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Abstra
t
This thesis 
overs two important �elds in �nan
ial mathemati
s, namely the 
ontinuoustime portfolio optimisation and 
redit risk modelling. We analyse optimisation problemsof portfolios of Call and Put options on the sto
k and/or the zero 
oupon bond issuedby a �rm with default risk. We use the martingale approa
h for dynami
 optimisationproblems. Our �ndings show that the riskier the option gets, the less proportion of hiswealth the investor allo
ates to the risky asset. Further, we analyse the Credit DefaultSwap (CDS) market quotes on the Eurobonds issued by Turkish sovereign for building theterm stru
ture of the sovereign 
redit risk. Two methods are introdu
ed and 
omparedfor bootstrapping the risk-neutral probabilities of default (PD) in an intensity based (orredu
ed form) 
redit risk modelling approa
h. We 
ompare the market-implied PDs withthe a
tual PDs reported by 
redit rating agen
ies based on histori
al experien
e. Ourresults highlight the market pri
e of the sovereign 
redit risk depending on the assignedrating 
ategory in the sampling period. Finally, we �nd an optimal leverage strategy fordelivering the payments promised by a Constant Proportion Debt Obligation (CPDO).The problem is solved via the introdu
tion and expli
it solution of a sto
hasti
 
ontrolproblem by transforming the related Hamilton-Ja
obi-Bellman Equation into its dual.Contrary to the industry pra
tise, the optimal leverage fun
tion we derive is a non-linearfun
tion of the CPDO asset value. The simulations show promising behaviour of theoptimal leverage fun
tion 
ompared with the one popular among pra
titioners.

vii
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Prefa
e
This thesis is based on my resear
h sin
e I joined the Department of Finan
ial Mathe-mati
s of Fraunhofer ITWM in November 2004, where I also had a 
han
e to parti
ipatein the resear
h and 
onsulting proje
ts for the �nan
ial industry related with my resear
hinterests.The three 
hapters in this thesis are 
on
eptually independent from ea
h other, thereforeea
h 
hapter is self-
ontained and has a separate introdu
tion and a summary se
tion.The reader may dire
tly swit
h to the topi
 of his/her interest.The starting point of my resear
h was the intensity based (or redu
ed-form) 
redit riskmodelling, then we de
ided to integrate the 
redit risk issues into 
ontinuous time portfoliooptimisation problems. Hen
e, the �rst 
hapter is in line with the paper by Korn andKraft [KK03℄, where they examine the portfolio optimisation problems of defaultableassets using a �rm value based 
redit risk model. In Chapter 1, we study optimisationproblems of portfolios 
onsisting of risky options. The framework of Korn and Trautmann[KT99℄ is applied for the optimisation problem, where we model the 
redit risk with a�rm-value based approa
h. Sin
e the underlying in the portfolio is a European type optionon the risky bond written by the �rm, the 
ompound option formula of Geske [Ges79℄ isadapted for pri
ing reasons.The se
ond 
hapter is inspired from an industry proje
t of Fraunhofer ITWM in 2006for a leading German bank, where we jointly with PD Dr. Marlene Müller analysed therelationship between the risk-neutral and a
tual default probabilities of the 
ustomers ofthe bank, and validate the a
tual default probabilities with the risk neutral ones extra
tedfrom CDS quotes. Chapter 2 takes the Turkish sovereign CDS rates for building the termstru
ture of market implied sovereign 
redit risk. For that, a detailed literature surveyix



x CONTENTSabout intensity based 
redit risk models is presented and two methods are introdu
ed forextra
ting the default probabilities from the market CDS quotes. Furthermore, we givea detailed analysis about the linkage of the market implied default intensities and thea
tual default intensities estimated by a rating agen
y based on histori
al dataset.In the third and the last 
hapter, we look at the problem of �nding an optimal leveragestrategy for delivering the payments promised by a 
onstant proportion debt obligation(CPDO). The problem will be solved via the introdu
tion and expli
it solution by trans-forming the 
orresponding Hamilton-Ja
obi-Bellman-Equation into its dual. This 
hapteris similar to Baydar et al. [BGK08℄, where we in
lude the preliminaries about sto
hasti

ontrol method and provide examples in addition to our paper.This thesis summarises the 
redit risk literature, in
luding the stru
tural and the intensitybased models. Moreover, for 
ontinuous time optimisation, we present and apply both ofthe approa
hes, namely the martingale method and the sto
hasti
 
ontrol method.A
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Chapter 1Optimal Portfolios of Options withCredit Risk
1.1 Introdu
tionPortfolio optimisation problems start with the pioneering work by Markowitz [Mar52℄,where he developed the theory in a dis
rete time setting. The �rst optimisation approa
hin a 
ontinuous time setting was introdu
ed by Merton [Mer69℄, [Mer71℄ applying sto
has-ti
 
ontrol methods to portfolio problems. In his work the investor is allowed to invest onthe sto
ks and a riskless bond (or money market a

ount).In this 
hapter we are introdu
ing portfolio optimisation problems when the portfoliosare 
omposed of a riskless bond and European options written on the sto
k or the bondissued by a �rm, where the �rm has 
redit risk (or default risk). Credit risk is de�nedas the failure of ful�lling a �nan
ial obligation by the agents determined in a 
ontra
t.Credit risk problems are generally analysed in two approa
hes, namely the redu
ed form(or intensity based) and the stru
tural (or �rm-value based) models. We use the 
lassi
alMerton [Mer74℄ approa
h, known to be the �rst �rm-value based 
redit risk model.In Merton model, the market value of the �rm V (t) follows a geometri
 Brownian motion,being the main sour
e of un
ertainty. The �nan
ial obligation of the �rm is to return thepromised fa
e value F to the bondholders at debt maturity time T1. Hen
e, the defaulto

urs if the �rm 
an not ful�l its obligation, i.e., the market value of the �rm is less thanits debt V (T1) < F . The sto
k of the �rm is valued similar to a European 
all optionwritten on the market value of the �rm with a strike pri
e equal to the debt value, F . If1



2 Chapter 1. Optimal Portfolios of Options with Credit Riskwe have another 
all option written on the sto
k pri
e of this �rm, we 
an 
onsider thederivative a European 
all on 
all option, with the �rm value as the underlying. Hen
e,we 
an adopt the 
ompound option pri
ing te
hniques of Geske [Ges79℄ to our problem.We use similar te
hniques for the valuation of European options written on the bond ofthe �rm.To our knowledge, the portfolio problem with defaultable se
urities was �rst introdu
edby Merton [Mer71℄, where he used a spe
ial kind of redu
ed-form 
redit risk model formodelling the default event. A similar approa
h was examined by Kraft and Ste�ensen[KS08℄, where the authors proposed a model that allows for random re
overy and joint de-fault events as well in a redu
ed-form setting. Other papers dealing with similar problemsare Biele
ki and Jang [BJ07℄, and Lakner and Liang [LL07℄.A se
ond type of portfolio optimisation problem in
luding 
redit risk, whi
h uses thestru
tural 
redit risk models was introdu
ed by Korn and Kraft [KK03℄. In this approa
h,the authors use the elasti
ity method of Kraft [Kra03℄, whi
h is the generalisation of theideas presented by Korn and Trautmann [KT99℄ for 
ontinuous time optimisation problemfor the option portfolios. Furthermore, Kraft and Ste�ensen [KS06℄ extended the modeldeveloped in Korn and Kraft [KK03℄ with power utility fun
tions delivering more reliableresults. Our work 
an be listed in this stream of papers, as we use a stru
tural model formodelling the 
redit event.Our 
ontributions in this 
hapter result from 
ombining three ingredients:
• the Merton [Mer74℄ approa
h for modelling the 
redit risk,
• the optimisation method for portfolio of options from Korn and Trautmann [KT99℄,
• the Geske [Ges79℄ formula for pri
ing of the 
ompound options,in order to deal with an optimal (option) investment problem for defaultable se
urities.The outline of the 
hapter is as follows. We analyse the stru
tural 
redit risk modelsin Se
tion 1.2. We give the outlines of 
ontinuous time portfolio optimisation problemin Se
tion 1.3, where we present the martingale approa
h in details. We 
ontinue withSe
tion 1.4 by introdu
ing the Korn and Trautmann [KT99℄ framework for optimising



1.2 Stru
tural Credit Risk Models 3option portfolios. Se
tion 1.5 presents our �ndings, where we extend the results of Kornand Kraft [KK03℄, and add a se
ond iteration to the problem in their paper. Here, weoptimise portfolios 
onsisting of options on options and the money market a

ount. We�nally present our �ndings and summarise the 
hapter.1.2 Stru
tural Credit Risk ModelsIn this se
tion, we will des
ribe the stru
tural 
redit risk model, whi
h is also 
alled the�rm value based 
redit risk model. This model was proposed by Merton [Mer74℄ anduses the option pri
ing te
hniques of Bla
k and S
holes [BS73℄. In this approa
h, the
orporate liabilities are 
onsidered as 
ontingent 
laims on the assets of the �rm. Thismodel is named as �rm-value based sin
e the market value of the �rm is the fundamentalsour
e of un
ertainty whi
h drives the 
redit risk.We 
an also subdivide stru
tural models into two di�erent approa
hes, namely the 
lassi
alapproa
h and the �rst-passage approa
h. In the 
lassi
al Merton [Mer74℄ approa
h, the�rm defaults when its market value is not su�
ient to pay ba
k its debt at the maturitytime of the 
ontra
t. This means that the default 
annot be triggered before debt maturity,whi
h is a very unrealisti
 assumption. However, in �rst-passage models, we assume thatthe default is triggered when the value of the �rm falls below a barrier during the life timeof the bond. This approa
h was pioneered by Bla
k and Cox [BC76℄.1.2.1 Classi
al Approa
h: Merton ModelWe present the important results of the 
lassi
al approa
h in this subse
tion. Merton[Mer74℄ introdu
es the �rm value dynami
s with an assumption that the �rm has pay-outs (dividends or interest payments) to either its shareholders or liability holders. Forsimpli
ity, we assume that the �rm has neither dividends nor interest payments. Thedynami
s for the market value of the �rm V through time is des
ribed by a geometri
Brownian motion:
dV (t)

V (t)
= µvdt+ σvdW (t), V (0) > 0, (1.1)



4 Chapter 1. Optimal Portfolios of Options with Credit Riskwhere µv ∈ R is the 
onstant drift parameter, σv > 0 is the 
onstant volatility parameterand W is the one-dimensional Brownian motion under physi
al measure P . Here, Vrepresents the expe
ted dis
ounted future 
ash �ows of a �rm. The simulated paths forthe dynami
s of the �rm value pro
ess 
an be observed in Figure 1.1, where we use thealgorithm des
ribed by U§ur [U�08℄. The �rm is �nan
ed by an equity (sto
k) P1(t) and a
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Figure 1.1: Simulated paths for the �rm value pro
ess with µv = 0.1, σv = 0.5, V (0) = 1.risky Zero Coupon Bond (ZCB, hereafter) B̄(t, T1) with fa
e value F and maturity date
T1. The 
ontra
tual obligation of the �rm is to repay F to the bondholders at time T1.We assume that if the �rm 
annot ful�l its payment obligation, then the bondholders willimmediately take over the �rm. Hen
e, the default time τ is a random variable with:

τ =

{
T1 if V (T1) < F,
∞ else. (1.2)It�'s lemma implies that

V (t) = V (0) exp

((
µv −

1

2
σ2

v

)
t+ σvW (t)

)
.Assuming that the �rm 
an neither issue new senior debt on the �rm nor repur
hase



1.2 Stru
tural Credit Risk Models 5Firm value Bond Sto
kNo default V (T1) ≥ F F V (T1) − FDefault V (T1) < F V (T1) 0Table 1.1: Payo�s at maturity in the 
lassi
al approa
hshares prior to the maturity of the debt, the payo�s of the se
urities of the �rm will be asin Table 1.1. If the �rm value V (T1) ex
eeds or equals the fa
e value F of the bonds, the
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Figure 1.2: Firm A defaults, Firm B does NOT default, with F = 0.8.bondholder re
eives the promised payment F , and the shareholder re
eives what remains;
V (T1) − F . If the value of the assets V (T1) is less than F , the �rm defaults and theownership of the �rm is transferred to bondholders; and shareholders re
eive nothing.Therefore, the value of the ZCB at maturity time T1 will be given by:

B̄(T1, T1) = min(F, V (T1)) = F − (F − V (T1))
+. (1.3)Now, we 
an relate the option pri
ing theory of Bla
k and S
holes [BS73℄ with the followingidea. The payo� given in (1.3) is the same payo� of a portfolio 
omposed of a default-free



6 Chapter 1. Optimal Portfolios of Options with Credit Riskloan with fa
e value F maturing at T1 and a short European put position on the value ofa �rm with strike F and maturity time T1. Denoting the pri
e of the sto
k with P1(·), atthe time T1 we have
P1(T1) = (V (T1) − F )+, (1.4)whi
h is equivalent to the payo� of a European 
all option on the �rm value with strike Fand maturity time T1. Thus, valuation of the sto
k is the same as valuation of a Europeanoption in the 
lassi
al Bla
k-S
holes setting, where we assume the short interest rate, r, is
onstant and the �rm value V , follows a geometri
 Brownian motion. The Bla
k-S
holes
all option formula gives the sto
k pri
e as:

P1(t) = V (t)Φ(h1(t)) − Fe−r(T1−t)Φ(h2(t)), (1.5)where
h1(t) =

ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

and h2(t) = h1(t) − σv

√
T1 − t.The value of the risky ZCB is

B̄(t, T1) = Fe−r(T1−t) −XPut(t, V (t)),where XPut is the Bla
k-S
holes put option formula. Therefore, we will have:
B̄(t, T1) = V (t)Φ(−h1(t)) + Fe−r(T1−t)Φ(h2(t)), (1.6)whi
h together with (1.5) proves the market value identity:

V (t) = P1(t) + B̄(t, T1).1.2.2 First Passage Models: Bla
k-Cox ModelThe main drawba
k of the Merton [Mer74℄ model is that the default event may o

ur onlyon the maturity time of the bond, whi
h is very unrealisti
. Hen
e, �rst passage modelswere introdu
ed allowing the default event o

ur during the life time of the defaultablebond. The default time is the �rst time that the value of the �rm hits a barrier, i.e.,
τ = inf{t|V (t) = L(t)}, t > 0 (1.7)



1.3 Continuous Time Portfolio Optimisation Problem 7where the time-dependent, deterministi
 barrier fun
tion is denoted with L(·). We 
anthink the barrier as 
ontinuously 
ompounded debt k with rate κ dis
ounted to time t,i.e.,
L(t) = ke−κ(T1−t). (1.8)The pri
e of a ZCB with the fa
e value F ≥ k and maturity T1 at time t ∈ [0,min(T1, τ)]is given by

B̄(t, T1) = Fe−r(T1−t)
[
Φ(z1(t)) − y2θ−2(t)Φ(z2(t))

]

+V (t)
[
Φ(−z3(t)) + y2θ(t)Φ(z4(t))

]
,with

z1;3 =
ln
(

V (t)
F

)
+ (r ∓ 1

2
σ2

v)(T1 − t)

σv

√
T1 − t

z2;4 =
ln
(

V (t)
F

)
+ 2 ln(y(t)) + (r ∓ 1

2
σ2

v)(T1 − t)

σv

√
T1 − t

y(t) =
ke−κ(T1−t)

V (t)

θ =
r − κ+ 1

2
σ2

v

σ2
.Sin
e we fo
us on the optimal portolio problems in 
lassi
al Merton setting on this level,we refer the interested reader to the introdu
tory paper by Giese
ke [Gie04℄ for more infor-mation about advan
ed stru
tural 
redit risk models. Further, A
ar [A
a06℄ introdu
es anadvan
ed �rm value model in
luding a jump 
omponent for obtaining the optimal 
apitalstru
ture of a �rm.1.3 Continuous Time Portfolio Optimisation ProblemThe problem 
an be brie�y de�ned as �nding an optimal 
onsumption and investmentstrategy for an investor with an initial 
apital of x > 0 in order to maximise his expe
tedutility on terminal wealth. Hen
e, it is about de
iding how many shares of whi
h se
urityone investor should hold at whi
h time instant. For the general presentation in thisse
tion, we assume to be in a standard di�usion type market with d risky assets and a



8 Chapter 1. Optimal Portfolios of Options with Credit Riskriskless bond (or Money Market A

ount). We present some de�nitions from Korn andKorn [KK01℄.De�nition 1.1. I. A trading strategy ϕ is an Rd+1− valued progressively measurablepro
ess with respe
t to {Ft}t∈[0,T ]

ϕ := (ϕ0(t), ϕ1(t), . . . , ϕd(t))
′satisfying ∫ T

0

|ϕ0(t)|dt <∞ a.s. , (1.9)
d∑

j=1

∫ T

0

(ϕi(t) · Pi(t))
2dt <∞ a.s. for i = 1 . . . d. (1.10)The value x :=

∑d
i=0 ϕi(0) · pi is 
alled the initial value of ϕ.II. Let ϕ be a trading strategy with initial value x > 0. The pro
ess

X(t) :=
d∑

i=0

ϕi(t)Pi(t)is 
alled wealth pro
ess 
orresponding to ϕ with initial wealth x.III. A non-negative progressively measurable pro
ess c(t) with respe
t to {Ft}t∈[0,T ] with
∫ T

0

c(t)dt <∞ a.s. (1.11)is 
alled a 
onsumption rate pro
ess (or just 
onsumption pro
ess).De�nition 1.2. A pair (ϕ, c) 
onsisting of a trading strategy ϕ and a 
onsumption ratepro
ess c is 
alled self-�nan
ing if the 
orresponding wealth pro
ess X(t), t ∈ [0, T ],satis�es:
X(t) = x+

d∑

i=0

∫ t

0

ϕi(s)dPi(s) −
∫ t

0

c(s)ds a.s. . (1.12)
urrent wealth = initial wealth + gains / losses− 
onsumptionDe�nition 1.3. Let (ϕ, c) be a self-�nan
ing pair 
onsisting of a trading strategy and a
onsumption pro
ess with 
orresponding wealth pro
ess X(t) > 0 a.s. for all t ∈ [0, T ].Then, the Rd−valued pro
ess
π(t) := (π1(t), . . . , πd(t))

′, t ∈ [0, T ] with πi(t) =
ϕi(t) · Pi(t)

X(t)is 
alled a self �nan
ing portolio pro
ess 
orresponding to the pair (ϕ, c).



1.3 Continuous Time Portfolio Optimisation Problem 9Remark 1.1. I. The portfolio pro
ess denotes the fra
tion of the total wealth invested indi�erent sto
ks. Therefore, the fra
tion of wealth invested in the riskless bond (or MMA)is
(1 − π(t)1) =

ϕ0(t) · P0(t)

X(t)
, where 1 := (1, . . . , 1)′ ∈ R

d.II. Given the knowledge of the wealth X(t) and the pri
es Pi(t), it is possible for aninvestor to des
ribe his a
tivities via a self-�nan
ing pair (π, c). More pre
isely, in this
ase, portfolio pro
ess and trading strategy are equivalent des
riptions of same a
tion.Now, we introdu
e the fun
tional J for measuring the utility of a payment stream, wherelarge values of J should represent "good" payment streams. Therefore, the investor looksfor a self-�nan
ing pair (an admissible investment strategy and 
onsumption pro
ess)
(π, c) ∈ A(x), whi
h maximises the expe
ted utility from 
onsumption and/or terminalwealth,

J(x; π, c) = E

[∫ T

0

U1(t, c(t))dt+ U2(X
x,π,c(T ))

]
, (1.13)where U1, U2 are the utility fun
tions, X(t) is the wealth pro
ess 
orresponding to theinitial 
apital x and (π, c). We require that the utility fun
tions U1(t, .) and U2(.) are C1,stri
tly 
on
ave and satisfy

U ′(0) := lim
x↓0

U ′(x) = +∞, U ′(∞) := lim
x↓∞

U ′(x) = 0.Typi
al utility fun
tions are U(x) = ln(x), U(x) =
√
x, or U(x) = xα for 0 < α < 1. Formore details on the utility fun
tions, we refer the reader to Korn [Kor97℄.Note that for an arbitrary (π, c) ∈ A(x), the expe
tation in (1.13) is not ne
essarilyde�ned. Hen
e, we restri
t the 
lass of self-�nan
ing pairs (π, c), in whi
h the expe
ta-tion in (1.13) is �nite. However, having an in�nite positive expe
ted utility would beany investor's dream if it 
ould be rea
hed. We 
an now de�ne the problem after thisrestri
tion.De�nition 1.4. The problem

max
(π,c)∈A′(x)

J(x; π, c) (1.14)with
A′(x) =

{
(π, c) ∈ A(x)

∣∣∣E
[∫ T

0

U1(t, c(t))
−dt+ U2(X(T ))−

]
<∞

}is 
alled the 
ontinuous-time portfolio problem.



10 Chapter 1. Optimal Portfolios of Options with Credit RiskRemark 1.2. I. Note that the 
ondition in (1.14) does not ex
lude the strategies thatwill possibly lead to in�nite utility. It states that the only requirement is the �niteness ofthe expe
ted value over the negative parts of the utility fun
tion. Hen
e, by restri
tingto the set A′(x), the integral in (1.14) is always de�ned.II. If U1(t, .) > 0 and U2(.) > 0, the equality A(x) = A′(x) is trivially satis�ed.There are mainly two solution methods in the literature for the portfolio problem in (1.14).The �rst method is 
alled the martingale method, whi
h is based on the martingale theoryand sto
hasti
 integration in a 
omplete market setting. The se
ond approa
h is thesto
hasti
 
ontrol method and it is an appli
ation of the standard methods of sto
hasti

ontrol theory to portolio optimisation problem. In the next subse
tion, we will explainthe motivation of the martingale method and provide an example. We present someimportant results of the sto
hasti
 
ontrol theory in Chapter 3.1.3.1 The Martingale MethodThe main idea of the martingale method is to de
ompose the dynami
 (in time) portolioproblem in (1.14) into a stati
 (in time) optimisation problem (determination of theoptimal payo� pro�le) and a representation problem (
ompute the portfolio pro
ess thatyields the optimal payo� pro�le).Sin
e the motivation of the approa
h mainly depends on the 
omplete market assumption,we introdu
e the related theorem below. Remember that the number of sto
ks equals thedimension of the underlying Brownian motion. We use the following notation
θ(t) := σ−1

p (t)(µp(t) − r(t)1)

H(t) := exp

(
−
∫ t

0

θ(s)′dW (s) −
∫ t

0

(
r(s) +

1

2
‖ θ(s) ‖2

)
ds

)
,where µp denotes the deterministi
 drift pro
ess for equity dynami
s, σp is the volatility,and r is the short rate pro
ess.Moreover, H(t) is the unique solution to the Sto
hasti
 Di�erential Equation (SDE)

dH(t) = −H(t)[r(t)dt+ θ(t)′dW (t)], (1.15)
H(0) = 1.



1.3 Continuous Time Portfolio Optimisation Problem 11Theorem 1.1 (Completeness of the market). I. Let the self-�nan
ing pair (π, c) be ad-missible for an initial wealth of x ≥ 0. Then, the 
orresponding wealth pro
ess Xx,π,c(t)satis�es
E

[
H(t)Xx,π,c(t) +

∫ t

0

H(s)c(s)ds

]
≤ x for all t ∈ [0, T ].II. Let B ≥ 0 be an FT−measurable random variable and c(t), t ∈ [0, T ], a 
onsumptionpro
ess satisfying

x := E

[
H(T )B +

∫ T

0

H(s)c(s)ds

]
<∞.Then, there exists a portfolio pro
ess π(t), t ∈ [0, T ], with (π, c) ∈ A(x) and the 
orre-sponding wealth pro
ess Xx,π,c(t) satis�es

Xx,π,c(T ) = B almost surely (a.s.).Proof: See p.66 of Korn and Korn [KK01℄.Motivation of the Martingale MethodWe start the presentation with assuming that the portfolio problem in (1.14) does nothave the 
onsumption pro
ess, i.e., c ≡ 0, U1 ≡ 0. Therefore, the dynami
 portfolioproblem redu
es to
max

(π,0)∈A′(x)
E(U2(X

x,π(T ))). (1.16)From the 
ompleteness of the market (Theorem 1.1), we have
E [H(T )Xx,π(T )] ≤ x for T ≥ 0,and let the �nal payment B ≥ 0 be FT−measurable with E[H(T )B] = x. Furthermore,there exists a portfolio pro
ess (π, 0) ∈ A with B = Xπ(T ) a.s. De�ne

B(x) := {B | B ≥ 0, FT -measurable, E[H(T )B] ≤ x,E[U2(B)−] <∞},representing the set of all �nal wealths with some initial wealth y ∈ (0, x] and satisfying
E[U2(B)−] < ∞. In order to determine the optimal �nal wealth, it is su�
ient to solvethe following problem

max
B∈B(x)

E[U2(B)]. (1.17)Note that we do not have any time dependent variable above, therefore, we only optimiseover a set of random variables. Here, we transformed the dynami
 problem in (1.16)



12 Chapter 1. Optimal Portfolios of Options with Credit Riskinto the stati
 problem in (1.17). We solve the stati
 problem (1.17) with the help ofLagrangian method (See p. 208 of Korn and Korn [KK01℄).Say, the �rst step results in the optimal wealth B∗, then the remaining step is to solvethe �representation� problem:Find a (π∗, 0) ∈ A′(x) with Xx,π∗
(T ) = B∗ a.s. . (1.18)

2Going ba
k to general optimisation problem de�ned in (1.14), we introdu
e the fun
tion
χ : (0,∞) → R:

χ(y) := E

[∫ T

0

H(t)I1(t, yH(t))dt+H(T )I2(yH(T ))

]
∀y > 0,where I1(t, ·) = (U ′

1)
−1(t, .), is the inverse fun
tion of the partial derivative of U1 withrespe
t to the se
ond 
omponent, and I2(·) = (U ′

2)
−1(.). Fun
tion χ(y) is stri
tly de-
reasing, 
ontinuous and possesses an inverse fun
tion. Setting Y (x) := χ−1(x) and withthe help of the following theorem from Korn and Trautmann [KT99℄, we get the optimalterminal wealth and the optimal 
onsumption pro
ess.Theorem 1.2. Let x > 0. Under the assumption of

χ(y) <∞ y ∈ (0,∞)the optimal terminal wealth B∗ and the optimal 
onsumption pro
ess c∗(t), t ∈ [0, T ], forproblem (1.14) are given by
B∗ := I2(Y (x)H(T )), �optimal terminal wealth�

c∗(t) := I1(t, Y (x)H(t)), �optimal 
onsumption�Moreover, there exists a portfolio pro
ess π∗(t), t ∈ [0, T ], su
h that we have
(π∗, c∗) ∈ A′(x), Xx,π∗,c∗(T ) = B∗ a.s.,and su
h that (π∗, c∗) solves the problem (1.14), where Xx,π∗,c∗(t) is the wealth pro
ess
orresponding to the pair (π∗, c∗) and the initial wealth x.Proof: See p. 210 of Korn and Korn [KK01℄.



