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Abstract

This thesis covers two important fields in financial mathematics, namely the continuous
time portfolio optimisation and credit risk modelling. We analyse optimisation problems
of portfolios of Call and Put options on the stock and/or the zero coupon bond issued
by a firm with default risk. We use the martingale approach for dynamic optimisation
problems. Our findings show that the riskier the option gets, the less proportion of his
wealth the investor allocates to the risky asset. Further, we analyse the Credit Default
Swap (CDS) market quotes on the Eurobonds issued by Turkish sovereign for building the
term structure of the sovereign credit risk. Two methods are introduced and compared
for bootstrapping the risk-neutral probabilities of default (PD) in an intensity based (or
reduced form) credit risk modelling approach. We compare the market-implied PDs with
the actual PDs reported by credit rating agencies based on historical experience. Our
results highlight the market price of the sovereign credit risk depending on the assigned
rating category in the sampling period. Finally, we find an optimal leverage strategy for
delivering the payments promised by a Constant Proportion Debt Obligation (CPDO).
The problem is solved via the introduction and explicit solution of a stochastic control
problem by transforming the related Hamilton-Jacobi-Bellman Equation into its dual.
Contrary to the industry practise, the optimal leverage function we derive is a non-linear
function of the CPDO asset value. The simulations show promising behaviour of the

optimal leverage function compared with the one popular among practitioners.
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Preface

This thesis is based on my research since I joined the Department of Financial Mathe-
matics of Fraunhofer ITWM in November 2004, where I also had a chance to participate
in the research and consulting projects for the financial industry related with my research

interests.

The three chapters in this thesis are conceptually independent from each other, therefore
each chapter is self-contained and has a separate introduction and a summary section.

The reader may directly switch to the topic of his/her interest.

The starting point of my research was the intensity based (or reduced-form) credit risk
modelling, then we decided to integrate the credit risk issues into continuous time portfolio
optimisation problems. Hence, the first chapter is in line with the paper by Korn and
Kraft [KKO03|, where they examine the portfolio optimisation problems of defaultable
assets using a firm value based credit risk model. In Chapter 1, we study optimisation
problems of portfolios consisting of risky options. The framework of Korn and Trautmann
[KT99| is applied for the optimisation problem, where we model the credit risk with a
firm-value based approach. Since the underlying in the portfolio is a European type option
on the risky bond written by the firm, the compound option formula of Geske [Ges79] is

adapted for pricing reasons.

The second chapter is inspired from an industry project of Fraunhofer ITWM in 2006
for a leading German bank, where we jointly with PD Dr. Marlene Miiller analysed the
relationship between the risk-neutral and actual default probabilities of the customers of
the bank, and validate the actual default probabilities with the risk neutral ones extracted
from CDS quotes. Chapter 2 takes the Turkish sovereign CDS rates for building the term

structure of market implied sovereign credit risk. For that, a detailed literature survey

X
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about intensity based credit risk models is presented and two methods are introduced for
extracting the default probabilities from the market CDS quotes. Furthermore, we give
a detailed analysis about the linkage of the market implied default intensities and the

actual default intensities estimated by a rating agency based on historical dataset.

In the third and the last chapter, we look at the problem of finding an optimal leverage
strategy for delivering the payments promised by a constant proportion debt obligation
(CPDO). The problem will be solved via the introduction and explicit solution by trans-
forming the corresponding Hamilton-Jacobi-Bellman-Equation into its dual. This chapter
is similar to Baydar et al. [BGKO08|, where we include the preliminaries about stochastic

control method and provide examples in addition to our paper.

This thesis summarises the credit risk literature, including the structural and the intensity
based models. Moreover, for continuous time optimisation, we present and apply both of

the approaches, namely the martingale method and the stochastic control method.
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Chapter 1

Optimal Portfolios of Options with
Credit Risk

1.1 Introduction

Portfolio optimisation problems start with the pioneering work by Markowitz [Mar52],
where he developed the theory in a discrete time setting. The first optimisation approach
in a continuous time setting was introduced by Merton [Mer69|, [Mer71| applying stochas-
tic control methods to portfolio problems. In his work the investor is allowed to invest on

the stocks and a riskless bond (or money market account).

In this chapter we are introducing portfolio optimisation problems when the portfolios
are composed of a riskless bond and European options written on the stock or the bond
issued by a firm, where the firm has credit risk (or default risk). Credit risk is defined
as the failure of fulfilling a financial obligation by the agents determined in a contract.
Credit risk problems are generally analysed in two approaches, namely the reduced form
(or intensity based) and the structural (or firm-value based) models. We use the classical

Merton [Mer74| approach, known to be the first firm-value based credit risk model.

In Merton model, the market value of the firm V(¢) follows a geometric Brownian motion,
being the main source of uncertainty. The financial obligation of the firm is to return the
promised face value F' to the bondholders at debt maturity time 7;. Hence, the default
occurs if the firm can not fulfil its obligation, i.e., the market value of the firm is less than
its debt V(T1) < F. The stock of the firm is valued similar to a European call option

written on the market value of the firm with a strike price equal to the debt value, F. If

1



2 Chapter 1. Optimal Portfolios of Options with Credit Risk

we have another call option written on the stock price of this firm, we can consider the
derivative a European call on call option, with the firm value as the underlying. Hence,
we can adopt the compound option pricing techniques of Geske [Ges79] to our problem.
We use similar techniques for the valuation of European options written on the bond of

the firm.

To our knowledge, the portfolio problem with defaultable securities was first introduced
by Merton [Mer71|, where he used a special kind of reduced-form credit risk model for
modelling the default event. A similar approach was examined by Kraft and Steffensen
[KS08], where the authors proposed a model that allows for random recovery and joint de-
fault events as well in a reduced-form setting. Other papers dealing with similar problems

are Bielecki and Jang [BJ07|, and Lakner and Liang [LLO7|.

A second type of portfolio optimisation problem including credit risk, which uses the
structural credit risk models was introduced by Korn and Kraft [KKO03]. In this approach,
the authors use the elasticity method of Kraft [Kra03|, which is the generalisation of the
ideas presented by Korn and Trautmann [KT99] for continuous time optimisation problem
for the option portfolios. Furthermore, Kraft and Steffensen [KS06| extended the model
developed in Korn and Kraft [KK03] with power utility functions delivering more reliable
results. Our work can be listed in this stream of papers, as we use a structural model for

modelling the credit event.

Our contributions in this chapter result from combining three ingredients:

e the Merton [Mer74| approach for modelling the credit risk,
e the optimisation method for portfolio of options from Korn and Trautmann [KT99],

e the Geske [Ges79| formula for pricing of the compound options,

in order to deal with an optimal (option) investment problem for defaultable securities.

The outline of the chapter is as follows. We analyse the structural credit risk models
in Section 1.2. We give the outlines of continuous time portfolio optimisation problem
in Section 1.3, where we present the martingale approach in details. We continue with

Section 1.4 by introducing the Korn and Trautmann [KT99| framework for optimising



1.2 Structural Credit Risk Models 3

option portfolios. Section 1.5 presents our findings, where we extend the results of Korn
and Kraft [KKO03|, and add a second iteration to the problem in their paper. Here, we
optimise portfolios consisting of options on options and the money market account. We

finally present our findings and summarise the chapter.

1.2 Structural Credit Risk Models

In this section, we will describe the structural credit risk model, which is also called the
firm value based credit risk model. This model was proposed by Merton [Mer74] and
uses the option pricing techniques of Black and Scholes [BS73]. In this approach, the
corporate liabilities are considered as contingent claims on the assets of the firm. This
model is named as firm-value based since the market value of the firm is the fundamental

source of uncertainty which drives the credit risk.

We can also subdivide structural models into two different approaches, namely the classical
approach and the first-passage approach. In the classical Merton [Mer74] approach, the
firm defaults when its market value is not sufficient to pay back its debt at the maturity
time of the contract. This means that the default cannot be triggered before debt maturity,
which is a very unrealistic assumption. However, in first-passage models, we assume that
the default is triggered when the value of the firm falls below a barrier during the life time

of the bond. This approach was pioneered by Black and Cox [BC76].

1.2.1 Classical Approach: Merton Model

We present the important results of the classical approach in this subsection. Merton
[Mer74| introduces the firm value dynamics with an assumption that the firm has pay-
outs (dividends or interest payments) to either its shareholders or liability holders. For
simplicity, we assume that the firm has neither dividends nor interest payments. The
dynamics for the market value of the firm V' through time is described by a geometric

Brownian motion:

S dt + o, dW (L), V(0) >0, (1.1)



4 Chapter 1. Optimal Portfolios of Options with Credit Risk

where p, € R is the constant drift parameter, o, > 0 is the constant volatility parameter
and W is the one-dimensional Brownian motion under physical measure P. Here, V
represents the expected discounted future cash flows of a firm. The simulated paths for
the dynamics of the firm value process can be observed in Figure 1.1, where we use the

algorithm described by Ugur [U08]. The firm is financed by an equity (stock) P;(t) and a

2.5 T T T T

Firm Value
=

63}

T

1

[EnY

0.5

Figure 1.1: Simulated paths for the firm value process with u, = 0.1, o, = 0.5, V(0) = 1.

risky Zero Coupon Bond (ZCB, hereafter) B(t,T}) with face value F' and maturity date
Ti. The contractual obligation of the firm is to repay F' to the bondholders at time 7.
We assume that if the firm cannot fulfil its payment obligation, then the bondholders will

immediately take over the firm. Hence, the default time 7 is a random variable with:

oo else.

[t6’s lemma implies that

V(t) = V(0)exp ((u - %02) t+ o—UW(t)) .

Assuming that the firm can neither issue new senior debt on the firm nor repurchase
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Firm value Bond Stock
No default V(T}) > F F V(1)) - F
Default V<T1> < F V<T1> 0

Table 1.1: Payoffs at maturity in the classical approach

shares prior to the maturity of the debt, the payoffs of the securities of the firm will be as
in Table 1.1. If the firm value V(7}) exceeds or equals the face value F' of the bonds, the

1.4 T T T T
Firm A

1.3} — — — Debt Value |
—<— Firm B

Firm Value

Figure 1.2: Firm A defaults, Firm B does NOT default, with F' = 0.8.

bondholder receives the promised payment F', and the shareholder receives what remains;
V(Ty) — F. If the value of the assets V(7}) is less than F', the firm defaults and the
ownership of the firm is transferred to bondholders; and shareholders receive nothing.

Therefore, the value of the ZCB at maturity time 77 will be given by:
B(Ty,T}) = min(F,V(T})) = F — (F = V(T1))*. (1.3)

Now, we can relate the option pricing theory of Black and Scholes [BS73| with the following
idea. The payoff given in (1.3) is the same payoff of a portfolio composed of a default-free
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loan with face value F' maturing at 77 and a short European put position on the value of
a firm with strike F and maturity time 77. Denoting the price of the stock with Pi(-), at
the time 7} we have

P(T)) = (V(TY) — F)", (1.4)

which is equivalent to the payoff of a European call option on the firm value with strike F'
and maturity time 77. Thus, valuation of the stock is the same as valuation of a European
option in the classical Black-Scholes setting, where we assume the short interest rate, r, is
constant and the firm value V, follows a geometric Brownian motion. The Black-Scholes

call option formula gives the stock price as:
Pi(t) = V()®(hi (1)) — Fe "M (hy(t)), (1.5)

where

In (@) + (r+ 302) (I — t)
hl(t) = o \/m and hg(t) = hl(t) — Oy T1 — 1.

The value of the risky ZCB is

B(t,Ty) = Fe =t _ xPut(z v (1)),
where X7 is the Black-Scholes put option formula. Therefore, we will have:
B(t,Ty) = V(O)®(=h(£) + Fe T =0(hy (1)), (1.6)
which together with (1.5) proves the market value identity:

V(t)= Pi(t)+ B(t,Tv).

1.2.2 First Passage Models: Black-Cox Model

The main drawback of the Merton [Mer74] model is that the default event may occur only
on the maturity time of the bond, which is very unrealistic. Hence, first passage models
were introduced allowing the default event occur during the life time of the defaultable

bond. The default time is the first time that the value of the firm hits a barrier, i.e.,

T=mf{t|V(t) = L)}, >0 (1.7)
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where the time-dependent, deterministic barrier function is denoted with L(-). We can
think the barrier as continuously compounded debt k with rate s discounted to time ¢,
ie.,

L(t) = ke 11—, (1.8)
The price of a ZCB with the face value F' > k and maturity 77 at time ¢ € [0, min(73,7)]
is given by
BU.T) = Fe 0 [0z (1) -y 2(0)((0)]

FV () [@(=23(1)) + y* (1) D(24(1))] ,
with

n (52) + (r F 3o2)(T — 1)
L3 = Uv\/m

In (52) +2mn(y(t)) + (r F 302)(Ti ~ 1)
224 = Uv\/m

k,e—f@(Tl—t)
O
P + %af,.

o2

Since we focus on the optimal portolio problems in classical Merton setting on this level,
we refer the interested reader to the introductory paper by Giesecke |Gie04] for more infor-
mation about advanced structural credit risk models. Further, Acar [Aca06| introduces an
advanced firm value model including a jump component for obtaining the optimal capital

structure of a firm.

1.3 Continuous Time Portfolio Optimisation Problem

The problem can be briefly defined as finding an optimal consumption and investment
strategy for an investor with an initial capital of x > 0 in order to maximise his expected
utility on terminal wealth. Hence, it is about deciding how many shares of which security
one investor should hold at which time instant. For the general presentation in this

section, we assume to be in a standard diffusion type market with d risky assets and a
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riskless bond (or Money Market Account). We present some definitions from Korn and

Korn [KKO01].

Definition 1.1. I. A trading strategy ¢ is an R%*!— valued progressively measurable

process with respect to {F;}icpo,r

¥ = (on(t)a Qpl(t)a R Sod(t))/

satisfying
T
/ lpo(t)|dt < oo a.s. (1.9)
0

> /T(gol-(t) - Py(t))*dt < o0 a.s. fori=1...d. (1.10)

The value z := Z;j:o ©i(0) - p; is called the initial value of ¢.

I1. Let ¢ be a trading strategy with initial value z > 0. The process

d
X(t):=>_¢it)Pi(t)
i=0
is called wealth process corresponding to ¢ with initial wealth z.

ITI. A non-negative progressively measurable process c(t) with respect to {F;}icpo,m) with

/T c(t)dt < oo as. (1.11)

is called a consumption rate process (or just consumption process).

Definition 1.2. A pair (¢, ¢) consisting of a trading strategy ¢ and a consumption rate
process ¢ is called self-financing if the corresponding wealth process X (t), t € [0, 7],

satisfies:

d t t
X)) = ;HZ/ gpi(s)dPi(s)—/ c(s)ds a.s. . (1.12)
current wealth = initial wealth 4 gains / losses — consumption

Definition 1.3. Let (¢, ¢) be a self-financing pair consisting of a trading strategy and a
consumption process with corresponding wealth process X (t) > 0 a.s. for all ¢ € [0, T].

Then, the R?—valued process

wi(t) - Bi(t)
X0

is called a self financing portolio process corresponding to the pair (¢, c).

7(t) = (mi(t),...,ma(t))',t € [0, T] with m;(t) =
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Remark 1.1. I. The portfolio process denotes the fraction of the total wealth invested in
different stocks. Therefore, the fraction of wealth invested in the riskless bond (or MMA)
is

po(t) - Po(t)

(1—n(t)l) = X where 1:= (1,...,1) € R

IT. Given the knowledge of the wealth X (¢) and the prices P;(t), it is possible for an
investor to describe his activities via a self-financing pair (7, c). More precisely, in this

case, portfolio process and trading strategy are equivalent descriptions of same action.

Now, we introduce the functional J for measuring the utility of a payment stream, where
large values of J should represent "good" payment streams. Therefore, the investor looks
for a self-financing pair (an admissible investment strategy and consumption process)
(m,¢) € A(z), which maximises the expected utility from consumption and/or terminal
wealth,

J(z;m,c) = E [ /0 o (t, c(t))dt + Up(X®™(T)) | , (1.13)

where Uy, U, are the utility functions, X (¢) is the wealth process corresponding to the
initial capital z and (7, c). We require that the utility functions Uy (¢,.) and Us(.) are C*,

strictly concave and satisfy

U'0) :=limU'(z) = 400, U'(c0) :=limU'(x) = 0.

z|0 T]oo
Typical utility functions are U(z) = In(z), U(x) = \/z, or U(z) = 2* for 0 < o < 1. For

more details on the utility functions, we refer the reader to Korn [Kor97].

Note that for an arbitrary (m,¢) € A(z), the expectation in (1.13) is not necessarily
defined. Hence, we restrict the class of self-financing pairs (7, ¢), in which the expecta-
tion in (1.13) is finite. However, having an infinite positive expected utility would be
any investor’s dream if it could be reached. We can now define the problem after this

restriction.

Definition 1.4. The problem
max J(z;m,c) (1.14)

(me)eA ()
with
- oo}

A(x) = {(ﬁ,c) € A(:c))E [/OT Up(t, c(t))~dt + Uy (X(T))~

is called the continuous-time portfolio problem.
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Remark 1.2. I. Note that the condition in (1.14) does not exclude the strategies that
will possibly lead to infinite utility. It states that the only requirement is the finiteness of
the expected value over the negative parts of the utility function. Hence, by restricting

to the set A’(x), the integral in (1.14) is always defined.

IL. If Uy(¢,.) > 0 and Us(.) > 0, the equality A(x) = A’(z) is trivially satisfied.

There are mainly two solution methods in the literature for the portfolio problem in (1.14).
The first method is called the martingale method, which is based on the martingale theory
and stochastic integration in a complete market setting. The second approach is the
stochastic control method and it is an application of the standard methods of stochastic
control theory to portolio optimisation problem. In the next subsection, we will explain
the motivation of the martingale method and provide an example. We present some

important results of the stochastic control theory in Chapter 3.

1.3.1 The Martingale Method

The main idea of the martingale method is to decompose the dynamic (in time) portolio
problem in (1.14) into a static (in time) optimisation problem (determination of the
optimal payoff profile) and a representation problem (compute the portfolio process that

yields the optimal payoff profile).

Since the motivation of the approach mainly depends on the complete market assumption,
we introduce the related theorem below. Remember that the number of stocks equals the

dimension of the underlying Brownian motion. We use the following notation

0t) = o, (1) (p(t) —r(t)1)

i) = o (= [osyawe) - [ (s + 51060 17) ds),

where p, denotes the deterministic drift process for equity dynamics, o, is the volatility,

and r is the short rate process.
Moreover, H(t) is the unique solution to the Stochastic Differential Equation (SDE)

dH(t) = —H(@®)[r(t)dt + 6(t)dW (t)], (1.15)
H(0) = 1
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Theorem 1.1 (Completeness of the market). I. Let the self-financing pair (7,c) be ad-
missible for an initial wealth of x > 0. Then, the corresponding wealth process X*™(t)
satisfies

E{H X5t /H ds] < forallt €[0,T].

II. Let B > 0 be an Fr—measurable random variable and c(t), t € [0,T], a consumption

{ B+/H ds]<oo

Then, there exists a portfolio process w(t), t € [0,T], with (w,c) € A(x) and the corre-

process satisfying

sponding wealth process X™™¢(t) satisfies

X®TYT) =B  almost surely (a.s.).

Proof: See p.66 of Korn and Korn [KKO01].
Motivation of the Martingale Method

We start the presentation with assuming that the portfolio problem in (1.14) does not
have the consumption process, i.e., ¢ = 0, U; = 0. Therefore, the dynamic portfolio
problem reduces to

E X*™N(T))). 1.16
max  E(UL(X*7(T)) (1.16)

From the completeness of the market (Theorem 1.1), we have
EH(T)X®™(T)] < for T >0,

and let the final payment B > 0 be Fr—measurable with E[H(7)B] = z. Furthermore,
there exists a portfolio process (7,0) € A with B = X™(T') a.s. Define

B(z) :={B | B >0, Fr-measurable, E[H(T)B] < x, E[Uy(B)~] < oo},

representing the set of all final wealths with some initial wealth y € (0, x| and satisfying
E[Uy(B)~] < co. In order to determine the optimal final wealth, it is sufficient to solve
the following problem

BI?g(}i)E[UQ(B)]. (1.17)

Note that we do not have any time dependent variable above, therefore, we only optimise

over a set of random variables. Here, we transformed the dynamic problem in (1.16)
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into the static problem in (1.17). We solve the static problem (1.17) with the help of
Lagrangian method (See p. 208 of Korn and Korn [KKO01]).

Say, the first step results in the optimal wealth B*, then the remaining step is to solve

the “representation” problem:
Find a (7*,0) € A'(z) with X*™ (T) = B* a.s. . (1.18)

O

Going back to general optimisation problem defined in (1.14), we introduce the function

X :(0,00) = R:

() ::E[ | B+ B@OLEHT)| 0

where I,(t,-) = (U])7'(¢,.), is the inverse function of the partial derivative of U; with
respect to the second component, and Ir(-) = (U5)~'(.). Function x(y) is strictly de-
creasing, continuous and possesses an inverse function. Setting Y (z) := x () and with
the help of the following theorem from Korn and Trautmann [KT99], we get the optimal

terminal wealth and the optimal consumption process.
Theorem 1.2. Let x > 0. Under the assumption of
X(y) < oo ye(0,00)

the optimal terminal wealth B* and the optimal consumption process ¢*(t), t € [0,T], for

problem (1.14) are given by

B* = LY (x)H(T)), “optimal terminal wealth*

) = L(t,Y(x)H(t)), “optimal consumption®
Moreover, there exists a portfolio process w*(t), t € [0,T), such that we have
(r*,¢") € A(x), X*™<(T)=B* as.,

and such that (7*,c*) solves the problem (1.14), where X®™ < (t) is the wealth process

corresponding to the pair (7, c*) and the initial wealth x.

Proof: See p. 210 of Korn and Korn [KKO01].
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Example 1.1. We present an example from Korn and Korn [KK01] with logarithmic

utility functions for the martingale approach of portfolio optimisation. Suppose we have
Ul(t,l’) = UQ(SL’) = 11’1(5[])

Note that we may have negative utilities if z < 1. With the utility functions given above,

we have

= L(ty) =Dy = -

U Hit 7dt+H(T) yHl(T) :$(T+l)

= V(@)= x @)= (T +1),

<

With Theorem 1.2, we get the optimal consumption and wealth as

B*::IAYWHHW):Til'ﬁ%?
) = h@g«@Hﬁﬁzi%&fzﬁw

From these optimal values, we can find the the optimal portfolio process explicitly. We

have
H(t)- X" (t) = L/ H(s ds+}HTjB*f4 (1.19)
14+7 ¢
- . 1.2
T (1.20)
Then,
T+1— . !
. % b TLH — H() - XTTE (1) /0 H(s)c"(s)ds. (1.21)

From the self-financing pair (7%, ¢*) and the corresponding wealth process,

X = X®™¢ we have the wealth equation as follows:

dX(t) = [r(t)X(t) —c(B)]dt + X O)m" () (up(t) — r(t) L)t
+X ()7 (t) oy (t)dW (1)
X(0) = =,
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and H (t) has the Ito representation as in (1.15). Applying Itd product rule to H(t)- X (¢),

we have

H(t)- X(t) = /H )dX (s /X )dH (s /d<H,X>s
=x+AH@W® ) o w+/H () (tpls) — r(s)L)ds

+/0 H(S)X(s)ﬂ*(s)'crp(s)dW(s)—/0 X(S)H(s)r(s)ds—/o X(5)0(s)'dW

_ /0 X ()7 (s)or, (s) H (5)0(s) ds.

Plugging into (1.21) we have

g +/ H(s (v)'ap(s) — 0(s)) AW (s). (1.22)

Hence, we must have

f(s)=0a.s forallse|0,T].
As H(s) - X(s) is positive, we must have
() = (o,(t)") " 0(t) for all t € [0, 7).
Assume we have d = 1 and r, y1,, 0, are constants, then we have

* Hp —T
p

which is defined as the local risk premium for stock investment.

We introduce the following theorem for a general method for determining the optimal

portfolio process 7%, related with the representation problem.

Theorem 1.3. Let the portfolio problem in (1.14) be given. Suppose that x > 0 and
assume

X(y) < oo for all y > 0. Further, ¢* and B* is as in Theorem 1.2. If there exists a
function f € CY2([0,T] x RY) with £(0,0,...,0) =z and

(/ H(s)c*(s)ds + H(T)B"

ﬂ)ZNN%@wwWMW,

(s)
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then fort € [0,T] we have

1

* t - -
@ ( ) X@,m*c* (t)

o OV (L WA(E), ..., Wa(t)),
where V. f denotes the gradient of f(t,x1,...,xq) with respect to the x— coordinates.

Proof: See p.214 of Korn and Korn [KKO01].

