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Abstrat
This thesis overs two important �elds in �nanial mathematis, namely the ontinuoustime portfolio optimisation and redit risk modelling. We analyse optimisation problemsof portfolios of Call and Put options on the stok and/or the zero oupon bond issuedby a �rm with default risk. We use the martingale approah for dynami optimisationproblems. Our �ndings show that the riskier the option gets, the less proportion of hiswealth the investor alloates to the risky asset. Further, we analyse the Credit DefaultSwap (CDS) market quotes on the Eurobonds issued by Turkish sovereign for building theterm struture of the sovereign redit risk. Two methods are introdued and omparedfor bootstrapping the risk-neutral probabilities of default (PD) in an intensity based (orredued form) redit risk modelling approah. We ompare the market-implied PDs withthe atual PDs reported by redit rating agenies based on historial experiene. Ourresults highlight the market prie of the sovereign redit risk depending on the assignedrating ategory in the sampling period. Finally, we �nd an optimal leverage strategy fordelivering the payments promised by a Constant Proportion Debt Obligation (CPDO).The problem is solved via the introdution and expliit solution of a stohasti ontrolproblem by transforming the related Hamilton-Jaobi-Bellman Equation into its dual.Contrary to the industry pratise, the optimal leverage funtion we derive is a non-linearfuntion of the CPDO asset value. The simulations show promising behaviour of theoptimal leverage funtion ompared with the one popular among pratitioners.
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Prefae
This thesis is based on my researh sine I joined the Department of Finanial Mathe-matis of Fraunhofer ITWM in November 2004, where I also had a hane to partiipatein the researh and onsulting projets for the �nanial industry related with my researhinterests.The three hapters in this thesis are oneptually independent from eah other, thereforeeah hapter is self-ontained and has a separate introdution and a summary setion.The reader may diretly swith to the topi of his/her interest.The starting point of my researh was the intensity based (or redued-form) redit riskmodelling, then we deided to integrate the redit risk issues into ontinuous time portfoliooptimisation problems. Hene, the �rst hapter is in line with the paper by Korn andKraft [KK03℄, where they examine the portfolio optimisation problems of defaultableassets using a �rm value based redit risk model. In Chapter 1, we study optimisationproblems of portfolios onsisting of risky options. The framework of Korn and Trautmann[KT99℄ is applied for the optimisation problem, where we model the redit risk with a�rm-value based approah. Sine the underlying in the portfolio is a European type optionon the risky bond written by the �rm, the ompound option formula of Geske [Ges79℄ isadapted for priing reasons.The seond hapter is inspired from an industry projet of Fraunhofer ITWM in 2006for a leading German bank, where we jointly with PD Dr. Marlene Müller analysed therelationship between the risk-neutral and atual default probabilities of the ustomers ofthe bank, and validate the atual default probabilities with the risk neutral ones extratedfrom CDS quotes. Chapter 2 takes the Turkish sovereign CDS rates for building the termstruture of market implied sovereign redit risk. For that, a detailed literature surveyix
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Chapter 1Optimal Portfolios of Options withCredit Risk
1.1 IntrodutionPortfolio optimisation problems start with the pioneering work by Markowitz [Mar52℄,where he developed the theory in a disrete time setting. The �rst optimisation approahin a ontinuous time setting was introdued by Merton [Mer69℄, [Mer71℄ applying stohas-ti ontrol methods to portfolio problems. In his work the investor is allowed to invest onthe stoks and a riskless bond (or money market aount).In this hapter we are introduing portfolio optimisation problems when the portfoliosare omposed of a riskless bond and European options written on the stok or the bondissued by a �rm, where the �rm has redit risk (or default risk). Credit risk is de�nedas the failure of ful�lling a �nanial obligation by the agents determined in a ontrat.Credit risk problems are generally analysed in two approahes, namely the redued form(or intensity based) and the strutural (or �rm-value based) models. We use the lassialMerton [Mer74℄ approah, known to be the �rst �rm-value based redit risk model.In Merton model, the market value of the �rm V (t) follows a geometri Brownian motion,being the main soure of unertainty. The �nanial obligation of the �rm is to return thepromised fae value F to the bondholders at debt maturity time T1. Hene, the defaultours if the �rm an not ful�l its obligation, i.e., the market value of the �rm is less thanits debt V (T1) < F . The stok of the �rm is valued similar to a European all optionwritten on the market value of the �rm with a strike prie equal to the debt value, F . If1



2 Chapter 1. Optimal Portfolios of Options with Credit Riskwe have another all option written on the stok prie of this �rm, we an onsider thederivative a European all on all option, with the �rm value as the underlying. Hene,we an adopt the ompound option priing tehniques of Geske [Ges79℄ to our problem.We use similar tehniques for the valuation of European options written on the bond ofthe �rm.To our knowledge, the portfolio problem with defaultable seurities was �rst introduedby Merton [Mer71℄, where he used a speial kind of redued-form redit risk model formodelling the default event. A similar approah was examined by Kraft and Ste�ensen[KS08℄, where the authors proposed a model that allows for random reovery and joint de-fault events as well in a redued-form setting. Other papers dealing with similar problemsare Bieleki and Jang [BJ07℄, and Lakner and Liang [LL07℄.A seond type of portfolio optimisation problem inluding redit risk, whih uses thestrutural redit risk models was introdued by Korn and Kraft [KK03℄. In this approah,the authors use the elastiity method of Kraft [Kra03℄, whih is the generalisation of theideas presented by Korn and Trautmann [KT99℄ for ontinuous time optimisation problemfor the option portfolios. Furthermore, Kraft and Ste�ensen [KS06℄ extended the modeldeveloped in Korn and Kraft [KK03℄ with power utility funtions delivering more reliableresults. Our work an be listed in this stream of papers, as we use a strutural model formodelling the redit event.Our ontributions in this hapter result from ombining three ingredients:
• the Merton [Mer74℄ approah for modelling the redit risk,
• the optimisation method for portfolio of options from Korn and Trautmann [KT99℄,
• the Geske [Ges79℄ formula for priing of the ompound options,in order to deal with an optimal (option) investment problem for defaultable seurities.The outline of the hapter is as follows. We analyse the strutural redit risk modelsin Setion 1.2. We give the outlines of ontinuous time portfolio optimisation problemin Setion 1.3, where we present the martingale approah in details. We ontinue withSetion 1.4 by introduing the Korn and Trautmann [KT99℄ framework for optimising



1.2 Strutural Credit Risk Models 3option portfolios. Setion 1.5 presents our �ndings, where we extend the results of Kornand Kraft [KK03℄, and add a seond iteration to the problem in their paper. Here, weoptimise portfolios onsisting of options on options and the money market aount. We�nally present our �ndings and summarise the hapter.1.2 Strutural Credit Risk ModelsIn this setion, we will desribe the strutural redit risk model, whih is also alled the�rm value based redit risk model. This model was proposed by Merton [Mer74℄ anduses the option priing tehniques of Blak and Sholes [BS73℄. In this approah, theorporate liabilities are onsidered as ontingent laims on the assets of the �rm. Thismodel is named as �rm-value based sine the market value of the �rm is the fundamentalsoure of unertainty whih drives the redit risk.We an also subdivide strutural models into two di�erent approahes, namely the lassialapproah and the �rst-passage approah. In the lassial Merton [Mer74℄ approah, the�rm defaults when its market value is not su�ient to pay bak its debt at the maturitytime of the ontrat. This means that the default annot be triggered before debt maturity,whih is a very unrealisti assumption. However, in �rst-passage models, we assume thatthe default is triggered when the value of the �rm falls below a barrier during the life timeof the bond. This approah was pioneered by Blak and Cox [BC76℄.1.2.1 Classial Approah: Merton ModelWe present the important results of the lassial approah in this subsetion. Merton[Mer74℄ introdues the �rm value dynamis with an assumption that the �rm has pay-outs (dividends or interest payments) to either its shareholders or liability holders. Forsimpliity, we assume that the �rm has neither dividends nor interest payments. Thedynamis for the market value of the �rm V through time is desribed by a geometriBrownian motion:
dV (t)

V (t)
= µvdt+ σvdW (t), V (0) > 0, (1.1)



4 Chapter 1. Optimal Portfolios of Options with Credit Riskwhere µv ∈ R is the onstant drift parameter, σv > 0 is the onstant volatility parameterand W is the one-dimensional Brownian motion under physial measure P . Here, Vrepresents the expeted disounted future ash �ows of a �rm. The simulated paths forthe dynamis of the �rm value proess an be observed in Figure 1.1, where we use thealgorithm desribed by U§ur [U�08℄. The �rm is �naned by an equity (stok) P1(t) and a
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Figure 1.1: Simulated paths for the �rm value proess with µv = 0.1, σv = 0.5, V (0) = 1.risky Zero Coupon Bond (ZCB, hereafter) B̄(t, T1) with fae value F and maturity date
T1. The ontratual obligation of the �rm is to repay F to the bondholders at time T1.We assume that if the �rm annot ful�l its payment obligation, then the bondholders willimmediately take over the �rm. Hene, the default time τ is a random variable with:

τ =

{
T1 if V (T1) < F,
∞ else. (1.2)It�'s lemma implies that

V (t) = V (0) exp

((
µv −

1

2
σ2

v

)
t+ σvW (t)

)
.Assuming that the �rm an neither issue new senior debt on the �rm nor repurhase



1.2 Strutural Credit Risk Models 5Firm value Bond StokNo default V (T1) ≥ F F V (T1) − FDefault V (T1) < F V (T1) 0Table 1.1: Payo�s at maturity in the lassial approahshares prior to the maturity of the debt, the payo�s of the seurities of the �rm will be asin Table 1.1. If the �rm value V (T1) exeeds or equals the fae value F of the bonds, the
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Figure 1.2: Firm A defaults, Firm B does NOT default, with F = 0.8.bondholder reeives the promised payment F , and the shareholder reeives what remains;
V (T1) − F . If the value of the assets V (T1) is less than F , the �rm defaults and theownership of the �rm is transferred to bondholders; and shareholders reeive nothing.Therefore, the value of the ZCB at maturity time T1 will be given by:

B̄(T1, T1) = min(F, V (T1)) = F − (F − V (T1))
+. (1.3)Now, we an relate the option priing theory of Blak and Sholes [BS73℄ with the followingidea. The payo� given in (1.3) is the same payo� of a portfolio omposed of a default-free



6 Chapter 1. Optimal Portfolios of Options with Credit Riskloan with fae value F maturing at T1 and a short European put position on the value ofa �rm with strike F and maturity time T1. Denoting the prie of the stok with P1(·), atthe time T1 we have
P1(T1) = (V (T1) − F )+, (1.4)whih is equivalent to the payo� of a European all option on the �rm value with strike Fand maturity time T1. Thus, valuation of the stok is the same as valuation of a Europeanoption in the lassial Blak-Sholes setting, where we assume the short interest rate, r, isonstant and the �rm value V , follows a geometri Brownian motion. The Blak-Sholesall option formula gives the stok prie as:

P1(t) = V (t)Φ(h1(t)) − Fe−r(T1−t)Φ(h2(t)), (1.5)where
h1(t) =

ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

and h2(t) = h1(t) − σv

√
T1 − t.The value of the risky ZCB is

B̄(t, T1) = Fe−r(T1−t) −XPut(t, V (t)),where XPut is the Blak-Sholes put option formula. Therefore, we will have:
B̄(t, T1) = V (t)Φ(−h1(t)) + Fe−r(T1−t)Φ(h2(t)), (1.6)whih together with (1.5) proves the market value identity:

V (t) = P1(t) + B̄(t, T1).1.2.2 First Passage Models: Blak-Cox ModelThe main drawbak of the Merton [Mer74℄ model is that the default event may our onlyon the maturity time of the bond, whih is very unrealisti. Hene, �rst passage modelswere introdued allowing the default event our during the life time of the defaultablebond. The default time is the �rst time that the value of the �rm hits a barrier, i.e.,
τ = inf{t|V (t) = L(t)}, t > 0 (1.7)



1.3 Continuous Time Portfolio Optimisation Problem 7where the time-dependent, deterministi barrier funtion is denoted with L(·). We anthink the barrier as ontinuously ompounded debt k with rate κ disounted to time t,i.e.,
L(t) = ke−κ(T1−t). (1.8)The prie of a ZCB with the fae value F ≥ k and maturity T1 at time t ∈ [0,min(T1, τ)]is given by

B̄(t, T1) = Fe−r(T1−t)
[
Φ(z1(t)) − y2θ−2(t)Φ(z2(t))

]

+V (t)
[
Φ(−z3(t)) + y2θ(t)Φ(z4(t))

]
,with

z1;3 =
ln
(

V (t)
F

)
+ (r ∓ 1

2
σ2

v)(T1 − t)

σv

√
T1 − t

z2;4 =
ln
(

V (t)
F

)
+ 2 ln(y(t)) + (r ∓ 1

2
σ2

v)(T1 − t)

σv

√
T1 − t

y(t) =
ke−κ(T1−t)

V (t)

θ =
r − κ+ 1

2
σ2

v

σ2
.Sine we fous on the optimal portolio problems in lassial Merton setting on this level,we refer the interested reader to the introdutory paper by Gieseke [Gie04℄ for more infor-mation about advaned strutural redit risk models. Further, Aar [Aa06℄ introdues anadvaned �rm value model inluding a jump omponent for obtaining the optimal apitalstruture of a �rm.1.3 Continuous Time Portfolio Optimisation ProblemThe problem an be brie�y de�ned as �nding an optimal onsumption and investmentstrategy for an investor with an initial apital of x > 0 in order to maximise his expetedutility on terminal wealth. Hene, it is about deiding how many shares of whih seurityone investor should hold at whih time instant. For the general presentation in thissetion, we assume to be in a standard di�usion type market with d risky assets and a



8 Chapter 1. Optimal Portfolios of Options with Credit Riskriskless bond (or Money Market Aount). We present some de�nitions from Korn andKorn [KK01℄.De�nition 1.1. I. A trading strategy ϕ is an Rd+1− valued progressively measurableproess with respet to {Ft}t∈[0,T ]

ϕ := (ϕ0(t), ϕ1(t), . . . , ϕd(t))
′satisfying ∫ T

0

|ϕ0(t)|dt <∞ a.s. , (1.9)
d∑

j=1

∫ T

0

(ϕi(t) · Pi(t))
2dt <∞ a.s. for i = 1 . . . d. (1.10)The value x :=

∑d
i=0 ϕi(0) · pi is alled the initial value of ϕ.II. Let ϕ be a trading strategy with initial value x > 0. The proess

X(t) :=
d∑

i=0

ϕi(t)Pi(t)is alled wealth proess orresponding to ϕ with initial wealth x.III. A non-negative progressively measurable proess c(t) with respet to {Ft}t∈[0,T ] with
∫ T

0

c(t)dt <∞ a.s. (1.11)is alled a onsumption rate proess (or just onsumption proess).De�nition 1.2. A pair (ϕ, c) onsisting of a trading strategy ϕ and a onsumption rateproess c is alled self-�naning if the orresponding wealth proess X(t), t ∈ [0, T ],satis�es:
X(t) = x+

d∑

i=0

∫ t

0

ϕi(s)dPi(s) −
∫ t

0

c(s)ds a.s. . (1.12)urrent wealth = initial wealth + gains / losses− onsumptionDe�nition 1.3. Let (ϕ, c) be a self-�naning pair onsisting of a trading strategy and aonsumption proess with orresponding wealth proess X(t) > 0 a.s. for all t ∈ [0, T ].Then, the Rd−valued proess
π(t) := (π1(t), . . . , πd(t))

′, t ∈ [0, T ] with πi(t) =
ϕi(t) · Pi(t)

X(t)is alled a self �naning portolio proess orresponding to the pair (ϕ, c).



1.3 Continuous Time Portfolio Optimisation Problem 9Remark 1.1. I. The portfolio proess denotes the fration of the total wealth invested indi�erent stoks. Therefore, the fration of wealth invested in the riskless bond (or MMA)is
(1 − π(t)1) =

ϕ0(t) · P0(t)

X(t)
, where 1 := (1, . . . , 1)′ ∈ R

d.II. Given the knowledge of the wealth X(t) and the pries Pi(t), it is possible for aninvestor to desribe his ativities via a self-�naning pair (π, c). More preisely, in thisase, portfolio proess and trading strategy are equivalent desriptions of same ation.Now, we introdue the funtional J for measuring the utility of a payment stream, wherelarge values of J should represent "good" payment streams. Therefore, the investor looksfor a self-�naning pair (an admissible investment strategy and onsumption proess)
(π, c) ∈ A(x), whih maximises the expeted utility from onsumption and/or terminalwealth,

J(x; π, c) = E

[∫ T

0

U1(t, c(t))dt+ U2(X
x,π,c(T ))

]
, (1.13)where U1, U2 are the utility funtions, X(t) is the wealth proess orresponding to theinitial apital x and (π, c). We require that the utility funtions U1(t, .) and U2(.) are C1,stritly onave and satisfy

U ′(0) := lim
x↓0

U ′(x) = +∞, U ′(∞) := lim
x↓∞

U ′(x) = 0.Typial utility funtions are U(x) = ln(x), U(x) =
√
x, or U(x) = xα for 0 < α < 1. Formore details on the utility funtions, we refer the reader to Korn [Kor97℄.Note that for an arbitrary (π, c) ∈ A(x), the expetation in (1.13) is not neessarilyde�ned. Hene, we restrit the lass of self-�naning pairs (π, c), in whih the expeta-tion in (1.13) is �nite. However, having an in�nite positive expeted utility would beany investor's dream if it ould be reahed. We an now de�ne the problem after thisrestrition.De�nition 1.4. The problem

max
(π,c)∈A′(x)

J(x; π, c) (1.14)with
A′(x) =

{
(π, c) ∈ A(x)

∣∣∣E
[∫ T

0

U1(t, c(t))
−dt+ U2(X(T ))−

]
<∞

}is alled the ontinuous-time portfolio problem.



10 Chapter 1. Optimal Portfolios of Options with Credit RiskRemark 1.2. I. Note that the ondition in (1.14) does not exlude the strategies thatwill possibly lead to in�nite utility. It states that the only requirement is the �niteness ofthe expeted value over the negative parts of the utility funtion. Hene, by restritingto the set A′(x), the integral in (1.14) is always de�ned.II. If U1(t, .) > 0 and U2(.) > 0, the equality A(x) = A′(x) is trivially satis�ed.There are mainly two solution methods in the literature for the portfolio problem in (1.14).The �rst method is alled the martingale method, whih is based on the martingale theoryand stohasti integration in a omplete market setting. The seond approah is thestohasti ontrol method and it is an appliation of the standard methods of stohastiontrol theory to portolio optimisation problem. In the next subsetion, we will explainthe motivation of the martingale method and provide an example. We present someimportant results of the stohasti ontrol theory in Chapter 3.1.3.1 The Martingale MethodThe main idea of the martingale method is to deompose the dynami (in time) portolioproblem in (1.14) into a stati (in time) optimisation problem (determination of theoptimal payo� pro�le) and a representation problem (ompute the portfolio proess thatyields the optimal payo� pro�le).Sine the motivation of the approah mainly depends on the omplete market assumption,we introdue the related theorem below. Remember that the number of stoks equals thedimension of the underlying Brownian motion. We use the following notation
θ(t) := σ−1

p (t)(µp(t) − r(t)1)

H(t) := exp

(
−
∫ t

0

θ(s)′dW (s) −
∫ t

0

(
r(s) +

1

2
‖ θ(s) ‖2

)
ds

)
,where µp denotes the deterministi drift proess for equity dynamis, σp is the volatility,and r is the short rate proess.Moreover, H(t) is the unique solution to the Stohasti Di�erential Equation (SDE)

dH(t) = −H(t)[r(t)dt+ θ(t)′dW (t)], (1.15)
H(0) = 1.



1.3 Continuous Time Portfolio Optimisation Problem 11Theorem 1.1 (Completeness of the market). I. Let the self-�naning pair (π, c) be ad-missible for an initial wealth of x ≥ 0. Then, the orresponding wealth proess Xx,π,c(t)satis�es
E

[
H(t)Xx,π,c(t) +

∫ t

0

H(s)c(s)ds

]
≤ x for all t ∈ [0, T ].II. Let B ≥ 0 be an FT−measurable random variable and c(t), t ∈ [0, T ], a onsumptionproess satisfying

x := E

[
H(T )B +

∫ T

0

H(s)c(s)ds

]
<∞.Then, there exists a portfolio proess π(t), t ∈ [0, T ], with (π, c) ∈ A(x) and the orre-sponding wealth proess Xx,π,c(t) satis�es

Xx,π,c(T ) = B almost surely (a.s.).Proof: See p.66 of Korn and Korn [KK01℄.Motivation of the Martingale MethodWe start the presentation with assuming that the portfolio problem in (1.14) does nothave the onsumption proess, i.e., c ≡ 0, U1 ≡ 0. Therefore, the dynami portfolioproblem redues to
max

(π,0)∈A′(x)
E(U2(X

x,π(T ))). (1.16)From the ompleteness of the market (Theorem 1.1), we have
E [H(T )Xx,π(T )] ≤ x for T ≥ 0,and let the �nal payment B ≥ 0 be FT−measurable with E[H(T )B] = x. Furthermore,there exists a portfolio proess (π, 0) ∈ A with B = Xπ(T ) a.s. De�ne

B(x) := {B | B ≥ 0, FT -measurable, E[H(T )B] ≤ x,E[U2(B)−] <∞},representing the set of all �nal wealths with some initial wealth y ∈ (0, x] and satisfying
E[U2(B)−] < ∞. In order to determine the optimal �nal wealth, it is su�ient to solvethe following problem

max
B∈B(x)

E[U2(B)]. (1.17)Note that we do not have any time dependent variable above, therefore, we only optimiseover a set of random variables. Here, we transformed the dynami problem in (1.16)



12 Chapter 1. Optimal Portfolios of Options with Credit Riskinto the stati problem in (1.17). We solve the stati problem (1.17) with the help ofLagrangian method (See p. 208 of Korn and Korn [KK01℄).Say, the �rst step results in the optimal wealth B∗, then the remaining step is to solvethe �representation� problem:Find a (π∗, 0) ∈ A′(x) with Xx,π∗
(T ) = B∗ a.s. . (1.18)

2Going bak to general optimisation problem de�ned in (1.14), we introdue the funtion
χ : (0,∞) → R:

χ(y) := E

[∫ T

0

H(t)I1(t, yH(t))dt+H(T )I2(yH(T ))

]
∀y > 0,where I1(t, ·) = (U ′

1)
−1(t, .), is the inverse funtion of the partial derivative of U1 withrespet to the seond omponent, and I2(·) = (U ′

2)
−1(.). Funtion χ(y) is stritly de-reasing, ontinuous and possesses an inverse funtion. Setting Y (x) := χ−1(x) and withthe help of the following theorem from Korn and Trautmann [KT99℄, we get the optimalterminal wealth and the optimal onsumption proess.Theorem 1.2. Let x > 0. Under the assumption of

χ(y) <∞ y ∈ (0,∞)the optimal terminal wealth B∗ and the optimal onsumption proess c∗(t), t ∈ [0, T ], forproblem (1.14) are given by
B∗ := I2(Y (x)H(T )), �optimal terminal wealth�

c∗(t) := I1(t, Y (x)H(t)), �optimal onsumption�Moreover, there exists a portfolio proess π∗(t), t ∈ [0, T ], suh that we have
(π∗, c∗) ∈ A′(x), Xx,π∗,c∗(T ) = B∗ a.s.,and suh that (π∗, c∗) solves the problem (1.14), where Xx,π∗,c∗(t) is the wealth proessorresponding to the pair (π∗, c∗) and the initial wealth x.Proof: See p. 210 of Korn and Korn [KK01℄.



1.3 Continuous Time Portfolio Optimisation Problem 13Example 1.1. We present an example from Korn and Korn [KK01℄ with logarithmiutility funtions for the martingale approah of portfolio optimisation. Suppose we have
U1(t, x) = U2(x) = ln(x).Note that we may have negative utilities if x < 1. With the utility funtions given above,we have

⇒ I1(t, y) = I2(y) =
1

y

⇒ χ(y) = E

[∫ T

0

H(t) · 1

yH(t)
dt+H(T ) · 1

yH(T )

]
=

1

y
(T + 1)

⇒ Y (x) = χ−1(x) =
1

x
(T + 1).With Theorem 1.2, we get the optimal onsumption and wealth as

B∗ := I2(Y (x)H(T )) =
x

T + 1
· 1

H(T )
,

c∗(t) := I1(t, Y (x)H(t)) =
x

T + 1
· 1

H(t)
.From these optimal values, we an �nd the the optimal portfolio proess expliitly. Wehave

H(t) ·Xx,π∗,c∗(t) = E

[∫ T

t

H(s)c∗(s)ds+H(T )B∗
∣∣∣Ft

] (1.19)
= x · 1 + T − t

T + 1
. (1.20)Then,

x = x · T + 1 − t

T + 1
+ x · t

T + 1
= H(t) ·Xx,π∗,c∗(t) +

∫ t

0

H(s)c∗(s)ds. (1.21)From the self-�naning pair (π∗, c∗) and the orresponding wealth proess,
X := Xx,π∗,c∗, we have the wealth equation as follows:

dX(t) = [r(t)X(t) − c∗(t)]dt+X(t)π∗(t)′(µp(t) − r(t)1)dt

+X(t)π∗(t)′σp(t)dW (t)

X(0) = x,



14 Chapter 1. Optimal Portfolios of Options with Credit Riskand H(t) has the It� representation as in (1.15). Applying It� produt rule to H(t) ·X(t),we have
H(t) ·X(t) = H(0) ·X(0) +

∫ t

0

H(s)dX(s) +

∫ t

0

X(s)dH(s) +

∫ t

0

d < H,X >s

= x+

∫ t

0

H(s)[r(s)X(s) − c∗(s)]ds+

∫ t

0

H(s)X(s)π∗(s)′(µp(s) − r(s)1)ds

+

∫ t

0

H(s)X(s)π∗(s)′σp(s)dW (s) −
∫ t

0

X(s)H(s)r(s)ds−
∫ t

0

X(s)θ(s)′dW (s)

−
∫ t

0

X(s)π∗(s)σp(s)H(s)θ(s)′ds.Plugging into (1.21) we have
x = x+

∫ t

0

H(s) ·X(s)(π∗(s)′σp(s) − θ(s)′)︸ ︷︷ ︸
=:f(s)

dW (s). (1.22)Hene, we must have
f(s) = 0 a.s for all s ∈ [0, T ].As H(s) ·X(s) is positive, we must have

π∗(t) = (σp(t)
′)
−1
θ(t) for all t ∈ [0, T ].Assume we have d = 1 and r, µp, σp are onstants, then we have

π∗(t) =
µp − r

σ2
p

, (1.23)whih is de�ned as the loal risk premium for stok investment.We introdue the following theorem for a general method for determining the optimalportfolio proess π∗, related with the representation problem.Theorem 1.3. Let the portfolio problem in (1.14) be given. Suppose that x > 0 andassume
χ(y) < ∞ for all y > 0. Further, c∗ and B∗ is as in Theorem 1.2. If there exists afuntion f ∈ C1,2([0, T ] × Rd) with f(0, 0, . . . , 0) = x and

1

H(t)
· E
(∫ T

t

H(s)c∗(s)ds+H(T )B∗
∣∣∣Ft

)
= f(t,W1(t), . . . ,Wd(t)),



1.4 Option Portfolios 15then for t ∈ [0, T ] we have
π∗(t) =

1

Xx,π∗,c∗(t)
σ−1(t)∇xf(t,W1(t), . . . ,Wd(t)),where ∇xf denotes the gradient of f(t, x1, . . . , xd) with respet to the x−oordinates.Proof: See p.214 of Korn and Korn [KK01℄.1.4 Option PortfoliosIn this setion, we analyse a similar problem as in Setion 1.3, but instead of a portfolioomposed of the riskless bond and stoks, we have the riskless bond and European optionswritten on stoks in our portfolio. Using the result that in both markets we have the sameoptimal terminal wealth B∗, we repliate the stok positions with the riskless bond andthe options. This approah is appliable only under the assumption that the stoks andoptions generate the same �ltration.We provide some basi de�nitions and theorems of option priing with repliation ap-proah, from Korn and Korn [KK01℄.De�nition 1.5. A ontingent laim (g, B) onsists of an {Ft}− progressively measurablepayout rate proess g, with t ∈ [0, T ], g(t) ≥ 0, and an FT−measurable terminal payment

B ≥ 0 at time t = T with
E

[(∫ T

0

g(t)dt+B

)µ]
<∞ for some µ > 1. (1.24)De�nition 1.6. I. The pair (π, c) is alled a repliation strategy for the ontingentlaim (g, B) if we have

g(t) = c(t) a.s. for all t ∈ [0, T ],

X(T ) = B a.s. ,where X(t) is the wealth proess orresponding to (π, c).II. The set of repliation strategies of prie x is the set
D := D(x; (g, B)) := {(π, c) ∈ A(x)|(π, c) repliation strategy for (g, B)}.