1.3 Continuous Time Portfolio Optimisation Problem 13Example 1.1. We present an example from Korn and Korn [KK01℄ with logarithmi
utility fun
tions for the martingale approa
h of portfolio optimisation. Suppose we have
U1(t, x) = U2(x) = ln(x).Note that we may have negative utilities if x < 1. With the utility fun
tions given above,we have

⇒ I1(t, y) = I2(y) =
1

y

⇒ χ(y) = E

[∫ T

0

H(t) · 1

yH(t)
dt+H(T ) · 1

yH(T )

]
=

1

y
(T + 1)

⇒ Y (x) = χ−1(x) =
1

x
(T + 1).With Theorem 1.2, we get the optimal 
onsumption and wealth as

B∗ := I2(Y (x)H(T )) =
x

T + 1
· 1

H(T )
,

c∗(t) := I1(t, Y (x)H(t)) =
x

T + 1
· 1

H(t)
.From these optimal values, we 
an �nd the the optimal portfolio pro
ess expli
itly. Wehave

H(t) ·Xx,π∗,c∗(t) = E

[∫ T

t

H(s)c∗(s)ds+H(T )B∗
∣∣∣Ft

] (1.19)
= x · 1 + T − t

T + 1
. (1.20)Then,

x = x · T + 1 − t

T + 1
+ x · t

T + 1
= H(t) ·Xx,π∗,c∗(t) +

∫ t

0

H(s)c∗(s)ds. (1.21)From the self-�nan
ing pair (π∗, c∗) and the 
orresponding wealth pro
ess,
X := Xx,π∗,c∗, we have the wealth equation as follows:

dX(t) = [r(t)X(t) − c∗(t)]dt+X(t)π∗(t)′(µp(t) − r(t)1)dt

+X(t)π∗(t)′σp(t)dW (t)

X(0) = x,



14 Chapter 1. Optimal Portfolios of Options with Credit Riskand H(t) has the It� representation as in (1.15). Applying It� produ
t rule to H(t) ·X(t),we have
H(t) ·X(t) = H(0) ·X(0) +

∫ t

0

H(s)dX(s) +

∫ t

0

X(s)dH(s) +

∫ t

0

d < H,X >s

= x+

∫ t

0

H(s)[r(s)X(s) − c∗(s)]ds+

∫ t

0

H(s)X(s)π∗(s)′(µp(s) − r(s)1)ds

+

∫ t

0

H(s)X(s)π∗(s)′σp(s)dW (s) −
∫ t

0

X(s)H(s)r(s)ds−
∫ t

0

X(s)θ(s)′dW (s)

−
∫ t

0

X(s)π∗(s)σp(s)H(s)θ(s)′ds.Plugging into (1.21) we have
x = x+

∫ t

0

H(s) ·X(s)(π∗(s)′σp(s) − θ(s)′)︸ ︷︷ ︸
=:f(s)

dW (s). (1.22)Hen
e, we must have
f(s) = 0 a.s for all s ∈ [0, T ].As H(s) ·X(s) is positive, we must have

π∗(t) = (σp(t)
′)
−1
θ(t) for all t ∈ [0, T ].Assume we have d = 1 and r, µp, σp are 
onstants, then we have

π∗(t) =
µp − r

σ2
p

, (1.23)whi
h is de�ned as the lo
al risk premium for sto
k investment.We introdu
e the following theorem for a general method for determining the optimalportfolio pro
ess π∗, related with the representation problem.Theorem 1.3. Let the portfolio problem in (1.14) be given. Suppose that x > 0 andassume
χ(y) < ∞ for all y > 0. Further, c∗ and B∗ is as in Theorem 1.2. If there exists afun
tion f ∈ C1,2([0, T ] × Rd) with f(0, 0, . . . , 0) = x and

1

H(t)
· E
(∫ T

t

H(s)c∗(s)ds+H(T )B∗
∣∣∣Ft

)
= f(t,W1(t), . . . ,Wd(t)),



1.4 Option Portfolios 15then for t ∈ [0, T ] we have
π∗(t) =

1

Xx,π∗,c∗(t)
σ−1(t)∇xf(t,W1(t), . . . ,Wd(t)),where ∇xf denotes the gradient of f(t, x1, . . . , xd) with respe
t to the x−
oordinates.Proof: See p.214 of Korn and Korn [KK01℄.1.4 Option PortfoliosIn this se
tion, we analyse a similar problem as in Se
tion 1.3, but instead of a portfolio
omposed of the riskless bond and sto
ks, we have the riskless bond and European optionswritten on sto
ks in our portfolio. Using the result that in both markets we have the sameoptimal terminal wealth B∗, we repli
ate the sto
k positions with the riskless bond andthe options. This approa
h is appli
able only under the assumption that the sto
ks andoptions generate the same �ltration.We provide some basi
 de�nitions and theorems of option pri
ing with repli
ation ap-proa
h, from Korn and Korn [KK01℄.De�nition 1.5. A 
ontingent 
laim (g, B) 
onsists of an {Ft}− progressively measurablepayout rate pro
ess g, with t ∈ [0, T ], g(t) ≥ 0, and an FT−measurable terminal payment

B ≥ 0 at time t = T with
E

[(∫ T

0

g(t)dt+B

)µ]
<∞ for some µ > 1. (1.24)De�nition 1.6. I. The pair (π, c) is 
alled a repli
ation strategy for the 
ontingent
laim (g, B) if we have

g(t) = c(t) a.s. for all t ∈ [0, T ],

X(T ) = B a.s. ,where X(t) is the wealth pro
ess 
orresponding to (π, c).II. The set of repli
ation strategies of pri
e x is the set
D := D(x; (g, B)) := {(π, c) ∈ A(x)|(π, c) repli
ation strategy for (g, B)}.



16 Chapter 1. Optimal Portfolios of Options with Credit RiskIII. The fair pri
e of the 
ontingent 
laim (g, B) is de�ned as
p̂ := inf{p|D(p) 6= ∅}.Remark 1.3. Sin
e r(t), µp(t), σp(t) are uniformly bounded, and σp(t)σp(t)

′ are uniformlypositive de�nite, together with Hölder's inequality1 and (1.24), we have
x̃ := E

[
H(T )B +

∫ T

0

H(t)g(t)dt

]
<∞.From Theorem 1.1, there exists a π 
orresponding to (B, g) su
h that we have

(π, g) ∈ A ∩ D(x̃), whi
h implies
p̂ ≤ x̃.The following theorem shows the 
ase when p̂ = x̃.Theorem 1.4. Let H(t) denote the sto
hasti
 de�ator pro
ess. Then, the fair pri
e p̂ ofthe 
ontingent 
laim (g, B) is

p̂ = E

[
H(T )B +

∫ T

0

H(t)g(t)dt

]
<∞,and there exists a unique repli
ating strategy (π̂, ĉ) ∈ D(p̂). Its 
orresponding wealthpro
ess X̂(t) (the valuation pro
ess for (g, B)) is

X̂(t) =
1

H(t)
E

[
H(T )B +

∫ T

0

H(s)g(s)ds
∣∣∣Ft

]
.We 
an get the expli
it form of the repli
ating strategy by imposing additional assump-tions on the option pri
e pro
ess.Theorem 1.5. Assume that the pri
e of an option at time t 
an be written as a C1,2−fun
tion f(t, p1, . . . , pd) of time and underlying sto
k pri
es.1. Then, the repli
ating strategy ψ∗ is given by

ψ∗
i (t) = fpi

(t, P1(t), . . . , Pd(t)), i = 1, . . . , d,

ψ∗
0(t) =

f(t, P1(t), . . . , Pd(t)) −
∑n

i=1 fpi
(t, P1(t), . . . , Pd(t))Pi(t)

P0(t)
,1Let 1 < p < ∞, 1 < q < ∞, and (1/p) + (1/q) = 1. If E|X |p < ∞ and E|Y |q < ∞ then E|XY | < ∞and E|XY | ≤ (E|X |p)1/p(E|Y |q)1/q



1.4 Option Portfolios 17and the fun
tion f(t, p1(t), . . . , pd(t)) is a solution of the partial di�erential equation
ft +

1

2

d∑

i,j=1

aijpipjfpipj
+

d∑

i=1

rpifpi
− rf = 0.Here, we have set a(t) := σp(t)σp(t)

′ and the subs
ripts t, p1, . . . , pd mean partialderivative with respe
t to the 
orresponding variable.2. The pri
e pro
ess f(t, P1(t), . . . , Pd(t)) obeys the sto
hasti
 di�erential equation
df(t, P1(t), . . . , Pd(t)) (1.25)

=

(
rf(t, P1(t), . . . , Pd(t)) +

d∑

i=1

fpi
(t, P1(t), . . . , Pd(t))Pi(t)(µi − r)dt

)

+

(
fpi

(t, P1(t), . . . , Pd(t))Pi(t)

d∑

j=1

σi,j(t)dWj(t)

)
.Des
ription of the market: We 
onsider a �nan
ial market, where one riskless bond(or MMA), d sto
ks and d options are traded. Moreover, we assume that we are onlyallowed to hold a portfolio of the bond and the options. The options are assumed to havepri
e pro
esses

f (i)(t, P1(t), . . . , Pd(t)), i = 1, . . . , d, f ∈ C1,2.Let ϕ(t) = (ϕ0(t), ϕ1(t), . . . , ϕd(t)) be an admissible trading strategy in bond and options,then the 
orresponding wealth pro
ess will be
X(t) = ϕ0(t)P0(t) +

d∑

i=1

ϕi(t)f
(i)(t, P1(t), . . . , Pd(t)),where we require the assumptions that the integrals

∫ t

0

ϕ0(s)dP0(s), and ∫ t

0

ϕi(s)df
(i)(s, P1(s), . . . , Pd(s))are de�ned and ϕ(t) is Ft−progressively measurable.Here, we �nd an optimal strategy whi
h maximises the utility from the �nal wealth of theinvestor, who has an initial 
apital of x > 0, i.e.,

max
ϕ

E[U(X(T ))]. (1.26)



18 Chapter 1. Optimal Portfolios of Options with Credit RiskThe solution to the problem in (1.26) 
an be des
ribed as determining an optimal payo� B∗and the repli
ating strategy ξ(t) = ξ0(t), ξ1(t), . . . , ξd(t) for the bond and sto
k positionsfor optimal payo� B∗. Sin
e we are not allowed to trade in sto
ks, we have to repli
ate thesto
k position with bond and options, whi
h yields the optimal terminal wealth X∗(T ) ofthe investor. The following theorem from Korn and Trautmann [KT99℄ (KT framework,hereafter) is useful to understand the formulation above.Theorem 1.6 (KT framework). Let the Delta matrix Ψ(t) = (Ψij(t))ij, i, j = 1, . . . , dwith
Ψij := f (i)

pj
(t, P1(t), . . . , Pd(t))be regular for all t ∈ [0, T ). Then, the option portfolio problem in (1.26) possesses thefollowing expli
it solution:1. The optimal terminal wealth B∗ 
oin
ides with the optimal terminal wealth of the
orresponding sto
k portfolio problem in (1.14).2. Let ξ(t) = (ξ0(t), . . . , ξd(t)) be the optimal trading strategy in the 
orresponding basi
sto
k portfolio problem (1.14). Then, the optimal trading strategy

ϕ(t) = (ϕ0(t), ϕ1(t), . . . , ϕd(t)) in the option portfolio problem in (1.26) is given by
ϕ̄(t) = (Ψ(t)′)−1ξ̄(t),

ϕ0(t) =

(
X(t) −∑d

i=1 ϕi(t)f
(i)(t, P1(t), . . . , Pd(t))

)

P0(t)
,with ϕ̄(t) := (ϕ1(t), . . . , ϕd(t)) and ξ̄(t) := (ξ1(t), . . . , ξd(t)).Proof: see p.218 of Korn and Korn [KK01℄.Example 1.2. This example from Korn and Korn [KK01℄ sums up the ideas presentedin this se
tion. In Example 1.1, we 
al
ulated the optimal trading strategy in sto
k andMMA portolio problem with logarithmi
 utility, i.e., U(x) = ln(x) and get the optimalportfolio pro
ess as

π∗ =
µp − r

σ2
p

,



1.4 Option Portfolios 19whi
h represents the fra
tion of the total wealth invested to the sto
ks. Hen
e, the numberof sto
ks will be
ξ1(t) =

π∗X(t)

P1(t)
=
µp − r

σ2
p

· X(t)

P1(t)
.The optimal trading strategy in the option portolio problem with Theorem 1.6 will be

ϕ1(t) =
µp − r

σ2
p

· X(t)

Ψ1(t)P1(t)
,where Ψ1(t) = f

(1)
p1 (t, P1(t)). Now, if we introdu
e the optimal option portfolio pro
ess as

π∗
option, whi
h gives the fra
tion of total wealth invested to the option, then we will have

π∗
option(t) :=

ϕ1(t)f
(1)(t, P1(t))

X(t)

=
µp − r

σ2
p

X(t)f (1)(t, P1(t))

X(t)Ψ1(t)P1(t)

= π∗ f (1)(t, P1(t))

f
(1)
p1 (t, P1(t))P1(t)

.Using the Bla
k-S
holes framework, for a European type 
all option, we will have
f (1)(t, P1(t)) = P1(t)Φ(d1(t)) −Ke−r(T−t)Φ(d2(t)), (1.27)where

d1(t) =
ln
(

P1(t)
K

)
+
(
r + 1

2
σ2

p

)
(T − t)

σp

√
T − t

, and d2(t) = d1(t) − σp

√
T − t.We have

f (1)
p1

= Φ(d1(t)).It is obvious that
f (1)(t, P1(t)) < f (1)

p1
· P1(t) ⇒

f (1)(t, P1(t))

f
(1)
p1 · P1(t)

< 1.Therefore, if we 
ompare the optimal portfolio pro
ess in sto
k-MMA problem with opti-mal pro
ess in option-MMA problem, we get
π∗

option(t) < π∗ for all t ∈ [0, T ]. (1.28)The interpretation is that for an investor with logarithmi
 utility, the optimal 
apital thathe allo
ates to the option in option portfolio problem is less than the 
apital he investson the sto
k in sto
k portfolio problem. We present the main result in Figure 1.3 withthe following parameters:
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µp = 0.05 drift term,
σp = 0.25 volatility
T = 1 maturity time for the 
all option in years
r = 0 short rate
K = 100 strike pri
e
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Figure 1.3: The optimal pro
esses for 
all option portfolio with respe
t to the sto
k pri
e,with the parameter set µp = 0.05, σp = 0.25, T = 1, r = 0, and K = 100.We observe as the 
all option gets riskier (as the sto
k pri
e de
reases, 
all option getsmore out of the money), the optimal fra
tion of wealth gets smaller.1.5 Portfolio Optimisation with a Compound OptionIn this se
tion, we introdu
e our problem of optimal portfolios with the money marketa

ount (MMA) and one derivative 
ontra
t. In parti
ular, these derivatives are European
all and put options written on the sto
k of a defaultable �rm and European optionswritten on the risky bond issued by the same �rm. Sin
e we model the default risk witha �rm-value based model, explained in Se
tion 1.2, the sto
k pri
e is a 
all option written



1.5 Portfolio Optimisation with a Compound Option 21on the �rm value V (t) with a strike pri
e of F . Hen
e, we may 
onsider optimal portfoliosof options on options when the underlying is the �rm value.The option written on another option is 
alled a 
ompound option and to our knowledgethe valuation formula was �rst introdu
ed by Geske [Ges79℄, where the author presentsa 
losed form formula for the 
all on a 
all option based on Merton model [Mer74℄. Thisformula generalises the Bla
k-S
holes option pri
ing formula, i.e., if the �rm is unlevered2,then the Geske formula redu
es to Bla
k-S
holes 
all option formula.Optimal portfolio problems with defaultable bonds were already studied by Korn andKraft [KK03℄, where the authors use �rm-value approa
h for 
redit risk modelling. Theauthors �rst present the portolio problem when the portfolio 
onsists of the �rm value
V (t) and MMA, assuming that the �rm value is traded (Merton portfolio problem), thenthey introdu
e the optimisation problem when the portfolio has a risky bond written bythe �rm and the MMA. This problem 
an be solved in two ways. One way would bewith the elasti
ity te
hnique of Kraft [Kra03℄ for optimisation as des
ribed by Korn andKraft [KK03℄. The se
ond way is to optimise the portfolio using the methodology in KTframework [KT99℄. Moreover, Kraft and Ste�ensen [KS06℄ generalised the results of Kornand Kraft [KK03℄ and applied the same te
hnique when the 
redit risk is modelled by theBla
k-Cox [BC76℄ approa
h, whi
h allows the o

urren
e of the default event before thedebt maturity. Another approa
h for 
ontinuous time portfolio optimisation problem withdefaultable assets is to model the 
redit risk within the redu
ed form setting. This was�rst studied by Merton [Mer71℄ and extended in a series of papers by Kraft and Ste�ensen(see [KS08℄ and [KS07℄). Another example to the same problem is given by Hou and Jin[HJ02℄.Our main study is applying the KT framework [KT99℄ for optimising portfolios of optionson options and the MMA. Hen
e, this se
tion provides the presentation of the 
ompoundoption valuation and the proof of the 
all on a 
all option pri
e proposed by Geske [Ges79℄.Modifying the Geske [Ges79℄ formula, we valuate European options written on the riskyZCB. Finally, we introdu
e examples for presenting the main results of this 
hapter.2 This means either the �rm has no debt, i.e., M = 0 or there is no maturity for the debt, i.e., T = ∞.



22 Chapter 1. Optimal Portfolios of Options with Credit Risk1.5.1 Compound OptionsA 
ompound option gives the holder the right (but not the obligation) to buy or sell anoption for a pre-determined strike K at maturity time T . If we have a European type 
allon a 
all option, the holder has a right to buy the underlying European 
all option, whi
hhas the maturity time T1 > T and strike K1, for strike pri
e K. We denote the pri
e of a
ompound option at time t with XCC(t, P1(t)), where the supers
ript CC indi
ates thatthe 
ompound option is a 
all on a 
all. We denote the payo� stru
ture at maturity ofthe 
ompound option T with
BCC =

(
XCall(T, P1(T )) −K

)+
.Here, we �rst derive the pri
ing equation for a 
all on a 
all option, where the underlying
all is written on the sto
k with a 
lassi
al Bla
k S
holes setting, i.e., the sto
k pri
e ismodelled by a geometri
 Brownian motion. Note that there is a 
riti
al value of the sto
kat the maturity of the 
ompound option P1(T ) = p∗, whi
h makes the holder indi�erentbetween exer
ising or not exer
ising the 
ompound option. The 
riti
al value p∗ 
an befound as a solution to the following equation using the Bla
k-S
holes 
all option formula

XCall(T, p∗) −K = 0. (1.29)Sin
e p∗ is the value whi
h makes the 
all option pri
e at T equal to the strike pri
e ofthe 
ompound option K, for the values of the sto
k less than p∗ the 
ompound optionwill not be exer
ised. And the 
ompound option will be exer
ised for the values greaterthan p∗.We present the following proposition and its proof from Korn and Korn [KK01℄.Proposition 1.1. I. For a given K > 0, a European 
all with strike K1 and maturity T1,there exists a uniquely determined p∗ for T < T1 su
h that for P1(T ) = p∗ we have
XCall(T, p∗) = K.II. With the notations

g1(t) =
ln
(

P1(t)
p∗

)
+
(
r + 1

2
σ2

p

)
(T − t)

σp

√
T − t

, g2(t) = g1(t) − σp

√
T − t,



1.5 Portfolio Optimisation with a Compound Option 23
h1(t) =

ln
(

P1(t)
K1

)
+
(
r + 1

2
σ2

p

)
(T1 − t)

σp

√
T1 − t

, h2(t) = h1(t) − σp

√
T1 − t,the pri
e of a 
all on a 
all satis�es

XCC(t) = P1(t)Φ
ρ1
2 (g1(t), h1(t))

−K1e
−r(T1−t)Φρ1

2 (g2(t), h2(t)) −Ke−r(T−t)Φ(g2(t))for t ∈ [0, T ], where Φρ
2(x, y) is the 
umulative distribution fun
tion of a bivariate standardnormal distribution with 
orrelation 
oe�
ient ρ and

ρ1 :=

√
T − t

T1 − t
, e.g, .

(
X
Y

)
∼ N

((
0
0

)
,

(
1 ρ1

ρ1 0

))
.Proof:I. From the expli
it form of the Bla
k-S
holes formula (see p.88 of Korn and Korn [KK01℄) we obtain

lim
P1(T )↓0

XCall(T, P1(T )) = 0, (1.30)
lim

P1(T )↑+∞
XCall(T, P1(T )) = +∞ (1.31)for T < T1. Here, the �rst limit is a 
onsequen
e of the trivial bounds 0 and P1(T ) for

XCall(T, P1(T )). For the se
ond limit note that
d

dp
XCall(T, p) = Φ(d1(T ))is positive and even in
reasing in p. From (1.30) and (1.31), together with the intermedi-ate value theorem we get the existen
e of p∗ of assertion I..II. For t ≤ T we have

XCC(t, P1(t)) = Et,P1(t)

[
e−r(T−t)BCC

]
= Et,P1(t)

[
e−r(T−t)(XCall(T, P1(T )) −K)+

]
.The positive part is stri
tly positive if and only if XCall(T, P1(T )) −K > 0, hen
e

Et,P1(t)

[
e−r(T−t)(XCall(T, P1(T )) −K)1{XCall(T,P1(T ))>K}

]
,where 1{XCall(T )>K} = 1{P1(T )>p∗}. Thus, �xing t we have

W (T ) −W (t) >
1

σp

(
ln

(
p∗

P1(t)

)
− (r − 1

2
σ2

p)(T − t)

)
= w̃. (1.32)



24 Chapter 1. Optimal Portfolios of Options with Credit RiskFurthermore, It�'s lemma implies that
P1(T ) = P1(t). exp

((
r − 1

2
σ2

p

)
(T − t) + σp(W (T ) −W (t))

)
.Sin
e W (T ) −W (t) := x ∼ N (0, T − t), we rewrite the expe
tation above as

1√
2π(T − t)

∫ ∞

w̃

e−
x2

2(T−t) e−r(T−t)
(
XCall (T, P1(T )) −K

)
dx (1.33)With the help of expli
it form of XCall(T, P1(T )) with strike K1 and maturity T1 we have

XCall(T, P1(T )) = P1(t)e
(r− 1

2
σ2

p)(T−t)+σxΦ(d1(T )) −K1e
−r(T1−T )Φ(d2(T )),with

d1(T ) =
ln
(

P1(T )
K1

)
+
(
r + 1

2
σ2

p

)
(T1 − T )

σp

√
T1 − T

,and
d2(T ) = d1(T ) − σp

√
T1 − T .We rewrite (1.33) as I1 − I2 − I3, hen
e

I1 =
1√

2π(T − t)

∫ ∞

w̃

e
− x2

2(T−t) e−r(T−t)P1(t).e
(r− 1

2
σ2

p)(T−t)+σpxΦ(β1 + α1x)dx, (1.34)where
β1 =

ln
(

P1(t)
K1

)
+
(
r − 1

2
σ2

p

)
(T − t) +

(
r + 1

2
σ2

p

)
(T1 − T )

σp

√
T1 − T

,

α1 =
1√

T1 − T
.Thus,

I1 = P1(t)

∫ ∞

w̃

1√
2π(T − t)

e−
(x−σp(T−t))2

2(T−t) Φ(β1 + α1x)dx

= P1(t)

∫ ∞

w̃

ϕµ=σp(T−t),σ2=(T−t)Φ(β1 + α1x)dx.Here, ϕµ,σ2 is the probability density fun
tion of a normal distribution with mean µ andvarian
e σ2 and Φ() is a standard normal distribution fun
tion. Furthermore, we have
I2 = K1e

−r(T1−t)

∫ ∞

w̃

1√
2π(T − t)

e
− x2

2(T−t) Φ(β2 + α2x)dx

= K1e
−r(T1−t)

∫ ∞

w̃

ϕµ=0,σ2=(T−t)Φ(β2 + α2x)dx,
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β2 =

ln
(

P1(t)
K1

)
+
(
r − 1

2
σ2

p

)
(T1 − t)

σp

√
T1 − T

α2 =
1√

T1 − T
.The last 
omponent 
an easily be expressed as

I3 = Ke−r(T−t)

∫ ∞

w̃

1√
2π(T − t)

e−
x2

2(T−t)dx

= Ke−r(T−t)Φ

( −w̃√
T − t

)
= Ke−r(T−t)Φ(g2(t)).The following lemma is used for 
al
ulating I1 and I2Lemma 1.1. If X and Y are independent random variables with

X ∼ N (µ, σ2), Y ∼ N (0, 1),then for x̃,α,β ∈ R, α > 0, we have
∫ ∞

x̃

ϕµ,σ2(x).Φ(β + αx)dx = P [X ≥ x̃, Y ≤ β + αX] = P [X ≥ x̃, Z ≤ β],where
(X,Z) ∼ N

((
µ

−αµ

)
,

(
σ2 −ασ2

−ασ2 1 + α2σ2

))
.

2Note that
P [X ≥ x̃, Z ≤ β] = 1 − P [X ≤ x̃, Z ≤ β] − P [Z > β]︸ ︷︷ ︸

1−P [Z≤β]

= P [Z ≤ β] − P [X ≤ x̃, Z ≤ β].Furthermore,
∫ ∞

x̃

ϕµ,σ2(x).Φ(β + αx)dx = Φ

(
β − µZ

σZ

)
− Φρ

2

((
x̃− µX

σX

)
,

(
β − µZ

σZ

))
.Going ba
k to the 
al
ulation of I1, with the notation given in Lemma 1.1, we have

x̃ = w̃ µX = σp(T − t) σX =
√
T − t

µZ = −σp(T−t)√
T1−T

σZ =
√

T1−t
T1−T

ρ(X,Z) = −
√

T−t
T1−t

.



26 Chapter 1. Optimal Portfolios of Options with Credit RiskWith this setting, we rewrite I1 as
I1 = P1(t)


Φ


β1 + σp(T−t)√

T1−T√
T1−t
T1−T


− Φρ

2

(
w̃ − σp(T − t)√

T − t

)
,


β1 + σp(T−t)√

T1−T√
T1−t
T1−T






= P1(t)[Φ(h1(t)) − Φρ
2(−g1(t), h1(t))]

= P1(t)[Φ
−ρ=:ρ1
2 (g1(t), h1(t))].Cal
ulation of I2 is similar to I1 but here we have µX = 0 and µZ = 0. Thus,

I2 = K1e
−r(T1−t)


Φ


 β2√

T1−t
T1−T


− Φρ

2

(
w̃√
T − t

)
,


 β2√

T1−t
T1−T






= K1e
−r(T1−t)[Φ(h2(t)) − Φρ

2(−g2(t), h2(t))]

= K1e
−r(T1−t)[Φ−ρ=:ρ1

2 (g2(t), h2(t))].

2Above we derived the 
ompound option formula when it is a European 
all on a 
all optionwritten on the sto
k. Similarly, one 
an rewrite the 
ompound option formula when theunderlying is the �rm value with the dynami
s as in (1.1). Merton [Mer74℄ valuates thesto
k of a �rm as a 
all option written on the �rm value, where Geske [Ges79℄ derives the
ompound option formula by valuating a 
all option on the sto
k pri
e as in the Merton[Mer74℄ setting, i.e.,
XCC(t, V (t)) ≡ XCall(t, P1(t)),when P1(t) ≡ XCall(t, V (t)) with σp(t, V ) = ∂P1

∂V
V
P1
σv (For the proof see Geske [Ges79℄).The following proposition gives the pri
es of other types of the 
ompound options, whenthe underlying is the �rm value.Proposition 1.2. I. The pri
e of a put on a 
all option is

XPC(t, V (t)) = −V (t)Φρ2

2 (−g1(t), h1(t))

+Fe−r(T1−t)Φρ2

2 (−g2(t), h2(t)) +Ke−r(T−t)Φ(−g2(t))for t ∈ [0, T ] with
ρ2 := −

√
T − t

T1 − t
.