1.4 Option Portfolios

In this section, we analyse a similar problem as in Section 1.3, but instead of a portfolio
composed of the riskless bond and stocks, we have the riskless bond and European options
written on stocks in our portfolio. Using the result that in both markets we have the same
optimal terminal wealth B*, we replicate the stock positions with the riskless bond and
the options. This approach is applicable only under the assumption that the stocks and

options generate the same filtration.

We provide some basic definitions and theorems of option pricing with replication ap-

proach, from Korn and Korn [KKO01|.

Definition 1.5. A contingent claim (g, B) consists of an {F;}— progressively measurable
payout rate process g, with ¢ € (0,7, g(t) > 0, and an Fr—measurable terminal payment
B >0 at time ¢t = T with

E K/OTg(t)dt + B) ﬂ] < oo for some p > 1. (1.24)

Definition 1.6. I. The pair (7, c¢) is called a replication strategy for the contingent

claim (g, B) if we have

g(t) = c(t) as. forallt €0,T],
X(T) = Bas.,

where X () is the wealth process corresponding to (7, c).

I1. The set of replication strategies of price x is the set

D :=D(x;(g,B)) :== {(m,¢) € A(x)|(m, c) replication strategy for (g, B)}.
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ITI. The fair price of the contingent claim (g, B) is defined as

p = inf{p|D(p) # 0}.

Remark 1.3. Since r(t), u,(t), 0,(t) are uniformly bounded, and o,(t)o,(t)" are uniformly
positive definite, together with Holder’s inequality! and (1.24), we have

F:=E [H(T)B+/OT H(t)g@)dt] < .

From Theorem 1.1, there exists a 7 corresponding to (B, g) such that we have
(m,9) € AND(Z), which implies

p<1I.
The following theorem shows the case when p = 7.

Theorem 1.4. Let H(t) denote the stochastic deflator process. Then, the fair price p of
the contingent claim (g, B) is

p=F [H(T)B—i— /OTH(t)g(t)dt < 00,

and there exists a unique replicating strategy (7,¢) € D(p). Its corresponding wealth

process X () (the valuation process for (g, B)) is

X(t) = ﬁE {H(T)B+/O H(s)g(s)ds

We can get the explicit form of the replicating strategy by imposing additional assump-
tions on the option price process.

Theorem 1.5. Assume that the price of an option at time t can be written as a C*%—

function f(t,p1,...,pa) of time and underlying stock prices.

1. Then, the replicating strategqy V* is given by

Yi(t) = fp(t Pi(t),..., Pat), i=1,...,d,

)~ TP P0) = YL S (A, Pad) P
Uit o ,

et 1 <p<oo,1<qg<oo,and (1/p)+(1/q) =1. If B|X|P < 0o and E|Y|? < co then E|XY| < oo
and E|XY| < (E|X|P)Y/?(E|Y|9)/a
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and the function f(t,pi(t),...,pa(t)) is a solution of the partial differential equation

d d
1
fox 2 Z @isPiDj fpip; erifpi —rf=0.
=1 i=1
Here, we have set a(t) := o,(t)o,(t) and the subscripts t,py,...,pq mean partial

derivative with respect to the corresponding variable.

2. The price process f(t, Pi(t), ..., Py(t)) obeys the stochastic differential equation

df (t, (1), ..., Pu(t)) (1.25)

d
= (Tf(t, Pi(t), ..., Pa(t)) + Z Soi(& Pr(t), - Pa(t)) Pi(t) (1 — r)dt>

+ < For (b PL(t), ... Py(t))Pi(2) Z a@j(t)de(t)) .

Description of the market: We consider a financial market, where one riskless bond
(or MMA), d stocks and d options are traded. Moreover, we assume that we are only
allowed to hold a portfolio of the bond and the options. The options are assumed to have
price processes

FO P(t), ..., Py(t), i=1,....d, feC".
Let o(t) = (wo(t), p1(t), ..., @a(t)) be an admissible trading strategy in bond and options,

then the corresponding wealth process will be

d

X () = wo(t)Po(t) + Y sl f Ot Pi(d), .., Palt)),

i=1

where we require the assumptions that the integrals

/0 wo(s)dPy(s), and /0 gpi(s)df(i)(s, Pi(s),..., Pas))

are defined and o(t) is F;—progressively measurable.

Here, we find an optimal strategy which maximises the utility from the final wealth of the

investor, who has an initial capital of = > 0, i.e.,

max E[U(X(T))]. (1.26)

)
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The solution to the problem in (1.26) can be described as determining an optimal payoff B*
and the replicating strategy £(t) = &o(t),&1(t), ..., &a(t) for the bond and stock positions
for optimal payoff B*. Since we are not allowed to trade in stocks, we have to replicate the
stock position with bond and options, which yields the optimal terminal wealth X*(T") of
the investor. The following theorem from Korn and Trautmann [KT99| (KT framework,

hereafter) is useful to understand the formulation above.

Theorem 1.6 (KT framework). Let the Delta matriz W(t) = (V;;(¢)), .7 = 1,...,d
with
W; o= [0t Pu(t), ..., Pa(t))

be regular for all t € [0,T). Then, the option portfolio problem in (1.26) possesses the

following explicit solution:

1. The optimal terminal wealth B* coincides with the optimal terminal wealth of the

corresponding stock portfolio problem in (1.14).

2. Let £(t) = (&o(t), ..., &q(t)) be the optimal trading strategy in the corresponding basic
stock portfolio problem (1.14). Then, the optimal trading strategy
o(t) = (o(t), 1(t), ..., pa(t)) in the option portfolio problem in (1.26) is given by

(X0 = ZL a0 A, Palt)))
po(l) = 0 ;

with 3(t) = (p1(8), ., palt) and E(t) = (& (1), Ealt)):

Proof: see p.218 of Korn and Korn [KKO01].

Example 1.2. This example from Korn and Korn [KKO01| sums up the ideas presented
in this section. In Example 1.1, we calculated the optimal trading strategy in stock and
MMA portolio problem with logarithmic utility, i.e., U(x) = In(z) and get the optimal

portfolio process as
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which represents the fraction of the total wealth invested to the stocks. Hence, the number

of stocks will be
C mX(t) oy, —r X(1)

t) = — . _
S O 10
The optimal trading strategy in the option portolio problem with Theorem 1.6 will be
fp — T X(t
(’01 (t) — P ( )

oz W (H)Pi(t)
where Wy (t) = f{P(t, Pi(t)). Now, if we introduce the optimal option portfolio process as
which gives the fraction of total wealth invested to the option, then we will have
pi () Ut Pi(t))
X(1)

pp — 1 X(0)fO(t, Pi(t))

o2 X()U(t)P(t)

FU(t, Pi(t))
o (t Pu(t) ()

Using the Black-Scholes framework, for a European type call option, we will have

*
7To;otion ’

Toption (1)

option

FO, Py(t) = Py(t)®(dy (1) — Ke " T=0d(dy(t)), (1.27)
where
In (28 r+102) (T —
dy(t) = ( o )+ ( ;_Qtp)( t), and  do(t) = di(t) — oV/T — 1.
We have

fiD = @(d (1),
It is obvious that
SO, P(t))

1
fl§1) ' Pl <t>
Therefore, if we compare the optimal portfolio process in stock-MMA problem with opti-

fOEP) < [V Pt) = < 1.

mal process in option-MMA problem, we get

T on(t) < 7° for all t € [0, 7. (1.28)

option

The interpretation is that for an investor with logarithmic utility, the optimal capital that
he allocates to the option in option portfolio problem is less than the capital he invests
on the stock in stock portfolio problem. We present the main result in Figure 1.3 with

the following parameters:
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tp = 0.05 drift term,

op = 0.25  volatility

T=1 maturity time for the call option in years
r=20 short rate

K =100 strike price

0.9 b

0.8

*
option

Optimal Portfolio Process Tt

0.7

0.6

0.4

0.3

o
N
T

*

T

4 —_——TI

option

50 100 150 200 250 300 350 400 450 500
Stock Price Pl(t)

Figure 1.3: The optimal processes for call option portfolio with respect to the stock price,
with the parameter set p, = 0.05, 0, = 0.25, T'=1, r = 0, and K = 100.

We observe as the call option gets riskier (as the stock price decreases, call option gets

more out of the money), the optimal fraction of wealth gets smaller.

1.5 Portfolio Optimisation with a Compound Option

In this section, we introduce our problem of optimal portfolios with the money market
account (MMA) and one derivative contract. In particular, these derivatives are European
call and put options written on the stock of a defaultable firm and European options
written on the risky bond issued by the same firm. Since we model the default risk with

a firm-value based model, explained in Section 1.2, the stock price is a call option written
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on the firm value V(¢) with a strike price of F. Hence, we may consider optimal portfolios

of options on options when the underlying is the firm value.

The option written on another option is called a compound option and to our knowledge
the valuation formula was first introduced by Geske [Ges79|, where the author presents
a closed form formula for the call on a call option based on Merton model [Mer74]. This
formula generalises the Black-Scholes option pricing formula, i.e., if the firm is unlevered?,

then the Geske formula reduces to Black-Scholes call option formula.

Optimal portfolio problems with defaultable bonds were already studied by Korn and
Kraft [KK03|, where the authors use firm-value approach for credit risk modelling. The
authors first present the portolio problem when the portfolio consists of the firm value
V(t) and MMA, assuming that the firm value is traded (Merton portfolio problem), then
they introduce the optimisation problem when the portfolio has a risky bond written by
the firm and the MMA. This problem can be solved in two ways. One way would be
with the elasticity technique of Kraft [Kra03] for optimisation as described by Korn and
Kraft [KK03]. The second way is to optimise the portfolio using the methodology in KT
framework [KT99|. Moreover, Kraft and Steffensen [KS06]| generalised the results of Korn
and Kraft [KK03] and applied the same technique when the credit risk is modelled by the
Black-Cox [BC76] approach, which allows the occurrence of the default event before the
debt maturity. Another approach for continuous time portfolio optimisation problem with
defaultable assets is to model the credit risk within the reduced form setting. This was
first studied by Merton [Mer71] and extended in a series of papers by Kraft and Steffensen
(see [KS08] and [KS07]). Another example to the same problem is given by Hou and Jin
[HJ02].

Our main study is applying the KT framework [KT99] for optimising portfolios of options
on options and the MMA. Hence, this section provides the presentation of the compound
option valuation and the proof of the call on a call option price proposed by Geske [Ges79|.
Modifying the Geske [Ges79| formula, we valuate European options written on the risky

ZCB. Finally, we introduce examples for presenting the main results of this chapter.

2 This means either the firm has no debt, i.e., M = 0 or there is no maturity for the debt, i.e., T = oo.
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1.5.1 Compound Options

A compound option gives the holder the right (but not the obligation) to buy or sell an
option for a pre-determined strike K at maturity time 7". If we have a European type call
on a call option, the holder has a right to buy the underlying European call option, which
has the maturity time 77 > T and strike K7, for strike price K. We denote the price of a
compound option at time ¢ with X“(¢, P(t)), where the superscript CC' indicates that
the compound option is a call on a call. We denote the payoff structure at maturity of

the compound option 7" with
BOC = (XC(T, P(T)) — K) .

Here, we first derive the pricing equation for a call on a call option, where the underlying
call is written on the stock with a classical Black Scholes setting, i.e., the stock price is
modelled by a geometric Brownian motion. Note that there is a critical value of the stock
at the maturity of the compound option P;(T") = p*, which makes the holder indifferent
between exercising or not exercising the compound option. The critical value p* can be

found as a solution to the following equation using the Black-Scholes call option formula
XC(T p*y — K =0. (1.29)

Since p* is the value which makes the call option price at T equal to the strike price of
the compound option K, for the values of the stock less than p* the compound option
will not be exercised. And the compound option will be exercised for the values greater

than p*.

We present the following proposition and its proof from Korn and Korn [KKO01].

Proposition 1.1. I. For a given K > 0, a European call with strike K1 and maturity 11,
there exists a uniquely determined p* for T < Ty such that for P,(T) = p* we have

XC“”(T, p*) - K.

II. With the notations

In <P;—()> +(r+1a2) (T —1)
opVIT —t

g(t) = o 92(t) = i(t) — VT — 1,



1.5 Portfolio Optimisation with a Compound Option 23

P
;—(f)) + (r+302) (Ty —t)

Up\/Tl —1 7

the price of a call on a call satisfies

|
ha(t) = ( ha(t) = hy(t) — o, /T1 — 1.

X)) = P()P5(gi(t), hi(t))
— Ky "D (go (1), ho(t)) — Ke 7T 0D(gy(1))

fort € [0,T], where ®5(x,y) is the cumulative distribution function of a bivariate standard

normal distribution with correlation coefficient p and
L T—1 X 0 1 L1
meyrmpeo (7 )~ ((0)-(0 ©))

I. From the explicit form of the Black-Scholes formula (see p.88 of Korn and Korn [KK01]

Proof:

) we obtain
Pll(ijg)leC“” (T, P(T)) =0, (1.30)
pdim  XCUT, PL(T)) = o0 (1.31)

for T' < T). Here, the first limit is a consequence of the trivial bounds 0 and P;(7T) for
XCal(T P(T)). For the second limit note that

d

— XCMNT, p) = (dy(T

SXCUT, p) = By (T)

is positive and even increasing in p. From (1.30) and (1.31), together with the intermedi-

ate value theorem we get the existence of p* of assertion I..

II. For t < T we have
X, Pi(t)) = Eypyoy [e " TIBYC] = By pyy [e " (XCMNT, PU(T)) — K)T] .
The positive part is strictly positive if and only if X¢“(T, P,(T)) — K > 0, hence
Eypyy [e7 T (XONT, Pu(T)) = K)xcanpyrysiy]

where 1(xcau(rysky = L{p,(1)>p-}. Thus, fixing ¢ we have

W(T) = W(t) > — (m (Pikt)) —(r 5T - t)) — . (1.32)

Op



24 Chapter 1. Optimal Portfolios of Options with Credit Risk

Furthermore, 1t6’s lemma implies that
PU(T) = Pi(t). exp ((r - %aﬁ) (T = 1) + o, (W(T) — W(t))) |
Since W(T') — W(t) =1~ N(0,T —t), we rewrite the expectation above as
\/7_75 / ¢~ T (T (XCN(T, P(T)) — K) d (1.33)
With the help of explicit form of X““ (T P,(T)) with strike K, and maturity T} we have

X, p(TY) = Py ()37 T=0402g (4 (T)) — Ky e -D @ (dy(T)),

with
(T = < )Op (r T_lO;) T)’
and

do(T) = _Up\/

We rewrite (1.33) as I; — Iy — I3, hence

I = ﬁt / e ~xtn Te " TP (t).e (- (’g)(T_t)’L"qu)(ﬁl—l—alx)dx, (1.34)
where
. In (B8) + (r = 402) (T = 1) + (r + 302) (T, = T)
b o /T1 — T ’
1
o = Y.
T —T
Thus,
I Pi(t) /OO ! ‘M@(g + ayz)d
= —F——€ ATt ox)dx
1 e V2R(T =) P
= P(t) | bu=epr-t.o2=a-0®(61 + arx)da.

Here, ¢, »2 is the probability density function of a normal distribution with mean p and

variance o2 and ®() is a standard normal distribution function. Furthermore, we have

ac2
I, = Kje M-t e 2T P(Fy + asx)dr

= Kler(Tlt)/ @uzo,ﬂ:(Tft)q)(ﬁz+04237)d377

w
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where

In (B2) + (r - Lo?) (Ty — 1)
Up\/Tl - T
1

VI - T

The last component can easily be expressed as

By =

Qg =

2

x
I; = 300 o

Ke (T / r e
o A/ 27T(T — t)

= Ké’“1”®(—;jg—)::Ké’“1”® £)).

The following lemma is used for calculating I; and I

Lemma 1.1. If X and Y are independent random variables with
X~ N, 0?), Y ~N(©O,1),
then for z,a,0 € R, a > 0, we have
[OO Ouo2(2).®(B+ ax)dr = PIX >2,Y < B+ aX]|=PX >2,7Z < f],

where

Note that

PIX>#7Z<Bl=1-PX<iZ<pB|-PlZ>p=PZ<p|-PX<iZ<§.
1-P[7<0]

Furthermore,

[ oo anin—o (25 ) - ((5). (552))

Going back to the calculation of I;, with the notation given in Lemma 1.1, we have

T =w NX:Up<T_t> O'X:\/T—t

Mz = — Ti-T Oz = n—-T p<X7 Z) = - j,{;:tt
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With this setting, we rewrite [; as

B+ =D b —o,(T —t b+
L= P |o | —2LT —<I>§(w i )), R

Ty —t \/T — t

Th-T Th—T

= P(O)[®(hi(t)) — Dh(—gi(t), h(1))]
= Pi(t)[®,77" (g1 (t), (1))

Calculation of I, is similar to I; but here we have yx = 0 and pz = 0. Thus,

L = K@ g 2 —@5( - ) -
Ty —t T—1t Ty —t
=T T, T

= Kie "D (hy(t)) — D5(—ga(t), ha(t))]
_ Klefr(Tlft) [(I)Z—P::Pl (92 (t), ho (t))] )

O

Above we derived the compound option formula when it is a European call on a call option
written on the stock. Similarly, one can rewrite the compound option formula when the
underlying is the firm value with the dynamics as in (1.1). Merton [Mer74| valuates the
stock of a firm as a call option written on the firm value, where Geske |[Ges79] derives the
compound option formula by valuating a call option on the stock price as in the Merton
[Mer74| setting, i.e.,
X, V(1) = XUt Pi(1)),

when Py(t) = X9 (1, V(t)) with o,,(t, V) = G F-0, (For the proof see Geske [Ges79]),
The following proposition gives the prices of other types of the compound options, when

the underlying is the firm value.

Proposition 1.2. I. The price of a put on a call option is

X V(E) = V(PP (—au(t), (1))
+Fe 000 (—gy(1), ha(t)) + Ke 00 (—ga(1))

fort € [0,T] with
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I1. If for a put with strike F' and maturity T1 the value v* defined by
XPUt(T, U*) — K

15 given by for a fized K, then we can obtain the pricing formula for a call on this put
or a put on this call in the same way as above. If we assume a strike of K and maturity
T < Ty for the compound options, then we obtain their prices at time t € [0,T] as
XPV(t) = V()" (~a(t), ~lu(t)
+Fe M09 (—gy (1), —ha(t)) + Ke "0 (—gs(1)),

and
XPPLV(L) = V(g1 (1), —hi (1))
—Fe " M=00% (g, (1), —ha(t)) + Ke"T=ID(gy(1)),
with o
In vf + (r+302) (T 1)
i =4 >U(T_t) e =) o, VT L
and

In <@) + (r+i0) (Th - t)

ha(t) = —— L ha(t) = hu(t) — ou/Th — .

1.5.2 Options on the Defaultable Zero Coupon Bonds

In this subsection, we derive the explicit formula for a European call and put option
written on a defaultable ZCB. Geske [Ges77] applied the formulation in Geske [Ges79] in
order to value defaultable coupon bonds. Later on, Geske and Johnson [GJ84] explain the
unclear parts of the paper. Since the risky ZCB price with Merton [Mer74| setting is a
linear combination of a Black Scholes put option and a deterministic payment, the formula
is a modification of the one by Geske |Ges79]. The pricing of such contracts was studied
by Barone et al. [BAC98| in an intensity-based framework. Reporting from Barone et al.
[BACOI8|, risk free options on risky ZCBs (not vulnerable and usually exchange traded)
have little interest in the practice. On the other hand, there is quite a number of papers in
the risk literature dealing with the valuation of defaultable options (vulnerable options)
on risk-free and risky assets. After presenting the derivation of the fair prices of options

on risky ZCB, we analyse the portfolio optimisation problems.
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Proposition 1.3. Price of a Furopean call option with maturity time T and strike K,
with K < Fe " M=T) written on a risky ZCB (in Merton setting) maturing at time Ty,

where T7 > T, is given by

XUt B(t, 1)) = V()P (ou(t), —Iu(t)) (1.35)
+FeTET0RN (ga(t), ha(t)) — Ke "0 (g5(1)),

where
In (U8) + (r + 202) (7 = 1)
91(t) = ;o g2(t) = q1(t) — o VT —t,
o,V I — 1t
In (@) + (r+ 302) (T — t)
hy(t) = ho(t) = hy(t) — ou\/Ty — L,
1( ) Ov\/m ) 2( ) 1( ) g 1
and
J— T_t .
P1 T —¢ P2 = —P1s
e.g.,

X 0 1 m
(3 )~2((0) (0 %))
and, v* is the value of the firm which solves the following equation

B(T,T)) — K =0.

Proof: From the explicit form of the BS type formula (1.6), we obtain

lim B(T,Ty) =0, (1.36)
V(T)10
lim B(T,T)) = Fe "™M=1 (1.37)
V(T)1+o0

for T < T7. Here, the first limit is a consequence of the trivial bounds 0 and V(7T') for

B(T,Ty). For the second limit note that

d _
BT Ty) = &~ (T))

is positive and decreasing in V. From (1.36) and (1.37), together with the intermediate

value theorem, we get the existence of v*.
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Under the pricing (or risk-neutral) probability measure @), we have the European call
option formula with maturity time 7" and strike price K, where the underlying is the

defaultable ZCB with maturity 77 > T as
X9, B(t,Th)) = Eypumy e "T(B(T,Ty) — K)T] . (1.38)
In order the payoff function to be strictly positive, we rewrite the equation above as
E, pury [e7" TN BT, Th) — K)lparsiy) - (1.39)

Here, we assume that there exists a critical value of the firm v*, which makes the call
option holder indifferent between exercising or not exercising it on the maturity of the

call option. Hence, v* is the value, which solves the following equation
B(T,T)) = K. (1.40)
Using the same idea we have in the proof of the compound option formula, we have
Liparmysky = Lv@)y>vs-
Hence, we rewrite (1.39) as
Ey puryle” "N B(T, T) — K) Ly rysv)-

With a small modification to (1.32), we will have

)(Call(T7 B(T, T1>> — efr(Tft)

-2 (o (i) (- )

Plugging the explicit formula for the ZCB price as in (1.6), we have

/ e =0 (B(T, Ty) — K)du,

with

2

) {V(T) O(—hy(T)) +Fe " M=Dd(hy(T)) — K | du,

1= (hy (1)

_ e—r(T—t) > 1
! /w \V2m(T —t)
(1.41)

with
In <@) +(r+ic) (I -T)

UU\/Tl -T

I (T) =
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and

We express (1.41) as Iy — I + I3 — I, where

o 1 (z—00(T—1))?
L=V(t ¢ 0 dz=V()D(g:(t)). 1.42
1 UL}¢%ﬁtB (091 (1) (1.42)
L=V(t) / R 5 B8, + ana)d (1.43)
= — & —t Qo )ax .
’ w 27(T —t) 2
with
In (@) 4 (r =1 (T =)+ (r+L02) (T, - T)
b2 = oI =T
and
1
o =
VLT
With Lemma 1.1, we rewrite I, as
L =V (@) [@(hi(t)) — P5(—g1(t), ha(t)] = V()L (g1 (2), M (2))- (1.44)

Now, we can make a simplification

I = I = V(1) [2(g1(2)) — 5" (91 (1), ha (1))] = B3 " (1 (1), —ha (1))

We calculate I5 as

o 1 12
Iy = Fe =Y / — e T O(fs + agr)de 1.45
3 ; 27 (T — 1) (B3 37) ( )
with
5 In (@) + (r—102) (T — t) 1
= s Oq = —,
’ oI =T ST T =T
hence,

Iy = Fe "0 [ (hy(1)) — B5(—ga(t), halt))] = Fe 0057 (g (), ha(t)).  (L.46)

Finally, we rewrite I, easily as

22
e T dy = Ke " T (gy(t)) . (1.47)

e L
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Proposition 1.4. Price of a European put option with maturity time T and strike K,

written on a risky ZCB (with Merton setting) maturing at time Ty, with Ty > T is given

by
XPAL B T)) = V(D% (o1 (0), ~ha(0) (119
e (1), alt) + e T00(—g5(0)
where »
o= "LE) s il
ha(t) = (+) ;(T; %_af) B0 ) = () — oo/ T,
and

oV e () (1) (2 7))

and v* is the value of the firm which solves the following equation

K — B(T,Ty) = 0.
Proof: Similar to proof of Proposition 1.3.

1.5.3 Optimal Portfolio Problem with a Compound Option

In this subsection, we will combine some results from the previous subsections in order
to optimise a portfolio, consisting of a compound option and a riskless bond (or MMA).

The dynamics of the MMA is
dPy(t) = Po(t)rdt, Po(0) =1,

and the dynamics of the firm value with the risk-neutral probability measure @) is given

by
av(t)
—= =rdt+o,dW(t), V :
D) rdt+o (1) (0)>0
where 7 is the deterministic interest rate, o, > 0 is the constant volatility and W (¢) is the

Brownian motion. Assume that the investor can invest his initial wealth x > 0 only in
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the MMA Py(t) and the call on a call option X“C(t, V(t)), where the underlying is V (¢).

