered material. The energy contribution Ei of the atom i is then

given by

Ei =
1

2

∑

j 6=i

φ(rij) =
∑

j 6=i

2ǫ

[[
σ

rij

]12

−
[

σ

rij

]6
]

. (3.3.17)
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Consequently, the derivative of the total internal energy Eint, equation 3.3.14, with respect

to the position vector ri of the ith atom provides the total force f i acting upon this atom

due to the interactions with all others atoms. Using the chain rule we may write the force

on i in the form

f i = −Eint
,ri

=
∑

j 6=i

f ij = −
∑

j 6=i

∂Ei

∂ri

= −1

2

∑

j 6=i

∂φ(rij)

∂ri

(3.3.18)

= −1

2

∑

j 6=i

φ(rij)

∂rij

∂rij

∂rij

∂rij

∂ri

=
∑

j 6=i

− 1

rij

∂φ(rij)

∂rij

rij. (3.3.19)

Then, the interactive force f ij acting on the atom i due to the atom j, see Figure 3.3.2,

can be defined for the case of pair potentials as

f ij = −
φ′

ij

rij

rij. (3.3.20)

The prime in φ′
ij denotes the derivative of the interatomic potential function φij with

respect to the relative distance rij and rij/rij which represents the unit normal vector [7].

�� ��
��������������������

f ij f ji

rij

ri

rj

Figure 3.6: The relative distance vectors
between i and j is repre-
sented by rij whereas f ij

denotes the interaction force.
Note that f ij = −f ji.

The second derivative of the total energy with respect to the position vector rj yields

a second order tensor, this is the atomic stiffness kij, which restricted to the considered

case of pair potentials takes the format

kij = −Eint
,ri rj

=
φ′

ij

rij

I +

[
φ′′

ij

r2
ij

−
φ′

ij

r3
ij

]
rij ⊗ rij, (3.3.21)

where ⊗ denotes the standard dyadic product. Equation 3.3.21 was discussed by Sunyk

and Steinmann [127] and is needed in the solution strategy within the continuum–atomistic

modelling. For details see also [125]. Note that a non–linear version of the second order

term in Equation 3.3.21 was discussed in conection with gradient elasticity by Triantafyl-

lidis and coworkers starting in 1986 [135].
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3 Horizontal Coupling in Continuum Atomistics

3.3.3 Continuum–Atomistic Constitutive Modelling

Once the atomistic constitutive modelling is described, the next and main issue is how to

relate continuum and atomistic scales in a mixed vertical constitutive model. The central

idea to achieve is that the explained continuum quantities such as the stress tensor,

Equation 3.3.10, and tangent operator, Equation 3.3.11, can be computed directly from

atomistic calculations. The first step relies on replacing the phenomenological macroscopic

continuum strain energy density W0, Equation 3.3.8, by an appropriate atomistic energy

potential function as Ei, Equation 3.3.17. Under the consideration that the energy of

each atom i is distributed uniformly over a volume Vi, both energies can be related as

W0 =
Ei(ri1, ..., riN )

Vi

=
1

2Vi

∑

j 6=i

φij = W0(ri1, ..., riN ), (3.3.22)

where Vi is known as the Voronoi polyhedron, see Figure 3.3.3, and ri1, . . . , riN represent

the relative distances between atom i and their neighbours.
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i

j
Virij Figure 3.7: The Voronoi polyhedron Vi in the

two dimensional case at the initial
configuration. Each Voronoi cell
is made by connecting the lattice
points, in this case atoms, drawing
lines. Then, at the midpoint normal
lines are drawn. The smallest vol-
ume or area enclosed in these lines
is the the Voronoi polyhedron.

The remaining problem consists of establishing the underlying kinematic relation be-

tween continuum deformation and atomic vectors. That is possible by appealing to the

Cauchy–Born rule, which is a standard formulation for linking atomistic and continuum

models [129]. Under the condition of an infinite defect-free crystal, the Cauchy–Born rule

postulates that when a single crystal volume is subjected to a prescribed displacement of

its boundary, all atoms of the volume follow this displacement, as outlined in detail in the

previous chapter. In other words, the relative lattice vector rij of the spatial configuration

Ct result from the corresponding Rij in the material configuration C0 by the application

of the local deformation gradient F , Equation 3.3.2, i.e. the Cauchy–Born is defined as

rij = F · Rij. (3.3.23)

Its major restriction and implication is that this assumption is only valid as long as the

perfect infinite representative crystal remains homogeneous [85]. In practical simulations,

the computation over all the atoms in the body have been replaced by a computation over

a certain number of neighbour atoms included in a cut–off radius (rcut-off) which limits
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3.3 Essentials of Continuum Mechanics Framework. The First–Order Cauchy–Born Rule.

the calculation of the interatomic forces.

Consequently, the strain energy density W0, equation 3.3.8, can be reformulated in terms

of the relative distance vectors in the material configuration C0 and the deformation

gradient F as

W0 (ri1, ..., riN ) = W0 (|F · Ri1|, ..., |F · RiN |). (3.3.24)

At this point we reiterate the expression of the constitutive law, i.e. the Piola stress tensor

P , Equation 3.3.10, which takes the following explicit format for pair potentials

P
.
=

∂W0 (F ,X)

∂F
. (3.3.25)

Then

P (X i) =
1

2Vi

∑

j 6=i

f ji ⊗ Rij. (3.3.26)

where f ji = −f ij is the interatomic force. Analogously to the known formula in contin-

uum mechanics, we obtain the Cauchy stress tensor

σt = J−1P F t =
1

2vi

∑

j 6=i

f ji ⊗ Rij F t =
1

2vi

∑

j 6=i

f ji ⊗ rij, (3.3.27)

where J = vi/Vi and the Piola–Kirchhoff stress is

S = F−1 P =
1

2Vi

∑

j 6=i

F−1 f ji ⊗ Rij =
1

2Vi

∑

j 6=i

∂φij

∂rij

Rij ⊗ Rij. (3.3.28)

Likewise, the expression for the tangent operator (3.3.11) is deduced considering (3.3.21)

and (3.3.8) and renders the expression

L
.
=

∂2W0

∂F ⊗ F
. (3.3.29)

Then L(X i)

L(X i) =
∂P

∂F
=

1

2Vi

∑

j 6=i

kij⊗
[
Rij ⊗ Rij

]
. (3.3.30)

where ⊗ denotes the non–standard dyadic product ([A⊗B] : C = A ·C ·B) and ⊗ again

denotes the standard dyadic product, see appendix D.

So far, we have displayed the collection of quantities deduced by Sunyk and Stein-

mann [127] such as the stress tensor and tangent stiffness necessary within the continuum

mechanics framework. They serve to link deformation or rather transmit information

from the atomistic scale to the continuum scale. Moreover, they allow us the usage of the

non–linear finite element method.
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3 Horizontal Coupling in Continuum Atomistics

3.3.4 The Finite Element Simulation Structure

A numerical example is outlined in this section using the Cauchy–Born rule within the

non–linear finite element method (FEM). We wish to reiterate the sequence of explanation

exposed by Sunyk in his PhD thesis [125] and summarized in [127]. The main purpose of

this extra section is twofold: First to show the applicability of the Cauchy–Born rule as a

gateway to bring atomistic information into the realm of continuum mechanics in a vertical

way. Secondly, in order to facilitate further understanding of the horizontal coupling

between the FE approximation and molecular dynamics or rather between the continuum

and atomistic domains. For detailed descriptions of the finite element method, the books

written by Hughes [74] and Zienkiewicz [156] are excellent references. For German readers

the book by Wriggers [150] is recommended and for examples implemented in Matlab see

also [79]. The idea behind the simulation code consists of applying several steps as follows

1. Once the macroscopic body and the representative atomistic structure in each inte-

gration point are defined, an external load is applied (for example on the top of the

body as in the depicted Figure 3.9).

2. That produces a macroscopic deformation in each element which allows us to com-

pute the deformation gradient F , equation 3.3.2.

3. The new atomistic placement of the underlying crystal lattice at the nano–scale

is then computed by appealing to the Cauchy–Born rule which prescribed these

atomic position by the application of the macroscopic deformation gradient F using

the equation 3.3.23.

4. With this new configuration of the representative crystallite we are in the situation

of computing the continuum quantities as the Piola stress tensor, Equation 3.3.26,

and the tangent operator, Equation 3.3.30, at the Gauss points of each element (e).

P e
.
=

1

2Ve

∑

j 6=i

f ji ⊗ Rij.

Le
.
=

1

2Ve

∑

j 6=i

kij⊗
[
Rij ⊗ Rij

]
.

5. This iterative process combining macro deformation and atomistic computations

continues until the prescribed deformation is reached.
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The basic procedure is summarized in table 3.1. In the following, an example of applica-

tion is depicted.

Loop over Load steps

Loop Newton iteration

Loop over all elements

• Compute deformation gradient F e for each Gauss points at element

level (e) at the macro-scale

• Compute the representative atomistic structure at the nano-scale

by the application of the deformation gradient F e

• Compute the Piola-Kirchoff stress tensor P e at the Gauss points

of each element (e)

• Compute the tangent operator Le at the Gauss points of each ele-

ment (e)

Assembly global residual R and tangent stiffness K.