1.5 Portfolio Optimisation with a Compound Option 27II. If for a put with strike F and maturity T1 the value v∗ de�ned by
XPut(T, v∗) = Kis given by for a �xed K, then we 
an obtain the pri
ing formula for a 
all on this putor a put on this 
all in the same way as above. If we assume a strike of K and maturity

T < T1 for the 
ompound options, then we obtain their pri
es at time t ∈ [0, T ] as
XCP (t, V (t)) = −V (t)Φρ1(−g1(t),−h1(t))

+Fe−r(T1−t)Φρ1(−g2(t),−h2(t)) +Ke−r(T−t)Φ(−g2(t)),and
XPP (t, V (t)) = V (t)Φρ2(g1(t),−h1(t))

−Fe−r(T1−t)Φρ2(g2(t),−h2(t)) +Ke−r(T−t)Φ(g2(t)),with
g1(t) =

ln
(

V (t)
v∗

)
+
(
r + 1

2
σ2

v

)
(T − t)

σv

√
T − t

, g2(t) = g1(t) − σv

√
T − t,and

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

, h2(t) = h1(t) − σv

√
T1 − t.1.5.2 Options on the Defaultable Zero Coupon BondsIn this subse
tion, we derive the expli
it formula for a European 
all and put optionwritten on a defaultable ZCB. Geske [Ges77℄ applied the formulation in Geske [Ges79℄ inorder to value defaultable 
oupon bonds. Later on, Geske and Johnson [GJ84℄ explain theun
lear parts of the paper. Sin
e the risky ZCB pri
e with Merton [Mer74℄ setting is alinear 
ombination of a Bla
k S
holes put option and a deterministi
 payment, the formulais a modi�
ation of the one by Geske [Ges79℄. The pri
ing of su
h 
ontra
ts was studiedby Barone et al. [BAC98℄ in an intensity-based framework. Reporting from Barone et al.[BAC98℄, risk free options on risky ZCBs (not vulnerable and usually ex
hange traded)have little interest in the pra
ti
e. On the other hand, there is quite a number of papers inthe risk literature dealing with the valuation of defaultable options (vulnerable options)on risk-free and risky assets. After presenting the derivation of the fair pri
es of optionson risky ZCB, we analyse the portfolio optimisation problems.



28 Chapter 1. Optimal Portfolios of Options with Credit RiskProposition 1.3. Pri
e of a European 
all option with maturity time T and strike K,with K < Fe−r(T1−T ) written on a risky ZCB (in Merton setting) maturing at time T1,where T1 > T , is given by
XCall(t, B̄(t, T1)) = V (t)Φρ2

2 (g1(t),−h1(t)) (1.35)
+Fe−r(T1−t)Φρ1

2 (g2(t), h2(t)) −Ke−r(T−t)Φ(g2(t)),where
g1(t) =

ln
(

V (t)
v∗

)
+
(
r + 1

2
σ2

v

)
(T − t)

σv

√
T − t

, g2(t) = g1(t) − σv

√
T − t,

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

, h2(t) = h1(t) − σv

√
T1 − t,and

ρ1 :=

√
T − t

T1 − t
, ρ2 := −ρ1,e.g., (

X
Y

)
∼ N

((
0
0

)
,

(
1 ρ1

ρ1 0

))
.and, v∗ is the value of the �rm whi
h solves the following equation

B̄(T, T1) −K = 0.Proof: From the expli
it form of the BS type formula (1.6), we obtain
lim

V (T )↓0
B̄(T, T1) = 0, (1.36)

lim
V (T )↑+∞

B̄(T, T1) = Fe−r(T1−T ) (1.37)for T < T1. Here, the �rst limit is a 
onsequen
e of the trivial bounds 0 and V (T ) for
B̄(T, T1). For the se
ond limit note that

d

dV
B̄(T, T1) = Φ(−h1(T ))is positive and de
reasing in V . From (1.36) and (1.37), together with the intermediatevalue theorem, we get the existen
e of v∗.



1.5 Portfolio Optimisation with a Compound Option 29Under the pri
ing (or risk-neutral) probability measure Q, we have the European 
alloption formula with maturity time T and strike pri
e K, where the underlying is thedefaultable ZCB with maturity T1 > T as
XCall(t, B̄(t, T1)) = Et,B̄(t,T1)

[
e−r(T−t)(B̄(T, T1) −K)+

]
. (1.38)In order the payo� fun
tion to be stri
tly positive, we rewrite the equation above as

Et,B̄(t,T1)

[
e−r(T−t)(B̄(T, T1) −K)1{B̄(T,T1)>K}

]
. (1.39)Here, we assume that there exists a 
riti
al value of the �rm v∗, whi
h makes the 
alloption holder indi�erent between exer
ising or not exer
ising it on the maturity of the
all option. Hen
e, v∗ is the value, whi
h solves the following equation

B̄(T, T1) = K. (1.40)Using the same idea we have in the proof of the 
ompound option formula, we have
1{B̄(T,T1)>K} ≡ 1{V (T )>v∗}.Hen
e, we rewrite (1.39) as

Et,B̄(t,T1)[e
−r(T−t)(B̄(T, T1) −K)1{V (T )>v∗}].With a small modi�
ation to (1.32), we will have

XCall(T, B̄(T, T1)) = e−r(T−t) 1√
2π(T − t)

∫ ∞

w

e−
x2

2(T−t) (B̄(T, T1) −K)dx,with
w =

1

σv

(
ln

(
v∗

V (t)

)
−
(
r − 1

2
σ2

v

)
(T − t)

)Plugging the expli
it formula for the ZCB pri
e as in (1.6), we have
I = e−r(T−t)

∫ ∞

w

1√
2π(T − t)

e−
x2

2(T−t)

[
V (T ) Φ(−h1(T ))︸ ︷︷ ︸

1−Φ(h1(T ))

+Fe−r(T1−T )Φ(h2(T )) −K

]
dx,(1.41)with

h1(T ) =
ln
(

V (T )
F

)
+
(
r + 1

2
σ2

v

)
(T1 − T )

σv

√
T1 − T



30 Chapter 1. Optimal Portfolios of Options with Credit Riskand
h2(T ) = h1(T ) − σv

√
T1 − T .We express (1.41) as I1 − I2 + I3 − I4, where

I1 = V (t)

∫ ∞

w

1√
2π(T − t)

e−
(x−σv(T−t))2

2(T−t) dx = V (t)Φ(g1(t)). (1.42)
I2 = V (t)

∫ ∞

w

1√
2π(T − t)

e−
(x−σv(T−t))2

2(T−t) Φ(β2 + α2x)dx (1.43)with
β2 =

ln
(

V (t)
F

)
+
(
r − 1

2
σ2

v

)
(T − t) +

(
r + 1

2
σ2

v

)
(T1 − T )

σv

√
T1 − Tand

α2 =
1√

T1 − TWith Lemma 1.1, we rewrite I2 as
I2 = V (t) [Φ(h1(t)) − Φρ

2(−g1(t), h1(t))] = V (t)Φ−ρ:=ρ1

2 (g1(t), h1(t)). (1.44)Now, we 
an make a simpli�
ation
I1 − I2 = V (t) [Φ(g1(t)) − Φρ1

2 (g1(t), h1(t))] = Φ−ρ1=ρ2

2 (g1(t),−h1(t)).We 
al
ulate I3 as
I3 = Fe−r(T1−t)

∫ ∞

w

1√
2π(T − t)

e
− x2

2(T−t) Φ(β3 + α3x)dx (1.45)with
β3 =

ln
(

V (t)
F

)
+
(
r − 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − T

, α3 =
1√

T1 − T
,hen
e,

I3 = Fe−r(T1−t) [Φ(h2(t)) − Φρ
2(−g2(t), h2(t))] = Fe−r(T1−t)Φ−ρ=ρ1

2 (g2(t), h2(t)). (1.46)Finally, we rewrite I4 easily as
I4 = Ke−r(T−t)

∫ ∞

w

1√
2π(T − t)

e−
x2

2(T−t)dx = Ke−r(T−t)Φ (g2(t)) . (1.47)



1.5 Portfolio Optimisation with a Compound Option 31Proposition 1.4. Pri
e of a European put option with maturity time T and strike K,written on a risky ZCB (with Merton setting) maturing at time T1, with T1 > T is givenby
XPut(t, B̄(t, T1)) = −V (t)Φρ1

2 (−g1(t),−h1(t)) (1.48)
−Fe−r(T1−t)Φρ2

2 (−g2(t), h2(t)) +Ke−r(T−t)Φ(−g2(t))where
g1(t) =

ln
(

V (t)
v∗

)
+
(
r + 1

2
σ2

v

)
(T − t)

σv

√
T − t

, g2(t) = g1(t) − σv

√
T − t,

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

, h2(t) = h1(t) − σv

√
T1 − t,and

ρ1 :=

√
T − t

T1 − t
ρ2 := −ρ1, e.g.,

(
X
Y

)
∼ N

((
0
0

)
,

(
1 ρ1

ρ1 0

))
.and v∗ is the value of the �rm whi
h solves the following equation

K − B̄(T, T1) = 0.Proof: Similar to proof of Proposition 1.3.1.5.3 Optimal Portfolio Problem with a Compound OptionIn this subse
tion, we will 
ombine some results from the previous subse
tions in orderto optimise a portfolio, 
onsisting of a 
ompound option and a riskless bond (or MMA).The dynami
s of the MMA is
dP0(t) = P0(t)rdt, P0(0) = 1,and the dynami
s of the �rm value with the risk-neutral probability measure Q is givenby

dV (t)

V (t)
= rdt+ σvdW (t), V (0) > 0,where r is the deterministi
 interest rate, σv > 0 is the 
onstant volatility and W (t) is theBrownian motion. Assume that the investor 
an invest his initial wealth x > 0 only in



32 Chapter 1. Optimal Portfolios of Options with Credit Riskthe MMA P0(t) and the 
all on a 
all option XCC(t, V (t)), where the underlying is V (t).The 
orresponding wealth at time t, X(t) 
an be expressed as
X(t) = ϕ0(t)P0(t) + ϕ1(t)X

CC(t, V (t)), X(0) = x.Using the general form in De�nition 1.1, the trading strategy ϕ(t) = (ϕ0(t), ϕ1(t))
′ isa R2− valued progressively measurable pro
ess with respe
t to the �ltration {Ft}t∈[0,T ]generated by the standard Brownian motion satisfying

∫ T

0

|ϕ0(t)|dt <∞ a.s. ,
∫ T

0

(ϕ1(t)X
CC(t, V (t)))2dt <∞ a.s. .The 
orresponding portfolio pro
ess π(t) = (π0(t), π1(t))

′ will be given as
π1(t) :=

ϕ1(t)X
CC(t, V (t))

X(t)
, (1.49)

π0(t) := 1 − π1(t) =
ϕ0(t)P0(t)

X(t)
. (1.50)With the assumption that the trading strategy is self-�nan
ing, (implies that portfoliopro
ess π(t) is also self-�nan
ing) the 
orresponding wealth pro
ess 
an be expressed as

X(t) = x+

∫ t

0

ϕ0(s)dP0(s) +

∫ t

0

ϕ1(s)dX
CC(s, V (s)). (1.51)Hen
e, our 
ontinuous time portfolio optimisation problem will be similar to (1.14), butignoring the 
onsumption pro
ess, i.e., c(t) ≡ 0, U1 ≡ 0, U2 ≡ U , we have:

max
π∈A′(x)

E [U(Xx,π(T ))] (1.52)with
A′(x) =

{
π(·) ∈ A(x)

∣∣∣E
[
U(X(T ))−

]
<∞

}
.The solution to our problem de�ned in (1.52) 
an be summarised in the following steps:1. Assume that the �rm value V (t) is traded, and the portfolio 
onsisting of V (t) andthe MMA, P0(t) is optimised (Portfolio problem by Merton [Mer69℄, [Mer71℄).



1.5 Portfolio Optimisation with a Compound Option 332. Sin
e Merton [Mer74℄ 
onsiders the sto
k of the �rm, a 
all option, i.e.,
P1(t) = XCall(t, V (t)), we 
an use the KT framework [KT99℄ and optimise theportfolio 
onsisting of the sto
k P1(t) and P0(t).3. We use the same methodology and results of the se
ond step, and the relation

XCall(t, P1(t)) ≡ XCC(t, V (t)),then make a se
ond iteration for optimising the portfolio 
onsisting of XCC(t, V (t))and P0(t).Alternatively, we 
an skip the se
ond step and dire
tly solve the optimisation problemin the third step, however, we present the 2nd step in order to see that our �ndings areindeed in line with the results of Korn and Kraft [KK03℄.1. Merton portfolio problem:In the �rst step, the setting leads us to Merton's portolio problem [Mer69℄ and [Mer71℄.Under the assumption that the �rm value is tradable, and the wealth pro
ess follows thedynami
s with
dX(t)

X(t)
= (r + πvα)dt+ πvσdW (t), X(0) = x0, (1.53)where we denote the 
onstant, risk-free short rate with r, the ex
ess return of the �rmvalue by α = µv − r. Here, πv stands for the proportion of the total wealth put into the�rm value. The 
lassi
 portfolio problem is then to solve

max
π

E[U(Xπ(T ))], (1.54)where T denotes the investment horizon, and U is the utility fun
tion. We present theresult in the following proposition.Proposition 1.5. With the power utility fun
tion U(x) = γ−1xγ , γ < 1, γ 6= 0 the optimalportfolio pro
ess for the problem in (1.54) is
π∗

v(t) =
α

(1 − γ)σ2
v

(1.55)Note that for logarithmi
 utility fun
tion U(x) = ln(x) the optimal portfolio pro
ess π∗
v isobtained for γ = 0.



34 Chapter 1. Optimal Portfolios of Options with Credit RiskProof: (see p. 236 Korn and Korn [KK01℄)2. Optimal portolio problem with the sto
k and MMAThe problem in the se
ond step was already studied by Korn and Kraft [KK03℄. Wepresent their result in the following proposition to 
ompare it to our result derived withinthe KT framework.Proposition 1.6. If the investor 
an only invest into the MMA denoted, by P0(t) andthe sto
ks P1(t) issued by the 
ompany, then the optimal sto
k portfolio pro
ess is given by
π∗

P1
(t) =

π∗
v

ǫP1

=





α
σ2

v

P1(t)
Φ(h1(t))V (t)

, for U(x) = ln(x)

α
(1−γ)σ2

v

P1(t)
Φ(h1(t))V (t)

, for U(x) = 1
γ
xγwhere the elasti
ity of the sto
k3 is de�ned as ǫP1 = ∂P1

∂V
· V

P1
and Φ(·) is a standard normaldistribution, and

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

.Proof: see Korn and Kraft [KK03℄.Note that in the problem above, we do not have any 
onstraints on the number of thebonds and sto
ks that the �rm is issuing. In fa
t, in Merton [Mer74℄ setting, the numberof sto
ks and bonds is limited to one. Here, we use the �small investor assumption� andassume we do not have the upper bound 
onstraint for the number of sto
ks and/or bonds.The optimisation problem with the 
onstrained 
ase is also studied by Korn and Kraft[KK03℄. Their solution method to the portfolio problem in Step 2 is just the generalisationof the ideas presented in Korn and Trautmann [KT99℄. Therefore, we provide a similarsolution 
onstru
ted within the KT framework, in parti
ular using Theorem 1.6 with thepresentation below.Merton [Mer74℄ assumes that the sto
k of the �rm is a European 
all option written onthe market value of the �rm, i.e., P1(t) ≡ XCall(t, V (t)). Hen
e, Theorem 1.6 is appli
ablehere; further, we have the same optimal payo� B∗ as in Merton portfolio problem in step1. However, we repli
ate the �rm value position with the sto
k and MMA positions sin
e3We refer the interested reader to Kraft [Kra03℄ for more details on the elasti
ity approa
h.



1.5 Portfolio Optimisation with a Compound Option 35the �rm value is not a tradable asset. With Theorem 1.6 and from (1.5) we have therepli
ating strategy as
Ψ1(t) =

∂P1(t)

∂V
= Φ(h1(t)). (1.56)From step 1, we have the optimal trading strategies ξ(t) = (ξ0(t), ξ1(t)) as

ξ1(t) =
π∗

vX(t)

V (t)
,and

ξ0(t) =
(1 − π∗

v)X(t)

P0(t)
.Hen
e, the optimal trading strategy for the se
ond step using Theorem 1.6 will be

ϕ1(t) = Ψ(t)−1 · ξ1(t) =
1

Φ(h1(t))
· π

∗
vX(t)

V (t)
=

1

Φ(h1(t))
· αX(t)

σ2
vV (t)

, (1.57)where for the MMA we have the optimal trading strategy as
ϕ0(t) =

X(t) − ϕ1(t)P1(t)

P0(t)
. (1.58)Now we 
an derive the optimal portolio pro
ess

π∗
P1

(t) =
ϕ1(t)P1(t)

X(t)
=

1

Φ(h1(t))
· αX(t)P1(t)

σ2
vV (t)X(t)

=
α

σ2
v

P1(t)

Φ(h1(t))V (t)
, (1.59)where we have the same result for U(x) = ln(x) as in Proposition 1.6. Note that for

U(x) = 1
γ
xγ , we have

π∗
P1

(t) =
α

(1 − γ)σ2
v

P1(t)

Φ(h1(t))V (t)
.3. Optimal portolio with the 
ompound option and MMAHere, we imitate our 
al
ulations from step 2 and solve the problem we de�ned in (1.52).From the �rst part of Theorem 1.6, we have the optimal payo� B∗. Hen
e, we sear
hfor the optimal strategies for repli
ating the position on sto
ks with the positions in theoption and the MMA.Using Theorem 1.6, and (1.5) we have the repli
ating strategy for our problem for U(x) =

ln(x) as follows:
Ψ1(t) =

∂XCall(t, P1(t))

∂P1
=
∂XCC(t, V (t))

∂P1
=
∂XCC(t, V (t))

∂V

/∂P1

∂V
=

Φρ1

2 (g1(t), h1(t))

Φ(h1(t))
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g1(t) =

ln
(

V (t)
v∗

)
+
(
r + 1

2
σ2

v

)
(T − t)

σv

√
T − t

,

h1(t) =
ln
(

V (t)
F

)
+
(
r + 1

2
σ2

v

)
(T1 − t)

σv

√
T1 − t

,and with the 
orrelation 
oe�
ient
ρ1 :=

√
T − t

T1 − t
.The optimal trading strategies from the previous step are given by

ξ1(t) =
π∗

P1
X(t)

P1(t)
=

α

σ2
v

X(t)

Φ(h1(t))V (t)
,

ξ0(t) =
(1 − π∗

P1
)X(t)

P0(t)
.With Theorem 1.6, the optimal trading strategies of our problem de�ned in (1.52) will be

ϕ1(t) = (Ψ1(t))
−1 · ξ1(t) =

α

σ2
v

X(t)

Φρ1
2 (g1(t), h1(t))V (t)

,

ϕ0(t) =
X(t) − ϕ1(t)X

CC(t, V (t))

P0(t)
.Now, we have the optimal portfolio pro
ess for our 
all on a 
all option π∗

CC as
π∗

CC(t) =
ϕ1(t)X

CC(t, V (t))

X(t)
=

α

σ2
v

XCC(t, V (t))

Φρ1
2 (g1(t), h1(t))V (t)

, (1.60)whi
h is the fra
tion of total wealth optimally invested to the 
ompound option.Proposition 1.7. For a portfolio 
onsisting of a MMA and the 
ompound option of 
allon a 
all type, written on the market value of a �rm, the optimal portfolio pro
ess, givingthe optimal proportion of the total wealth invested to the 
ompound option is
π∗

CC(t) =





α
σ2

v

XCC (t,V (t))

Φ
ρ1
2 (g1(t),h1(t))V (t)

for U(x) = ln(x)

α
(1−γ)σ2

v

XCC(t,V (t))

Φ
ρ1
2 (g1(t),h1(t))V (t)

for U(x) = 1
γ
xγLet us 
ompare the optimal portfolio pro
esses π∗

CC and π∗
P1

for a log-utility investor. Wehave the property that
Φρ

2(g1(t), h1(t)) ≥ Φ(g1(t))Φ(h1(t))
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orrelation. Sin
e ρ1 = T−t
T1−t

is always positive, we 
an write
XCC(t, V (t))

Φρ1

2 (g1(t), h1(t))V (t)
≤ XCC(t, V (t))

Φ(g1(t))Φ(h1(t))V (t)
.Moreover, we know that

XCC(t, V (t)) ≤ XCall(t, V (t)) ≡ P1(t).Therefore,
α

σ2
v

· XCC(t, V (t))

Φ(g1(t))Φ(h1(t))V (t)
≤ α

σ2
v

· P1(t)

Φ(g1(t))Φ(h1(t))V (t)
<

α

σ2
v

· P1(t)

Φ(h1(t))V (t)
= π∗

P1
(t).Remark 1.4. The interpretation of the result we have in Proposition 1.7 is that for aninvestor with logarithmi
 and/or power utility fun
tion, we will have the optimal portfoliopro
esses in the following order

π∗
CC(t) < π∗

P1
(t) < π∗

v for all t ∈ [0, T ]. (1.61)Example 1.3. Let us present the results in an example. Consider the 
ase when we havethe following parameters:
µv = 0.05 drift term
σv = 0.25 volatility
T = 0.8 maturity time for the 
ompound option
T1 = 1.5 maturity time for the underlying 
all option
r = 0 short rate
K = 20 strike pri
e for the 
ompound option
K1 = 100 strike pri
e for the underlying 
all optionWe observe from Figure 1.4 that an investor with log-utility will invest less in the 
om-pound option than he invests in the 
all option, as expe
ted, sin
e the 
all on 
all option isa riskier produ
t than a European 
all option. The deeper the 
all option and 
all on 
alloption are in the money, the 
loser π∗

Call and π∗
CC get to the optimal value in sto
k-MMAproblem, denoted by π∗

v . 2Alternatively, we 
an solve the problem in the third step in a dire
t way using KT frame-work, by skipping the se
ond step. Say, we have the solution in the Merton portfolioproblem as π∗
v from step 1 for U(x) = ln(x), then the repli
ation strategy for the 
all on
all option XCC(t, V (t)) is

ΨCC
1 (t) =

∂XCC(t, V (t))

∂V (t)
= Φρ1

2 (g1(t), h1(t)).
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Figure 1.4: The optimal portfolio pro
esses of sto
k, 
all option, 
all on 
all option vs.value of the �rm, with the parameter set µv = 0.05, σv = 0.25, T = 0.8, T1 = 1.5, r = 0,
K = 20, and K1 = 100.Having the same payo� as the Merton problem, with Theorem 1.6, the optimal tradingstrategies from the Merton problem are

ξ1(t) =
π∗

vX(t)

V (t)
,and

ξ0(t) =
(1 − π∗

v)X(t)

P0(t)
.Now, again with Theorem 1.6, the optimal trading strategy for the 
ompound option is

ϕCC
1 (t) =

ξ1(t)

ΨCC
1 (t)

=
α

σ2
v

X(t)

Φρ1
2 (g1(t), h1(t))V (t)

.And the optimal portfolio pro
ess is
π∗

CC(t) =
ϕCC

1 (t)XCC(t, V (t))

X(t)
=

α

σ2
v

XCC(t, V (t))

Φρ1

2 (g1(t), h1(t))V (t)
. (1.62)Comparing the results in Proposition 1.7 and (1.62), we see that they are exa
tly thesame, therefore, we 
an apply the same formulation above in order to have the optimal



1.5 Portfolio Optimisation with a Compound Option 39portfolio strategies to portfolios of MMA and 
all on put option XCP (t, V (t)), put on aput option XPP (t, V (t)) or put on a 
all option XPC(t, V (t)).Proposition 1.8. Using the KT framework in Theorem 1.6, the optimal portfolio pro-
esses for the 
all on put, put on 
all and put on put options, where the underlying is themarket value of the �rm, are as follows
π∗

CP (t) = − α

σ2
v

XCP (t, V (t))

Φρ1

2 (−g1(t),−h1(t))V (t)
,

π∗
PC(t) = − α

σ2
v

XPC(t, V (t))

Φρ2

2 (−g1(t), h1(t))V (t)
,

π∗
PP (t) =

α

σ2
v

XPP (t, V (t))

Φρ2
2 (g1(t),−h1(t))V (t)

,with the notation given as in Proposition 1.2 and assuming that the investor (with loga-rithmi
 and power utility fun
tions) 
an only trade in these options and the MMA withoutan upper bound on the number of se
urities issued by the �rm.Example 1.4. Let us analyse the problem when the 
ompound option is a put on the 
alltype. On Figure 1.5, we observe the optimal portfolio pro
ess for the put on 
all option.Negative portfolio pro
ess in Figure 1.5 implies short selling of the put on 
all option inthe portfolio. Note that the optimal strategy (not the optimal portfolio pro
ess) attainsthe maximum expe
ted utility.1.5.4 Optimal Portfolio Problem with an Option on the Default-able ZCBIn this subse
tion, we analyse the optimisation problem of a portfolio 
onsisting of theMMA and European 
all or put option written on a risky zero 
oupon bond with fa
evalue F and maturity T1. Assuming that T1 > T , during the investment period (0, T ]we 
an not have a default event sin
e the Merton [Mer74℄ model has the restri
tion thata default event 
an only o

ur at the maturity of the ZCB. However, a low �rm valueindi
ates a high probability of default and a low bond value. We also do not have a
onstraint on the number of bonds issued by this �rm.As before, the problem will be solved in a three step pro
edure,
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Figure 1.5: The optimal portfolio pro
esses of sto
k, 
all option, put on 
all option vs.value of the �rm, with the parameter set µv = 0.05, σv = 0.25, T = 0.8, T1 = 1.5, r = 0,
K = 20, and K1 = 100.1. The optimisation of a portfolio with the �rm value and the MMA, where the �rmvalue is traded (Merton portfolio problem).2. The optimisation of a portfolio 
onsisting of the defaultable bond issued by the �rmand the MMA.3. Using the results of the se
ond step, we optimise a portfolio with the European 
alland/or the put option written on the defaultable bond and the MMA within KTframework.1. Merton portfolio problemThe result is given in Proposition 1.52. Optimal portfolio with the risky ZCB and MMAIn the Merton [Mer74℄ model, the value of a risky ZCB is given by (1.6). We observe the
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e when K = 100 in Figure 1.6. Our aim is to �nd the optimal portfolio
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Figure 1.6: The pri
e of the risky bond in the Merton setting with respe
t to the marketvalue of the �rm.pro
ess that maximises the �nal wealth of the investor, i.e.,
max

π
E(U(Xπ(T ))), (1.63)when the wealth of the investor equals

X(t) = ϕ0(t)P0(t) + ϕ1(t)B̄(t, T1).Korn and Kraft [KK03℄ present the solution of the problem in (1.63) with the followingproposition.Proposition 1.9. If the investor 
an only invest in the MMA P0(t) and the risky bond
B̄(t, T1) with T1 > T issued by the 
ompany, then the optimal bond portfolio pro
ess isgiven by

π∗
B =

π∗
v

ǫB
=





α
σ2

v

B̄(t,T1)
Φ(−h1(t))V (t)

for U(x) = ln(x)

α
(1−γ)σ2

v

B̄(t,T1)
Φ(−h1(t))V (t)

for U(x) = 1
γ
xγ



42 Chapter 1. Optimal Portfolios of Options with Credit Riskwhere the elasti
ity of the bond is de�ned as ǫB = ∂B̄(t,T1)
∂V (t)

· V (t)

B̄(t,T1)
.Proof: (see Korn and Kraft [KK03℄)We present the solution within the KT framework. From the �rst part of Theorem 1.6,we have the same optimal payo� as in Merton portfolio problem from step 1. Repli
atingthe �rm value position with the defaultable bond and MMA positions, from se
ond partof the Theorem 1.6 and from (1.6), we �nd the repli
ating strategy as

Ψ1(t) =
∂B̄(t, T1)

∂V (t)
= Φ(−h1(t)). (1.64)From step 1, we have the optimal trading strategy as

ξ1(t) =
π∗

vX(t)

V (t)
.Hen
e, the optimal trading strategy for the risky ZCB will be

ϕ1(t) = Ψ(t)−1 · ξ1(t) =
1

Φ(−h1(t))
· π

∗
v(t)X(t)

V (t)
=

1

Φ(−h1(t))
· αX(t)

σ2
vV (t)

, (1.65)where the optimal trading strategy for the MMA, is
ϕ0(t) =

X(t) − ϕ1(t)B̄(t, T1)

P0(t)
. (1.66)Now, we 
an derive the optimal portolio pro
ess as

π∗
B(t) =

ϕ1(t)B̄(t, T1)

X(t)
=

1

Φ(−h1(t))
· αX(t)B̄(t, T1)

σ2
vV (t)X(t)

=
α

σ2
v

B̄(t, T1)

Φ(−h1(t))V (t)
. (1.67)Comparing the result for U(x) = ln(x) in Proposition 1.9, we have the same �nding. Notethat for U(x) = 1

γ
xγ we have

π∗
B(t) =

α

(1 − γ)σ2
v

B̄(t, T1)

Φ(−h1(t))V (t)
. (1.68)3. Optimal portolio with the option on risky ZCB and MMAIn this step, we optimise the portfolio of European 
all and/or put option written on therisky ZCB and the MMA. Using the same methodology as in Proposition 1.7, we presentthe results with the following proposition.