The corresponding wealth at time ¢, X (¢) can be expressed as
X(t) = o) Po(t) + @1 (X (1, V (1), X(0) = .

Using the general form in Definition 1.1, the trading strategy o(t) = (@o(t), p1(t))" is
a R?— valued progressively measurable process with respect to the filtration {F;}iejo 1)

generated by the standard Brownian motion satisfying

T
/ lpo(t)|dt < oo a.s. |
0

/T(%(t)XCC(t, V(t))*dt < 0o as. .

The corresponding portfolio process m(t) = (mo(t), m1(t)) will be given as

p1(H X,V (1)

X0 , (1.49)

m(t) =

_ wo(t) Po(t)

X0 (1.50)

mo(t) := 1 —m(t)

With the assumption that the trading strategy is self-financing, (implies that portfolio

process 7(t) is also self-financing) the corresponding wealth process can be expressed as
t t

X(t) = x+/ ©wo(8)dPy(s) +/ ©1(5)dXC (5, V(s)). (1.51)
0 0

Hence, our continuous time portfolio optimisation problem will be similar to (1.14), but

ignoring the consumption process, i.e., ¢(t) =0, Uy =0, Uy = U, we have:

Jnax B [U(X*™(T))] (1.52)

with

Al(z) = {7?(~) c A(:c))E [U(X(T))7] < oo}.

The solution to our problem defined in (1.52) can be summarised in the following steps:

1. Assume that the firm value V/(¢) is traded, and the portfolio consisting of V' (¢) and
the MMA, Py(t) is optimised (Portfolio problem by Merton [Mer69], [Mer71]).



1.5 Portfolio Optimisation with a Compound Option 33

2. Since Merton [Mer74| considers the stock of the firm, a call option, i.e.,
Pi(t) = XC4(¢ V(t)), we can use the KT framework |[KT99] and optimise the
portfolio consisting of the stock P;(t) and Py(t).

3. We use the same methodology and results of the second step, and the relation
Xt Pr(1) = X,V (1)),

then make a second iteration for optimising the portfolio consisting of X (¢, V (¢))

and Po(t)

Alternatively, we can skip the second step and directly solve the optimisation problem
in the third step, however, we present the 2nd step in order to see that our findings are

indeed in line with the results of Korn and Kraft [KKO03|.
1. Merton portfolio problem:

In the first step, the setting leads us to Merton’s portolio problem [Mer69] and [Mer71].
Under the assumption that the firm value is tradable, and the wealth process follows the
dynamics with

dX(t)

X)) (r + mp)dt + modW (1), X(0) = o, (1.53)

where we denote the constant, risk-free short rate with r, the excess return of the firm
value by a = p, — r. Here, m, stands for the proportion of the total wealth put into the

firm value. The classic portfolio problem is then to solve

max E[U(X™(T))], (1.54)

™

where T' denotes the investment horizon, and U is the utility function. We present the

result in the following proposition.

Proposition 1.5. With the power utility function U(x) = v a7,y < 1, # 0 the optimal
portfolio process for the problem in (1.54) is

[0
(1=7)o]

Note that for logarithmic utility function U(xz) = In(x) the optimal portfolio process ) is

T (t) = (1.55)

obtained for v = 0.
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Proof: (see p. 236 Korn and Korn [KKO01])
2. Optimal portolio problem with the stock and MMA

The problem in the second step was already studied by Korn and Kraft [KK03]. We
present their result in the following proposition to compare it to our result derived within

the KT framework.

Proposition 1.6. If the investor can only invest into the MMA denoted, by Py(t) and
the stocks Py(t) issued by the company, then the optimal stock portfolio process is given by

o Py (t) B
‘ Samwm: Jor  Ulx) =In(x)
7T* t = v =

Pl( ) €p, o Put)
(1-7)a2 ®(h1(t))V (1)’

where the elasticity of the stock® is defined as ep, = % : Pll and ®(+) is a standard normal

distribution, and
In <@) + (r+103) (T —t)

hl(t): g \/Tl—t

Proof: see Korn and Kraft [KK03].

Note that in the problem above, we do not have any constraints on the number of the
bonds and stocks that the firm is issuing. In fact, in Merton [Mer74| setting, the number
of stocks and bonds is limited to one. Here, we use the “small investor assumption” and
assume we do not have the upper bound constraint for the number of stocks and /or bonds.
The optimisation problem with the constrained case is also studied by Korn and Kraft
[KK03]. Their solution method to the portfolio problem in Step 2 is just the generalisation
of the ideas presented in Korn and Trautmann [KT99|. Therefore, we provide a similar
solution constructed within the KT framework, in particular using Theorem 1.6 with the

presentation below.

Merton [Mer74] assumes that the stock of the firm is a European call option written on
the market value of the firm, i.e., Pi(t) = X““(¢,V(t)). Hence, Theorem 1.6 is applicable
here; further, we have the same optimal payoff B* as in Merton portfolio problem in step

1. However, we replicate the firm value position with the stock and MMA positions since

3We refer the interested reader to Kraft [Kra03] for more details on the elasticity approach.
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the firm value is not a tradable asset. With Theorem 1.6 and from (1.5) we have the

replicating strategy as
OP(t
w(t) = 20— o, ) (1.56)

From step 1, we have the optimal trading strategies (t) = (&o(t), &1(t)) as

) =",

and
(1= m)X()
Fy(t)

Hence, the optimal trading strategy for the second step using Theorem 1.6 will be

fo(t) =

B 1 B 1 T X (t) B 1 aX(t)
pr(t) = V() - &(1) = ) V)~ a0n@) V() (1.57)

where for the MMA we have the optimal trading strategy as

X(t) - 901@)]31@).

po(t) = Bult) (1.58)
Now we can derive the optimal portolio process
. o) P(t) 1 aX(t)P(t)  « Pi(t)
OSTXG ) avox© | memove

where we have the same result for U(z) = In(z) as in Proposition 1.6. Note that for

Ulx) = %:ﬂ, we have

Lo a (1)
) = A S )V )

3. Optimal portolio with the compound option and MMA

Here, we imitate our calculations from step 2 and solve the problem we defined in (1.52).
From the first part of Theorem 1.6, we have the optimal payoff B*. Hence, we search
for the optimal strategies for replicating the position on stocks with the positions in the

option and the MMA.

Using Theorem 1.6, and (1.5) we have the replicating strategy for our problem for U(z) =
In(z) as follows:

_ OXCl(t Pi(t)) _ OXC(t, V(1)) _ OXC(t, V(1)) jOP1 95 (g1(t), (1))

U, (t) o oP, v v o((t))
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with
In (V(f)) + (r + 503) (T —1t)
t) = ,
n(t) o, VT — 1
In (@) + (T + %ag) (T, —t)
h1<t) = y
Ty T1 —t
and with the correlation coefficient
Tt
PU=NT

The optimal trading strategies from the previous step are given by

X)) o X()

= L = 7
SO="50) = 2@V’
1—75 )X (¢t
o = L= m)X(0)
Fo(t)
With Theorem 1.6, the optimal trading strategies of our problem defined in (1.52) will be
a X(t)

orlt) = (MO 460 = S v

X(t) = ()X V(1)
Fo(t) '

Now, we have the optimal portfolio process for our call on a call option 7/ as

wo(t) =

L aWXCVE) o X V)
e =TT T R ), M)V (1.60)

which is the fraction of total wealth optimally invested to the compound option.

Proposition 1.7. For a portfolio consisting of a MMA and the compound option of call
on a call type, written on the market value of a firm, the optimal portfolio process, giving

the optimal proportion of the total wealth invested to the compound option is

o XCC(t,V (1) o
o2 B0 (g1(6),hn (D))V (7) for — U(z) = In(z)

a XCC @,V (1) 1
(1-7)0% @51 (g1 (t),h1 (1)) V (t) for Ulz) = V;,;v

Let us compare the optimal portfolio processes w7 and 75, for a log-utility investor. We

have the property that

©5(91(2), ha (1)) = (g2(2)) @ (ha (1))



1.5 Portfolio Optimisation with a Compound Option 37

for a positive correlation. Since p; = % is always positive, we can write

XCwve) o XV
05 (91(1), ma())V (1) = @(g1(8))@(ha (1)) V (2)°

Moreover, we know that

XOO(, V(1) < XUt V(1) = Py(t).

Therefore,
o XCO@VW) e P o PO,
o ®(gi(1)@(M(t)V(t) ~ 02 (i) P(()V(E) ~ o2 S(()V(E) 77

Remark 1.4. The interpretation of the result we have in Proposition 1.7 is that for an

investor with logarithmic and /or power utility function, we will have the optimal portfolio

processes in the following order

Too(t) < 7p (t) <)

v

for all ¢ € [0, 7. (1.61)
Example 1.3. Let us present the results in an example. Consider the case when we have
the following parameters:

ty = 0.05 drift term
o, = 0.25 volatility

T = 0.8 maturity time for the compound option
Ty = 1.5 maturity time for the underlying call option
r= 0 short rate

K= 20 strike price for the compound option
Ky = 100 strike price for the underlying call option

We observe from Figure 1.4 that an investor with log-utility will invest less in the com-
pound option than he invests in the call option, as expected, since the call on call option is
a riskier product than a European call option. The deeper the call option and call on call
option are in the money, the closer 7, and 75 get to the optimal value in stock-MMA

problem, denoted by 7. O

Alternatively, we can solve the problem in the third step in a direct way using KT frame-
work, by skipping the second step. Say, we have the solution in the Merton portfolio
problem as 7} from step 1 for U(z) = In(z), then the replication strategy for the call on
call option XCC(t,V (t)) is

OXCC(t, V(1))
vV (t)

(L) = = 05" (91(2), ha (1))
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Figure 1.4: The optimal portfolio processes of stock, call option, call on call option vs.
value of the firm, with the parameter set p, = 0.05, 0, =0.25, T'=0.8, T} = 1.5, r = 0,
K =20, and K; = 100.

Having the same payoff as the Merton problem, with Theorem 1.6, the optimal trading

strategies from the Merton problem are

T X (t)
t) = —
gl( ) V(t) )
and
1—m) X (¢
go(t) = L=
Py(t)
Now, again with Theorem 1.6, the optimal trading strategy for the compound option is
&)« X(t)

SOlCC(t) T WCC(H A2 &P .
Ure(t)  op @5 (gi(t), m()V (¢)
And the optimal portfolio process is

vty = ECOXCUVE) 0 X0,v(0)
o X A PONNONZO)

(1.62)

Comparing the results in Proposition 1.7 and (1.62), we see that they are exactly the

same, therefore, we can apply the same formulation above in order to have the optimal
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portfolio strategies to portfolios of MMA and call on put option X“F (¢, V(t)), put on a
put option XFF(¢,V(¢)) or put on a call option X (¢, V(¢)).

Proposition 1.8. Using the KT framework in Theorem 1.6, the optimal portfolio pro-
cesses for the call on put, put on call and put on put options, where the underlying is the

market value of the firm, are as follows

e~ 0 XOV)
= TR (0, - )V
o — o XTCV)

e o (a0, I )V ()’
O XPri L)

P R (0, )V (D)

with the notation given as in Proposition 1.2 and assuming that the investor (with loga-
rithmic and power utility functions) can only trade in these options and the MMA without

an upper bound on the number of securities issued by the firm.

Example 1.4. Let us analyse the problem when the compound option is a put on the call
type. On Figure 1.5, we observe the optimal portfolio process for the put on call option.
Negative portfolio process in Figure 1.5 implies short selling of the put on call option in
the portfolio. Note that the optimal strategy (not the optimal portfolio process) attains

the maximum expected utility.

1.5.4 Optimal Portfolio Problem with an Option on the Default-
able ZCB

In this subsection, we analyse the optimisation problem of a portfolio consisting of the
MMA and European call or put option written on a risky zero coupon bond with face
value F' and maturity T;. Assuming that 73 > T, during the investment period (0,7
we can not have a default event since the Merton [Mer74] model has the restriction that
a default event can only occur at the maturity of the ZCB. However, a low firm value
indicates a high probability of default and a low bond value. We also do not have a

constraint on the number of bonds issued by this firm.

As before, the problem will be solved in a three step procedure,
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Figure 1.5: The optimal portfolio processes of stock, call option, put on call option vs.
value of the firm, with the parameter set p, = 0.05, 0, =0.25, T'=0.8, T} = 1.5, r = 0,
K =20, and K; = 100.

1. The optimisation of a portfolio with the firm value and the MMA, where the firm

value is traded (Merton portfolio problem).

2. The optimisation of a portfolio consisting of the defaultable bond issued by the firm
and the MMA.

3. Using the results of the second step, we optimise a portfolio with the European call
and/or the put option written on the defaultable bond and the MMA within KT

framework.

1. Merton portfolio problem
The result is given in Proposition 1.5
2. Optimal portfolio with the risky ZCB and MMA

In the Merton [Mer74] model, the value of a risky ZCB is given by (1.6). We observe the
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risky bond price when K = 100 in Figure 1.6. Our aim is to find the optimal portfolio

110 T

100

80

Bond price

60

Debt Value = F
—4— Bond Price

50 '
50 100 150

Firm Value V(t)

Figure 1.6: The price of the risky bond in the Merton setting with respect to the market
value of the firm.

process that maximises the final wealth of the investor, i.e.,

max E(U(X™(T))), (1.63)

™

when the wealth of the investor equals
X(t) = po(t)Po(t) + @1 () B(t, Th).

Korn and Kraft [KKO03] present the solution of the problem in (1.63) with the following

proposition.

Proposition 1.9. If the investor can only invest in the MMA Py(t) and the risky bond

B(t,Ty) with Ty > T issued by the company, then the optimal bond portfolio process is

given by )
a B(t,Tl) .
o | wEEeve for — U(z) = In(z)
7TB = — =
€B a B(t,T) 1
Tz stmmve  Jor Ule) =327
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where the elasticity of the bond is defined as eg = ag‘gig) . B‘(/t(?l)'

Proof: (see Korn and Kraft [KK03|)

We present the solution within the KT framework. From the first part of Theorem 1.6,
we have the same optimal payoff as in Merton portfolio problem from step 1. Replicating
the firm value position with the defaultable bond and MMA positions, from second part
of the Theorem 1.6 and from (1.6), we find the replicating strategy as

Uy (t) = % = O(—hy(t)). (1.64)

From step 1, we have the optimal trading strategy as

£1<t> = ﬂ-%/)ft()t) :

Hence, the optimal trading strategy for the risky ZCB will be

1 (X (t) 1 aX(t)

pr(t) =W(t)™H - &i(t) = ) ”V(t) R TENORELO] (1.65)

where the optimal trading strategy for the MMA, is

o) = = BB T) (1.66)

Now, we can derive the optimal portolio process as

(4 — p1(t)B(t,T1) _ 1 aX(®)B(tT) _ o  B(tT)
=% ) oVORE  Renoyve 00

v

Comparing the result for U(x) = In(z) in Proposition 1.9, we have the same finding. Note

that for U(x) = %x” we have

« B(t,Tl)
(L =)o} (= (B)V ()

T (t) = (1.68)

3. Optimal portolio with the option on risky ZCB and MMA

In this step, we optimise the portfolio of European call and/or put option written on the
risky ZCB and the MMA. Using the same methodology as in Proposition 1.7, we present

the results with the following proposition.
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Proposition 1.10. If the investor is allowed to invest only in the European call option
written on the risky ZCB and the MMA, we will have the optimal portfolio process TF ;i gond

for the call option with maturity time T and strike price K as

o XCal( B(t,T1)) _
o2 B2 (g1.(1),—h1 (D))V (D) for  Ulz) =In(z)
; t) = 1.69
7TCallB0nd( ) . XCall(t7B(t,T1)) for U(x) B lx’y ( )
)02 32 (g1 (1), —h1 )V () R

with maturity of the underlying ZCB is denoted by T, with Ty > T and p? is the correlation

coefficient given as in Proposition 1.5.

Example 1.5. Consider the case when we have a call option written on the risky bond

with the following parameters:

0.05 drift term

0.25 volatility

0.8  maturity time for the call option in years

1.5 maturity time for the underlying call option

0 short rate

80 strike price for the call option

100 debt value for the underlying defaultable bond

NN s O F
I

We can observe the optimal portfolio process with the logarithmic utility function for the
call on the risky ZCB with respect to the firm value in Figure 1.7. The interpretation
is that with increasing firm value, the probability of the default of the ZCB decreases.
This implies an increase in the price of the ZCB and the call option on this ZCB. For an
investor with logarithmic utility, the fraction of the wealth that he invests on the risky

ZCB and call option on the ZCB increase as well.

Proposition 1.11. If the investor is allowed to invest only in the European put option
written on the risky ZCB and the MMA, we will have the optimal portfolio process for a

FEuropean put option with maturity time T and strike K on the risky bond as

a XPut( B(t,11)) B
S a3 <I>§1(fgl(t),fh1(tl)>vu> for U(z) = In(x)
W;utBond(t) = e ! (170)
a XU, B(t,T 1
- (1=)e? <1>§1(—91(t)7—h1(;))vu) for Uz) = Sa7

with maturity of the underlying ZCB is denoted by T, with Ty > T and p* is the correlation

coefficient as given in Proposition 1.5.
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Figure 1.7: The optimal portfolio processes of stock, defaultable bond, call option on
defaultable bond vs. value of the firm with the parameter set p, = 0.05, o, = 0.25,
T=08T,=15r=0, K=380, and F' = 100.

Example 1.6. Let us give an example when we have a put option written on the risky
ZCB in our portfolio. Consider the case when the derivative has the same paramater
set as in Example 1.5. We can observe the optimal portfolio process for the put option
written on the risky bond with respect to the firm value in Figure 1.8, where we use the
logarithmic utility function. Note that the negativity of portfolio process is interpreted as
short selling of the put option on the ZCB in the portfolio. This optimal portfolio process

has a similar behaviour as in the example on the put on call option.
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Figure 1.8: The optimal portfolio processes of stock, defaultable bond, put option on
defaultable bond vs. value of the firm, with the parameter set u, = 0.05, 0, = 0.25,
T=08T,=15r=0, K=20, and K; = 100.

1.6 Summary

In this chapter, we derived optimal portfolios including compound options, when the
compound options has the market value of a firm as underlying. Modifying the com-
pound option valuation of Geske [Ges79|, we priced European options written on the
risky ZCBs. Further, we optimised the portfolios consisting of the risky ZCB and a
MMA, and of European options written on the defaultable ZCB. For that, we first sup-
plied the necessary information about the ingredients of our optimisation problem, namely
the firm value based credit risk models, continuous-time portfolio optimisation with the
martingale approach, and the methodology for optimising portfolios of options, named as

Korn-Trautmann framework during this work.

Our main findings show that, for the investors with logarithmic and power utility func-

tions, the riskier the option gets, the less proportion of wealth they invest in the risky
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product in the portfolio. For the portfolios consisting of put options written on the call
option and on the risky ZCB, we calculated negative optimal portfolio processes implying

shortselling of the assets.

There are of course many shortcomings of our modelling approach. Among those, we can
comment on two important ones. Firstly, we use the classical structural model by Merton
[Mer74| for credit risk, where the occurrence of the credit event is allowed only on the
maturity of the debt, i.e., T7. Hence, we do not allow the credit event happen during the
investment horizon, i.e., [0, 7] via assuming that 77 > T. Second, the number of bonds

and /or stocks issued by the firm is not restricted.

The first shortcoming can be handled by using the Black-Cox credit risk model [BC76],
where an intermediate default is possible during the investment period [0, 7]. Optimising
the portfolio of a risky bond in the Black-Cox model was studied by Korn and Kraft
[KK03]. To our knowledge, the optimisation problem with an option on the defaultable
bond, where the credit risk is modelled in Black-Cox framework is still not studied. We

leave this for a future research problem.

The second shortcoming is the "small investor assumption", which omits the upper bounds
on the number of bonds and stocks issued by the corporate firm. This problem might
also be handled using the accounting equation, i.e., the market value of the firm equals
the sum of the risky bond price and the equity price of the firm, so this can be extended
to a constrained problem in a future research topic as well. Further extensions to our
problem can be done, making the problem applicable in practice via optimising portfolios

of vulnerable options on the risky ZCB, or even coupon paying bonds.



Chapter 2

Sovereign CDS and Market-implied
Credit Risk of Turkey

2.1 Introduction

Sovereign Credit Default Swap (CDS) contracts are being actively traded in emerging
markets with increasing volumes and these are typically the most liquid credit derivative
instruments in the related countries. As the credit literature documents', CDS contracts
are better proxies for credit risk modelling than the risky bonds due to two main reasons.
Firstly, the CDS contracts are typically more liquid than the underlying reference assets.
Second, being unfunded contracts, they are not influenced by the tax effects. This chapter
analyses the market implied (or risk-neutral) probabilities of default extracted from the

market quotes of the Turkish sovereign CDS contracts.

The sovereign CDS’s have very similar features to corporate CDS contracts but there are
some differences that stem from the reference asset, premium payment interval, and the
credit event definitions. The reference asset in a sovereign CDS contract is the sovereign
debt, which usually requires a different modelling framework than the corporate debt,
since sovereign credit risk is driven mainly by economical and political factors. In general,
sovereign CDS contracts have semi-annually premium payments guaranteeing the physical
delivery of the underlying reference upon a credit event. The credit event definitions in
sovereign CDS include obligation acceleration, failure to pay, restructuring/renegotiation

, and repudiation/moratorium of the sovereign. Note that the “default” is excluded since

'See Berndt et al. [BDDT05] and Hull et al. [HPWO05].

47
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there is not an international bankruptcy court regulating the sovereign issuers. However,
we use the term “default probability” as a measure of the arrival risk of the credit event.
Further, the outright default of a sovereign is a very rare event and it is rather a political

decision.

In this chapter, we model the credit risk in a setting that allows us to extract the term
structure of the market implied default probabilities. We are interested in practical
methodologies for extracting the probabilities, rather than explaining the economical
and /or political factors that might trigger the credit event in a sovereign. In order to
do so, we first bootstrap the term structure of the market implied intensity rates implicit
in the market prices of the sovereign CDS contracts. A second method, where we min-
imise an objective function with respect to the risk neutral forward conditional default
probabilities, is also presented for comparing the methods. Furthermore, we explore the
risk premium for the Turkish sovereign in depth. We use the credit risk model introduced
by Jarrow and Turnbull [JT95] (JT model hereafter), which is a pioneer work in reduced

form models, due to its simplicity in the calibration.

The JT model assumes a constant, deterministic intensity rate allowing independence
from the expected recovery rate and the short rate process. The exogenous intensity
process may of course depend on some macroeconomic variables? but this is not in the
scope of our analysis. The constant intensity process assumption provides easiness in
numerics but do not significantly explain the market rates as documented by Frithwirth
and Sogner [FS06|, where the authors examine the German corporate bond market. Their
findings show that the intensity should be modelled within a stochastic framework as in
the Lando [Lan98| model, or the Duffie and Singleton [DS99] model. In this sense, we
provide a parallel analysis to Frithwirth and Sogner [FS06], keeping in mind that instead
of the corporate bonds, the CDS market rates are used for extracting the market implied

intensities of the credit risk.

We fix the expected recovery rate under risk-neutral measure a priori, hence, CDS spreads
are forced to be driven only by risk neutral intensity of default. A similar paper analysing
the credit risk parameters of Japanese government and major Japan banks is by Ueno and

Baba [UB06|, where the authors use the Duffie and Singleton [DS99| credit risk model,

2See Duffie et al. [DPS03], and Pan and Singleton [PS07a].
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allowing a joint estimation of intensity and the recovery rate. In contrast, Friihwirth and
Sogner [FS06] report that joint estimation is numerically unstable. Moreover, Rocha and
Garcia [RG04] illustrate the calibration of a structural credit risk model for pricing the
sovereign CDS including an analysis with Turkish sovereign CDS, hence we compare our

results with those by Rocha and Garcia [RG04]| for a certain date in the sampling period.

There are many papers in the credit literature about corporate CDS valuation and
their standardisation is documented by International Swaps and Derivatives Association
(ISDA) in 2003. A detailed literature survey is done by Das and Hanoua [DHO06|, where
they present the CDS spreads with structural and reduced form credit risk models. Pricing
of corporate and sovereign CDS is quite similar, but for the exact formulation and a list of
references, we refer the reader to the paper of Realdon [Rea07], where the author extends
the one factor model of Pan and Singleton [PS07a] with a two factor modelling approach.
Moreover, Pan and Singleton [PS07a| give detailed analysis about the time series proper-
ties of the risk neutral intensity rates of three sovereigns, namely Mexican, Turkish, and
Korean. The authors use the risk-adjusted short rate modelling approach introduced by
Duffie and Singleton [DS99], where they claim the CDS prices reveal not only the market-
implied hazard rates but also the loss rates (Loss rate = 1 — Recovery rate). Papers
about sovereign CDS market are Ranciere [Ran91|, Packer and Suthiphongchai [PS03].
Another reference is Keller et al. [KKS07a|, where the authors analyse the sovereign risk
of Turkey, with contingent claims approach. Furthermore, an empirical work on Turkish
CDS contracts is done by Baklaci and Arslan [BAO6], where their findings show that
the sovereign CDSs of Turkey with 10 year maturity are overpriced using the valuation

methodology introduced by Ranciere [Ran91].