Test convergence

(a) IF
∥∥∥R
∥∥∥ ≤ TOL STOP

(b) IF
∥∥∥R
∥∥∥ > TOL REPEAT

Table 3.1: Ilustration of the algorithmic implementation using the Cauchy–Born rule as a gateway
to link atomistic and continuum scales within a finite element approximation.
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Example

In the present example, we consider a specimen in the three dimensional case. In Figure

3.9 is represented its geometry. We adopted 8–node elements for discretising the model

that consists in 18 elements and 56 nodes. The loading conditions imposed for the spec-

imen are plotted in the same Figure 3.9. They are applied on the top of the structure

distributed uniformly in order to simulate a shear deformation. Zero displacement bound-

ary conditions are used on the lower boundary. Furthermore, the nodes on the top are

constrained and forced to move only horizontally with vertical impedance. The atoms of

the representative crystal, i.e. the underlying configuration, are distributed in a fcc–type

crystalline material. For the sake of representation a two dimensional lattice structure is

represented in the detailed figures. We use the Lennard–Jones potential function, Equa-

tion (1.4.3), as a prototype model to compute the stress tensor as well as the tangent

operator. The parameters σ and ǫ of the Lennard–Jones potential are shown in Table 3.2

for different lengths of the cut–off radius.

n Number Length ε (nN · nm) σ (nm)

atoms cut–off radius

1 12 a
√

2
2

0.0957 0.2548

2 18 a 0.0854 0.2571

3 42 a
√

3
2

0.0748 0.2598

4 54 a
√

2 0.0728 0.2604

4 78 a
√

5
2

0.0709 0.2610

6 86 a
√

3 0.0705 0.2611

Table 3.2: Representation of length of the cut–off radius for different distance as well as the number of
atoms within each cut–off radius. The corresponding parameters ε and σ of the Lennard–
Jones pair potential are also shown. The lattice parameter is denoted by a which takes the
value for Aluminium a = 0.4044nm.

These parameters are fitted to aluminium and they have been deduced from the values

given in [42] under two conditions: First, stress-free in the material lattice configura-

tion C0. Secondly, the energy of an atom in the unloaded lattice is deduced follow-

ing the Equation (3.3.24). It must yield the sublimation energy which in this case is

Es = 3.58 eV = 0.574 nN nm . The lattice parameter of Aluminium is a = 0.4044nm and

the nearest neighbour distance has a value r0 =
√

3 a/2 = 0.286 nm. The cut–off radius

considered is rc = n a, with n = 3. The Wigner–Sitz cell for fcc–structure leads a value

Vi = a3/4 in the three dimensional case, see Figure 3.82. Figure 3.9 on the left shows the

initial undeformed state whereas on the right a deformation state of the same specimen

is displayed.

2This figure was taken from the web–side http://omnis.if.ufrj.br/rrds/cursos/matcond/cap04/redes–

3d.html
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Figure 3.8: The Wigner–Seitz cell of fcc
lattice in real space. It is
made by taking the lines to
the nearest and next neigbour
points and bisecting them with
planes.

rij = F · Rij

Figure 3.9: Schematic representation of a three dimensional structure with 18 elements using
the Cauchy–Born rule within the non–linear finite method.
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3.4 Coupling Algorithm in Continuum Atomistics

The central problem with the use of the Cauchy–Born rule is that this assumption is blind

to defects and homogeneous deformation is required [129]. Therefore, the introduction of

an atomistic method such as molecular dynamics is necessary for exploring the material

structure at the sub–microscale. In spite of the ongoing rapid advances in computer power

and accessibility a realistic modelling of a macroscopic problem is not yet viable with a

fully atomistic simulation due to the exhaustive computational demand necessary for sim-

ulations in the sense of molecular dynamics. Simply large atomistic calculations result in

excessive and often useless data where only a few set of atoms do anything interesting.

The time and length that can be proved by molecular dynamics are still limited as well,

even using parallel computers. That is the reason why a hybrid method combining atom-

istic resolution is necessary in order to capture the complex behaviour at the micron–scale

with continuum techniques. These multiscale methods allow us to drastically reduce the

number of degrees of freedom that a complete molecular dynamics computation of the

same domain would posses. They also focus only on regions where something interesting

happens using a resolution adapted to the type of solution considered.

Unfortunately, the coupling between molecular dynamics and the finite element method

or rather between the atomistic and continuum regions, is a critical issue of such hybrid

models due to the incompatibility between the non–local and local character of these two

domains respectively [40]. A schematic illustration of the geometry set–up for the present

work (2– dimensional case) is illustrated in Figure 3.10.

The physical problem is divided in two spatial regions as proposed by [78], [115] and [120].

A fully atomistic domain represented by the white circles. These atoms are considered as

unconstrained atoms where the molecular dynamics approach is applied. By surrounding

the atomistic region the continuum domain can be found where the finite element method

is performed and the deformation is obliged to follow the Cauchy–Born rule. For the sake

of simplicity only a few number of atoms and elements are represented. Additionally,

an artificial set of atoms (black circles) overlap the continuum region. These atoms are

considered constrained atoms, i.e. with zero temperature or v = 0. They have several

functions. First, they attempt to ensure that the unconstrained atoms close to the inter-

face are properly placed avoiding the non–physical surface which arises in such coupled

models as noted by Kohlhoff et al. [78] and Liu and co–workers [88]. Thus, they assure a

smooth transition from the atomistic to the continuum, so that the unconstrained atoms

have a complete set of interatomic neighbours. They then inform the unconstrained atoms

about the deformation resulted in the continuum. They belong to the continuum and their

positions are completely determined by the deformation that occurs in it. The minimum

width of the constrained atoms region must be at least equal to the cut–off radius used

for the interatomic computations in the unconstrained domain [120]. Finally, the atoms

located at the interface are placed in order to transmit the deformation from the atomistic

to the continuum, see detailed explanation below.

The principal issues for linking the finite element method and molecular dynamics are the

definition of the forces and the treatment of the displacement field. In order to achieve
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3.4 Coupling Algorithm in Continuum Atomistics

Atomistic domain

 Continuum domain

 Interface atoms

 Constrained atoms

Figure 3.10: The white circles in the middle represent the atomistic domain in two the two di-
mensional case where the molecular dynamics method is applied. The domain
around the atoms represents the continuum where finite elements are used. The
coupling between atomistic and continuum is carried out through the black circles
or also known as constrained atoms.

that, the coupled model is solved iteratively and independently. The solution procedure

is as follows

1. Once the model is constructed and the atoms are placed in an equilibrium position,

an external load in the system is applied in order to produce deformation in the

system. A finite element solution can now be performed. The process is as fol-

lows: The macroscopic deformation gradient F is computed at the mesoscale for

every element in the mesh, which defines the displacement field. By appealing the

Cauchy–Born rule the underlying atomistic system is obliged to deform according

to the continuum deformation gradient. This allows the calculation of continuum

quantities as stress tensor and tangent stiffness at the quadrature points direct from

the interactomic potential following the relations (3.3.28) and (3.3.29) developed by

Sunyk and Steinmann [127]. That produces a nodal displacement in every element,

that means mesoscopic deformation. With that, the new placement of the embed-

ded constrained atoms are linearly interpolated. Thus, they are instantaneously

fixed from the positions of the corners using the corresponding shape functions of

the finite element in which they reside as follows

ue
i =

node∑

I=1

NI (ξi) ue
I (3.4.1)
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iI e

Figure 3.11: This figure represents a finite element called e with the constrained atoms residing
on it. It also shows the notation applied within the description for the nodes and
atoms.

Here e, i and I symbolize the notation for labelling the corresponding finite ele-

ment, the unconstrained atoms and the finite nodes, respectively. ue
I denote the

nodal displacements of the element called e and NI (ξi) are the corresponding shape

functions. The displacement field of the constrained atoms is represented by ue
i .

2. With the new fixed positions of the constrained atoms on the boundary, a new equi-

librium position of the unconstrained atoms can be reached. To run the molecular

dynamics simulation, an initial random perturbation is given to the atoms in order

to oblige them to move and thus follow the constrained atoms. After that, the

velocities (Temperature) of the unconstrained atoms are rescaled in a proportional

manner at regular intervals in time during the equilibration period until 0 K tem-

perature by the velocity scaling method. Then, the system is maintained constant

at this temperature during the production period and if the instantaneous tempera-

ture increases exceeding a certain tolerance limit, the temperature is again rescaled

to 0 K. The process takes approximately 4500 micro times steps. The equations of

motion are solved numerically using the velocity Verlet algorithm, which yields the

phase trajectories of the unconstrained atoms. Note that for consistency the same

interatomic potential should be used in the atomistic domain as well as within the

continuum framework.

3. Once the unconstrained atoms achieve internal equilibrium, the forces exerted by

the unconstrained atoms on the constrained atoms (but only on the atoms placed at

the interface) are computed, neglecting the effect of the other constrained particles.

For visual clarity, a one dimensional example is presented in Figure 3.12.

4. Then, the equivalent nodal forces of the elements surrounding the atomistic domain

are computed by the forces of the constrained atoms placed on the interface as
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MD FEMFEM

Figure 3.12: Illustrative one dimension coupling algorithm. In the internal region the atoms are
unconstrained whereas surrounding this region a FE approximation is applied. The
semicircles represent the influence radius to compute the forces on the boundary.