1.5 Portfolio Optimisation with a Compound Option 43Proposition 1.10. If the investor is allowed to invest only in the European 
all optionwritten on the risky ZCB and the MMA, we will have the optimal portfolio pro
ess π∗
CallBondfor the 
all option with maturity time T and strike pri
e K as

π∗
CallBond(t) =





α
σ2

v

XCall(t,B̄(t,T1))

Φ
ρ2
2 (g1(t),−h1(t))V (t)

for U(x) = ln(x)

α
(1−γ)σ2

v

XCall(t,B̄(t,T1))

Φ
ρ2
2 (g1(t),−h1(t))V (t)

for U(x) = 1
γ
xγ

(1.69)with maturity of the underlying ZCB is denoted by T1, with T1 > T and ρ2 is the 
orrelation
oe�
ient given as in Proposition 1.3.Example 1.5. Consider the 
ase when we have a 
all option written on the risky bondwith the following parameters:
µv = 0.05 drift term
σv = 0.25 volatility
T = 0.8 maturity time for the 
all option in years
T1 = 1.5 maturity time for the underlying 
all option
r = 0 short rate
K = 80 strike pri
e for the 
all option
F = 100 debt value for the underlying defaultable bondWe 
an observe the optimal portfolio pro
ess with the logarithmi
 utility fun
tion for the
all on the risky ZCB with respe
t to the �rm value in Figure 1.7. The interpretationis that with in
reasing �rm value, the probability of the default of the ZCB de
reases.This implies an in
rease in the pri
e of the ZCB and the 
all option on this ZCB. For aninvestor with logarithmi
 utility, the fra
tion of the wealth that he invests on the riskyZCB and 
all option on the ZCB in
rease as well.Proposition 1.11. If the investor is allowed to invest only in the European put optionwritten on the risky ZCB and the MMA, we will have the optimal portfolio pro
ess for aEuropean put option with maturity time T and strike K on the risky bond as

π∗
PutBond(t) =





− α
σ2

v

XPut(t,B̄(t,T1))

Φ
ρ1
2 (−g1(t),−h1(t))V (t)

for U(x) = ln(x)

− α
(1−γ)σ2

v

XPut(t,B̄(t,T1))

Φ
ρ1
2 (−g1(t),−h1(t))V (t)

for U(x) = 1
γ
xγ

(1.70)with maturity of the underlying ZCB is denoted by T1, with T1 > T and ρ1 is the 
orrelation
oe�
ient as given in Proposition 1.3.
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Figure 1.7: The optimal portfolio pro
esses of sto
k, defaultable bond, 
all option ondefaultable bond vs. value of the �rm with the parameter set µv = 0.05, σv = 0.25,
T = 0.8, T1 = 1.5, r = 0, K = 80, and F = 100.Example 1.6. Let us give an example when we have a put option written on the riskyZCB in our portfolio. Consider the 
ase when the derivative has the same paramaterset as in Example 1.5. We 
an observe the optimal portfolio pro
ess for the put optionwritten on the risky bond with respe
t to the �rm value in Figure 1.8, where we use thelogarithmi
 utility fun
tion. Note that the negativity of portfolio pro
ess is interpreted asshort selling of the put option on the ZCB in the portfolio. This optimal portfolio pro
esshas a similar behaviour as in the example on the put on 
all option.



1.6 Summary 45

50 100 150
−1

0

1

2

3

4

5

6

7

8

Firm Value V(t)

O
pt

im
al

 P
or

tfo
lio

 P
ro

ce
ss

π*
V

π*
Bond

π*
PutBond

Figure 1.8: The optimal portfolio pro
esses of sto
k, defaultable bond, put option ondefaultable bond vs. value of the �rm, with the parameter set µv = 0.05, σv = 0.25,
T = 0.8, T1 = 1.5, r = 0, K = 20, and K1 = 100.1.6 SummaryIn this 
hapter, we derived optimal portfolios in
luding 
ompound options, when the
ompound options has the market value of a �rm as underlying. Modifying the 
om-pound option valuation of Geske [Ges79℄, we pri
ed European options written on therisky ZCBs. Further, we optimised the portfolios 
onsisting of the risky ZCB and aMMA, and of European options written on the defaultable ZCB. For that, we �rst sup-plied the ne
essary information about the ingredients of our optimisation problem, namelythe �rm value based 
redit risk models, 
ontinuous-time portfolio optimisation with themartingale approa
h, and the methodology for optimising portfolios of options, named asKorn-Trautmann framework during this work.Our main �ndings show that, for the investors with logarithmi
 and power utility fun
-tions, the riskier the option gets, the less proportion of wealth they invest in the risky
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t in the portfolio. For the portfolios 
onsisting of put options written on the 
alloption and on the risky ZCB, we 
al
ulated negative optimal portfolio pro
esses implyingshortselling of the assets.There are of 
ourse many short
omings of our modelling approa
h. Among those, we 
an
omment on two important ones. Firstly, we use the 
lassi
al stru
tural model by Merton[Mer74℄ for 
redit risk, where the o

urren
e of the 
redit event is allowed only on thematurity of the debt, i.e., T1. Hen
e, we do not allow the 
redit event happen during theinvestment horizon, i.e., [0, T ] via assuming that T1 > T . Se
ond, the number of bondsand/or sto
ks issued by the �rm is not restri
ted.The �rst short
oming 
an be handled by using the Bla
k-Cox 
redit risk model [BC76℄,where an intermediate default is possible during the investment period [0, T ]. Optimisingthe portfolio of a risky bond in the Bla
k-Cox model was studied by Korn and Kraft[KK03℄. To our knowledge, the optimisation problem with an option on the defaultablebond, where the 
redit risk is modelled in Bla
k-Cox framework is still not studied. Weleave this for a future resear
h problem.The se
ond short
oming is the "small investor assumption", whi
h omits the upper boundson the number of bonds and sto
ks issued by the 
orporate �rm. This problem mightalso be handled using the a

ounting equation, i.e., the market value of the �rm equalsthe sum of the risky bond pri
e and the equity pri
e of the �rm, so this 
an be extendedto a 
onstrained problem in a future resear
h topi
 as well. Further extensions to ourproblem 
an be done, making the problem appli
able in pra
ti
e via optimising portfoliosof vulnerable options on the risky ZCB, or even 
oupon paying bonds.



Chapter 2Sovereign CDS and Market-impliedCredit Risk of Turkey
2.1 Introdu
tionSovereign Credit Default Swap (CDS) 
ontra
ts are being a
tively traded in emergingmarkets with in
reasing volumes and these are typi
ally the most liquid 
redit derivativeinstruments in the related 
ountries. As the 
redit literature do
uments1, CDS 
ontra
tsare better proxies for 
redit risk modelling than the risky bonds due to two main reasons.Firstly, the CDS 
ontra
ts are typi
ally more liquid than the underlying referen
e assets.Se
ond, being unfunded 
ontra
ts, they are not in�uen
ed by the tax e�e
ts. This 
hapteranalyses the market implied (or risk-neutral) probabilities of default extra
ted from themarket quotes of the Turkish sovereign CDS 
ontra
ts.The sovereign CDS's have very similar features to 
orporate CDS 
ontra
ts but there aresome di�eren
es that stem from the referen
e asset, premium payment interval, and the
redit event de�nitions. The referen
e asset in a sovereign CDS 
ontra
t is the sovereigndebt, whi
h usually requires a di�erent modelling framework than the 
orporate debt,sin
e sovereign 
redit risk is driven mainly by e
onomi
al and politi
al fa
tors. In general,sovereign CDS 
ontra
ts have semi-annually premium payments guaranteeing the physi
aldelivery of the underlying referen
e upon a 
redit event. The 
redit event de�nitions insovereign CDS in
lude obligation a

eleration, failure to pay, restru
turing/renegotiation, and repudiation/moratorium of the sovereign. Note that the �default� is ex
luded sin
e1See Berndt et al. [BDD+05℄ and Hull et al. [HPW05℄.47



48 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeythere is not an international bankrupt
y 
ourt regulating the sovereign issuers. However,we use the term �default probability� as a measure of the arrival risk of the 
redit event.Further, the outright default of a sovereign is a very rare event and it is rather a politi
alde
ision.In this 
hapter, we model the 
redit risk in a setting that allows us to extra
t the termstru
ture of the market implied default probabilities. We are interested in pra
ti
almethodologies for extra
ting the probabilities, rather than explaining the e
onomi
aland/or politi
al fa
tors that might trigger the 
redit event in a sovereign. In order todo so, we �rst bootstrap the term stru
ture of the market implied intensity rates impli
itin the market pri
es of the sovereign CDS 
ontra
ts. A se
ond method, where we min-imise an obje
tive fun
tion with respe
t to the risk neutral forward 
onditional defaultprobabilities, is also presented for 
omparing the methods. Furthermore, we explore therisk premium for the Turkish sovereign in depth. We use the 
redit risk model introdu
edby Jarrow and Turnbull [JT95℄ (JT model hereafter), whi
h is a pioneer work in redu
edform models, due to its simpli
ity in the 
alibration.The JT model assumes a 
onstant, deterministi
 intensity rate allowing independen
efrom the expe
ted re
overy rate and the short rate pro
ess. The exogenous intensitypro
ess may of 
ourse depend on some ma
roe
onomi
 variables2 but this is not in thes
ope of our analysis. The 
onstant intensity pro
ess assumption provides easiness innumeri
s but do not signi�
antly explain the market rates as do
umented by Frühwirthand Sögner [FS06℄, where the authors examine the German 
orporate bond market. Their�ndings show that the intensity should be modelled within a sto
hasti
 framework as inthe Lando [Lan98℄ model, or the Du�e and Singleton [DS99℄ model. In this sense, weprovide a parallel analysis to Frühwirth and Sögner [FS06℄, keeping in mind that insteadof the 
orporate bonds, the CDS market rates are used for extra
ting the market impliedintensities of the 
redit risk.We �x the expe
ted re
overy rate under risk-neutral measure a priori, hen
e, CDS spreadsare for
ed to be driven only by risk neutral intensity of default. A similar paper analysingthe 
redit risk parameters of Japanese government and major Japan banks is by Ueno andBaba [UB06℄, where the authors use the Du�e and Singleton [DS99℄ 
redit risk model,2See Du�e et al. [DPS03℄, and Pan and Singleton [PS07a℄.



2.1 Introdu
tion 49allowing a joint estimation of intensity and the re
overy rate. In 
ontrast, Frühwirth andSögner [FS06℄ report that joint estimation is numeri
ally unstable. Moreover, Ro
ha andGar
ia [RG04℄ illustrate the 
alibration of a stru
tural 
redit risk model for pri
ing thesovereign CDS in
luding an analysis with Turkish sovereign CDS, hen
e we 
ompare ourresults with those by Ro
ha and Gar
ia [RG04℄ for a 
ertain date in the sampling period.There are many papers in the 
redit literature about 
orporate CDS valuation andtheir standardisation is do
umented by International Swaps and Derivatives Asso
iation(ISDA) in 2003. A detailed literature survey is done by Das and Hanoua [DH06℄, wherethey present the CDS spreads with stru
tural and redu
ed form 
redit risk models. Pri
ingof 
orporate and sovereign CDS is quite similar, but for the exa
t formulation and a list ofreferen
es, we refer the reader to the paper of Realdon [Rea07℄, where the author extendsthe one fa
tor model of Pan and Singleton [PS07a℄ with a two fa
tor modelling approa
h.Moreover, Pan and Singleton [PS07a℄ give detailed analysis about the time series proper-ties of the risk neutral intensity rates of three sovereigns, namely Mexi
an, Turkish, andKorean. The authors use the risk-adjusted short rate modelling approa
h introdu
ed byDu�e and Singleton [DS99℄, where they 
laim the CDS pri
es reveal not only the market-implied hazard rates but also the loss rates (Loss rate = 1 − Recovery rate). Papersabout sovereign CDS market are Ran
iere [Ran91℄, Pa
ker and Suthiphong
hai [PS03℄.Another referen
e is Keller et al. [KKS07a℄, where the authors analyse the sovereign riskof Turkey, with 
ontingent 
laims approa
h. Furthermore, an empiri
al work on TurkishCDS 
ontra
ts is done by Bakla
i and Arslan [BA06℄, where their �ndings show thatthe sovereign CDSs of Turkey with 10 year maturity are overpri
ed using the valuationmethodology introdu
ed by Ran
iere [Ran91℄.The remainder of this 
hapter is as follows. In Se
tion 2.2 we present a detailed surveyabout the intensity based (or redu
ed-form) models and supply the mathemati
al ba
k-ground ne
essary for a better understanding of the risk models. Sin
e these models arealso used for pri
ing the 
redit risk derivatives, we fo
us espe
ially on methodologies for
onstru
ting the term stru
tures of the risk-neutral PDs for pri
ing the sovereign CDS inSe
tion 2.3. In Se
tion 2.4 we run empiri
al analysis on the sovereign CDS 
ontra
ts ofTurkey and present the results. Se
tion 2.5 highlights the linkage between the a
tual andthe risk neutral intensities. The last se
tion summarises and gives our main 
on
lusions.



50 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkey2.2 Redu
ed-form Credit Risk ModelsIn this subse
tion, we present widely a

epted redu
ed form models in 
orporate 
reditrisk literature as well as in the �nan
ial industry. The general idea of redu
ed-formmodel is to model the default arrival time with a Poisson arrival pro
ess. These modelsa

ept the default event as a sudden �surprise�, implying an ina

essible stopping timefor the 
redit event in 
ontrast to stru
tural models with predi
table stopping times,e.g., Merton [Mer74℄ model. The pioneers of the redu
ed form modelling are Jarrow andTurnbull [JT95℄, taking a term stru
ture of default free interest rates and a maturityspe
i�
 
redit-risk spread as given. Given these two term stru
tures, the arbitrage freepri
ing of risky bonds 
an be done using the martingale measure te
hnique. Then, Jarrowet al. [JLT97℄ introdu
e a Markovian model for the term stru
tures of 
redit risk spreads.The authors extend the model by Jarrow and Turnbull [JT95℄ via in
luding the 
reditrating information into the risky bond pri
ing methodology. Lando [Lan98℄ generalises themodel proposed by Jarrow et al. [JLT97℄ with a Cox pro
ess for the default probability,providing randomness of the intensities and 
redit spreads. Furthermore, Lando [Lan98℄allows the dependen
e between risk-free term stru
ture and the default pro
ess via a
ommon state variable. The model proposed by Du�e and Singleton [DS99℄ allows us touse the standard term stru
ture models by parameterising the risk-adjusted short rate,instead of the standard risk-free short rate pro
ess.2.2.1 Preliminaries for Redu
ed-form ModelsIn this subse
tion, we present the mathemati
s behind the redu
ed-form 
redit risk modelsand give ne
essary de�nitions, mainly from S
hönbu
her [S
h03℄, Biele
ki and Rutkowski[BR02℄, Durrett [Dur99℄ and Lando [Lan02℄.Stopping TimeIn order to model the arrival risk of a 
redit event, whi
h is the un
ertainty whether adefault will o

ur or not, we need to model an unknown, random point in time τ ∈ R+.Sin
e there is a possibility that the default will not o

ur, ∞ is also in
luded in the setof realisations of τ . The 
onne
tion between stopping times and the �ltration (Ft)(t≥0)



2.2 Redu
ed-form Credit Risk Models 51is that if τ is the time of some event, we know that this event has o

urred or not fromthe information 
ontained in Ft. Mathemati
ally, we 
an de�ne the random time τ as astopping time with the following property:
{τ ≤ t} ∈ Ft ∀t ≥ 0. (2.1)Furthermore, the sto
hasti
 representation of a stopping time is possible with an indi
atorpro
ess whi
h jumps from zero to one at the stopping time:

Nτ (t) := 1{τ≤t}. (2.2)The property, whi
h determines whether the stopping time is predi
table or totally ina
-
essible, set the redu
ed form models apart from the stru
tural models of 
redit risk (seeChapter 1). If it is a predi
table stopping time, then the indi
ator pro
ess of the stoppingtime is a predi
table pro
ess as well. A predi
table stopping time has an announ
ingsequen
e of stopping times τ1 ≤ τ2 ≤ . . . with
τn < τ and lim

n→∞
τn = τ for all ω ∈ Ω with {τ(ω) > 0}. (2.3)This implies the existen
e of a sequen
e of early warning signals τn that o

ur before

τ and announ
e the predi
table stopping time. In 
lassi
al �rm value based 
redit riskmodel, the default time is predi
table and this makes sense in e
onomi
al interpretationof the 
redit event, sin
e the �rm might give bad signals before it defaults.For the totally ina

essible stopping time τ , there is no predi
table stopping time thatgives information, i.e., for all predi
table stopping times τ ′ we have :
P [τ = τ ′ <∞] = 0. (2.4)In redu
ed form models, the default time is totally ina

essible, implying that the defaultevent is a sudden surprise. However, as it is highlighted by Jarrow and Protter [JP04℄, themain distin
tion point in the debate between these two types of 
redit risk modelling is theinformation set available to the modeller and not the type of the stopping time. If we area manager of a �rm, then we will have full a

ess to all the information about the �rm'sassets and liabilities. Thus, we rather use a stru
tural model, whi
h implies a predi
tabledefault time. On the other hand, if we do not have full a

ess to the information set,



52 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeythen we use only what is available in the �nan
ial market. Hen
e, we use a redu
edform approa
h, whi
h implies a totally ina

essible stopping time. Furthermore, the linkbetween the redu
ed form and stru
tural 
redit risk models based on the informationset is studied by Guo et al. [GJZ05℄. Moreover, stru
tural modelling approa
hes within
omplete information are presented by Giese
ke [Gie06℄.Hazard RateThe hazard rate (also known as failure rate, or default intensity) is the ratio of theprobability density fun
tion to the survival fun
tion, with the following de�nition.De�nition 2.1. Let τ be a stopping time and F (T ) := P [τ ≤ T ] be its 
umulativedistribution fun
tion. Further, assume that F (T ) < 1 for all T and that F (T ) has aprobability density fun
tion f(T ). The hazard rate fun
tion h of τ is de�ned as:
h(T ) :=

f(T )

1 − F (T )
=
f(T )

S(T )
. (2.5)where S(t) is 
alled the survival fun
tion, S(t) = P [τ > t]. Hen
e, another representationwill be

h(T ) =
−d lnS(T )

dt
= −S

′(T )

S(T )Solving the di�erential equation above, we will have
S(T ) = exp

(
−
∫ T

0

h(s)ds

) (2.6)The hazard rate h(t) 
an be interpreted as the lo
al arrival probability of the stoppingtime per time unit:
h(t) = lim

dt→0

P [t ≤ τ ≤ t+ dt|τ > t]

dt
. (2.7)Forward Default Probability and Intensity Pro
essThe probability of default between time interval (t, T ] with T ≥ t is S(t) − S(T ). ByBayes' rule, the probability of surviving to time T , given survival to time t but no otherinformation about the issuer or the e
onomy is

ps(t, T ) =
S(T )

S(t)
. (2.8)



2.2 Redu
ed-form Credit Risk Models 53Hen
e, if we de�ne the forward default probability as
pd(t, T ) = 1 − ps(t, T ),whi
h gives the probability of default between time points t and T given survival to time

t (no other information). Moreover, from (2.8) and (2.6) in terms of hazard fun
tion, we
an express it as
pd(t, T ) = 1 − exp

(
−
∫ T

t

h(u)du

)
, with T ≥ t ≥ 0. (2.9)The redu
ed form models are also 
alled the intensity based models, therefore, we give herethe notion of the link between the intensity and the hazard rate. The hazard rate fun
tion

h(t) is used to 
hara
terise the distribution of the survival time, hen
e it is also 
alled the
redit 
urve giving the term stru
ture of the default probabilities. If h is 
ontinuous, thenfor small dt we have
h(t)dt ≈ P [t ≤ τ ≤ t+ dt | τ > t].In the intensity based approa
h, we model the �rst arrival time of a default event τ as aPoisson arrival time. Hen
e, we have a 
onstant mean arrival rate h and it is 
alled theintensity. In general, λ is used for denoting the intensity of the default. As Bluhm etal. [BOW03℄ indi
ate, some authors expli
itly distinguish between the intensity λ(t) asthe arrival rate of default at t 
onditional on all the information available at t and theforward default rate (or hazard rate) h(t) as the arrival rate of default at t, 
onditionalonly on survival until t. Of 
ourse, if the available information is only the �survival�,then the hazard rate and the intensity are identi
al. In this 
hapter, assuming that thesurvival is given as the whole information set, we denote the hazard rate (or intensityinter
hangeably) with λ. Hen
e, the forward 
onditional PD in (2.9) 
an be written as

pd(t, T ) = 1 − exp

(
−
∫ T

t

λ(u)du

)
, with T ≥ t ≥ 0. (2.10)Formulation of the 
onditional forward PD depends on whether the intensity pro
ess isdeterministi
ly or randomly varying. If we have a deterministi
 intensity pro
ess, then theintensity 
oin
ides with the forward default rate given that the only information relevantis the survival up to that date. Whereas, in a random intensity setting, (2.9) modi�es to

pd(t, T ) = 1 − E

[
exp

(
−
∫ T

t

λ(u)du

)∣∣∣Ft

]
, with T ≥ t ≥ 0 (2.11)



54 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeywhere Ft represents all information available at time t.Generally, as time passes we gather more information about the obligor, whi
h bears onthe 
redit quality. Any additional information during time implies the intensity pro
essto be randomly varying. We will see how the intensity is modelled with an underlyingstate variable (su
h as 
redit rating, distan
e to default, business 
y
le or equity pri
e ofthe obligor) in Subse
tion 2.2.2. Before we present the models for the intensity pro
ess,we re
all the de�nition and properties of the exponential distribution.De�nition 2.2. A random variable T has an exponential distribution with rate λ (or
T ∼ exponential(λ)), if

P [T ≤ t] = 1 − e−λt for all t ≥ 0,with E[T ] = 1
λ
.An important property of the exponential distribution is the la
k of memory property.Mathemati
ally,

P [T > t+ s | T > t] = P [T > s], (2.12)implying that the 
onditional probability of �failure� in a given interval is the same re-gardless of when the observation is made. Moreover, the exponential distribution has a
onstant hazard rate, i.e.,
h(t) =

λe−λt

e−λt
= λ, (2.13)re�e
ting the la
k of memory property.Further modelling approa
hes for the distributions of survival times are summarised inTable 2.2.1. These distributions are generally used in the reliability literature. Andritzky[And06℄ uses these distributions in order to model the default intensity of the sovereigndebt.We may observe the behaviours of the intensity pro
esses and the term stru
tures of the
orresponding survival probabilities in Figures 2.1, 2.2, 2.3, 2.4, and 2.5 for exponential,Weibull, loglogisti
, lognormal, and Nelson-Siegel type of survival modelling, respe
tively.



2.2 Redu
ed-form Credit Risk Models 55Distribution Hazard fun
tion, h(t) Survival fun
tion, S(t)Exponential λ exp(−λt)Weibull λγ(λt)γ−1 exp(−(λt)γ)Lognormal (γ/t)φ(γ ln(λt)) Φ(−γ ln(λt))Log-logisti
 λγ(λt)γ−1/[1 + (λt)γ ] 1/[1 + (λt)γ ]Nelson-Siegel β0 + β1 exp(−t/λ) exp
[
− β0t− β1t

1−exp(−t/λ)
t/λ

+β2(t/λ) exp(−t/λ) −β2t
(

1−exp(−t/λ)
t/λ

− exp(−t/λ)
)]Table 2.1: Survival distributions, where φ(u) = ϕ(u)/[1 − Φ(u)], with ϕ() denoting thedensity fun
tion of a standard normal distribution and Φ() its 
umulative distributionfun
tion.
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Figure 2.1: Exponential distributionPoint Pro
essesMathemati
ally, we 
an des
ribe the o

urren
e of one event with a stopping time (defaulttime of a single obligor) and for a generalisation to multiple events (default times of severalobligors), we should rather use the point pro
esses. A point pro
ess 
an be de�ned assome 
olle
tion of points in time, i.e.,
{τi, i ∈ N} = {τ1, τ2, . . .}. (2.14)Under the assumptions that the stopping times are indexed by as
ending order, (τi < τi+1),and that they are all di�erent, we 
an transform this 
olle
tion of points in time to a
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Figure 2.2: Weibull distribution, λ = 0, 0067
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Figure 2.3: Loglogisti
 distributionsto
hasti
 pro
ess by introdu
ing the 
ounting pro
ess:
N(t) :=

∑

i

1{τi≤t}, (2.15)whi
h gives the number of stopping times before time t.
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Figure 2.4: Lognormal distribution
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Figure 2.5: Nelson-SiegelPoisson Pro
essNow, let us de�ne the (homogeneous) Poisson pro
ess with 
onstant rate λ.De�nition 2.3. Let t1, t2, . . . be independent, exponentially distributed random variables(with rate (λ)). Let Tn = t1 + · · ·+ tn for n ≥ 1 and de�ne N(s) = max{n : Tn ≤ s}.The following de�nition relates the intensity with the Poisson pro
ess.



58 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyDe�nition 2.4. The homogenous Poisson pro
ess with 
onstant intensity λ is a
ounting pro
ess with
P [N(t) −N(s) = k] =

1

k!
(λ(t− s))ke−λ(t−s),where s < t and k = 0, 1, . . ..Lemma 2.1. N(t+ s)−N(s), t ≥ 0 is a Poisson pro
ess with rate λ and independent of

N(r), 0 ≤ r ≤ s.Proof: See p.132 of Durrett [Dur99℄.Theorem 2.1. If {N(s), s ≥ 0} is a Poisson pro
ess, then1. N(0) = 02. N(t+ s) −N(s) = Poisson(λt) and3. N(t) has independent in
rements.Conversely, if (1), (2) and (3) hold, then {N(s), s ≥ 0} is a Poisson pro
ess.De�nition 2.5. The inhomogeneous Poisson pro
ess is a generalisation of a homoge-nous Poisson pro
ess with a time-varying intensity. We 
all N an inhomogeneous pro
esswith deterministi
 intensity pro
ess λ(t), if the in
rements N(t) −N(s) are independentfor s < t and we have
P [N(t) −N(s) = k] =

1

k!

(∫ t

s

λ(u)du

)k

e−
R t

s
λ(u)du.De�nition 2.6. The Cox pro
ess N(t) with intensity λ = {λ(t)}t≥0 is a generalisationof the inhomogeneous Poisson pro
ess in whi
h the intensity is random, but with therestri
tion that 
onditional on the realisation of λ, N(t) is an inhomogeneous Poissonpro
ess. Therefore, the Cox pro
ess is also 
alled 
onditional Poisson pro
ess, or doubly-sto
hasti
 Poisson pro
ess.