16 Chapter 1. Optimal Portfolios of Options with Credit RiskIII. The fair prie of the ontingent laim (g, B) is de�ned as
p̂ := inf{p|D(p) 6= ∅}.Remark 1.3. Sine r(t), µp(t), σp(t) are uniformly bounded, and σp(t)σp(t)

′ are uniformlypositive de�nite, together with Hölder's inequality1 and (1.24), we have
x̃ := E

[
H(T )B +

∫ T

0

H(t)g(t)dt

]
<∞.From Theorem 1.1, there exists a π orresponding to (B, g) suh that we have

(π, g) ∈ A ∩ D(x̃), whih implies
p̂ ≤ x̃.The following theorem shows the ase when p̂ = x̃.Theorem 1.4. Let H(t) denote the stohasti de�ator proess. Then, the fair prie p̂ ofthe ontingent laim (g, B) is

p̂ = E

[
H(T )B +

∫ T

0

H(t)g(t)dt

]
<∞,and there exists a unique repliating strategy (π̂, ĉ) ∈ D(p̂). Its orresponding wealthproess X̂(t) (the valuation proess for (g, B)) is

X̂(t) =
1

H(t)
E

[
H(T )B +

∫ T

0

H(s)g(s)ds
∣∣∣Ft

]
.We an get the expliit form of the repliating strategy by imposing additional assump-tions on the option prie proess.Theorem 1.5. Assume that the prie of an option at time t an be written as a C1,2−funtion f(t, p1, . . . , pd) of time and underlying stok pries.1. Then, the repliating strategy ψ∗ is given by

ψ∗
i (t) = fpi

(t, P1(t), . . . , Pd(t)), i = 1, . . . , d,

ψ∗
0(t) =

f(t, P1(t), . . . , Pd(t)) −
∑n

i=1 fpi
(t, P1(t), . . . , Pd(t))Pi(t)

P0(t)
,1Let 1 < p < ∞, 1 < q < ∞, and (1/p) + (1/q) = 1. If E|X |p < ∞ and E|Y |q < ∞ then E|XY | < ∞and E|XY | ≤ (E|X |p)1/p(E|Y |q)1/q



1.4 Option Portfolios 17and the funtion f(t, p1(t), . . . , pd(t)) is a solution of the partial di�erential equation
ft +

1

2

d∑

i,j=1

aijpipjfpipj
+

d∑

i=1

rpifpi
− rf = 0.Here, we have set a(t) := σp(t)σp(t)

′ and the subsripts t, p1, . . . , pd mean partialderivative with respet to the orresponding variable.2. The prie proess f(t, P1(t), . . . , Pd(t)) obeys the stohasti di�erential equation
df(t, P1(t), . . . , Pd(t)) (1.25)

=

(
rf(t, P1(t), . . . , Pd(t)) +

d∑

i=1

fpi
(t, P1(t), . . . , Pd(t))Pi(t)(µi − r)dt

)

+

(
fpi

(t, P1(t), . . . , Pd(t))Pi(t)

d∑

j=1

σi,j(t)dWj(t)

)
.Desription of the market: We onsider a �nanial market, where one riskless bond(or MMA), d stoks and d options are traded. Moreover, we assume that we are onlyallowed to hold a portfolio of the bond and the options. The options are assumed to haveprie proesses

f (i)(t, P1(t), . . . , Pd(t)), i = 1, . . . , d, f ∈ C1,2.Let ϕ(t) = (ϕ0(t), ϕ1(t), . . . , ϕd(t)) be an admissible trading strategy in bond and options,then the orresponding wealth proess will be
X(t) = ϕ0(t)P0(t) +

d∑

i=1

ϕi(t)f
(i)(t, P1(t), . . . , Pd(t)),where we require the assumptions that the integrals

∫ t

0

ϕ0(s)dP0(s), and ∫ t

0

ϕi(s)df
(i)(s, P1(s), . . . , Pd(s))are de�ned and ϕ(t) is Ft−progressively measurable.Here, we �nd an optimal strategy whih maximises the utility from the �nal wealth of theinvestor, who has an initial apital of x > 0, i.e.,

max
ϕ

E[U(X(T ))]. (1.26)



18 Chapter 1. Optimal Portfolios of Options with Credit RiskThe solution to the problem in (1.26) an be desribed as determining an optimal payo� B∗and the repliating strategy ξ(t) = ξ0(t), ξ1(t), . . . , ξd(t) for the bond and stok positionsfor optimal payo� B∗. Sine we are not allowed to trade in stoks, we have to repliate thestok position with bond and options, whih yields the optimal terminal wealth X∗(T ) ofthe investor. The following theorem from Korn and Trautmann [KT99℄ (KT framework,hereafter) is useful to understand the formulation above.Theorem 1.6 (KT framework). Let the Delta matrix Ψ(t) = (Ψij(t))ij, i, j = 1, . . . , dwith
Ψij := f (i)

pj
(t, P1(t), . . . , Pd(t))be regular for all t ∈ [0, T ). Then, the option portfolio problem in (1.26) possesses thefollowing expliit solution:1. The optimal terminal wealth B∗ oinides with the optimal terminal wealth of theorresponding stok portfolio problem in (1.14).2. Let ξ(t) = (ξ0(t), . . . , ξd(t)) be the optimal trading strategy in the orresponding basistok portfolio problem (1.14). Then, the optimal trading strategy

ϕ(t) = (ϕ0(t), ϕ1(t), . . . , ϕd(t)) in the option portfolio problem in (1.26) is given by
ϕ̄(t) = (Ψ(t)′)−1ξ̄(t),

ϕ0(t) =

(
X(t) −∑d

i=1 ϕi(t)f
(i)(t, P1(t), . . . , Pd(t))

)

P0(t)
,with ϕ̄(t) := (ϕ1(t), . . . , ϕd(t)) and ξ̄(t) := (ξ1(t), . . . , ξd(t)).Proof: see p.218 of Korn and Korn [KK01℄.Example 1.2. This example from Korn and Korn [KK01℄ sums up the ideas presentedin this setion. In Example 1.1, we alulated the optimal trading strategy in stok andMMA portolio problem with logarithmi utility, i.e., U(x) = ln(x) and get the optimalportfolio proess as

π∗ =
µp − r

σ2
p

,



1.4 Option Portfolios 19whih represents the fration of the total wealth invested to the stoks. Hene, the numberof stoks will be
ξ1(t) =

π∗X(t)

P1(t)
=
µp − r

σ2
p

· X(t)

P1(t)
.The optimal trading strategy in the option portolio problem with Theorem 1.6 will be

ϕ1(t) =
µp − r

σ2
p

· X(t)

Ψ1(t)P1(t)
,where Ψ1(t) = f

(1)
p1 (t, P1(t)). Now, if we introdue the optimal option portfolio proess as

π∗
option, whih gives the fration of total wealth invested to the option, then we will have

π∗
option(t) :=

ϕ1(t)f
(1)(t, P1(t))

X(t)

=
µp − r

σ2
p

X(t)f (1)(t, P1(t))

X(t)Ψ1(t)P1(t)

= π∗ f (1)(t, P1(t))

f
(1)
p1 (t, P1(t))P1(t)

.Using the Blak-Sholes framework, for a European type all option, we will have
f (1)(t, P1(t)) = P1(t)Φ(d1(t)) −Ke−r(T−t)Φ(d2(t)), (1.27)where

d1(t) =
ln
(

P1(t)
K

)
+
(
r + 1

2
σ2

p

)
(T − t)

σp

√
T − t

, and d2(t) = d1(t) − σp

√
T − t.We have

f (1)
p1

= Φ(d1(t)).It is obvious that
f (1)(t, P1(t)) < f (1)

p1
· P1(t) ⇒

f (1)(t, P1(t))

f
(1)
p1 · P1(t)

< 1.Therefore, if we ompare the optimal portfolio proess in stok-MMA problem with opti-mal proess in option-MMA problem, we get
π∗

option(t) < π∗ for all t ∈ [0, T ]. (1.28)The interpretation is that for an investor with logarithmi utility, the optimal apital thathe alloates to the option in option portfolio problem is less than the apital he investson the stok in stok portfolio problem. We present the main result in Figure 1.3 withthe following parameters:



20 Chapter 1. Optimal Portfolios of Options with Credit Risk
µp = 0.05 drift term,
σp = 0.25 volatility
T = 1 maturity time for the all option in years
r = 0 short rate
K = 100 strike prie
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Figure 1.3: The optimal proesses for all option portfolio with respet to the stok prie,with the parameter set µp = 0.05, σp = 0.25, T = 1, r = 0, and K = 100.We observe as the all option gets riskier (as the stok prie dereases, all option getsmore out of the money), the optimal fration of wealth gets smaller.1.5 Portfolio Optimisation with a Compound OptionIn this setion, we introdue our problem of optimal portfolios with the money marketaount (MMA) and one derivative ontrat. In partiular, these derivatives are Europeanall and put options written on the stok of a defaultable �rm and European optionswritten on the risky bond issued by the same �rm. Sine we model the default risk witha �rm-value based model, explained in Setion 1.2, the stok prie is a all option written



1.5 Portfolio Optimisation with a Compound Option 21on the �rm value V (t) with a strike prie of F . Hene, we may onsider optimal portfoliosof options on options when the underlying is the �rm value.The option written on another option is alled a ompound option and to our knowledgethe valuation formula was �rst introdued by Geske [Ges79℄, where the author presentsa losed form formula for the all on a all option based on Merton model [Mer74℄. Thisformula generalises the Blak-Sholes option priing formula, i.e., if the �rm is unlevered2,then the Geske formula redues to Blak-Sholes all option formula.Optimal portfolio problems with defaultable bonds were already studied by Korn andKraft [KK03℄, where the authors use �rm-value approah for redit risk modelling. Theauthors �rst present the portolio problem when the portfolio onsists of the �rm value
V (t) and MMA, assuming that the �rm value is traded (Merton portfolio problem), thenthey introdue the optimisation problem when the portfolio has a risky bond written bythe �rm and the MMA. This problem an be solved in two ways. One way would bewith the elastiity tehnique of Kraft [Kra03℄ for optimisation as desribed by Korn andKraft [KK03℄. The seond way is to optimise the portfolio using the methodology in KTframework [KT99℄. Moreover, Kraft and Ste�ensen [KS06℄ generalised the results of Kornand Kraft [KK03℄ and applied the same tehnique when the redit risk is modelled by theBlak-Cox [BC76℄ approah, whih allows the ourrene of the default event before thedebt maturity. Another approah for ontinuous time portfolio optimisation problem withdefaultable assets is to model the redit risk within the redued form setting. This was�rst studied by Merton [Mer71℄ and extended in a series of papers by Kraft and Ste�ensen(see [KS08℄ and [KS07℄). Another example to the same problem is given by Hou and Jin[HJ02℄.Our main study is applying the KT framework [KT99℄ for optimising portfolios of optionson options and the MMA. Hene, this setion provides the presentation of the ompoundoption valuation and the proof of the all on a all option prie proposed by Geske [Ges79℄.Modifying the Geske [Ges79℄ formula, we valuate European options written on the riskyZCB. Finally, we introdue examples for presenting the main results of this hapter.2 This means either the �rm has no debt, i.e., M = 0 or there is no maturity for the debt, i.e., T = ∞.



22 Chapter 1. Optimal Portfolios of Options with Credit Risk1.5.1 Compound OptionsA ompound option gives the holder the right (but not the obligation) to buy or sell anoption for a pre-determined strike K at maturity time T . If we have a European type allon a all option, the holder has a right to buy the underlying European all option, whihhas the maturity time T1 > T and strike K1, for strike prie K. We denote the prie of aompound option at time t with XCC(t, P1(t)), where the supersript CC indiates thatthe ompound option is a all on a all. We denote the payo� struture at maturity ofthe ompound option T with
BCC =

(
XCall(T, P1(T )) −K

)+
.Here, we �rst derive the priing equation for a all on a all option, where the underlyingall is written on the stok with a lassial Blak Sholes setting, i.e., the stok prie ismodelled by a geometri Brownian motion. Note that there is a ritial value of the stokat the maturity of the ompound option P1(T ) = p∗, whih makes the holder indi�erentbetween exerising or not exerising the ompound option. The ritial value p∗ an befound as a solution to the following equation using the Blak-Sholes all option formula

XCall(T, p∗) −K = 0. (1.29)Sine p∗ is the value whih makes the all option prie at T equal to the strike prie ofthe ompound option K, for the values of the stok less than p∗ the ompound optionwill not be exerised. And the ompound option will be exerised for the values greaterthan p∗.We present the following proposition and its proof from Korn and Korn [KK01℄.Proposition 1.1. I. For a given K > 0, a European all with strike K1 and maturity T1,there exists a uniquely determined p∗ for T < T1 suh that for P1(T ) = p∗ we have
XCall(T, p∗) = K.II. With the notations

g1(t) =
ln
(

P1(t)
p∗

)
+
(
r + 1

2
σ2

p

)
(T − t)

σp

√
T − t

, g2(t) = g1(t) − σp

√
T − t,
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h1(t) =

ln
(

P1(t)
K1

)
+
(
r + 1

2
σ2

p

)
(T1 − t)

σp

√
T1 − t

, h2(t) = h1(t) − σp

√
T1 − t,the prie of a all on a all satis�es

XCC(t) = P1(t)Φ
ρ1
2 (g1(t), h1(t))

−K1e
−r(T1−t)Φρ1

2 (g2(t), h2(t)) −Ke−r(T−t)Φ(g2(t))for t ∈ [0, T ], where Φρ
2(x, y) is the umulative distribution funtion of a bivariate standardnormal distribution with orrelation oe�ient ρ and

ρ1 :=

√
T − t

T1 − t
, e.g, .

(
X
Y

)
∼ N

((
0
0

)
,

(
1 ρ1

ρ1 0

))
.Proof:I. From the expliit form of the Blak-Sholes formula (see p.88 of Korn and Korn [KK01℄) we obtain

lim
P1(T )↓0

XCall(T, P1(T )) = 0, (1.30)
lim

P1(T )↑+∞
XCall(T, P1(T )) = +∞ (1.31)for T < T1. Here, the �rst limit is a onsequene of the trivial bounds 0 and P1(T ) for

XCall(T, P1(T )). For the seond limit note that
d

dp
XCall(T, p) = Φ(d1(T ))is positive and even inreasing in p. From (1.30) and (1.31), together with the intermedi-ate value theorem we get the existene of p∗ of assertion I..II. For t ≤ T we have

XCC(t, P1(t)) = Et,P1(t)

[
e−r(T−t)BCC

]
= Et,P1(t)

[
e−r(T−t)(XCall(T, P1(T )) −K)+

]
.The positive part is stritly positive if and only if XCall(T, P1(T )) −K > 0, hene

Et,P1(t)

[
e−r(T−t)(XCall(T, P1(T )) −K)1{XCall(T,P1(T ))>K}

]
,where 1{XCall(T )>K} = 1{P1(T )>p∗}. Thus, �xing t we have

W (T ) −W (t) >
1

σp

(
ln

(
p∗

P1(t)

)
− (r − 1

2
σ2

p)(T − t)

)
= w̃. (1.32)



24 Chapter 1. Optimal Portfolios of Options with Credit RiskFurthermore, It�'s lemma implies that
P1(T ) = P1(t). exp

((
r − 1

2
σ2

p

)
(T − t) + σp(W (T ) −W (t))

)
.Sine W (T ) −W (t) := x ∼ N (0, T − t), we rewrite the expetation above as

1√
2π(T − t)

∫ ∞

w̃

e−
x2

2(T−t) e−r(T−t)
(
XCall (T, P1(T )) −K

)
dx (1.33)With the help of expliit form of XCall(T, P1(T )) with strike K1 and maturity T1 we have

XCall(T, P1(T )) = P1(t)e
(r− 1

2
σ2

p)(T−t)+σxΦ(d1(T )) −K1e
−r(T1−T )Φ(d2(T )),with

d1(T ) =
ln
(

P1(T )
K1

)
+
(
r + 1

2
σ2

p

)
(T1 − T )

σp

√
T1 − T

,and
d2(T ) = d1(T ) − σp

√
T1 − T .We rewrite (1.33) as I1 − I2 − I3, hene

I1 =
1√

2π(T − t)

∫ ∞

w̃

e
− x2

2(T−t) e−r(T−t)P1(t).e
(r− 1

2
σ2

p)(T−t)+σpxΦ(β1 + α1x)dx, (1.34)where
β1 =

ln
(

P1(t)
K1

)
+
(
r − 1

2
σ2

p

)
(T − t) +

(
r + 1

2
σ2

p

)
(T1 − T )

σp

√
T1 − T

,

α1 =
1√

T1 − T
.Thus,

I1 = P1(t)

∫ ∞

w̃

1√
2π(T − t)

e−
(x−σp(T−t))2

2(T−t) Φ(β1 + α1x)dx

= P1(t)

∫ ∞

w̃

ϕµ=σp(T−t),σ2=(T−t)Φ(β1 + α1x)dx.Here, ϕµ,σ2 is the probability density funtion of a normal distribution with mean µ andvariane σ2 and Φ() is a standard normal distribution funtion. Furthermore, we have
I2 = K1e

−r(T1−t)

∫ ∞

w̃

1√
2π(T − t)

e
− x2

2(T−t) Φ(β2 + α2x)dx

= K1e
−r(T1−t)

∫ ∞

w̃

ϕµ=0,σ2=(T−t)Φ(β2 + α2x)dx,
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β2 =

ln
(

P1(t)
K1

)
+
(
r − 1

2
σ2

p

)
(T1 − t)

σp

√
T1 − T

α2 =
1√

T1 − T
.The last omponent an easily be expressed as

I3 = Ke−r(T−t)

∫ ∞

w̃

1√
2π(T − t)

e−
x2

2(T−t)dx

= Ke−r(T−t)Φ

( −w̃√
T − t

)
= Ke−r(T−t)Φ(g2(t)).The following lemma is used for alulating I1 and I2Lemma 1.1. If X and Y are independent random variables with

X ∼ N (µ, σ2), Y ∼ N (0, 1),then for x̃,α,β ∈ R, α > 0, we have
∫ ∞

x̃

ϕµ,σ2(x).Φ(β + αx)dx = P [X ≥ x̃, Y ≤ β + αX] = P [X ≥ x̃, Z ≤ β],where
(X,Z) ∼ N

((
µ

−αµ

)
,

(
σ2 −ασ2

−ασ2 1 + α2σ2

))
.

2Note that
P [X ≥ x̃, Z ≤ β] = 1 − P [X ≤ x̃, Z ≤ β] − P [Z > β]︸ ︷︷ ︸

1−P [Z≤β]

= P [Z ≤ β] − P [X ≤ x̃, Z ≤ β].Furthermore,
∫ ∞

x̃

ϕµ,σ2(x).Φ(β + αx)dx = Φ

(
β − µZ

σZ

)
− Φρ

2

((
x̃− µX

σX

)
,

(
β − µZ

σZ

))
.Going bak to the alulation of I1, with the notation given in Lemma 1.1, we have

x̃ = w̃ µX = σp(T − t) σX =
√
T − t

µZ = −σp(T−t)√
T1−T

σZ =
√

T1−t
T1−T

ρ(X,Z) = −
√

T−t
T1−t

.



26 Chapter 1. Optimal Portfolios of Options with Credit RiskWith this setting, we rewrite I1 as
I1 = P1(t)


Φ


β1 + σp(T−t)√

T1−T√
T1−t
T1−T


− Φρ

2

(
w̃ − σp(T − t)√

T − t

)
,


β1 + σp(T−t)√

T1−T√
T1−t
T1−T






= P1(t)[Φ(h1(t)) − Φρ
2(−g1(t), h1(t))]

= P1(t)[Φ
−ρ=:ρ1
2 (g1(t), h1(t))].Calulation of I2 is similar to I1 but here we have µX = 0 and µZ = 0. Thus,

I2 = K1e
−r(T1−t)


Φ


 β2√

T1−t
T1−T


− Φρ

2

(
w̃√
T − t

)
,


 β2√

T1−t
T1−T






= K1e
−r(T1−t)[Φ(h2(t)) − Φρ

2(−g2(t), h2(t))]

= K1e
−r(T1−t)[Φ−ρ=:ρ1

2 (g2(t), h2(t))].

2Above we derived the ompound option formula when it is a European all on a all optionwritten on the stok. Similarly, one an rewrite the ompound option formula when theunderlying is the �rm value with the dynamis as in (1.1). Merton [Mer74℄ valuates thestok of a �rm as a all option written on the �rm value, where Geske [Ges79℄ derives theompound option formula by valuating a all option on the stok prie as in the Merton[Mer74℄ setting, i.e.,
XCC(t, V (t)) ≡ XCall(t, P1(t)),when P1(t) ≡ XCall(t, V (t)) with σp(t, V ) = ∂P1

∂V
V
P1
σv (For the proof see Geske [Ges79℄).The following proposition gives the pries of other types of the ompound options, whenthe underlying is the �rm value.Proposition 1.2. I. The prie of a put on a all option is

XPC(t, V (t)) = −V (t)Φρ2

2 (−g1(t), h1(t))

+Fe−r(T1−t)Φρ2

2 (−g2(t), h2(t)) +Ke−r(T−t)Φ(−g2(t))for t ∈ [0, T ] with
ρ2 := −

√
T − t

T1 − t
.



1.5 Portfolio Optimisation with a Compound Option 27II. If for a put with strike F and maturity T1 the value v∗ de�ned by
XPut(T, v∗) = Kis given by for a �xed K, then we an obtain the priing formula for a all on this putor a put on this all in the same way as above. If we assume a strike of K and maturity

T < T1 for the ompound options, then we obtain their pries at time t ∈ [0, T ] as
XCP (t, V (t)) = −V (t)Φρ1(−g1(t),−h1(t))

+Fe−r(T1−t)Φρ1(−g2(t),−h2(t)) +Ke−r(T−t)Φ(−g2(t)),and
XPP (t, V (t)) = V (t)Φρ2(g1(t),−h1(t))

−Fe−r(T1−t)Φρ2(g2(t),−h2(t)) +Ke−r(T−t)Φ(g2(t)),with
g1(t) =

ln
(

V (t)
v∗

)
+
(
r + 1

2
σ2

v

)
(T − t)

σv

√
T − t

, g2(t) = g1(t) − σv

√
T − t,and

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

, h2(t) = h1(t) − σv

√
T1 − t.1.5.2 Options on the Defaultable Zero Coupon BondsIn this subsetion, we derive the expliit formula for a European all and put optionwritten on a defaultable ZCB. Geske [Ges77℄ applied the formulation in Geske [Ges79℄ inorder to value defaultable oupon bonds. Later on, Geske and Johnson [GJ84℄ explain theunlear parts of the paper. Sine the risky ZCB prie with Merton [Mer74℄ setting is alinear ombination of a Blak Sholes put option and a deterministi payment, the formulais a modi�ation of the one by Geske [Ges79℄. The priing of suh ontrats was studiedby Barone et al. [BAC98℄ in an intensity-based framework. Reporting from Barone et al.[BAC98℄, risk free options on risky ZCBs (not vulnerable and usually exhange traded)have little interest in the pratie. On the other hand, there is quite a number of papers inthe risk literature dealing with the valuation of defaultable options (vulnerable options)on risk-free and risky assets. After presenting the derivation of the fair pries of optionson risky ZCB, we analyse the portfolio optimisation problems.



28 Chapter 1. Optimal Portfolios of Options with Credit RiskProposition 1.3. Prie of a European all option with maturity time T and strike K,with K < Fe−r(T1−T ) written on a risky ZCB (in Merton setting) maturing at time T1,where T1 > T , is given by
XCall(t, B̄(t, T1)) = V (t)Φρ2

2 (g1(t),−h1(t)) (1.35)
+Fe−r(T1−t)Φρ1

2 (g2(t), h2(t)) −Ke−r(T−t)Φ(g2(t)),where
g1(t) =

ln
(

V (t)
v∗

)
+
(
r + 1

2
σ2

v

)
(T − t)

σv

√
T − t

, g2(t) = g1(t) − σv

√
T − t,

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

, h2(t) = h1(t) − σv

√
T1 − t,and

ρ1 :=

√
T − t

T1 − t
, ρ2 := −ρ1,e.g., (

X
Y

)
∼ N

((
0
0

)
,

(
1 ρ1

ρ1 0

))
.and, v∗ is the value of the �rm whih solves the following equation

B̄(T, T1) −K = 0.Proof: From the expliit form of the BS type formula (1.6), we obtain
lim

V (T )↓0
B̄(T, T1) = 0, (1.36)

lim
V (T )↑+∞

B̄(T, T1) = Fe−r(T1−T ) (1.37)for T < T1. Here, the �rst limit is a onsequene of the trivial bounds 0 and V (T ) for
B̄(T, T1). For the seond limit note that

d

dV
B̄(T, T1) = Φ(−h1(T ))is positive and dereasing in V . From (1.36) and (1.37), together with the intermediatevalue theorem, we get the existene of v∗.