F I =
natoms∑

I=1

NI (ξi) f i (3.4.2)

Here f i represents the interatomic forces and F I represents the nodal forces of the

element where the atoms i are placed. Again, NI (ξi) are the shape functions of the

corresponding elements, see [80].

5. Finally, the simulation continues with these macro finite element steps and micro

molecular dynamics iterations until the prescribed sought deformation is achieved.

Moreover, for consistency to the coupling algorithm the same interatomic potential

as in the atomistic domain should be used.

Summarizing, the sequence of application for transmitting the information from the con-

tinuum to the atomistic region is depicted in Figure 3.13. We reiterate the highlights of

the basic procedure for the coupling approach in Table 3.3.

FEM

MD

n − 1 n n + 1

ff
u u

Figure 3.13: Sequence of application in the coupling algorithm. From step n−1 to n we transmit
the forces. New atomistic positions are then found. From n to n + 1 the forces
are transmitted again. The process continues until the prescribed deformation is
encountered.
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Loop over Load steps

Loop Newton iteration

Loop over all elements (Compute F e, P e, Le)

Assembly global residual R and tangent stiffness K

Test convergence

Compute the displacements of the constrained atoms

ue
i (X) =

node∑

I=1

NI (ξi) ue
I

Loop Molecular dynamics

Compute new positions, forces and velocities

Temperature adjustment

Compute new time-step

Compute the interactive forces on the boundary

f i =
∑

j 6=i

f ij with f ij = −
φ′

ij

rij

rij

Compute the equivalent nodal forces

F I =
natoms∑

I=1

NI (ξi) f i

Table 3.3: Algorithm implementation of the coupling atomistic/continuum model. First, the finite
element method based on the Cauchy–Born rule is computed. The solution acquired
is used for the placement of the unconstrained atoms. That produces an imbalance
situation between the constrained and unconstrained atoms. Therefore, a new molec-
ular dynamics solution is needed. This process is repeated several times until the
prescribed deformation is attained.
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3.5 Some Numerical Results and Analysis

In this section two types of examples are used to illustrate the applicability of the coupled

atomic/continuum model. All examples presented here are two dimensional cases for a

fcc–type crystalline material oriented to 〈111〉 plane using the Lennard-Jones potential

function as a prototype model, Equation 1.4.3. The parameters σ and ǫ, fitted to alu-

minium in our computations, are obtained from the table 2.1 of [125] for the value n = 3.

These parameters are deduced from the values given in [42] under the conditions of a

stress-free material lattice configuration (C0) as well as the energy of an atom in the un-

loaded lattice is deduced following Equation 3.3.24. It must yield the sublimation energy

Es = 3.58eV = 0.574nN nm. The lattice constant r0 has the value r0 = 0.286 nm and

the cut–off radius considered is rc = n r0, which allows us to significantly reduce the com-

putational effort. The molecular dynamics micro step between two consecutives intervals

is set to 1.0 × 10−15 seconds and the number of micro iterations are approximately 4500

micro steps, performed in each macro step.

The first example presents a nanolevel crack growth of a rectangular box approximately

the size 184.2 nm × 214 nm, see Figure 3.14. This figure shows the initial configuration

of the model. For sake of representation and visual clarity only a small atomistic domain

near the crack tip is depicted. The boundary conditions imposed are plotted in the same

figure where the bottom nodes at both extreme sides are constrained to avoid vertical

and horizontal motion. The total number of elements is 656 with 721 nodes. 20 elements

are placed around the atomistic domain. The number of atoms in the atomistic region is

15628, divided in 13169 as unconstrained atoms and 2459 as constrained atoms with 326

being used at the interface. The model is loaded on the top in both directions at constant

increments in order to produce crack driving. In order to create a discontinuity, i.e. a ini-

tial crack situation, some atoms at the initial configuration in the atomistic domain were

removed. The detailed figure on Figure 3.16 shows the initiation of the crack. Here it is

possible to distinguish an initial void that forms ahead of the crack tip before the fracture

is completed. Another three Figures 3.17, 3.18 and 3.19 are plotted in different deformed

configurations to illustrate the crack opening. For the purpose of visual facilities in order

to follow the fracture detailed figures are placed on them. The atoms there are coloured

according to the atomic level stress. It is important to note that the bottom interface

between atomistic and continuum exerts a negative influence on the crack propagation.

This interface acts as a rigid boundary impinging the normal evolution of the crack or

rather when the crack encounters the interface, it cannot leap into the continuum due to

the fundamental incompatibility between both approaches. That disturbs the computa-

tion process and therefore it is necessary to stop it at this deformation state.
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Figure 3.14: Crack model with 656 elements in the continuum domain and 15628 atoms in the
atomistic region. The atoms are distributed in 13169 unconstrained atoms and
2459 constrained atoms of which 326 are used at the interface. For the sake of
representation only a few number of atoms are pictured in the detailed figure.

The second example deals with a rectangular plate that has a rounded nanovoid in

the central part of the simulated domain, see Figure 3.15. The geometry and loading

conditions are represented in the same figure. The size of the box is approximately

92.1 nm × 136.7 nm. The total number of elements are 320 with 366 nodes. The num-

ber of atoms at the atomistic domain embedded in the finite element mesh is in this

case 10391, distributed as follow: 8314 atoms are used as unconstrained particles where

molecular dynamics is applied, 2077 as constrained atoms with 276 being placed at the

interface. The forces are applied in both directions simultaneously in constant increments

in order to produce deformation and crack opening. Figures 3.20 and 3.21 show several

intermediate states of deformation to illustrate crack driving. During the deformation

process or rather the crack opening some dislocations emerge coming from the central

hole and migrate through the atomistic domain until encountering the interface. As in

the previous case, this exerts damaging influence on the simulation process because the

dislocations cannot come into the continuum domain crossing the boundary, see Figures
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3.22 and 3.23. This is the reason why in these Figures some voids appear at the corners

in the atomistic domain. Therefore, this is a good point for extending the investigation

focusing on the avoidance of the pulses initiated in the dynamic domain and reflected

at the interface due to the constrained atoms. They act as a rigid boundary avoiding

the smooth absorption of these waves. One approach dealing with these problems is the

multiscale method developed by Shilkrot et al. [120] and Qu et al. [107].

Figure 3.15: Crack model with 320 elements in the continuum domain and 10391 atoms in the
atomistic region. The atoms are distributed in 8314 unconstrained atoms and 2077
constrained atoms with 276 being used at the interface.
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Figure 3.16: Initiation of the crack opening in the coupling model. In the detailed figure it is
possible to observe an initial void that forms ahead of the crack tip before the
separation among the atoms is completed

96



3.5 Some Numerical Results and Analysis

Figure 3.17: Crack opening in the coupling model in a intermediate state of deformation.
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Figure 3.18: Crack opening in the coupling model in a intermediate state of deformation.
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Figure 3.19: Crack opening in the coupling model in a intermediate state of deformation.
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Figure 3.20: Crack opening in the coupling model in a intermediate state of deformation.
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Figure 3.21: Crack opening in the coupling model in a intermediate state of deformation.
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Figure 3.22: Crack opening in the coupling model in a intermediate state of deformation.
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Figure 3.23: Crack opening in the coupling model in a intermediate state of deformation.103
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3.6 Summary

The purpose of this chapter was to present the methodology used to develop a hybrid

model for studing several cases of nano–deformation. We combined atomistics simulations

in the sense of molecular dynamics with the finite element method within the continuum

framework. The resolution was adapted according to the type of solution considered, i.e.

an atomistic domain to capture the material behaviour complexity with a finite mesh to

capture the smooth parts of the solution with the objective of interplaying accuracy and

efficiently. This computational model present some difficulties due to pulses initiated in

the dynamic domain which are reflected at the interface because the constrained atoms,

i.e. the continuum domain acts as a rigid boundary avoiding the normal transition through

the whole domain. This will be treated in Chapter 4. Finally note that the atoms in the

figures are coloured according to the atomic level stress, see Appendix B.
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4 Wave Reflections at the
Atomistic/Continuum Interface

4.1 Introduction

For the dynamic model the interface between the constrained and unconstrained

atoms used to study the validity of the Cauchy–Born rule, Chapter 2, and the atom-

istic/continuum boundary within the coupling algorithm, Chapter 3, produces an

additional problem related to the pulses initiated in the dynamic domain. The origin of

these pulses is due to the lattice vibrations. They are reflected at the interface due to the

constrained atoms because they act as a rigid boundary avoiding the smooth absorption

of these waves, i.e. they impinge the normal propagation into the continuum domain.

Thus, they return to the atomistic region and produce a growth of energy in the lattice

disturbing the correct behaviour of the material as can be seen in Figures 3.20 and 3.21.

Such phenomena was noted by Doll and Adelman [43], Holmes and Belytschko [69],

Ohsawa and Kuramoto [101].