2.2 Redu
ed-form Credit Risk Models 59Continuous-time Markov ChainsLet ηt, t ∈ R
+, be a right-
ontinuous sto
hasti
 pro
ess on the probability spa
e (Ω,G, P )with values in the �nite set K and let Fη be the �ltration generated by this pro
ess. Also,let G be some �ltration su
h that Fη ⊆ G.De�nition 2.7. A pro
ess η is a 
ontinuous-time G-Markov 
hain if for any arbitraryfun
tion f : K → R and any s, t ∈ N

+ we have
EP [f(ηt+s) | Gt] = EP [f(ηt+s) | ηt].A 
ontinuous-time G-Markov 
hain η is said to be time-homogenous if, in addition, forany s, t, u ∈ N

+ we have
EP [f(ηt+s) | ηt] = EP [f(ηu+s) | ηu].De�nition 2.8. A two-parameter family P(t, s), t, s ∈ R+, t ≤ s, of sto
hasti
 matri
esis 
alled the family of transition probability matri
es for the G-Markov 
hain η under Pif for every t, s ∈ R+, s ≤ t,

P [ηt = j | ηs = i] = pij(s, t), ∀i, j ∈ K.In parti
ular, the equality P(t, t) = I is satis�ed for every t ∈ R+.De�nition 2.9. The one-parameter family P(t), t ∈ R+, of sto
hasti
 matri
es is 
alledthe family of transition probability matri
es for the time-homogeneous G-Markov 
hain
η under P if for every t, s ∈ R+,

P [ηs+t = j | ηs = i] = pij(t), ∀i, j ∈ K. (2.16)Let us now introdu
e an important assumption on the family P(t), namely that thisfamily is right-
ontinuous at t = 0, implying that
lim
t↓0

P(t) = P(0).With the Chapman-Kolmogorov equation3, we have
lim
s→0

P(t+ s) = P(t), ∀t > 0,3P(t + s) = P(t)P(s) = P(s)P(t), ∀s, t,∈ R+
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e
lim
s→0

P [ηt+s = j | ηt = i] := δij , ∀i, j ∈ K, t > 0.Furthermore, P(t) is right-
ontinuous, implying that it is right-di�erentiable, the followinglimit exists for every i, j ∈ K,
λij := lim

t↓0

pij(t) − pij(0)

t
= lim

t↓0

pij(t) − δij
t

. (2.17)Note that for every i 6= j we have λij ≥ 0 and λii = −∑K
j=1,j 6=i λij . We 
all the matrix

Λ := [λij]1≤i,j≤K the in�nitesimal generator matrix for a Markov 
hain asso
iated withthe family P(·) via expression (2.16). This matrix is also 
alled the intensity matrix sin
eea
h entry λij represents the intensity of transition from state i to state j.We 
an derive the ba
kward Kolmogorov equation
dP(t)

dt
= ΛP(t), P(0) = I, (2.18)and the forward Kolmogorov equation

dP(t)

dt
= P(t)Λ, P(0) = I, (2.19)where at t = 0, we take right-hand side derivatives. Both equations have the same uniquesolution:

P(t) = exp(tΛ) :=

∞∑

n=0

Λntn

n!
, t ∈ R

+. (2.20)De�nition 2.10. A state K ∈ K is 
alled absorbing for time-homogeneous Markov 
hain
ηt, t ∈ R+, if the following equation holds:

P [ηs = K | ηt = K] = 1, ∀t, s ∈ R
+, s ≥ t. (2.21)2.2.2 Intensity Models and Valuation of the Corporate BondsIn this subse
tion, we present the well-known approa
hes for the intensity based 
reditrisk models and provide the 
orresponding risky 
orporate bond formulas. The intensitybased models assume that the default arrival time τ is the �rst jump time of a Poissonarrival pro
ess. However, depending on whether the intensity of the Poisson pro
ess isdeterministi
 or sto
hasti
, these models 
an also be subdivided into 
ategories.



2.2 Redu
ed-form Credit Risk Models 61An example for a deterministi
 intensity is the model by Jarrow and Turnbull [JT95℄(hereafter,JT model), where the authors assume a 
onstant intensity, i.e., λ(t) = λ. This assumptionbrings easiness in 
alibration to the market data, however, it is not very realisti
 in realworld. In this setting, a 
onstant intensity rate of 5% will indi
ate a mean arrival rate of5 defaults per 100 obligors, 
onditioning on all 
urrent information available. Expe
tedtime to default of an obligor is 1/λ = 20 years, where the 
umulative probability of defaultin one-year equals 1 − exp(−0.05) = 4.88%.In pra
ti
e, generally the intensity is assumed to be time-dependent, e.g., it 
an be de-s
ribed with a linear fun
tion,
λ(t) = a+ bt, (2.22)or with a pie
ewise 
onstant fun
tion

λ(t) = a1 + a21{t≥t1} + a31{t≥t2} + . . . (2.23)An innovative default intensity model is proposed by Jarrow et al. [JLT97℄(hereafter, JLTmodel), where the authors in
lude the 
redit rating information to the risk pri
ing. InJLT model, the authors 
hara
terise the default with a �nite state Markov pro
ess in the
redit rating of the �rm. Markovian 
redit migration pro
ess has the state spa
e
K = {1, 2, . . . , K},where 1 represents the highest 
redit rating 
lass and K represents the default state. Theintensities λi,j i = 1, . . . , K − 1, and j = 1, . . .K are the transition rates of jumping from
redit 
lass i to 
redit 
lass j, where these intensities are the o�-diagonal elements for thegenerator matrix of the Markov migration pro
ess.Lando, [Lan98℄ generalises JLT model and instead of 
onstant intensities, he assumessto
hasti
 intensities whi
h are driven by some state variable X. Therefore, the authoruses a Cox pro
ess in order to model the default event. Moreover, assuming that the statevariable X is a Markov pro
ess, we have
λi,j(t) = Λi,j(Xt),where Λi,j is a 
ontinuous non-negative fun
tion on Rd, whi
h maps the risk fa
tors Xinto the transition intensity.



62 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyMathemati
ally, the relationship between the risk-neutral short rate pro
ess and the risk-free ZCB pri
e 
orresponds to the relationship between the risk neutral intensity pro
essand the survival probability. Therefore, this analogy allows us to model the sto
has-ti
 intensity with the term-stru
ture models for short rate. Du�e and Singleton [DS03℄present these models in the third 
hapter of their book. Examples to this kind of inten-sity modelling approa
hes are well known from the interest rate literature, namely theCox-Ingersoll-Ross (CIR, hereafter) [CIR85℄ and Heath-Jarrow-Morton (HJM, hereafter)[HJM92℄ frameworks. A re
ent appli
ation of the HJM framework using Cheyette typespe
i�
ation for 
apturing the sto
hasti
ity of the 
redit spreads is introdu
ed by A
aret al. [AAK07℄. Moreover, Du�e and Singleton 
ontribute to 
redit risk modelling witha�ne pro
esses, adopting the Cox pro
ess approa
h of Lando [Lan98℄ model. Hen
e, theyassume that the state pro
ess X and the non-negative fun
tion Λ are a�ne, implying
losed form solutions for the PDs.Due to rapid growth in the 
redit derivative markets, pri
ing of multi name 
redit prod-u
ts (e.g., CDO, CDO2) bring new modelling approa
hes to the sto
hasti
 intensity. There
ent papers by Chapovsky et al. [CRT06℄, and Papageorgiou and Sir
ar [PS07b℄ pro-pose multis
ale intensities, where the authors present a review of the sto
hasti
 models inthe latter. Using a Markov 
hain is introdu
ed by Kraft and Ste�ensen [KS06℄, extendedby De Ko
k et al. [KKS07b℄ for the CDO pri
ing. Another paper to valuation of multi-name 
redit derivative 
ontra
ts in a Markovian framework is by Di Graziano and Rogers[GR06℄.Jarrow and Turnbull ModelJarrow and Turnbull [JT95℄ assume a 
onstant intensity λ, implying statisti
al indepen-den
e of the default event and the short rate pro
ess.Now, let us remember some bond-pri
ing mathemati
s. We have
b(t) = exp

(∫ t

0

r(s)ds

) and (2.24)
B(t, T ) = EQ

t

[
b(t)

b(T )

]
, (2.25)where r(t) is the risk-free short rate and the 
onditional expe
tation under the martingale



2.2 Redu
ed-form Credit Risk Models 63measure Q is denoted with EQ
t [·] ≡ EQ[· | Ft]. The risk-free MMA is represented by b(t)and B(t, T ) is the pri
e of a risk-free ZCB at time t, with maturity time T , T ≥ t ≥ 0.The JT model gives the pri
e of a risky ZCB at time t with maturity time T , B̄(t, T ) as

B̄(t, T ) = EQ
t

[
b(t)

b(T )

(
R1{τ≤T} + 1{τ>T}

)]
, (2.26)where R is the exogenously given, 
onstant re
overy rate R ∈ [0, 1] and τ is the randomdefault time. Assuming that the short rate pro
ess r(t) and the default pro
ess arestatisti
ally independent under Q and that at default time τ the 
laim holders re
eive afra
tion of the equivalent risk-free ZCB, i.e., B̄(τ, T ) = RB(τ, T ) (Re
overy of treasuryor equivalent re
overy assumption), we may rewrite (2.26) as:

B̄(t, T ) = EQ
t

[
b(t)

b(T )

]
· EQ

t

[(
R1{τ≤T} + 1{τ>T}

)]

= B(t, T )
[
R+ (1 −R)psQ(t, T )

]
. (2.27)Here psQ(t, T ) represents the martingale probability of survival until T , 
onditional onsurvival to time t. Note that with the 
onstant intensity λ, it is given by

psQ(t, T ) = e−λ(T−t). (2.28)For a detailed analyses of the JT model, we refer the reader to Baydar [Bay04℄.Jarrow, Lando and Turnbull ModelJarrow et al. [JLT97℄ extend JT model via in
luding the 
redit rating information intothe risky bond pri
e. Sin
e 
redit rating is a 
rude measure of 
redit quality and a roughaggregation of 
redit information, it is an important ingredient both to 
redit risk modelsand to risk management issues. The popular 
redit rating 
lassi�
ations are the onespublished by 
redit rating agen
ies like Moody's (highest rate:Aaa, lowest rate: C) andStandard & Poor's (S&P hereafter, with highest rate: AAA lowest rate: CCC), and thoseby Fit
h. In JLT model 1 represents the highest rating grade and K represents the defaultstate (the absorbing state in Markovian setting). Within this framework, we de�ne thedefault time as follows:De�nition 2.11. Suppose the default time of a �rm is the �rst time that the �rm 
reditmigration (or 
redit transition) pro
ess η(t) hits the absorbing (default) state, e.g., K.



64 Chapter 2. Sovereign CDS and Market-implied Credit Risk of TurkeyConsidering a 
ontinuous time framework, we de�ne the default time as follows:
τ = inf{t ≥ s : η(t) = K}, ∀s ∈ R

+Let us assume that the Kth state is absorbing, then we will have the following generatormatrix under the physi
al probability measure as follows:
Λ =




−λ1 . . . λ1,K−1 λ1,K

. . . . . .
λK−1,1 . . . −λK−1 λK−1,K

0 . . . 0 0


 (2.29)where λij ≥ 0 for all i, j and

λi =
K∑

j=1
j 6=i

λij for i = 1, . . . , K.Proposition 2.1. The generator matrix under the equivalent martingale measure is givenby:
ΛQ(t) = U(t)Λ, (2.30)where U(t) = diag(µ1(t), . . . , µK−1(t), 1) is a K ×K diagonal matrix, whose �rst K − 1entries are stri
tly positive deterministi
 fun
tions of t satisfying

∫ T

0

µi(t)dt < +∞ for i = 1, . . . , K − 1.The entries (µ1(t), . . . , µK−1(t), 1) 
an be interpreted as risk premiums, whi
h are adjust-ing the a
tual probabilities into the probabilities used in valuation pro
ess. These riskpremiums will be analysed in detail in Subse
tion 2.5 for Turkish sovereign.Let us denote the transition matrix under EMM from time t to T with Q(t, T ) whose
(i, j)th entry is qij(t, T ) = Q[η(T ) = j | η(t) = i], 0 ≤ t ≤ T . We will get Q(t, T ) fromthe solutions to the Kolmogorov di�erential equations below:

∂Q(t, T )

∂t
= −ΛQ(t)Q(t, T ) and (2.31)

∂Q(t, T )

∂T
= Q(t, T )ΛQ(T ), with the initial 
ondition Q(t, t) = I. (2.32)



2.2 Redu
ed-form Credit Risk Models 65The 
redit rating pro
ess is still Markovian under the assumption with (2.30) but timeinhomogeneous here. The pro
ess is time homogeneous only when the following equationholds:
ΛQ = diag(µ1, . . . , µK−1, 1)Λ (2.33)where µ1, . . . , µK−1 are stri
tly positive 
onstants. In this 
ase, the solution to Kolmogorovequations are easy to 
al
ulate and the solution is

Q(t, T ) = exp(diag(µ1, . . . , µK−1, 1)Λ(T − t)).Proposition 2.2. Let the �rm have rating i at time t, ηt = i and de�ne the default timewith τ = inf{s ≥ t : ηs = K}, then the probability of survival until T , given survival totime t is
psQ

i (t, T ) =
∑

j 6=K

qij(t, T ) = 1 − qiK(t, T )Hen
e, we 
an write the pri
e of a risky ZCB, whi
h has the rating i ∈ {1, . . . , K − 1}with Re
overy of Treasury 
onvention as:
B̄i(t, T ) = B(t, T )[R+ (1 −R)(1 − qiK(t, T ))]. (2.34)The estimation te
hniques of the transition probability matri
es are explained by Lando[Lan02℄ for 
orporate debt, whereas Hu et al. [HKP02℄ introdu
e a sovereign 
redit riskspe
i�
 estimation methodology.Lando ModelLando [Lan98℄ generalises the JLT model and uses doubly sto
hasti
 Poisson pro
ess formodelling the default time. With this setting, one may relax the assumption that thedefault pro
ess and risk-free term stru
ture are independent. This generalisation alsoallows the 
redit spreads to �u
tuate randomly even between rating transitions. Weintrodu
e the state variable X and randomise the default intensities depending on X,where X re�e
ts the 
hanges in e
onomi
 
onditions determining the rating transitionintensities. Let us de�ne the generator matrix

ΛX(t) =




−λ1(Xt) . . . λ1,K−1(Xt) λ1,K(Xt)... .
... ...

λK−1,1(Xt) . . . −λK−1(Xt) λK−1,K(Xt)
0 . . . 0 0


 (2.35)



66 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyand assume that
λi(Xt) =

K∑

j=1
j 6=i

λij(Xt), i = 1, . . . , K − 1 λi,j ≥ 0.With the 
onstru
tion above, the probability that the �rm will start from rating 
lass1 and jump to a di�erent 
lass or default within the small time interval dt is λ1(Xt)dt.Further, 
onditional on the evolution of the state variables, we obtain a non-homogeneousMarkov 
hain with the transition probabilities satisfying
∂QX(t, T )

∂t
= −ΛX(t)QX(t, T ).Unfortunately, we 
an not say the solution to the di�erential equation is

QX(t, T ) = exp

(∫ T

t

ΛX(u)du

)
, (2.36)sin
e for only square matri
es A and B whi
h 
ommute we 
an write

exp(A + B) = exp(A) exp(B).In order to ensure that the intensity measures for di�erent intervals 
ommute, we assumethat they have a 
ommon basis of eigenve
tors. Hen
e, let us assume thatK×K generatormatrix Λ is given and it permits a diagonalisation
Λ = BDB−1,with D = diag(d1, . . . , dK−1, 0) is the diagonal matrix of eigenvalues. Let µ be a s
alar-valued positive fun
tion de�ned on the state spa
e of the state variable X and the lo
alintensity is de�ned as

ΛX(t) = Λµ(Xt) = BDµ(Xt)B
−1,whi
h 
orresponds to 
onsidering a one-dimensional s
alar multiple of the generator.Moreover, we de�ne the K ×K diagonal matrix

EX(t, T ) =




exp(d1

∫ T

t
µ1(Xu)du) 0 . . . 0
0 · . . . 0... . . . exp(dK−1

∫ T

t
µK−1(Xu)du) 0

0 . . . 0


 .



2.3 Valuation of the Sovereign Credit Default Swaps 67Then, we will have QX(t, T ) = BEX(t, T )B−1, hen
e we 
an 
ompute the un
onditionalmigration matrix Q(t, T ) as the expe
ted value of QX(t, T ). The survival probability
onditionally starting with the rating i will be
1 − qX(t, T )iK =

K−1∑

j=1

βij exp

(
dj

∫ T

t

µ(Xu)du

)
,where

βij = −bijb−1
jK ,and bij is the (i, j)th value of the matrix B and qX(t, T )iK is the (i,K)th entry of thetransition probability matrix QX(t, T ).Now, 
onsider the pri
e of a defaultable ZCB at time t maturing at time T , issued by a�rm with 
redit 
lass i using zero re
overy assumption

B̄i(t, T ) = EQ
t

[
exp

(
−
∫ T

t

r(Xs)ds

)
(1 − qX(t, T )i,K)

]

=

K−1∑

j=1

βijE
Q
t

[
exp

(∫ T

t

(djµ(Xs) − r(Xs))ds

)]
,where we denote the short rate depending on the state pro
ess with r(Xs). If µ(Xs) is ana�ne pro
ess, we 
an 
ompute it easily.2.3 Valuation of the Sovereign Credit Default SwapsIn Se
tion 2.2, we illustrated the intensity based 
redit risk models, whi
h are mainlyused for valuation of risky 
orporate bonds as well as extra
ting the risk-neutral PD forthe �nan
ial obligors. In this se
tion, our aim is to introdu
e the state of the art invaluation of the CDS 
ontra
t, when the referen
e asset is the sovereign debt. Althoughmodelling the 
orporate and the sovereign debt should be treated distin
tly (see Du�e etal. [DPS03℄ and Andritzky [And06℄), the valuation of the sovereign and 
orporate CDS
ontra
ts is quite similar.The CDS 
ontra
t (also 
alled 
redit swap or default swap in di�erent sour
es) transfers thepotential loss on the referen
e asset that 
an result from spe
i�
 
redit events. Dependingon the referen
e asset, a CDS is named the 
orporate CDS, or sovereign CDS. Sin
e we



68 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyare analysing the CDS 
ontra
ts written on the Turkish Eurobonds maturing in 2030and denominated in the USD, we explain the valuation of the sovereign CDS in a simplemodelling approa
h by O'Kane and Turnbull [OT03℄.The 
ontra
t 
onsists of two parties; the prote
tion buyer (B) and the prote
tion seller(S). Moreover, CDS has two legs; namely the premium leg and the prote
tion leg. Thepremium leg stands for the payments transfered by the B to the S. The premium leg isthe periodi
 payments4, as per
entages of the notional on the issue date until whi
hevero

urs �rst: the referen
e asset defaults and the CDS 
ontra
t terminates or CDS 
ontra
tmatures without any 
redit event. Alternatively, the investor may de
ide to make an up-front premium payment. With 2003 ISDA de�nitions, the premiums are paid on dates20th Mar
h, June, September, and De
ember (if quarterly based), independent from thein
eption date for the 
orporate CDS 
ontra
ts. If the 
ontra
t is made between thosedates, the premium is adjusted a

ordingly, whereas if the 
ontra
t starts on those datesthen the �rst premium is paid on the next payment date. Upon a default between thesepayment dates, B requires to pay the part of the premium payment that has a

ruedsin
e the last payment, whi
h is 
alled the a

rued premium payment.The prote
tion leg refers to the potential payment (upon the 
redit event of the referen
easset) is done to the B by the S. At the in
eption date, the default payment is unknownand generally spe
i�ed as physi
al delivery of the referen
e asset (Turkish sovereign bond)against repayment at par. In Figure 2.6, we see the pay o� stru
ture of the produ
t.
buyer

CDS CDS

seller

Periodic or upfront "premium"

Payment contingent on credit eventFigure 2.6: CDS payo� shemaExample 2.1. We 
onsider a sovereign CDS with the following 
hara
teristi
s:
• Swap parties: B (prote
tion buyer) and S (prote
tion seller)
• In
eption5: 20th Mar
h, 20074This periodi
 payment is also 
alled swap rate, swap spread or swap premium.5This is the date/time where the 
overage under the insuran
e 
ontra
t takes e�e
t.
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• Maturity: 5 years
• Referen
e asset: Eurobond of Turkish government maturing in 2030, denominatedin the USD
• Notional amount: 100 million USD
• Credit event: obligation a

eleration, failure to pay, restru
turing/renegotiation,repudiation/moratorium
• Swap rate: 90 BPS (= 900000 USD) per annum, �rst payment on 20 September2007If the Turkish government does not su�er from a 
redit event until 20th Mar
h 2012: Bpays 5 × 2 × 450000 USD to S at the respe
tive premium payment dates (�rst premiumpayment is on 20th September 2007) and re
eives nothing from S. If there is a 
redit eventon 3rd Mar
h 2010: B pays to S [(2×2)+1]×450000 USD at the respe
tive 
oupon datesand a fra
tion of the premium a

rued from 21th September 2009 until 3rd Mar
h 2010.In return, B delivers the defaulted Eurobond to S, who pays 100 million USD (notionalvalue of the bond) as des
ribed in the physi
al settlement feature. Hen
e, B does notsu�er a loss due to 
redit event of Turkish government. This prote
tion of 
ourse requiresa fair pri
ing formula, whi
h will be explained in details in the next subse
tion.We have two pri
ing problems here:
• when making markets, we are interested in the fair swap rate at the in
eption of the
ontra
t, i.e., CDS(t0, tN).
• when hedging or marking-to-market6, we are interested in the market value of theswap, i.e., CDS(tv, tN), whi
h need not to be the same with the 
ontra
tual rate,i.e., CDS(t0, tN ) due to 
hanging interest rates and 
redit quality of the referen
easset.6Re
ording the pri
e or value of a se
urity, portfolio, or a

ount on a daily basis and 
al
ulate pro�tsand losses or to 
on�rm that margin requirements are being met.
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using on the �rst problem in this se
tion. Generally, 
ounterparty risk is nottaken into a

ount when determining the deal pri
es. A good referen
e about determiningthe 
orporate CDS rate would be Hull and White [HW00℄, where the authors value abinary CDS and a plain vanilla CDS under the assumption that there is no 
ounterpartyrisk. Du�e [Duf99℄ uses the Floating Rate Note (FRN) as referen
e entity to 
reatesyntheti
 CDS 
ash �ows. Moreover, Brigo and Alfonsi [BA05℄ use a two-dimensionalshifted square root di�usion model with a sto
hasti
 intensity framework. Jarrow andYildirim [JY02℄ provide a simple analyti
 formula for valuation of the CDS when themarket and 
redit risk are 
orrelated. Some papers about empiri
al studies of 
orporateCDSs are Cossin and Nerin [CN02℄, Houweling and Vorst [HV05℄, and Skinner and Diaz[SD03℄.In this 
hapter, we use the following notations:
• tv : date of valuation of the CDS
• n = 1, . . . , N : number of payments and t1, . . . , tN : the dates for CDS premiumpayments, where tN is the maturity date of the CDS
• CDS(t0, T ) : the 
ontra
tual swap rate on time t0, when the maturity of the CDS is
T , (in a new 
ontra
t tv = t0)

• ps(tv, T ) : the forward probability of survival from tv until T , given survival to tv
• pd(tv, T ) := 1−ps(tv, T ) the forward probability of default at time T , given survivalto tv
• PS(tn) : the 
umulative probability of survival until tn
• PD(tn) := 1 − PD(tn) the 
umulative probability of default by time tn
• R: expe
ted re
overy rate under the risk-neutral measure
• r(t) : short interest rate pro
ess (LIBOR for USD)
• D(tv, T ) : the dis
ount fa
tor on tv for time T
• λ(t) : the intensity rate (or hazard rate) of the 
redit event
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• PVProtection Leg(tv, T ) : present value of the prote
tion leg with CDS maturity time T
• PVPremium Leg(tv, T ) : present value of the premium leg with CDS maturity time T
• ∆(tn−1, tn, C) : the day 
ount fra
tion between dates tn−1 and tn using 
hosen 
on-vention C (e.g., 30/360, meaning 30 days in a month and 360 days in a year, for thedetails see ISDA de�nitions.)Determining the fair pri
e of a CDS 
ontra
t, requires the following algorithm:1. Choose an appropriate 
redit risk model for determining the term stru
ture of PDs.2. Constru
t the zero 
urve (for dis
ount fa
tors).3. Set the CDS 
ontra
t details (a

rued payment assumptions, the delivery type ondefault, day 
ount 
onventions, et
.).4. Fix the expe
ted re
overy rate under risk neutral measure.5. Constru
t the hazard rate term stru
ture (ideally from market CDS rates).6. Determine the present values of the prote
tion leg and the premium leg.7. Cal
ulate the fair value of the CDS.2.3.1 Sovereign CDS Valuation with Deterministi
 IntensityAs mentioned before, pri
ing of sovereign CDS is similar to 
orporate CDS, hen
e we mayimitate the pri
ing te
hniques for a 
orporate CDS presented by O'Kane and Turnbull[OT03℄. Hen
e, with a deterministi
 intensity as in the JT model, the forward PS is givenby

ps(tv, T ) = exp

(
−
∫ T

tv

λ(s)ds

)
. (2.37)The general pri
ing rule of the swap 
ontra
ts tells the present values of the premium legand the prote
tion leg should be equal to ea
h other on the valuation date. Thus, we have

PVProtection Leg(tv, tN) = PVPremium Leg(tv, tN), (2.38)
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ted present value of the premium leg is given as
PVPremium Leg(tv, tN ) = CDS(t0, tN)

N∑

n=1

∆(tn−1, tn, C)D(tv, tn)ps(tv, tn), (2.39)and the expe
ted present value of the prote
tion leg is
PVProtection Leg(tv, tN) = (1 − R)

∫ tN

tv

D(tv, s)ps(tv, s)λ(s)ds. (2.40)Note that the a

rued payment upon a default between two premium dates is ignored in(2.39). Considering the prote
tion fee, that has a

rued from the last premium date tothe time of default, 
al
ulated as the sum over all premium periods from n = 1 to the�nal one n = N ; (2.39) modi�es to
CDS(t0, tN)

N∑

n=1

∫ tn

tn−1

∆(tn−1, s, C)D(tv, s)ps(tv, s)λ(s)ds. (2.41)Here, probability of surviving from tv to ea
h time s and defaulting in the next small timeinterval ds is given by ps(tv, s)λ(s)ds. This integral should be dis
retised daily sin
e thepremiums are 
al
ulated on a daily basis. Sin
e this brings 
omplexity in numeri
s, weassume that it is 
ontinuous and that if the default o

urs between two premium dates,then the premium a

rued is the half of the full premium to be paid at the end of thepremium payment interval. Hen
e, we approximate (2.41) with
CDS(t0, tN )

2

N∑

n=1

∆(tn−1, tn, C)D(tv, tn)[ps(tv, tn−1) − ps(tv, tn)]. (2.42)The term [ps(tv, tn−1) − ps(tv, tn)] stands for the probability that the obligor will defaultbetween the dates tn−1 and tn. Summing this di�eren
e per ea
h time interval [tn−1, tn],
n = 1, . . . , N , we will have the obligors default probability during the life of the CDS.Sin
e we assume that the a

rued premium is the half of the full premium, division by twoand dis
ounting it from the end of ea
h a

rued payment period explains the formulationof (2.42).Thus, it follows from (2.39) and (2.42) that the present value of the premium leg in
ludingthe a

rued payment 
an be approximated by

PVPremiumLeg(tv, tN) = CDS(t0, tN)
N∑

n=1

∆(tn−1, tn, C)D(tv, tn) (2.43)
·
[
ps(tv, tn) +

1PA

2
[ps(tv, tn−1) − ps(tv, tn)]

]
,
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1PA =

{
1 if a

rued payment is agreed in CDS 
ontra
t
0 otherwiseThe value of the prote
tion leg is 
al
ulated with the assumption that the transa
tion tothe prote
tion buyer is made immediately after the noti�
ation of the 
redit event.We approximate the integral in (2.40) assuming that the default 
an o

ur only on a �nitenumber of dis
rete points, i.e., M , per year. Hen
e, we will have M × tN dis
rete timeslabeled as m = 1, . . . ,M × tN . We approximate (2.40) with

(1 −R)

M×tN∑

m=1

D(tv, tm)[ps(tv, tm−1) − ps(tv, tm)] (2.44)By de
reasing the value of M , we will have less 
al
ulations but also less a

ura
y. When
M = 12, we will have a monthly dis
retisation frequen
y.In order to have the market implied PS, we now relate these formulas for premium andprote
tion leg to the market quoted swap spreads. For an appropriate fair spread7 with
tv = t0, the value of the CDS should be 0, hen
e we have

0 = PVProtection Leg(tv, tN) − PVPremium Leg(tv, tN)su
h that̂
CDS(tv, tN) = (2.45)

(1 −R)
∑M×tN

m=1 D(tv, tm)[ps(tv, tm−1) − ps(tv, tm)]∑N
n=1 ∆(tn−1, tn, C)D(tv, tn)

[
ps(tv, tn) + 1PA

2
[ps(tv, tn−1) − ps(tv, tn)]

] .To illustrate this with an example; say we have a 1Y CDS whi
h has a mid market quoteof 75 bp. With semi-annual premium payments and assuming that we do not have thea

rued premium payment, we have
0.0075 =

(1 − R)
∑12

m=1D(0, tm)(PS(tm−1) − PS(tm))∑
n=6,12 ∆(tn−6, tn, C)D(0, tn)PS(tn)

, (2.46)where we assume that the expe
ted re
overy rate and LIBOR dis
ount fa
tors are given,i.e., R = 0.25 and assuming a �at zero 
urve with
r = 0.05 ⇒ D(0, tm) = exp(−0.05 × (tm)),7The pri
e at whi
h a se
urities transa
tion produ
es neither a gain nor a loss.