The remainder of this chapter is as follows. In Section 2.2 we present a detailed survey
about the intensity based (or reduced-form) models and supply the mathematical back-
ground necessary for a better understanding of the risk models. Since these models are
also used for pricing the credit risk derivatives, we focus especially on methodologies for
constructing the term structures of the risk-neutral PDs for pricing the sovereign CDS in
Section 2.3. In Section 2.4 we run empirical analysis on the sovereign CDS contracts of
Turkey and present the results. Section 2.5 highlights the linkage between the actual and

the risk neutral intensities. The last section summarises and gives our main conclusions.
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2.2 Reduced-form Credit Risk Models

In this subsection, we present widely accepted reduced form models in corporate credit
risk literature as well as in the financial industry. The general idea of reduced-form
model is to model the default arrival time with a Poisson arrival process. These models
accept the default event as a sudden “surprise”, implying an inaccessible stopping time
for the credit event in contrast to structural models with predictable stopping times,
e.g., Merton [Mer74] model. The pioneers of the reduced form modelling are Jarrow and
Turnbull [JT95], taking a term structure of default free interest rates and a maturity
specific credit-risk spread as given. Given these two term structures, the arbitrage free
pricing of risky bonds can be done using the martingale measure technique. Then, Jarrow
et al. [JLT97] introduce a Markovian model for the term structures of credit risk spreads.
The authors extend the model by Jarrow and Turnbull [JT95] via including the credit
rating information into the risky bond pricing methodology. Lando [Lan98| generalises the
model proposed by Jarrow et al. [JLT97| with a Cox process for the default probability,
providing randomness of the intensities and credit spreads. Furthermore, Lando [Lan98|
allows the dependence between risk-free term structure and the default process via a
common state variable. The model proposed by Duffie and Singleton [DS99] allows us to
use the standard term structure models by parameterising the risk-adjusted short rate,

instead of the standard risk-free short rate process.

2.2.1 Preliminaries for Reduced-form Models

In this subsection, we present the mathematics behind the reduced-form credit risk models
and give necessary definitions, mainly from Schénbucher [Sch03|, Bielecki and Rutkowski

[BRO2|, Durrett [Dur99| and Lando [Lan02].
Stopping Time

In order to model the arrival risk of a credit event, which is the uncertainty whether a
default will occur or not, we need to model an unknown, random point in time 7 € R*.
Since there is a possibility that the default will not occur, oo is also included in the set

of realisations of 7. The connection between stopping times and the filtration (F) >0
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is that if 7 is the time of some event, we know that this event has occurred or not from
the information contained in F;. Mathematically, we can define the random time 7 as a

stopping time with the following property:
(r<tyer wt>o. (2.1)

Furthermore, the stochastic representation of a stopping time is possible with an indicator

process which jumps from zero to one at the stopping time:
NT(t) = 1{T§t}- (2.2)

The property, which determines whether the stopping time is predictable or totally inac-
cessible, set the reduced form models apart from the structural models of credit risk (see
Chapter 1). If it is a predictable stopping time, then the indicator process of the stopping

time is a predictable process as well. A predictable stopping time has an announcing

sequence of stopping times 7, < 7, < ... with
T, <7 and lim 7, =7 for all w € Q with {7(w) > 0}. (2.3)

This implies the existence of a sequence of early warning signals 7,, that occur before
7 and announce the predictable stopping time. In classical firm value based credit risk
model, the default time is predictable and this makes sense in economical interpretation

of the credit event, since the firm might give bad signals before it defaults.

For the totally inaccessible stopping time 7, there is no predictable stopping time that

gives information, i.e., for all predictable stopping times 7" we have :
Plr =7 < o0] =0. (2.4)

In reduced form models, the default time is totally inaccessible, implying that the default
event is a sudden surprise. However, as it is highlighted by Jarrow and Protter [JP04], the
main distinction point in the debate between these two types of credit risk modelling is the
information set available to the modeller and not the type of the stopping time. If we are
a manager of a firm, then we will have full access to all the information about the firm’s
assets and liabilities. Thus, we rather use a structural model, which implies a predictable

default time. On the other hand, if we do not have full access to the information set,
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then we use only what is available in the financial market. Hence, we use a reduced
form approach, which implies a totally inaccessible stopping time. Furthermore, the link
between the reduced form and structural credit risk models based on the information
set is studied by Guo et al. [GJZ05]. Moreover, structural modelling approaches with

incomplete information are presented by Giesecke [Gie06].

Hazard Rate

The hazard rate (also known as failure rate, or default intensity) is the ratio of the

probability density function to the survival function, with the following definition.

Definition 2.1. Let 7 be a stopping time and F(T) := P[r < T| be its cumulative
distribution function. Further, assume that F(7") < 1 for all 7" and that F(T) has a
probability density function f(7"). The hazard rate function h of 7 is defined as:

_ S (1)
M) = 1—F(T)  S(T)

(2.5)

where S(t) is called the survival function, S(t) = P[r > t]. Hence, another representation

will be
_ —dlnS(T)  S(T)

W)

dt S(T)

Solving the differential equation above, we will have
T
S(T) = exp (—/ h(s)ds) (2.6)
0

The hazard rate h(t) can be interpreted as the local arrival probability of the stopping

time per time unit:

<7<
h(t) = lim Pt <7 <t+dt|t > 1

dt—0 dt i (27)

Forward Default Probability and Intensity Process

The probability of default between time interval (¢, 7] with T > ¢ is S(t) — S(T"). By
Bayes’ rule, the probability of surviving to time 7', given survival to time ¢ but no other

information about the issuer or the economy is

ps(t,T) = % (2.8)
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Hence, if we define the forward default probability as
pd(t,T)=1—ps(t,T),

which gives the probability of default between time points ¢ and T given survival to time
t (no other information). Moreover, from (2.8) and (2.6) in terms of hazard function, we

can express it as

T
pd(t,T) =1—exp (—/ h(u)du) , with T >t > 0. (2.9)
t

The reduced form models are also called the intensity based models, therefore, we give here
the notion of the link between the intensity and the hazard rate. The hazard rate function
h(t) is used to characterise the distribution of the survival time, hence it is also called the
credit curve giving the term structure of the default probabilities. If A is continuous, then
for small dt we have

h(t)dt = P[t <7 <t+dt| 1> 1.

In the intensity based approach, we model the first arrival time of a default event 7 as a
Poisson arrival time. Hence, we have a constant mean arrival rate h and it is called the
intensity. In general, X\ is used for denoting the intensity of the default. As Bluhm et
al. [BOWO03]| indicate, some authors explicitly distinguish between the intensity \(¢) as
the arrival rate of default at ¢ conditional on all the information available at ¢ and the
forward default rate (or hazard rate) h(t) as the arrival rate of default at ¢, conditional
only on survival until ¢. Of course, if the available information is only the "survival”,
then the hazard rate and the intensity are identical. In this chapter, assuming that the
survival is given as the whole information set, we denote the hazard rate (or intensity

interchangeably) with A. Hence, the forward conditional PD in (2.9) can be written as

T
pd(t,T) =1 —exp (—/ )\(u)du) , with T >t >0. (2.10)
t

Formulation of the conditional forward PD depends on whether the intensity process is
deterministicly or randomly varying. If we have a deterministic intensity process, then the
intensity coincides with the forward default rate given that the only information relevant

is the survival up to that date. Whereas, in a random intensity setting, (2.9) modifies to

pd(t,T)=1— E {exp (- /tT)\(u)du) )]—“t] L With T >¢>0 (2.11)
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where F; represents all information available at time t¢.

Generally, as time passes we gather more information about the obligor, which bears on
the credit quality. Any additional information during time implies the intensity process
to be randomly varying. We will see how the intensity is modelled with an underlying
state variable (such as credit rating, distance to default, business cycle or equity price of
the obligor) in Subsection 2.2.2. Before we present the models for the intensity process,

we recall the definition and properties of the exponential distribution.

Definition 2.2. A random variable T' has an exponential distribution with rate A (or

T ~ exponential(N)), if
PT <t]=1—e¢*forallt>0,

with E[T] = %
An important property of the exponential distribution is the lack of memory property.

Mathematically,

P[T>t+s|T>1=P[T>s|, (2.12)

implying that the conditional probability of "failure” in a given interval is the same re-
gardless of when the observation is made. Moreover, the exponential distribution has a

constant hazard rate, i.e.,

)\ (2.13)

reflecting the lack of memory property.

Further modelling approaches for the distributions of survival times are summarised in
Table 2.2.1. These distributions are generally used in the reliability literature. Andritzky
[AndO06] uses these distributions in order to model the default intensity of the sovereign

debt.

We may observe the behaviours of the intensity processes and the term structures of the
corresponding survival probabilities in Figures 2.1, 2.2, 2.3, 2.4, and 2.5 for exponential,

Weibull, loglogistic, lognormal, and Nelson-Siegel type of survival modelling, respectively.



2.2 Reduced-form Credit Risk Models 55

Distribution ~ Hazard function, h(t) Survival function, S(t)

Exponential A exp(—At)
Weibull Ay(At)r1 exp(—(At)?)
Lognormal (v/t)o(~v1In(At)) O(—v1In(At))

Log-logistic — Ay(AM)71/[1+ (M)Y]  1/[1+ (A)7]

Nelson-Siegel [y + (1 exp(—t/N) exp [ — Bot — ﬁlt%&_w‘)

+085(t/ ) exp(—t /) —ﬁQt(%&_tm - exp(—t/A)ﬂ

Table 2.1: Survival distributions, where ¢(u) = p(u)/[1 — ®(u)], with ¢() denoting the
density function of a standard normal distribution and ®() its cumulative distribution
function.

Hazard rate, h(t)
°
|
Sunival probabilty, S(t)

~.

....................

Figure 2.1: Exponential distribution

Point Processes

Mathematically, we can describe the occurrence of one event with a stopping time (default
time of a single obligor) and for a generalisation to multiple events (default times of several
obligors), we should rather use the point processes. A point process can be defined as

some collection of points in time, i.e.,
{Ti,’iEN}:{Tl,TQ,...}. (214)

Under the assumptions that the stopping times are indexed by ascending order, (7; < 7;41),

and that they are all different, we can transform this collection of points in time to a
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Figure 2.3: Loglogistic distribution

stochastic process by introducing the counting process:

N(t) = Z l{ﬁ.gt},

which gives the number of stopping times before time ¢.

(2.15)
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Figure 2.5: Nelson-Siegel

Poisson Process

Now, let us define the (homogeneous) Poisson process with constant rate \.

Definition 2.3. Let tq,1s,... be independent, exponentially distributed random variables

(with rate (\)). Let T, =t; + --- + ¢, for n > 1 and define N(s) = max{n : T, < s}.

The following definition relates the intensity with the Poisson process.



58 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkey

Definition 2.4. The homogenous Poisson process with constant intensity A\ is a

counting process with

where s <t and k=0,1,....

Lemma 2.1. N(t+s) — N(s), t > 0 is a Poisson process with rate X\ and independent of
N(r),0<r <s.

Proof: See p.132 of Durrett [Dur99].

Theorem 2.1. If {N(s),s > 0} is a Poisson process, then

1. N(0) =0
2. N(t+s)— N(s) = Poisson(A\t) and

3. N(t) has independent increments.

Conversely, if (1), (2) and (3) hold, then {N(s),s > 0} is a Poisson process.

Definition 2.5. The inhomogeneous Poisson process is a generalisation of a homoge-
nous Poisson process with a time-varying intensity. We call N an inhomogeneous process
with deterministic intensity process A(¢), if the increments N(¢) — N(s) are independent
for s < t and we have

k

P[N(t) — N(s) = k] = % ( / t )\(u)du) e~ Js Au)du,

Definition 2.6. The Cox process N(¢) with intensity A = {\(¢)}+>0 is a generalisation
of the inhomogeneous Poisson process in which the intensity is random, but with the
restriction that conditional on the realisation of A\, N(¢) is an inhomogeneous Poisson
process. Therefore, the Cox process is also called conditional Poisson process, or doubly-

stochastic Poisson process.
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Continuous-time Markov Chains

Let n, t € RT, be a right-continuous stochastic process on the probability space (2,G, P)
with values in the finite set KC and let [F7 be the filtration generated by this process. Also,
let G be some filtration such that F7 C G.

Definition 2.7. A process 7 is a continuous-time G-Markov chain if for any arbitrary

function f: K — R and any s,t € Nt we have

EP[f(UHs) | Gi| = EP[f(Ut+s) | 7).

A continuous-time G-Markov chain 7 is said to be time-homogenous if, in addition, for

any s,t,u € NT we have

Ep[f(nt-i-s) | nt] - Ep[f(nu—I—S) | nu]

Definition 2.8. A two-parameter family P(t,s), t, s € RT, t < s, of stochastic matrices
is called the family of transition probability matrices for the G-Markov chain n under P

if for every t,s € R, s < t,
Pl =7 | ns =1] = pij(s,t), Vi,jek.
In particular, the equality P(¢,t) = I is satisfied for every ¢ € R™.

Definition 2.9. The one-parameter family P(¢), t € RT, of stochastic matrices is called
the family of transition probability matrices for the time-homogeneous G-Markov chain

n under P if for every t,s € RT,
Plnsye =3 | ns =1] = py(t), Vi,jeK. (2.16)
Let us now introduce an important assumption on the family P(¢), namely that this
family is right-continuous at ¢ = 0, implying that
ltilrgl P(t) =P(0).

With the Chapman-Kolmogorov equation®, we have

lim P(t +s) = P(t), Vt>0,

3P(t+5) = P(t)P(s) = P(s)P(t), Vs,t,€RY
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hence

lin%P[an =j|m=1i =10 Vijek,t>0.
Furthermore, P(t) is right-continuous, implying that it is right-differentiable, the following
limit exists for every i, j € IC,

Ny e i 2EO =@ p(®) =0

2.17
10 t t10 t ( )

Note that for every i # j we have A\;; > 0 and \;; = — Z]K:L#i Aij- We call the matrix
A = [Njli<ij<i the infinitesimal generator matriz for a Markov chain associated with
the family P(-) via expression (2.16). This matrix is also called the intensity matriz since

each entry \;; represents the intensity of transition from state i to state j.

We can derive the backward Kolmogorov equation

dP(t

_7;5 ) AP(r), PO)=T. (2.18)
and the forward Kolmogorov equation

dP(t

—7;5 ) _pwya, PO) =T, (2.19)

where at £t = 0, we take right-hand side derivatives. Both equations have the same unique

solution:
=AM
P(t) = exp(tA) = Z

n=0

- tERY (2.20)

Definition 2.10. A state K € K is called absorbing for time-homogeneous Markov chain
ne, t € RY,if the following equation holds:

Pns=K|n=K]=1, Vt,secR" s>t (2.21)

2.2.2 Intensity Models and Valuation of the Corporate Bonds

In this subsection, we present the well-known approaches for the intensity based credit
risk models and provide the corresponding risky corporate bond formulas. The intensity
based models assume that the default arrival time 7 is the first jump time of a Poisson
arrival process. However, depending on whether the intensity of the Poisson process is

deterministic or stochastic, these models can also be subdivided into categories.
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An example for a deterministic intensity is the model by Jarrow and Turnbull [JT95|(hereafter,
JT model), where the authors assume a constant intensity, i.e., A(£) = A. This assumption
brings easiness in calibration to the market data, however, it is not very realistic in real
world. In this setting, a constant intensity rate of 5% will indicate a mean arrival rate of

5 defaults per 100 obligors, conditioning on all current information available. Expected
time to default of an obligor is 1/ = 20 years, where the cumulative probability of default

in one-year equals 1 — exp(—0.05) = 4.88%.

In practice, generally the intensity is assumed to be time-dependent, e.g., it can be de-

scribed with a linear function,

A(t) = a+ bt, (2.22)

or with a piecewise constant function
At) = a1 + aolysy + aslysepy + - - (2.23)

An innovative default intensity model is proposed by Jarrow et al. [JLT97|(hereafter, JLT
model), where the authors include the credit rating information to the risk pricing. In
JLT model, the authors characterise the default with a finite state Markov process in the

credit rating of the firm. Markovian credit migration process has the state space
K={12...,K},

where 1 represents the highest credit rating class and K represents the default state. The
intensities \; j i =1,..., K —1,and j = 1,... K are the transition rates of jumping from
credit class ¢ to credit class 7, where these intensities are the off-diagonal elements for the

generator matrix of the Markov migration process.

Lando, [Lan98| generalises JLT model and instead of constant intensities, he assumes
stochastic intensities which are driven by some state variable X. Therefore, the author
uses a Cox process in order to model the default event. Moreover, assuming that the state

variable X is a Markov process, we have
Aig(t) = A j(Xe),

where A;; is a continuous non-negative function on R? which maps the risk factors X

into the transition intensity.
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Mathematically, the relationship between the risk-neutral short rate process and the risk-
free ZCB price corresponds to the relationship between the risk neutral intensity process
and the survival probability. Therefore, this analogy allows us to model the stochas-
tic intensity with the term-structure models for short rate. Duffie and Singleton [DS03]
present these models in the third chapter of their book. Examples to this kind of inten-
sity modelling approaches are well known from the interest rate literature, namely the
Cox-Ingersoll-Ross (CIR, hereafter) [CIR85] and Heath-Jarrow-Morton (HJM, hereafter)
[HIMO92] frameworks. A recent application of the HIM framework using Cheyette type
specification for capturing the stochasticity of the credit spreads is introduced by Acar
et al. [AAKO7|. Moreover, Duffie and Singleton contribute to credit risk modelling with
affine processes, adopting the Cox process approach of Lando [Lan98] model. Hence, they
assume that the state process X and the non-negative function A are affine, implying

closed form solutions for the PDs.

Due to rapid growth in the credit derivative markets, pricing of multi name credit prod-
ucts (e.g., CDO, CDO?) bring new modelling approaches to the stochastic intensity. The
recent papers by Chapovsky et al. [CRT06], and Papageorgiou and Sircar [PS07b| pro-
pose multiscale intensities, where the authors present a review of the stochastic models in
the latter. Using a Markov chain is introduced by Kraft and Steffensen [KS06]|, extended
by De Kock et al. [KKS07b| for the CDO pricing. Another paper to valuation of multi-
name credit derivative contracts in a Markovian framework is by Di Graziano and Rogers

[GROG].

Jarrow and Turnbull Model

Jarrow and Turnbull [JT95] assume a constant intensity A, implying statistical indepen-

dence of the default event and the short rate process.

Now, let us remember some bond-pricing mathematics. We have

b)) = exp ( /0 tr(s)ds) and (2.24)

B(t,T) = EF {%} (2.25)

where r(t) is the risk-free short rate and the conditional expectation under the martingale
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measure Q is denoted with E?[] = EQ[- | F,]. The risk-free MMA is represented by b(t)
and B(t,T) is the price of a risk-free ZCB at time ¢, with maturity time 7', T" > ¢ > 0.

The JT model gives the price of a risky ZCB at time ¢ with maturity time T, B(t,T) as

_ b
B(t,T) = EP % (Rlgrery + 1iamy) | (2.26)

where R is the exogenously given, constant recovery rate R € [0,1] and 7 is the random
default time. Assuming that the short rate process r(t) and the default process are
statistically independent under ) and that at default time 7 the claim holders receive a
fraction of the equivalent risk-free ZCB, i.e., B(r,T) = RB(7,T) (Recovery of treasury

or equivalent recovery assumption), we may rewrite (2.26) as:

B(t,T) = Ef [%] B2 [(Rlprery + Lesy)]

= B(t,T)[R+(1—R)ps?(t,T)] . (2.27)

Here ps?(t,T) represents the martingale probability of survival until 7', conditional on

survival to time ¢. Note that with the constant intensity A, it is given by
psQ(t, T) = e MTD), (2.28)

For a detailed analyses of the JT model, we refer the reader to Baydar [Bay04].

Jarrow, Lando and Turnbull Model

Jarrow et al. [JLT97] extend JT model via including the credit rating information into
the risky bond price. Since credit rating is a crude measure of credit quality and a rough
aggregation of credit information, it is an important ingredient both to credit risk models
and to risk management issues. The popular credit rating classifications are the ones
published by credit rating agencies like Moody’s (highest rate:Aaa, lowest rate: C') and
Standard & Poor’s (S&P hereafter, with highest rate: AAA lowest rate: C'CC'), and those
by Fitch. In JLT model 1 represents the highest rating grade and K represents the default
state (the absorbing state in Markovian setting). Within this framework, we define the

default time as follows:

Definition 2.11. Suppose the default time of a firm is the first time that the firm credit

migration (or credit transition) process 7n(t) hits the absorbing (default) state, e.g., K.
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Considering a continuous time framework, we define the default time as follows:

T=inf{t > s:n(t) =K}, Vs € R"

Let us assume that the K'th state is absorbing, then we will have the following generator

matrix under the physical probability measure as follows:

—)\1 . )\17[(_1 )\17K
A= ' 2.29
Mot - At Ak (2.29)
0 o 0 0

where \;; > 0 for all 7, j and

K
)\Z:ZA” forizl,...,K.
j=1
J#
Proposition 2.1. The generator matrixz under the equivalent martingale measure is given
by:
AC(t) = U(t)A, (2.30)

where U(t) = diag(p1(t), ..., ux—1(t),1) is a K x K diagonal matriz, whose first K — 1

entries are strictly positive deterministic functions of t satisfying
T
/ wi(t)dt < +oo fori=1,..., K —1.
0

The entries (p1(t),. .., pur—1(t), 1) can be interpreted as risk premiums, which are adjust-
ing the actual probabilities into the probabilities used in valuation process. These risk

premiums will be analysed in detail in Subsection 2.5 for Turkish sovereign.

Let us denote the transition matrix under EMM from time ¢ to 7" with Q(¢,7") whose
(i, j)th entry is ¢;;(t,T) = Q[n(T) = j | n(t) =], 0 <t <T. We will get Q(¢,T) from

the solutions to the Kolmogorov differential equations below:

% — _AQ()Q(t, T) and (2.31)
oQULT) _ Q(t, T)A®(T), with the initial condition Q(¢,t) = L. (2.32)

or
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The credit rating process is still Markovian under the assumption with (2.30) but time
inhomogeneous here. The process is time homogeneous only when the following equation
holds:

A° = diag(py, ..., pr—1, 1A (2.33)

where p1q, ..., g1 are strictly positive constants. In this case, the solution to Kolmogorov

equations are easy to calculate and the solution is

Q(t,T) = exp(diag(p, - - -, pirc—1, A(T —1)).

Proposition 2.2. Let the firm have rating i at time t, n, = i and define the default time
with 7 = inf{s > t : n, = K}, then the probability of survival until T', given survival to
time t 1s
ps(t,T) = Z q;j(t,T)=1—qx(t,T)
i#K
Hence, we can write the price of a risky ZCB, which has the rating i € {1,..., K — 1}

with Recovery of Treasury convention as:
B(t,T) = B(t,T)[R+ (1 — R)(1 — q;x(t,T))]. (2.34)

The estimation techniques of the transition probability matrices are explained by Lando
[Lan02] for corporate debt, whereas Hu et al. [HKP02| introduce a sovereign credit risk

specific estimation methodology.

Lando Model

Lando [Lan98| generalises the JLT model and uses doubly stochastic Poisson process for
modelling the default time. With this setting, one may relax the assumption that the
default process and risk-free term structure are independent. This generalisation also
allows the credit spreads to fluctuate randomly even between rating transitions. We
introduce the state variable X and randomise the default intensities depending on X,
where X reflects the changes in economic conditions determining the rating transition

intensities. Let us define the generator matrix

M) Mra(X) (X))
MO ) () A0 (2:85)

0 0 0
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and assume that

Ai(Xy) = Z)\@'j(Xt), t=1,...,K—-1 X ; >0.

With the construction above, the probability that the firm will start from rating class
1 and jump to a different class or default within the small time interval dt is A (X;)dt.
Further, conditional on the evolution of the state variables, we obtain a non-homogeneous
Markov chain with the transition probabilities satisfying

0Qx(t, 1)

T = —Ax(t)Qx(t,T).

Unfortunately, we can not say the solution to the differential equation is

T
Qx(t,T) =exp (/ AX(u)du) , (2.36)
t
since for only square matrices A and B which commute we can write
exp(A + B) = exp(A) exp(B).