The main purpose here is devoted to broaden the simulations carried out in the two

previous chapters applying an approach which allows us to deal with the pulses mentioned

above. In order to achieve this, the chapter is organized as follows: The first section con-

tains a brief explanation of some current research activities which have been treated with

these spurious reflections. Afterwards, we put our attention towards the method suggested

by Holian and Ravelo [67] and implemented by Qu, Shastry, Curtin and Miller [107].

This method is intended to be applied to the study of the Cauchy–Born rule. Finally, we

extend the application of this technique to the coupling algorithm presented in Chapter 3.

4.2 Current State of Research

This section points out several techniques which have been developed recently in order

to avoid or reduce the wave reflections generated at the atomistic domain. These waves

need a special treatment using an efficient atomistic/continuum transition as proposed by

Cai et al. [24]. They introduce an approach to minimize wave reflections at the interface

imposing a time–dependent boundary condition. This reduces the influence of such

boundary in the results. The strategy is efficient for one–dimensional linear problems,

but the idea is too expensive in practice since the exact boundary tend to be non–local [86].

In order to obtain balance between efficiency and accuracy, Weinan and Huang [145,146]
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suggested a coupled method using a new class of matching conditions between atomistic

and continuum. The idea is to minimize the phonon reflections at the interface and

ensure the tranmission of the information between these regions. They reported examples

limited also for one–dimensional linear models and at zero temperature.

Following this line of research, Wagner and Liu [143] and Wagner et al. [144] have

developed a hybrid method combining molecular dynamics and a continuum mechanics

framework. Molecular dynamics is used in a localized region while the continuum is

computed covering the entire domain including the atomistic region. At the interface,

they introduce a form of the Langevin equation to minimize the wave reflections.

Based on the spatial decomposition strategy, Abraham et al. [1] and Broughton et al. [20]

coupled together three different approaches in a unified algorithm for illustrating silicon

fracture. These three approaches are quantum descriptions, molecular dynamics and

continuum mechanics. To reduce the pulses generated at the atomistic scale, a damping

was introduced into the handshake region between the continuum and atomistic regions.

Xiao and Belytschko developed a bridging method for coupling molecular and continuum

models where the Hamiltonian is a linear combination of the continuum and molecular

Hamiltonians [151]. This allows the proper transfer of energy between both domains

without using any filtering procedure near the overlapping zone. In addition this can

avoid the common wave reflections which appears in these multiscale approaches at the

molecular/continuum interface.

Another popular idea was proposed by Holian and Ravelo [67]. They efficiently prevent

the waves generated by a propagating crack by inserting a “viscous damping” at the

atomistic domain, this is an energy absorbing region. This idea was implemented in a

series of works. An incomplete list includes Gumbsch and coworkers [61], Zhou et al. [155],

To and Li [134], Collino and Tsogka [37], Holland and Marder [68]. In the next section, we

will introduce the notion of “viscous damping” with the twofold purpose to apply to the

Cauchy–Born rule and to the atomistic/continuum coupling model introduced in Chapter

3. Finally, we refer the reader to the works [114,115], [47], [103,104] and [75] for a deeper

discussion on the topic.

4.3 Theoretical Foundations of the Damping Zone

In this section our attention will be focused on the approach suggested by Holian

and Ravelo [67] and employed by Qu, Shastry, Curtin and Miller [107] in the atom-

istic/discrete dislocation method. We will touch only a few aspects of the theory. We

will then display several examples following the ideas applied by these authors [107] to

the study the validity of the Cauchy–Born rule carried out in Chapter 2 and the coupling

algorithm of Chapter 3.

The method consists of inserting an artificial damping zone, i.e. a filter using a Langevin–
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type thermostat near the interface (constrained atoms) in order to deal efficiently with

the reflection effects. Restricted to the atomistic domain, this is divided in three different

regions, see Figure 4.1. The outside region, coloured in black, acts as a rigid boundary

where the constrained atoms are placed. These atoms are forced to follow the homoge-

neous deformation or the deformation which occurs within each element in the case of

the coupling algorithm. They assure that the unconstrained atoms have a complete set of

interatomic neighbours. The region coloured in green is where molecular dynamics with

a damping term is used. Finally the remaining internal domain (red zone) is simulated

without damping by using the standard molecular dynamics method in the same way as

in Chapters 2 and 3.

wx

wy

X

Y

Figure 4.1: The black region represents the constrained atoms under the Cauchy–Born rule. The damp-
ing atoms are placed in the green area and the red region indicates the unconstrained atoms
without damping. wx and wy are the widths of the damping zone.

The idea of a damping zone is to include a damping term, i.e. a friction parameter

proportional to the velocity v, and a random force term into the equations of motion for

the atoms in the damped strip. This implies that the damping term depends indirectly

on the empirical potential used for the simulated system. We follow the same notation as

in [107]. Thus, we can rewrite Newton’s equations in the form

r̈ =
F

m
− γv + χ

F A

m
, (4.3.1)

where γ is the damping coefficient, χ represents a random number (−1 ≤ χ ≤ 1) and F A

is the ramdom acceleration component for each dimension which takes the format

FAi
=

√
6γkBT0

m∆t
, i = x, y, z (4.3.2)
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Here, kB is the Boltzmann constant, m is the mass of a particle, γ represents the damp-

ing coefficient, T0 is the desired equilibrium temperature and ∆t is the micro molecular

dynamics time step used in order to numerically solve Newton’s equations. In our case,

we wish to reach a zero temperature T0 = 0, and therefore the random acceleration term
F A
m is also zero. Thereby, the above expression 4.3.1 may be written as

r̈ =
F

m
− γv (4.3.3)

Following what Qu et al. proposed in [107], we define the damping coefficient γ to vary

linearly over the width of the damping zone as follows

γ = γ0[1 − η]. (4.3.4)

Here γ0 is the maximum damping, approximately 1/2 of the Debye frequency ωD, which

is the theoretical maximum frequency of vibration of the atoms in a crystal and η is the

minimum of the division among the distance from the atom position to each boundary

by the respective width of the damping region [107].

η = min

(
x − xmin

wx

,
xmax − x

wx

,
y − ymin

wy

,
ymax − y

wy

)
. (4.3.5)

Thereby the damping coefficient changes linearly from zero at the no damping boundary

area of the unconstrained atoms to γ0 at the constrained boundary atoms, see figure 4.2.
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γ0

γ0

0

0

wx

wy Damping area

Cauchy-Born area

Standard molecular dynamics

Figure 4.2: The damping coefficient γ varies linearly over the damping zone width. At the constrained
boundary atoms γ = γ0 and at the no damping boundary area of unconstrained atoms
γ = 0.
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In contrast to the method developed by Qu, Shastry, Curtin and Miller in [107], our system

is subjected to a certain deformation in each macrostep, see figures 2.8, 2.14, 2.20 and

2.26. This applied deformation causes variations in the damping zone widths. In order

to maintain a constant number of atoms in each area so that the damping coefficient γ0

varies linearly, both widths must be updated in each macrostep .

4.4 The Cauchy–Born Rule. Numerical Results Using a
Damping Zone.

Restricting our study to the influence of the damping zone on the stability of the

Cauchy–Born rule we proceed as follows: We limited ourselves to a system with 4096

atoms and a lattice orientation of 0 degree. This system is simulated with two different

damping zones for simple shear, pure shear, uniaxial extension and dilatation. On the

one hand, we take a damping zone with the widths wx = 2.2897 nm and wy = 2.2559 nm.

This simulation is constituted by three different areas, see Figure 4.1. The internal region

where the molecular dynamics method and the Cauchy–Born rule are used, is formed

by 2997 atoms, of which 1575 are placed in the damping zone and 1422 are computed

without artificial damping. The outside region is formed by 1099 constrained atoms. On

the other hand, we apply the damping in the whole unconstrained domain in order to

compare results.

The maximum damping is γ0 = 0.45ωD, where the Deybe frequency for Aluminium

is ωD = 5.6 × 1013 s−1 [107]. The rest of the parameters such as the Lennard–Jones

parameters, the initial position, the time step, etc... that are used in these simulations

are the same as the ones used in Chapter 2. The size step between two consecutive steps

is also the same as before. The results obtained in these simulations are compared with

the results for 4096 atoms and lattice orientation 0 degree achieved in the simulations

without artificial damping of the Chapter 2. Again the velocity–Verlet algorithm is

used to update the particle positions, velocities and accelerations in time with the only

difference of taking into account where it is applied, i.e. if the damping coefficient

must be added or not. We used the first type of simulations. That means that the

Cauchy–Born rule is applied in the whole domain in each macro deformation step.

Afterwards a small random perturbation of the velocities with a Maxwell distribution to

the unconstrained atoms is applied. Then the trajectories of the atoms are followed using

the molecular dynamics method until reaching a new equilibrium state. These macro

and micro iterative steps continue until the prescribes macro deformation is acquired.

The standard deviation is computed in each macroscopic time step to detect the onset of

instabilities. This procedure was explained in detail in Chapter 2.

For the sake of a clear interpretation for the next figures, we have to mention that

”No damping” represents the no damping simulation obtained in the Chapter 2,

”Partial damping” describes the simulation with the damping zone explained before and

”Total damping” shows the simulation with all unconstrained atoms damped in order

to see the influence of the damped region when the number of damped atoms are increased.
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4.4.1 Simple Shear Deformation

We briefly review that the simple shear deformation is characterised by F = I+γ [e1 ⊗ e2]

called the deformation gradient where ei, i = 1, 2 are the Cartesian basis vectors. I

denotes the identity tensor and the factor γ represents the shear number γ = tan (θ), see

Figure 2.8. In this case the atoms are forced to displace tangentially along the boundary.