1.5 Portfolio Optimisation with a Compound Option 29Under the priing (or risk-neutral) probability measure Q, we have the European alloption formula with maturity time T and strike prie K, where the underlying is thedefaultable ZCB with maturity T1 > T as
XCall(t, B̄(t, T1)) = Et,B̄(t,T1)

[
e−r(T−t)(B̄(T, T1) −K)+

]
. (1.38)In order the payo� funtion to be stritly positive, we rewrite the equation above as

Et,B̄(t,T1)

[
e−r(T−t)(B̄(T, T1) −K)1{B̄(T,T1)>K}

]
. (1.39)Here, we assume that there exists a ritial value of the �rm v∗, whih makes the alloption holder indi�erent between exerising or not exerising it on the maturity of theall option. Hene, v∗ is the value, whih solves the following equation

B̄(T, T1) = K. (1.40)Using the same idea we have in the proof of the ompound option formula, we have
1{B̄(T,T1)>K} ≡ 1{V (T )>v∗}.Hene, we rewrite (1.39) as

Et,B̄(t,T1)[e
−r(T−t)(B̄(T, T1) −K)1{V (T )>v∗}].With a small modi�ation to (1.32), we will have

XCall(T, B̄(T, T1)) = e−r(T−t) 1√
2π(T − t)

∫ ∞

w

e−
x2

2(T−t) (B̄(T, T1) −K)dx,with
w =

1

σv

(
ln

(
v∗

V (t)

)
−
(
r − 1

2
σ2

v

)
(T − t)

)Plugging the expliit formula for the ZCB prie as in (1.6), we have
I = e−r(T−t)

∫ ∞

w

1√
2π(T − t)

e−
x2

2(T−t)

[
V (T ) Φ(−h1(T ))︸ ︷︷ ︸

1−Φ(h1(T ))

+Fe−r(T1−T )Φ(h2(T )) −K

]
dx,(1.41)with

h1(T ) =
ln
(

V (T )
F

)
+
(
r + 1

2
σ2

v

)
(T1 − T )

σv

√
T1 − T



30 Chapter 1. Optimal Portfolios of Options with Credit Riskand
h2(T ) = h1(T ) − σv

√
T1 − T .We express (1.41) as I1 − I2 + I3 − I4, where

I1 = V (t)

∫ ∞

w

1√
2π(T − t)

e−
(x−σv(T−t))2

2(T−t) dx = V (t)Φ(g1(t)). (1.42)
I2 = V (t)

∫ ∞

w

1√
2π(T − t)

e−
(x−σv(T−t))2

2(T−t) Φ(β2 + α2x)dx (1.43)with
β2 =

ln
(

V (t)
F

)
+
(
r − 1

2
σ2

v

)
(T − t) +

(
r + 1

2
σ2

v

)
(T1 − T )

σv

√
T1 − Tand

α2 =
1√

T1 − TWith Lemma 1.1, we rewrite I2 as
I2 = V (t) [Φ(h1(t)) − Φρ

2(−g1(t), h1(t))] = V (t)Φ−ρ:=ρ1

2 (g1(t), h1(t)). (1.44)Now, we an make a simpli�ation
I1 − I2 = V (t) [Φ(g1(t)) − Φρ1

2 (g1(t), h1(t))] = Φ−ρ1=ρ2

2 (g1(t),−h1(t)).We alulate I3 as
I3 = Fe−r(T1−t)

∫ ∞

w

1√
2π(T − t)

e
− x2

2(T−t) Φ(β3 + α3x)dx (1.45)with
β3 =

ln
(

V (t)
F

)
+
(
r − 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − T

, α3 =
1√

T1 − T
,hene,

I3 = Fe−r(T1−t) [Φ(h2(t)) − Φρ
2(−g2(t), h2(t))] = Fe−r(T1−t)Φ−ρ=ρ1

2 (g2(t), h2(t)). (1.46)Finally, we rewrite I4 easily as
I4 = Ke−r(T−t)

∫ ∞

w

1√
2π(T − t)

e−
x2

2(T−t)dx = Ke−r(T−t)Φ (g2(t)) . (1.47)



1.5 Portfolio Optimisation with a Compound Option 31Proposition 1.4. Prie of a European put option with maturity time T and strike K,written on a risky ZCB (with Merton setting) maturing at time T1, with T1 > T is givenby
XPut(t, B̄(t, T1)) = −V (t)Φρ1

2 (−g1(t),−h1(t)) (1.48)
−Fe−r(T1−t)Φρ2

2 (−g2(t), h2(t)) +Ke−r(T−t)Φ(−g2(t))where
g1(t) =

ln
(

V (t)
v∗

)
+
(
r + 1

2
σ2

v

)
(T − t)

σv

√
T − t

, g2(t) = g1(t) − σv

√
T − t,

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

, h2(t) = h1(t) − σv

√
T1 − t,and

ρ1 :=

√
T − t

T1 − t
ρ2 := −ρ1, e.g.,

(
X
Y

)
∼ N

((
0
0

)
,

(
1 ρ1

ρ1 0

))
.and v∗ is the value of the �rm whih solves the following equation

K − B̄(T, T1) = 0.Proof: Similar to proof of Proposition 1.3.1.5.3 Optimal Portfolio Problem with a Compound OptionIn this subsetion, we will ombine some results from the previous subsetions in orderto optimise a portfolio, onsisting of a ompound option and a riskless bond (or MMA).The dynamis of the MMA is
dP0(t) = P0(t)rdt, P0(0) = 1,and the dynamis of the �rm value with the risk-neutral probability measure Q is givenby

dV (t)

V (t)
= rdt+ σvdW (t), V (0) > 0,where r is the deterministi interest rate, σv > 0 is the onstant volatility and W (t) is theBrownian motion. Assume that the investor an invest his initial wealth x > 0 only in



32 Chapter 1. Optimal Portfolios of Options with Credit Riskthe MMA P0(t) and the all on a all option XCC(t, V (t)), where the underlying is V (t).The orresponding wealth at time t, X(t) an be expressed as
X(t) = ϕ0(t)P0(t) + ϕ1(t)X

CC(t, V (t)), X(0) = x.Using the general form in De�nition 1.1, the trading strategy ϕ(t) = (ϕ0(t), ϕ1(t))
′ isa R2− valued progressively measurable proess with respet to the �ltration {Ft}t∈[0,T ]generated by the standard Brownian motion satisfying

∫ T

0

|ϕ0(t)|dt <∞ a.s. ,
∫ T

0

(ϕ1(t)X
CC(t, V (t)))2dt <∞ a.s. .The orresponding portfolio proess π(t) = (π0(t), π1(t))

′ will be given as
π1(t) :=

ϕ1(t)X
CC(t, V (t))

X(t)
, (1.49)

π0(t) := 1 − π1(t) =
ϕ0(t)P0(t)

X(t)
. (1.50)With the assumption that the trading strategy is self-�naning, (implies that portfolioproess π(t) is also self-�naning) the orresponding wealth proess an be expressed as

X(t) = x+

∫ t

0

ϕ0(s)dP0(s) +

∫ t

0

ϕ1(s)dX
CC(s, V (s)). (1.51)Hene, our ontinuous time portfolio optimisation problem will be similar to (1.14), butignoring the onsumption proess, i.e., c(t) ≡ 0, U1 ≡ 0, U2 ≡ U , we have:

max
π∈A′(x)

E [U(Xx,π(T ))] (1.52)with
A′(x) =

{
π(·) ∈ A(x)

∣∣∣E
[
U(X(T ))−

]
<∞

}
.The solution to our problem de�ned in (1.52) an be summarised in the following steps:1. Assume that the �rm value V (t) is traded, and the portfolio onsisting of V (t) andthe MMA, P0(t) is optimised (Portfolio problem by Merton [Mer69℄, [Mer71℄).



1.5 Portfolio Optimisation with a Compound Option 332. Sine Merton [Mer74℄ onsiders the stok of the �rm, a all option, i.e.,
P1(t) = XCall(t, V (t)), we an use the KT framework [KT99℄ and optimise theportfolio onsisting of the stok P1(t) and P0(t).3. We use the same methodology and results of the seond step, and the relation

XCall(t, P1(t)) ≡ XCC(t, V (t)),then make a seond iteration for optimising the portfolio onsisting of XCC(t, V (t))and P0(t).Alternatively, we an skip the seond step and diretly solve the optimisation problemin the third step, however, we present the 2nd step in order to see that our �ndings areindeed in line with the results of Korn and Kraft [KK03℄.1. Merton portfolio problem:In the �rst step, the setting leads us to Merton's portolio problem [Mer69℄ and [Mer71℄.Under the assumption that the �rm value is tradable, and the wealth proess follows thedynamis with
dX(t)

X(t)
= (r + πvα)dt+ πvσdW (t), X(0) = x0, (1.53)where we denote the onstant, risk-free short rate with r, the exess return of the �rmvalue by α = µv − r. Here, πv stands for the proportion of the total wealth put into the�rm value. The lassi portfolio problem is then to solve

max
π

E[U(Xπ(T ))], (1.54)where T denotes the investment horizon, and U is the utility funtion. We present theresult in the following proposition.Proposition 1.5. With the power utility funtion U(x) = γ−1xγ , γ < 1, γ 6= 0 the optimalportfolio proess for the problem in (1.54) is
π∗

v(t) =
α

(1 − γ)σ2
v

(1.55)Note that for logarithmi utility funtion U(x) = ln(x) the optimal portfolio proess π∗
v isobtained for γ = 0.



34 Chapter 1. Optimal Portfolios of Options with Credit RiskProof: (see p. 236 Korn and Korn [KK01℄)2. Optimal portolio problem with the stok and MMAThe problem in the seond step was already studied by Korn and Kraft [KK03℄. Wepresent their result in the following proposition to ompare it to our result derived withinthe KT framework.Proposition 1.6. If the investor an only invest into the MMA denoted, by P0(t) andthe stoks P1(t) issued by the ompany, then the optimal stok portfolio proess is given by
π∗

P1
(t) =

π∗
v

ǫP1

=





α
σ2

v

P1(t)
Φ(h1(t))V (t)

, for U(x) = ln(x)

α
(1−γ)σ2

v

P1(t)
Φ(h1(t))V (t)

, for U(x) = 1
γ
xγwhere the elastiity of the stok3 is de�ned as ǫP1 = ∂P1

∂V
· V

P1
and Φ(·) is a standard normaldistribution, and

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

.Proof: see Korn and Kraft [KK03℄.Note that in the problem above, we do not have any onstraints on the number of thebonds and stoks that the �rm is issuing. In fat, in Merton [Mer74℄ setting, the numberof stoks and bonds is limited to one. Here, we use the �small investor assumption� andassume we do not have the upper bound onstraint for the number of stoks and/or bonds.The optimisation problem with the onstrained ase is also studied by Korn and Kraft[KK03℄. Their solution method to the portfolio problem in Step 2 is just the generalisationof the ideas presented in Korn and Trautmann [KT99℄. Therefore, we provide a similarsolution onstruted within the KT framework, in partiular using Theorem 1.6 with thepresentation below.Merton [Mer74℄ assumes that the stok of the �rm is a European all option written onthe market value of the �rm, i.e., P1(t) ≡ XCall(t, V (t)). Hene, Theorem 1.6 is appliablehere; further, we have the same optimal payo� B∗ as in Merton portfolio problem in step1. However, we repliate the �rm value position with the stok and MMA positions sine3We refer the interested reader to Kraft [Kra03℄ for more details on the elastiity approah.



1.5 Portfolio Optimisation with a Compound Option 35the �rm value is not a tradable asset. With Theorem 1.6 and from (1.5) we have therepliating strategy as
Ψ1(t) =

∂P1(t)

∂V
= Φ(h1(t)). (1.56)From step 1, we have the optimal trading strategies ξ(t) = (ξ0(t), ξ1(t)) as

ξ1(t) =
π∗

vX(t)

V (t)
,and

ξ0(t) =
(1 − π∗

v)X(t)

P0(t)
.Hene, the optimal trading strategy for the seond step using Theorem 1.6 will be

ϕ1(t) = Ψ(t)−1 · ξ1(t) =
1

Φ(h1(t))
· π

∗
vX(t)

V (t)
=

1

Φ(h1(t))
· αX(t)

σ2
vV (t)

, (1.57)where for the MMA we have the optimal trading strategy as
ϕ0(t) =

X(t) − ϕ1(t)P1(t)

P0(t)
. (1.58)Now we an derive the optimal portolio proess

π∗
P1

(t) =
ϕ1(t)P1(t)

X(t)
=

1

Φ(h1(t))
· αX(t)P1(t)

σ2
vV (t)X(t)

=
α

σ2
v

P1(t)

Φ(h1(t))V (t)
, (1.59)where we have the same result for U(x) = ln(x) as in Proposition 1.6. Note that for

U(x) = 1
γ
xγ , we have

π∗
P1

(t) =
α

(1 − γ)σ2
v

P1(t)

Φ(h1(t))V (t)
.3. Optimal portolio with the ompound option and MMAHere, we imitate our alulations from step 2 and solve the problem we de�ned in (1.52).From the �rst part of Theorem 1.6, we have the optimal payo� B∗. Hene, we searhfor the optimal strategies for repliating the position on stoks with the positions in theoption and the MMA.Using Theorem 1.6, and (1.5) we have the repliating strategy for our problem for U(x) =

ln(x) as follows:
Ψ1(t) =

∂XCall(t, P1(t))

∂P1
=
∂XCC(t, V (t))

∂P1
=
∂XCC(t, V (t))

∂V

/∂P1

∂V
=

Φρ1

2 (g1(t), h1(t))

Φ(h1(t))



36 Chapter 1. Optimal Portfolios of Options with Credit Riskwith
g1(t) =

ln
(

V (t)
v∗

)
+
(
r + 1

2
σ2

v

)
(T − t)

σv

√
T − t

,

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

,and with the orrelation oe�ient
ρ1 :=

√
T − t

T1 − t
.The optimal trading strategies from the previous step are given by

ξ1(t) =
π∗

P1
X(t)

P1(t)
=

α

σ2
v

X(t)

Φ(h1(t))V (t)
,

ξ0(t) =
(1 − π∗

P1
)X(t)

P0(t)
.With Theorem 1.6, the optimal trading strategies of our problem de�ned in (1.52) will be

ϕ1(t) = (Ψ1(t))
−1 · ξ1(t) =

α

σ2
v

X(t)

Φρ1
2 (g1(t), h1(t))V (t)

,

ϕ0(t) =
X(t) − ϕ1(t)X

CC(t, V (t))

P0(t)
.Now, we have the optimal portfolio proess for our all on a all option π∗

CC as
π∗

CC(t) =
ϕ1(t)X

CC(t, V (t))

X(t)
=

α

σ2
v

XCC(t, V (t))

Φρ1
2 (g1(t), h1(t))V (t)

, (1.60)whih is the fration of total wealth optimally invested to the ompound option.Proposition 1.7. For a portfolio onsisting of a MMA and the ompound option of allon a all type, written on the market value of a �rm, the optimal portfolio proess, givingthe optimal proportion of the total wealth invested to the ompound option is
π∗

CC(t) =





α
σ2

v

XCC (t,V (t))

Φ
ρ1
2 (g1(t),h1(t))V (t)

for U(x) = ln(x)

α
(1−γ)σ2

v

XCC(t,V (t))

Φ
ρ1
2 (g1(t),h1(t))V (t)

for U(x) = 1
γ
xγLet us ompare the optimal portfolio proesses π∗

CC and π∗
P1

for a log-utility investor. Wehave the property that
Φρ

2(g1(t), h1(t)) ≥ Φ(g1(t))Φ(h1(t))



1.5 Portfolio Optimisation with a Compound Option 37for a positive orrelation. Sine ρ1 = T−t
T1−t

is always positive, we an write
XCC(t, V (t))

Φρ1

2 (g1(t), h1(t))V (t)
≤ XCC(t, V (t))

Φ(g1(t))Φ(h1(t))V (t)
.Moreover, we know that

XCC(t, V (t)) ≤ XCall(t, V (t)) ≡ P1(t).Therefore,
α

σ2
v

· XCC(t, V (t))

Φ(g1(t))Φ(h1(t))V (t)
≤ α

σ2
v

· P1(t)

Φ(g1(t))Φ(h1(t))V (t)
<

α

σ2
v

· P1(t)

Φ(h1(t))V (t)
= π∗

P1
(t).Remark 1.4. The interpretation of the result we have in Proposition 1.7 is that for aninvestor with logarithmi and/or power utility funtion, we will have the optimal portfolioproesses in the following order

π∗
CC(t) < π∗

P1
(t) < π∗

v for all t ∈ [0, T ]. (1.61)Example 1.3. Let us present the results in an example. Consider the ase when we havethe following parameters:
µv = 0.05 drift term
σv = 0.25 volatility
T = 0.8 maturity time for the ompound option
T1 = 1.5 maturity time for the underlying all option
r = 0 short rate
K = 20 strike prie for the ompound option
K1 = 100 strike prie for the underlying all optionWe observe from Figure 1.4 that an investor with log-utility will invest less in the om-pound option than he invests in the all option, as expeted, sine the all on all option isa riskier produt than a European all option. The deeper the all option and all on alloption are in the money, the loser π∗

Call and π∗
CC get to the optimal value in stok-MMAproblem, denoted by π∗

v . 2Alternatively, we an solve the problem in the third step in a diret way using KT frame-work, by skipping the seond step. Say, we have the solution in the Merton portfolioproblem as π∗
v from step 1 for U(x) = ln(x), then the repliation strategy for the all onall option XCC(t, V (t)) is

ΨCC
1 (t) =

∂XCC(t, V (t))

∂V (t)
= Φρ1

2 (g1(t), h1(t)).
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Figure 1.4: The optimal portfolio proesses of stok, all option, all on all option vs.value of the �rm, with the parameter set µv = 0.05, σv = 0.25, T = 0.8, T1 = 1.5, r = 0,
K = 20, and K1 = 100.Having the same payo� as the Merton problem, with Theorem 1.6, the optimal tradingstrategies from the Merton problem are

ξ1(t) =
π∗

vX(t)

V (t)
,and

ξ0(t) =
(1 − π∗

v)X(t)

P0(t)
.Now, again with Theorem 1.6, the optimal trading strategy for the ompound option is

ϕCC
1 (t) =

ξ1(t)

ΨCC
1 (t)

=
α

σ2
v

X(t)

Φρ1
2 (g1(t), h1(t))V (t)

.And the optimal portfolio proess is
π∗

CC(t) =
ϕCC

1 (t)XCC(t, V (t))

X(t)
=

α

σ2
v

XCC(t, V (t))

Φρ1

2 (g1(t), h1(t))V (t)
. (1.62)Comparing the results in Proposition 1.7 and (1.62), we see that they are exatly thesame, therefore, we an apply the same formulation above in order to have the optimal



1.5 Portfolio Optimisation with a Compound Option 39portfolio strategies to portfolios of MMA and all on put option XCP (t, V (t)), put on aput option XPP (t, V (t)) or put on a all option XPC(t, V (t)).Proposition 1.8. Using the KT framework in Theorem 1.6, the optimal portfolio pro-esses for the all on put, put on all and put on put options, where the underlying is themarket value of the �rm, are as follows
π∗

CP (t) = − α

σ2
v

XCP (t, V (t))

Φρ1

2 (−g1(t),−h1(t))V (t)
,

π∗
PC(t) = − α

σ2
v

XPC(t, V (t))

Φρ2

2 (−g1(t), h1(t))V (t)
,

π∗
PP (t) =

α

σ2
v

XPP (t, V (t))

Φρ2
2 (g1(t),−h1(t))V (t)

,with the notation given as in Proposition 1.2 and assuming that the investor (with loga-rithmi and power utility funtions) an only trade in these options and the MMA withoutan upper bound on the number of seurities issued by the �rm.Example 1.4. Let us analyse the problem when the ompound option is a put on the alltype. On Figure 1.5, we observe the optimal portfolio proess for the put on all option.Negative portfolio proess in Figure 1.5 implies short selling of the put on all option inthe portfolio. Note that the optimal strategy (not the optimal portfolio proess) attainsthe maximum expeted utility.1.5.4 Optimal Portfolio Problem with an Option on the Default-able ZCBIn this subsetion, we analyse the optimisation problem of a portfolio onsisting of theMMA and European all or put option written on a risky zero oupon bond with faevalue F and maturity T1. Assuming that T1 > T , during the investment period (0, T ]we an not have a default event sine the Merton [Mer74℄ model has the restrition thata default event an only our at the maturity of the ZCB. However, a low �rm valueindiates a high probability of default and a low bond value. We also do not have aonstraint on the number of bonds issued by this �rm.As before, the problem will be solved in a three step proedure,
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Figure 1.5: The optimal portfolio proesses of stok, all option, put on all option vs.value of the �rm, with the parameter set µv = 0.05, σv = 0.25, T = 0.8, T1 = 1.5, r = 0,
K = 20, and K1 = 100.1. The optimisation of a portfolio with the �rm value and the MMA, where the �rmvalue is traded (Merton portfolio problem).2. The optimisation of a portfolio onsisting of the defaultable bond issued by the �rmand the MMA.3. Using the results of the seond step, we optimise a portfolio with the European alland/or the put option written on the defaultable bond and the MMA within KTframework.1. Merton portfolio problemThe result is given in Proposition 1.52. Optimal portfolio with the risky ZCB and MMAIn the Merton [Mer74℄ model, the value of a risky ZCB is given by (1.6). We observe the



1.5 Portfolio Optimisation with a Compound Option 41risky bond prie when K = 100 in Figure 1.6. Our aim is to �nd the optimal portfolio
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Figure 1.6: The prie of the risky bond in the Merton setting with respet to the marketvalue of the �rm.proess that maximises the �nal wealth of the investor, i.e.,
max

π
E(U(Xπ(T ))), (1.63)when the wealth of the investor equals

X(t) = ϕ0(t)P0(t) + ϕ1(t)B̄(t, T1).Korn and Kraft [KK03℄ present the solution of the problem in (1.63) with the followingproposition.Proposition 1.9. If the investor an only invest in the MMA P0(t) and the risky bond
B̄(t, T1) with T1 > T issued by the ompany, then the optimal bond portfolio proess isgiven by

π∗
B =

π∗
v

ǫB
=





α
σ2

v

B̄(t,T1)
Φ(−h1(t))V (t)

for U(x) = ln(x)

α
(1−γ)σ2

v

B̄(t,T1)
Φ(−h1(t))V (t)

for U(x) = 1
γ
xγ



42 Chapter 1. Optimal Portfolios of Options with Credit Riskwhere the elastiity of the bond is de�ned as ǫB = ∂B̄(t,T1)
∂V (t)

· V (t)

B̄(t,T1)
.Proof: (see Korn and Kraft [KK03℄)We present the solution within the KT framework. From the �rst part of Theorem 1.6,we have the same optimal payo� as in Merton portfolio problem from step 1. Repliatingthe �rm value position with the defaultable bond and MMA positions, from seond partof the Theorem 1.6 and from (1.6), we �nd the repliating strategy as

Ψ1(t) =
∂B̄(t, T1)

∂V (t)
= Φ(−h1(t)). (1.64)From step 1, we have the optimal trading strategy as

ξ1(t) =
π∗

vX(t)

V (t)
.Hene, the optimal trading strategy for the risky ZCB will be

ϕ1(t) = Ψ(t)−1 · ξ1(t) =
1

Φ(−h1(t))
· π

∗
v(t)X(t)

V (t)
=

1

Φ(−h1(t))
· αX(t)

σ2
vV (t)

, (1.65)where the optimal trading strategy for the MMA, is
ϕ0(t) =

X(t) − ϕ1(t)B̄(t, T1)

P0(t)
. (1.66)Now, we an derive the optimal portolio proess as

π∗
B(t) =

ϕ1(t)B̄(t, T1)

X(t)
=

1

Φ(−h1(t))
· αX(t)B̄(t, T1)

σ2
vV (t)X(t)

=
α

σ2
v

B̄(t, T1)

Φ(−h1(t))V (t)
. (1.67)Comparing the result for U(x) = ln(x) in Proposition 1.9, we have the same �nding. Notethat for U(x) = 1

γ
xγ we have

π∗
B(t) =

α

(1 − γ)σ2
v

B̄(t, T1)

Φ(−h1(t))V (t)
. (1.68)3. Optimal portolio with the option on risky ZCB and MMAIn this step, we optimise the portfolio of European all and/or put option written on therisky ZCB and the MMA. Using the same methodology as in Proposition 1.7, we presentthe results with the following proposition.



1.5 Portfolio Optimisation with a Compound Option 43Proposition 1.10. If the investor is allowed to invest only in the European all optionwritten on the risky ZCB and the MMA, we will have the optimal portfolio proess π∗
CallBondfor the all option with maturity time T and strike prie K as

π∗
CallBond(t) =





α
σ2

v

XCall(t,B̄(t,T1))

Φ
ρ2
2 (g1(t),−h1(t))V (t)

for U(x) = ln(x)

α
(1−γ)σ2

v

XCall(t,B̄(t,T1))

Φ
ρ2
2 (g1(t),−h1(t))V (t)

for U(x) = 1
γ
xγ

(1.69)with maturity of the underlying ZCB is denoted by T1, with T1 > T and ρ2 is the orrelationoe�ient given as in Proposition 1.3.Example 1.5. Consider the ase when we have a all option written on the risky bondwith the following parameters:
µv = 0.05 drift term
σv = 0.25 volatility
T = 0.8 maturity time for the all option in years
T1 = 1.5 maturity time for the underlying all option
r = 0 short rate
K = 80 strike prie for the all option
F = 100 debt value for the underlying defaultable bondWe an observe the optimal portfolio proess with the logarithmi utility funtion for theall on the risky ZCB with respet to the �rm value in Figure 1.7. The interpretationis that with inreasing �rm value, the probability of the default of the ZCB dereases.This implies an inrease in the prie of the ZCB and the all option on this ZCB. For aninvestor with logarithmi utility, the fration of the wealth that he invests on the riskyZCB and all option on the ZCB inrease as well.Proposition 1.11. If the investor is allowed to invest only in the European put optionwritten on the risky ZCB and the MMA, we will have the optimal portfolio proess for aEuropean put option with maturity time T and strike K on the risky bond as

π∗
PutBond(t) =





− α
σ2

v

XPut(t,B̄(t,T1))

Φ
ρ1
2 (−g1(t),−h1(t))V (t)

for U(x) = ln(x)

− α
(1−γ)σ2

v

XPut(t,B̄(t,T1))

Φ
ρ1
2 (−g1(t),−h1(t))V (t)

for U(x) = 1
γ
xγ

(1.70)with maturity of the underlying ZCB is denoted by T1, with T1 > T and ρ1 is the orrelationoe�ient as given in Proposition 1.3.
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Figure 1.7: The optimal portfolio proesses of stok, defaultable bond, all option ondefaultable bond vs. value of the �rm with the parameter set µv = 0.05, σv = 0.25,
T = 0.8, T1 = 1.5, r = 0, K = 80, and F = 100.Example 1.6. Let us give an example when we have a put option written on the riskyZCB in our portfolio. Consider the ase when the derivative has the same paramaterset as in Example 1.5. We an observe the optimal portfolio proess for the put optionwritten on the risky bond with respet to the �rm value in Figure 1.8, where we use thelogarithmi utility funtion. Note that the negativity of portfolio proess is interpreted asshort selling of the put option on the ZCB in the portfolio. This optimal portfolio proesshas a similar behaviour as in the example on the put on all option.
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Figure 1.8: The optimal portfolio proesses of stok, defaultable bond, put option ondefaultable bond vs. value of the �rm, with the parameter set µv = 0.05, σv = 0.25,
T = 0.8, T1 = 1.5, r = 0, K = 20, and K1 = 100.1.6 SummaryIn this hapter, we derived optimal portfolios inluding ompound options, when theompound options has the market value of a �rm as underlying. Modifying the om-pound option valuation of Geske [Ges79℄, we pried European options written on therisky ZCBs. Further, we optimised the portfolios onsisting of the risky ZCB and aMMA, and of European options written on the defaultable ZCB. For that, we �rst sup-plied the neessary information about the ingredients of our optimisation problem, namelythe �rm value based redit risk models, ontinuous-time portfolio optimisation with themartingale approah, and the methodology for optimising portfolios of options, named asKorn-Trautmann framework during this work.Our main �ndings show that, for the investors with logarithmi and power utility fun-tions, the riskier the option gets, the less proportion of wealth they invest in the risky



46 Chapter 1. Optimal Portfolios of Options with Credit Riskprodut in the portfolio. For the portfolios onsisting of put options written on the alloption and on the risky ZCB, we alulated negative optimal portfolio proesses implyingshortselling of the assets.There are of ourse many shortomings of our modelling approah. Among those, we anomment on two important ones. Firstly, we use the lassial strutural model by Merton[Mer74℄ for redit risk, where the ourrene of the redit event is allowed only on thematurity of the debt, i.e., T1. Hene, we do not allow the redit event happen during theinvestment horizon, i.e., [0, T ] via assuming that T1 > T . Seond, the number of bondsand/or stoks issued by the �rm is not restrited.The �rst shortoming an be handled by using the Blak-Cox redit risk model [BC76℄,where an intermediate default is possible during the investment period [0, T ]. Optimisingthe portfolio of a risky bond in the Blak-Cox model was studied by Korn and Kraft[KK03℄. To our knowledge, the optimisation problem with an option on the defaultablebond, where the redit risk is modelled in Blak-Cox framework is still not studied. Weleave this for a future researh problem.The seond shortoming is the "small investor assumption", whih omits the upper boundson the number of bonds and stoks issued by the orporate �rm. This problem mightalso be handled using the aounting equation, i.e., the market value of the �rm equalsthe sum of the risky bond prie and the equity prie of the �rm, so this an be extendedto a onstrained problem in a future researh topi as well. Further extensions to ourproblem an be done, making the problem appliable in pratie via optimising portfoliosof vulnerable options on the risky ZCB, or even oupon paying bonds.