In order to ensure that the intensity measures for different intervals commute, we assume
that they have a common basis of eigenvectors. Hence, let us assume that K x K generator

matrix A is given and it permits a diagonalisation
A =BDB !,

with D = diag(dy,...,dx_1,0) is the diagonal matrix of eigenvalues. Let p be a scalar-
valued positive function defined on the state space of the state variable X and the local
intensity is defined as

Ax(t) = Ap(X;) = BDu(X,)B™,

which corresponds to considering a one-dimensional scalar multiple of the generator.

Moreover, we define the K x K diagonal matrix

exp(d; ftT w1 (Xy)du) 0

0 o
EX (tv T) = T
exp(dx—1 [, pr—1(Xy)du)

o O O O
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Then, we will have Qx(t,T) = BEx(t,7)B~!, hence we can compute the unconditional
migration matrix Q(¢,7) as the expected value of Qx(¢,7). The survival probability
conditionally starting with the rating ¢ will be

K-1

1 —qgx(t,T)ix = Z Bij exp (dj/ M(Xu)du) ,

j=1
where

Bij = —bz‘jbj_éa
and b;; is the (7, 7)th value of the matrix B and ¢x(¢,7):x is the (i, K)th entry of the
transition probability matrix Qx (¢, 7).

Now, consider the price of a defaultable ZCB at time ¢t maturing at time T, issued by a

firm with credit class ¢ using zero recovery assumption

B(t,T) = E° [exp (— /t Tr(Xs)ds) (1 —qx(t, T)m)]

= Y 6Ef {exp ( /t (X, - 'r(Xs))ds)] |

J=1

where we denote the short rate depending on the state process with r(X). If p(X;) is an

affine process, we can compute it easily.

2.3 Valuation of the Sovereign Credit Default Swaps

In Section 2.2, we illustrated the intensity based credit risk models, which are mainly
used for valuation of risky corporate bonds as well as extracting the risk-neutral PD for
the financial obligors. In this section, our aim is to introduce the state of the art in
valuation of the CDS contract, when the reference asset is the sovereign debt. Although
modelling the corporate and the sovereign debt should be treated distinctly (see Duffie et
al. [DPS03| and Andritzky [And06]), the valuation of the sovereign and corporate CDS

contracts is quite similar.

The CDS contract (also called credit swap or default swap in different sources) transfers the
potential loss on the reference asset that can result from specific credit events. Depending

on the reference asset, a CDS is named the corporate CDS, or sovereign CDS. Since we
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are analysing the CDS contracts written on the Turkish Eurobonds maturing in 2030
and denominated in the USD, we explain the valuation of the sovereign CDS in a simple

modelling approach by O’Kane and Turnbull [OT03].

The contract consists of two parties; the protection buyer (B) and the protection seller
(S). Moreover, CDS has two legs; namely the premium leg and the protection leg. The
premium leg stands for the payments transfered by the B to the S. The premium leg is
the periodic payments?, as percentages of the notional on the issue date until whichever
occurs first: the reference asset defaults and the CDS contract terminates or CDS contract
matures without any credit event. Alternatively, the investor may decide to make an up-
front premium payment. With 2003 ISDA definitions, the premiums are paid on dates
20th March, June, September, and December (if quarterly based), independent from the
inception date for the corporate CDS contracts. If the contract is made between those
dates, the premium is adjusted accordingly, whereas if the contract starts on those dates
then the first premium is paid on the next payment date. Upon a default between these
payment dates, B requires to pay the part of the premium payment that has accrued

since the last payment, which is called the accrued premium payment.

The protection leg refers to the potential payment (upon the credit event of the reference
asset) is done to the B by the S. At the inception date, the default payment is unknown
and generally specified as physical delivery of the reference asset (Turkish sovereign bond)
against repayment at par. In Figure 2.6, we see the pay off structure of the product.

Periodic or upfront "premium"
CDSs > CDS
buyer e = = = = — — seller

Payment contingent on credit event

Figure 2.6: CDS payoff shema

Example 2.1. We consider a sovereign CDS with the following characteristics:

e Swap parties: B (protection buyer) and S (protection seller)

e Inception®: 20th March, 2007

4This periodic payment is also called swap rate, swap spread or swap premium.
This is the date/time where the coverage under the insurance contract takes effect.



2.3 Valuation of the Sovereign Credit Default Swaps 69

e Maturity: 5 years

e Reference asset: Eurobond of Turkish government maturing in 2030, denominated

in the USD
e Notional amount: 100 million USD

e Credit event: obligation acceleration, failure to pay, restructuring/renegotiation,

repudiation /moratorium

e Swap rate: 90 BPS (= 900000 USD) per annum, first payment on 20 September
2007

If the Turkish government does not suffer from a credit event until 20th March 2012: B
pays 5 x 2 x 450000 USD to S at the respective premium payment dates (first premium
payment is on 20th September 2007) and receives nothing from S. If there is a credit event
on 3rd March 2010: B pays to S [(2x2)+ 1] x 450000 USD at the respective coupon dates
and a fraction of the premium accrued from 21th September 2009 until 3rd March 2010.
In return, B delivers the defaulted Eurobond to S, who pays 100 million USD (notional
value of the bond) as described in the physical settlement feature. Hence, B does not
suffer a loss due to credit event of Turkish government. This protection of course requires

a fair pricing formula, which will be explained in details in the next subsection.

We have two pricing problems here:

e when making markets, we are interested in the fair swap rate at the inception of the

contract, i.e., Cpg(to, tn)-

e when hedging or marking-to-market®, we are interested in the market value of the
swap, i.e., Cpg(t,,tyn), which need not to be the same with the contractual rate,
i.e., Cps(to,tn) due to changing interest rates and credit quality of the reference

asset.

6Recording the price or value of a security, portfolio, or account on a daily basis and calculate profits
and losses or to confirm that margin requirements are being met.
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We are focusing on the first problem in this section. Generally, counterparty risk is not
taken into account when determining the deal prices. A good reference about determining
the corporate CDS rate would be Hull and White [HWO00|, where the authors value a
binary CDS and a plain vanilla CDS under the assumption that there is no counterparty
risk. Duffie [Duf99] uses the Floating Rate Note (FRN) as reference entity to create
synthetic CDS cash flows. Moreover, Brigo and Alfonsi [BA05] use a two-dimensional
shifted square root diffusion model with a stochastic intensity framework. Jarrow and
Yildirim [JY02] provide a simple analytic formula for valuation of the CDS when the
market and credit risk are correlated. Some papers about empirical studies of corporate
CDSs are Cossin and Nerin [CN02]|, Houweling and Vorst [HV05], and Skinner and Diaz
[SDO03|.

In this chapter, we use the following notations:
e ¢, : date of valuation of the CDS

en =1,...,N : number of payments and ¢1,...,ty : the dates for CDS premium

payments, where ¢y is the maturity date of the CDS

e Cpg(to,T) : the contractual swap rate on time ¢y, when the maturity of the CDS is

T, (in a new contract ¢, = t;)
e ps(t,, T') : the forward probability of survival from ¢, until 7', given survival to ¢,

e pd(t,,T) :=1—ps(t,, T) the forward probability of default at time 7', given survival
to t,

e PS(t,) : the cumulative probability of survival until ¢,

e PD(t,):=1— PD(t,) the cumulative probability of default by time ¢,
e R: expected recovery rate under the risk-neutral measure

e 1 (t) : short interest rate process (LIBOR for USD)

e D(t,,T) : the discount factor on ¢, for time 7'

e \(t) : the intensity rate (or hazard rate) of the credit event
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® PVpyotection Leg(tv, T') : present value of the protection leg with CDS maturity time 7T
® PVpremium Leg(ty, T) : present value of the premium leg with CDS maturity time 7T

o A(t,_1,t,,C) : the day count fraction between dates ¢,_; and ¢, using chosen con-
vention C' (e.g., 30/360, meaning 30 days in a month and 360 days in a year, for the
details see ISDA definitions.)

Determining the fair price of a CDS contract, requires the following algorithm:

1. Choose an appropriate credit risk model for determining the term structure of PDs.
2. Construct the zero curve (for discount factors).

3. Set the CDS contract details (accrued payment assumptions, the delivery type on

default, day count conventions, etc.).
4. Fix the expected recovery rate under risk neutral measure.
5. Construct the hazard rate term structure (ideally from market CDS rates).
6. Determine the present values of the protection leg and the premium leg.

7. Calculate the fair value of the CDS.

2.3.1 Sovereign CDS Valuation with Deterministic Intensity

As mentioned before, pricing of sovereign CDS is similar to corporate CDS, hence we may
imitate the pricing techniques for a corporate CDS presented by O’Kane and Turnbull
[OTO03|. Hence, with a deterministic intensity as in the JT model, the forward PS is given
by
T
ps(t,, T) = exp (—/ )\(s)ds) . (2.37)
to

The general pricing rule of the swap contracts tells the present values of the premium leg

and the protection leg should be equal to each other on the valuation date. Thus, we have

PVProtection Leg(tzn tN) - PVPremium Leg(tva tN)u (238)
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where the expected present value of the premium leg is given as

N
PVPremium Leg(tva tN) - CDS(t07 tN) Z A(tn—la tna C)D(tva tn)ps(tva tn)a (239)
n=1
and the expected present value of the protection leg is

tN
PVProtection Leg(tva tN) = (1 - R) / D(tva S)ps(tva S)A(S)ds' (240)
ty

Note that the accrued payment upon a default between two premium dates is ignored in
(2.39). Considering the protection fee, that has accrued from the last premium date to
the time of default, calculated as the sum over all premium periods from n = 1 to the

final one n = N; (2.39) modifies to

Cpstotn) S / " At s, C)D(ty, $)ps(ty, $)\(s)ds. (2.41)

tn—1
Here, probability of surviving from ¢, to each time s and defaulting in the next small time
interval ds is given by ps(t,, s)A\(s)ds. This integral should be discretised daily since the
premiums are calculated on a daily basis. Since this brings complexity in numerics, we
assume that it is continuous and that if the default occurs between two premium dates,
then the premium accrued is the half of the full premium to be paid at the end of the
premium payment interval. Hence, we approximate (2.41) with

Cps(to, tn)

5 > Altnt,t, C)D(to, 1) [ps(te, ta1) — ps(te, ta)]. (2.42)

The term [ps(t,, t,_1) — ps(ty, tn)] stands for the probability that the obligor will default
between the dates ¢, _; and t,. Summing this difference per each time interval [t,_1,,],
n =1,..., N, we will have the obligors default probability during the life of the CDS.
Since we assume that the accrued premium is the half of the full premium, division by two

and discounting it from the end of each accrued payment period explains the formulation

of (2.42).

Thus, it follows from (2.39) and (2.42) that the present value of the premium leg including

the accrued payment can be approximated by

N
PVPremiumLeg(tva tN) - CDS(th tN) Z A(tn—la tna C)D(tU7 tn) (243)

n=1

1
. {ps(tv,tn) + %A[ps(tv,tn,l) — ps(te,tn)]]
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where 1p4 equals

1o, — 1 if accrued payment is agreed in CDS contract
PA™) 0 otherwise
The value of the protection leg is calculated with the assumption that the transaction to

the protection buyer is made immediately after the notification of the credit event.

We approximate the integral in (2.40) assuming that the default can occur only on a finite
number of discrete points, i.e., M, per year. Hence, we will have M x tx discrete times
labeled as m = 1,..., M x ty. We approximate (2.40) with

M Xty

(1= R) > Dty tm)[p5(to, tm-1) = ps(tu, tm)] (2.44)

m=1
By decreasing the value of M, we will have less calculations but also less accuracy. When

M = 12, we will have a monthly discretisation frequency.

In order to have the market implied PS, we now relate these formulas for premium and
protection leg to the market quoted swap spreads. For an appropriate fair spread” with

t, = tg, the value of the CDS should be 0, hence we have
0= PVProtection Leg (tzn tN) - PVPremium Leg (tzn tN)
such that

Chs(te,ty) = (2.45)
(1= R) S0 Dty tn) [p5 (Lo, tm—1) = p5(tu, tm)] .
SN A(tnt,tn, C)D(ty, tn) [p5(tos tn) + 24 [DS(tys ta1) — S(te, t)]]

To illustrate this with an example; say we have a 1Y CDS which has a mid market quote
of 75 bp. With semi-annual premium payments and assuming that we do not have the
accrued premium payment, we have

(L= R) 3y D(0, 1) (PS(tin—1) — PS(tn)

0.0075 = ’
> n—6.12 Altn—6,tn, C)D(0,t,) PS(t,)

(2.46)

where we assume that the expected recovery rate and LIBOR discount factors are given,

i.e., R =0.25 and assuming a flat zero curve with

r=005 = D(0,tn) = exp(—0.05 x (£,,)),

"The price at which a securities transaction produces neither a gain nor a loss.
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we are left only with the unknown 12 + 2 PS®. We plug in (2.37) to calculate the PS
to (2.46), note that for ¢, = to = 0, we have ps(0,t,) = PS(t,). We see that it is not
possible to extract unknown PS for every time point, hence we must have a simplifying
assumption about term structure of the hazard rates. At this point, the need for the

bootstrapping methodology, which we explain in the next subsection, shows up.

2.3.2 Generating Hazard Curves with the Bootstrapping Method

In this subsection, we explain how we construct the term structure of the risk neutral
intensity rates for pricing a CDS, namely the bootstrapping methodology. The fair CDS
rate formula in (2.45) with deterministic intensity is already standard in financial industry

but the approximation methods to the integrals may imply different results.

Although bootstrapping is a practical method, it has also disadvantages, which are listed
by Martin et al. [MTBO1] as;

e it is an iterative method, an unreliable CDS market rate, i.e., C/',;S(O,j) will affect
not only the extracted intensity A; but also the other subsequent intensities A; i,

>‘j+2 e

e We can have intensities as many as the market swap rates. Typically, the CDS rates
for different maturities may not be available. Here, we have to use an interpolation
method for the maturities which are not traded. Different interpolation methods

may imply different results.

e With the bootstrapping we may even have negative intensities, that are totally

nonsense.

Empirical facts? show the recovery rate should be modelled in a stochastical framework,
due to the relationship between the expected recovery rate and the intensity rate process.
Unfortunately, the bootstrapping method separates the recovery and default risk, while

we fix the recovery rate under risk neutral measure a priori, then extract the intensities.

8This is the upper bound of the unknown terms, when premium dates and the determined default
dates in protection leg do not coincide.

Interested reader may see the papers by Bakshi et al. [BMZ04], Das and Hanouna [DHO06|, Pan and
Singleton [PS07a], and Christensen [Chr(07] for a stochastic recovery approach.
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This is similar to the fractional recovery of face value convention of Duffie [Duf98], and

Duffie and Singleton [DS99], where the authors propose a fair swap rate as
Cps(t) = (1= R)F(A(1)). (2.47)

However, the fractional recovery of market value convention introduced by Duffie and

Singleton [DS99] delivers a CDS pricing formula as follows
Cps(t) = [((1 = R)A%(1)). (2.48)

This implies that the recovery and intensity processes can not be separately identified
from the market CDS rates. Leaving the discussion about the recovery rate conventions
for a future research problem, we use a valuation formula, that is similar to (2.47). We use

a constant recovery rate, i.e., R = 0.25, as it is proposed in Pan and Singleton [PS07a].

In our dataset, we have the mid-market quotes of CDSs for the maturities of 1, 2, 3, 5,
7, and 10 years. From each market rate, we can extract only one piece of information.
As O’Kane and Turnbull [OT03] indicate, the widely used methodology is assuming the
hazard rate term structure as a piecewise constant function of the maturity time. We
may also construct it with a piecewise linear hazard rate function, but this typically will

not create a big difference, unless we have spreads for many CDS maturities.

Our aim is to find the market-implied (or risk-neutral) constant hazard rates )\?, >\§,
)\3Q, )\f, )\5Q and )\g‘2 via bootstrapping method. Suppose we have the stepwise constant

intensity function as follows

A ifr <1

A ifl<t<2

A if2<t<3

Q) .— 3 =

AQ(t) : e if3or<s (2.49)
N ifs<t<T

| A ift> T

First, we will use the 1Y CDS market spread in order to calculate )\?, then we use it
to calculate )\8 The iterative method will continue until we have the complete term

structure of the intensities.

With semi-annual premium payments and assuming that there is no accrued premium

(1pa = 0 in (2.43)) and plugging the PS formula given with (2.37) in, we get A? by
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solving

C tv,t 1Y _
- + Z A n 67tn70) (tvvt) )\ "

= D7 Dl ) et — )
where with a monthly discretisation frequency (M = 12), we have
T0 — 0, ™ = 00833, ey, T12 = 1.

This equation can be solved with bisection or gradient-based methods such as Newton-
Raphson algorithm. Given )\?, this can be redone to solve for )\QQ using the market rate
@(tv,tv + 2Y). Define 7 as time to maturity, i.e., 7 = T — t, and assume that the

hazard rate is constant beyond 10Y maturity, then we have

([ exp(—AY7) ifo<r<1
exp(—=A? =\ (r — 1)) ifl<r<2
) exp(=AY =AY =M (r—2) if2<71<3
B exp(—)\?—)\g?—)\??—)\f(T—B)) if3<7<5
exp(—A2 = A9 — A9 — 209 — \&¢(r —5)) if5<7<7

| exp(— )\Q )\Q A =209 =222 — N7 —7) ifr>7

Note that these are the risk-neutral probabilities, which include other non-default factors
such as liquidity risk premium, spread risk premium and market supply-demand effects.
These are generally bigger than the hazard rates implied by historical data. In Section

2.5, we will explain the relationship between historical and risk-neutral default intensities.

Since the market demand and supply play a role in determining the CDS quotes, there
is a possibility that the CDS rates may not be monotonously increasing with respect to
the maturity of the contract. Therefore, an inverted credit curve may imply negative
hazard rates which has no sense and reflects an arbitrage possibility, which can be model
dependent (or not). The optimisation method introduced by Martin et al. [MTBO0I1]
solve the problem of having negative intensities. We explain this method in the following

subsection.
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2.3.3 Generating Hazard Curves with the Optimisation Method

In this subsection, we present the method introduced by Martin et al. [MTBO1|. The
method focuses on extracting the forward conditional default probabilities, i.e., pd(t,,_1, ;)
directly from the market CDS rates. Once we have the forward default probabilities,
we may construct the term structure of the intensities via the approximation i.e., if
A(ty—1,tm,C) — 0, then W — )\7?1_1. Furthermore, the cumulative survival

(or default) probabilities, PS(-)!? can be calculated via the recursion:

PS(ty) = PS(ty_1) — [PS(tm1)pd(tmritn)] m=1,..., M x ty
PS(0) = 1.

Remember that pd is given by

Pty 1.t) = 1 — exp <— /: )\(t)dt) | (2.50)

We further assume that for each time period, we approximate the discount factor by an

average, i.e.,

1
D(ts,t) ~ 5 [D(tu, tur) + D(tu t)], Where oy <t <t

With this setting, we approach the integral in (2.40) via assuming that the default can
occur only on a finite number of discrete points, i.e., M, per year. In a semi-annual
discretisation we have M = 2. And we label the discrete time points for the CDS with
maturity ty as m = 0,..., M x ty. Hence, we approximate (2.40) with a sum of P :=
M x ty integrals as we previously did in the bootstrapping method. Using the recursive
relation

PS(tm_l) — PS(tm) = PS(tm—l)pd(tm—latm)a

and assuming there is no accrued premium, the market quote for maturity ¢y on date
t, = to = 0 should hold
st t) = (1—R)S2D_ A [D(to, tin1) + D(to, ty)|PS(ty1)pd(tm—1, tm)
DS\t0, N —
ZnN=6,12,--- A<tn767 tn; C)D(to, tn)PS@n)
= CDS<O7 tN;de,pdh oo 7de71)-

10Note that the probabilities and intensities are the risk-neutral ones, we drop the superscript @ here.
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We denote the model price calculated with the extracted pds with Cpg(0,tn;pdo, .. .).
In order to find the unknown P forward default probabilities, which are labelled as
pd(tm—1,tm) = pdy_1, with m = 1,2,... P, we minimise the objective function given

by

P
G(pdo,pdy, ..., pdy) = v d(pdm;pdm-1) (2.51)

m=1

o

K /= . 2
S <0Ds (0, 5) = Cps(0, j; pdo, pdl, ..,pdm))
2 )
7j=1

where K denotes the number of CDS contracts with different maturities. Moreover, we

assume that the market CDS rates are subject to a Gaussian error. The distance function

d(-) in (2.51) is defined by

1 —pd
1—pd’

d/
d(q;q) = \/(pd’ — pd) In ];—d + (pd — pd') In (2.52)

Note that this function is non-negative
d(pd’, pd) = 0 if and only if pd’ = pd.

Setting the parameters v = 10 and o = 0.001 in (2.51) provides a better fit'' to the

market rates.

The interpretation of the objective function defined in (2.51) is that, if the successive
pds differ significantly, then the first term will assign a penalty, whereas the second term
assigns a penalty for not fitting the market CDS rates. With this setting, v controls
the balance between two penalties. The main advantage of this method is unlike the

bootstrapping method, we do not have the possibility to have negative hazard rates.

Once we minimise the function in (2.51), we will get the forward probabilities. Then, we
can approximate the market-implied intensities via division by the discretisation length,
ie., if A — 0, then pd(t,,)/A — A(t»). The number of parameters to be estimated
depends on the discretisation frequency. If we have a semi-annual discretisation, i.e.,
A =~ 0.5 for a CDS with 10 year maturity, then we minimise the objective function

subject to 20 unknown parameters. Decreasing the length of the discretisation interval

Hncreasing v results in higher deviations from market rates, see Martin et al. [MTBO1]
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will lead to precise estimations but this will typically increase the computational costs,
e.g., for monthly discretisation we have to perform the optimisation algorithm for 120

parameters for a CDS with 10 years maturity time.

2.4 Data Description and Empirical Analysis

Our data consists of daily bid, ask quotes for sovereign CDS contracts'?, which are avail-
able in the maturities of 1, 2, 3, 5, 7, and 10 years. The reference asset is the Eurobond
of Turkish sovereign, which is maturing in 2030 and denominated in the USD. For the
analyses, we use the mid-market quotes, i.e., mid market := (bid + ask)/2. The time
series of CDS spreads cover the time period from 20 April 2004 to 29 January 2008, which
counts for 985 trading days.

The descriptive statistics of the CDS mid-market quotes are given in Table 2.2. During
the sampling interval, the average mid-market quote for the CDS with 1 year maturity
is 75.2 bp, ranging from 21.8 up to 425 bp. Comparing this with the average market
spread for 1 year maturity CDS in Pan and Singleton [PS07al; calculated as 378.4 bp, we
can conclude that the traders were adding larger risk premiums before April 2004, where
their sample covers the rates from March 2001 until August 2006. The difference between
these two averages is quite high, (approximately 3%) and it indicates that the economical
measures get better for Turkey as it had a very high inflation and a volatile interest rate

structure in the near past.

maturity 1 2 3 D 7 10
min 21.8 449 70 116.5 146.8 176.8
max 425 543.7 612.5 687.5 710 722.3

stdev 60.5 80.8 949 998 97.1 92.1
median  56.7  90.1 129.5 197.4 240.5 276.7
mean 75.2 120.1 1629 231.6 270.9 303.5

Table 2.2: Summary statistics for the mid-market quotes of the Turkish CDS rates (in
bp).

The CDS spreads show interesting patterns due to the local political (and economical)

12The data is downloaded from Bloomberg. Ticker for the CDS contract is CTURK1U, where 1
indicates the maturity of the CDS.
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crises as well as the global ones, which had influenced the behaviours of the local and
foreign investors in Turkish CDS market. In Figure 2.7, we may observe that there is
generally a high comovement among the term structure of CDS spreads. Since exploring
the nature and the degree of the comovement (by fitting a factor model) is not our
objective, we do not perform a principal component analysis. However, Pan and Singleton
[PS07al find out that the first principal explains over 96% of the variation in Turkish
sovereign CDSs.

CDS mid-market quotes
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Figure 2.7: The mid-market quotes for different CDS maturities.

Generally, the term structure for the CDS spreads has a positive slope with respect to
the increasing maturity. On the other hand, there are some dates that spreads were
inverted due to the demand-supply effects in turbulence periods during the local and/or
global crises. A recent example would be the subprime mortgage crisis in the USA, which
actually started in the last quarter of 2006 and show its enormous effects in 2007 and
2008. The subprime crisis caused the Dow Jones indexes drop to record levels especially

in July and August 2007. Turkish markets were also affected by the subprime crises.
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Eventually, there were large declines in Istanbul Stock Exchange and in the Turkish
Derivatives Exchange Market. Some of the global investment banks and Turkish banks
had their biggest losses in their history. These losses had also created high volatility in
the Turkish CDS rates as it can be observed on Figure 2.7. Some other important events
which had influenced the Turkish markets were the parliamentary elections of Turkey on
July 2007 and the presidential elections afterwards. The conflicts between the Turkish
government and the USA about the terrorist group PKK located in northern Iraq had
also played big role in the volatile structure of the Turkish financial markets, e.g., on 8
November 2007 when the cross border operation of the Turkish army was on discussion,
we observe that the CDS prices dropped by up to 80 bp. Furthermore, the CDS rates
were affected by the political issues mainly connected during the negotiations between
the EU commision and the Turkish government about the conflicts between Cyprus and

Turkish Republic of Northern Cyprus.