This movement allows the widths of the damping zone to remain constant and therefore,

we do not need to update them, see the undergraduate final thesis [140].
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Figure 4.3: Evolution of the standard deviation versus the shear number γ for simple shear defor-
mation with 4096 atoms and 0 degrees, where ”No damping” describes the no damping
simulation, ” Partial damping” represents the simulation with the widths wx = 2.2897 nm

and wy = 2.2559 nm and ”Total damping” shows the simulation with all the internal atoms
damped.

In figure 4.3 we can observe the evolution of the standard deviation versus the shear

number γ. Note how the limit of the Cauchy–Born rule is larger, between γ = 0.1455 and

γ = 0.146, when the damping is applied in all the unconstrained atoms. This is due to

some of the spurious reflections being absorbed. However, although the standard deviation

is smaller in the no damping area than in the partial damping zone, the deformation

becomes inhomogeneous for approximately the same shear number, between γ = 0.1465

and γ = 0.147.
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4.4 The Cauchy–Born Rule. Numerical Results Using a Damping Zone.

4.4.2 Uniaxial Extension Deformation

The uniaxial extension deformation is characterized by F = I + [λ − 1] e1 ⊗ e1 known

as the deformation gradient where ei, i = 1, 2 are the Cartesian basis vectors, I is

the second order identity and the factor λ represents the stretch. For the uniaxial

extension the atoms are subjected to move horizontally without vertical deformation.

This displacement obliges to update the width wx in each macrostep with a variation

proportional to λ, see the diplom thesis [140].
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Figure 4.4: Evolution of the standard deviation versus the stretch λ for uniaxial extension with 4096
atoms and 0 degrees, where ”No damping” describes the no damping simulation, ” Partial
damping” represents the simulation with the widths wx = 2.2897 nm and wy = 2.2559 nm

and ”Total damping” shows the simulation with all the internal atoms damped.

In figure 4.4 the limit of the Cauchy–Born rule for the uniaxial extension case can be

observed. Notice that it is larger when damping is used in all the unconstrained atoms,

between λ = 1.133 and λ = 1.135 due to some spurious reflections being removed. For

the same stretch λ the limit of the Cauchy-Born rule is approximately the same, between

λ = 1.131 and λ = 1.133. Despite this, the standard deviation is smaller in the no

damping area than in the partial damping region.
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4 Wave Reflections at the Atomistic/Continuum Interface

4.4.3 Pure Shear Deformation

In Pure Shear deformation case the deformation gradient is denoted by

F = I + [λ − 1] e1 ⊗ e1 + [λ−1 − 1] e2 ⊗ e2 where the factor λ representes the stretch

and I again the identity tensor. For the uniaxial extension the atoms are subjected

to move horizontally without vertical deformation. This displacement obligates us to

update the width wx and wy in each macrostep with a variation proportional to λ, see

the diplom thesis [140] .
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Figure 4.5: Evolution of the standard deviation versus the stretch λ for uniaxial extension with 4096
atoms and 0 degrees, where ”No damping” describes the no damping simulation, ” Partial
damping” represents the simulation with the widths wx = 2.2897 nm and wy = 2.2559 nm

and ”Total damping” shows the simulation with all the internal atoms damped.

In figure 4.5 the limit of the Cauchy–Born rule for the uniaxial extension case can be

observed. Notice that it is larger when damping is used in all the unconstrained atoms,

between λ = 1.133 and λ = 1.135 due to some spurious reflections being removed. For

the same stretch λ the limit of the Cauchy-Born rule is approximately the same, between

λ = 1.131 and λ = 1.133. Despite this, the standard deviation is smaller in the no

damping area than in the partial damping region.
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4.4 The Cauchy–Born Rule. Numerical Results Using a Damping Zone.

4.4.4 Dilatation Deformation

The deformation gradient F = I + [λ − 1] e1 ⊗ e1 + [λ − 1] e2 ⊗ e2 characterizes

the dilatation deformation case where ei, i = 1, 2 are the Cartesian basis vectors, I

denotes the identity tensor and the factor λ represents the stretch. The dilatation case

atoms are obliged to move horizontally and vertically in a proportional manner. The

widths of the damping zone change in each macrostep. The variation is proportional to λ

for both wx (horizontal extension) and wy (vertical extension), see the diplom thesis [140].
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Figure 4.6: Evolution of the standard deviation versus the stretch λ for dilatation deformation with 4096
atoms and 0 degrees, where ”No damping” describes the no damping simulation, ” Partial
damping” represents the simulation with the widths wx = 2.2897 nm and wy = 2.2559 nm

and ”Total damping” shows the simulation with all the internal atoms damped.

As in the previous figures, figure 4.6 shows that the limit of the Cauchy-Born rule for the

total damping zone is the largest of all, approximately between λ = 1.116 and λ = 1.117.

Although no damping and partial damping have a similar limit for the Cauchy-Born rule,

between λ = 1.113 and λ = 1.114, the standard deviation is smaller in the no damping

area than in the partial damping zone because some spurious waves are eliminated.
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4 Wave Reflections at the Atomistic/Continuum Interface

4.5 The Horizontal Coupling Algorithm. Numerical
Results Using a Damping Zone

In this section, we wish to extend the application of the damping zone to the horizontal

coupling approach introduced in the previous Chapter. The motivation is to avoid

or insofar as we can reduce, the spurious energetic pulses initiated in the dynamic

domain impinging the atomistic/continuum model as can be seen in Figure 3.21. To

this end, we again insert a damping zone near the interface, i.e. close to the boundary

between the unconstrained atoms and the constrained atoms. The equations of motion

within the molecular dynamics framework in the damping zone are modified including a

friction term proportional to the velocity in the same way as done before on the study

of the Cauchy–Born rule. Summarizing the philosophy is the same as in the previous

Section. Hereafter we will mention the relevant parameters implemented to the coupled

atomistic/continuum model with the damping domain. It is worth to mention that the

damping zone may not depend only on viscous motion of the atomistic regime but also

on internal inertia of the continuum regime.

The example deals with the same rectangular plate with a round hole in the central

part of the simulated domain as represented in Figure 3.5. The geometry and loading

conditions are the same as depicted there. The total number of elements are 320 with

366 nodes. The number of atoms at the atomistic domain embedded in the finite element

mesh are 10391, distributed as follows: 8314 atoms are used as unconstrained particles

and 2077 as constrained atoms with 276 being placed at the interface. From these 8314

unconstrained atoms, 2514 are placed in the damping zone while the remaining atoms, i.e.

5800 atoms are put in the interior domain where a standard molecular dynamics algorithm

without any artificial damping is applied. This means the widths of the damped region

are wx = 2.14 nm and wy = 2.23 nm at the unloaded initial configuration. There,

the damping coefficient changes linearly from zero at the no damping boundary of the

unconstrained atoms to γ0 at the constrained boundary atoms within the finite elements.

The Lennard–Jones parameters σ and ǫ are the same as before taken the same value n = 3.

The lattice constant r0 again represents the value of r0 = 0.286 nm and the cut–off radius

considered is rc = n r0. The molecular dynamics micro step between two consecutives

intervals is set to 1.0×10−15 seconds and we reiterate that number of micro iterations are

roughly 4500 micro steps, performed in each macro step. Figures 4.7 and 4.8 illustrate the

same intermediate states as in Figures 3.22 and 3.23. In this case, thanks to the damping

term inserted, we attain to remove some spurious reflections. However, at the end of

the simulation the holes at the corners appear again to be perturbing the computation

because of the inherent incompatibility between the atomistic/continuum interface, i.e.

the constrained and constrained atoms. This atomistic phenomena, such as dislocations,

cannot cross into the finite element mesh anyhow. Therefore, it is necessary to incorporate

a better strategy to overcome this setback.
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4.5 The Horizontal Coupling Algorithm. Numerical Results Using a Damping Zone

Figure 4.7: Crack opening in the coupling model with damping zone. They represent the same
intermediate state of deformation as in Figure 3.20
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4 Wave Reflections at the Atomistic/Continuum Interface

Figure 4.8: Crack opening in the coupling model with damping zone. They represent the same
intermediate state of deformation as in Figure 3.21116



5 Conclusions and Outlook

In the present work the main purpose was to present a continuum–atomistic multiscale

algorithm for the analysis of crystalline deformation. To this end we combined the clas-

sical homogenization technique Cauchy–Born rule within a finite element approximation

with a molecular dynamics resolution of the atomistic region. The aim was twofold.