Chapter 2Sovereign CDS and Market-impliedCredit Risk of Turkey
2.1 IntrodutionSovereign Credit Default Swap (CDS) ontrats are being atively traded in emergingmarkets with inreasing volumes and these are typially the most liquid redit derivativeinstruments in the related ountries. As the redit literature douments1, CDS ontratsare better proxies for redit risk modelling than the risky bonds due to two main reasons.Firstly, the CDS ontrats are typially more liquid than the underlying referene assets.Seond, being unfunded ontrats, they are not in�uened by the tax e�ets. This hapteranalyses the market implied (or risk-neutral) probabilities of default extrated from themarket quotes of the Turkish sovereign CDS ontrats.The sovereign CDS's have very similar features to orporate CDS ontrats but there aresome di�erenes that stem from the referene asset, premium payment interval, and theredit event de�nitions. The referene asset in a sovereign CDS ontrat is the sovereigndebt, whih usually requires a di�erent modelling framework than the orporate debt,sine sovereign redit risk is driven mainly by eonomial and politial fators. In general,sovereign CDS ontrats have semi-annually premium payments guaranteeing the physialdelivery of the underlying referene upon a redit event. The redit event de�nitions insovereign CDS inlude obligation aeleration, failure to pay, restruturing/renegotiation, and repudiation/moratorium of the sovereign. Note that the �default� is exluded sine1See Berndt et al. [BDD+05℄ and Hull et al. [HPW05℄.47



48 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeythere is not an international bankrupty ourt regulating the sovereign issuers. However,we use the term �default probability� as a measure of the arrival risk of the redit event.Further, the outright default of a sovereign is a very rare event and it is rather a politialdeision.In this hapter, we model the redit risk in a setting that allows us to extrat the termstruture of the market implied default probabilities. We are interested in pratialmethodologies for extrating the probabilities, rather than explaining the eonomialand/or politial fators that might trigger the redit event in a sovereign. In order todo so, we �rst bootstrap the term struture of the market implied intensity rates impliitin the market pries of the sovereign CDS ontrats. A seond method, where we min-imise an objetive funtion with respet to the risk neutral forward onditional defaultprobabilities, is also presented for omparing the methods. Furthermore, we explore therisk premium for the Turkish sovereign in depth. We use the redit risk model introduedby Jarrow and Turnbull [JT95℄ (JT model hereafter), whih is a pioneer work in reduedform models, due to its simpliity in the alibration.The JT model assumes a onstant, deterministi intensity rate allowing independenefrom the expeted reovery rate and the short rate proess. The exogenous intensityproess may of ourse depend on some maroeonomi variables2 but this is not in thesope of our analysis. The onstant intensity proess assumption provides easiness innumeris but do not signi�antly explain the market rates as doumented by Frühwirthand Sögner [FS06℄, where the authors examine the German orporate bond market. Their�ndings show that the intensity should be modelled within a stohasti framework as inthe Lando [Lan98℄ model, or the Du�e and Singleton [DS99℄ model. In this sense, weprovide a parallel analysis to Frühwirth and Sögner [FS06℄, keeping in mind that insteadof the orporate bonds, the CDS market rates are used for extrating the market impliedintensities of the redit risk.We �x the expeted reovery rate under risk-neutral measure a priori, hene, CDS spreadsare fored to be driven only by risk neutral intensity of default. A similar paper analysingthe redit risk parameters of Japanese government and major Japan banks is by Ueno andBaba [UB06℄, where the authors use the Du�e and Singleton [DS99℄ redit risk model,2See Du�e et al. [DPS03℄, and Pan and Singleton [PS07a℄.



2.1 Introdution 49allowing a joint estimation of intensity and the reovery rate. In ontrast, Frühwirth andSögner [FS06℄ report that joint estimation is numerially unstable. Moreover, Roha andGaria [RG04℄ illustrate the alibration of a strutural redit risk model for priing thesovereign CDS inluding an analysis with Turkish sovereign CDS, hene we ompare ourresults with those by Roha and Garia [RG04℄ for a ertain date in the sampling period.There are many papers in the redit literature about orporate CDS valuation andtheir standardisation is doumented by International Swaps and Derivatives Assoiation(ISDA) in 2003. A detailed literature survey is done by Das and Hanoua [DH06℄, wherethey present the CDS spreads with strutural and redued form redit risk models. Priingof orporate and sovereign CDS is quite similar, but for the exat formulation and a list ofreferenes, we refer the reader to the paper of Realdon [Rea07℄, where the author extendsthe one fator model of Pan and Singleton [PS07a℄ with a two fator modelling approah.Moreover, Pan and Singleton [PS07a℄ give detailed analysis about the time series proper-ties of the risk neutral intensity rates of three sovereigns, namely Mexian, Turkish, andKorean. The authors use the risk-adjusted short rate modelling approah introdued byDu�e and Singleton [DS99℄, where they laim the CDS pries reveal not only the market-implied hazard rates but also the loss rates (Loss rate = 1 − Recovery rate). Papersabout sovereign CDS market are Raniere [Ran91℄, Paker and Suthiphonghai [PS03℄.Another referene is Keller et al. [KKS07a℄, where the authors analyse the sovereign riskof Turkey, with ontingent laims approah. Furthermore, an empirial work on TurkishCDS ontrats is done by Baklai and Arslan [BA06℄, where their �ndings show thatthe sovereign CDSs of Turkey with 10 year maturity are overpried using the valuationmethodology introdued by Raniere [Ran91℄.The remainder of this hapter is as follows. In Setion 2.2 we present a detailed surveyabout the intensity based (or redued-form) models and supply the mathematial bak-ground neessary for a better understanding of the risk models. Sine these models arealso used for priing the redit risk derivatives, we fous espeially on methodologies foronstruting the term strutures of the risk-neutral PDs for priing the sovereign CDS inSetion 2.3. In Setion 2.4 we run empirial analysis on the sovereign CDS ontrats ofTurkey and present the results. Setion 2.5 highlights the linkage between the atual andthe risk neutral intensities. The last setion summarises and gives our main onlusions.



50 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkey2.2 Redued-form Credit Risk ModelsIn this subsetion, we present widely aepted redued form models in orporate reditrisk literature as well as in the �nanial industry. The general idea of redued-formmodel is to model the default arrival time with a Poisson arrival proess. These modelsaept the default event as a sudden �surprise�, implying an inaessible stopping timefor the redit event in ontrast to strutural models with preditable stopping times,e.g., Merton [Mer74℄ model. The pioneers of the redued form modelling are Jarrow andTurnbull [JT95℄, taking a term struture of default free interest rates and a maturityspei� redit-risk spread as given. Given these two term strutures, the arbitrage freepriing of risky bonds an be done using the martingale measure tehnique. Then, Jarrowet al. [JLT97℄ introdue a Markovian model for the term strutures of redit risk spreads.The authors extend the model by Jarrow and Turnbull [JT95℄ via inluding the reditrating information into the risky bond priing methodology. Lando [Lan98℄ generalises themodel proposed by Jarrow et al. [JLT97℄ with a Cox proess for the default probability,providing randomness of the intensities and redit spreads. Furthermore, Lando [Lan98℄allows the dependene between risk-free term struture and the default proess via aommon state variable. The model proposed by Du�e and Singleton [DS99℄ allows us touse the standard term struture models by parameterising the risk-adjusted short rate,instead of the standard risk-free short rate proess.2.2.1 Preliminaries for Redued-form ModelsIn this subsetion, we present the mathematis behind the redued-form redit risk modelsand give neessary de�nitions, mainly from Shönbuher [Sh03℄, Bieleki and Rutkowski[BR02℄, Durrett [Dur99℄ and Lando [Lan02℄.Stopping TimeIn order to model the arrival risk of a redit event, whih is the unertainty whether adefault will our or not, we need to model an unknown, random point in time τ ∈ R+.Sine there is a possibility that the default will not our, ∞ is also inluded in the setof realisations of τ . The onnetion between stopping times and the �ltration (Ft)(t≥0)



2.2 Redued-form Credit Risk Models 51is that if τ is the time of some event, we know that this event has ourred or not fromthe information ontained in Ft. Mathematially, we an de�ne the random time τ as astopping time with the following property:
{τ ≤ t} ∈ Ft ∀t ≥ 0. (2.1)Furthermore, the stohasti representation of a stopping time is possible with an indiatorproess whih jumps from zero to one at the stopping time:

Nτ (t) := 1{τ≤t}. (2.2)The property, whih determines whether the stopping time is preditable or totally ina-essible, set the redued form models apart from the strutural models of redit risk (seeChapter 1). If it is a preditable stopping time, then the indiator proess of the stoppingtime is a preditable proess as well. A preditable stopping time has an announingsequene of stopping times τ1 ≤ τ2 ≤ . . . with
τn < τ and lim

n→∞
τn = τ for all ω ∈ Ω with {τ(ω) > 0}. (2.3)This implies the existene of a sequene of early warning signals τn that our before

τ and announe the preditable stopping time. In lassial �rm value based redit riskmodel, the default time is preditable and this makes sense in eonomial interpretationof the redit event, sine the �rm might give bad signals before it defaults.For the totally inaessible stopping time τ , there is no preditable stopping time thatgives information, i.e., for all preditable stopping times τ ′ we have :
P [τ = τ ′ <∞] = 0. (2.4)In redued form models, the default time is totally inaessible, implying that the defaultevent is a sudden surprise. However, as it is highlighted by Jarrow and Protter [JP04℄, themain distintion point in the debate between these two types of redit risk modelling is theinformation set available to the modeller and not the type of the stopping time. If we area manager of a �rm, then we will have full aess to all the information about the �rm'sassets and liabilities. Thus, we rather use a strutural model, whih implies a preditabledefault time. On the other hand, if we do not have full aess to the information set,



52 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeythen we use only what is available in the �nanial market. Hene, we use a reduedform approah, whih implies a totally inaessible stopping time. Furthermore, the linkbetween the redued form and strutural redit risk models based on the informationset is studied by Guo et al. [GJZ05℄. Moreover, strutural modelling approahes withinomplete information are presented by Gieseke [Gie06℄.Hazard RateThe hazard rate (also known as failure rate, or default intensity) is the ratio of theprobability density funtion to the survival funtion, with the following de�nition.De�nition 2.1. Let τ be a stopping time and F (T ) := P [τ ≤ T ] be its umulativedistribution funtion. Further, assume that F (T ) < 1 for all T and that F (T ) has aprobability density funtion f(T ). The hazard rate funtion h of τ is de�ned as:
h(T ) :=

f(T )

1 − F (T )
=
f(T )

S(T )
. (2.5)where S(t) is alled the survival funtion, S(t) = P [τ > t]. Hene, another representationwill be

h(T ) =
−d lnS(T )

dt
= −S

′(T )

S(T )Solving the di�erential equation above, we will have
S(T ) = exp

(
−
∫ T

0

h(s)ds

) (2.6)The hazard rate h(t) an be interpreted as the loal arrival probability of the stoppingtime per time unit:
h(t) = lim

dt→0

P [t ≤ τ ≤ t+ dt|τ > t]

dt
. (2.7)Forward Default Probability and Intensity ProessThe probability of default between time interval (t, T ] with T ≥ t is S(t) − S(T ). ByBayes' rule, the probability of surviving to time T , given survival to time t but no otherinformation about the issuer or the eonomy is

ps(t, T ) =
S(T )

S(t)
. (2.8)



2.2 Redued-form Credit Risk Models 53Hene, if we de�ne the forward default probability as
pd(t, T ) = 1 − ps(t, T ),whih gives the probability of default between time points t and T given survival to time

t (no other information). Moreover, from (2.8) and (2.6) in terms of hazard funtion, wean express it as
pd(t, T ) = 1 − exp

(
−
∫ T

t

h(u)du

)
, with T ≥ t ≥ 0. (2.9)The redued form models are also alled the intensity based models, therefore, we give herethe notion of the link between the intensity and the hazard rate. The hazard rate funtion

h(t) is used to haraterise the distribution of the survival time, hene it is also alled theredit urve giving the term struture of the default probabilities. If h is ontinuous, thenfor small dt we have
h(t)dt ≈ P [t ≤ τ ≤ t+ dt | τ > t].In the intensity based approah, we model the �rst arrival time of a default event τ as aPoisson arrival time. Hene, we have a onstant mean arrival rate h and it is alled theintensity. In general, λ is used for denoting the intensity of the default. As Bluhm etal. [BOW03℄ indiate, some authors expliitly distinguish between the intensity λ(t) asthe arrival rate of default at t onditional on all the information available at t and theforward default rate (or hazard rate) h(t) as the arrival rate of default at t, onditionalonly on survival until t. Of ourse, if the available information is only the �survival�,then the hazard rate and the intensity are idential. In this hapter, assuming that thesurvival is given as the whole information set, we denote the hazard rate (or intensityinterhangeably) with λ. Hene, the forward onditional PD in (2.9) an be written as

pd(t, T ) = 1 − exp

(
−
∫ T

t

λ(u)du

)
, with T ≥ t ≥ 0. (2.10)Formulation of the onditional forward PD depends on whether the intensity proess isdeterministily or randomly varying. If we have a deterministi intensity proess, then theintensity oinides with the forward default rate given that the only information relevantis the survival up to that date. Whereas, in a random intensity setting, (2.9) modi�es to

pd(t, T ) = 1 − E

[
exp

(
−
∫ T

t

λ(u)du

)∣∣∣Ft

]
, with T ≥ t ≥ 0 (2.11)



54 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeywhere Ft represents all information available at time t.Generally, as time passes we gather more information about the obligor, whih bears onthe redit quality. Any additional information during time implies the intensity proessto be randomly varying. We will see how the intensity is modelled with an underlyingstate variable (suh as redit rating, distane to default, business yle or equity prie ofthe obligor) in Subsetion 2.2.2. Before we present the models for the intensity proess,we reall the de�nition and properties of the exponential distribution.De�nition 2.2. A random variable T has an exponential distribution with rate λ (or
T ∼ exponential(λ)), if

P [T ≤ t] = 1 − e−λt for all t ≥ 0,with E[T ] = 1
λ
.An important property of the exponential distribution is the lak of memory property.Mathematially,

P [T > t+ s | T > t] = P [T > s], (2.12)implying that the onditional probability of �failure� in a given interval is the same re-gardless of when the observation is made. Moreover, the exponential distribution has aonstant hazard rate, i.e.,
h(t) =

λe−λt

e−λt
= λ, (2.13)re�eting the lak of memory property.Further modelling approahes for the distributions of survival times are summarised inTable 2.2.1. These distributions are generally used in the reliability literature. Andritzky[And06℄ uses these distributions in order to model the default intensity of the sovereigndebt.We may observe the behaviours of the intensity proesses and the term strutures of theorresponding survival probabilities in Figures 2.1, 2.2, 2.3, 2.4, and 2.5 for exponential,Weibull, loglogisti, lognormal, and Nelson-Siegel type of survival modelling, respetively.



2.2 Redued-form Credit Risk Models 55Distribution Hazard funtion, h(t) Survival funtion, S(t)Exponential λ exp(−λt)Weibull λγ(λt)γ−1 exp(−(λt)γ)Lognormal (γ/t)φ(γ ln(λt)) Φ(−γ ln(λt))Log-logisti λγ(λt)γ−1/[1 + (λt)γ ] 1/[1 + (λt)γ ]Nelson-Siegel β0 + β1 exp(−t/λ) exp
[
− β0t− β1t

1−exp(−t/λ)
t/λ

+β2(t/λ) exp(−t/λ) −β2t
(

1−exp(−t/λ)
t/λ

− exp(−t/λ)
)]Table 2.1: Survival distributions, where φ(u) = ϕ(u)/[1 − Φ(u)], with ϕ() denoting thedensity funtion of a standard normal distribution and Φ() its umulative distributionfuntion.
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Figure 2.1: Exponential distributionPoint ProessesMathematially, we an desribe the ourrene of one event with a stopping time (defaulttime of a single obligor) and for a generalisation to multiple events (default times of severalobligors), we should rather use the point proesses. A point proess an be de�ned assome olletion of points in time, i.e.,
{τi, i ∈ N} = {τ1, τ2, . . .}. (2.14)Under the assumptions that the stopping times are indexed by asending order, (τi < τi+1),and that they are all di�erent, we an transform this olletion of points in time to a
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Figure 2.2: Weibull distribution, λ = 0, 0067
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Figure 2.3: Loglogisti distributionstohasti proess by introduing the ounting proess:
N(t) :=

∑

i

1{τi≤t}, (2.15)whih gives the number of stopping times before time t.
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Figure 2.4: Lognormal distribution
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Figure 2.5: Nelson-SiegelPoisson ProessNow, let us de�ne the (homogeneous) Poisson proess with onstant rate λ.De�nition 2.3. Let t1, t2, . . . be independent, exponentially distributed random variables(with rate (λ)). Let Tn = t1 + · · ·+ tn for n ≥ 1 and de�ne N(s) = max{n : Tn ≤ s}.The following de�nition relates the intensity with the Poisson proess.



58 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyDe�nition 2.4. The homogenous Poisson proess with onstant intensity λ is aounting proess with
P [N(t) −N(s) = k] =

1

k!
(λ(t− s))ke−λ(t−s),where s < t and k = 0, 1, . . ..Lemma 2.1. N(t+ s)−N(s), t ≥ 0 is a Poisson proess with rate λ and independent of

N(r), 0 ≤ r ≤ s.Proof: See p.132 of Durrett [Dur99℄.Theorem 2.1. If {N(s), s ≥ 0} is a Poisson proess, then1. N(0) = 02. N(t+ s) −N(s) = Poisson(λt) and3. N(t) has independent inrements.Conversely, if (1), (2) and (3) hold, then {N(s), s ≥ 0} is a Poisson proess.De�nition 2.5. The inhomogeneous Poisson proess is a generalisation of a homoge-nous Poisson proess with a time-varying intensity. We all N an inhomogeneous proesswith deterministi intensity proess λ(t), if the inrements N(t) −N(s) are independentfor s < t and we have
P [N(t) −N(s) = k] =

1

k!

(∫ t

s

λ(u)du

)k

e−
R t

s
λ(u)du.De�nition 2.6. The Cox proess N(t) with intensity λ = {λ(t)}t≥0 is a generalisationof the inhomogeneous Poisson proess in whih the intensity is random, but with therestrition that onditional on the realisation of λ, N(t) is an inhomogeneous Poissonproess. Therefore, the Cox proess is also alled onditional Poisson proess, or doubly-stohasti Poisson proess.



2.2 Redued-form Credit Risk Models 59Continuous-time Markov ChainsLet ηt, t ∈ R
+, be a right-ontinuous stohasti proess on the probability spae (Ω,G, P )with values in the �nite set K and let Fη be the �ltration generated by this proess. Also,let G be some �ltration suh that Fη ⊆ G.De�nition 2.7. A proess η is a ontinuous-time G-Markov hain if for any arbitraryfuntion f : K → R and any s, t ∈ N

+ we have
EP [f(ηt+s) | Gt] = EP [f(ηt+s) | ηt].A ontinuous-time G-Markov hain η is said to be time-homogenous if, in addition, forany s, t, u ∈ N

+ we have
EP [f(ηt+s) | ηt] = EP [f(ηu+s) | ηu].De�nition 2.8. A two-parameter family P(t, s), t, s ∈ R+, t ≤ s, of stohasti matriesis alled the family of transition probability matries for the G-Markov hain η under Pif for every t, s ∈ R+, s ≤ t,

P [ηt = j | ηs = i] = pij(s, t), ∀i, j ∈ K.In partiular, the equality P(t, t) = I is satis�ed for every t ∈ R+.De�nition 2.9. The one-parameter family P(t), t ∈ R+, of stohasti matries is alledthe family of transition probability matries for the time-homogeneous G-Markov hain
η under P if for every t, s ∈ R+,

P [ηs+t = j | ηs = i] = pij(t), ∀i, j ∈ K. (2.16)Let us now introdue an important assumption on the family P(t), namely that thisfamily is right-ontinuous at t = 0, implying that
lim
t↓0

P(t) = P(0).With the Chapman-Kolmogorov equation3, we have
lim
s→0

P(t+ s) = P(t), ∀t > 0,3P(t + s) = P(t)P(s) = P(s)P(t), ∀s, t,∈ R+



60 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyhene
lim
s→0

P [ηt+s = j | ηt = i] := δij , ∀i, j ∈ K, t > 0.Furthermore, P(t) is right-ontinuous, implying that it is right-di�erentiable, the followinglimit exists for every i, j ∈ K,
λij := lim

t↓0

pij(t) − pij(0)

t
= lim

t↓0

pij(t) − δij
t

. (2.17)Note that for every i 6= j we have λij ≥ 0 and λii = −∑K
j=1,j 6=i λij . We all the matrix

Λ := [λij]1≤i,j≤K the in�nitesimal generator matrix for a Markov hain assoiated withthe family P(·) via expression (2.16). This matrix is also alled the intensity matrix sineeah entry λij represents the intensity of transition from state i to state j.We an derive the bakward Kolmogorov equation
dP(t)

dt
= ΛP(t), P(0) = I, (2.18)and the forward Kolmogorov equation

dP(t)

dt
= P(t)Λ, P(0) = I, (2.19)where at t = 0, we take right-hand side derivatives. Both equations have the same uniquesolution:

P(t) = exp(tΛ) :=

∞∑

n=0

Λntn

n!
, t ∈ R

+. (2.20)De�nition 2.10. A state K ∈ K is alled absorbing for time-homogeneous Markov hain
ηt, t ∈ R+, if the following equation holds:

P [ηs = K | ηt = K] = 1, ∀t, s ∈ R
+, s ≥ t. (2.21)2.2.2 Intensity Models and Valuation of the Corporate BondsIn this subsetion, we present the well-known approahes for the intensity based reditrisk models and provide the orresponding risky orporate bond formulas. The intensitybased models assume that the default arrival time τ is the �rst jump time of a Poissonarrival proess. However, depending on whether the intensity of the Poisson proess isdeterministi or stohasti, these models an also be subdivided into ategories.



2.2 Redued-form Credit Risk Models 61An example for a deterministi intensity is the model by Jarrow and Turnbull [JT95℄(hereafter,JT model), where the authors assume a onstant intensity, i.e., λ(t) = λ. This assumptionbrings easiness in alibration to the market data, however, it is not very realisti in realworld. In this setting, a onstant intensity rate of 5% will indiate a mean arrival rate of5 defaults per 100 obligors, onditioning on all urrent information available. Expetedtime to default of an obligor is 1/λ = 20 years, where the umulative probability of defaultin one-year equals 1 − exp(−0.05) = 4.88%.In pratie, generally the intensity is assumed to be time-dependent, e.g., it an be de-sribed with a linear funtion,
λ(t) = a+ bt, (2.22)or with a pieewise onstant funtion

λ(t) = a1 + a21{t≥t1} + a31{t≥t2} + . . . (2.23)An innovative default intensity model is proposed by Jarrow et al. [JLT97℄(hereafter, JLTmodel), where the authors inlude the redit rating information to the risk priing. InJLT model, the authors haraterise the default with a �nite state Markov proess in theredit rating of the �rm. Markovian redit migration proess has the state spae
K = {1, 2, . . . , K},where 1 represents the highest redit rating lass and K represents the default state. Theintensities λi,j i = 1, . . . , K − 1, and j = 1, . . .K are the transition rates of jumping fromredit lass i to redit lass j, where these intensities are the o�-diagonal elements for thegenerator matrix of the Markov migration proess.Lando, [Lan98℄ generalises JLT model and instead of onstant intensities, he assumesstohasti intensities whih are driven by some state variable X. Therefore, the authoruses a Cox proess in order to model the default event. Moreover, assuming that the statevariable X is a Markov proess, we have
λi,j(t) = Λi,j(Xt),where Λi,j is a ontinuous non-negative funtion on Rd, whih maps the risk fators Xinto the transition intensity.



62 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyMathematially, the relationship between the risk-neutral short rate proess and the risk-free ZCB prie orresponds to the relationship between the risk neutral intensity proessand the survival probability. Therefore, this analogy allows us to model the stohas-ti intensity with the term-struture models for short rate. Du�e and Singleton [DS03℄present these models in the third hapter of their book. Examples to this kind of inten-sity modelling approahes are well known from the interest rate literature, namely theCox-Ingersoll-Ross (CIR, hereafter) [CIR85℄ and Heath-Jarrow-Morton (HJM, hereafter)[HJM92℄ frameworks. A reent appliation of the HJM framework using Cheyette typespei�ation for apturing the stohastiity of the redit spreads is introdued by Aaret al. [AAK07℄. Moreover, Du�e and Singleton ontribute to redit risk modelling witha�ne proesses, adopting the Cox proess approah of Lando [Lan98℄ model. Hene, theyassume that the state proess X and the non-negative funtion Λ are a�ne, implyinglosed form solutions for the PDs.Due to rapid growth in the redit derivative markets, priing of multi name redit prod-uts (e.g., CDO, CDO2) bring new modelling approahes to the stohasti intensity. Thereent papers by Chapovsky et al. [CRT06℄, and Papageorgiou and Sirar [PS07b℄ pro-pose multisale intensities, where the authors present a review of the stohasti models inthe latter. Using a Markov hain is introdued by Kraft and Ste�ensen [KS06℄, extendedby De Kok et al. [KKS07b℄ for the CDO priing. Another paper to valuation of multi-name redit derivative ontrats in a Markovian framework is by Di Graziano and Rogers[GR06℄.Jarrow and Turnbull ModelJarrow and Turnbull [JT95℄ assume a onstant intensity λ, implying statistial indepen-dene of the default event and the short rate proess.Now, let us remember some bond-priing mathematis. We have
b(t) = exp

(∫ t

0

r(s)ds

) and (2.24)
B(t, T ) = EQ

t

[
b(t)

b(T )

]
, (2.25)where r(t) is the risk-free short rate and the onditional expetation under the martingale



2.2 Redued-form Credit Risk Models 63measure Q is denoted with EQ
t [·] ≡ EQ[· | Ft]. The risk-free MMA is represented by b(t)and B(t, T ) is the prie of a risk-free ZCB at time t, with maturity time T , T ≥ t ≥ 0.The JT model gives the prie of a risky ZCB at time t with maturity time T , B̄(t, T ) as

B̄(t, T ) = EQ
t

[
b(t)

b(T )

(
R1{τ≤T} + 1{τ>T}

)]
, (2.26)where R is the exogenously given, onstant reovery rate R ∈ [0, 1] and τ is the randomdefault time. Assuming that the short rate proess r(t) and the default proess arestatistially independent under Q and that at default time τ the laim holders reeive afration of the equivalent risk-free ZCB, i.e., B̄(τ, T ) = RB(τ, T ) (Reovery of treasuryor equivalent reovery assumption), we may rewrite (2.26) as:

B̄(t, T ) = EQ
t

[
b(t)

b(T )

]
· EQ

t

[(
R1{τ≤T} + 1{τ>T}

)]

= B(t, T )
[
R+ (1 −R)psQ(t, T )

]
. (2.27)Here psQ(t, T ) represents the martingale probability of survival until T , onditional onsurvival to time t. Note that with the onstant intensity λ, it is given by

psQ(t, T ) = e−λ(T−t). (2.28)For a detailed analyses of the JT model, we refer the reader to Baydar [Bay04℄.Jarrow, Lando and Turnbull ModelJarrow et al. [JLT97℄ extend JT model via inluding the redit rating information intothe risky bond prie. Sine redit rating is a rude measure of redit quality and a roughaggregation of redit information, it is an important ingredient both to redit risk modelsand to risk management issues. The popular redit rating lassi�ations are the onespublished by redit rating agenies like Moody's (highest rate:Aaa, lowest rate: C) andStandard & Poor's (S&P hereafter, with highest rate: AAA lowest rate: CCC), and thoseby Fith. In JLT model 1 represents the highest rating grade and K represents the defaultstate (the absorbing state in Markovian setting). Within this framework, we de�ne thedefault time as follows:De�nition 2.11. Suppose the default time of a �rm is the �rst time that the �rm reditmigration (or redit transition) proess η(t) hits the absorbing (default) state, e.g., K.