In Figure 2.8 we observe the mid market quote for the reference asset in the sovereign
CDS, namely the Turkish Eurobond with 2030 maturity with respect to the mid market
quote for the CDS with one year maturity. Note that the y-axis on the left hand side is for
the CDS mid-market quote. As we can observe, they are negatively correlated, where we

calculated a correlation coefficient of -86,9% based on 1013 dates in the sampling period.

We illustrate the behaviour of the ask-bid spreads during the sample period in Figure
2.9, where we simply take the difference between the two quotes, i.e., C/’D\SGSk — /D\Sbid
In general, bid and ask quotes show the demand-supply effects in the market. As we can
observe in Figure 2.9, the biggest spread widening is observed in the second quarter of 2004
on the CDSs with 1 year maturity, which had reached levels up to more than 70 bp. This
typically indicates that the supply for the CTURKI1U is larger then the market demand
on that period, indicating a potential decrease in the corresponding CDS prices. In our
sampling period, e.g., on 09th August 2007, the bid quotes for the short term maturities
of CDSs (1 year, 2 years and 3 years) are significantly larger than the ask quotes, showing
the high market demand for the short term insurance of sovereign risk. This also indicates
that default probability of Turkish sovereign is likely to increase, implying the potential

rise of the CDS premiums. There are negative ask-bid spreads on the days following

9th August 2007, for the CDS contracts with 10 year maturity corresponding to the
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Figure 2.8: The mid-market quotes for the underlying Eurobond vs. CDS with 1 year
maturity.

date when the New York Stock Exchange, and eventually, the Istanbul Stock Exchange
experienced declines due to the subprime mortgage crisis. The interpretation is that the
market expectations for longer terms were not very optimistic on those dates. Table 2.3

gives the descriptive statistics of the bid-ask spreads of the Turkish CDS.

maturity 1 2 3 5} 7 10
min -46.3 -35.3 -22.7 -1 1.7 5.7
max 73.3 50 55 45 55 20
std 15.9 1 109 89 11.7 98
med 8.5 6 73 6.2 6.7 6.7
mean 149 11.2 122 102 124 109

Table 2.3: Summary statistics for the ask-bid spread of the CDS quotes (in bp).
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Figure 2.9: The ask-bid spreads of the CDS (:= ask — bid in bp).

2.4.1 Results with the Bootstrapping Method

We explained in details the bootstrapping method in Subsection 2.3.2. Therefore, skipping
the technical part, we present the results in this section. Remember that, we first fix the
expected recovery rate under the risk neutral measure, i.e., R = 0.25, afterwards extract
the intensities for each trading day in the sampling interval. Further, we assume a flat
zero curve for the discount factors, i.e., r = 0.05. Assuming a stochastic short rate model
would be more realistic but this does not affect the results significantly'®. Note that the

stepwise constant risk-neutral intensities'* \j, Ao, ..., \g are defined in (2.49).

We present the corresponding risk-neutral intensities in Figure 2.10. The bootstrapping
method brings many easiness in numerics while constructing the term structure of default
probabilities, but there might be instabilities described by Martin et al. [MTBO01]| as well.
We can see in Figure 2.10 that for some dates, e.g., 20th June 2006 and in the time period

13See Pan and Singleton [PS07a|, Ueno and Baba [UB06], O’Kane and Turnbull [OT03].
14We drop the risk neutral measure superscript () for easiness of notation.
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All n: 985 (in bp)
A 1 2 3 4 D 6
min 28.6 69.5 159.8 250.2 116.3 299.9
max 550.8 881.4 1003.2 1089.3 1090.3 1099
std 785 1364 165.6 150.8 129.8 112.6
med 744 166.1 278 427 503.6 532.3
mean 98.5 219.6 337.8 467.8 529 556.2

Table 2.4: The summary statistics for the risk-neutral default intensities, for all CDS in

sample

between 20th February and 20th June 2005, the change in )\5Q is quite big. On those dates,

inverted term structure of CDS rates might imply unstable intensities. One can typically

have negative intensities as well, which make no sense at all. During our sampling period,

we did not have any negative intensities.

0,12

Intensity rate

Market-implied Default Intensities

.
et )

lambda1
= =lambda2
= = = |ambda3
=— = lambda4
lambda5
= = lambda6

LS Fud
l‘ o

N e W)

20.04.2004

20.06.2004

20.08.2004 -

20.10.2004 -

20.12.2004 -
20.02.2005 -
20.04.2005 -
20.06.2005 -

20.08.2005 -

20.10.2005 -

20.12.2005 -
20.04.2006 -

O 20.02.2006 -

ate

20.06.2006 -

20.08.2006 -

20.10.2006 -

20.12.2006 -

20.02.2007 -

20.04.2007 -

20.06.2007 -

20.08.2007 -

20.10.2007 -

20.12.2007 A

Figure 2.10: The default intensities bootstrapped from daily CDS mid-market quotes (in

bp).

Fitch ratings had upgraded the rating of the long-term Turkish sovereign debt in foreign

currency to B+ on 09 February 2004. Later on, it was upgraded on 13 January 2005
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to BB— (See Parker [Par(06]). Since the last upgrade it remained in the same rating
category in our sampling period. Hence, we run a rating-based analysis only based on
these two rating classes, where the major rating classes BB and B mean speculative and
highly speculative credit quality, respectively. The + and — signs are suffixes to show the
relative status within the major rating category, e.g., + indicates a better credit quality.
We present the results based on rating categories of Fitch B+ and BB— in Table 2.5 and
in Table 2.6, respectively.

Rating B+ n: 153 (in bp)
A 1 2 3 4 D 6
min 103.4 2324  319.7 4477  463.1 429
max 550.8  881.4 1003.2 1089.3 1090.3 1014.8
std 124.6  150.6 1945 1772 161.6 145.2
med 165.1  421.9 5409 644.2 708.1 645.5
mean  226.5 468.8 624.8 T711.5 7274 690.6

Table 2.5: The summary statistics for the risk-neutral default intensities, for the Fitch
rating category B+

Rating BB- n: 832 (in bp)
A 1 2 3 4 Y 6
min 28.6 69.5 159.8 250.2 116.3 299.9
max 176.8 4139 586.3 6954 751.1 1099
std 29.8 65.9 872 90.8 81.3 84.9

med 64.8 149.1 259.4 405.5 489.9 519.7
mean 749 1738 285 4229 4925 531.5

Table 2.6: The summary statistics for the risk-neutral default intensities, for the Fitch
rating category BB—

The average intensity of default for 0 < ¢t < 1 is Y = 226.5bp, with the rating B+,
whereas )\? = 74.9bp, if the rating is BB—. This result is expected since the default
intensity decreases with increasing credit quality. Another expected result is that with
the increasing maturity time, the corresponding default intensities should increase as well.
If we look at Table 2.4, where we present the summary statistics of the intensities for the
whole sample, we can observe this. This is also the case when the Turkish sovereign

have the BB— rating from Fitch agency. On the other hand, in Table 2.5, we see the
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inconsistency for the maturities more than 7 years. Figure 2.11 illustrates the average

intensities with respect to rating categories of Fitch.
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Figure 2.11: Average risk neutral intensity rates based on the rating category of the
Turkish foreign currency long term debt by Fitch.

Using the stepwise constant intensity process, we calculate the cumulative default prob-
abilities as described in Subsection 2.3.2. We can observe the default probabilities for 1,

3, and 5 years on each date for the sampling period in Figure 2.12.

The difference between the market rates and the CDS rates that are calculated with the
extracted survival probabilities (the model price), 5[)\5 — Cpgs gives a measure for the
modelling error. We observe the errors for the CDSs with the maturities 1, 5, and 10
years in Figure 2.13. As the figure illustrates, the modelling error is not very significant.
We further observe that the largest deviation between market and model prices is for the

CDS with 1 year maturity.
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Figure 2.12: Market-implied cumulative default probabilities for 1, 3, and 5 years with
bootstrapping method.

2.4.2 Results with the Optimisation Method

In this subsection we present the results of the optimisation method described in Section
2.3.3. We use the same expected recovery, i.e., R = 0.25 and the LIBOR, i.e., » = 0.05
as in the bootstrapping method, for a comparison of the market implied probabilities.
The number of extracted intensities of optimisation method by Martin et al. [MTBO1]
depends on the discretisation interval. In our case, we have the semi-annual premium
payments (no accrued premiums), and we further assume that the credit event can occur
only on those dates. With this setting, we have 20 forward default probabilities, which
minimises the objective function in (2.51) for each trading day in the sample. Moreover,
we calculated the corresponding intensities, i.e., Ao, A\1,..., A9 and the corresponding

cumulative default probabilities. For the presentation we chose A, A3, ..., Aig, note that

pd<t17t2>
ty —t1

to
pd(ty,ta) =1 —exp (—/ Al(t)dt) =\~
t1
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Figure 2.13: The modelling errors for CDS contracts with 1, 5, and 10 years of maturity
with bootstrapping method.

With the semi annual discretisation and the maturity of 10 years, we have the discrete
time points as tg = 0, t; = 0.5,..., ty = 10. Moreover, the cumulative probability of

default, e.g., t; = 0.5 is calculated with
PD(0) =0= PD(t;) = PD(0) + PS(0)pd(0,t;), (2.53)

where we continue the recursion until we have the complete term structure of the cumu-

lative PD’s.

For a precise estimation, using the CDS mid-market quotes we have, we generated the

CDS rates for 1, 2, ..., 10 year maturities with the linear interpolation method.

In Figure 2.14, we observe the paths of the intensities for our sampling period we had
with the optimisation method. The intensities show similar behaviour compared to those
boostrapped in the previous subsection. The main observation is that the optimisation

method delivers higher intensities than the bootstrapping method comparing Figure (2.14)
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with Figure (2.10). In Table, 2.8 we have the intensities when the Fitch had rated Turkish
sovereign with B+, where Table 2.9 presents the case when it was upgraded to BB—.
When 0.5 <t <1 we have A\; = 113.7 bp for the whole dataset. For Fitch rating category
B+, the average \; is 261.7 bp, and 86.5 bp for BB—.
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Figure 2.14: Market-implied default intensities, calculated with the optimisation method.

We observe the averages of the intensities in Figure 2.15 with the optimisation method
with respect to the rating categories of S&P. As expected, for the rating category BB—,
we have lower default intensities than the B+. The intensities tend to have an upward

slope with respect to increasing maturity:.

We construct the term structure of the risk neutral cumulative default probabilities via

the recursive formula in (2.53). We illustrate the probabilities on each date in Figure 2.16.

Figure 2.17 illustrates the modelling error when we valuate the CDSs each day in the
sampling period using the term structure of PDs extracted with optimisation method.
Since the error is the difference between market and model price, CDS with 1 year maturity

is overpriced with the optimisation method, whereas for 5 and 10 year maturities are
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All n: 985 (in bp)
A 1 3 5 7 9 11 13 15 17 19
min 35.6 76.3 185.6 245.5 2975 83.7 1175  280.5 304.3 307.5
max  650.9 953 1062.5 1079 1212.6 1084.4 1185.1 1152.8 1200.7 1400.9
std 90 143.9 170 148 164 133.6 135.8 119.7 116.9 121.2
med 84.9 195.5 310.5 403.6 504.8 489.4 561.1 501.6 561 610.4
mean 113.7 247.0 363.9 441.3 5447 512.9 584.5 528.7  579.9 626.8

Table 2.7: The summary statistics for the risk-neutral default intensities, for all CDS in
sample calculated with the optimisation method.

Rating B+ n: 153 (in bp)
A 1 3 D 7 9 11 13 15 17 19
min 116.3 243.6  330.3 412.7 508.8 451.5 498.2 4204 4375 449.9
max 650.9 953 1062.5 1079 1212.6 1084.4 1185.1 1016.3 1043.3 10774
std 141.6 161.4  204.7 179.2 195.3 167 1723  151.1  149.2 149.8
med 193.7 450.4  560.5 612.7 7225 6914 7683 6345 661.6 694.2
mean  261.7 504.1 653 679.9 803.2 719.2 784.8 6814 711 740.7

Table 2.8: The summary statistics for the risk-neutral default intensities calculated with
the optimisation method, for the Fitch rating category B+.

Rating  BB- n: 832 (in bp)
A 1 3 Y 7 9 11 13 15 17 19
min 35.6  76.3 185.6 245.5 297.5 83.7 1175 280.5 304.3 307.5
max 204.7 4974 6269 673.9 790.3 7319 818.4 1152.8 1200.7 1400.9
std 34 73 914 87.6 101.5 82.3 87.6 87.7 91.4 102.3
med 74.3 183.5 2934 388 484.3 475.2 547.3 489.3 549.3 597.5
mean 86.5 199.7 310.8 397.4 497.2 475 547.6  500.6  555.8 605.9

Table 2.9: The summary statistics for the risk-neutral default intensities calculated with
the optimisation method, for the Fitch rating category BB—.
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Figure 2.15: Risk neutral intensities with the optimisation method, based on S&P’s rat-
ings.

underpriced. We observe that the largest deviation of error is observed in the CDS with

D years maturity.

2.4.3 Comparison of the Results

As the reliability of the calculated CDS prices heavily depends on the realism of the
assumptions in the valuation model, we find it useful to comment on the marking-to-
model issue. Marking-to-model is the valuation of a position or a portfolio of securities at
prices depending on a financial model. In CDS market, where the illiquidity risk does not
significantly exist, “marking-to-market” is more reliable. However, suppose we are pricing
a new issued security, implying the “illiquidity problem”. In this case marking-to-market
might be misleading due to the scarcity in market prices. Therefore, marking-to-model is
an important issue for exotic instruments, especially in new structured credit products. If

the financial model is realistic, implying insignificant modelling errors, then it is sufficient
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Figure 2.16: Market-implied cumulative default probabilities in 1, 3, and 5 years, calcu-
lated with the optimisation method.

for us to show the approximation and estimation errors are the main source of the total
error between the model and the actual prices when we take the total error as a sum of

modelling, approximation and estimation errors.

If we compare Figures 2.13 and 2.17, we see that both pricing models have insignificant
deviations from the market price, where optimisation method delivers in general higher

default intensities and probabilities, consequently.

For a comparison, we take the paper by Rocha and Garcia [RG04|, where the authors use
a structural credit risk model for extracting the market implied sovereign credit risk. The
authors take the real YTL / USD exchange rate, which follows a pure diffusion process, as
a proxy for modelling the source of uncertainty. In Table 2.10, we present the cumulative
risk neutral default probabilities of Rocha and Garcia (RG model) and those implied
by CDS rates on 15th July 2004 using the bootstrapping method and the optimisation
method. The cumulative probabilities with optimisation and bootstrapping are similar

for the short maturities, whereas the difference rises up to 2% with increasing maturity.
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Figure 2.17: Error between the market and model prices calculated with the optimisation
method.

Comparing the RG model for maturities of 1 and 2 years, the bootstrapping method
delivers closer results but, for the maturities between 3 and 6 years, the optimisation
method have closer probabilities. However, boostrapping and RG model have similar

probabilities after maturities of 7 years.

Maturity 1 2 3 4 Y 6 7 8 9 10
RG model 0.75 6.68 14.57 21.99 2845 34.01 38.80 4296 46.60 49.81
Bootstrapping 1.90 6.86 13.24 20.27 26.73 32,52 37.86 42.76 47.29 51.45
Optimisation  1.98 7.17 13.91 20.64 28.23 34.04 39.89 44.73 49.42 53.98

Table 2.10: Comparison of the market implied cumulative PDs on 15 July 2004.
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2.5 Relationship between the Risk-neutral and the Ac-
tual Default Probabilities

In this section, we first present the literature survey about modelling the relationship be-
tween the actual and risk neutral default intensities for the corporate debt, then introduce
our results. As the risk premium maps the actual intensities to risk neutral intensities,
one has to first estimate the actual default intensities using the historical default expe-
rience. Berndt et al. [BDD"05] use Moody’s Estimated Default Frequency as a proxy
for the actual default intensities. Hull et al. [HPWO05] calculates the intensities from ac-
tual cumulative default probabilities, where Driessen [Dri05| uses a similar methodology.
Since we have the rating history of the Turkish sovereign foreign currency debt, we cal-
culated the actual intensities using the cumulative default rates published by S&P using
the methodology by Hull et al. [HPWO05]. Since credit event in a sovereign occurs rarely,

estimation of these rates is rather a difficult task.

2.5.1 Risk Neutral and Actual Intensities

As mentioned before, credit risk models are mainly used for two reasons, firstly they are
used in the prediction of the PDs and they are tools for pricing and hedging of credit
sensitive instruments. Serving both purposes, one selects different probability measures.
For the prediction of the PDs, we need the actual probabilities, whereas the risk-neutral
probabilities are used for pricing and hedging reasons. Therefore, a good credit risk model
must fulfil both needs. In this context, the importance of default risk premium comes into

play, which we try to explain in this section.

The risk-neutral probabilities are available under weak no-arbitrage conditions. Incom-
plete markets imply many alternative choices of risk neutral probabilities consistent with
pricing of the traded assets. However, independent from the market being complete or
not, knowledge of only the risk-neutral probabilities is not enough to fit the credit risk

models to the historical default experience.

A typical example, which can be found in each credit risk book!® is as follows: Suppose

15See Bluhm et al. [BOWO03], or Duffie and Singleton [DS03].
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we have a 1 year, risky par bond with a promised face value of 100 YTL and a coupon
payment of 10%. Hence, the bondholder receives 110 YTL after one year if there is no
default, or the recovery of the face value, which is R = 50% . The historical experience
tells us PD? = 0.02 in the corresponding rating category of the risky bond. With a short

rate of 4%, the expected simple discounted bond value under P is given by

1
T7(0-98 x 1104 0.02 x 50) = 104.62,

which overprices the actual market price (Face value = 100) of par bond by 4.62 since
the risk-premium is not considered. However, under the risk neutral pricing framework,
we have

1

100 = 1—04[(1 — PD%) x 110 + PD® x 50].

Hence, PD® = 0.10. Assuming the deterministic intensity is constant, we have
A= —In(1-PD? =010 X' =—In(1 - PD")=0.02.

We see that A? > AP, reflecting the risk premium. Note that there is not any change
in the intensity rate or uncertainty of recovery here, so that the market implied PD®
is unique. As we can see in the example above, it is documented that the RN default
intensities are generally greater than the actual ones (See Hull et al. [HPWO05], Driessen
[Dri05], Berndt et al. [BDDT05], O'Kane and Turnbull [OT03]), as the traders do not
price the risky securities only based on the APDs. For the compensation of the risks that
they are bearing, they build in an extra return. Hence, the difference between the risk

neutral and actual intensities shows up.

As Duffie states, “a common but naive measure of probability of default for a firm or
sovereign that is rated by an agency such as Moody’s or S&P, is the average frequency

with which obligors of the same rating have defaulted”.

In reduced form approach, remember from the JLT model that the actual intensities are

mapped with some scalar p (risk premium) to risk neutral intensities, i.e.,
A = pAP with > 1. (2.54)

One can choose p in order to have a good match both to the historical data and the

market credit spreads, which still remains as an empirical issue to be explored that we
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present in this section. With scaling as in (2.54), Driessen [Dri05] finds out an average
ratio of A9/\” = 1.89, backing out RNPD from U.S. corporate bond prices. Another
study by Berndt et al. [BDD'05] gives similar results to Driessen [Dri05] using market
ODS rates for bootstrapping the PD?. Giesecke and Goldberg [GG07] present some
references of empirical work about risk premium, where the authors propose a structural
model for analysing determinants of the risk premium. We illustrate some of the modelling

approaches for the default risk premium in the next subsections.

As mentioned before, RNPD are good for pricing and hedging issues. But, suppose we are
pricing a new security and the market prices are scarce, then we need to use the historical
information about the obligor (implying APD) and transfer the APD to RNPD. On the
other hand, we use the APDs in risk managemet, trading and credit allocation issues.
One may need to use the credit spreads in the market in order to estimate the APDs.
The problem is that market-implied RNPDs may be very pessimistic and this can cause
unnecessary burdens on business (excessive regularity capital). Hence, a tool that maps

the RNPD to APD (and vice versa) is important and needed by the practitioners.

The literature survey we are going to present in the next subsections are based on corpo-
rate default risk. Note that the rating methodology and the corresponding term structure
of actual PDs differ when we are dealing with the sovereign credit risk. For an illustration,

we borrow Figure 2.18 from Hamilton et al. [HVOCO06|.

2.5.2 Method from Berndt et al.

Here, we give an overview to the paper of Berndt et al. [BDD™05], where the authors
undertook a panel regression analysis of the corporate CDS market rates and Moody’s
estimated default frequency (EDF) data'®. This analysis is for obtaining a simple and
robust measure of the sensitivity of CDS rates to actual PDs. The authors regress the CDS
observations for 5 year maturities and the 5 year EDF with an Ordinary Least Squares
(OLS) and have an R* = 73%. However, linearity of the CDS-EDF relationship is placed
in doubt by the authors. Moreover, they tried a log-log specification on the same dataset

in order to mitigate the non-linearity and heteroscedasticity effects, where the resulting

ISEDF is a measure of default probability used by Moody’s KMV based on a database of historical
default frequencies.
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Figure 2.18: Source: Moody’s, Average cumulative default rates: Sovereign vs. Corpo-
rates, 1983-2005

R? is equal to 69%. Adding some dummy variables (month and sector specific) to the

log-log regression equation increased the R? to 74.4%.

In the last sections of their paper, the authors focus on modelling the relationship between

the actual and risk neutral default intensities, where we explain the details below.

Time-series model for Default Intensity
The authors claim that the logarithm of the default intensity under the actual probability
measure X (t) = log(A\”(t)) satisfies the Ornstein-Uhlenbeck equation

dX(t) = k(0 — X (t))dt + odW (¢), (2.55)

where W is a standard Brownian motion and k, #,0 are some constant values. The un-
known parameter set © = (6, k, o) is estimated from available monthly EDF observations.

The authors used a maximum likelihood technique for estimating the parameter vector

©.

Further, the authors introduce a flat cross-firm correlation structure, within the sector!”

17The available observations are separated into three sectors, namely Oil and Gas, Healthcare, Broad-
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by generalising (2.55). Hence, assuming that X;(¢) = log A" (¢) for firm 4, the logarithm

of the intensity satisfies

AXi(t) = K(0; — Xi(1))dt + o(\/pdW.(t) + /T — pdWi(t (2.56)

where W, and W; are independent standard Brownian motions, independent of {W;};;

and p is the within sector pairwise constant correlation coefficient.

Risk-Neutral Intensity from CDS and EDF

Here, we explain the joint model of actual and risk-neutral default intensities. The model
contains the risk-neutral default intensity of a given firm as a function of its own default
intensity, a measure of aggregate default risk in the sector and a latent variable capturing

the variation in default risk premium, which is not captured by the first two variables.

The model is specified as follows: Let us denote the risk-neutral default intensity and the

actual intensity process of any given firm ¢ by )\ZQ and A\ | respectively . Suppose

log A7 (t) = Bo + B log (A (1)) + B log v (t) + uy(t), (2.57)

where 3y, 31, and 3, are constants, X; = log A" is specified by (2.56) and v is the geometric
average of the default intensities {\]"};c;, over a benchmark subset J of large liquid firms

in the same sector, i.e.,

logv(t) |J‘ZXZ

ieJ

Moreover, suppose that

du;(t) = k"(0" — u;(t))dt + o/ p déa(t) + o/1 — ptd&;(t) (2.58)

u

where 6%, k", and o" are constants, p* is a constant correlation parameter and &, &; are

independent (under P) standard Brownian motions, independent from W, and W; in

(2.56).

After fitting the model and estimating the parameters, for the healthcare sector, Berndt
et al. have

log A9(t) = 0.576 + 0.522log A7 (t) + 0.628 log v(t) + u(t),

casting and Entertainment
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where for u(t) = 0, a geometric average of all default intensities in the sector of 100 bp

and an actual intensity of 100bp, we get a risk-neutral intensity of roughly 355bp.

The averages of the ratios of (A¢/AF) are 3.30, 2.17, and 2.04 for the oil-and-gas, health
care, and broadcasting-and-entertainment sector, respectively. For the whole dataset,
they estimate an average ratio of 2.757, where intensities are given in basis points per

year.