• On the one hand the Cauchy–Born rule plays a central role in continuum–atomistic

modelling and hence in the present contribution since it serves as a gateway

linking the micronscale and the macroscale, i.e. atomistic simulations and the

continuum mechanics. Therefore, the first part of this thesis deals with this

atomistic informed model for capturing fine–scale features. The major application

but at the same time limitation of the Cauchy–Born rule is that it is restricted to

sufficiently homogeneous deformations. This rule cannot capture nanolevel defects,

i.e. inhomogeneous deformation of the crystal. A study on the validity of the

Cauchy–Born rule and its transition to non–affine deformations was then developed

for differents cases of deformation. To this end, an atomistics failure criteria

was introduced in the sense of molecular dynamics which can capture complex

nanoscale behavior as well as to simulate atomistic displacement. The standard

deviation statistical measure was also introduced in this context as nothing more

then a numerical tool for this purpose. Note that, the basic theoretical background

of molecular dynamics approach had previously been outlined with special regard

to potential energy functions and algorithms.

• To cope with the latter, the second part of the work covers the methodology used

to develop a horizontal FEM/MD hybrid model for multi–scale analysis and the

study of several representative cases of crystalline defects. To do this we began by

reviewing the formulation of the continuum mechanics framework needed for this

contribution. Than, we reiterated the vertical coupling within the continuum mod-

elling which kinematics are charaterized by the mentioned Cauchy–Born rule. This

rule facilitates the incorporation of atomistic level information to the continuum

model in an elegant way. Afterwards we combined the Cauchy–Born rule within

a finite element approximation with an atomistic domain where the molecular dy-

namics approach was applied. The resolution was adapted according to the type

of solution considered, i.e. an atomistic domain to capture the material behaviour

complexity with a finite mesh to capture the smooth parts of the solution with the

objective of interplaying accuracy and efficiently. Eventually, some numerical results

were presented closing the chapter.
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5 Conclusions and Outlook

• In the end, the interface between the constrained and unconstrained atoms, i.e. the

transition between the atomistic and continuum domain, unfortunately produces

an additional problem related to the dynamic case. The pulses initiated in the

dynamic domain ended up being reflected at the interface due to the constrained

atoms, which then acted as a rigid boundary avoiding the smooth absorbtion of

these waves. Therefore, both studies (the investigation of the range of validity of

the Cauchy–Born rule and the horizontal coupling model) served as a good point

of departure for extending the simulations to the dynamic case using the technique

suggested by Holian and Ravelo [67] and implemented following the steps exhibit in

Qu, Shastry, Curtin and Miller [107].

In regard to the outlook, several problems seem to be attractive for discussion in the

future.

• The study of the Cauchy–Born rule may be also broadened to the three dimensional

case using not only pair potentials but also introducing other types of potentials

such as the proposed by Daw and Basques [42] or Finnis and Sinclair [54]. The

study to other lattice configurations, such as b.c.c. structure, could complete the

serie of works done in this area. The same study using the determinant of the

acoustic tensor, or rather the loss of rank 1 convexity can be introduced. That

would allow us to verify if the possible results acquired with both approaches would

indicate the loss of the validity of the Cauchy–Born rule for the same state of

deformation.

• Contrary to the study of the Cauchy–Born rule, the results achieved regarding

the horizontal multiscale model were not able to be compared to other methods.

Therefore, it is important to do it in order to check if the model renders similar

results. In addition, the considerations in this work are restricted to pair–potentials

for the sake of simplicity and also to the two dimensional case of a 〈111〉–plane of a

fcc type crystal due to the computational demand required. Therefore, a proposal

for the future is to extend the computations to the three dimensional case intro-

ducing a more realistic energy function, i.e. an EAM potential function to capture

atomistic phenomena. Moreover, other applications such as a nano–indentation

test may be applied since it is an important method for determining material

properties.

• Note that several problems arised during this work. One being in regards to the

Figure ??, depicting the crack opening, the atomistic/continuum interface impedes

the normal develop of the crack growth into the continuum domain. As a result this

produces a disturbance in the simulation and the computation must be stopped.

Therefore, it is of interest to develop a model to overcome this setback. One possib-

lity would be to follow the evolution of the crack beyond the atomistic domain when

the crack cross the interface. Other possibility would be allowance to move the

atomistic region in conjuction with the crack itself. That means, use a resolution
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adapted to the crack situation. We can add a set of atoms where a high degree of

detail is required such as the crack tip whereas several atoms placed away from the

complex material behaviour are removed and replaced with finite elements. With

that, the model focuses only on regions, where the material contains interesting

information and not only restricted to the initial atomistic/continuum configuration.

• Moreover, the treatement of the dislocations found out in the second example may

be a field of interest in terms of how to allow the transition to the continuum

without perturbing the atomistic domain. One approach dealing with this topic is

the model proposed by Curtin et al. [119,120]. It would be great to introduce these

ideas here for obtaining accurate results.
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A The Standard Deviation

This appendix is devoted to give a brief exposition of the concept of the standard deviation

quantity used in chapter 2, Equation 2.3.1. To achieve this aim, we will previously

summarize some relevant statistical definitions and notations. In the end, we will restrict

our attention to showing the difference between using a denominator N−1 instead of N in

Equation 2.3.1, which is the main purpose of this appendix. A more complete theory and

detailed proofs may be obtained in a variety of books listed here [9], [14], [52], [64], [87]

and [113].

Population

A population is a collection of reference elements (animals, people or things) in which

we are interested and we wish to describe a certain phenomenon. Typical examples of

phenomena studied on populations are for instance the choice of the voters in an election,

the number of defects involved in a factory on a given day, all possible outcomes in

successive tosses of a coin or the average temperatures for cities.

Population can be finite or infinite. The problem dealing with large finite populations

arises due to size, time, cost, and other resource constrain in order to extract the important

information, i.e. the features of the set of data in its entirety. In addition, dealing with

infinite populations is generally impossible. Therefore, a representative sample taken from

a population is necesary to yield some knowledge about the population.

Sample

A sample is a selected group of units, i.e. a reduced set of data from a population with

the objective of drawing valid conclusions about the population, i.e. attempt to describe

accurately a certain general phenomenon.

Sampling is the process of collecting and selecting a number of subjects from the subjects

of a population. The sample must be representative of the general population and large

enough to avoid errors, i.e. divergence between the phenomenon observed on a sample

and the real population value.

Estimator

A statistic is a function applied to a sample data where the function itself does not

depend on the distribution of the sample. An estimator is a statistic which is chosen to

calculate a parameter of interest in the sample and then, used to give information about

an unknown parameter in the population. Some typical estimators are for instance the
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sample mean value and the sample variance, which are explained in detail later. To be a

good estimator it is necessary to have the following characteristic: unbiased, consistency,

high quality, efficiency and robustness. Next, we will mention these features although the

most important for us is the unbiased characteristic because it allows us to explain the

standard deviation equation used in the current work.

1. Unbiased. Bias occurs when the estimator has a tendency to yield results that differ

from the values on the population. Suppose we want to estimate the population

parameter θ using an estimator θ̂. Then, the bias of θ̂, i.e. the random error, is

defined as the expected value of the estimator θ̂ minus the population value θ

bias (θ̂) := E(θ̂ − θ). (A.1)

In other words, using basic properties of expected value (see properties A.7 and A.10

of expectation) and knowning that θ̂ is a function and θ is a parameter, Equation

A.1 may be rewritten as follows

bias (θ̂) := E(θ̂) − θ. (A.2)

Thus, the estimator θ̂ is said to be an unbiased estimator of θ if the bias is 0, i.e. if

E(θ̂) = θ.

2. Consistency. An estimator is consistent, although it can be biased, if the bias

reduces as the sample size grows. That means, an estimator θ̂ (where n is the

sample size) is a consistent estimator for parameter θ if

lim
n→∞

bias
(
θ̂
)

= 0. (A.3)

3. Mean square error (MSE) The quality of an estimator is usually measured by

computing the mean square error.

MSE(θ̂) = E
[
(θ̂ − θ)2

]
=
(
bias

(
θ̂
))2

+ V AR
(
θ̂
)

. (A.4)

It can be seen that the mean square error is the sum of the variance and the square

bias of the estimator. The lower the mean square error the better estimator.

4. Efficiency. The efficiency of an estimator is generally judged by the inverse of the

variance of the estimator.

5. Robustness An estimator is robust when it maintains good properties against small

variations in the model.
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Expectation

A random variable is a function that associates a unique numerical value with every

outcome of an experiment. An important quantity associated with random variables is

the term expectation, symbolised by E [X] or also called mathematical expectation. Let

X be a discrete random variable. Thus, let us take a finite set of data {x1, x2, . . . , xN},
such that P [X = xi] > 0 for all i = 1, ..., N . Let us denote pi = P [X = xi], then the

expectation of X is defined as

E [X] :=
N∑

i

xi P [X = xi] =
N∑

i

xi pi. (A.5)

If each data xi for all i = 1, ..., N , has the same probability, i.e. pi = pj for all i = 1, ..., N ,

the expected value of X is also denoted by X which is called the arithmetic average or

arithmetic mean

X =
x1 + x2 + . . . + xN

N
. (A.6)

The mean is a common average measure used to report central tendency, i.e. to locate the

centre of the distribution of a random variable. Sometimes, it may not be appropriate for

describing distributions where the presence in the set is affected and influenced by a few

extreme values (large or small). These distortions can occur when the mean is different

from the median, i.e. the data set is skewed with one or more extreme values. When this

happens the median may be a better representative measure of central tendency than

the mean. Another measure to indicate central tendency is the mode, which represents

the most frequent value in the set of data.