64 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyConsidering a ontinuous time framework, we de�ne the default time as follows:
τ = inf{t ≥ s : η(t) = K}, ∀s ∈ R

+Let us assume that the Kth state is absorbing, then we will have the following generatormatrix under the physial probability measure as follows:
Λ =




−λ1 . . . λ1,K−1 λ1,K

. . . . . .
λK−1,1 . . . −λK−1 λK−1,K

0 . . . 0 0


 (2.29)where λij ≥ 0 for all i, j and

λi =
K∑

j=1
j 6=i

λij for i = 1, . . . , K.Proposition 2.1. The generator matrix under the equivalent martingale measure is givenby:
ΛQ(t) = U(t)Λ, (2.30)where U(t) = diag(µ1(t), . . . , µK−1(t), 1) is a K ×K diagonal matrix, whose �rst K − 1entries are stritly positive deterministi funtions of t satisfying

∫ T

0

µi(t)dt < +∞ for i = 1, . . . , K − 1.The entries (µ1(t), . . . , µK−1(t), 1) an be interpreted as risk premiums, whih are adjust-ing the atual probabilities into the probabilities used in valuation proess. These riskpremiums will be analysed in detail in Subsetion 2.5 for Turkish sovereign.Let us denote the transition matrix under EMM from time t to T with Q(t, T ) whose
(i, j)th entry is qij(t, T ) = Q[η(T ) = j | η(t) = i], 0 ≤ t ≤ T . We will get Q(t, T ) fromthe solutions to the Kolmogorov di�erential equations below:

∂Q(t, T )

∂t
= −ΛQ(t)Q(t, T ) and (2.31)

∂Q(t, T )

∂T
= Q(t, T )ΛQ(T ), with the initial ondition Q(t, t) = I. (2.32)



2.2 Redued-form Credit Risk Models 65The redit rating proess is still Markovian under the assumption with (2.30) but timeinhomogeneous here. The proess is time homogeneous only when the following equationholds:
ΛQ = diag(µ1, . . . , µK−1, 1)Λ (2.33)where µ1, . . . , µK−1 are stritly positive onstants. In this ase, the solution to Kolmogorovequations are easy to alulate and the solution is

Q(t, T ) = exp(diag(µ1, . . . , µK−1, 1)Λ(T − t)).Proposition 2.2. Let the �rm have rating i at time t, ηt = i and de�ne the default timewith τ = inf{s ≥ t : ηs = K}, then the probability of survival until T , given survival totime t is
psQ

i (t, T ) =
∑

j 6=K

qij(t, T ) = 1 − qiK(t, T )Hene, we an write the prie of a risky ZCB, whih has the rating i ∈ {1, . . . , K − 1}with Reovery of Treasury onvention as:
B̄i(t, T ) = B(t, T )[R+ (1 −R)(1 − qiK(t, T ))]. (2.34)The estimation tehniques of the transition probability matries are explained by Lando[Lan02℄ for orporate debt, whereas Hu et al. [HKP02℄ introdue a sovereign redit riskspei� estimation methodology.Lando ModelLando [Lan98℄ generalises the JLT model and uses doubly stohasti Poisson proess formodelling the default time. With this setting, one may relax the assumption that thedefault proess and risk-free term struture are independent. This generalisation alsoallows the redit spreads to �utuate randomly even between rating transitions. Weintrodue the state variable X and randomise the default intensities depending on X,where X re�ets the hanges in eonomi onditions determining the rating transitionintensities. Let us de�ne the generator matrix

ΛX(t) =




−λ1(Xt) . . . λ1,K−1(Xt) λ1,K(Xt)... .
... ...

λK−1,1(Xt) . . . −λK−1(Xt) λK−1,K(Xt)
0 . . . 0 0


 (2.35)



66 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyand assume that
λi(Xt) =

K∑

j=1
j 6=i

λij(Xt), i = 1, . . . , K − 1 λi,j ≥ 0.With the onstrution above, the probability that the �rm will start from rating lass1 and jump to a di�erent lass or default within the small time interval dt is λ1(Xt)dt.Further, onditional on the evolution of the state variables, we obtain a non-homogeneousMarkov hain with the transition probabilities satisfying
∂QX(t, T )

∂t
= −ΛX(t)QX(t, T ).Unfortunately, we an not say the solution to the di�erential equation is

QX(t, T ) = exp

(∫ T

t

ΛX(u)du

)
, (2.36)sine for only square matries A and B whih ommute we an write

exp(A + B) = exp(A) exp(B).In order to ensure that the intensity measures for di�erent intervals ommute, we assumethat they have a ommon basis of eigenvetors. Hene, let us assume thatK×K generatormatrix Λ is given and it permits a diagonalisation
Λ = BDB−1,with D = diag(d1, . . . , dK−1, 0) is the diagonal matrix of eigenvalues. Let µ be a salar-valued positive funtion de�ned on the state spae of the state variable X and the loalintensity is de�ned as

ΛX(t) = Λµ(Xt) = BDµ(Xt)B
−1,whih orresponds to onsidering a one-dimensional salar multiple of the generator.Moreover, we de�ne the K ×K diagonal matrix

EX(t, T ) =




exp(d1

∫ T

t
µ1(Xu)du) 0 . . . 0
0 · . . . 0... . . . exp(dK−1

∫ T

t
µK−1(Xu)du) 0

0 . . . 0


 .



2.3 Valuation of the Sovereign Credit Default Swaps 67Then, we will have QX(t, T ) = BEX(t, T )B−1, hene we an ompute the unonditionalmigration matrix Q(t, T ) as the expeted value of QX(t, T ). The survival probabilityonditionally starting with the rating i will be
1 − qX(t, T )iK =

K−1∑

j=1

βij exp

(
dj

∫ T

t

µ(Xu)du

)
,where

βij = −bijb−1
jK ,and bij is the (i, j)th value of the matrix B and qX(t, T )iK is the (i,K)th entry of thetransition probability matrix QX(t, T ).Now, onsider the prie of a defaultable ZCB at time t maturing at time T , issued by a�rm with redit lass i using zero reovery assumption

B̄i(t, T ) = EQ
t

[
exp

(
−
∫ T

t

r(Xs)ds

)
(1 − qX(t, T )i,K)

]

=

K−1∑

j=1

βijE
Q
t

[
exp

(∫ T

t

(djµ(Xs) − r(Xs))ds

)]
,where we denote the short rate depending on the state proess with r(Xs). If µ(Xs) is ana�ne proess, we an ompute it easily.2.3 Valuation of the Sovereign Credit Default SwapsIn Setion 2.2, we illustrated the intensity based redit risk models, whih are mainlyused for valuation of risky orporate bonds as well as extrating the risk-neutral PD forthe �nanial obligors. In this setion, our aim is to introdue the state of the art invaluation of the CDS ontrat, when the referene asset is the sovereign debt. Althoughmodelling the orporate and the sovereign debt should be treated distintly (see Du�e etal. [DPS03℄ and Andritzky [And06℄), the valuation of the sovereign and orporate CDSontrats is quite similar.The CDS ontrat (also alled redit swap or default swap in di�erent soures) transfers thepotential loss on the referene asset that an result from spei� redit events. Dependingon the referene asset, a CDS is named the orporate CDS, or sovereign CDS. Sine we



68 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyare analysing the CDS ontrats written on the Turkish Eurobonds maturing in 2030and denominated in the USD, we explain the valuation of the sovereign CDS in a simplemodelling approah by O'Kane and Turnbull [OT03℄.The ontrat onsists of two parties; the protetion buyer (B) and the protetion seller(S). Moreover, CDS has two legs; namely the premium leg and the protetion leg. Thepremium leg stands for the payments transfered by the B to the S. The premium leg isthe periodi payments4, as perentages of the notional on the issue date until whiheverours �rst: the referene asset defaults and the CDS ontrat terminates or CDS ontratmatures without any redit event. Alternatively, the investor may deide to make an up-front premium payment. With 2003 ISDA de�nitions, the premiums are paid on dates20th Marh, June, September, and Deember (if quarterly based), independent from theineption date for the orporate CDS ontrats. If the ontrat is made between thosedates, the premium is adjusted aordingly, whereas if the ontrat starts on those datesthen the �rst premium is paid on the next payment date. Upon a default between thesepayment dates, B requires to pay the part of the premium payment that has aruedsine the last payment, whih is alled the arued premium payment.The protetion leg refers to the potential payment (upon the redit event of the refereneasset) is done to the B by the S. At the ineption date, the default payment is unknownand generally spei�ed as physial delivery of the referene asset (Turkish sovereign bond)against repayment at par. In Figure 2.6, we see the pay o� struture of the produt.
buyer

CDS CDS

seller

Periodic or upfront "premium"

Payment contingent on credit eventFigure 2.6: CDS payo� shemaExample 2.1. We onsider a sovereign CDS with the following harateristis:
• Swap parties: B (protetion buyer) and S (protetion seller)
• Ineption5: 20th Marh, 20074This periodi payment is also alled swap rate, swap spread or swap premium.5This is the date/time where the overage under the insurane ontrat takes e�et.



2.3 Valuation of the Sovereign Credit Default Swaps 69
• Maturity: 5 years
• Referene asset: Eurobond of Turkish government maturing in 2030, denominatedin the USD
• Notional amount: 100 million USD
• Credit event: obligation aeleration, failure to pay, restruturing/renegotiation,repudiation/moratorium
• Swap rate: 90 BPS (= 900000 USD) per annum, �rst payment on 20 September2007If the Turkish government does not su�er from a redit event until 20th Marh 2012: Bpays 5 × 2 × 450000 USD to S at the respetive premium payment dates (�rst premiumpayment is on 20th September 2007) and reeives nothing from S. If there is a redit eventon 3rd Marh 2010: B pays to S [(2×2)+1]×450000 USD at the respetive oupon datesand a fration of the premium arued from 21th September 2009 until 3rd Marh 2010.In return, B delivers the defaulted Eurobond to S, who pays 100 million USD (notionalvalue of the bond) as desribed in the physial settlement feature. Hene, B does notsu�er a loss due to redit event of Turkish government. This protetion of ourse requiresa fair priing formula, whih will be explained in details in the next subsetion.We have two priing problems here:
• when making markets, we are interested in the fair swap rate at the ineption of theontrat, i.e., CDS(t0, tN).
• when hedging or marking-to-market6, we are interested in the market value of theswap, i.e., CDS(tv, tN), whih need not to be the same with the ontratual rate,i.e., CDS(t0, tN ) due to hanging interest rates and redit quality of the refereneasset.6Reording the prie or value of a seurity, portfolio, or aount on a daily basis and alulate pro�tsand losses or to on�rm that margin requirements are being met.



70 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyWe are fousing on the �rst problem in this setion. Generally, ounterparty risk is nottaken into aount when determining the deal pries. A good referene about determiningthe orporate CDS rate would be Hull and White [HW00℄, where the authors value abinary CDS and a plain vanilla CDS under the assumption that there is no ounterpartyrisk. Du�e [Duf99℄ uses the Floating Rate Note (FRN) as referene entity to reatesyntheti CDS ash �ows. Moreover, Brigo and Alfonsi [BA05℄ use a two-dimensionalshifted square root di�usion model with a stohasti intensity framework. Jarrow andYildirim [JY02℄ provide a simple analyti formula for valuation of the CDS when themarket and redit risk are orrelated. Some papers about empirial studies of orporateCDSs are Cossin and Nerin [CN02℄, Houweling and Vorst [HV05℄, and Skinner and Diaz[SD03℄.In this hapter, we use the following notations:
• tv : date of valuation of the CDS
• n = 1, . . . , N : number of payments and t1, . . . , tN : the dates for CDS premiumpayments, where tN is the maturity date of the CDS
• CDS(t0, T ) : the ontratual swap rate on time t0, when the maturity of the CDS is
T , (in a new ontrat tv = t0)

• ps(tv, T ) : the forward probability of survival from tv until T , given survival to tv
• pd(tv, T ) := 1−ps(tv, T ) the forward probability of default at time T , given survivalto tv
• PS(tn) : the umulative probability of survival until tn
• PD(tn) := 1 − PD(tn) the umulative probability of default by time tn
• R: expeted reovery rate under the risk-neutral measure
• r(t) : short interest rate proess (LIBOR for USD)
• D(tv, T ) : the disount fator on tv for time T
• λ(t) : the intensity rate (or hazard rate) of the redit event
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• PVProtection Leg(tv, T ) : present value of the protetion leg with CDS maturity time T
• PVPremium Leg(tv, T ) : present value of the premium leg with CDS maturity time T
• ∆(tn−1, tn, C) : the day ount fration between dates tn−1 and tn using hosen on-vention C (e.g., 30/360, meaning 30 days in a month and 360 days in a year, for thedetails see ISDA de�nitions.)Determining the fair prie of a CDS ontrat, requires the following algorithm:1. Choose an appropriate redit risk model for determining the term struture of PDs.2. Construt the zero urve (for disount fators).3. Set the CDS ontrat details (arued payment assumptions, the delivery type ondefault, day ount onventions, et.).4. Fix the expeted reovery rate under risk neutral measure.5. Construt the hazard rate term struture (ideally from market CDS rates).6. Determine the present values of the protetion leg and the premium leg.7. Calulate the fair value of the CDS.2.3.1 Sovereign CDS Valuation with Deterministi IntensityAs mentioned before, priing of sovereign CDS is similar to orporate CDS, hene we mayimitate the priing tehniques for a orporate CDS presented by O'Kane and Turnbull[OT03℄. Hene, with a deterministi intensity as in the JT model, the forward PS is givenby

ps(tv, T ) = exp

(
−
∫ T

tv

λ(s)ds

)
. (2.37)The general priing rule of the swap ontrats tells the present values of the premium legand the protetion leg should be equal to eah other on the valuation date. Thus, we have

PVProtection Leg(tv, tN) = PVPremium Leg(tv, tN), (2.38)



72 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeywhere the expeted present value of the premium leg is given as
PVPremium Leg(tv, tN ) = CDS(t0, tN)

N∑

n=1

∆(tn−1, tn, C)D(tv, tn)ps(tv, tn), (2.39)and the expeted present value of the protetion leg is
PVProtection Leg(tv, tN) = (1 − R)

∫ tN

tv

D(tv, s)ps(tv, s)λ(s)ds. (2.40)Note that the arued payment upon a default between two premium dates is ignored in(2.39). Considering the protetion fee, that has arued from the last premium date tothe time of default, alulated as the sum over all premium periods from n = 1 to the�nal one n = N ; (2.39) modi�es to
CDS(t0, tN)

N∑

n=1

∫ tn

tn−1

∆(tn−1, s, C)D(tv, s)ps(tv, s)λ(s)ds. (2.41)Here, probability of surviving from tv to eah time s and defaulting in the next small timeinterval ds is given by ps(tv, s)λ(s)ds. This integral should be disretised daily sine thepremiums are alulated on a daily basis. Sine this brings omplexity in numeris, weassume that it is ontinuous and that if the default ours between two premium dates,then the premium arued is the half of the full premium to be paid at the end of thepremium payment interval. Hene, we approximate (2.41) with
CDS(t0, tN )

2

N∑

n=1

∆(tn−1, tn, C)D(tv, tn)[ps(tv, tn−1) − ps(tv, tn)]. (2.42)The term [ps(tv, tn−1) − ps(tv, tn)] stands for the probability that the obligor will defaultbetween the dates tn−1 and tn. Summing this di�erene per eah time interval [tn−1, tn],
n = 1, . . . , N , we will have the obligors default probability during the life of the CDS.Sine we assume that the arued premium is the half of the full premium, division by twoand disounting it from the end of eah arued payment period explains the formulationof (2.42).Thus, it follows from (2.39) and (2.42) that the present value of the premium leg inludingthe arued payment an be approximated by

PVPremiumLeg(tv, tN) = CDS(t0, tN)
N∑

n=1

∆(tn−1, tn, C)D(tv, tn) (2.43)
·
[
ps(tv, tn) +

1PA

2
[ps(tv, tn−1) − ps(tv, tn)]

]
,
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1PA =

{
1 if arued payment is agreed in CDS ontrat
0 otherwiseThe value of the protetion leg is alulated with the assumption that the transation tothe protetion buyer is made immediately after the noti�ation of the redit event.We approximate the integral in (2.40) assuming that the default an our only on a �nitenumber of disrete points, i.e., M , per year. Hene, we will have M × tN disrete timeslabeled as m = 1, . . . ,M × tN . We approximate (2.40) with

(1 −R)

M×tN∑

m=1

D(tv, tm)[ps(tv, tm−1) − ps(tv, tm)] (2.44)By dereasing the value of M , we will have less alulations but also less auray. When
M = 12, we will have a monthly disretisation frequeny.In order to have the market implied PS, we now relate these formulas for premium andprotetion leg to the market quoted swap spreads. For an appropriate fair spread7 with
tv = t0, the value of the CDS should be 0, hene we have

0 = PVProtection Leg(tv, tN) − PVPremium Leg(tv, tN)suh that̂
CDS(tv, tN) = (2.45)

(1 −R)
∑M×tN

m=1 D(tv, tm)[ps(tv, tm−1) − ps(tv, tm)]∑N
n=1 ∆(tn−1, tn, C)D(tv, tn)

[
ps(tv, tn) + 1PA

2
[ps(tv, tn−1) − ps(tv, tn)]

] .To illustrate this with an example; say we have a 1Y CDS whih has a mid market quoteof 75 bp. With semi-annual premium payments and assuming that we do not have thearued premium payment, we have
0.0075 =

(1 − R)
∑12

m=1D(0, tm)(PS(tm−1) − PS(tm))∑
n=6,12 ∆(tn−6, tn, C)D(0, tn)PS(tn)

, (2.46)where we assume that the expeted reovery rate and LIBOR disount fators are given,i.e., R = 0.25 and assuming a �at zero urve with
r = 0.05 ⇒ D(0, tm) = exp(−0.05 × (tm)),7The prie at whih a seurities transation produes neither a gain nor a loss.



74 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeywe are left only with the unknown 12 + 2 PS8. We plug in (2.37) to alulate the PSto (2.46), note that for tv = t0 = 0, we have ps(0, tn) = PS(tn). We see that it is notpossible to extrat unknown PS for every time point, hene we must have a simplifyingassumption about term struture of the hazard rates. At this point, the need for thebootstrapping methodology, whih we explain in the next subsetion, shows up.2.3.2 Generating Hazard Curves with the Bootstrapping MethodIn this subsetion, we explain how we onstrut the term struture of the risk neutralintensity rates for priing a CDS, namely the bootstrapping methodology. The fair CDSrate formula in (2.45) with deterministi intensity is already standard in �nanial industrybut the approximation methods to the integrals may imply di�erent results.Although bootstrapping is a pratial method, it has also disadvantages, whih are listedby Martin et al. [MTB01℄ as;
• it is an iterative method, an unreliable CDS market rate, i.e., ĈDS(0, j) will a�etnot only the extrated intensity λj but also the other subsequent intensities λj+1,

λj+2 . . ..
• We an have intensities as many as the market swap rates. Typially, the CDS ratesfor di�erent maturities may not be available. Here, we have to use an interpolationmethod for the maturities whih are not traded. Di�erent interpolation methodsmay imply di�erent results.
• With the bootstrapping we may even have negative intensities, that are totallynonsense.Empirial fats9 show the reovery rate should be modelled in a stohastial framework,due to the relationship between the expeted reovery rate and the intensity rate proess.Unfortunately, the bootstrapping method separates the reovery and default risk, whilewe �x the reovery rate under risk neutral measure a priori, then extrat the intensities.8This is the upper bound of the unknown terms, when premium dates and the determined defaultdates in protetion leg do not oinide.9Interested reader may see the papers by Bakshi et al. [BMZ04℄, Das and Hanouna [DH06℄, Pan andSingleton [PS07a℄, and Christensen [Chr07℄ for a stohasti reovery approah.



2.3 Valuation of the Sovereign Credit Default Swaps 75This is similar to the frational reovery of fae value onvention of Du�e [Duf98℄, andDu�e and Singleton [DS99℄, where the authors propose a fair swap rate as
CDS(t) = (1 −R)f(λQ(t)). (2.47)However, the frational reovery of market value onvention introdued by Du�e andSingleton [DS99℄ delivers a CDS priing formula as follows
CDS(t) = f((1 − R)λQ(t)). (2.48)This implies that the reovery and intensity proesses an not be separately identi�edfrom the market CDS rates. Leaving the disussion about the reovery rate onventionsfor a future researh problem, we use a valuation formula, that is similar to (2.47). We usea onstant reovery rate, i.e., R = 0.25, as it is proposed in Pan and Singleton [PS07a℄.In our dataset, we have the mid-market quotes of CDSs for the maturities of 1, 2, 3, 5,7, and 10 years. From eah market rate, we an extrat only one piee of information.As O'Kane and Turnbull [OT03℄ indiate, the widely used methodology is assuming thehazard rate term struture as a pieewise onstant funtion of the maturity time. Wemay also onstrut it with a pieewise linear hazard rate funtion, but this typially willnot reate a big di�erene, unless we have spreads for many CDS maturities.Our aim is to �nd the market-implied (or risk-neutral) onstant hazard rates λQ

1 , λQ
2 ,

λQ
3 , λQ

4 , λQ
5 and λQ

6 via bootstrapping method. Suppose we have the stepwise onstantintensity funtion as follows
λQ(t) :=





λQ
1 if t ≤ 1

λQ
2 if 1 < t ≤ 2

λQ
3 if 2 < t ≤ 3

λQ
4 if 3 < t ≤ 5

λQ
5 if 5 < t ≤ 7

λQ
6 if t > 7.

(2.49)
First, we will use the 1Y CDS market spread in order to alulate λQ

1 , then we use itto alulate λQ
2 . The iterative method will ontinue until we have the omplete termstruture of the intensities.With semi-annual premium payments and assuming that there is no arued premium(1PA = 0 in (2.43)) and plugging the PS formula given with (2.37) in, we get λQ

1 by
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ĈDS(tv, tv + 1Y )

1 − R

∑

n=6,12

∆(tn−6, tn, C)D(tv, tn)e−λQ
1 τn

=
12∑

m=1

D(tv, tm)[e−λQ
1 τm−1 − e−λQ

1 τm ],where with a monthly disretisation frequeny (M = 12), we have
τ0 = 0, τ1 = 0.0833, . . . , τ12 = 1.This equation an be solved with bisetion or gradient-based methods suh as Newton-Raphson algorithm. Given λQ
1 , this an be redone to solve for λQ

2 using the market rate
ĈDS(tv, tv + 2Y ). De�ne τ as time to maturity, i.e., τ = T − tv and assume that thehazard rate is onstant beyond 10Y maturity, then we have

ps(tv, tv + τ)

=





exp(−λQ
1 τ) if 0 < τ ≤ 1

exp(−λQ
1 − λQ

2 (τ − 1)) if 1 < τ ≤ 2

exp(−λQ
1 − λQ

2 − λQ
3 (τ − 2)) if 2 < τ ≤ 3

exp(−λQ
1 − λQ

2 − λQ
3 − λQ

4 (τ − 3)) if 3 < τ ≤ 5

exp(−λQ
1 − λQ

2 − λQ
3 − 2λQ

4 − λQ
5 (τ − 5)) if 5 < τ ≤ 7

exp(−λQ
1 − λQ

2 − λQ
3 − 2λQ

4 − 2λQ
5 − λQ

6 (τ − 7)) if τ > 7Note that these are the risk-neutral probabilities, whih inlude other non-default fatorssuh as liquidity risk premium, spread risk premium and market supply-demand e�ets.These are generally bigger than the hazard rates implied by historial data. In Setion2.5, we will explain the relationship between historial and risk-neutral default intensities.Sine the market demand and supply play a role in determining the CDS quotes, thereis a possibility that the CDS rates may not be monotonously inreasing with respet tothe maturity of the ontrat. Therefore, an inverted redit urve may imply negativehazard rates whih has no sense and re�ets an arbitrage possibility, whih an be modeldependent (or not). The optimisation method introdued by Martin et al. [MTB01℄solve the problem of having negative intensities. We explain this method in the followingsubsetion.



2.3 Valuation of the Sovereign Credit Default Swaps 772.3.3 Generating Hazard Curves with the Optimisation MethodIn this subsetion, we present the method introdued by Martin et al. [MTB01℄. Themethod fouses on extrating the forward onditional default probabilities, i.e., pd(tm−1, tm)diretly from the market CDS rates. One we have the forward default probabilities,we may onstrut the term struture of the intensities via the approximation i.e., if
∆(tm−1, tm, C) → 0, then pd(tm−1,tm)

∆
→ λQ

m−1. Furthermore, the umulative survival(or default) probabilities, PS(·)10 an be alulated via the reursion:
PS(tm) = PS(tm−1) − [PS(tm−1)pd(tm−1, tm)] m = 1, . . . ,M × tN

PS(0) = 1.Remember that pd is given by
pd(tm−1, tm) = 1 − exp

(
−
∫ tm

tm−1

λ(t)dt

)
. (2.50)We further assume that for eah time period, we approximate the disount fator by anaverage, i.e.,

D(tv, t) ≈
1

2
[D(tv, tm−1) +D(tv, tm)] , where tm−1 < t < tm.With this setting, we approah the integral in (2.40) via assuming that the default anour only on a �nite number of disrete points, i.e., M , per year. In a semi-annualdisretisation we have M = 2. And we label the disrete time points for the CDS withmaturity tN as m = 0, . . . ,M × tN . Hene, we approximate (2.40) with a sum of P :=

M × tN integrals as we previously did in the bootstrapping method. Using the reursiverelation
PS(tm−1) − PS(tm) = PS(tm−1)pd(tm−1, tm),and assuming there is no arued premium, the market quote for maturity tN on date

tv = t0 = 0 should hold
ĈDS(t0, tN) =

(1 −R)
∑P

m=1
1
2
[D(t0, tm−1) +D(t0, tm)]PS(tm−1)pd(tm−1, tm)

∑N
n=6,12,··· ∆(tn−6, tn, C)D(t0, tn)PS(tn)

≡ CDS(0, tN ; pd0, pd1, . . . , pdP−1).10Note that the probabilities and intensities are the risk-neutral ones, we drop the supersript Q here.



78 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyWe denote the model prie alulated with the extrated pds with CDS(0, tN ; pd0, . . .).In order to �nd the unknown P forward default probabilities, whih are labelled as
pd(tm−1, tm) = pdm−1, with m = 1, 2, . . . , P , we minimise the objetive funtion givenby

G(pd0, pd1, . . . , pdm) = v
P∑

m=1

d(pdm; pdm−1)
2 (2.51)

+
1

2

K∑

j=1

(
ĈDS(0, j) − CDS(0, j; pd0, pd1, . . . , pdP−1)

σ

)2

,where K denotes the number of CDS ontrats with di�erent maturities. Moreover, weassume that the market CDS rates are subjet to a Gaussian error. The distane funtion
d(·) in (2.51) is de�ned by

d(q′; q) =

√
(pd′ − pd) ln

pd′

pd
+ (pd− pd′) ln

1 − pd′

1 − pd
. (2.52)Note that this funtion is non-negative

d(pd′, pd) = 0 if and only if pd′ = pd.Setting the parameters v = 10 and σ = 0.001 in (2.51) provides a better �t11 to themarket rates.The interpretation of the objetive funtion de�ned in (2.51) is that, if the suessive
pds di�er signi�antly, then the �rst term will assign a penalty, whereas the seond termassigns a penalty for not �tting the market CDS rates. With this setting, v ontrolsthe balane between two penalties. The main advantage of this method is unlike thebootstrapping method, we do not have the possibility to have negative hazard rates.One we minimise the funtion in (2.51), we will get the forward probabilities. Then, wean approximate the market-implied intensities via division by the disretisation length,i.e., if ∆ → 0, then pd(tm)/∆ → λ(tm). The number of parameters to be estimateddepends on the disretisation frequeny. If we have a semi-annual disretisation, i.e.,
∆ ≈ 0.5 for a CDS with 10 year maturity, then we minimise the objetive funtionsubjet to 20 unknown parameters. Dereasing the length of the disretisation interval11Inreasing v results in higher deviations from market rates, see Martin et al. [MTB01℄



2.4 Data Desription and Empirial Analysis 79will lead to preise estimations but this will typially inrease the omputational osts,e.g., for monthly disretisation we have to perform the optimisation algorithm for 120parameters for a CDS with 10 years maturity time.2.4 Data Desription and Empirial AnalysisOur data onsists of daily bid, ask quotes for sovereign CDS ontrats12, whih are avail-able in the maturities of 1, 2, 3, 5, 7, and 10 years. The referene asset is the Eurobondof Turkish sovereign, whih is maturing in 2030 and denominated in the USD. For theanalyses, we use the mid-market quotes, i.e., mid market := (bid + ask)/2. The timeseries of CDS spreads over the time period from 20 April 2004 to 29 January 2008, whihounts for 985 trading days.The desriptive statistis of the CDS mid-market quotes are given in Table 2.2. Duringthe sampling interval, the average mid-market quote for the CDS with 1 year maturityis 75.2 bp, ranging from 21.8 up to 425 bp. Comparing this with the average marketspread for 1 year maturity CDS in Pan and Singleton [PS07a℄; alulated as 378.4 bp, wean onlude that the traders were adding larger risk premiums before April 2004, wheretheir sample overs the rates from Marh 2001 until August 2006. The di�erene betweenthese two averages is quite high, (approximately 3%) and it indiates that the eonomialmeasures get better for Turkey as it had a very high in�ation and a volatile interest ratestruture in the near past.maturity 1 2 3 5 7 10min 21.8 44.9 70 116.5 146.8 176.8max 425 543.7 612.5 687.5 710 722.3stdev 60.5 80.8 94.9 99.8 97.1 92.1median 56.7 90.1 129.5 197.4 240.5 276.7mean 75.2 120.1 162.9 231.6 270.9 303.5Table 2.2: Summary statistis for the mid-market quotes of the Turkish CDS rates (inbp).The CDS spreads show interesting patterns due to the loal politial (and eonomial)12The data is downloaded from Bloomberg. Tiker for the CDS ontrat is CTURK1U, where 1indiates the maturity of the CDS.