2.5.3 Method from Hull et al.

Here, the authors estimate the actual default intensity, AT from statistics on average
cumulative default probabilities of corporate bonds published by Moody’s between 1970-
2003. As reported by Hull et al. [HPWO05|, the cumulative default rate is PD(T) for T
years and A" denotes the average historical default intensity over T years. The survival
probability of the corporate bond for T years, given there is no previous default, is given

by

exp(—A\'T) =1— PD"(T). (2.59)
It follows that the actual intensity is
P 1 P
AT = —Tlog(l — PDY(T))

The authors approximate the risk-neutral default intensity for a defaultable corporate

bond per year with

AN LT (2.60)

where y is the bond’s yield, r is the yield on a similar risk-free bond. Taking the common
market recovery rate assumption that R = 0,40, the authors give a table of estimated
actual and risk-neutral intensities dependent on the rating of the bonds. Table 2.11 shows
that the ratio of the risk neutral to actual default intensity decreases as the credit quality
declines. However, the difference between them increases as the credit quality declines.

This is referred as the "credit spread puzzle".



100 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkey

Rating MA@ AP 22 \Q_)\P

AP
Aaa 67 4 16.8 63
Aa 78 6 13 72
A 128 13 9.8 115
Baa 238 47 5.1 191
Ba 507 240 2.1 267
B 902 749 1.2 153
Caa and lower 2130 1690 1.3 440

Table 2.11: The risk premiums (in bp), depending on Moody’s ratings (Source: Hull et
al. [HPWO05])

2.5.4 Method from Driessen

Driessen [Dri05] estimates the sources of risk that cause corporate bonds to earn an excess
return over default-free bonds. Moreover, the author estimates a risk premium associated

with a default event. Denoting the risk premium with g on default jump, we have
A () = pAL (t)
for the ith name. If the default risk is priced, p should be greater than 1.

Denoting the actual probability that a firm defaults in 7" years from ¢, = 0 given there
was no default before with PDY(T'; 1), we have

PDP(T;p) =1 EF lexp (— /OT )\P(s)ds)] =1-EP lexp (— /OT AQM(S)ds” .

Given the affine process for A\%(t), this probability is an explicit function of the risk

premium p. Driessen calculates the actual PDs depending on the rating of the firm,

P

hence the actual PDs are the same for the firms having the same rating, i.e., PDpy;,,-

Yearly risk-neutral conditional default probabilities can be calculated with
1— PDgating<T + 17 M)

PDY
1= PDlgating(T; u)

Rating(T; lu) =1-

By confronting the above equation with actual default rates, ; can be estimated.

2.5.5 Our Results

After the literature survey about estimating the risk premium in corporate debt, we

present our findings in this subsection. Note that, we use the sovereign default rates from
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historical data published by S&P for calculating the actual default intensities. The S&P
foreign currency long term debt note for Turkish sovereign was B+ on 8th March 2004
and was upgraded to BB— on 17th August 2004. Since this date, the rating has been in
the same category (See Soussa and Faulks [SF07]). In our sampling period, we will have
64 corresponding dates when the sovereign debt was rated with B+ and 921 dates with
the rating BB—. The details of sovereign rating methodologies are explained by Beers

and Cavanaugh [BC06|, and by Klaar and Rawkins [KR07].

Risk neutral vs Actual Probabilities of Default
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Figure 2.19: Average of the risk neutral cumulative default probabilities vs actual default
probabilities for S&P rating, B

Figures 2.19 and 2.20 show the term structure of the cumulative risk neutral PDs with
the optimisation and bootstrapping methodologies versus the actual cumulative PDs pub-
lished by S&P based on the historical experience. Note that for both Figures, we use the
rating categories B and BB (without modifiers 4+, —) for the illustration. The figures
show that the risk neutral PDs are greater than the actual PDs, as one could expect due
to market price of default risk that the traders add on. However, when we use the S&P
estimations for the rating classes with modifiers, which are subclasses of the main rating

categories, we have a different picture. As Figures 2.21 and 2.22 illustrate.

We may see in Figure 2.21 the average of the market implied PDs stripped out from
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Risk neutral vs Actual Probabilities of Default
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Figure 2.20: Average of the risk neutral cumulative default probabilities vs actual default
probabilities for S&P rating, BB
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Figure 2.21: Average of the risk neutral cumulative default probabilities vs actual default
probabilities for S&P rating, B+
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Risk neutral vs Actual Probabilities of Default
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Figure 2.22: Average of the risk neutral cumulative default probabilities vs actual default
probabilities for S&P rating, BB—

the CDS rates with bootstrapping and optimisation methods, versus the default rates for
rating category B+ of S&P’s. The key observation is that we have higher risk neutral
PDs with both methods than the actual probabilities as expected. In Figure 2.22 we take
the average of the PDs for the dates when the rating is BB— for the market implied PDs
with respect to rates published by S&P for category BB—. In contrast, as Figure 2.22
show, the actual PDs are higher than what the CDS rates imply, which is interestingly

an unexpected result.

Further, we illustrate the behaviour of the actual intensity rates that we calculated from
the cumulative average default rate table for the sovereign foreign currency (See Table
17 of Chambers [Cha07]) in Figures 2.23 and 2.24 for categories B+ and BB— of S&P's
respectively. We construct the actual intensities via formulation as described by Bluhm

et al. [BOWO03] as follows:

1 1— PDP
VA 1 mt1 h =0,1.2,....9. 2.61
. tm+1—tmn(1—PD£ ., where m 1,2, ( )

and PD?Y corresponds to the cumulative default rate calculated by S&P based on historical

data covering a period of 1975-2006.
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Figure 2.23: Average of the risk neutral default intensities calculated with two methods
vs. actual default intensity for S&P rating, B+

2.6 Summary

In this chapter, we presented the well known intensity based credit risk models in the
literature. After building the necessary mathematical background, we introduced the
state of the art of pricing the sovereign CDS contracts. Since we mainly focus on the
market implied sovereign risk of Turkey, we presented two methodologies for extracting
the risk neutral default intensities out. Further, we presented the risk premium modelling
approaches from corporate credit risk literature and provide an analyses of the risk neutral

and actual intensities calculated from the studies by S&P.

Our sample is composed of the Turkish sovereign CDSs including the maturities of 1, 2, 3,
5, 7, and 10 years, where the reference asset is the USD denominated Eurobond maturing
in 2030. We captured interesting patterns of the risk neutral default intensities during our
sampling period due to the recent global and local financial and political crises. Fixing
the expected recovery rate a priori, i.e., R = 0.25 and taking a flat zero curve when

constructing the discount factors, our pricing models provided good fits to the market
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Figure 2.24: Average of the risk neutral default intensities calculated with two methods
vs. actual default intensity for S&P rating, BB—

CDS rates. Our main finding is that the optimisation method of Martin et al. [MTBO01|

delivers higher default intensities and consequently higher default probabilities.

Furthermore, using the default probabilities based on historical experience reported by
the rating agency S&P (based on the dataset between the years 1975-2006), we calculated
the actual default intensities. We concluded that, the relationship of the risk neutral and
actual PDs are as expected in rating categories B and BB without the modifiers. On the
other hand, when we take the rating categories with modifiers, the results for the rating
category B+ are as expected, as it is well documented in the literature that the actual
default probabilities are less than the risk neutral ones. However, this was not the case
for the rating category BB—. Interestingly, the term structure of cumulative PDs of S&P
is larger than the risk-neutral PDs we calculated. Moreover, the analyses of the actual
and risk neutral intensities based on the rating categories show that, due to the scarcity
in the data concerning the default experience of the sovereigns, to present a conclusion is
rather a difficult task. One might alternatively calculate the actual default rates or try

to model the actual intensity process in a time-series framework, but we leave this for a



106 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkey

future research topic.



Chapter 3

Optimal Leverage in CPDOs

3.1 Introduction

The volume of the credit derivative contracts traded at the corresponding market has in-
creased considerably over the last few years. Sophisticated products have been introduced
into the market. The Constant Proportion Debt Obligation (CPDO, hereafter) is one of
such products and offers a sizeable spread over LIBOR and returns the initial investment
minus the losses at the maturity. This spread is generated by taking a dynamic leveraged
position on a portfolio of credit indices (e.g. ITRAXX and CDX.NA.IG). Hence, both
coupons and the principal is at risk. CPDOs have generated a lot of interest among the

investor community as they pay a relatively high spread for their credit rating.

The leverage function so far used in CPDO products implicitly assumes that credit spreads
are constant and defaults in the underlying credit index are known in advance. To the
best of our knowledge, no attempt has been made to obtain an “optimal” leverage for
dynamic investment in the underlying index/portfolio, given some objective function for

the investor.

In this chapter, we introduce an “optimal“ leverage function for the CPDO based on
some simple dynamics for the credit investment process. The optimal leverage function is
derived using the stochastic control technique. In particular, we assume that the objective
of the investor is to minimise the losses due to the leveraged risky position, or equivalently
to maximise the expected redemption at maturity given a stream of mandatory coupon

payments.
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108 Chapter 3. Optimal Leverage in CPDOs

The control variable of the problem is the leverage function, i.e., the notional exposure
at any time to the portfolio of the credit indices. The return from investment in these
indices, which includes mark-to-market spreads as well as losses stemming from defaults
in the underlying credit portfolio of the index, is modelled via an arithmetic Brownian

motion.

The control problem involves solving a highly non linear PDE. It turns out that the dual

problem is much easier to solve and give rise to Black and Scholes type formulas.

Differently from the Constant Proportion Portfolio Insurance (CPPI) instruments, the
leverage of a CPDO decreases in favourable market conditions (spread tightening, no
defaults in index portfolio) and vice-versa. However, contrary to the industry practise,
the optimal leverage function we derive is a non linear function of the Net Asset Value

(NAV) of the note and for low levels of NAV the leverage behaves similarly to a CPPI.

The rest of the chapter is organised as follows: Section 3.2 explains the concept and the
terminology of a CPDO. We supply the mathematical background in Section 3.3. We
develop the model, introduce and solve our control problem in Section 3.4 and present

the numerical results in Section 3.5. Finally, we summarise and comment on the results.

3.2 Terminology and Product Description

Before we present the terminology and the details about CPDOs, we find it useful to
describe the underlying portfolio of CDS Index (CDX, hereafter) contracts that the CPDO
strategy invests in. A CDX contract provides protection against a standardised basket of
reference entities. Therefore, it is different from the CDS, which provides protection
against losses on default of a single reference asset. As we know from Chapter 2, the
premium payment is cut off in a CDS upon the credit event of the reference, whereas in
the CDX contract, the premium payment continue to be made, but based on a reduced

notional in case there are defaulted names in the basket.

The most actively traded securities are the CDX.NA.IG and the ITRAXX Europe Index.
The CDX.NA.IG includes 125 North American Investment Grade companies, where the

latter covers 125 investment grade European companies. Both indexes are available with
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3,5, 7, and 10 year maturities of protection and each company in both indexes are equally

weighted.

On the roll dates (20th September and 20th March or the following business days), the new
version of CDX starts after the composition of the reference entities, which is determined
by the votes of participating dealers. A new version CDX will be called on the run for
the next six months. The defaulted references are excluded from the index on each roll
date, however the composition stays static if there are no defaulted entities in the CDX.
The popular indexes we mentioned above are unfunded, hence they can be thought as a
CDS on a basket of names generally using the physical settlement upon the credit events.
The CDX contracts are standardised and transparent products having the advantages of

being efficient and diversified.

A CPDO is a relatively new structured credit product that entered the market in 2006.
A CPDO seems to be attractive for the investors due to its both high rated (normally
AAA/Aaa of S&P and Moody’s) principal repayment and fixed coupon payments. In its
most typical form, a CPDO is simply an investment vehicle (Special Purpose Vehicle or
SPV) paying a periodic coupon of Libor plus a constant spread s as well as the initial
investment at the maturity, unless a default event occurs. In this chapter we shall define
the CPDO default event as the failure to pay the stated periodic coupons and/or to repay
the principal investment at the maturity. Although it is still an open question, whether
they had deserved the top ratings of rating companies when the first generation of CPDOs
were launched, in general the CPDO aims to return high yield coupons to investors by
taking a leveraged exposure to a basket of credit indexes (typically 50% CDX.NA.IG and
50 % ITRAXX Europe).

The cash flow obligations of the CPDO are backed from the exposure to the CDS indexes,
often called leverage and varies according to the performance of the underlying indexes,

where the leverage simply can be thought as:

credit exposure

(3.1)

leverage = ———— .
initial tnvestment

We denote the exposure to the underlying index by «(t), which is chosen in such a way

to yield a relatively low default probability of the CPDO. More specifically, the industry
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standard choice of a(t) is given by

PVL(t) — V(1)

olt) = =DVl

(3.2)

where PV L(t) and V() are the present value of the CPDO liabilities, and assets, respec-
tively, p(t) is the spread paid by the credit index at time ¢ and DV01(¢) is the present

value of a stream of periodic risk-less payments equal to 1 per annum.

A poor performance of the indices will imply a high leverage level, while a good per-
formance of the indices will decrease the leveraged exposure. As the CPDO targets a
credit exposure, which is sufficient to pay the promised coupons and the principal, the
returns are capped at the stated coupon rate. Therefore, the leverage is controlled dy-
namically in order to reach the target portfolio size on each roll date and is limited with
a maximum portfolio size. Additionally, the CPDO also has the advantage of not being
directly affected by the market implied correlation risk, in contrast to the Collateral Debt
Obligation (CDO) instrument.

Another favourable feature of the product is that if the credit indices’ performances are
well enough to guarantee the future promised payments, then the investor benefits from
the “cash-in” feature, i.e., as soon as all the promised payments can be made with certainty,
the risky investment is reduced to zero. In this case, until the CPDO expires, the investor
is only exposed to a risk-free asset but still receives high coupons. On the other hand, a
CPDO does not guarantee the repayment of the initial capital invested. The investor can
therefore lose 100% of his initial capital. If the accumulated losses from the risky exposure
reach a pre-determined threshold for the note value, (typically 10 % of the notional amount
invested), then the investor meets a ’cash-out’ event, i.e., the loss is locked in and the
risky investment is stopped. With this setting, the investors are protected from any losses
exceeding the notional invested by banks. The risk that the bank will suffer such a loss

is called the gap risk.

The following definitions are used in the rest of the chapter.

e Net Asset Value (NAV): NAV is the current market value of the CPDO that
is the present value of all outstanding positions including the cash deposit and any

other unrealised gains/losses. We denote the NAV at time ¢ with V'(¢).
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e Cash Deposit Account: This account holds the proceeds from the investor, in-
terest, premiums and any Mark-to-Market (MtM) gains achieved. Losses are also
settled from this account. Hence, NAV is actually what the cash deposit account

holds.

e Target Redemption Value: This is the present value of all promised liabilities
(coupons and principal). We denote the target redemption value at time ¢ with

PVL(1).

e Shortfall := PV L — NAV, it represents the value that still has to be gained from
the CPDO strategy to enable it to cash-in. The aim of the CPDO strategy is to

make the shortfall equal to zero before the maturity of the contract.

We observe the flows of the product in Figure 3.1.

Income generated from
premiums of Credit portfolio
and interest from cash deposit
MtM gains/losses

Coupon payment }

Redemption value
of the note
at maturity

Figure 3.1: CPDO transactions

How the ratings are assigned to CPDOs is not a question that we are going to answer in this

chapter. However, interested readers might see the technical reports about rating issues,



112 Chapter 3. Optimal Leverage in CPDOs

which can be listed as Torresetti and Pallavicini [TP08], Wong and Chandler [WC06|.
Another stream of articles, e.g., Linden et al. [LNB07], Toutain et al. [TTMO06], Formica
et al. [FMST06], Varloot et al. [VCCO06], [VCCO07]|) analyse the mechanics and risks that
CPDO products are exposed to, providing scenario analyses. In this chapter, we are
rather interested in optimality of the leverage function introduced in product mechanics.
Therefore, we take a different approach and derive an optimal leverage function using the
stochastic optimal control techniques. We show that the standard leverage function (3.2)
is optimal when the index spreads are constant, interest rates are zero and defaults are
deterministic. We analyse the behaviour of the optimal leverage in the more general case

of stochastic defaults and spreads.

3.3 Preliminaries

Generally, stochastic control is used as an alternative solution technique to the martingale
approach, which we have introduced in Chapter 1 for continuous time portfolio optimisa-
tion problems. The application of the stochastic control methods in portfolio problems is
pioneered by Merton [Mer69|, [Mer71]. In this section, we first introduce the stochastic
control method and the dual approach via Legendre transformation to related Hamilton-
Jacobi-Bellmann equation. Finally, we give an example where we apply the stochastic

control method for the Merton portfolio problem.

Different from the portfolio optimisation problems in the literature, this chapter introduces
a new problem, where we apply the stochastic control technique for minimising the losses
in a strategy subject to credit risk. In order to do so, we model the net asset value of
the CPDO with a controlled stochastic equation. This section presents mainly from Korn

and Korn [KKO01|, and Johsson and Sircar [JS02].

3.3.1 Stochastic Control

Let V*(t) be a one dimensional Itd process. A controlled stochastic differential equation

(CSDE) with an initial value V' (0) = v has the form

AVe(t) = p(t, V(~t), at))dt + o(t, V(t), a(t))dW (t), (3.3)
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where we denote the one dimensional Brownian motion with W (¢) and one dimensional
stochastic process we are free to choose with «(t). In our problem defined in (3.21), (%) is
the control process, and V' denotes the wealth process (or Net Asset Value of the CPDO).
Main task is to find an optimal control process with respect to a certain cost functional.
Translated back to our problem in (3.21), we try to find an optimal leverage function, i.e.,
a*(t), that maximise the redemption received at maturity (or equivalently minimise the

losses) of the CPDO strategy due to long position in credit-risky portolio.

In general, we want to solve the following problem

max Fo,|F(VY(T))], 3.4
x| B [F(V(D)) (3.9

where [ is the time set (e.g., I = [0,7], or I = {0,1,...}) and A(v,I) is the set of
admissible controls. The control is admissible if « € A C R and all « are progressively
measurable with respect to the filtration F, = o{W (s);s < t} generated by the one
dimensional Brownian motion, and additionally if V*(¢) is the unique solution to CSDE

in (3.3).

Further, let the coefficient functions in (3.3)

pw o 0,T]xRxA—R
o 0,T]xRxA—-R

be continuous and Lipschitz-continuous in v uniformly on [0, 7] xR. Now, let us introduce

the value function of the problem defined in (3.4) as

sup  E [F(VT))| =: o(t,v), (3.5)
a()eA(v,I(1))

where I(t) = [t,T] A I. Note that, we assume implicitly that the controlled stochastic
process is Markovian. We obtain the characterisations of the value function with the

following theorem:

Theorem 3.1. (Martingale Optimality Principle) Let o*() be an admissible control, such

that, for a function F we have:

H(t,v) = B [F(V(T))] (3.6)
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we have

H(t,V*(t)) is a martingale
H(t, V(1)) is a supermartingale

for all admissible controls a(-). Then, we have

1. o*(+) is an optimal control,

2. H(t,v) = ¢(t,v) for allt € I.

Proof: (see p. 230 of [KKO01])

3.3.2 Hamilton-Jocobi-Bellman Equation of Stochastic Control

In this subsection, we apply the Theoem 3.1 for the problem defined as

max  Fy,|F(V*(T)), 3.7
Lo 00 [F'(V(T)) (3.7)

where we assume that

h(t,v) = Ep,[F(VY(T))]

is a C'2 function. Applying Ito’s formula, we have
BEV) = h0.0)+ [ Al V)l V) a6V ()
[ sV + Bl VDt Vo (5) ()
s, V()0 (s, V(s), ()]s

Note that, h(t,V*(t)) is a martingale if the ds integrand equal to 0, given sufficient
growth conditions for the integrand of the 1t6 integral. From the Theorem 3.1, following

martingale optimality principle, we can write the HJB-Equation with the theorem below.

Theorem 3.2. (Verification Theorem for the HIB-FEquation) Let A C R be bounded and
assume that there exists a polynomially bounded C* solution h(-) to the HJB-Equation

216151) {ht(t, v) + hy (t,0)p(t, v, ) + %hw(t, v)oi(t,v, a)} =0 (3.8)
h(T,v) = F(v) (3.9)
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for (t,v) € [0,T] x R, v € R. Then, we have
h(t,v) > o(t,v).
If there exists an admissible control o*(t) with
a*(t) € argmax{...}, (3.10)
acA
then, we have even

h(t,v) = ¢(t,v), and o*(+) is an optimal control.

With the help of two theorems in this subsection, we apply the following algorithm in

order to solve a stochastic control problem:

1. Solve (formally) the optimisation problem in the HJB-equation (3.8) and replace «

with the optimal control o*.

2. Substitute « in (3.8) by a* obtained in Step 1, omit the supremum operator, and

solve the resulting (non-linear) PDE with the boundary condition defined in (3.9).

3. Check if the assumptions made in previous steps are indeed satisfied (concavity of

h(t,v), existence of a maximum).

Example 3.1. Merton Portfolio Problem

In this example, we solve the Merton portfolio problem with dual approach using the
Legendre transform. Note that we solve the same problem defined in (1.16) with the
martingale approach in Chapter 1. There, the control variable is denoted with 7, which
determines the fraction of wealth (X (¢) denotes the wealth process) invested in the stock.
We continue the presentation with the notation we introduced in this section. Hence, we

want to find the optimal control a* for the following problem:
sup Et7U[U(Va(T))] = ¢(ta U)v (311)
where we use a power utility function of the form

U(v)zv—, 0<vy<l1.
Y
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After applying It6’s formula, we get the related Bellman equation as

1
¢y + sup (aazaggbw + ,uongv) = 0. (3.12)
With ¢,, < 0, the maximum of (3.11) attained at

o = _ P
%Py

Substituting « in (3.12) with a*, and dropping the supremum operator, we rewrite the

Bellman equation as
G
202 Guy

o — 0. (3.13)

Note that at terminal time 7" we have the boundary condition

VY

o(T,v) =U(v) = o (3.14)

In order to solve the non-linear PDE in (3.13) with terminal condition (3.14), we apply a
dual approach. Denoting the dual variable to v with z > 0 and with assumed convexity

of ¢, we define the Legendre transform of the value function ¢ as

~

o(t, z) = sup{o(t,v) — zv}. (3.15)

v>0

We denote the value of v where the optimum is attained with g(¢, z), therefore we have
g(t, 2) = inf{v > 0|¢(t,v) > zv + B(t, 2)}.
We get the relation between ¢ and ¢ from (3.15), i.c.,
g=—0-
Further, with the assumption that ¢ is strictly concave and smooth in v, we have
¢u(t,g(t,2)) =z orequivalently g = ¢, "

Differentiating with respect to ¢ and z, we get:

g 1 [
(btv = —2 ¢vv - ¢vvv = — 3
9= 9= g;
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Now, differentiating (3.12) with respect to v and substituting the partial derivatives with

the ones we have above, we transform the non-linear PDE in (3.13) to a linear PDE as

we have
2 2
K= 9 H _
g¢ + og2” 9= + 5279 = 0,
g(T,z) = P (with the power utility function).

In this case, we may solve the linear PDE in (3.16) with separation of variables as
g(t, 2) = 27 u(t)
for function wu(t). For a given (¢,v), we have the relation

g(t,z) =v

and the optimal strategy a*(t) is

) L S
o2 o (y=1)"  o*(1—-7)

The interpretation is that we hold the fraction 02({‘_” of wealth in stocks and the rest in

the riskless bond (money market account). Note that, we arrive at the same solution in

Example 1.1 defined as the local risk premium for stock investment, where for v = 0 we

have the solution for the logarithmic utility, i.e., U(v) = log(v).

In the following section, we present the dynamics of the model and using the techniques

we introduced so far, we find the “optimal” leverage function used in the CPDO.

3.4 Model Proposal

We denote the initial wealth at time t, = 0 with V(0) = 1, which represents the initial
notional of the note (NAV). Suppose CPDO pays a continuous coupon of

r+ s,

where r is the risk-free short interest rate and s is the agreed spread. These coupons

are paid from the cash deposit account, which holds the assets of the note. In order
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to generate the coupon spread s, the CPDO engages in a dynamic investment strategy
in an underlying, unfunded index. The cash return of the investment strategy in any

infinitesimal interval (¢;¢ + dt] is given by «(t)dB(t), with
dB(t) = pdt + odW (), (3.16)

where W is a standard Brownian motion, x4 and o are the suitably chosen constant drift
and volatility terms, with B(0) = 0. These dynamics in (3.16), where we illustrate some
simulated paths in Figure 3.2, will allow us to find the optimal leverage function by apply-

ing stochastic control approach techniques below. Note that in our simple model dB(t)

0.08 T T T T

0.06 - J

0.04

-0.02

-0.04 : : : :
0

Figure 3.2: Simulated paths for the Brownian motion with drift (or arithmetic Brownian
motion).

incorporates the carry generated by the index spread, the mark to market losses/gains
deriving from changes in the index spread due to the changes in the default probability of
the underlying portfolio. Since the index is rolled over into a new series on a continuous
basis, the default risk in index can be negleted, at least to the first order. Of course,

one could think of the index spread dynamics being mean-reverting or including a jump
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component. However in order to obtain a semi-analytic solution for the optimal leverage
problem, we assumed the simple dynamics for the gain and losses linked to the underlying

credit index investment.