Here, we review some of the main properties of the expectation

1. Expected value of a constant a is equal to that constant

E [a] = a. (A.7)

2. If X and Y are random variables such that X ≤ Y and E [X] and E [Y ] exist, then

E [X] ≤ E [X] . (A.8)

3. If a and b are two real numbers, X a random variable and E [X] exists, then, the

expectation of E [aX + b] also exists and verified

E [aX + b] = a E [X] + b. (A.9)
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4. If X and Y are random variables and E [X] and E [Y ] exist, then

E [X + Y ] = E [X] + E [Y ] . (A.10)

5. If X and Y are two independent random variables and their expectations exist, then

E [XY ] = E [X] E [Y ] . (A.11)

Variance

The mean, median and mode are very useful to estimate a frequency distribution, but they

do not give us an idea about the degree of spread of values. Therefore, the introduction

of a measure for describing the scatter of observations around the expected value, i.e. its

statistical dispersion is necessary. This measure is called variance and is defined as

VAR(X) := E
[
(X − E [X])2

]
. (A.12)

The term variance was first introduced by Ronald Fisher in 1918 [55]. The variance of a

random variable X is typically denoted by VAR(X), σ2
X or simply σ2 when there is no

doubt about which is the random variable.

Using the described features of the expectation explained above, we can rewrite the vari-

ance in the form

VAR(X) = E
[
(X − E [X])2

]
= E

[
X2
]
+ E

[
(E [X])2

]
− E [2X E [X]]

= E
[
X2
]
+ (E [X])2 − 2 E [X] E [X] = E

[
X2
]
− (E [X])2.

(A.13)

This is often used to calculate the variance in practice, although it suffers from numerical

approximation error if the two components of the equation, E [X2] and (E [X])2, are

similar in magnitude.

Restricted to a discrete random variable and considering that p1 = ... = pN , i.e. E [X] =

X, the population variance is given by

σ2 =
1

N

N∑

i=1

(xi − X)2. (A.14)

where X is the population mean, see Equation A.6. σ2 gives us an idea about how much

variation there is away from the average (mean). This is merely a special case of the
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general definition of variance introduced above.

In many practical situations such as in large populations, the true variance of a population

is not known a priori. The method is to use a sample in order to estimate the variance

of these populations. We take a simple random sample, i.e. a set of independent random

variables {Y1, . . . , Yn} equally distributed as X. Remark, that the purpose of this appendix

is to estimate the variance population, which from now on is denoted by σ2. It happens

that a good estimator of the expectation of the population is the mean sample which is

defined as1

Y n =
1

n

n∑

i=1

Yi. (A.15)

Then, it would not be strange to think that a good estimator of the population variance,

σ2, would be the sample variance defined by

S2 =
1

n

n∑

i=1

(
Yi − Y n

)2
. (A.16)

However, we will see in the following proof that S2 is not a good estimator of σ2, i.e. the

population variance. The problem of Equation A.16 is that it is a biased estimator of the

population variance (see property 1 of estimators), i.e. the expected value of the sample

variance, E [S2], is not the population variance σ2.

E
[
S2
]

=
n − 1

n
σ2 6= σ2 (A.17)

Proof of statement A.17

E
[
S2
]

= E

[
1

n

n∑

i=1

(
Yi − Y n

)2
]

= E

[
1

n

n∑

i=1

(
(Yi − E [Y1])

2 +
(
E [Y1] − Y n

)2
+ 2 (Yi − E [Y1])

(
E [Y1] − Y n

))
]

= σ2 + V AR(Y n) + E

[
2
(
E [Y1] − Y n

)

n

n∑

i=1

(Yi − E [Y1])

]
(A.18)

=
n + 1

n
σ2 − 2V AR

(
Y n

)
=

n − 1

n
σ2.

Therefore, the sample variance is not the best estimator of the population variance. In

order to avoid the bias of the variance sample, the (quasi)variance is defined as

1We omit the proof of this assumption and refer the reader to the references listed at the beginning of

the appendix.
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Ŝ2 =
n

n − 1
S2 =

1

n − 1

n∑

i=1

(
Yi − Y n

)2
(A.19)

which is an unbiased estimator of the population variance, i.e. E
[
Ŝ2
]

= σ2. That is

the reason why the (quasi)variance sample and not the variance sample is used for our

computations. In addition, when we measure one time, i.e. n = 1, the result of Equation

A.19 gives an indetermination 0/0. That means, that the result is an uncertain number,

i.e. we cannot say anything about the divergence from the mean value. On the contrary,

if we use the Equation A.16 to evaluate the divergence from the mean value, the result

is 0 and that is not necessarily true. However, note that in practice, if the size of the

sample increases, i.e. n is reasonably large, the difference between the variance and the

(quasi)variance decreases tending to the variance of the population.

Standard Deviation

The unit of variance is the square of the unit of observation. For example, the variance

of a set of heights measured in centimetres will be given in square centimetres. This fact

has motivated that instead of using the (quasi)variance, we use its square root, known as

the (quasi)standard deviation. The (quasi)standard deviation is applied as a measure of

the dispersion of a set of data from its mean. Therefore, the (quasi)standard deviation

can be expressed as:

sd =

√√√√ 1

n − 1

n∑

i=1

(Yi − Y n)2 (A.20)

A large (quasi)standard deviation indicates that the data points are far from the mean

and a small (quasi)standard deviation indicates that they are closely around the mean.

In our simulations the Equation A.20 is applied. Since we study convergence, i.e. we

increase the number of atoms to study the range of applicability of the Cauchy–Born rule,

the lattices used are interpreted as a sample of a large crystal configuration (population)

and therefore the Equation A.20 with n − 1 is a better approximation to compute the

standard deviation instead of using n.
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B Atomistic Stress

The pressure P at the boundary of a system may be calculated from the virial theorem

of Clausius [35]

P V = NkBT − 1

3

〈
∑

i,j<i

rij · f ij

〉
. (B.1)

Here, the symbol V denotes the volume, N the total number of particles in the system,

T the temperature and kB is the Botzmann’s constant. The angular brackets mean

average over time and the term within it refers to the internal virial where rij is the

separation of atoms i and j and f ij is the force on atom i due to atom j. In summary,

the first term refers to the kinetic presure and the second one to the potential pres-

sure. A general reference here is [7] and for a deeper discussion of the theory see also [136].

The atomic level stress σi is based on a generalization of the above–mentioned theorem,

see Nielsen et al. [97], which renders 1

σi = − 1

Ωi

(
1

2

∑

j 6=i

f ij ⊗ rij + mivi ⊗ vi

)
(B.2)

where Ωi is the local atomic volume around atom i, vi is the velocity of this atom i, rij is

the vector joining particles i and j and f ij is the force upon atom i due to the neighbour

j. As can be seen in the formula B.2 the atomic level stress consists of two terms. The

first part depends on interatomic forces and the second contribution on the mass and

velocity of atomic particles. Restricted to lattice statics, i.e. the stationary case, the

contribution of the kinetic term is identical to zero and hence the expression B.2 is re-

duced to the force part. Some other works dealing with the topic are for instance [141,157].

In the general case the virial stress tensor has been served to describe the current state of

stress in an atomic crystal as well as to the characterisation of defects [45], determination

of elastic constants [89] and used in molecular dynamics simulations [36,57]. Some other

authors also dealt with this topic include Yip et al. [33] and Delph et al. [38]. However,

recent works show that the virial stress including the kinetic term is not equivalent to the

classical Cauchy stress, see Zhou [154]. In addition, The total virial stress needs to be

average over the time and space to be identified with the Cauchy stress. Therefore the

correct link of quantities such as the virial stress between atomistic scale and continuum

scale still remains an important subject in research.

1This expression is a simplification for the case in which the energy function depends only on the

separations between the atoms, see Egami and Vitek [141] for details.
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C Continuum Failure Criteria

We have included this appendix with the simple purpose of comparing the accuracy of

the results obtained in Chapter 2. To this end, the acoustic tensor or rather the study

of the loss of rank 1 convexity was applied as continuum failure criteria. This tool was

also used in the work carried out by Sunyk and Steinmann [126]. They focused on

studying the stability of the Cauchy–Born rule for a shear deformation with 0 degree

lattice orientation and uniaxial extension deformation with 30 degrees lattice orientation.

These results are reiterated here and broaden to other deformation cases such as pure

shear and dilatation as well as to different lattice orientations in order to complete this

work and of course to compare to the results obtained in Chapter 2. As a result it turns

out that both approaches, i.e. the acoustic tensor and the atomistic failure criteria in

the sense of molecular dynamics, indicate the loss of the validity of the Cauchy–Born

rule for the same state of deformation. Note that the objetive is not to delve into this

continuum stability theory but only report an extension of the results pursued in [123,126].