80 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyrises as well as the global ones, whih had in�uened the behaviours of the loal andforeign investors in Turkish CDS market. In Figure 2.7, we may observe that there isgenerally a high omovement among the term struture of CDS spreads. Sine exploringthe nature and the degree of the omovement (by �tting a fator model) is not ourobjetive, we do not perform a prinipal omponent analysis. However, Pan and Singleton[PS07a℄ �nd out that the �rst prinipal explains over 96% of the variation in Turkishsovereign CDSs.

Figure 2.7: The mid-market quotes for di�erent CDS maturities.Generally, the term struture for the CDS spreads has a positive slope with respet tothe inreasing maturity. On the other hand, there are some dates that spreads wereinverted due to the demand-supply e�ets in turbulene periods during the loal and/orglobal rises. A reent example would be the subprime mortgage risis in the USA, whihatually started in the last quarter of 2006 and show its enormous e�ets in 2007 and2008. The subprime risis aused the Dow Jones indexes drop to reord levels espeiallyin July and August 2007. Turkish markets were also a�eted by the subprime rises.



2.4 Data Desription and Empirial Analysis 81Eventually, there were large delines in Istanbul Stok Exhange and in the TurkishDerivatives Exhange Market. Some of the global investment banks and Turkish bankshad their biggest losses in their history. These losses had also reated high volatility inthe Turkish CDS rates as it an be observed on Figure 2.7. Some other important eventswhih had in�uened the Turkish markets were the parliamentary eletions of Turkey onJuly 2007 and the presidential eletions afterwards. The on�its between the Turkishgovernment and the USA about the terrorist group PKK loated in northern Iraq hadalso played big role in the volatile struture of the Turkish �nanial markets, e.g., on 8November 2007 when the ross border operation of the Turkish army was on disussion,we observe that the CDS pries dropped by up to 80 bp. Furthermore, the CDS rateswere a�eted by the politial issues mainly onneted during the negotiations betweenthe EU ommision and the Turkish government about the on�its between Cyprus andTurkish Republi of Northern Cyprus.In Figure 2.8 we observe the mid market quote for the referene asset in the sovereignCDS, namely the Turkish Eurobond with 2030 maturity with respet to the mid marketquote for the CDS with one year maturity. Note that the y-axis on the left hand side is forthe CDS mid-market quote. As we an observe, they are negatively orrelated, where wealulated a orrelation oe�ient of -86,9% based on 1013 dates in the sampling period.We illustrate the behaviour of the ask-bid spreads during the sample period in Figure2.9, where we simply take the di�erene between the two quotes, i.e., ĈDS

ask − ĈDS

bid.In general, bid and ask quotes show the demand-supply e�ets in the market. As we anobserve in Figure 2.9, the biggest spread widening is observed in the seond quarter of 2004on the CDSs with 1 year maturity, whih had reahed levels up to more than 70 bp. Thistypially indiates that the supply for the CTURK1U is larger then the market demandon that period, indiating a potential derease in the orresponding CDS pries. In oursampling period, e.g., on 09th August 2007, the bid quotes for the short term maturitiesof CDSs (1 year, 2 years and 3 years) are signi�antly larger than the ask quotes, showingthe high market demand for the short term insurane of sovereign risk. This also indiatesthat default probability of Turkish sovereign is likely to inrease, implying the potentialrise of the CDS premiums. There are negative ask-bid spreads on the days following9th August 2007, for the CDS ontrats with 10 year maturity orresponding to the
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Figure 2.8: The mid-market quotes for the underlying Eurobond vs. CDS with 1 yearmaturity.
date when the New York Stok Exhange, and eventually, the Istanbul Stok Exhangeexperiened delines due to the subprime mortgage risis. The interpretation is that themarket expetations for longer terms were not very optimisti on those dates. Table 2.3gives the desriptive statistis of the bid-ask spreads of the Turkish CDS.maturity 1 2 3 5 7 10min -46.3 -35.3 -22.7 -1 1.7 -5.7max 73.3 50 55 45 55 50std 15.9 11 10.9 8.9 11.7 9.8med 8.5 6 7.3 6.2 6.7 6.7mean 14.9 11.2 12.2 10.2 12.4 10.9Table 2.3: Summary statistis for the ask-bid spread of the CDS quotes (in bp).
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Figure 2.9: The ask-bid spreads of the CDS (:= ask − bid in bp).2.4.1 Results with the Bootstrapping MethodWe explained in details the bootstrapping method in Subsetion 2.3.2. Therefore, skippingthe tehnial part, we present the results in this setion. Remember that, we �rst �x theexpeted reovery rate under the risk neutral measure, i.e., R = 0.25, afterwards extratthe intensities for eah trading day in the sampling interval. Further, we assume a �atzero urve for the disount fators, i.e., r = 0.05. Assuming a stohasti short rate modelwould be more realisti but this does not a�et the results signi�antly13. Note that thestepwise onstant risk-neutral intensities14 λ1, λ2, . . . , λ6 are de�ned in (2.49).We present the orresponding risk-neutral intensities in Figure 2.10. The bootstrappingmethod brings many easiness in numeris while onstruting the term struture of defaultprobabilities, but there might be instabilities desribed by Martin et al. [MTB01℄ as well.We an see in Figure 2.10 that for some dates, e.g., 20th June 2006 and in the time period13See Pan and Singleton [PS07a℄, Ueno and Baba [UB06℄, O'Kane and Turnbull [OT03℄.14We drop the risk neutral measure supersript Q for easiness of notation.



84 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyAll n: 985 (in bp)
λ 1 2 3 4 5 6min 28.6 69.5 159.8 250.2 116.3 299.9max 550.8 881.4 1003.2 1089.3 1090.3 1099std 78.5 136.4 165.6 150.8 129.8 112.6med 74.4 166.1 278 427 503.6 532.3mean 98.5 219.6 337.8 467.8 529 556.2Table 2.4: The summary statistis for the risk-neutral default intensities, for all CDS insamplebetween 20th February and 20th June 2005, the hange in λQ

5 is quite big. On those dates,inverted term struture of CDS rates might imply unstable intensities. One an typiallyhave negative intensities as well, whih make no sense at all. During our sampling period,we did not have any negative intensities.

Figure 2.10: The default intensities bootstrapped from daily CDS mid-market quotes (inbp).Fith ratings had upgraded the rating of the long-term Turkish sovereign debt in foreignurreny to B+ on 09 February 2004. Later on, it was upgraded on 13 January 2005



2.4 Data Desription and Empirial Analysis 85to BB− (See Parker [Par06℄). Sine the last upgrade it remained in the same ratingategory in our sampling period. Hene, we run a rating-based analysis only based onthese two rating lasses, where the major rating lasses BB and B mean speulative andhighly speulative redit quality, respetively. The + and − signs are su�xes to show therelative status within the major rating ategory, e.g., + indiates a better redit quality.We present the results based on rating ategories of Fith B+ and BB− in Table 2.5 andin Table 2.6, respetively.Rating B+ n: 153 (in bp)
λ 1 2 3 4 5 6min 103.4 232.4 319.7 447.7 463.1 429max 550.8 881.4 1003.2 1089.3 1090.3 1014.8std 124.6 150.6 194.5 177.2 161.6 145.2med 165.1 421.9 540.9 644.2 708.1 645.5mean 226.5 468.8 624.8 711.5 727.4 690.6Table 2.5: The summary statistis for the risk-neutral default intensities, for the Fithrating ategory B+Rating BB- n: 832 (in bp)
λ 1 2 3 4 5 6min 28.6 69.5 159.8 250.2 116.3 299.9max 176.8 413.9 586.3 695.4 751.1 1099std 29.8 65.9 87.2 90.8 81.3 84.9med 64.8 149.1 259.4 405.5 489.9 519.7mean 74.9 173.8 285 422.9 492.5 531.5Table 2.6: The summary statistis for the risk-neutral default intensities, for the Fithrating ategory BB−The average intensity of default for 0 < t ≤ 1 is λQ

1 = 226.5bp, with the rating B+,whereas λQ
1 = 74.9bp, if the rating is BB−. This result is expeted sine the defaultintensity dereases with inreasing redit quality. Another expeted result is that withthe inreasing maturity time, the orresponding default intensities should inrease as well.If we look at Table 2.4, where we present the summary statistis of the intensities for thewhole sample, we an observe this. This is also the ase when the Turkish sovereignhave the BB− rating from Fith ageny. On the other hand, in Table 2.5, we see the



86 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyinonsisteny for the maturities more than 7 years. Figure 2.11 illustrates the averageintensities with respet to rating ategories of Fith.
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Using the stepwise onstant intensity proess, we alulate the umulative default prob-abilities as desribed in Subsetion 2.3.2. We an observe the default probabilities for 1,3, and 5 years on eah date for the sampling period in Figure 2.12.The di�erene between the market rates and the CDS rates that are alulated with theextrated survival probabilities (the model prie), ĈDS − CDS gives a measure for themodelling error. We observe the errors for the CDSs with the maturities 1, 5, and 10years in Figure 2.13. As the �gure illustrates, the modelling error is not very signi�ant.We further observe that the largest deviation between market and model pries is for theCDS with 1 year maturity.
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Figure 2.12: Market-implied umulative default probabilities for 1, 3, and 5 years withbootstrapping method.2.4.2 Results with the Optimisation MethodIn this subsetion we present the results of the optimisation method desribed in Setion2.3.3. We use the same expeted reovery, i.e., R = 0.25 and the LIBOR, i.e., r = 0.05as in the bootstrapping method, for a omparison of the market implied probabilities.The number of extrated intensities of optimisation method by Martin et al. [MTB01℄depends on the disretisation interval. In our ase, we have the semi-annual premiumpayments (no arued premiums), and we further assume that the redit event an ouronly on those dates. With this setting, we have 20 forward default probabilities, whihminimises the objetive funtion in (2.51) for eah trading day in the sample. Moreover,we alulated the orresponding intensities, i.e., λ0, λ1, . . . , λ19 and the orrespondingumulative default probabilities. For the presentation we hose λ1, λ3, . . . , λ19, note that
pd(t1, t2) = 1 − exp

(
−
∫ t2

t1

λ1(t)dt

)
⇒ λ1 ≈

pd(t1, t2)

t2 − t1
.
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Figure 2.13: The modelling errors for CDS ontrats with 1, 5, and 10 years of maturitywith bootstrapping method.With the semi annual disretisation and the maturity of 10 years, we have the disretetime points as t0 = 0, t1 = 0.5,. . ., tN = 10. Moreover, the umulative probability ofdefault, e.g., t1 = 0.5 is alulated with
PD(0) = 0 ⇒ PD(t1) = PD(0) + PS(0)pd(0, t1), (2.53)where we ontinue the reursion until we have the omplete term struture of the umu-lative PD's.For a preise estimation, using the CDS mid-market quotes we have, we generated theCDS rates for 1, 2, . . ., 10 year maturities with the linear interpolation method.In Figure 2.14, we observe the paths of the intensities for our sampling period we hadwith the optimisation method. The intensities show similar behaviour ompared to thoseboostrapped in the previous subsetion. The main observation is that the optimisationmethod delivers higher intensities than the bootstrapping method omparing Figure (2.14)



2.4 Data Desription and Empirial Analysis 89with Figure (2.10). In Table, 2.8 we have the intensities when the Fith had rated Turkishsovereign with B+, where Table 2.9 presents the ase when it was upgraded to BB−.When 0.5 < t ≤ 1 we have λ1 = 113.7 bp for the whole dataset. For Fith rating ategory
B+, the average λ1 is 261.7 bp, and 86.5 bp for BB−.

Figure 2.14: Market-implied default intensities, alulated with the optimisation method.We observe the averages of the intensities in Figure 2.15 with the optimisation methodwith respet to the rating ategories of S&P. As expeted, for the rating ategory BB−,we have lower default intensities than the B+. The intensities tend to have an upwardslope with respet to inreasing maturity.We onstrut the term struture of the risk neutral umulative default probabilities viathe reursive formula in (2.53). We illustrate the probabilities on eah date in Figure 2.16.Figure 2.17 illustrates the modelling error when we valuate the CDSs eah day in thesampling period using the term struture of PDs extrated with optimisation method.Sine the error is the di�erene between market and model prie, CDS with 1 year maturityis overpried with the optimisation method, whereas for 5 and 10 year maturities are
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All n: 985 (in bp)
λ 1 3 5 7 9 11 13 15 17 19min 35.6 76.3 185.6 245.5 297.5 83.7 117.5 280.5 304.3 307.5max 650.9 953 1062.5 1079 1212.6 1084.4 1185.1 1152.8 1200.7 1400.9std 90 143.9 170 148 164 133.6 135.8 119.7 116.9 121.2med 84.9 195.5 310.5 403.6 504.8 489.4 561.1 501.6 561 610.4mean 113.7 247.0 363.9 441.3 544.7 512.9 584.5 528.7 579.9 626.8Table 2.7: The summary statistis for the risk-neutral default intensities, for all CDS insample alulated with the optimisation method.
Rating B+ n: 153 (in bp)
λ 1 3 5 7 9 11 13 15 17 19min 116.3 243.6 330.3 412.7 508.8 451.5 498.2 420.4 437.5 449.9max 650.9 953 1062.5 1079 1212.6 1084.4 1185.1 1016.3 1043.3 1077.4std 141.6 161.4 204.7 179.2 195.3 167 172.3 151.1 149.2 149.8med 193.7 450.4 560.5 612.7 722.5 691.4 768.3 634.5 661.6 694.2mean 261.7 504.1 653 679.9 803.2 719.2 784.8 681.4 711 740.7Table 2.8: The summary statistis for the risk-neutral default intensities alulated withthe optimisation method, for the Fith rating ategory B+.
Rating BB- n: 832 (in bp)
λ 1 3 5 7 9 11 13 15 17 19min 35.6 76.3 185.6 245.5 297.5 83.7 117.5 280.5 304.3 307.5max 204.7 497.4 626.9 673.9 790.3 731.9 818.4 1152.8 1200.7 1400.9std 34 73 91.4 87.6 101.5 82.3 87.6 87.7 91.4 102.3med 74.3 183.5 293.4 388 484.3 475.2 547.3 489.3 549.3 597.5mean 86.5 199.7 310.8 397.4 497.2 475 547.6 500.6 555.8 605.9Table 2.9: The summary statistis for the risk-neutral default intensities alulated withthe optimisation method, for the Fith rating ategory BB−.
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B+Figure 2.15: Risk neutral intensities with the optimisation method, based on S&P's rat-ings.underpried. We observe that the largest deviation of error is observed in the CDS with5 years maturity.2.4.3 Comparison of the ResultsAs the reliability of the alulated CDS pries heavily depends on the realism of theassumptions in the valuation model, we �nd it useful to omment on the marking-to-model issue. Marking-to-model is the valuation of a position or a portfolio of seurities atpries depending on a �nanial model. In CDS market, where the illiquidity risk does notsigni�antly exist, �marking-to-market� is more reliable. However, suppose we are priinga new issued seurity, implying the �illiquidity problem�. In this ase marking-to-marketmight be misleading due to the sarity in market pries. Therefore, marking-to-model isan important issue for exoti instruments, espeially in new strutured redit produts. Ifthe �nanial model is realisti, implying insigni�ant modelling errors, then it is su�ient
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Figure 2.16: Market-implied umulative default probabilities in 1, 3, and 5 years, alu-lated with the optimisation method.for us to show the approximation and estimation errors are the main soure of the totalerror between the model and the atual pries when we take the total error as a sum ofmodelling, approximation and estimation errors.If we ompare Figures 2.13 and 2.17, we see that both priing models have insigni�antdeviations from the market prie, where optimisation method delivers in general higherdefault intensities and probabilities, onsequently.For a omparison, we take the paper by Roha and Garia [RG04℄, where the authors usea strutural redit risk model for extrating the market implied sovereign redit risk. Theauthors take the real YTL / USD exhange rate, whih follows a pure di�usion proess, asa proxy for modelling the soure of unertainty. In Table 2.10, we present the umulativerisk neutral default probabilities of Roha and Garia (RG model) and those impliedby CDS rates on 15th July 2004 using the bootstrapping method and the optimisationmethod. The umulative probabilities with optimisation and bootstrapping are similarfor the short maturities, whereas the di�erene rises up to 2% with inreasing maturity.
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Figure 2.17: Error between the market and model pries alulated with the optimisationmethod.
Comparing the RG model for maturities of 1 and 2 years, the bootstrapping methoddelivers loser results but, for the maturities between 3 and 6 years, the optimisationmethod have loser probabilities. However, boostrapping and RG model have similarprobabilities after maturities of 7 years.
Maturity 1 2 3 4 5 6 7 8 9 10RG model 0.75 6.68 14.57 21.99 28.45 34.01 38.80 42.96 46.60 49.81Bootstrapping 1.90 6.86 13.24 20.27 26.73 32.52 37.86 42.76 47.29 51.45Optimisation 1.98 7.17 13.91 20.64 28.23 34.04 39.89 44.73 49.42 53.98Table 2.10: Comparison of the market implied umulative PDs on 15 July 2004.



94 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkey2.5 Relationship between the Risk-neutral and the A-tual Default ProbabilitiesIn this setion, we �rst present the literature survey about modelling the relationship be-tween the atual and risk neutral default intensities for the orporate debt, then introdueour results. As the risk premium maps the atual intensities to risk neutral intensities,one has to �rst estimate the atual default intensities using the historial default expe-riene. Berndt et al. [BDD+05℄ use Moody's Estimated Default Frequeny as a proxyfor the atual default intensities. Hull et al. [HPW05℄ alulates the intensities from a-tual umulative default probabilities, where Driessen [Dri05℄ uses a similar methodology.Sine we have the rating history of the Turkish sovereign foreign urreny debt, we al-ulated the atual intensities using the umulative default rates published by S&P usingthe methodology by Hull et al. [HPW05℄. Sine redit event in a sovereign ours rarely,estimation of these rates is rather a di�ult task.2.5.1 Risk Neutral and Atual IntensitiesAs mentioned before, redit risk models are mainly used for two reasons, �rstly they areused in the predition of the PDs and they are tools for priing and hedging of reditsensitive instruments. Serving both purposes, one selets di�erent probability measures.For the predition of the PDs, we need the atual probabilities, whereas the risk-neutralprobabilities are used for priing and hedging reasons. Therefore, a good redit risk modelmust ful�l both needs. In this ontext, the importane of default risk premium omes intoplay, whih we try to explain in this setion.The risk-neutral probabilities are available under weak no-arbitrage onditions. Inom-plete markets imply many alternative hoies of risk neutral probabilities onsistent withpriing of the traded assets. However, independent from the market being omplete ornot, knowledge of only the risk-neutral probabilities is not enough to �t the redit riskmodels to the historial default experiene.A typial example, whih an be found in eah redit risk book15 is as follows: Suppose15See Bluhm et al. [BOW03℄, or Du�e and Singleton [DS03℄.



2.5 Relationship between the Risk-neutral and the Atual DefaultProbabilities 95we have a 1 year, risky par bond with a promised fae value of 100 YTL and a ouponpayment of 10%. Hene, the bondholder reeives 110 YTL after one year if there is nodefault, or the reovery of the fae value, whih is R = 50% . The historial experienetells us PDP = 0.02 in the orresponding rating ategory of the risky bond. With a shortrate of 4%, the expeted simple disounted bond value under P is given by
1

1.04
(0.98 × 110 + 0.02 × 50) = 104.62,whih overpries the atual market prie (Face value = 100) of par bond by 4.62 sinethe risk-premium is not onsidered. However, under the risk neutral priing framework,we have

100 =
1

1.04
[(1 − PDQ) × 110 + PDQ × 50].Hene, PDQ = 0.10. Assuming the deterministi intensity is onstant, we have

λQ = − ln(1 − PDQ) = 0.10 λP = − ln(1 − PDP ) = 0.02.We see that λQ > λP , re�eting the risk premium. Note that there is not any hangein the intensity rate or unertainty of reovery here, so that the market implied PDQis unique. As we an see in the example above, it is doumented that the RN defaultintensities are generally greater than the atual ones (See Hull et al. [HPW05℄, Driessen[Dri05℄, Berndt et al. [BDD+05℄, O'Kane and Turnbull [OT03℄), as the traders do notprie the risky seurities only based on the APDs. For the ompensation of the risks thatthey are bearing, they build in an extra return. Hene, the di�erene between the riskneutral and atual intensities shows up.As Du�e states, �a ommon but naive measure of probability of default for a �rm orsovereign that is rated by an ageny suh as Moody's or S&P, is the average frequenywith whih obligors of the same rating have defaulted�.In redued form approah, remember from the JLT model that the atual intensities aremapped with some salar µ (risk premium) to risk neutral intensities, i.e.,
λQ = µλP , with µ ≥ 1. (2.54)One an hoose µ in order to have a good math both to the historial data and themarket redit spreads, whih still remains as an empirial issue to be explored that we



96 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeypresent in this setion. With saling as in (2.54), Driessen [Dri05℄ �nds out an averageratio of λQ/λP = 1.89, baking out RNPD from U.S. orporate bond pries. Anotherstudy by Berndt et al. [BDD+05℄ gives similar results to Driessen [Dri05℄ using marketCDS rates for bootstrapping the PDQ. Gieseke and Goldberg [GG07℄ present somereferenes of empirial work about risk premium, where the authors propose a struturalmodel for analysing determinants of the risk premium. We illustrate some of the modellingapproahes for the default risk premium in the next subsetions.As mentioned before, RNPD are good for priing and hedging issues. But, suppose we arepriing a new seurity and the market pries are sare, then we need to use the historialinformation about the obligor (implying APD) and transfer the APD to RNPD. On theother hand, we use the APDs in risk managemet, trading and redit alloation issues.One may need to use the redit spreads in the market in order to estimate the APDs.The problem is that market-implied RNPDs may be very pessimisti and this an auseunneessary burdens on business (exessive regularity apital). Hene, a tool that mapsthe RNPD to APD (and vie versa) is important and needed by the pratitioners.The literature survey we are going to present in the next subsetions are based on orpo-rate default risk. Note that the rating methodology and the orresponding term strutureof atual PDs di�er when we are dealing with the sovereign redit risk. For an illustration,we borrow Figure 2.18 from Hamilton et al. [HVOC06℄.2.5.2 Method from Berndt et al.Here, we give an overview to the paper of Berndt et al. [BDD+05℄, where the authorsundertook a panel regression analysis of the orporate CDS market rates and Moody'sestimated default frequeny (EDF) data16. This analysis is for obtaining a simple androbust measure of the sensitivity of CDS rates to atual PDs. The authors regress the CDSobservations for 5 year maturities and the 5 year EDF with an Ordinary Least Squares(OLS) and have an R2 = 73%. However, linearity of the CDS-EDF relationship is plaedin doubt by the authors. Moreover, they tried a log-log spei�ation on the same datasetin order to mitigate the non-linearity and heterosedastiity e�ets, where the resulting16EDF is a measure of default probability used by Moody's KMV based on a database of historialdefault frequenies.