74 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeywe are left only with the unknown 12 + 2 PS8. We plug in (2.37) to 
al
ulate the PSto (2.46), note that for tv = t0 = 0, we have ps(0, tn) = PS(tn). We see that it is notpossible to extra
t unknown PS for every time point, hen
e we must have a simplifyingassumption about term stru
ture of the hazard rates. At this point, the need for thebootstrapping methodology, whi
h we explain in the next subse
tion, shows up.2.3.2 Generating Hazard Curves with the Bootstrapping MethodIn this subse
tion, we explain how we 
onstru
t the term stru
ture of the risk neutralintensity rates for pri
ing a CDS, namely the bootstrapping methodology. The fair CDSrate formula in (2.45) with deterministi
 intensity is already standard in �nan
ial industrybut the approximation methods to the integrals may imply di�erent results.Although bootstrapping is a pra
ti
al method, it has also disadvantages, whi
h are listedby Martin et al. [MTB01℄ as;
• it is an iterative method, an unreliable CDS market rate, i.e., ĈDS(0, j) will a�e
tnot only the extra
ted intensity λj but also the other subsequent intensities λj+1,

λj+2 . . ..
• We 
an have intensities as many as the market swap rates. Typi
ally, the CDS ratesfor di�erent maturities may not be available. Here, we have to use an interpolationmethod for the maturities whi
h are not traded. Di�erent interpolation methodsmay imply di�erent results.
• With the bootstrapping we may even have negative intensities, that are totallynonsense.Empiri
al fa
ts9 show the re
overy rate should be modelled in a sto
hasti
al framework,due to the relationship between the expe
ted re
overy rate and the intensity rate pro
ess.Unfortunately, the bootstrapping method separates the re
overy and default risk, whilewe �x the re
overy rate under risk neutral measure a priori, then extra
t the intensities.8This is the upper bound of the unknown terms, when premium dates and the determined defaultdates in prote
tion leg do not 
oin
ide.9Interested reader may see the papers by Bakshi et al. [BMZ04℄, Das and Hanouna [DH06℄, Pan andSingleton [PS07a℄, and Christensen [Chr07℄ for a sto
hasti
 re
overy approa
h.
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tional re
overy of fa
e value 
onvention of Du�e [Duf98℄, andDu�e and Singleton [DS99℄, where the authors propose a fair swap rate as
CDS(t) = (1 −R)f(λQ(t)). (2.47)However, the fra
tional re
overy of market value 
onvention introdu
ed by Du�e andSingleton [DS99℄ delivers a CDS pri
ing formula as follows
CDS(t) = f((1 − R)λQ(t)). (2.48)This implies that the re
overy and intensity pro
esses 
an not be separately identi�edfrom the market CDS rates. Leaving the dis
ussion about the re
overy rate 
onventionsfor a future resear
h problem, we use a valuation formula, that is similar to (2.47). We usea 
onstant re
overy rate, i.e., R = 0.25, as it is proposed in Pan and Singleton [PS07a℄.In our dataset, we have the mid-market quotes of CDSs for the maturities of 1, 2, 3, 5,7, and 10 years. From ea
h market rate, we 
an extra
t only one pie
e of information.As O'Kane and Turnbull [OT03℄ indi
ate, the widely used methodology is assuming thehazard rate term stru
ture as a pie
ewise 
onstant fun
tion of the maturity time. Wemay also 
onstru
t it with a pie
ewise linear hazard rate fun
tion, but this typi
ally willnot 
reate a big di�eren
e, unless we have spreads for many CDS maturities.Our aim is to �nd the market-implied (or risk-neutral) 
onstant hazard rates λQ

1 , λQ
2 ,

λQ
3 , λQ

4 , λQ
5 and λQ

6 via bootstrapping method. Suppose we have the stepwise 
onstantintensity fun
tion as follows
λQ(t) :=





λQ
1 if t ≤ 1

λQ
2 if 1 < t ≤ 2

λQ
3 if 2 < t ≤ 3

λQ
4 if 3 < t ≤ 5

λQ
5 if 5 < t ≤ 7

λQ
6 if t > 7.

(2.49)
First, we will use the 1Y CDS market spread in order to 
al
ulate λQ

1 , then we use itto 
al
ulate λQ
2 . The iterative method will 
ontinue until we have the 
omplete termstru
ture of the intensities.With semi-annual premium payments and assuming that there is no a

rued premium(1PA = 0 in (2.43)) and plugging the PS formula given with (2.37) in, we get λQ

1 by
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ĈDS(tv, tv + 1Y )

1 − R

∑

n=6,12

∆(tn−6, tn, C)D(tv, tn)e−λQ
1 τn

=
12∑

m=1

D(tv, tm)[e−λQ
1 τm−1 − e−λQ

1 τm ],where with a monthly dis
retisation frequen
y (M = 12), we have
τ0 = 0, τ1 = 0.0833, . . . , τ12 = 1.This equation 
an be solved with bise
tion or gradient-based methods su
h as Newton-Raphson algorithm. Given λQ
1 , this 
an be redone to solve for λQ

2 using the market rate
ĈDS(tv, tv + 2Y ). De�ne τ as time to maturity, i.e., τ = T − tv and assume that thehazard rate is 
onstant beyond 10Y maturity, then we have

ps(tv, tv + τ)

=





exp(−λQ
1 τ) if 0 < τ ≤ 1

exp(−λQ
1 − λQ

2 (τ − 1)) if 1 < τ ≤ 2

exp(−λQ
1 − λQ

2 − λQ
3 (τ − 2)) if 2 < τ ≤ 3

exp(−λQ
1 − λQ

2 − λQ
3 − λQ

4 (τ − 3)) if 3 < τ ≤ 5

exp(−λQ
1 − λQ

2 − λQ
3 − 2λQ

4 − λQ
5 (τ − 5)) if 5 < τ ≤ 7

exp(−λQ
1 − λQ

2 − λQ
3 − 2λQ

4 − 2λQ
5 − λQ

6 (τ − 7)) if τ > 7Note that these are the risk-neutral probabilities, whi
h in
lude other non-default fa
torssu
h as liquidity risk premium, spread risk premium and market supply-demand e�e
ts.These are generally bigger than the hazard rates implied by histori
al data. In Se
tion2.5, we will explain the relationship between histori
al and risk-neutral default intensities.Sin
e the market demand and supply play a role in determining the CDS quotes, thereis a possibility that the CDS rates may not be monotonously in
reasing with respe
t tothe maturity of the 
ontra
t. Therefore, an inverted 
redit 
urve may imply negativehazard rates whi
h has no sense and re�e
ts an arbitrage possibility, whi
h 
an be modeldependent (or not). The optimisation method introdu
ed by Martin et al. [MTB01℄solve the problem of having negative intensities. We explain this method in the followingsubse
tion.



2.3 Valuation of the Sovereign Credit Default Swaps 772.3.3 Generating Hazard Curves with the Optimisation MethodIn this subse
tion, we present the method introdu
ed by Martin et al. [MTB01℄. Themethod fo
uses on extra
ting the forward 
onditional default probabilities, i.e., pd(tm−1, tm)dire
tly from the market CDS rates. On
e we have the forward default probabilities,we may 
onstru
t the term stru
ture of the intensities via the approximation i.e., if
∆(tm−1, tm, C) → 0, then pd(tm−1,tm)

∆
→ λQ

m−1. Furthermore, the 
umulative survival(or default) probabilities, PS(·)10 
an be 
al
ulated via the re
ursion:
PS(tm) = PS(tm−1) − [PS(tm−1)pd(tm−1, tm)] m = 1, . . . ,M × tN

PS(0) = 1.Remember that pd is given by
pd(tm−1, tm) = 1 − exp

(
−
∫ tm

tm−1

λ(t)dt

)
. (2.50)We further assume that for ea
h time period, we approximate the dis
ount fa
tor by anaverage, i.e.,

D(tv, t) ≈
1

2
[D(tv, tm−1) +D(tv, tm)] , where tm−1 < t < tm.With this setting, we approa
h the integral in (2.40) via assuming that the default 
ano

ur only on a �nite number of dis
rete points, i.e., M , per year. In a semi-annualdis
retisation we have M = 2. And we label the dis
rete time points for the CDS withmaturity tN as m = 0, . . . ,M × tN . Hen
e, we approximate (2.40) with a sum of P :=

M × tN integrals as we previously did in the bootstrapping method. Using the re
ursiverelation
PS(tm−1) − PS(tm) = PS(tm−1)pd(tm−1, tm),and assuming there is no a

rued premium, the market quote for maturity tN on date

tv = t0 = 0 should hold
ĈDS(t0, tN) =

(1 −R)
∑P

m=1
1
2
[D(t0, tm−1) +D(t0, tm)]PS(tm−1)pd(tm−1, tm)

∑N
n=6,12,··· ∆(tn−6, tn, C)D(t0, tn)PS(tn)

≡ CDS(0, tN ; pd0, pd1, . . . , pdP−1).10Note that the probabilities and intensities are the risk-neutral ones, we drop the supers
ript Q here.
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e 
al
ulated with the extra
ted pds with CDS(0, tN ; pd0, . . .).In order to �nd the unknown P forward default probabilities, whi
h are labelled as
pd(tm−1, tm) = pdm−1, with m = 1, 2, . . . , P , we minimise the obje
tive fun
tion givenby

G(pd0, pd1, . . . , pdm) = v
P∑

m=1

d(pdm; pdm−1)
2 (2.51)

+
1

2

K∑

j=1

(
ĈDS(0, j) − CDS(0, j; pd0, pd1, . . . , pdP−1)

σ

)2

,where K denotes the number of CDS 
ontra
ts with di�erent maturities. Moreover, weassume that the market CDS rates are subje
t to a Gaussian error. The distan
e fun
tion
d(·) in (2.51) is de�ned by

d(q′; q) =

√
(pd′ − pd) ln

pd′

pd
+ (pd− pd′) ln

1 − pd′

1 − pd
. (2.52)Note that this fun
tion is non-negative

d(pd′, pd) = 0 if and only if pd′ = pd.Setting the parameters v = 10 and σ = 0.001 in (2.51) provides a better �t11 to themarket rates.The interpretation of the obje
tive fun
tion de�ned in (2.51) is that, if the su

essive
pds di�er signi�
antly, then the �rst term will assign a penalty, whereas the se
ond termassigns a penalty for not �tting the market CDS rates. With this setting, v 
ontrolsthe balan
e between two penalties. The main advantage of this method is unlike thebootstrapping method, we do not have the possibility to have negative hazard rates.On
e we minimise the fun
tion in (2.51), we will get the forward probabilities. Then, we
an approximate the market-implied intensities via division by the dis
retisation length,i.e., if ∆ → 0, then pd(tm)/∆ → λ(tm). The number of parameters to be estimateddepends on the dis
retisation frequen
y. If we have a semi-annual dis
retisation, i.e.,
∆ ≈ 0.5 for a CDS with 10 year maturity, then we minimise the obje
tive fun
tionsubje
t to 20 unknown parameters. De
reasing the length of the dis
retisation interval11In
reasing v results in higher deviations from market rates, see Martin et al. [MTB01℄



2.4 Data Des
ription and Empiri
al Analysis 79will lead to pre
ise estimations but this will typi
ally in
rease the 
omputational 
osts,e.g., for monthly dis
retisation we have to perform the optimisation algorithm for 120parameters for a CDS with 10 years maturity time.2.4 Data Des
ription and Empiri
al AnalysisOur data 
onsists of daily bid, ask quotes for sovereign CDS 
ontra
ts12, whi
h are avail-able in the maturities of 1, 2, 3, 5, 7, and 10 years. The referen
e asset is the Eurobondof Turkish sovereign, whi
h is maturing in 2030 and denominated in the USD. For theanalyses, we use the mid-market quotes, i.e., mid market := (bid + ask)/2. The timeseries of CDS spreads 
over the time period from 20 April 2004 to 29 January 2008, whi
h
ounts for 985 trading days.The des
riptive statisti
s of the CDS mid-market quotes are given in Table 2.2. Duringthe sampling interval, the average mid-market quote for the CDS with 1 year maturityis 75.2 bp, ranging from 21.8 up to 425 bp. Comparing this with the average marketspread for 1 year maturity CDS in Pan and Singleton [PS07a℄; 
al
ulated as 378.4 bp, we
an 
on
lude that the traders were adding larger risk premiums before April 2004, wheretheir sample 
overs the rates from Mar
h 2001 until August 2006. The di�eren
e betweenthese two averages is quite high, (approximately 3%) and it indi
ates that the e
onomi
almeasures get better for Turkey as it had a very high in�ation and a volatile interest ratestru
ture in the near past.maturity 1 2 3 5 7 10min 21.8 44.9 70 116.5 146.8 176.8max 425 543.7 612.5 687.5 710 722.3stdev 60.5 80.8 94.9 99.8 97.1 92.1median 56.7 90.1 129.5 197.4 240.5 276.7mean 75.2 120.1 162.9 231.6 270.9 303.5Table 2.2: Summary statisti
s for the mid-market quotes of the Turkish CDS rates (inbp).The CDS spreads show interesting patterns due to the lo
al politi
al (and e
onomi
al)12The data is downloaded from Bloomberg. Ti
ker for the CDS 
ontra
t is CTURK1U, where 1indi
ates the maturity of the CDS.
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rises as well as the global ones, whi
h had in�uen
ed the behaviours of the lo
al andforeign investors in Turkish CDS market. In Figure 2.7, we may observe that there isgenerally a high 
omovement among the term stru
ture of CDS spreads. Sin
e exploringthe nature and the degree of the 
omovement (by �tting a fa
tor model) is not ourobje
tive, we do not perform a prin
ipal 
omponent analysis. However, Pan and Singleton[PS07a℄ �nd out that the �rst prin
ipal explains over 96% of the variation in Turkishsovereign CDSs.

Figure 2.7: The mid-market quotes for di�erent CDS maturities.Generally, the term stru
ture for the CDS spreads has a positive slope with respe
t tothe in
reasing maturity. On the other hand, there are some dates that spreads wereinverted due to the demand-supply e�e
ts in turbulen
e periods during the lo
al and/orglobal 
rises. A re
ent example would be the subprime mortgage 
risis in the USA, whi
ha
tually started in the last quarter of 2006 and show its enormous e�e
ts in 2007 and2008. The subprime 
risis 
aused the Dow Jones indexes drop to re
ord levels espe
iallyin July and August 2007. Turkish markets were also a�e
ted by the subprime 
rises.
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ription and Empiri
al Analysis 81Eventually, there were large de
lines in Istanbul Sto
k Ex
hange and in the TurkishDerivatives Ex
hange Market. Some of the global investment banks and Turkish bankshad their biggest losses in their history. These losses had also 
reated high volatility inthe Turkish CDS rates as it 
an be observed on Figure 2.7. Some other important eventswhi
h had in�uen
ed the Turkish markets were the parliamentary ele
tions of Turkey onJuly 2007 and the presidential ele
tions afterwards. The 
on�i
ts between the Turkishgovernment and the USA about the terrorist group PKK lo
ated in northern Iraq hadalso played big role in the volatile stru
ture of the Turkish �nan
ial markets, e.g., on 8November 2007 when the 
ross border operation of the Turkish army was on dis
ussion,we observe that the CDS pri
es dropped by up to 80 bp. Furthermore, the CDS rateswere a�e
ted by the politi
al issues mainly 
onne
ted during the negotiations betweenthe EU 
ommision and the Turkish government about the 
on�i
ts between Cyprus andTurkish Republi
 of Northern Cyprus.In Figure 2.8 we observe the mid market quote for the referen
e asset in the sovereignCDS, namely the Turkish Eurobond with 2030 maturity with respe
t to the mid marketquote for the CDS with one year maturity. Note that the y-axis on the left hand side is forthe CDS mid-market quote. As we 
an observe, they are negatively 
orrelated, where we
al
ulated a 
orrelation 
oe�
ient of -86,9% based on 1013 dates in the sampling period.We illustrate the behaviour of the ask-bid spreads during the sample period in Figure2.9, where we simply take the di�eren
e between the two quotes, i.e., ĈDS

ask − ĈDS

bid.In general, bid and ask quotes show the demand-supply e�e
ts in the market. As we 
anobserve in Figure 2.9, the biggest spread widening is observed in the se
ond quarter of 2004on the CDSs with 1 year maturity, whi
h had rea
hed levels up to more than 70 bp. Thistypi
ally indi
ates that the supply for the CTURK1U is larger then the market demandon that period, indi
ating a potential de
rease in the 
orresponding CDS pri
es. In oursampling period, e.g., on 09th August 2007, the bid quotes for the short term maturitiesof CDSs (1 year, 2 years and 3 years) are signi�
antly larger than the ask quotes, showingthe high market demand for the short term insuran
e of sovereign risk. This also indi
atesthat default probability of Turkish sovereign is likely to in
rease, implying the potentialrise of the CDS premiums. There are negative ask-bid spreads on the days following9th August 2007, for the CDS 
ontra
ts with 10 year maturity 
orresponding to the
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Figure 2.8: The mid-market quotes for the underlying Eurobond vs. CDS with 1 yearmaturity.
date when the New York Sto
k Ex
hange, and eventually, the Istanbul Sto
k Ex
hangeexperien
ed de
lines due to the subprime mortgage 
risis. The interpretation is that themarket expe
tations for longer terms were not very optimisti
 on those dates. Table 2.3gives the des
riptive statisti
s of the bid-ask spreads of the Turkish CDS.maturity 1 2 3 5 7 10min -46.3 -35.3 -22.7 -1 1.7 -5.7max 73.3 50 55 45 55 50std 15.9 11 10.9 8.9 11.7 9.8med 8.5 6 7.3 6.2 6.7 6.7mean 14.9 11.2 12.2 10.2 12.4 10.9Table 2.3: Summary statisti
s for the ask-bid spread of the CDS quotes (in bp).
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Figure 2.9: The ask-bid spreads of the CDS (:= ask − bid in bp).2.4.1 Results with the Bootstrapping MethodWe explained in details the bootstrapping method in Subse
tion 2.3.2. Therefore, skippingthe te
hni
al part, we present the results in this se
tion. Remember that, we �rst �x theexpe
ted re
overy rate under the risk neutral measure, i.e., R = 0.25, afterwards extra
tthe intensities for ea
h trading day in the sampling interval. Further, we assume a �atzero 
urve for the dis
ount fa
tors, i.e., r = 0.05. Assuming a sto
hasti
 short rate modelwould be more realisti
 but this does not a�e
t the results signi�
antly13. Note that thestepwise 
onstant risk-neutral intensities14 λ1, λ2, . . . , λ6 are de�ned in (2.49).We present the 
orresponding risk-neutral intensities in Figure 2.10. The bootstrappingmethod brings many easiness in numeri
s while 
onstru
ting the term stru
ture of defaultprobabilities, but there might be instabilities des
ribed by Martin et al. [MTB01℄ as well.We 
an see in Figure 2.10 that for some dates, e.g., 20th June 2006 and in the time period13See Pan and Singleton [PS07a℄, Ueno and Baba [UB06℄, O'Kane and Turnbull [OT03℄.14We drop the risk neutral measure supers
ript Q for easiness of notation.
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λ 1 2 3 4 5 6min 28.6 69.5 159.8 250.2 116.3 299.9max 550.8 881.4 1003.2 1089.3 1090.3 1099std 78.5 136.4 165.6 150.8 129.8 112.6med 74.4 166.1 278 427 503.6 532.3mean 98.5 219.6 337.8 467.8 529 556.2Table 2.4: The summary statisti
s for the risk-neutral default intensities, for all CDS insamplebetween 20th February and 20th June 2005, the 
hange in λQ

5 is quite big. On those dates,inverted term stru
ture of CDS rates might imply unstable intensities. One 
an typi
allyhave negative intensities as well, whi
h make no sense at all. During our sampling period,we did not have any negative intensities.

Figure 2.10: The default intensities bootstrapped from daily CDS mid-market quotes (inbp).Fit
h ratings had upgraded the rating of the long-term Turkish sovereign debt in foreign
urren
y to B+ on 09 February 2004. Later on, it was upgraded on 13 January 2005
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ription and Empiri
al Analysis 85to BB− (See Parker [Par06℄). Sin
e the last upgrade it remained in the same rating
ategory in our sampling period. Hen
e, we run a rating-based analysis only based onthese two rating 
lasses, where the major rating 
lasses BB and B mean spe
ulative andhighly spe
ulative 
redit quality, respe
tively. The + and − signs are su�xes to show therelative status within the major rating 
ategory, e.g., + indi
ates a better 
redit quality.We present the results based on rating 
ategories of Fit
h B+ and BB− in Table 2.5 andin Table 2.6, respe
tively.Rating B+ n: 153 (in bp)
λ 1 2 3 4 5 6min 103.4 232.4 319.7 447.7 463.1 429max 550.8 881.4 1003.2 1089.3 1090.3 1014.8std 124.6 150.6 194.5 177.2 161.6 145.2med 165.1 421.9 540.9 644.2 708.1 645.5mean 226.5 468.8 624.8 711.5 727.4 690.6Table 2.5: The summary statisti
s for the risk-neutral default intensities, for the Fit
hrating 
ategory B+Rating BB- n: 832 (in bp)
λ 1 2 3 4 5 6min 28.6 69.5 159.8 250.2 116.3 299.9max 176.8 413.9 586.3 695.4 751.1 1099std 29.8 65.9 87.2 90.8 81.3 84.9med 64.8 149.1 259.4 405.5 489.9 519.7mean 74.9 173.8 285 422.9 492.5 531.5Table 2.6: The summary statisti
s for the risk-neutral default intensities, for the Fit
hrating 
ategory BB−The average intensity of default for 0 < t ≤ 1 is λQ

1 = 226.5bp, with the rating B+,whereas λQ
1 = 74.9bp, if the rating is BB−. This result is expe
ted sin
e the defaultintensity de
reases with in
reasing 
redit quality. Another expe
ted result is that withthe in
reasing maturity time, the 
orresponding default intensities should in
rease as well.If we look at Table 2.4, where we present the summary statisti
s of the intensities for thewhole sample, we 
an observe this. This is also the 
ase when the Turkish sovereignhave the BB− rating from Fit
h agen
y. On the other hand, in Table 2.5, we see the
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onsisten
y for the maturities more than 7 years. Figure 2.11 illustrates the averageintensities with respe
t to rating 
ategories of Fit
h.
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ategory of theTurkish foreign 
urren
y long term debt by Fit
h.
Using the stepwise 
onstant intensity pro
ess, we 
al
ulate the 
umulative default prob-abilities as des
ribed in Subse
tion 2.3.2. We 
an observe the default probabilities for 1,3, and 5 years on ea
h date for the sampling period in Figure 2.12.The di�eren
e between the market rates and the CDS rates that are 
al
ulated with theextra
ted survival probabilities (the model pri
e), ĈDS − CDS gives a measure for themodelling error. We observe the errors for the CDSs with the maturities 1, 5, and 10years in Figure 2.13. As the �gure illustrates, the modelling error is not very signi�
ant.We further observe that the largest deviation between market and model pri
es is for theCDS with 1 year maturity.
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Figure 2.12: Market-implied 
umulative default probabilities for 1, 3, and 5 years withbootstrapping method.2.4.2 Results with the Optimisation MethodIn this subse
tion we present the results of the optimisation method des
ribed in Se
tion2.3.3. We use the same expe
ted re
overy, i.e., R = 0.25 and the LIBOR, i.e., r = 0.05as in the bootstrapping method, for a 
omparison of the market implied probabilities.The number of extra
ted intensities of optimisation method by Martin et al. [MTB01℄depends on the dis
retisation interval. In our 
ase, we have the semi-annual premiumpayments (no a

rued premiums), and we further assume that the 
redit event 
an o

uronly on those dates. With this setting, we have 20 forward default probabilities, whi
hminimises the obje
tive fun
tion in (2.51) for ea
h trading day in the sample. Moreover,we 
al
ulated the 
orresponding intensities, i.e., λ0, λ1, . . . , λ19 and the 
orresponding
umulative default probabilities. For the presentation we 
hose λ1, λ3, . . . , λ19, note that
pd(t1, t2) = 1 − exp

(
−
∫ t2

t1

λ1(t)dt

)
⇒ λ1 ≈

pd(t1, t2)

t2 − t1
.
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Figure 2.13: The modelling errors for CDS 
ontra
ts with 1, 5, and 10 years of maturitywith bootstrapping method.With the semi annual dis
retisation and the maturity of 10 years, we have the dis
retetime points as t0 = 0, t1 = 0.5,. . ., tN = 10. Moreover, the 
umulative probability ofdefault, e.g., t1 = 0.5 is 
al
ulated with
PD(0) = 0 ⇒ PD(t1) = PD(0) + PS(0)pd(0, t1), (2.53)where we 
ontinue the re
ursion until we have the 
omplete term stru
ture of the 
umu-lative PD's.For a pre
ise estimation, using the CDS mid-market quotes we have, we generated theCDS rates for 1, 2, . . ., 10 year maturities with the linear interpolation method.In Figure 2.14, we observe the paths of the intensities for our sampling period we hadwith the optimisation method. The intensities show similar behaviour 
ompared to thoseboostrapped in the previous subse
tion. The main observation is that the optimisationmethod delivers higher intensities than the bootstrapping method 
omparing Figure (2.14)
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al Analysis 89with Figure (2.10). In Table, 2.8 we have the intensities when the Fit
h had rated Turkishsovereign with B+, where Table 2.9 presents the 
ase when it was upgraded to BB−.When 0.5 < t ≤ 1 we have λ1 = 113.7 bp for the whole dataset. For Fit
h rating 
ategory
B+, the average λ1 is 261.7 bp, and 86.5 bp for BB−.