Building the dynamics of the note value

We denote the leverage function, i.e., the notional exposure to the risky investment at
time ¢ with «(t). In order to construct the dynamics of the wealth process, we define
the discrete time points 0 = tg < t; < ... <t, =T with At =t, —t,_1,i=1,2,...,n
and where t, = T is the maturity of the CPDO. We have our initial wealth, or the NAV
(to = 0) as V(0) = 1. The NAV holds the cash deposit account and the MtM gains/losses
from the risky credit position, which forms the asset side of the CPDO. On the other
hand, we have the promised coupon payments r 4+ s and repayment of the principal on
the liability side. We assume the note pays coupons continuously and the gains/losses are
only due to the interest that the cash deposit account earns and the MtM gains/losses due
to the long position in the CDS index portfolio. Moreover, the leverage «(0) in the credit
index portfolio is chosen at the inception of the CPDO and changed dynamically at the
beginning of each infinitesimal period. Hence, the main idea of the product is covered,
which is basically “betting on the performance of the CDS index portfolio on each roll

date. We express the discrete version of (3.16) as

AB = uAt + o AW,

with AW = e/ At, where € is a standard normal random variable.

In the next time point, i.e., t; =ty + At we observe the following flows:

1. We take the notional exposure with the function « to B(t1); this earns a(to) AB(t1),

which has zero cost, since it is a swap contract with zero value at inception.

2. We pay (r + s)At in the form of a coupon.

3. The initial wealth in the cash deposit account V' (0) = 1 earns the constant interest

rate r until ¢1, so we get 7V (0)At,
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so the change in our wealth (or NAV) can be described as
AV (t;) =V (t1) = V(0) = a(ty) AB(t,) + rV(0)At — (r + s)At,

where AB(tl) = B(tl) — B(O) and At = tl — to.

Until the next time point, i.e., to = t; + At, the cash deposit account earns the constant
interest r over V(¢;). If we had losses due to AB(t;) being negative, then V(1) < V(0),
otherwise we have V' (¢;) > V(0). Hence, at the next time point, i.e., to = t1 + At, we will

have similar flows:

1. We take notional exposure with the function a to B(ts), earning a(t,)AB(t2), which

has again zero cost.
2. We pay the coupon (r + s)At

3. We put the V(1) in the cash deposit account at time ¢;, which earns the constant

interest rate r until t5, so we get 7V (t;)At,

implying the change in NAV as
AV(tQ) = V(tQ) — V(t1> = Oé(tl)AB(tQ) -+ TV(tl)At — (T’ + S)At,

where AB(ty) = B(ty) — B(t1), and At = ty—t;. The process continues until the maturity
time of the contract, i.e., t, = T. If At — 0, the dynamics of the NAV can be expressed
as

dV(t) = a(t)dB(t) +rV(t)dt — (r + s)dt, (3.17)
with V(0) = 1, and B(0) = 0.

We shall impose V(t) > K > 0 for all t € [0,7], where we define K as the cash-out
threshold.

If the wealth process falls below the threshold K at any time, a cash-out event will occur
and any risky investment is unwind. Denote by 7, the first time the wealth hits the Target

Redemption Value denoted by PV L(t), i.e.,

7 =inf{t: V(t) > PVL(t)} (3.18)
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where

r+s)

PVL(t)=e T 4 ( (1 —e @), (3.19)

,
After this event, we must have that «(t) = 0 for all ¢ > 7, since NAV is enough to pay

for the principal at maturity and for the coupon payments of (r + s).

Problem definition: Obtaining the optimal leverage

Our goal is to choose «(t) optimally in such a way to minimise any shortfall between
the CPDO liability and assets. This imply the maximisation of the capital we have at
maturity. We define the loss as 1 — V(T'), due to the risky investment and promised
coupon payment r + s. More formally, we need to solve the following stochastic optimal

control problem

¢ (t,v) = sng 1—1=V(T)*"|V(t)=n], (3.20)

subject to (3.17). We shall impose that the value of the asset of the CPDO stays positive at
any point in time, by setting the cash-out boundary condition ¢°(¢,0) =0 for 0 <t < T.
Note that by specifying the asset dynamics as in (3.17) and imposing the non-negative
asset constraint, we are implicitly assuming that V' (¢) is always greater than the present

value of all future coupon payments, which is a reasonable assumption.

Following Jonsson and Sircar [JS02|, we can smooth out the investor’s utility function

and transform the original optimisation problem (3.20) into

¢(t,v) = sup Ey, [U(V(T))], (3.21)
where
1
v =@y, (322)
is the investor’s utility function and we have used of the notation E;,[-] = E[-|V(t) = v].

We shall assume that p > 1. Note in the limit of p — 1, the two formulations of the

problem yield the same result.

In order to simplify the calculations, it is convenient to work with the discounted wealth

process

V(t)=e"V (),
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with the corresponding dynamics of

dV(t) = e "a(t)dB(t) — e " (r + s)dt . (3.23)
=a(t)

This, together with © = e v, leads to the following modification of problem (3.21):

o(t,0) = sup FEis B [1 — ((1 — erTf/T)*)pH : (3.24)

rt

where © = e "'y and & = e "ta.

Using the principle of the stochastic optimal control, we formally arrive at the correspond-

ing Hamilton-Jacobi-Bellman equation! of
1
1 + sup {qﬁﬁ (ap—e(r+s)) + 5%5&202] =0, (3.25)

with the boundary condition

1
O(T0) == (1= (1 =2e")*)") .
p
Before we are going to solve this equation, we have to point out that actually we would
need two more boundary conditions present on the whole time interval, one describing

the cash-out and one describing the cash-in event in the transformed variable v:

¢ (t,e"K) = % (1—-(1-K)"), (3.26)
—rT E efrt o efrT _ 1
¢ (t,e +— ( )) . (3.27)

However, to be able to obtain explicit solutions to our optimal leverage problems, we leave
those two constraints aside and comment on their relevance in Section 3.5.

Let us now concentrate on the simplified problem: assuming sufficient smoothness of the
value function, existence of the optimal leverage strategy, and that ¢z; < 0, the first order

conditions imply

oy

V(L) = — . 3.28
R (3:29)
Substituting (3.28) back into (3.25), we are left with the non-linear PDE
242
b — e "Hr + 8)dy — WOy 0 (3.29)

202053 B

'For a better insight of the stochastic control approach, we refer the interested reader to Korn [Kor97].
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In order to solve the PDE in (3.29), we transform it in a linear PDE similar to the Black
Scholes equation. Assuming the concavity of ¢(¢,?) and defining the Legendre transform

as

d(t,2) = sup{o(t,0) — 20}, (3.30)
5>0
where z > 0 denotes the dual variable? to ©. We denote the value of o where the optimum

is attained with g(¢, z), so that
g(t, z) = inf{o > 0|¢(t,0) > 20 + o(L, 2)}.

Using the relation
¢ﬁ<t7 i}*) = (bf)(tag(tv Z)) =z
and differentiating with respect to z, we have for (¢, ¢(¢, z)) as argument

0 0

5.7 = 1= E» (05(t,g(t,2))) = Pasg-

= Qo = i (3.31)

z

Differentiating with respect to t,

0 0
57 = 0= o (05(t,g(t,2))) = dar + dssge
= gy = =2 (3.32)
and with respect to z again, we arrive at
0? 0? 0
—2=U= — @t t = 5 f;f;z:f;f;f)2 v0Yzz
52° = 0= 55 (9t 9(t,2))) = 5~ (9509:) = Pooog + dong
= oy = — 22 (3.33)
gz
Now, differentiate (3.29) with respect to o, implying
2 202,05 — D2du
buo— €T+ 8)bay — Ao 200000 — PO _ (3.34)

202 2

Substituting (3.31), (3.32), and (3.33) back in (3.34), we have the linear PDE only along

(t,9(t,2)) as
1 1oy t
g¢ + 279 + 527 92 +e ™ (r+s)=0. (3.35)

2See Jonsson and Sircar [JS02] and p. 134 of Korn [Kor97] for the details of the dual approach.
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With the modified terminal condition
1
O(T,0) =~ (1— ((1 —ve )", (3.36)
p
where for our problem, we have p > 1. We derive the terminal condition for g(¢,z) as

follows

¢6<T7 67p> = eTT (1 - erTﬁ)pil 117<e*TT =z

s~ =T L =\
= v=e 1— zr-TerT .

Therefore, the problem is now to solve the following parabolic, linear PDE

dg  p* dg W ,0%
~Z 2 J 7 27J r = 3.37
8t+o—2282+202z 822+e (r+s)=0, (3.37)

with the terminal condition
g(T,z)=c(1- zﬁcﬁ)jL : (3.38)

where

1
c=e and f:=—.
p—1

Furthermore, the discounted optimal leverage function &@*(¢) can be written in terms of
the dual function only
p_0Og

and it is related to the wealth v via the equality

b =g(t, 2) = ¢5'(t, 2). (3.40)

Equation (3.37) can be reduced to a standard heat equation by means of some simple

standard change of variable. Define
T(t,z) =T —t, and  y(t,z) =1Inz.
We rewrite (3.37) with the definition below

9(r(t,2),y(t, 2)) := g(1, 2)

Hence, we have the partial derivatives

99 _dior 90y _ 05

= =22 = (1
o " aror Tayar orl
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09 _ 090t 090y _ 041

0z  0rdz 0Oyodz Oyz’

Fo_ 10910991\ 1 (%5 o
022 220y =z \Oy*z) o2 oy

Plugging these partial derivatives into (3.37), the PDE will have constant coefficients as

a9 2’5 0
a—i = <8y + 8g) + (r4s)e "7, (3.41)

Now, we want to represent (3.41) in an inhomogeneous heat equation form as defined to

be

and

09 _ 99 | o
5 = 5 O, (3.42)

where —oo < # < 0o, 7 > 0 and O(-) is a continuous, bounded function on R x (0, c0).

Using the following change of variables,

z(t,y) =y + gﬂ and  7(1,y) = 3

rewriting (3.41) by using
9(7(1,9), 2(my)) = §(7,y),

we obtain
~ 2 A .
99 _ 0% 2(r + S)e*”(T*%’),
or  0x2 a

J/
-~

=:0(7)

(3.43)

which is the standard heat equation with the inhomogeneous term O(-) depending only
on the time variable. The expression in (3.43) has a unique solution for —co < 2 < o
and 7 > 0, where O(7) is bounded and continuous on R x (0,00) as

g(%,x):/oo G(z,&,7)f d§+// G(z, &7 —t)O(t)dedt, (3.44)

S

where the Green function denoted by G(-) is defined as

2\/1% exp (— (z 275)2) , (3.45)

and f(-) denotes the initial condition for the heat equation defined for

Gla,&7) =

t=T=7=0,and z =y as

F(€) = 9(0,8) = c(1 — &)™, (3.46)
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First, we calculate the integral Iy, which is similar to a Black and Scholes Put option as,

o0 )2
L = /Oo c(1— eﬁfcﬁ)+21ﬁ exp <_(x 4715) ) de. (3.47)

Now, changing the variable with

8 G de = VoRdu and € = o + uVEF

V27T

we have X
In(=5) — xf In(c) +x
L #0&5 u< —= = — ,
17 V2 Noz
therefore,

L = [c(b (-m)

_n@ts _
—cﬁH/ e exp <_(u——\/§ﬁ)2> exp (7% + Bz) du] .

2

Again, changing the variable
w— V278 =v < du = dv,
and the upper bound for the integral is
_In(c) +z T
Hence, we have

I = c® (—m@%) — Mlexp (76% + Br) @ <—% - ﬁ\/ﬁ) , (3.48)

where ®(-) denotes the standard normal distribution function.

Furthermore, the double integral I, in (3.44) can be expressed as

L, = /O%Q(T:S)QXP(_T(T_iﬂ))dt/\/z\/éhr(lfi—weip<_m)dﬁ

=1
2 . 2rt!
_ 2Arts) exp(—rT)/ exp( L )dt'
a 0 a

_ )y
T
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Transforming the variables back, and using the fact that

97 (1), 2(1.y)) = g(1.y) = 9(t, 2)
we arrive at the unique solution to (3.37) given by
—rT 3 (ﬁ+1)(5$(T_t)_TT)
g(t,z) = e " ®di(t,z)] — 27e

_'_T_'_ s (efrt o efrT) ’

(I)[dQ (t’ Z)]

,
where )
T—Inz—2£(T -t
di(t,2) = 2 21)
%(T—t)
and
112
do(t,2) = d(t,2) — 61/ 25 (T )

Remember the optimal discounted leverage function &*(t) is given by
0
& () = — 1290 = B y3.8(dy(t, 2)) (3.49)
o
As we have

9= = e_TTQO[dl(ta Z)]d,lz — K (ﬁzﬁ_lq)[dQ(t? Z)] + Zﬁcp[dQ(ta Z)]di)
= —rB2PTID(dy(t, 2))

with ,
Lo (T—t)—r
L e(ml)(ﬁ%Q(T 1 T)’
and
d = d? = —71 l
(T —1)°

(e

denoting the standard normal density function with ¢(-), we have an explicit formula of
the optimal leverage strategy. Note that, Z(¢) (the optimal dual variable) is related to
the asset value by

V(t) = eg(t, Z(1)), (3.50)

which can in general only be solved numerically. In total, we have shown that the HJB-

Equation of our stochastic control problem thus possesses the desired solution.
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3.5 Numerical Results

In this section, we present some graphs and simulations for illustrating the behaviour of
the optimal leverage function with respect to the NAV. We further examine its sensitivity
with respect to the duration of the contract, and to the volatility of the relative return of
the risky asset. Moreover, we analyse the behaviour of the optimal leverage with different
offered spreads s and its sensitivity to the exponent p (risk-aversion parameter) charac-
terising our loss function. Also, we compare our optimal leverage function with the one
that is popular among practitioners.

After having fixed the present time variable ¢, we use the following algorithm for deter-

mining the optimal leverage function:

1. For given values of NAV v € [0, 1.5] introduce 0 = exp(—rt)v.

2. Determine the optimal dual value z* which solves the equation ¢(t,z*) = © by a

root finding method (such as a Newton type method).

3. With the value z* obtained in the previous step, calculate the optimal leverage

function in (3.49) for fixed ¢, i.e., a*(¢, 2%).

4. Find o*(t), i.e., o*(t) = exp(rt)a*(t)

Figures 3.3 and 3.4 show that unlike the standard leverage function commonly employed in
the industry, a; does not decrease linearly in V' (¢) but exhibits a non-monotone behaviour.
For V(t) equal to PV L(t) (marked by the red diamond on x-axis), where

1—e"T=Y

PVL(t) = (r+s)————+ e T (3.51)

is the present value of the outstanding liabilities of the CPDO, then «(t) = 0.

When the level of NAV is equal to the liabilities of the CPDO, no further risky investment
is required in order to pay the outstanding coupons and repay the principal investment.
The cash-in feature is endogenous in the specification of the investor’s utility function
(3.22) as no benefit is associated with a redemption value higher than the initial invest-
ment. As soon as V(t) = PV L(t), the CPDO becomes in effect a risk-less coupon paying

bond which can be unwound at market prices or held by investors until maturity. When
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Figure 3.3: Optimal and standard leverage as a function of V(). Parameters’ set: p =
0.005, o = 0.05, » = 0.0005, s = 0.02, "= 10, and p = 1.1
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Figure 3.4: Optimal and standard leverage as a function of V(). Parameters’ set: p =
0.005, 0 = 0.01, r = 0.0005, s = 0.02, T = 10, and p = 1.1

V(t) decreases as a consequence of losses, due to defaults or adverse spread movements,

the optimal leverage «(t) increases up to a maximum level, which depends on the speci-
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fication of the model parameters, and then decreases to 0 when
1 — e—r(T—t)

V({t) = |(r+s)———/, (3.52)

i.e., the present value of the remaining coupon payments. This behaviour is related to
our specification of the asset dynamics (3.23) as well as the positivity constraint on V().
In the current formulation of the problem coupons are always paid by the SPV and the
credit risk affects only the principal repayment at maturity. If the present value of the
stated coupon payments is lower than the initial investment, the SPV can always use the
cash account to pay for coupons. Our problem specification imposes that V' (t) is always
greater than the present value of all outstanding coupon payments so that the value of
the assets is always non negative. The bell shaped functional form of the optimal leverage
function is hence explained. As the value of the firm approaches PV L(t) the value of the

risky investment must be reduced.

Note also that in our formulation of the problem, the gap risk, i.e. the risk of jumps in
the asset values which would make V'(¢) be negative, is equal to zero. The gap risk is
usually underwritten by the sponsor of the SPV for a fee. Allowing for the possibility of
jumps and negative assets would conceivably change the shape of the optimal leverage
as investors would have an incentive to increase their leverage for small levels of V(t),
since the sponsor of the CPDO would bear a considerable portion of the potential losses.
Investors on the other side would retain the upside. In order to control the gap risk, it is
common practise in the industry to cap the maximum leverage. Also, CPDOs are usually

unwound if the asset value V(¢) falls below a strictly positive threshold (cash-out event).

We consider the time point ¢ = 0 which starts the period [0,7], where T" denotes the
maturity of the CPDO. We observe the leverage function with respect to the NAV in
Figure 3.5 with different values of 7', and the rest of the parameters do not change. We
observe that the leverage function gets lower with increasing maturity. This is plausible,
on one hand, the cash-in point moves to the right with increasing maturity, and on the
other hand, one has to take a higher risk (i.e. a higher leverage), if he wants to succeed

in a shorter time.

Using different values of the volatility of the relative return of the risky asset resulted

in Figure 3.6. We observe that with decreasing o, the leverage function increases. This
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Figure 3.5: The optimal leverage function with respect to the NAV for different CPDO
maturities, where the parameter set is ¢ = 0.005, ¢ = 0.05, r = 0.04, s = 0.02, T =
1/5/10, and p = 1.1

behaviour can be explained by the option type final utility function of our problem for-
mulation. Further, it is clear that one needs some level of volatility to have a chance to
succeed in generating the necessary payoffs, if one is below the cash-in point. So with
a lower volatility in the underlying, one has to take a higher leveraged position to reach
such a level of volatility. In the case of ¢ = 0 and r = 0, if we interpret p as the spread

paid by the index investment, then the optimal leverage function «(t) is linear in V (¢),

() (1+s)(T'—t)=V(t) PVL(t)—-V(t)
an= put ~ uDVO1(t)

and the optimal leverage function derived in this paper coincides with the leverage function

(3.53)

commonly used in the industry.

The sensitivity of the optimal leverage function to the offered spread s is explained in
Figure 3.7. As the figure illustrates, with increasing s, the leverage function shifts to the
right on the x-axis. This behaviour can be explained by the linear increase of the required

payments.

Figure 3.8 demonstrates the sensitivity of the optimal leverage function with respect to

variations of the risk aversion parameter p. There is the obvious tendency that the closer
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and p=1.1
18, T T
- -s=0.02
s=0.03
—5=0.04
1.6 -1
14 -1
1.2 I’ -1
/
3 /
S 1 H .
3
> 1
5 i
E /
‘g 0.8~ / -
e} "
i
i
0.6 i -
i
i
!
0.4+ ! 4
i
i
i
i
0.2f ] -
i
0
I
0
0.5 15
Net Asset Value

Figure 3.7: The optimal leverage function with respect to the NAV for different offered
spreads, where the parameters’ set is ;. = 0.005, ¢ = 0.05, r = 0.04, s = 0.02/0.03/0.04,

T =10, and p=1.1
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p gets to 1, the higher the leverage in the optimal strategy is. However, we observe that
the leverage is decreasing when NAV reaches small values. The reason for this is that,
for those values, the investors becomes very risk averse. They seem to have accepted the
losses for small values of NAV and tries to avoid even bigger losses by following a strategy
of only a small leverage. It seems that there is a kind of automatic cash-out behaviour.
This is similar to the behaviour of hedging strategies that one can observe in the area of
quantile hedging of stock options (e.g., see Follmer and Leukert [F1.99]). Further, if we
look at our computed optimal leverage strategies, they are quite similar to strategies used
in the industry (see below when analysing the dynamic behaviour of our strategy), al-
though they implement a linear leverage that decreases with increasing wealth. However,
the cash-out feature in the industry strategy limits the risky behaviour of the investor.

This can be compared with our built-in automatic cash-out feature as mentioned above.
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Figure 3.8: Optimal leverage as a function of V; for different levels of p. Parameters’ set:
= 0.005, ¢ = 0.05, r = 0.04, s = 0.02, T = 10, and p = 1.1/1.3/1.5/1.7/1.9

After having analysed the static behaviour of the optimal leverage strategy, we are now il-
lustrating its dynamic performance in dependence on the underlying NAV process. There-

fore, we simulated independent paths of the NAV via discretising the B(t)-process in (3.16)
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starting with B(0) = 0. Remember that the paths of B(t) explain the gains/losses pro-
cess, and initially we have V' (0) = 1. The maturity of the CPDO in the three simulations
is T'= 10 and we fix p = 1.1.

The first simulation demonstrates the cash-in feature of the CPDO strategy. We observe
in Figure 3.9 that for the simulated path of NAV, the optimal leverage drops to 0 when the
NAV reaches the PVL (plotted by dashed red line), i.e., a*(7) = 0 when PV L(7) = V(7).

Simulation 1: Cash-in
13 T T T T T T T T T 5

NAV, PVL
Optimal Leverage

Figure 3.9: Sample path with cash-in event. Parameters’ set: p = 0.015, 0 = 0.025,
r=20.04, s=0.02, T =10, and p=1.1

The second simulation in Figure 3.10 considers the case when the cash-in feature of the
product is not achieved and the principal redemption at the maturity is less then the

initial investment, hence the strategy defaults.

In the last simulation, we compare the behaviour of the NAV dynamics of both the
optimal and the linear leverage functions with respect to the same simulated gain/loss
process B(t). The key observation in Figure 3.11 is that, using the proposed optimal
leverage function, the CPDO cashes-in approximately after 6 years, whereas with the
linear leverage function, the strategy cashes-in approximately after 8 years. Remembering
that the major aim of the CPDO strategy is to cash-in and offer the investors (quasi risk-

free) high coupon rates, we may conclude that usage of the optimal leverage function we



3.5 Numerical Results 135

Simulation 2: Neither cash—in nor cash—out
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Figure 3.10: Sample path with default at maturity. Parameters’ set y = 0.0025, o = 0.05,
r=0.04, s =0.02, T =10, and p = 1.1

propose can help on catching an earlier cash-in feature.
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Figure 3.11: The simulation of the NAV dynamics with the standard and the optimal
leverage function with the parameters’ set u = 0.02, 0 = 0.05, r = 0.04, s = 0.02, T' = 10,
and p=1.1

3.6 Summary

A CPDO is a very recent financial product that is generated on the basis of a simple linear
leverage strategy as described in (3.2). Thus, it still contains the possibility of ending up
with a (bounded) loss, an event that even our optimal strategy cannot exclude. However,
by setting up a dynamic optimisation problem that focuses on minimising a possible loss
at maturity, we have computed a leverage strategy that possesses an optimality property
and coincides with the linear leverage function used among practitioners only for the case
of zero interest rate and volatility. If one constrains the CPDQO’s assets V; to stay positive
at any time and coupons are assumed to be always paid, the optimal leverage exhibits a
bell shaped form on the SPV asset value. Some numerical examples have shown promising
behaviour of our strategy. It is particularly satisfying that we seem to have an automatic
cash-out like behaviour when the NAV has become so small that the probability of being
able to pay out all our promised payments is too low. Further, the choice of the risk-

aversion parameter p also leaves the investor some freedom to specify his attitude towards
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risks as seen in Figure 3.8.

Of course, one should consider more realistic gain/loss processes as the Brownian motion
with drift type one that we looked at. Also, the inclusion of the cash-out feature is
desirable aspect. Including this will not be a big problem from the numerical point of
view, but it probably will not allow to solve the corresponding dynamic programming
problem. For practical purposes, one could also use our computed optimal strategy and
modify it in such a way that this feature is treated.

Our work should be seen as a starting point and it has already demonstrated that an
optimised strategy can perform better than an adhoc strategy. In order to derive a closed
form solution for the leverage function, we had to resort to a set of simplifying assumptions
for the dynamics of the risky investment. In particular, we refrained from modelling the
dynamics of the credit index spread and losses arising from the defaults in the underlying
portfolio separately, but instead condensed the returns of this two components into a
single random process. Also, in our framework we have not considered the possibility of
the negative SPV assets, which in presence of jumps in the dynamics of V;, would give
rise to a contingent payment by the SPV sponsor (typically a bank). Both extensions
would offer a valid contribution to the understanding of the problem. Finally, one should
note that we, indeed, solved a stochastic control problem (nearly) explicitly that has not

been dealt with in the literature before.
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