2.5 Relationship between the Risk-neutral and the Atual DefaultProbabilities 97

Figure 2.18: Soure: Moody's, Average umulative default rates: Sovereign vs. Corpo-rates, 1983-2005
R2 is equal to 69%. Adding some dummy variables (month and setor spei�) to thelog-log regression equation inreased the R2 to 74.4%.In the last setions of their paper, the authors fous on modelling the relationship betweenthe atual and risk neutral default intensities, where we explain the details below.Time-series model for Default IntensityThe authors laim that the logarithm of the default intensity under the atual probabilitymeasure X(t) = log(λP (t)) satis�es the Ornstein-Uhlenbek equation

dX(t) = κ(θ −X(t))dt+ σdW (t), (2.55)where W is a standard Brownian motion and κ, θ, σ are some onstant values. The un-known parameter set Θ = (θ, κ, σ) is estimated from available monthly EDF observations.The authors used a maximum likelihood tehnique for estimating the parameter vetor
Θ.Further, the authors introdue a �at ross-�rm orrelation struture, within the setor1717The available observations are separated into three setors, namely Oil and Gas, Healthare, Broad-



98 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyby generalising (2.55). Hene, assuming that Xi(t) = log λP
i (t) for �rm i, the logarithmof the intensity satis�es

dXi(t) = κ(θi −Xi(t))dt+ σ(
√
ρdWc(t) +

√
1 − ρdWi(t)), (2.56)where Wc and Wi are independent standard Brownian motions, independent of {Wj}j 6=iand ρ is the within setor pairwise onstant orrelation oe�ient.Risk-Neutral Intensity from CDS and EDFHere, we explain the joint model of atual and risk-neutral default intensities. The modelontains the risk-neutral default intensity of a given �rm as a funtion of its own defaultintensity, a measure of aggregate default risk in the setor and a latent variable apturingthe variation in default risk premium, whih is not aptured by the �rst two variables.The model is spei�ed as follows: Let us denote the risk-neutral default intensity and theatual intensity proess of any given �rm i by λQ

i and λP
i , respetively . Suppose

log λQ
i (t) = β0 + β1 log(λP

i (t)) + β2 log v(t) + ui(t), (2.57)where β0, β1, and β2 are onstants, Xi = log λP
i is spei�ed by (2.56) and v is the geometriaverage of the default intensities {λP

i }i∈J , over a benhmark subset J of large liquid �rmsin the same setor, i.e.,
log v(t) =

1

|J |
∑

i∈J

X i(t).Moreover, suppose that
dui(t) = κu(θu − ui(t))dt+ σu√ρudξc(t) + σu

√
1 − ρudξi(t), (2.58)where θu, κu, and σu are onstants, ρu is a onstant orrelation parameter and ξc, ξi areindependent (under P) standard Brownian motions, independent from Wc and Wj in(2.56).After �tting the model and estimating the parameters, for the healthare setor, Berndtet al. have

log λQ(t) = 0.576 + 0.522 logλP (t) + 0.628 log v(t) + u(t),asting and Entertainment



2.5 Relationship between the Risk-neutral and the Atual DefaultProbabilities 99where for u(t) = 0, a geometri average of all default intensities in the setor of 100 bpand an atual intensity of 100bp, we get a risk-neutral intensity of roughly 355bp.The averages of the ratios of (λQ/λP ) are 3.30, 2.17, and 2.04 for the oil-and-gas, healthare, and broadasting-and-entertainment setor, respetively. For the whole dataset,they estimate an average ratio of 2.757, where intensities are given in basis points peryear.2.5.3 Method from Hull et al.Here, the authors estimate the atual default intensity, λP from statistis on averageumulative default probabilities of orporate bonds published by Moody's between 1970-2003. As reported by Hull et al. [HPW05℄, the umulative default rate is PD(T ) for Tyears and λP denotes the average historial default intensity over T years. The survivalprobability of the orporate bond for T years, given there is no previous default, is givenby
exp(−λPT ) = 1 − PDP (T ). (2.59)It follows that the atual intensity is
λP = − 1

T
log(1 − PDP (T ))The authors approximate the risk-neutral default intensity for a defaultable orporatebond per year with

λQ ≈ y − r

1 − R
, (2.60)where y is the bond's yield, r is the yield on a similar risk-free bond. Taking the ommonmarket reovery rate assumption that R = 0, 40, the authors give a table of estimatedatual and risk-neutral intensities dependent on the rating of the bonds. Table 2.11 showsthat the ratio of the risk neutral to atual default intensity dereases as the redit qualitydelines. However, the di�erene between them inreases as the redit quality delines.This is referred as the "redit spread puzzle".
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λP λQ − λPAaa 67 4 16.8 63Aa 78 6 13 72A 128 13 9.8 115Baa 238 47 5.1 191Ba 507 240 2.1 267B 902 749 1.2 153Caa and lower 2130 1690 1.3 440Table 2.11: The risk premiums (in bp), depending on Moody's ratings (Soure: Hull etal. [HPW05℄)2.5.4 Method from DriessenDriessen [Dri05℄ estimates the soures of risk that ause orporate bonds to earn an exessreturn over default-free bonds. Moreover, the author estimates a risk premium assoiatedwith a default event. Denoting the risk premium with µ on default jump, we have
λQ

i (t) = µλP
i (t)for the ith name. If the default risk is pried, µ should be greater than 1.Denoting the atual probability that a �rm defaults in T years from t0 = 0 given therewas no default before with PDP (T ;µ), we have

PDP (T ;µ) = 1 −EP

[
exp

(
−
∫ T

0

λP (s)ds

)]
= 1 −EP

[
exp

(
−
∫ T

0

λQ(s)

µ
ds

)]
.Given the a�ne proess for λQ(t), this probability is an expliit funtion of the riskpremium µ. Driessen alulates the atual PDs depending on the rating of the �rm,hene the atual PDs are the same for the �rms having the same rating, i.e., PDP

Rating.Yearly risk-neutral onditional default probabilities an be alulated with
PDQ

Rating(T ;µ) ≡ 1 − 1 − PDP
Rating(T + 1;µ)

1 − PDP
Rating(T ;µ)By onfronting the above equation with atual default rates, µ an be estimated.2.5.5 Our ResultsAfter the literature survey about estimating the risk premium in orporate debt, wepresent our �ndings in this subsetion. Note that, we use the sovereign default rates from



2.5 Relationship between the Risk-neutral and the Atual DefaultProbabilities 101historial data published by S&P for alulating the atual default intensities. The S&Pforeign urreny long term debt note for Turkish sovereign was B+ on 8th Marh 2004and was upgraded to BB− on 17th August 2004. Sine this date, the rating has been inthe same ategory (See Soussa and Faulks [SF07℄). In our sampling period, we will have64 orresponding dates when the sovereign debt was rated with B+ and 921 dates withthe rating BB−. The details of sovereign rating methodologies are explained by Beersand Cavanaugh [BC06℄, and by Klaar and Rawkins [KR07℄.

Figure 2.19: Average of the risk neutral umulative default probabilities vs atual defaultprobabilities for S&P rating, BFigures 2.19 and 2.20 show the term struture of the umulative risk neutral PDs withthe optimisation and bootstrapping methodologies versus the atual umulative PDs pub-lished by S&P based on the historial experiene. Note that for both Figures, we use therating ategories B and BB (without modi�ers +, −) for the illustration. The �guresshow that the risk neutral PDs are greater than the atual PDs, as one ould expet dueto market prie of default risk that the traders add on. However, when we use the S&Pestimations for the rating lasses with modi�ers, whih are sublasses of the main ratingategories, we have a di�erent piture. As Figures 2.21 and 2.22 illustrate.We may see in Figure 2.21 the average of the market implied PDs stripped out from
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Figure 2.20: Average of the risk neutral umulative default probabilities vs atual defaultprobabilities for S&P rating, BB

Figure 2.21: Average of the risk neutral umulative default probabilities vs atual defaultprobabilities for S&P rating, B+
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Figure 2.22: Average of the risk neutral umulative default probabilities vs atual defaultprobabilities for S&P rating, BB−the CDS rates with bootstrapping and optimisation methods, versus the default rates forrating ategory B+ of S&P's. The key observation is that we have higher risk neutralPDs with both methods than the atual probabilities as expeted. In Figure 2.22 we takethe average of the PDs for the dates when the rating is BB− for the market implied PDswith respet to rates published by S&P for ategory BB−. In ontrast, as Figure 2.22show, the atual PDs are higher than what the CDS rates imply, whih is interestinglyan unexpeted result.Further, we illustrate the behaviour of the atual intensity rates that we alulated fromthe umulative average default rate table for the sovereign foreign urreny (See Table17 of Chambers [Cha07℄) in Figures 2.23 and 2.24 for ategories B+ and BB− of S&P`srespetively. We onstrut the atual intensities via formulation as desribed by Bluhmet al. [BOW03℄ as follows:
λP

m = − 1

tm+1 − tm
ln

(
1 − PDP

m+1

1 − PDP
m

)
, where m = 0, 1, 2, . . . , 9. (2.61)and PDP orresponds to the umulative default rate alulated by S&P based on historialdata overing a period of 1975-2006.
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Figure 2.23: Average of the risk neutral default intensities alulated with two methodsvs. atual default intensity for S&P rating, B+2.6 SummaryIn this hapter, we presented the well known intensity based redit risk models in theliterature. After building the neessary mathematial bakground, we introdued thestate of the art of priing the sovereign CDS ontrats. Sine we mainly fous on themarket implied sovereign risk of Turkey, we presented two methodologies for extratingthe risk neutral default intensities out. Further, we presented the risk premium modellingapproahes from orporate redit risk literature and provide an analyses of the risk neutraland atual intensities alulated from the studies by S&P.Our sample is omposed of the Turkish sovereign CDSs inluding the maturities of 1, 2, 3,5, 7, and 10 years, where the referene asset is the USD denominated Eurobond maturingin 2030. We aptured interesting patterns of the risk neutral default intensities during oursampling period due to the reent global and loal �nanial and politial rises. Fixingthe expeted reovery rate a priori, i.e., R = 0.25 and taking a �at zero urve whenonstruting the disount fators, our priing models provided good �ts to the market
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Figure 2.24: Average of the risk neutral default intensities alulated with two methodsvs. atual default intensity for S&P rating, BB−CDS rates. Our main �nding is that the optimisation method of Martin et al. [MTB01℄delivers higher default intensities and onsequently higher default probabilities.Furthermore, using the default probabilities based on historial experiene reported bythe rating ageny S&P (based on the dataset between the years 1975-2006), we alulatedthe atual default intensities. We onluded that, the relationship of the risk neutral andatual PDs are as expeted in rating ategories B and BB without the modi�ers. On theother hand, when we take the rating ategories with modi�ers, the results for the ratingategory B+ are as expeted, as it is well doumented in the literature that the atualdefault probabilities are less than the risk neutral ones. However, this was not the asefor the rating ategory BB−. Interestingly, the term struture of umulative PDs of S&Pis larger than the risk-neutral PDs we alulated. Moreover, the analyses of the atualand risk neutral intensities based on the rating ategories show that, due to the sarityin the data onerning the default experiene of the sovereigns, to present a onlusion israther a di�ult task. One might alternatively alulate the atual default rates or tryto model the atual intensity proess in a time-series framework, but we leave this for a
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Chapter 3Optimal Leverage in CPDOs
3.1 IntrodutionThe volume of the redit derivative ontrats traded at the orresponding market has in-reased onsiderably over the last few years. Sophistiated produts have been introduedinto the market. The Constant Proportion Debt Obligation (CPDO, hereafter) is one ofsuh produts and o�ers a sizeable spread over LIBOR and returns the initial investmentminus the losses at the maturity. This spread is generated by taking a dynami leveragedposition on a portfolio of redit indies (e.g. ITRAXX and CDX.NA.IG). Hene, bothoupons and the prinipal is at risk. CPDOs have generated a lot of interest among theinvestor ommunity as they pay a relatively high spread for their redit rating.The leverage funtion so far used in CPDO produts impliitly assumes that redit spreadsare onstant and defaults in the underlying redit index are known in advane. To thebest of our knowledge, no attempt has been made to obtain an �optimal� leverage fordynami investment in the underlying index/portfolio, given some objetive funtion forthe investor.In this hapter, we introdue an �optimal� leverage funtion for the CPDO based onsome simple dynamis for the redit investment proess. The optimal leverage funtion isderived using the stohasti ontrol tehnique. In partiular, we assume that the objetiveof the investor is to minimise the losses due to the leveraged risky position, or equivalentlyto maximise the expeted redemption at maturity given a stream of mandatory ouponpayments. 107



108 Chapter 3. Optimal Leverage in CPDOsThe ontrol variable of the problem is the leverage funtion, i.e., the notional exposureat any time to the portfolio of the redit indies. The return from investment in theseindies, whih inludes mark-to-market spreads as well as losses stemming from defaultsin the underlying redit portfolio of the index, is modelled via an arithmeti Brownianmotion.The ontrol problem involves solving a highly non linear PDE. It turns out that the dualproblem is muh easier to solve and give rise to Blak and Sholes type formulas.Di�erently from the Constant Proportion Portfolio Insurane (CPPI) instruments, theleverage of a CPDO dereases in favourable market onditions (spread tightening, nodefaults in index portfolio) and vie-versa. However, ontrary to the industry pratise,the optimal leverage funtion we derive is a non linear funtion of the Net Asset Value(NAV) of the note and for low levels of NAV the leverage behaves similarly to a CPPI.The rest of the hapter is organised as follows: Setion 3.2 explains the onept and theterminology of a CPDO. We supply the mathematial bakground in Setion 3.3. Wedevelop the model, introdue and solve our ontrol problem in Setion 3.4 and presentthe numerial results in Setion 3.5. Finally, we summarise and omment on the results.3.2 Terminology and Produt DesriptionBefore we present the terminology and the details about CPDOs, we �nd it useful todesribe the underlying portfolio of CDS Index (CDX, hereafter) ontrats that the CPDOstrategy invests in. A CDX ontrat provides protetion against a standardised basket ofreferene entities. Therefore, it is di�erent from the CDS, whih provides protetionagainst losses on default of a single referene asset. As we know from Chapter 2, thepremium payment is ut o� in a CDS upon the redit event of the referene, whereas inthe CDX ontrat, the premium payment ontinue to be made, but based on a reduednotional in ase there are defaulted names in the basket.The most atively traded seurities are the CDX.NA.IG and the ITRAXX Europe Index.The CDX.NA.IG inludes 125 North Amerian Investment Grade ompanies, where thelatter overs 125 investment grade European ompanies. Both indexes are available with



3.2 Terminology and Produt Desription 1093, 5, 7, and 10 year maturities of protetion and eah ompany in both indexes are equallyweighted.On the roll dates (20th September and 20th Marh or the following business days), the newversion of CDX starts after the omposition of the referene entities, whih is determinedby the votes of partiipating dealers. A new version CDX will be alled on the run forthe next six months. The defaulted referenes are exluded from the index on eah rolldate, however the omposition stays stati if there are no defaulted entities in the CDX.The popular indexes we mentioned above are unfunded, hene they an be thought as aCDS on a basket of names generally using the physial settlement upon the redit events.The CDX ontrats are standardised and transparent produts having the advantages ofbeing e�ient and diversi�ed.A CPDO is a relatively new strutured redit produt that entered the market in 2006.A CPDO seems to be attrative for the investors due to its both high rated (normallyAAA/Aaa of S&P and Moody's) prinipal repayment and �xed oupon payments. In itsmost typial form, a CPDO is simply an investment vehile (Speial Purpose Vehile orSPV) paying a periodi oupon of Libor plus a onstant spread s as well as the initialinvestment at the maturity, unless a default event ours. In this hapter we shall de�nethe CPDO default event as the failure to pay the stated periodi oupons and/or to repaythe prinipal investment at the maturity. Although it is still an open question, whetherthey had deserved the top ratings of rating ompanies when the �rst generation of CPDOswere launhed, in general the CPDO aims to return high yield oupons to investors bytaking a leveraged exposure to a basket of redit indexes (typially 50% CDX.NA.IG and50 % ITRAXX Europe).The ash �ow obligations of the CPDO are baked from the exposure to the CDS indexes,often alled leverage and varies aording to the performane of the underlying indexes,where the leverage simply an be thought as:
leverage =

credit exposure

initial investment
. (3.1)We denote the exposure to the underlying index by α(t), whih is hosen in suh a wayto yield a relatively low default probability of the CPDO. More spei�ally, the industry



110 Chapter 3. Optimal Leverage in CPDOsstandard hoie of α(t) is given by
α(t) ≡ PV L(t) − V (t)

µ(t)DV 01(t)
, (3.2)where PV L(t) and V (t) are the present value of the CPDO liabilities, and assets, respe-tively, µ(t) is the spread paid by the redit index at time t and DV 01(t) is the presentvalue of a stream of periodi risk-less payments equal to 1 per annum.A poor performane of the indies will imply a high leverage level, while a good per-formane of the indies will derease the leveraged exposure. As the CPDO targets aredit exposure, whih is su�ient to pay the promised oupons and the prinipal, thereturns are apped at the stated oupon rate. Therefore, the leverage is ontrolled dy-namially in order to reah the target portfolio size on eah roll date and is limited witha maximum portfolio size. Additionally, the CPDO also has the advantage of not beingdiretly a�eted by the market implied orrelation risk, in ontrast to the Collateral DebtObligation (CDO) instrument.Another favourable feature of the produt is that if the redit indies' performanes arewell enough to guarantee the future promised payments, then the investor bene�ts fromthe �ash-in� feature, i.e., as soon as all the promised payments an be made with ertainty,the risky investment is redued to zero. In this ase, until the CPDO expires, the investoris only exposed to a risk-free asset but still reeives high oupons. On the other hand, aCPDO does not guarantee the repayment of the initial apital invested. The investor antherefore lose 100% of his initial apital. If the aumulated losses from the risky exposurereah a pre-determined threshold for the note value, (typially 10 % of the notional amountinvested), then the investor meets a 'ash-out' event, i.e., the loss is loked in and therisky investment is stopped. With this setting, the investors are proteted from any lossesexeeding the notional invested by banks. The risk that the bank will su�er suh a lossis alled the gap risk.The following de�nitions are used in the rest of the hapter.

• Net Asset Value (NAV): NAV is the urrent market value of the CPDO thatis the present value of all outstanding positions inluding the ash deposit and anyother unrealised gains/losses. We denote the NAV at time t with V (t).
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• Cash Deposit Aount: This aount holds the proeeds from the investor, in-terest, premiums and any Mark-to-Market (MtM) gains ahieved. Losses are alsosettled from this aount. Hene, NAV is atually what the ash deposit aountholds.
• Target Redemption Value: This is the present value of all promised liabilities(oupons and prinipal). We denote the target redemption value at time t with
PV L(t).

• Shortfall := PV L−NAV , it represents the value that still has to be gained fromthe CPDO strategy to enable it to ash-in. The aim of the CPDO strategy is tomake the shortfall equal to zero before the maturity of the ontrat.We observe the �ows of the produt in Figure 3.1.
Credit

Portfolio

MtM gains/losses

of the note
Redemption value

Cash Deposit 

premiums of Credit portfolio

at maturity

Coupon payment

and interest from cash deposit

Income generated from 

Figure 3.1: CPDO transationsHow the ratings are assigned to CPDOs is not a question that we are going to answer in thishapter. However, interested readers might see the tehnial reports about rating issues,



112 Chapter 3. Optimal Leverage in CPDOswhih an be listed as Torresetti and Pallaviini [TP08℄, Wong and Chandler [WC06℄.Another stream of artiles, e.g., Linden et al. [LNB07℄, Toutain et al. [TTM06℄, Formiaet al. [FMS+06℄, Varloot et al. [VCC06℄, [VCC07℄) analyse the mehanis and risks thatCPDO produts are exposed to, providing senario analyses. In this hapter, we arerather interested in optimality of the leverage funtion introdued in produt mehanis.Therefore, we take a di�erent approah and derive an optimal leverage funtion using thestohasti optimal ontrol tehniques. We show that the standard leverage funtion (3.2)is optimal when the index spreads are onstant, interest rates are zero and defaults aredeterministi. We analyse the behaviour of the optimal leverage in the more general aseof stohasti defaults and spreads.3.3 PreliminariesGenerally, stohasti ontrol is used as an alternative solution tehnique to the martingaleapproah, whih we have introdued in Chapter 1 for ontinuous time portfolio optimisa-tion problems. The appliation of the stohasti ontrol methods in portfolio problems ispioneered by Merton [Mer69℄, [Mer71℄. In this setion, we �rst introdue the stohastiontrol method and the dual approah via Legendre transformation to related Hamilton-Jaobi-Bellmann equation. Finally, we give an example where we apply the stohastiontrol method for the Merton portfolio problem.Di�erent from the portfolio optimisation problems in the literature, this hapter introduesa new problem, where we apply the stohasti ontrol tehnique for minimising the lossesin a strategy subjet to redit risk. In order to do so, we model the net asset value ofthe CPDO with a ontrolled stohasti equation. This setion presents mainly from Kornand Korn [KK01℄, and Johsson and Sirar [JS02℄.3.3.1 Stohasti ControlLet V α(t) be a one dimensional It� proess. A ontrolled stohasti di�erential equation(CSDE) with an initial value V (0) = v has the form
dV α(t) = µ(t, V α(t), α(t))dt+ σ(t, V α(t), α(t))dW (t), (3.3)



3.3 Preliminaries 113where we denote the one dimensional Brownian motion with W (t) and one dimensionalstohasti proess we are free to hoose with α(t). In our problem de�ned in (3.21), α(t) isthe ontrol proess, and V denotes the wealth proess (or Net Asset Value of the CPDO).Main task is to �nd an optimal ontrol proess with respet to a ertain ost funtional.Translated bak to our problem in (3.21), we try to �nd an optimal leverage funtion, i.e.,
α∗(t), that maximise the redemption reeived at maturity (or equivalently minimise thelosses) of the CPDO strategy due to long position in redit-risky portolio.In general, we want to solve the following problem

max
α(·)∈A(v,I)

E0,v[F (V α(T ))], (3.4)where I is the time set (e.g., I = [0, T ], or I = {0, 1, . . .}) and A(v, I) is the set ofadmissible ontrols. The ontrol is admissible if α ∈ A ⊂ R and all α are progressivelymeasurable with respet to the �ltration Ft = σ{W (s); s ≤ t} generated by the onedimensional Brownian motion, and additionally if V α(t) is the unique solution to CSDEin (3.3).Further, let the oe�ient funtions in (3.3)
µ : [0, T ] × R ×A→ R

σ : [0, T ] × R ×A→ Rbe ontinuous and Lipshitz-ontinuous in v uniformly on [0, T ]×R. Now, let us introduethe value funtion of the problem de�ned in (3.4) as
sup

α(·)∈A(v,I(t))

Et,v[F (V α(T ))] =: φ(t, v), (3.5)where I(t) = [t, T ] ∧ I. Note that, we assume impliitly that the ontrolled stohastiproess is Markovian. We obtain the haraterisations of the value funtion with thefollowing theorem:Theorem 3.1. (Martingale Optimality Priniple) Let α∗() be an admissible ontrol, suhthat, for a funtion F we have:
H(t, v) := Et,v[F (V α∗

(T ))] (3.6)



114 Chapter 3. Optimal Leverage in CPDOswe have
H(t, V α∗

(t)) is a martingale
H(t, V α(t)) is a supermartingalefor all admissible ontrols α(·). Then, we have1. α∗(·) is an optimal ontrol,2. H(t, v) = φ(t, v) for all t ∈ I.Proof: (see p. 230 of [KK01℄)3.3.2 Hamilton-Joobi-Bellman Equation of Stohasti ControlIn this subsetion, we apply the Theoem 3.1 for the problem de�ned as

max
α(·)∈A(v,[0,T ])

E0,v[F (V α(T )), (3.7)where we assume that
h(t, v) := Et,v[F (V α(T ))]is a C1,2 funtion. Applying It�'s formula, we have

h(t, V α(t)) = h(0, v) +

∫ t

0

hv(s, V
α(s))σ(s, V α(s), α(s))dW (s)

+

∫ t

0

[
ht(s, V

α(s)) + hv(s, V
α(s))µ(s, V α(s), α(s))

+
1

2
hvv(s, V

α(s))σ2(s, V α(s), α(s))
]
ds.Note that, h(t, V α(t)) is a martingale if the ds integrand equal to 0, given su�ientgrowth onditions for the integrand of the It� integral. From the Theorem 3.1, followingmartingale optimality priniple, we an write the HJB-Equation with the theorem below.Theorem 3.2. (Veri�ation Theorem for the HJB-Equation) Let A ⊂ R be bounded andassume that there exists a polynomially bounded C1,2 solution h(·) to the HJB-Equation

sup
α∈A

{
ht(t, v) + hv(t, v)µ(t, v, α) +

1

2
hvv(t, v)σ

2(t, v, α)

}
= 0 (3.8)

h(T, v) = F (v) (3.9)



3.3 Preliminaries 115for (t, v) ∈ [0, T ] × R, v ∈ R. Then, we have
h(t, v) ≥ φ(t, v).If there exists an admissible ontrol α∗(t) with

α∗(t) ∈ arg max
α∈A

{. . .}, (3.10)then, we have even
h(t, v) = φ(t, v), and α∗(·) is an optimal ontrol.With the help of two theorems in this subsetion, we apply the following algorithm inorder to solve a stohasti ontrol problem:1. Solve (formally) the optimisation problem in the HJB-equation (3.8) and replae αwith the optimal ontrol α∗.2. Substitute α in (3.8) by α∗ obtained in Step 1, omit the supremum operator, andsolve the resulting (non-linear) PDE with the boundary ondition de�ned in (3.9).3. Chek if the assumptions made in previous steps are indeed satis�ed (onavity of

h(t, v), existene of a maximum).Example 3.1. Merton Portfolio ProblemIn this example, we solve the Merton portfolio problem with dual approah using theLegendre transform. Note that we solve the same problem de�ned in (1.16) with themartingale approah in Chapter 1. There, the ontrol variable is denoted with π, whihdetermines the fration of wealth (X(t) denotes the wealth proess) invested in the stok.We ontinue the presentation with the notation we introdued in this setion. Hene, wewant to �nd the optimal ontrol α∗ for the following problem:
sup

α
Et,v[U(V α(T ))] = φ(t, v), (3.11)where we use a power utility funtion of the form

U(v) =
vγ

γ
, 0 < γ < 1.



116 Chapter 3. Optimal Leverage in CPDOsAfter applying It�'s formula, we get the related Bellman equation as
φt + sup

α

(
1

2
σ2α2φvv + µαφv

)
= 0. (3.12)With φvv < 0, the maximum of (3.11) attained at

α∗ = − µφv

σ2φvv
.Substituting α in (3.12) with α∗, and dropping the supremum operator, we rewrite theBellman equation as

φt −
µ2

2σ2

φ2
v

φvv
= 0. (3.13)Note that at terminal time T we have the boundary ondition

φ(T, v) = U(v) =
vγ

γ
. (3.14)In order to solve the non-linear PDE in (3.13) with terminal ondition (3.14), we apply adual approah. Denoting the dual variable to v with z > 0 and with assumed onvexityof φ, we de�ne the Legendre transform of the value funtion φ as

φ̂(t, z) = sup
v>0

{φ(t, v) − zv}. (3.15)We denote the value of v where the optimum is attained with g(t, z), therefore we have
g(t, z) = inf{v > 0|φ(t, v) ≥ zv + φ̂(t, z)}.We get the relation between g and φ̂ from (3.15), i.e.,

g = −φ̂z.Further, with the assumption that φ is stritly onave and smooth in v, we have
φv(t, g(t, z)) = z or equivalently g = φ−1

v .Di�erentiating with respet to t and z, we get:
φtv = − gt

gz

φvv =
1

gz

φvvv = −gzz

g3
z

.