Figure 2.14: Market-implied default intensities, 
al
ulated with the optimisation method.We observe the averages of the intensities in Figure 2.15 with the optimisation methodwith respe
t to the rating 
ategories of S&P. As expe
ted, for the rating 
ategory BB−,we have lower default intensities than the B+. The intensities tend to have an upwardslope with respe
t to in
reasing maturity.We 
onstru
t the term stru
ture of the risk neutral 
umulative default probabilities viathe re
ursive formula in (2.53). We illustrate the probabilities on ea
h date in Figure 2.16.Figure 2.17 illustrates the modelling error when we valuate the CDSs ea
h day in thesampling period using the term stru
ture of PDs extra
ted with optimisation method.Sin
e the error is the di�eren
e between market and model pri
e, CDS with 1 year maturityis overpri
ed with the optimisation method, whereas for 5 and 10 year maturities are
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All n: 985 (in bp)
λ 1 3 5 7 9 11 13 15 17 19min 35.6 76.3 185.6 245.5 297.5 83.7 117.5 280.5 304.3 307.5max 650.9 953 1062.5 1079 1212.6 1084.4 1185.1 1152.8 1200.7 1400.9std 90 143.9 170 148 164 133.6 135.8 119.7 116.9 121.2med 84.9 195.5 310.5 403.6 504.8 489.4 561.1 501.6 561 610.4mean 113.7 247.0 363.9 441.3 544.7 512.9 584.5 528.7 579.9 626.8Table 2.7: The summary statisti
s for the risk-neutral default intensities, for all CDS insample 
al
ulated with the optimisation method.
Rating B+ n: 153 (in bp)
λ 1 3 5 7 9 11 13 15 17 19min 116.3 243.6 330.3 412.7 508.8 451.5 498.2 420.4 437.5 449.9max 650.9 953 1062.5 1079 1212.6 1084.4 1185.1 1016.3 1043.3 1077.4std 141.6 161.4 204.7 179.2 195.3 167 172.3 151.1 149.2 149.8med 193.7 450.4 560.5 612.7 722.5 691.4 768.3 634.5 661.6 694.2mean 261.7 504.1 653 679.9 803.2 719.2 784.8 681.4 711 740.7Table 2.8: The summary statisti
s for the risk-neutral default intensities 
al
ulated withthe optimisation method, for the Fit
h rating 
ategory B+.
Rating BB- n: 832 (in bp)
λ 1 3 5 7 9 11 13 15 17 19min 35.6 76.3 185.6 245.5 297.5 83.7 117.5 280.5 304.3 307.5max 204.7 497.4 626.9 673.9 790.3 731.9 818.4 1152.8 1200.7 1400.9std 34 73 91.4 87.6 101.5 82.3 87.6 87.7 91.4 102.3med 74.3 183.5 293.4 388 484.3 475.2 547.3 489.3 549.3 597.5mean 86.5 199.7 310.8 397.4 497.2 475 547.6 500.6 555.8 605.9Table 2.9: The summary statisti
s for the risk-neutral default intensities 
al
ulated withthe optimisation method, for the Fit
h rating 
ategory BB−.
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ed. We observe that the largest deviation of error is observed in the CDS with5 years maturity.2.4.3 Comparison of the ResultsAs the reliability of the 
al
ulated CDS pri
es heavily depends on the realism of theassumptions in the valuation model, we �nd it useful to 
omment on the marking-to-model issue. Marking-to-model is the valuation of a position or a portfolio of se
urities atpri
es depending on a �nan
ial model. In CDS market, where the illiquidity risk does notsigni�
antly exist, �marking-to-market� is more reliable. However, suppose we are pri
inga new issued se
urity, implying the �illiquidity problem�. In this 
ase marking-to-marketmight be misleading due to the s
ar
ity in market pri
es. Therefore, marking-to-model isan important issue for exoti
 instruments, espe
ially in new stru
tured 
redit produ
ts. Ifthe �nan
ial model is realisti
, implying insigni�
ant modelling errors, then it is su�
ient
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Figure 2.16: Market-implied 
umulative default probabilities in 1, 3, and 5 years, 
al
u-lated with the optimisation method.for us to show the approximation and estimation errors are the main sour
e of the totalerror between the model and the a
tual pri
es when we take the total error as a sum ofmodelling, approximation and estimation errors.If we 
ompare Figures 2.13 and 2.17, we see that both pri
ing models have insigni�
antdeviations from the market pri
e, where optimisation method delivers in general higherdefault intensities and probabilities, 
onsequently.For a 
omparison, we take the paper by Ro
ha and Gar
ia [RG04℄, where the authors usea stru
tural 
redit risk model for extra
ting the market implied sovereign 
redit risk. Theauthors take the real YTL / USD ex
hange rate, whi
h follows a pure di�usion pro
ess, asa proxy for modelling the sour
e of un
ertainty. In Table 2.10, we present the 
umulativerisk neutral default probabilities of Ro
ha and Gar
ia (RG model) and those impliedby CDS rates on 15th July 2004 using the bootstrapping method and the optimisationmethod. The 
umulative probabilities with optimisation and bootstrapping are similarfor the short maturities, whereas the di�eren
e rises up to 2% with in
reasing maturity.



2.4 Data Des
ription and Empiri
al Analysis 93

Figure 2.17: Error between the market and model pri
es 
al
ulated with the optimisationmethod.
Comparing the RG model for maturities of 1 and 2 years, the bootstrapping methoddelivers 
loser results but, for the maturities between 3 and 6 years, the optimisationmethod have 
loser probabilities. However, boostrapping and RG model have similarprobabilities after maturities of 7 years.
Maturity 1 2 3 4 5 6 7 8 9 10RG model 0.75 6.68 14.57 21.99 28.45 34.01 38.80 42.96 46.60 49.81Bootstrapping 1.90 6.86 13.24 20.27 26.73 32.52 37.86 42.76 47.29 51.45Optimisation 1.98 7.17 13.91 20.64 28.23 34.04 39.89 44.73 49.42 53.98Table 2.10: Comparison of the market implied 
umulative PDs on 15 July 2004.



94 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkey2.5 Relationship between the Risk-neutral and the A
-tual Default ProbabilitiesIn this se
tion, we �rst present the literature survey about modelling the relationship be-tween the a
tual and risk neutral default intensities for the 
orporate debt, then introdu
eour results. As the risk premium maps the a
tual intensities to risk neutral intensities,one has to �rst estimate the a
tual default intensities using the histori
al default expe-rien
e. Berndt et al. [BDD+05℄ use Moody's Estimated Default Frequen
y as a proxyfor the a
tual default intensities. Hull et al. [HPW05℄ 
al
ulates the intensities from a
-tual 
umulative default probabilities, where Driessen [Dri05℄ uses a similar methodology.Sin
e we have the rating history of the Turkish sovereign foreign 
urren
y debt, we 
al-
ulated the a
tual intensities using the 
umulative default rates published by S&P usingthe methodology by Hull et al. [HPW05℄. Sin
e 
redit event in a sovereign o

urs rarely,estimation of these rates is rather a di�
ult task.2.5.1 Risk Neutral and A
tual IntensitiesAs mentioned before, 
redit risk models are mainly used for two reasons, �rstly they areused in the predi
tion of the PDs and they are tools for pri
ing and hedging of 
reditsensitive instruments. Serving both purposes, one sele
ts di�erent probability measures.For the predi
tion of the PDs, we need the a
tual probabilities, whereas the risk-neutralprobabilities are used for pri
ing and hedging reasons. Therefore, a good 
redit risk modelmust ful�l both needs. In this 
ontext, the importan
e of default risk premium 
omes intoplay, whi
h we try to explain in this se
tion.The risk-neutral probabilities are available under weak no-arbitrage 
onditions. In
om-plete markets imply many alternative 
hoi
es of risk neutral probabilities 
onsistent withpri
ing of the traded assets. However, independent from the market being 
omplete ornot, knowledge of only the risk-neutral probabilities is not enough to �t the 
redit riskmodels to the histori
al default experien
e.A typi
al example, whi
h 
an be found in ea
h 
redit risk book15 is as follows: Suppose15See Bluhm et al. [BOW03℄, or Du�e and Singleton [DS03℄.



2.5 Relationship between the Risk-neutral and the A
tual DefaultProbabilities 95we have a 1 year, risky par bond with a promised fa
e value of 100 YTL and a 
ouponpayment of 10%. Hen
e, the bondholder re
eives 110 YTL after one year if there is nodefault, or the re
overy of the fa
e value, whi
h is R = 50% . The histori
al experien
etells us PDP = 0.02 in the 
orresponding rating 
ategory of the risky bond. With a shortrate of 4%, the expe
ted simple dis
ounted bond value under P is given by
1

1.04
(0.98 × 110 + 0.02 × 50) = 104.62,whi
h overpri
es the a
tual market pri
e (Face value = 100) of par bond by 4.62 sin
ethe risk-premium is not 
onsidered. However, under the risk neutral pri
ing framework,we have

100 =
1

1.04
[(1 − PDQ) × 110 + PDQ × 50].Hen
e, PDQ = 0.10. Assuming the deterministi
 intensity is 
onstant, we have

λQ = − ln(1 − PDQ) = 0.10 λP = − ln(1 − PDP ) = 0.02.We see that λQ > λP , re�e
ting the risk premium. Note that there is not any 
hangein the intensity rate or un
ertainty of re
overy here, so that the market implied PDQis unique. As we 
an see in the example above, it is do
umented that the RN defaultintensities are generally greater than the a
tual ones (See Hull et al. [HPW05℄, Driessen[Dri05℄, Berndt et al. [BDD+05℄, O'Kane and Turnbull [OT03℄), as the traders do notpri
e the risky se
urities only based on the APDs. For the 
ompensation of the risks thatthey are bearing, they build in an extra return. Hen
e, the di�eren
e between the riskneutral and a
tual intensities shows up.As Du�e states, �a 
ommon but naive measure of probability of default for a �rm orsovereign that is rated by an agen
y su
h as Moody's or S&P, is the average frequen
ywith whi
h obligors of the same rating have defaulted�.In redu
ed form approa
h, remember from the JLT model that the a
tual intensities aremapped with some s
alar µ (risk premium) to risk neutral intensities, i.e.,
λQ = µλP , with µ ≥ 1. (2.54)One 
an 
hoose µ in order to have a good mat
h both to the histori
al data and themarket 
redit spreads, whi
h still remains as an empiri
al issue to be explored that we
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tion. With s
aling as in (2.54), Driessen [Dri05℄ �nds out an averageratio of λQ/λP = 1.89, ba
king out RNPD from U.S. 
orporate bond pri
es. Anotherstudy by Berndt et al. [BDD+05℄ gives similar results to Driessen [Dri05℄ using marketCDS rates for bootstrapping the PDQ. Giese
ke and Goldberg [GG07℄ present somereferen
es of empiri
al work about risk premium, where the authors propose a stru
turalmodel for analysing determinants of the risk premium. We illustrate some of the modellingapproa
hes for the default risk premium in the next subse
tions.As mentioned before, RNPD are good for pri
ing and hedging issues. But, suppose we arepri
ing a new se
urity and the market pri
es are s
ar
e, then we need to use the histori
alinformation about the obligor (implying APD) and transfer the APD to RNPD. On theother hand, we use the APDs in risk managemet, trading and 
redit allo
ation issues.One may need to use the 
redit spreads in the market in order to estimate the APDs.The problem is that market-implied RNPDs may be very pessimisti
 and this 
an 
auseunne
essary burdens on business (ex
essive regularity 
apital). Hen
e, a tool that mapsthe RNPD to APD (and vi
e versa) is important and needed by the pra
titioners.The literature survey we are going to present in the next subse
tions are based on 
orpo-rate default risk. Note that the rating methodology and the 
orresponding term stru
tureof a
tual PDs di�er when we are dealing with the sovereign 
redit risk. For an illustration,we borrow Figure 2.18 from Hamilton et al. [HVOC06℄.2.5.2 Method from Berndt et al.Here, we give an overview to the paper of Berndt et al. [BDD+05℄, where the authorsundertook a panel regression analysis of the 
orporate CDS market rates and Moody'sestimated default frequen
y (EDF) data16. This analysis is for obtaining a simple androbust measure of the sensitivity of CDS rates to a
tual PDs. The authors regress the CDSobservations for 5 year maturities and the 5 year EDF with an Ordinary Least Squares(OLS) and have an R2 = 73%. However, linearity of the CDS-EDF relationship is pla
edin doubt by the authors. Moreover, they tried a log-log spe
i�
ation on the same datasetin order to mitigate the non-linearity and heteros
edasti
ity e�e
ts, where the resulting16EDF is a measure of default probability used by Moody's KMV based on a database of histori
aldefault frequen
ies.
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Figure 2.18: Sour
e: Moody's, Average 
umulative default rates: Sovereign vs. Corpo-rates, 1983-2005
R2 is equal to 69%. Adding some dummy variables (month and se
tor spe
i�
) to thelog-log regression equation in
reased the R2 to 74.4%.In the last se
tions of their paper, the authors fo
us on modelling the relationship betweenthe a
tual and risk neutral default intensities, where we explain the details below.Time-series model for Default IntensityThe authors 
laim that the logarithm of the default intensity under the a
tual probabilitymeasure X(t) = log(λP (t)) satis�es the Ornstein-Uhlenbe
k equation

dX(t) = κ(θ −X(t))dt+ σdW (t), (2.55)where W is a standard Brownian motion and κ, θ, σ are some 
onstant values. The un-known parameter set Θ = (θ, κ, σ) is estimated from available monthly EDF observations.The authors used a maximum likelihood te
hnique for estimating the parameter ve
tor
Θ.Further, the authors introdu
e a �at 
ross-�rm 
orrelation stru
ture, within the se
tor1717The available observations are separated into three se
tors, namely Oil and Gas, Health
are, Broad-
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e, assuming that Xi(t) = log λP
i (t) for �rm i, the logarithmof the intensity satis�es

dXi(t) = κ(θi −Xi(t))dt+ σ(
√
ρdWc(t) +

√
1 − ρdWi(t)), (2.56)where Wc and Wi are independent standard Brownian motions, independent of {Wj}j 6=iand ρ is the within se
tor pairwise 
onstant 
orrelation 
oe�
ient.Risk-Neutral Intensity from CDS and EDFHere, we explain the joint model of a
tual and risk-neutral default intensities. The model
ontains the risk-neutral default intensity of a given �rm as a fun
tion of its own defaultintensity, a measure of aggregate default risk in the se
tor and a latent variable 
apturingthe variation in default risk premium, whi
h is not 
aptured by the �rst two variables.The model is spe
i�ed as follows: Let us denote the risk-neutral default intensity and thea
tual intensity pro
ess of any given �rm i by λQ

i and λP
i , respe
tively . Suppose

log λQ
i (t) = β0 + β1 log(λP

i (t)) + β2 log v(t) + ui(t), (2.57)where β0, β1, and β2 are 
onstants, Xi = log λP
i is spe
i�ed by (2.56) and v is the geometri
average of the default intensities {λP

i }i∈J , over a ben
hmark subset J of large liquid �rmsin the same se
tor, i.e.,
log v(t) =

1

|J |
∑

i∈J

X i(t).Moreover, suppose that
dui(t) = κu(θu − ui(t))dt+ σu√ρudξc(t) + σu

√
1 − ρudξi(t), (2.58)where θu, κu, and σu are 
onstants, ρu is a 
onstant 
orrelation parameter and ξc, ξi areindependent (under P) standard Brownian motions, independent from Wc and Wj in(2.56).After �tting the model and estimating the parameters, for the health
are se
tor, Berndtet al. have

log λQ(t) = 0.576 + 0.522 logλP (t) + 0.628 log v(t) + u(t),
asting and Entertainment



2.5 Relationship between the Risk-neutral and the A
tual DefaultProbabilities 99where for u(t) = 0, a geometri
 average of all default intensities in the se
tor of 100 bpand an a
tual intensity of 100bp, we get a risk-neutral intensity of roughly 355bp.The averages of the ratios of (λQ/λP ) are 3.30, 2.17, and 2.04 for the oil-and-gas, health
are, and broad
asting-and-entertainment se
tor, respe
tively. For the whole dataset,they estimate an average ratio of 2.757, where intensities are given in basis points peryear.2.5.3 Method from Hull et al.Here, the authors estimate the a
tual default intensity, λP from statisti
s on average
umulative default probabilities of 
orporate bonds published by Moody's between 1970-2003. As reported by Hull et al. [HPW05℄, the 
umulative default rate is PD(T ) for Tyears and λP denotes the average histori
al default intensity over T years. The survivalprobability of the 
orporate bond for T years, given there is no previous default, is givenby
exp(−λPT ) = 1 − PDP (T ). (2.59)It follows that the a
tual intensity is
λP = − 1

T
log(1 − PDP (T ))The authors approximate the risk-neutral default intensity for a defaultable 
orporatebond per year with

λQ ≈ y − r

1 − R
, (2.60)where y is the bond's yield, r is the yield on a similar risk-free bond. Taking the 
ommonmarket re
overy rate assumption that R = 0, 40, the authors give a table of estimateda
tual and risk-neutral intensities dependent on the rating of the bonds. Table 2.11 showsthat the ratio of the risk neutral to a
tual default intensity de
reases as the 
redit qualityde
lines. However, the di�eren
e between them in
reases as the 
redit quality de
lines.This is referred as the "
redit spread puzzle".
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λP λQ − λPAaa 67 4 16.8 63Aa 78 6 13 72A 128 13 9.8 115Baa 238 47 5.1 191Ba 507 240 2.1 267B 902 749 1.2 153Caa and lower 2130 1690 1.3 440Table 2.11: The risk premiums (in bp), depending on Moody's ratings (Sour
e: Hull etal. [HPW05℄)2.5.4 Method from DriessenDriessen [Dri05℄ estimates the sour
es of risk that 
ause 
orporate bonds to earn an ex
essreturn over default-free bonds. Moreover, the author estimates a risk premium asso
iatedwith a default event. Denoting the risk premium with µ on default jump, we have
λQ

i (t) = µλP
i (t)for the ith name. If the default risk is pri
ed, µ should be greater than 1.Denoting the a
tual probability that a �rm defaults in T years from t0 = 0 given therewas no default before with PDP (T ;µ), we have

PDP (T ;µ) = 1 −EP

[
exp

(
−
∫ T

0

λP (s)ds

)]
= 1 −EP

[
exp

(
−
∫ T

0

λQ(s)

µ
ds

)]
.Given the a�ne pro
ess for λQ(t), this probability is an expli
it fun
tion of the riskpremium µ. Driessen 
al
ulates the a
tual PDs depending on the rating of the �rm,hen
e the a
tual PDs are the same for the �rms having the same rating, i.e., PDP

Rating.Yearly risk-neutral 
onditional default probabilities 
an be 
al
ulated with
PDQ

Rating(T ;µ) ≡ 1 − 1 − PDP
Rating(T + 1;µ)

1 − PDP
Rating(T ;µ)By 
onfronting the above equation with a
tual default rates, µ 
an be estimated.2.5.5 Our ResultsAfter the literature survey about estimating the risk premium in 
orporate debt, wepresent our �ndings in this subse
tion. Note that, we use the sovereign default rates from
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tual DefaultProbabilities 101histori
al data published by S&P for 
al
ulating the a
tual default intensities. The S&Pforeign 
urren
y long term debt note for Turkish sovereign was B+ on 8th Mar
h 2004and was upgraded to BB− on 17th August 2004. Sin
e this date, the rating has been inthe same 
ategory (See Soussa and Faulks [SF07℄). In our sampling period, we will have64 
orresponding dates when the sovereign debt was rated with B+ and 921 dates withthe rating BB−. The details of sovereign rating methodologies are explained by Beersand Cavanaugh [BC06℄, and by Klaar and Rawkins [KR07℄.

Figure 2.19: Average of the risk neutral 
umulative default probabilities vs a
tual defaultprobabilities for S&P rating, BFigures 2.19 and 2.20 show the term stru
ture of the 
umulative risk neutral PDs withthe optimisation and bootstrapping methodologies versus the a
tual 
umulative PDs pub-lished by S&P based on the histori
al experien
e. Note that for both Figures, we use therating 
ategories B and BB (without modi�ers +, −) for the illustration. The �guresshow that the risk neutral PDs are greater than the a
tual PDs, as one 
ould expe
t dueto market pri
e of default risk that the traders add on. However, when we use the S&Pestimations for the rating 
lasses with modi�ers, whi
h are sub
lasses of the main rating
ategories, we have a di�erent pi
ture. As Figures 2.21 and 2.22 illustrate.We may see in Figure 2.21 the average of the market implied PDs stripped out from
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Figure 2.20: Average of the risk neutral 
umulative default probabilities vs a
tual defaultprobabilities for S&P rating, BB

Figure 2.21: Average of the risk neutral 
umulative default probabilities vs a
tual defaultprobabilities for S&P rating, B+
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Figure 2.22: Average of the risk neutral 
umulative default probabilities vs a
tual defaultprobabilities for S&P rating, BB−the CDS rates with bootstrapping and optimisation methods, versus the default rates forrating 
ategory B+ of S&P's. The key observation is that we have higher risk neutralPDs with both methods than the a
tual probabilities as expe
ted. In Figure 2.22 we takethe average of the PDs for the dates when the rating is BB− for the market implied PDswith respe
t to rates published by S&P for 
ategory BB−. In 
ontrast, as Figure 2.22show, the a
tual PDs are higher than what the CDS rates imply, whi
h is interestinglyan unexpe
ted result.Further, we illustrate the behaviour of the a
tual intensity rates that we 
al
ulated fromthe 
umulative average default rate table for the sovereign foreign 
urren
y (See Table17 of Chambers [Cha07℄) in Figures 2.23 and 2.24 for 
ategories B+ and BB− of S&P`srespe
tively. We 
onstru
t the a
tual intensities via formulation as des
ribed by Bluhmet al. [BOW03℄ as follows:
λP

m = − 1

tm+1 − tm
ln

(
1 − PDP

m+1

1 − PDP
m

)
, where m = 0, 1, 2, . . . , 9. (2.61)and PDP 
orresponds to the 
umulative default rate 
al
ulated by S&P based on histori
aldata 
overing a period of 1975-2006.
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Figure 2.23: Average of the risk neutral default intensities 
al
ulated with two methodsvs. a
tual default intensity for S&P rating, B+2.6 SummaryIn this 
hapter, we presented the well known intensity based 
redit risk models in theliterature. After building the ne
essary mathemati
al ba
kground, we introdu
ed thestate of the art of pri
ing the sovereign CDS 
ontra
ts. Sin
e we mainly fo
us on themarket implied sovereign risk of Turkey, we presented two methodologies for extra
tingthe risk neutral default intensities out. Further, we presented the risk premium modellingapproa
hes from 
orporate 
redit risk literature and provide an analyses of the risk neutraland a
tual intensities 
al
ulated from the studies by S&P.Our sample is 
omposed of the Turkish sovereign CDSs in
luding the maturities of 1, 2, 3,5, 7, and 10 years, where the referen
e asset is the USD denominated Eurobond maturingin 2030. We 
aptured interesting patterns of the risk neutral default intensities during oursampling period due to the re
ent global and lo
al �nan
ial and politi
al 
rises. Fixingthe expe
ted re
overy rate a priori, i.e., R = 0.25 and taking a �at zero 
urve when
onstru
ting the dis
ount fa
tors, our pri
ing models provided good �ts to the market
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Figure 2.24: Average of the risk neutral default intensities 
al
ulated with two methodsvs. a
tual default intensity for S&P rating, BB−CDS rates. Our main �nding is that the optimisation method of Martin et al. [MTB01℄delivers higher default intensities and 
onsequently higher default probabilities.Furthermore, using the default probabilities based on histori
al experien
e reported bythe rating agen
y S&P (based on the dataset between the years 1975-2006), we 
al
ulatedthe a
tual default intensities. We 
on
luded that, the relationship of the risk neutral anda
tual PDs are as expe
ted in rating 
ategories B and BB without the modi�ers. On theother hand, when we take the rating 
ategories with modi�ers, the results for the rating
ategory B+ are as expe
ted, as it is well do
umented in the literature that the a
tualdefault probabilities are less than the risk neutral ones. However, this was not the 
asefor the rating 
ategory BB−. Interestingly, the term stru
ture of 
umulative PDs of S&Pis larger than the risk-neutral PDs we 
al
ulated. Moreover, the analyses of the a
tualand risk neutral intensities based on the rating 
ategories show that, due to the s
ar
ityin the data 
on
erning the default experien
e of the sovereigns, to present a 
on
lusion israther a di�
ult task. One might alternatively 
al
ulate the a
tual default rates or tryto model the a
tual intensity pro
ess in a time-series framework, but we leave this for a



106 Chapter 2. Sovereign CDS and Market-implied Credit Risk of Turkeyfuture resear
h topi
.



Chapter 3Optimal Leverage in CPDOs
3.1 Introdu
tionThe volume of the 
redit derivative 
ontra
ts traded at the 
orresponding market has in-
reased 
onsiderably over the last few years. Sophisti
ated produ
ts have been introdu
edinto the market. The Constant Proportion Debt Obligation (CPDO, hereafter) is one ofsu
h produ
ts and o�ers a sizeable spread over LIBOR and returns the initial investmentminus the losses at the maturity. This spread is generated by taking a dynami
 leveragedposition on a portfolio of 
redit indi
es (e.g. ITRAXX and CDX.NA.IG). Hen
e, both
oupons and the prin
ipal is at risk. CPDOs have generated a lot of interest among theinvestor 
ommunity as they pay a relatively high spread for their 
redit rating.The leverage fun
tion so far used in CPDO produ
ts impli
itly assumes that 
redit spreadsare 
onstant and defaults in the underlying 
redit index are known in advan
e. To thebest of our knowledge, no attempt has been made to obtain an �optimal� leverage fordynami
 investment in the underlying index/portfolio, given some obje
tive fun
tion forthe investor.In this 
hapter, we introdu
e an �optimal� leverage fun
tion for the CPDO based onsome simple dynami
s for the 
redit investment pro
ess. The optimal leverage fun
tion isderived using the sto
hasti
 
ontrol te
hnique. In parti
ular, we assume that the obje
tiveof the investor is to minimise the losses due to the leveraged risky position, or equivalentlyto maximise the expe
ted redemption at maturity given a stream of mandatory 
ouponpayments. 107



108 Chapter 3. Optimal Leverage in CPDOsThe 
ontrol variable of the problem is the leverage fun
tion, i.e., the notional exposureat any time to the portfolio of the 
redit indi
es. The return from investment in theseindi
es, whi
h in
ludes mark-to-market spreads as well as losses stemming from defaultsin the underlying 
redit portfolio of the index, is modelled via an arithmeti
 Brownianmotion.The 
ontrol problem involves solving a highly non linear PDE. It turns out that the dualproblem is mu
h easier to solve and give rise to Bla
k and S
holes type formulas.Di�erently from the Constant Proportion Portfolio Insuran
e (CPPI) instruments, theleverage of a CPDO de
reases in favourable market 
onditions (spread tightening, nodefaults in index portfolio) and vi
e-versa. However, 
ontrary to the industry pra
tise,the optimal leverage fun
tion we derive is a non linear fun
tion of the Net Asset Value(NAV) of the note and for low levels of NAV the leverage behaves similarly to a CPPI.The rest of the 
hapter is organised as follows: Se
tion 3.2 explains the 
on
ept and theterminology of a CPDO. We supply the mathemati
al ba
kground in Se
tion 3.3. Wedevelop the model, introdu
e and solve our 
ontrol problem in Se
tion 3.4 and presentthe numeri
al results in Se
tion 3.5. Finally, we summarise and 
omment on the results.3.2 Terminology and Produ
t Des
riptionBefore we present the terminology and the details about CPDOs, we �nd it useful todes
ribe the underlying portfolio of CDS Index (CDX, hereafter) 
ontra
ts that the CPDOstrategy invests in. A CDX 
ontra
t provides prote
tion against a standardised basket ofreferen
e entities. Therefore, it is di�erent from the CDS, whi
h provides prote
tionagainst losses on default of a single referen
e asset. As we know from Chapter 2, thepremium payment is 
ut o� in a CDS upon the 
redit event of the referen
e, whereas inthe CDX 
ontra
t, the premium payment 
ontinue to be made, but based on a redu
ednotional in 
ase there are defaulted names in the basket.The most a
tively traded se
urities are the CDX.NA.IG and the ITRAXX Europe Index.The CDX.NA.IG in
ludes 125 North Ameri
an Investment Grade 
ompanies, where thelatter 
overs 125 investment grade European 
ompanies. Both indexes are available with