Failure Criteria

Based on the stored energy density the analysis of the loss of infinitesimal rank 1 convexity

at the continuum level is given by

[m ⊗ N ] : ∂2

FF W0 : [m ⊗ N ] ≥ 0., (C.1)

where W0 is again the phenomenological macroscopic energy. Loss of rank 1 convexity

coincides with the possible onset of the (local) transition from an homogeneous deforma-

tion state to an inhomogeneous state of the continuum. It can be analysed thanks to

the acoustic tensor q which, for the case of pair potentials, takes the intriguing format in

terms of a weighted sum of atomic stiffness tensors

q =
1

2Vi

∑

j 6=i

qij with qij = [Rij · N ]2 kij. (C.2)

Here m denotes the jump or rather polarization vector in the deformed configuration, N

represents the normal to the failure surface in the material configuration and kij denotes

the atomistic level stiffness, which for the pair potential case takes the format outlined in

Equation 3.3.21. Here, the singularity of q, i.e. min {detq} = 0, marks the loss of rank

1 convexity and thus the onset of possible non–homogeneous deformation. See the Phd

Thesis of Sunyk and Lambrecht [81,125] for a complete explanation related to the loss of

rank 1 convexity analysis.
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Numerical Results

Simple Shear Deformation

The corresponding result for simple shear deformation within the realm of continuum

mechanics can be seen in Figure C.1 where the determinant of the acoustic tensor q

versus the shear number is depicted. They show the shear number where the sign–change

of the q occurs. These value are at γ ≈ 0.14 for lattice orientations 30 and 15 and

γ ≈ 0.142 for lattice orientations 0 which could be considered to correspond to the

critical deformation state. Since the Cauchy–Born model is essentially an elastic model,

loss of rank 1 convexity can also be interpreted to indicate the limit of the elastic domain.

These results agrees well with the results achieved in the simulations performed with

molecular dynamics.

Uniaxial Extension Deformation

Figure C.2 depictes the determinant of the acoustic tensor q versus the stretch λ for

differentes orientations (0, 15 and 30). In this case the sign–change of the min {det q}
corresponds to the stretch value λ = 1.12 for 0 and 15 degress in the lattice while

λ = 1.137 for orientation 30. These results are in a good agreement with the results

obtained from the standard deviation based on molecular dynamics.

Pure Shear Deformation

Loss rank 1 convexity performed in terms of the acoustic tensor indicates essentially the

state of losing the elastic behaviour of the model. To find out this state, the determinant

of the acoustic tensor q versus the stretch for pure shear deformation with differents

orientations was depicted in Figure C.3. They show the value of the stretch where

the sign–change of the q occurs. They could be considered to coincide to the critical

deformation state. These values are at λ = 1.0705 for lattice orientations 30 and 15 and

λ = 1.085 for lattice orientations 0, which correspond to the values achieved with the

atomistic criteria.

Dilatation Deformation

Finally Figure C.4 displays the determinant of the acoustic tensor q versus the stretch for

dilatation case with differents orientations. We discovered that the state of sign–change

of min {det q}, i.e. the possible onset of the transition to an inhomogeneous configuration

in the lattice, corresponds approximately to the value λ = 1.1131 independently of

the orientation considered. These results agrees well with the results achieved in the

simulations performed with molecular dynamics as can be seen in the figures shown before.
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for the case of simple shear deformation performed for different orientations in the
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case of pure shear deformation performed for different orientations in the lattice.
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case of dilatation deformation performed for different orientations in the lattice.
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A Note on Unit Conversions and Reduced Units

An important issue that remains is the choice of the units in molecular dynamics com-

putations. Several real quanties within the molecular dynamics framework and also in

nano– or micro mechanics may produce accuracy problems if they must be computed in

real units or rather in SI units. These quantities are normaly very small at this level. See

Table below which gives an overview of some common unit conversitions used in molecular

dynamics.

Quantity Unit name Symbol Conversion

Force Newton N 1 N = 1 kg m/s2

Length Angstrom Å 1 Å= 10−10 m

Time Femtosecond fs 1 fs = 10−15 sec.

Work, Energy Joule J 1 J = 1 Nm · nm = 1 kg m2/s2

Energy Electron volt eVol 1 eVol = 1.602177733 × 10−19 J

Mass Atomic mass unit amu 1 amu = 1.67 × 10−27 kg

In case the particles in the system interact via pair–potentials such as Lennard–Jones

energy function, they are defined by a few parameters such as ǫ and σ which are specified

in fundamental units of energy and length. That allows us to reduce the units of these

quanties as well as to save computational cost. We summarize in the next table some of

these variables in reduced units which were used during this work, see [7, 137] for more

details.

Density ρ∗ = ρσ3

Temperature T ∗ = kB

T

ǫ

Energy E∗ =
E

ǫ

Pressure P ∗ = P
σ3

ǫ
Time t∗ = (

ǫ

m σ2
)

1

2 t

Force f ∗ = f
σ

ǫ

Surface tension γ∗ = γ
σ2

ǫ
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Notation

Dyadic product

A = a ⊗ b Aij = ai bj

C = A ⊗ B Cijkl = Aij Bkl

Nonstandard dyadic products

C = A⊗B Cijkl = Aik Bjl

C = A⊗B Cijkl = Ail Bjk

134



Bibliography

[1] F.F. Abraham, J. Broughton, N. Bernstein, and E. Kaxiras. Spanning the continuum

to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett.,

44:783–787, 1998.

[2] F.F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz de la Rubia, and M. Sea-

ger. Simulating materials failure by using up to one billion atoms and the world’s fastes

computer: Brittle fracture. PNAS, 99(9):5777–5782, 2002.

[3] F.F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz de la Rubia, and M. Sea-

ger. Simulating materials failure by using up to one billion atoms and the world’s fastes

computer: Work-hardening. PNAS, 99(9):5783–5787, 2002.

[4] B.J. Alder and T.E. Wainwright. Phase transition for a hard sphere system. J. Chem.

Phys., 27(5):1208–1209, 1957.

[5] B.J. Alder and T.E. Wainwright. Studies in molecular dynamics. i. general method. J.

Chem. Phys., 31(2):459–466, 1959.

[6] M.P. Allen. Introduction to molecular dynamics simulation. NIC Series, 23(23):1–28,

2004.

[7] M.P. Allen and P.J. Tildsley. Computer Simulation of Liquids. Clarendon Press Oxford,

1987.

[8] H.C. Andersen. Molecular dynamics at constant pressure and/or temperature. J. Chem.

Phys., 72(72):2384–2393, 1980.

[9] R. B. Ash. Real analysis and Probability. Academic Press, 1972.

[10] M.I. Baskes. Modified Embedded–Atom potential for cubic materials and impurities. Phys.

Rev., B46(5):2727, 1991.

[11] M.I. Baskes and M.S. Daw. Embedded–Atom Method: derivation and application to

impurities, surfaces and other defects in metals. Phys. Rev., B29:6443, 1984.

[12] T. Belytschko and S.P. Xiao. Coupling methods for continuum model with molecular

model. International Journal for Multiscale Computational Engineering, 1(4):1543–1649,

2003.

[13] H.J.C. Berendsen, W.F. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak. Molec-

ular dynamics with coupling to an external bath. J. Chem. Phys., 81(8):3684–3690, 1984.

[14] P. Billingsley. Probability and Measure, 3rd Edition. John Wiley and Sons, 1995.

[15] M. Bishop, M.H. Kalos, and H.L. Frisch. Molecular dynamics of polymeric systems.

J.Chem. Phys., 70(03):1299–1304, 1979.

135



Bibliography

[16] J. Bonet and D. Wood. Nonlinear continuum mechanics for finite element analysis. Cam-

bridge University Press, 1997.

[17] M. Born. Dynamik der Kristallgitter. Teubner, 1915.

[18] M. Born and K. Huang. Dynamical theory of crystal lattices. Oxford, Clarendon Press,

1954.

[19] W. Brostow, J. P. Dussault, and B. L. Fox. Construction of Voronoi polyhedra. J. Comput.

Phys., 29:81–92, 1978.

[20] J. Q. Broughton, Farid F. Abraham, Noam Bernstein, and Efthimios Kaxiras. Concurrent

coupling of length scales: Methodology and application. Phys. Rev. B, 60(4):2391–2403,

1999.

[21] J.M. Buehler. Atomistic and continuum studies of deformation and failure in brittle solids

and thin film systems. 2004.

[22] J.M. Buehler and H. Gao. Ultra large scale simulations of dynamic materials failure.

Handbook of Theoretical and Computational, 2004.

[23] J.M. Buehler, A. Hartmaier, M. A. Duchaineau, Abraham F.F., and H. Gao. The dynam-

ical complexity of work–hardening: a large–scale molecular dynamics simulation. Acta

Mechanica Sinica, 21(2):103–111, 2004.

[24] W. Cai, V.V. de Koenig, M. Bulatov, and S. Yip. Minimizing boundary reflections in

coupled-domain simulations. Phys. Rev. Lett., 85(15):3213–3216, 2000.

[25] A. E. Carlsson. Advances in Research and Applications, volume 43. Edited by H. Ehren-

reich and D. Turnbull (Academic, New York, 1990), 1990.

[26] A. Carpio and L.L: Bonilla. Discrete models for dislocations and thier motion in cubic

crystals. Phys. Rev. B, 12:1087–1097, 2005.

[27] R. Carr and M. Parrinello. Unified approach for molecular dynamics and density functional

theory. Phys. Rev. Lett., 55(22):2471–2474, 1985.

[28] A. L. Cauchy. De la pression ou tension dans un systéme de points matériels. Exercices De
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