3.4 Model Proposal 117Now, di�erentiating (3.12) with respet to v and substituting the partial derivatives withthe ones we have above, we transform the non-linear PDE in (3.13) to a linear PDE aswe have
gt +

µ2

2σ2
z2gzz +

µ2

σ2
zgz = 0,

g(T, z) = z
1

γ−1 (with the power utility funtion).In this ase, we may solve the linear PDE in (3.16) with separation of variables as
g(t, z) = z

1
γ−1u(t)for funtion u(t). For a given (t, v), we have the relation

g(t, z) = vand the optimal strategy α∗(t) is
α∗(t) = − µ

σ2
zgz = − µ

σ2

1

(γ − 1)
g =

µ

σ2(1 − γ)
v.The interpretation is that we hold the fration µ

σ2(1−γ)
of wealth in stoks and the rest inthe riskless bond (money market aount). Note that, we arrive at the same solution inExample 1.1 de�ned as the loal risk premium for stok investment, where for γ = 0 wehave the solution for the logarithmi utility, i.e., U(v) = log(v).In the following setion, we present the dynamis of the model and using the tehniqueswe introdued so far, we �nd the �optimal� leverage funtion used in the CPDO.3.4 Model ProposalWe denote the initial wealth at time t0 = 0 with V (0) = 1, whih represents the initialnotional of the note (NAV). Suppose CPDO pays a ontinuous oupon of

r + s,where r is the risk-free short interest rate and s is the agreed spread. These ouponsare paid from the ash deposit aount, whih holds the assets of the note. In order



118 Chapter 3. Optimal Leverage in CPDOsto generate the oupon spread s, the CPDO engages in a dynami investment strategyin an underlying, unfunded index. The ash return of the investment strategy in anyin�nitesimal interval (t; t+ dt] is given by α(t)dB(t), with
dB(t) = µdt+ σdW (t), (3.16)where W is a standard Brownian motion, µ and σ are the suitably hosen onstant driftand volatility terms, with B(0) = 0. These dynamis in (3.16), where we illustrate somesimulated paths in Figure 3.2, will allow us to �nd the optimal leverage funtion by apply-ing stohasti ontrol approah tehniques below. Note that in our simple model dB(t)
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Figure 3.2: Simulated paths for the Brownian motion with drift (or arithmeti Brownianmotion).inorporates the arry generated by the index spread, the mark to market losses/gainsderiving from hanges in the index spread due to the hanges in the default probability ofthe underlying portfolio. Sine the index is rolled over into a new series on a ontinuousbasis, the default risk in index an be negleted, at least to the �rst order. Of ourse,one ould think of the index spread dynamis being mean-reverting or inluding a jump



3.4 Model Proposal 119omponent. However in order to obtain a semi-analyti solution for the optimal leverageproblem, we assumed the simple dynamis for the gain and losses linked to the underlyingredit index investment.Building the dynamis of the note valueWe denote the leverage funtion, i.e., the notional exposure to the risky investment attime t with α(t). In order to onstrut the dynamis of the wealth proess, we de�nethe disrete time points 0 = t0 < t1 < . . . < tn = T with ∆t = ti − ti−1, i = 1, 2, . . . , nand where tn = T is the maturity of the CPDO. We have our initial wealth, or the NAV(t0 = 0) as V (0) = 1. The NAV holds the ash deposit aount and the MtM gains/lossesfrom the risky redit position, whih forms the asset side of the CPDO. On the otherhand, we have the promised oupon payments r + s and repayment of the prinipal onthe liability side. We assume the note pays oupons ontinuously and the gains/losses areonly due to the interest that the ash deposit aount earns and the MtM gains/losses dueto the long position in the CDS index portfolio. Moreover, the leverage α(0) in the reditindex portfolio is hosen at the ineption of the CPDO and hanged dynamially at thebeginning of eah in�nitesimal period. Hene, the main idea of the produt is overed,whih is basially �betting� on the performane of the CDS index portfolio on eah rolldate. We express the disrete version of (3.16) as
∆B = µ∆t+ σ∆W,with ∆W = ǫ

√
∆t, where ǫ is a standard normal random variable.In the next time point, i.e., t1 = t0 + ∆t we observe the following �ows:1. We take the notional exposure with the funtion α to B(t1); this earns α(t0)∆B(t1),whih has zero ost, sine it is a swap ontrat with zero value at ineption.2. We pay (r + s)∆t in the form of a oupon.3. The initial wealth in the ash deposit aount V (0) = 1 earns the onstant interestrate r until t1, so we get rV (0)∆t,



120 Chapter 3. Optimal Leverage in CPDOsso the hange in our wealth (or NAV) an be desribed as
∆V (t1) = V (t1) − V (0) = α(t0)∆B(t1) + rV (0)∆t− (r + s)∆t,where ∆B(t1) = B(t1) −B(0) and ∆t = t1 − t0.Until the next time point, i.e., t2 = t1 + ∆t, the ash deposit aount earns the onstantinterest r over V (t1). If we had losses due to ∆B(t1) being negative, then V (t1) < V (0),otherwise we have V (t1) ≥ V (0). Hene, at the next time point, i.e., t2 = t1 + ∆t, we willhave similar �ows:1. We take notional exposure with the funtion α to B(t2), earning α(t1)∆B(t2), whihhas again zero ost.2. We pay the oupon (r + s)∆t3. We put the V (t1) in the ash deposit aount at time t1, whih earns the onstantinterest rate r until t2, so we get rV (t1)∆t,implying the hange in NAV as
∆V (t2) = V (t2) − V (t1) = α(t1)∆B(t2) + rV (t1)∆t− (r + s)∆t,where ∆B(t2) = B(t2)−B(t1), and ∆t = t2−t1. The proess ontinues until the maturitytime of the ontrat, i.e., tn = T . If ∆t → 0, the dynamis of the NAV an be expressedas

dV (t) = α(t)dB(t) + rV (t)dt− (r + s)dt, (3.17)with V (0) = 1, and B(0) = 0.We shall impose V (t) ≥ K ≥ 0 for all t ∈ [0, T ], where we de�ne K as the ash-outthreshold.If the wealth proess falls below the threshold K at any time, a ash-out event will ourand any risky investment is unwind. Denote by τ , the �rst time the wealth hits the TargetRedemption Value denoted by PV L(t), i.e.,
τ = inf{t : V (t) ≥ PV L(t)} (3.18)



3.4 Model Proposal 121where
PV L(t) ≡ e−r(T−t) +

(r + s)

r
(1 − e−r(T−t)). (3.19)After this event, we must have that α(t) = 0 for all t ≥ τ , sine NAV is enough to payfor the prinipal at maturity and for the oupon payments of (r + s).Problem de�nition: Obtaining the optimal leverageOur goal is to hoose α(t) optimally in suh a way to minimise any shortfall betweenthe CPDO liability and assets. This imply the maximisation of the apital we have atmaturity. We de�ne the loss as 1 − V (T ), due to the risky investment and promisedoupon payment r + s. More formally, we need to solve the following stohasti optimalontrol problem

φ0(t, v) = sup
α
E
[
1 − (1 − V (T ))+ | V (t) = v

]
, (3.20)subjet to (3.17). We shall impose that the value of the asset of the CPDO stays positive atany point in time, by setting the ash-out boundary ondition φ0(t, 0) = 0 for 0 ≤ t ≤ T .Note that by speifying the asset dynamis as in (3.17) and imposing the non-negativeasset onstraint, we are impliitly assuming that V (t) is always greater than the presentvalue of all future oupon payments, whih is a reasonable assumption.Following Jonsson and Sirar [JS02℄, we an smooth out the investor's utility funtionand transform the original optimisation problem (3.20) into

φ(t, v) = sup
α
Et,v [U(V (T ))] , (3.21)where

U(v) =
1

p

[
1 −

(
(1 − v)+

)p]
, (3.22)is the investor's utility funtion and we have used of the notation Et,v[·] = E[·|V (t) = v].We shall assume that p > 1. Note in the limit of p → 1, the two formulations of theproblem yield the same result.In order to simplify the alulations, it is onvenient to work with the disounted wealthproess

Ṽ (t) = e−rtV (t),



122 Chapter 3. Optimal Leverage in CPDOswith the orresponding dynamis of
dṼ (t) = e−rtα(t)︸ ︷︷ ︸

:=α̃(t)

dB(t) − e−rt(r + s)dt . (3.23)This, together with ṽ = e−rtv, leads to the following modi�ation of problem (3.21):
φ(t, ṽ) = sup

α̃
Et,ṽ

[
1

p

[
1 −

(
(1 − erT ṼT )+

)p]]
, (3.24)where ṽ = e−rtv and α̃ = e−rtα.Using the priniple of the stohasti optimal ontrol, we formally arrive at the orrespond-ing Hamilton-Jaobi-Bellman equation1 of

φt + sup
α̃

[
φṽ

(
α̃µ− e−rt(r + s)

)
+

1

2
φṽṽα̃

2σ2

]
= 0, (3.25)with the boundary ondition

φ(T, ṽ) =
1

p

(
1 −

(
(1 − ṽerT )+

)p)
.Before we are going to solve this equation, we have to point out that atually we wouldneed two more boundary onditions present on the whole time interval, one desribingthe ash-out and one desribing the ash-in event in the transformed variable ṽ:

φ
(
t, e−rTK

)
=

1

p
(1 − (1 −K)p) , (3.26)

φ

(
t, e−rT +

r + s

r

(
e−rt − e−rT

))
=

1

p
. (3.27)However, to be able to obtain expliit solutions to our optimal leverage problems, we leavethose two onstraints aside and omment on their relevane in Setion 3.5.Let us now onentrate on the simpli�ed problem: assuming su�ient smoothness of thevalue funtion, existene of the optimal leverage strategy, and that φṽṽ < 0, the �rst orderonditions imply

α̃∗(t) = − µφṽ

σ2φṽṽ
. (3.28)Substituting (3.28) bak into (3.25), we are left with the non-linear PDE

φt − e−rt(r + s)φṽ −
µ2φ2

ṽ

2σ2φṽṽ
= 0 (3.29)1For a better insight of the stohasti ontrol approah, we refer the interested reader to Korn [Kor97℄.



3.4 Model Proposal 123In order to solve the PDE in (3.29), we transform it in a linear PDE similar to the BlakSholes equation. Assuming the onavity of φ(t, ṽ) and de�ning the Legendre transformas
φ̂(t, z) = sup

ṽ>0
{φ(t, ṽ) − zṽ}, (3.30)where z > 0 denotes the dual variable2 to ṽ. We denote the value of ṽ where the optimumis attained with g(t, z), so that

g(t, z) = inf{ṽ > 0|φ(t, ṽ) ≥ zṽ + φ̂(t, z)}.Using the relation
φṽ(t, ṽ

∗) = φṽ(t, g(t, z)) = z,and di�erentiating with respet to z, we have for (t, g(t, z)) as argument
∂

∂z
z = 1 =

∂

∂z
(φṽ(t, g(t, z))) = φṽṽgz

⇒ φṽṽ =
1

gz

. (3.31)Di�erentiating with respet to t,
∂

∂t
z = 0 =

∂

∂t
(φṽ(t, g(t, z))) = φṽt + φṽṽgt

⇒ φṽt = − gt

gz

(3.32)and with respet to z again, we arrive at
∂2

∂z2
z = 0 =

∂2

∂z2
(φṽ(t, g(t, z))) =

∂

∂z
(φṽṽgz) = φṽṽṽg

2
z + φṽṽgzz

⇒ φṽṽṽ = −gzz

g3
z

. (3.33)Now, di�erentiate (3.29) with respet to ṽ, implying
φtṽ − e−rt(r + s)φṽṽ −

µ2

2σ2

2φ2
ṽṽφṽ − φ2

ṽφṽṽṽ

φ2
ṽṽ

= 0. (3.34)Substituting (3.31), (3.32), and (3.33) bak in (3.34), we have the linear PDE only along
(t, g(t, z)) as

gt +
µ2

σ2
zgz +

µ2

2σ2
z2gzz + e−rt(r + s) = 0 . (3.35)2See Jonsson and Sirar [JS02℄ and p. 134 of Korn [Kor97℄ for the details of the dual approah.
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φ(T, ṽ) =

1

p

(
1 −

(
(1 − ṽerT )+

)p)
, (3.36)where for our problem, we have p > 1. We derive the terminal ondition for g(t, z) asfollows

φṽ(T, ṽ; p) = erT
(
1 − erT ṽ

)p−1
1ṽ<e−rT = z

⇒ ṽ = e−rT
(
1 − z

1
p−1e

−rT
p−1

)+

.Therefore, the problem is now to solve the following paraboli, linear PDE
∂g

∂t
+
µ2

σ2
z
∂g

∂z
+

µ2

2σ2
z2∂

2g

∂z2
+ e−rt(r + s) = 0, (3.37)with the terminal ondition

g(T, z) = c
(
1 − zβcβ

)+
, (3.38)where

c := e−rT and β :=
1

p− 1
.Furthermore, the disounted optimal leverage funtion α̃∗(t) an be written in terms ofthe dual funtion only

α̃∗(t) = − µ

σ2
z
∂g

∂z
, (3.39)and it is related to the wealth ṽ via the equality

ṽ = g(t, z) ≡ φ−1
ṽ (t, z). (3.40)Equation (3.37) an be redued to a standard heat equation by means of some simplestandard hange of variable. De�ne

a =
µ2

σ2
, τ(t, z) = T − t, and y(t, z) = ln z.We rewrite (3.37) with the de�nition below

g̃(τ(t, z), y(t, z)) := g(t, z)Hene, we have the partial derivatives
∂g

∂t
=
∂g̃

∂τ

∂τ

∂t
+
∂g̃

∂y

∂y

∂t
=
∂g̃

∂τ
(−1),
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∂g

∂z
=
∂g̃

∂τ

∂τ

∂z
+
∂g̃

∂y

∂y

∂z
=
∂g̃

∂y

1

z
,and

∂2g

∂z2
= − 1

z2

∂g̃

∂y
+

1

z

(
∂2g̃

∂y2

1

z

)
=

1

z2

(
∂2g̃

∂y2
− ∂g̃

∂y

)
.Plugging these partial derivatives into (3.37), the PDE will have onstant oe�ients as

∂g̃

∂τ
=
a

2

(
∂2g̃

∂y2
+
∂g̃

∂y

)
+ (r + s)e−r(T−τ). (3.41)Now, we want to represent (3.41) in an inhomogeneous heat equation form as de�ned tobe

∂ĝ

∂τ̂
=

∂ĝ

∂x2
+ Θ(τ̂ ), (3.42)where −∞ < x < ∞, τ̂ > 0 and Θ(·) is a ontinuous, bounded funtion on R × (0,∞).Using the following hange of variables,

x(τ, y) = y +
a

2
τ, and τ̂ (τ, y) =

a

2
τ,rewriting (3.41) by using

ĝ(τ̂(τ, y), x(τ, y)) := g̃(τ, y),we obtain
∂ĝ

∂τ̂
=
∂2ĝ

∂x2
+

2(r + s)

a
e−r(T− 2τ̂

a )

︸ ︷︷ ︸
=:Θ(τ̂)

, (3.43)whih is the standard heat equation with the inhomogeneous term Θ(·) depending onlyon the time variable. The expression in (3.43) has a unique solution for −∞ < x < ∞and τ̂ > 0, where Θ(τ̂ ) is bounded and ontinuous on R × (0,∞) as
ĝ(τ̂ , x) =

∫ ∞

−∞
G(x, ξ, τ̂)f(ξ)dξ

︸ ︷︷ ︸
=:I1

+

∫ τ̂

0

∫ ∞

−∞
G(x, ξ, τ̂ − t′)Θ(t′)dξdt′

︸ ︷︷ ︸
=:I2

, (3.44)where the Green funtion denoted by G(·) is de�ned as
G(x, ξ, τ) =

1

2
√
πτ

exp

(
−(x− ξ)2

4τ

)
, (3.45)and f(·) denotes the initial ondition for the heat equation de�ned for

t = T ⇒ τ̂ = 0, and x = y as
f(ξ) := ĝ(0, ξ) = c(1 − eβξcβ)+. (3.46)



126 Chapter 3. Optimal Leverage in CPDOsFirst, we alulate the integral I1, whih is similar to a Blak and Sholes Put option as,
I1 =

∫ ∞

−∞
c(1 − eβξcβ)+ 1

2
√
πτ̂

exp

(
−(x− ξ)2

4τ̂

)
dξ. (3.47)Now, hanging the variable with

−(x− ξ)√
2τ̂

= u⇔ dξ =
√

2τ̂du and ξ = x+ u
√

2τ̂we have
I1 6= 0 ⇔ u <

ln( 1
cβ ) − xβ

β
√

2τ̂
= − ln(c) + x√

2τ̂
,therefore,

I1 =
[
cΦ

(
− ln(c) + x√

2τ̂

)

−cβ+1

∫ − ln(c)+x√
2τ̂

−∞

1√
2π

exp

(
−(u−

√
2τ̂β)2

2

)
exp

(
τ̂β2 + βx

)
du

]
.Again, hanging the variable

u−
√

2τ̂β = v ⇔ du = dv,and the upper bound for the integral is
− ln(c) + x√

2τ̂
− β

√
2τ̂ .Hene, we have

I1 = cΦ

(
− ln(c) + x√

2τ̂

)
− cβ+1 exp

(
τ̂β2 + βx

)
Φ

(
− ln(c) + x√

2τ̂
− β

√
2τ̂

)
, (3.48)where Φ(·) denotes the standard normal distribution funtion.Furthermore, the double integral I2 in (3.44) an be expressed as

I2 =

∫ τ̂

0

2(r + s)

a
exp

(
−r
(
T − 2t′

a

))
dt′
∫ ∞

−∞

1√
4π(τ̂ − t′)

exp

(
− (x− ξ)2

4(τ̂ − t′)

)
dξ

︸ ︷︷ ︸
=1

=
2(r + s)

a
exp(−rT )

∫ τ̂

0

exp

(
2rt′

a

)
dt′

=
e−rT (r + s)

r
(e

2rτ̂
a − 1)



3.4 Model Proposal 127Transforming the variables bak, and using the fat that
ĝ(τ̂(τ, y), x(τ, y)) = g̃(τ, y) = g(t, z)we arrive at the unique solution to (3.37) given by

g(t, z) = e−rT Φ[d1(t, z)] − zβe
(β+1)

„

β µ2

2σ2 (T−t)−rT

«

Φ[d2(t, z)]

+
r + s

r

(
e−rt − e−rT

)
,where

d1(t, z) =
rT − ln z − µ2

2σ2 (T − t)√
µ2

σ2 (T − t)
,and

d2(t, z) = d1(t, z) − β

√
µ2

σ2
(T − t).Remember the optimal disounted leverage funtion α̃∗(t) is given by

α̃∗(t) = − µ

σ2
z
∂g

∂z
=

µ

σ2
κβzβΦ(d2(t, z)) (3.49)As we have

gz = e−rTϕ[d1(t, z)]d
1
z − κ

(
βzβ−1Φ[d2(t, z)] + zβϕ[d2(t, z)]d

2
z

)

= −κβzβ−1Φ(d2(t, z))with
κ := e

(β+1)

„

β µ2

2σ2 (T−t)−rT

«

,and
d1

z = d2
z := − 1√

µ2

σ2 (T − t)

1

z
,denoting the standard normal density funtion with ϕ(·), we have an expliit formula ofthe optimal leverage strategy. Note that, Z(t) (the optimal dual variable) is related tothe asset value by

V (t) = ertg(t, Z(t)), (3.50)whih an in general only be solved numerially. In total, we have shown that the HJB-Equation of our stohasti ontrol problem thus possesses the desired solution.



128 Chapter 3. Optimal Leverage in CPDOs3.5 Numerial ResultsIn this setion, we present some graphs and simulations for illustrating the behaviour ofthe optimal leverage funtion with respet to the NAV. We further examine its sensitivitywith respet to the duration of the ontrat, and to the volatility of the relative return ofthe risky asset. Moreover, we analyse the behaviour of the optimal leverage with di�erento�ered spreads s and its sensitivity to the exponent p (risk-aversion parameter) hara-terising our loss funtion. Also, we ompare our optimal leverage funtion with the onethat is popular among pratitioners.After having �xed the present time variable t, we use the following algorithm for deter-mining the optimal leverage funtion:1. For given values of NAV v ∈ [0, 1.5] introdue ṽ = exp(−rt)v.2. Determine the optimal dual value z∗ whih solves the equation g(t, z∗) = ṽ by aroot �nding method (suh as a Newton type method).3. With the value z∗ obtained in the previous step, alulate the optimal leveragefuntion in (3.49) for �xed t, i.e., α̃∗(t, z∗).4. Find α∗(t), i.e., α∗(t) = exp(rt)α̃∗(t)Figures 3.3 and 3.4 show that unlike the standard leverage funtion ommonly employed inthe industry, αt does not derease linearly in V (t) but exhibits a non-monotone behaviour.For V (t) equal to PV L(t) (marked by the red diamond on x-axis), where
PV L(t) ≡ (r + s)

1 − e−r(T−t)

r
+ e−r(T−t) (3.51)is the present value of the outstanding liabilities of the CPDO, then α(t) = 0.When the level of NAV is equal to the liabilities of the CPDO, no further risky investmentis required in order to pay the outstanding oupons and repay the prinipal investment.The ash-in feature is endogenous in the spei�ation of the investor's utility funtion(3.22) as no bene�t is assoiated with a redemption value higher than the initial invest-ment. As soon as V (t) = PV L(t), the CPDO beomes in e�et a risk-less oupon payingbond whih an be unwound at market pries or held by investors until maturity. When
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Figure 3.3: Optimal and standard leverage as a funtion of V (t). Parameters' set: µ =
0.005, σ = 0.05, r = 0.0005, s = 0.02, T = 10, and p = 1.1
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Figure 3.4: Optimal and standard leverage as a funtion of V (t). Parameters' set: µ =
0.005, σ = 0.01, r = 0.0005, s = 0.02, T = 10, and p = 1.1

V (t) dereases as a onsequene of losses, due to defaults or adverse spread movements,the optimal leverage α(t) inreases up to a maximum level, whih depends on the spei-



130 Chapter 3. Optimal Leverage in CPDOs�ation of the model parameters, and then dereases to 0 when
V (t) =

[
(r + s)

1 − e−r(T−t)

r

]
, (3.52)i.e., the present value of the remaining oupon payments. This behaviour is related toour spei�ation of the asset dynamis (3.23) as well as the positivity onstraint on V (t).In the urrent formulation of the problem oupons are always paid by the SPV and theredit risk a�ets only the prinipal repayment at maturity. If the present value of thestated oupon payments is lower than the initial investment, the SPV an always use theash aount to pay for oupons. Our problem spei�ation imposes that V (t) is alwaysgreater than the present value of all outstanding oupon payments so that the value ofthe assets is always non negative. The bell shaped funtional form of the optimal leveragefuntion is hene explained. As the value of the �rm approahes PV L(t) the value of therisky investment must be redued.Note also that in our formulation of the problem, the gap risk, i.e. the risk of jumps inthe asset values whih would make V (t) be negative, is equal to zero. The gap risk isusually underwritten by the sponsor of the SPV for a fee. Allowing for the possibility ofjumps and negative assets would oneivably hange the shape of the optimal leverageas investors would have an inentive to inrease their leverage for small levels of V (t),sine the sponsor of the CPDO would bear a onsiderable portion of the potential losses.Investors on the other side would retain the upside. In order to ontrol the gap risk, it isommon pratise in the industry to ap the maximum leverage. Also, CPDOs are usuallyunwound if the asset value V (t) falls below a stritly positive threshold (ash-out event).We onsider the time point t = 0 whih starts the period [0, T ], where T denotes thematurity of the CPDO. We observe the leverage funtion with respet to the NAV inFigure 3.5 with di�erent values of T , and the rest of the parameters do not hange. Weobserve that the leverage funtion gets lower with inreasing maturity. This is plausible,on one hand, the ash-in point moves to the right with inreasing maturity, and on theother hand, one has to take a higher risk (i.e. a higher leverage), if he wants to sueedin a shorter time.Using di�erent values of the volatility of the relative return of the risky asset resultedin Figure 3.6. We observe that with dereasing σ, the leverage funtion inreases. This
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Figure 3.5: The optimal leverage funtion with respet to the NAV for di�erent CPDOmaturities, where the parameter set is µ = 0.005, σ = 0.05, r = 0.04, s = 0.02, T =
1/5/10, and p = 1.1behaviour an be explained by the option type �nal utility funtion of our problem for-mulation. Further, it is lear that one needs some level of volatility to have a hane tosueed in generating the neessary payo�s, if one is below the ash-in point. So witha lower volatility in the underlying, one has to take a higher leveraged position to reahsuh a level of volatility. In the ase of σ = 0 and r = 0, if we interpret µ as the spreadpaid by the index investment, then the optimal leverage funtion α(t) is linear in V (t),

α(t) =
(1 + s)(T − t) − V (t)

µt
=
PV L(t) − V (t)

µDV 01(t)
(3.53)and the optimal leverage funtion derived in this paper oinides with the leverage funtionommonly used in the industry.The sensitivity of the optimal leverage funtion to the o�ered spread s is explained inFigure 3.7. As the �gure illustrates, with inreasing s, the leverage funtion shifts to theright on the x-axis. This behaviour an be explained by the linear inrease of the requiredpayments.Figure 3.8 demonstrates the sensitivity of the optimal leverage funtion with respet tovariations of the risk aversion parameter p. There is the obvious tendeny that the loser
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Figure 3.6: The optimal leverage funtion with respet to the NAV for di�erent volatilities,where the parameter set is µ = 0.005, σ = 0.025/0.05/0.1, r = 0.04, s = 0.02, T = 10,and p = 1.1
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Figure 3.7: The optimal leverage funtion with respet to the NAV for di�erent o�eredspreads, where the parameters' set is µ = 0.005, σ = 0.05, r = 0.04, s = 0.02/0.03/0.04,
T = 10, and p = 1.1
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p gets to 1, the higher the leverage in the optimal strategy is. However, we observe thatthe leverage is dereasing when NAV reahes small values. The reason for this is that,for those values, the investors beomes very risk averse. They seem to have aepted thelosses for small values of NAV and tries to avoid even bigger losses by following a strategyof only a small leverage. It seems that there is a kind of automati ash-out behaviour.This is similar to the behaviour of hedging strategies that one an observe in the area ofquantile hedging of stok options (e.g., see Föllmer and Leukert [FL99℄). Further, if welook at our omputed optimal leverage strategies, they are quite similar to strategies usedin the industry (see below when analysing the dynami behaviour of our strategy), al-though they implement a linear leverage that dereases with inreasing wealth. However,the ash-out feature in the industry strategy limits the risky behaviour of the investor.This an be ompared with our built-in automati ash-out feature as mentioned above.
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Figure 3.8: Optimal leverage as a funtion of Vt for di�erent levels of p. Parameters' set:
µ = 0.005, σ = 0.05, r = 0.04, s = 0.02, T = 10, and p = 1.1/1.3/1.5/1.7/1.9After having analysed the stati behaviour of the optimal leverage strategy, we are now il-lustrating its dynami performane in dependene on the underlying NAV proess. There-fore, we simulated independent paths of the NAV via disretising the B(t)-proess in (3.16)



134 Chapter 3. Optimal Leverage in CPDOsstarting with B(0) = 0. Remember that the paths of B(t) explain the gains/losses pro-ess, and initially we have V (0) = 1. The maturity of the CPDO in the three simulationsis T = 10 and we �x p = 1.1.The �rst simulation demonstrates the ash-in feature of the CPDO strategy. We observein Figure 3.9 that for the simulated path of NAV, the optimal leverage drops to 0 when theNAV reahes the PVL (plotted by dashed red line), i.e., α∗(τ) = 0 when PV L(τ) = V (τ).
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Simulation 1: Cash−in

timeFigure 3.9: Sample path with ash-in event. Parameters' set: µ = 0.015, σ = 0.025,
r = 0.04, s = 0.02, T = 10, and p = 1.1The seond simulation in Figure 3.10 onsiders the ase when the ash-in feature of theprodut is not ahieved and the prinipal redemption at the maturity is less then theinitial investment, hene the strategy defaults.In the last simulation, we ompare the behaviour of the NAV dynamis of both theoptimal and the linear leverage funtions with respet to the same simulated gain/lossproess B(t). The key observation in Figure 3.11 is that, using the proposed optimalleverage funtion, the CPDO ashes-in approximately after 6 years, whereas with thelinear leverage funtion, the strategy ashes-in approximately after 8 years. Rememberingthat the major aim of the CPDO strategy is to ash-in and o�er the investors (quasi risk-free) high oupon rates, we may onlude that usage of the optimal leverage funtion we
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Simulation 2: Neither cash−in nor cash−out

timeFigure 3.10: Sample path with default at maturity. Parameters' set µ = 0.0025, σ = 0.05,
r = 0.04, s = 0.02, T = 10, and p = 1.1propose an help on athing an earlier ash-in feature.
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timeFigure 3.11: The simulation of the NAV dynamis with the standard and the optimalleverage funtion with the parameters' set µ = 0.02, σ = 0.05, r = 0.04, s = 0.02, T = 10,and p = 1.1

3.6 SummaryA CPDO is a very reent �nanial produt that is generated on the basis of a simple linearleverage strategy as desribed in (3.2). Thus, it still ontains the possibility of ending upwith a (bounded) loss, an event that even our optimal strategy annot exlude. However,by setting up a dynami optimisation problem that fouses on minimising a possible lossat maturity, we have omputed a leverage strategy that possesses an optimality propertyand oinides with the linear leverage funtion used among pratitioners only for the aseof zero interest rate and volatility. If one onstrains the CPDO's assets Vt to stay positiveat any time and oupons are assumed to be always paid, the optimal leverage exhibits abell shaped form on the SPV asset value. Some numerial examples have shown promisingbehaviour of our strategy. It is partiularly satisfying that we seem to have an automatiash-out like behaviour when the NAV has beome so small that the probability of beingable to pay out all our promised payments is too low. Further, the hoie of the risk-aversion parameter p also leaves the investor some freedom to speify his attitude towards



3.6 Summary 137risks as seen in Figure 3.8.Of ourse, one should onsider more realisti gain/loss proesses as the Brownian motionwith drift type one that we looked at. Also, the inlusion of the ash-out feature isdesirable aspet. Inluding this will not be a big problem from the numerial point ofview, but it probably will not allow to solve the orresponding dynami programmingproblem. For pratial purposes, one ould also use our omputed optimal strategy andmodify it in suh a way that this feature is treated.Our work should be seen as a starting point and it has already demonstrated that anoptimised strategy an perform better than an adho strategy. In order to derive a losedform solution for the leverage funtion, we had to resort to a set of simplifying assumptionsfor the dynamis of the risky investment. In partiular, we refrained from modelling thedynamis of the redit index spread and losses arising from the defaults in the underlyingportfolio separately, but instead ondensed the returns of this two omponents into asingle random proess. Also, in our framework we have not onsidered the possibility ofthe negative SPV assets, whih in presene of jumps in the dynamis of Vt, would giverise to a ontingent payment by the SPV sponsor (typially a bank). Both extensionswould o�er a valid ontribution to the understanding of the problem. Finally, one shouldnote that we, indeed, solved a stohasti ontrol problem (nearly) expliitly that has notbeen dealt with in the literature before.
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