3.2 Terminology and Produ
t Des
ription 1093, 5, 7, and 10 year maturities of prote
tion and ea
h 
ompany in both indexes are equallyweighted.On the roll dates (20th September and 20th Mar
h or the following business days), the newversion of CDX starts after the 
omposition of the referen
e entities, whi
h is determinedby the votes of parti
ipating dealers. A new version CDX will be 
alled on the run forthe next six months. The defaulted referen
es are ex
luded from the index on ea
h rolldate, however the 
omposition stays stati
 if there are no defaulted entities in the CDX.The popular indexes we mentioned above are unfunded, hen
e they 
an be thought as aCDS on a basket of names generally using the physi
al settlement upon the 
redit events.The CDX 
ontra
ts are standardised and transparent produ
ts having the advantages ofbeing e�
ient and diversi�ed.A CPDO is a relatively new stru
tured 
redit produ
t that entered the market in 2006.A CPDO seems to be attra
tive for the investors due to its both high rated (normallyAAA/Aaa of S&P and Moody's) prin
ipal repayment and �xed 
oupon payments. In itsmost typi
al form, a CPDO is simply an investment vehi
le (Spe
ial Purpose Vehi
le orSPV) paying a periodi
 
oupon of Libor plus a 
onstant spread s as well as the initialinvestment at the maturity, unless a default event o

urs. In this 
hapter we shall de�nethe CPDO default event as the failure to pay the stated periodi
 
oupons and/or to repaythe prin
ipal investment at the maturity. Although it is still an open question, whetherthey had deserved the top ratings of rating 
ompanies when the �rst generation of CPDOswere laun
hed, in general the CPDO aims to return high yield 
oupons to investors bytaking a leveraged exposure to a basket of 
redit indexes (typi
ally 50% CDX.NA.IG and50 % ITRAXX Europe).The 
ash �ow obligations of the CPDO are ba
ked from the exposure to the CDS indexes,often 
alled leverage and varies a

ording to the performan
e of the underlying indexes,where the leverage simply 
an be thought as:
leverage =

credit exposure

initial investment
. (3.1)We denote the exposure to the underlying index by α(t), whi
h is 
hosen in su
h a wayto yield a relatively low default probability of the CPDO. More spe
i�
ally, the industry



110 Chapter 3. Optimal Leverage in CPDOsstandard 
hoi
e of α(t) is given by
α(t) ≡ PV L(t) − V (t)

µ(t)DV 01(t)
, (3.2)where PV L(t) and V (t) are the present value of the CPDO liabilities, and assets, respe
-tively, µ(t) is the spread paid by the 
redit index at time t and DV 01(t) is the presentvalue of a stream of periodi
 risk-less payments equal to 1 per annum.A poor performan
e of the indi
es will imply a high leverage level, while a good per-forman
e of the indi
es will de
rease the leveraged exposure. As the CPDO targets a
redit exposure, whi
h is su�
ient to pay the promised 
oupons and the prin
ipal, thereturns are 
apped at the stated 
oupon rate. Therefore, the leverage is 
ontrolled dy-nami
ally in order to rea
h the target portfolio size on ea
h roll date and is limited witha maximum portfolio size. Additionally, the CPDO also has the advantage of not beingdire
tly a�e
ted by the market implied 
orrelation risk, in 
ontrast to the Collateral DebtObligation (CDO) instrument.Another favourable feature of the produ
t is that if the 
redit indi
es' performan
es arewell enough to guarantee the future promised payments, then the investor bene�ts fromthe �
ash-in� feature, i.e., as soon as all the promised payments 
an be made with 
ertainty,the risky investment is redu
ed to zero. In this 
ase, until the CPDO expires, the investoris only exposed to a risk-free asset but still re
eives high 
oupons. On the other hand, aCPDO does not guarantee the repayment of the initial 
apital invested. The investor 
antherefore lose 100% of his initial 
apital. If the a

umulated losses from the risky exposurerea
h a pre-determined threshold for the note value, (typi
ally 10 % of the notional amountinvested), then the investor meets a '
ash-out' event, i.e., the loss is lo
ked in and therisky investment is stopped. With this setting, the investors are prote
ted from any lossesex
eeding the notional invested by banks. The risk that the bank will su�er su
h a lossis 
alled the gap risk.The following de�nitions are used in the rest of the 
hapter.

• Net Asset Value (NAV): NAV is the 
urrent market value of the CPDO thatis the present value of all outstanding positions in
luding the 
ash deposit and anyother unrealised gains/losses. We denote the NAV at time t with V (t).



3.2 Terminology and Produ
t Des
ription 111
• Cash Deposit A

ount: This a

ount holds the pro
eeds from the investor, in-terest, premiums and any Mark-to-Market (MtM) gains a
hieved. Losses are alsosettled from this a

ount. Hen
e, NAV is a
tually what the 
ash deposit a

ountholds.
• Target Redemption Value: This is the present value of all promised liabilities(
oupons and prin
ipal). We denote the target redemption value at time t with
PV L(t).

• Shortfall := PV L−NAV , it represents the value that still has to be gained fromthe CPDO strategy to enable it to 
ash-in. The aim of the CPDO strategy is tomake the shortfall equal to zero before the maturity of the 
ontra
t.We observe the �ows of the produ
t in Figure 3.1.
Credit

Portfolio

MtM gains/losses

of the note
Redemption value

Cash Deposit 

premiums of Credit portfolio

at maturity

Coupon payment

and interest from cash deposit

Income generated from 

Figure 3.1: CPDO transa
tionsHow the ratings are assigned to CPDOs is not a question that we are going to answer in this
hapter. However, interested readers might see the te
hni
al reports about rating issues,
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h 
an be listed as Torresetti and Pallavi
ini [TP08℄, Wong and Chandler [WC06℄.Another stream of arti
les, e.g., Linden et al. [LNB07℄, Toutain et al. [TTM06℄, Formi
aet al. [FMS+06℄, Varloot et al. [VCC06℄, [VCC07℄) analyse the me
hani
s and risks thatCPDO produ
ts are exposed to, providing s
enario analyses. In this 
hapter, we arerather interested in optimality of the leverage fun
tion introdu
ed in produ
t me
hani
s.Therefore, we take a di�erent approa
h and derive an optimal leverage fun
tion using thesto
hasti
 optimal 
ontrol te
hniques. We show that the standard leverage fun
tion (3.2)is optimal when the index spreads are 
onstant, interest rates are zero and defaults aredeterministi
. We analyse the behaviour of the optimal leverage in the more general 
aseof sto
hasti
 defaults and spreads.3.3 PreliminariesGenerally, sto
hasti
 
ontrol is used as an alternative solution te
hnique to the martingaleapproa
h, whi
h we have introdu
ed in Chapter 1 for 
ontinuous time portfolio optimisa-tion problems. The appli
ation of the sto
hasti
 
ontrol methods in portfolio problems ispioneered by Merton [Mer69℄, [Mer71℄. In this se
tion, we �rst introdu
e the sto
hasti

ontrol method and the dual approa
h via Legendre transformation to related Hamilton-Ja
obi-Bellmann equation. Finally, we give an example where we apply the sto
hasti

ontrol method for the Merton portfolio problem.Di�erent from the portfolio optimisation problems in the literature, this 
hapter introdu
esa new problem, where we apply the sto
hasti
 
ontrol te
hnique for minimising the lossesin a strategy subje
t to 
redit risk. In order to do so, we model the net asset value ofthe CPDO with a 
ontrolled sto
hasti
 equation. This se
tion presents mainly from Kornand Korn [KK01℄, and Johsson and Sir
ar [JS02℄.3.3.1 Sto
hasti
 ControlLet V α(t) be a one dimensional It� pro
ess. A 
ontrolled sto
hasti
 di�erential equation(CSDE) with an initial value V (0) = v has the form
dV α(t) = µ(t, V α(t), α(t))dt+ σ(t, V α(t), α(t))dW (t), (3.3)



3.3 Preliminaries 113where we denote the one dimensional Brownian motion with W (t) and one dimensionalsto
hasti
 pro
ess we are free to 
hoose with α(t). In our problem de�ned in (3.21), α(t) isthe 
ontrol pro
ess, and V denotes the wealth pro
ess (or Net Asset Value of the CPDO).Main task is to �nd an optimal 
ontrol pro
ess with respe
t to a 
ertain 
ost fun
tional.Translated ba
k to our problem in (3.21), we try to �nd an optimal leverage fun
tion, i.e.,
α∗(t), that maximise the redemption re
eived at maturity (or equivalently minimise thelosses) of the CPDO strategy due to long position in 
redit-risky portolio.In general, we want to solve the following problem

max
α(·)∈A(v,I)

E0,v[F (V α(T ))], (3.4)where I is the time set (e.g., I = [0, T ], or I = {0, 1, . . .}) and A(v, I) is the set ofadmissible 
ontrols. The 
ontrol is admissible if α ∈ A ⊂ R and all α are progressivelymeasurable with respe
t to the �ltration Ft = σ{W (s); s ≤ t} generated by the onedimensional Brownian motion, and additionally if V α(t) is the unique solution to CSDEin (3.3).Further, let the 
oe�
ient fun
tions in (3.3)
µ : [0, T ] × R ×A→ R

σ : [0, T ] × R ×A→ Rbe 
ontinuous and Lips
hitz-
ontinuous in v uniformly on [0, T ]×R. Now, let us introdu
ethe value fun
tion of the problem de�ned in (3.4) as
sup

α(·)∈A(v,I(t))

Et,v[F (V α(T ))] =: φ(t, v), (3.5)where I(t) = [t, T ] ∧ I. Note that, we assume impli
itly that the 
ontrolled sto
hasti
pro
ess is Markovian. We obtain the 
hara
terisations of the value fun
tion with thefollowing theorem:Theorem 3.1. (Martingale Optimality Prin
iple) Let α∗() be an admissible 
ontrol, su
hthat, for a fun
tion F we have:
H(t, v) := Et,v[F (V α∗

(T ))] (3.6)
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H(t, V α∗

(t)) is a martingale
H(t, V α(t)) is a supermartingalefor all admissible 
ontrols α(·). Then, we have1. α∗(·) is an optimal 
ontrol,2. H(t, v) = φ(t, v) for all t ∈ I.Proof: (see p. 230 of [KK01℄)3.3.2 Hamilton-Jo
obi-Bellman Equation of Sto
hasti
 ControlIn this subse
tion, we apply the Theoem 3.1 for the problem de�ned as

max
α(·)∈A(v,[0,T ])

E0,v[F (V α(T )), (3.7)where we assume that
h(t, v) := Et,v[F (V α(T ))]is a C1,2 fun
tion. Applying It�'s formula, we have

h(t, V α(t)) = h(0, v) +

∫ t

0

hv(s, V
α(s))σ(s, V α(s), α(s))dW (s)

+

∫ t

0

[
ht(s, V

α(s)) + hv(s, V
α(s))µ(s, V α(s), α(s))

+
1

2
hvv(s, V

α(s))σ2(s, V α(s), α(s))
]
ds.Note that, h(t, V α(t)) is a martingale if the ds integrand equal to 0, given su�
ientgrowth 
onditions for the integrand of the It� integral. From the Theorem 3.1, followingmartingale optimality prin
iple, we 
an write the HJB-Equation with the theorem below.Theorem 3.2. (Veri�
ation Theorem for the HJB-Equation) Let A ⊂ R be bounded andassume that there exists a polynomially bounded C1,2 solution h(·) to the HJB-Equation

sup
α∈A

{
ht(t, v) + hv(t, v)µ(t, v, α) +

1

2
hvv(t, v)σ

2(t, v, α)

}
= 0 (3.8)

h(T, v) = F (v) (3.9)



3.3 Preliminaries 115for (t, v) ∈ [0, T ] × R, v ∈ R. Then, we have
h(t, v) ≥ φ(t, v).If there exists an admissible 
ontrol α∗(t) with

α∗(t) ∈ arg max
α∈A

{. . .}, (3.10)then, we have even
h(t, v) = φ(t, v), and α∗(·) is an optimal 
ontrol.With the help of two theorems in this subse
tion, we apply the following algorithm inorder to solve a sto
hasti
 
ontrol problem:1. Solve (formally) the optimisation problem in the HJB-equation (3.8) and repla
e αwith the optimal 
ontrol α∗.2. Substitute α in (3.8) by α∗ obtained in Step 1, omit the supremum operator, andsolve the resulting (non-linear) PDE with the boundary 
ondition de�ned in (3.9).3. Che
k if the assumptions made in previous steps are indeed satis�ed (
on
avity of

h(t, v), existen
e of a maximum).Example 3.1. Merton Portfolio ProblemIn this example, we solve the Merton portfolio problem with dual approa
h using theLegendre transform. Note that we solve the same problem de�ned in (1.16) with themartingale approa
h in Chapter 1. There, the 
ontrol variable is denoted with π, whi
hdetermines the fra
tion of wealth (X(t) denotes the wealth pro
ess) invested in the sto
k.We 
ontinue the presentation with the notation we introdu
ed in this se
tion. Hen
e, wewant to �nd the optimal 
ontrol α∗ for the following problem:
sup

α
Et,v[U(V α(T ))] = φ(t, v), (3.11)where we use a power utility fun
tion of the form

U(v) =
vγ

γ
, 0 < γ < 1.



116 Chapter 3. Optimal Leverage in CPDOsAfter applying It�'s formula, we get the related Bellman equation as
φt + sup

α

(
1

2
σ2α2φvv + µαφv

)
= 0. (3.12)With φvv < 0, the maximum of (3.11) attained at

α∗ = − µφv

σ2φvv
.Substituting α in (3.12) with α∗, and dropping the supremum operator, we rewrite theBellman equation as

φt −
µ2

2σ2

φ2
v

φvv
= 0. (3.13)Note that at terminal time T we have the boundary 
ondition

φ(T, v) = U(v) =
vγ

γ
. (3.14)In order to solve the non-linear PDE in (3.13) with terminal 
ondition (3.14), we apply adual approa
h. Denoting the dual variable to v with z > 0 and with assumed 
onvexityof φ, we de�ne the Legendre transform of the value fun
tion φ as

φ̂(t, z) = sup
v>0

{φ(t, v) − zv}. (3.15)We denote the value of v where the optimum is attained with g(t, z), therefore we have
g(t, z) = inf{v > 0|φ(t, v) ≥ zv + φ̂(t, z)}.We get the relation between g and φ̂ from (3.15), i.e.,

g = −φ̂z.Further, with the assumption that φ is stri
tly 
on
ave and smooth in v, we have
φv(t, g(t, z)) = z or equivalently g = φ−1

v .Di�erentiating with respe
t to t and z, we get:
φtv = − gt

gz

φvv =
1

gz

φvvv = −gzz

g3
z

.



3.4 Model Proposal 117Now, di�erentiating (3.12) with respe
t to v and substituting the partial derivatives withthe ones we have above, we transform the non-linear PDE in (3.13) to a linear PDE aswe have
gt +

µ2

2σ2
z2gzz +

µ2

σ2
zgz = 0,

g(T, z) = z
1

γ−1 (with the power utility fun
tion).In this 
ase, we may solve the linear PDE in (3.16) with separation of variables as
g(t, z) = z

1
γ−1u(t)for fun
tion u(t). For a given (t, v), we have the relation

g(t, z) = vand the optimal strategy α∗(t) is
α∗(t) = − µ

σ2
zgz = − µ

σ2

1

(γ − 1)
g =

µ

σ2(1 − γ)
v.The interpretation is that we hold the fra
tion µ

σ2(1−γ)
of wealth in sto
ks and the rest inthe riskless bond (money market a

ount). Note that, we arrive at the same solution inExample 1.1 de�ned as the lo
al risk premium for sto
k investment, where for γ = 0 wehave the solution for the logarithmi
 utility, i.e., U(v) = log(v).In the following se
tion, we present the dynami
s of the model and using the te
hniqueswe introdu
ed so far, we �nd the �optimal� leverage fun
tion used in the CPDO.3.4 Model ProposalWe denote the initial wealth at time t0 = 0 with V (0) = 1, whi
h represents the initialnotional of the note (NAV). Suppose CPDO pays a 
ontinuous 
oupon of

r + s,where r is the risk-free short interest rate and s is the agreed spread. These 
ouponsare paid from the 
ash deposit a

ount, whi
h holds the assets of the note. In order
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oupon spread s, the CPDO engages in a dynami
 investment strategyin an underlying, unfunded index. The 
ash return of the investment strategy in anyin�nitesimal interval (t; t+ dt] is given by α(t)dB(t), with
dB(t) = µdt+ σdW (t), (3.16)where W is a standard Brownian motion, µ and σ are the suitably 
hosen 
onstant driftand volatility terms, with B(0) = 0. These dynami
s in (3.16), where we illustrate somesimulated paths in Figure 3.2, will allow us to �nd the optimal leverage fun
tion by apply-ing sto
hasti
 
ontrol approa
h te
hniques below. Note that in our simple model dB(t)
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Figure 3.2: Simulated paths for the Brownian motion with drift (or arithmeti
 Brownianmotion).in
orporates the 
arry generated by the index spread, the mark to market losses/gainsderiving from 
hanges in the index spread due to the 
hanges in the default probability ofthe underlying portfolio. Sin
e the index is rolled over into a new series on a 
ontinuousbasis, the default risk in index 
an be negleted, at least to the �rst order. Of 
ourse,one 
ould think of the index spread dynami
s being mean-reverting or in
luding a jump
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omponent. However in order to obtain a semi-analyti
 solution for the optimal leverageproblem, we assumed the simple dynami
s for the gain and losses linked to the underlying
redit index investment.Building the dynami
s of the note valueWe denote the leverage fun
tion, i.e., the notional exposure to the risky investment attime t with α(t). In order to 
onstru
t the dynami
s of the wealth pro
ess, we de�nethe dis
rete time points 0 = t0 < t1 < . . . < tn = T with ∆t = ti − ti−1, i = 1, 2, . . . , nand where tn = T is the maturity of the CPDO. We have our initial wealth, or the NAV(t0 = 0) as V (0) = 1. The NAV holds the 
ash deposit a

ount and the MtM gains/lossesfrom the risky 
redit position, whi
h forms the asset side of the CPDO. On the otherhand, we have the promised 
oupon payments r + s and repayment of the prin
ipal onthe liability side. We assume the note pays 
oupons 
ontinuously and the gains/losses areonly due to the interest that the 
ash deposit a

ount earns and the MtM gains/losses dueto the long position in the CDS index portfolio. Moreover, the leverage α(0) in the 
reditindex portfolio is 
hosen at the in
eption of the CPDO and 
hanged dynami
ally at thebeginning of ea
h in�nitesimal period. Hen
e, the main idea of the produ
t is 
overed,whi
h is basi
ally �betting� on the performan
e of the CDS index portfolio on ea
h rolldate. We express the dis
rete version of (3.16) as
∆B = µ∆t+ σ∆W,with ∆W = ǫ

√
∆t, where ǫ is a standard normal random variable.In the next time point, i.e., t1 = t0 + ∆t we observe the following �ows:1. We take the notional exposure with the fun
tion α to B(t1); this earns α(t0)∆B(t1),whi
h has zero 
ost, sin
e it is a swap 
ontra
t with zero value at in
eption.2. We pay (r + s)∆t in the form of a 
oupon.3. The initial wealth in the 
ash deposit a

ount V (0) = 1 earns the 
onstant interestrate r until t1, so we get rV (0)∆t,
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hange in our wealth (or NAV) 
an be des
ribed as
∆V (t1) = V (t1) − V (0) = α(t0)∆B(t1) + rV (0)∆t− (r + s)∆t,where ∆B(t1) = B(t1) −B(0) and ∆t = t1 − t0.Until the next time point, i.e., t2 = t1 + ∆t, the 
ash deposit a

ount earns the 
onstantinterest r over V (t1). If we had losses due to ∆B(t1) being negative, then V (t1) < V (0),otherwise we have V (t1) ≥ V (0). Hen
e, at the next time point, i.e., t2 = t1 + ∆t, we willhave similar �ows:1. We take notional exposure with the fun
tion α to B(t2), earning α(t1)∆B(t2), whi
hhas again zero 
ost.2. We pay the 
oupon (r + s)∆t3. We put the V (t1) in the 
ash deposit a

ount at time t1, whi
h earns the 
onstantinterest rate r until t2, so we get rV (t1)∆t,implying the 
hange in NAV as
∆V (t2) = V (t2) − V (t1) = α(t1)∆B(t2) + rV (t1)∆t− (r + s)∆t,where ∆B(t2) = B(t2)−B(t1), and ∆t = t2−t1. The pro
ess 
ontinues until the maturitytime of the 
ontra
t, i.e., tn = T . If ∆t → 0, the dynami
s of the NAV 
an be expressedas

dV (t) = α(t)dB(t) + rV (t)dt− (r + s)dt, (3.17)with V (0) = 1, and B(0) = 0.We shall impose V (t) ≥ K ≥ 0 for all t ∈ [0, T ], where we de�ne K as the 
ash-outthreshold.If the wealth pro
ess falls below the threshold K at any time, a 
ash-out event will o

urand any risky investment is unwind. Denote by τ , the �rst time the wealth hits the TargetRedemption Value denoted by PV L(t), i.e.,
τ = inf{t : V (t) ≥ PV L(t)} (3.18)
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PV L(t) ≡ e−r(T−t) +

(r + s)

r
(1 − e−r(T−t)). (3.19)After this event, we must have that α(t) = 0 for all t ≥ τ , sin
e NAV is enough to payfor the prin
ipal at maturity and for the 
oupon payments of (r + s).Problem de�nition: Obtaining the optimal leverageOur goal is to 
hoose α(t) optimally in su
h a way to minimise any shortfall betweenthe CPDO liability and assets. This imply the maximisation of the 
apital we have atmaturity. We de�ne the loss as 1 − V (T ), due to the risky investment and promised
oupon payment r + s. More formally, we need to solve the following sto
hasti
 optimal
ontrol problem

φ0(t, v) = sup
α
E
[
1 − (1 − V (T ))+ | V (t) = v

]
, (3.20)subje
t to (3.17). We shall impose that the value of the asset of the CPDO stays positive atany point in time, by setting the 
ash-out boundary 
ondition φ0(t, 0) = 0 for 0 ≤ t ≤ T .Note that by spe
ifying the asset dynami
s as in (3.17) and imposing the non-negativeasset 
onstraint, we are impli
itly assuming that V (t) is always greater than the presentvalue of all future 
oupon payments, whi
h is a reasonable assumption.Following Jonsson and Sir
ar [JS02℄, we 
an smooth out the investor's utility fun
tionand transform the original optimisation problem (3.20) into

φ(t, v) = sup
α
Et,v [U(V (T ))] , (3.21)where

U(v) =
1

p

[
1 −

(
(1 − v)+

)p]
, (3.22)is the investor's utility fun
tion and we have used of the notation Et,v[·] = E[·|V (t) = v].We shall assume that p > 1. Note in the limit of p → 1, the two formulations of theproblem yield the same result.In order to simplify the 
al
ulations, it is 
onvenient to work with the dis
ounted wealthpro
ess

Ṽ (t) = e−rtV (t),



122 Chapter 3. Optimal Leverage in CPDOswith the 
orresponding dynami
s of
dṼ (t) = e−rtα(t)︸ ︷︷ ︸

:=α̃(t)

dB(t) − e−rt(r + s)dt . (3.23)This, together with ṽ = e−rtv, leads to the following modi�
ation of problem (3.21):
φ(t, ṽ) = sup

α̃
Et,ṽ

[
1

p

[
1 −

(
(1 − erT ṼT )+

)p]]
, (3.24)where ṽ = e−rtv and α̃ = e−rtα.Using the prin
iple of the sto
hasti
 optimal 
ontrol, we formally arrive at the 
orrespond-ing Hamilton-Ja
obi-Bellman equation1 of

φt + sup
α̃

[
φṽ

(
α̃µ− e−rt(r + s)

)
+

1

2
φṽṽα̃

2σ2

]
= 0, (3.25)with the boundary 
ondition

φ(T, ṽ) =
1

p

(
1 −

(
(1 − ṽerT )+

)p)
.Before we are going to solve this equation, we have to point out that a
tually we wouldneed two more boundary 
onditions present on the whole time interval, one des
ribingthe 
ash-out and one des
ribing the 
ash-in event in the transformed variable ṽ:

φ
(
t, e−rTK

)
=

1

p
(1 − (1 −K)p) , (3.26)

φ

(
t, e−rT +

r + s

r

(
e−rt − e−rT

))
=

1

p
. (3.27)However, to be able to obtain expli
it solutions to our optimal leverage problems, we leavethose two 
onstraints aside and 
omment on their relevan
e in Se
tion 3.5.Let us now 
on
entrate on the simpli�ed problem: assuming su�
ient smoothness of thevalue fun
tion, existen
e of the optimal leverage strategy, and that φṽṽ < 0, the �rst order
onditions imply

α̃∗(t) = − µφṽ

σ2φṽṽ
. (3.28)Substituting (3.28) ba
k into (3.25), we are left with the non-linear PDE

φt − e−rt(r + s)φṽ −
µ2φ2

ṽ

2σ2φṽṽ
= 0 (3.29)1For a better insight of the sto
hasti
 
ontrol approa
h, we refer the interested reader to Korn [Kor97℄.



3.4 Model Proposal 123In order to solve the PDE in (3.29), we transform it in a linear PDE similar to the Bla
kS
holes equation. Assuming the 
on
avity of φ(t, ṽ) and de�ning the Legendre transformas
φ̂(t, z) = sup

ṽ>0
{φ(t, ṽ) − zṽ}, (3.30)where z > 0 denotes the dual variable2 to ṽ. We denote the value of ṽ where the optimumis attained with g(t, z), so that

g(t, z) = inf{ṽ > 0|φ(t, ṽ) ≥ zṽ + φ̂(t, z)}.Using the relation
φṽ(t, ṽ

∗) = φṽ(t, g(t, z)) = z,and di�erentiating with respe
t to z, we have for (t, g(t, z)) as argument
∂

∂z
z = 1 =

∂

∂z
(φṽ(t, g(t, z))) = φṽṽgz

⇒ φṽṽ =
1

gz

. (3.31)Di�erentiating with respe
t to t,
∂

∂t
z = 0 =

∂

∂t
(φṽ(t, g(t, z))) = φṽt + φṽṽgt

⇒ φṽt = − gt

gz

(3.32)and with respe
t to z again, we arrive at
∂2

∂z2
z = 0 =

∂2

∂z2
(φṽ(t, g(t, z))) =

∂

∂z
(φṽṽgz) = φṽṽṽg

2
z + φṽṽgzz

⇒ φṽṽṽ = −gzz

g3
z

. (3.33)Now, di�erentiate (3.29) with respe
t to ṽ, implying
φtṽ − e−rt(r + s)φṽṽ −

µ2

2σ2

2φ2
ṽṽφṽ − φ2

ṽφṽṽṽ

φ2
ṽṽ

= 0. (3.34)Substituting (3.31), (3.32), and (3.33) ba
k in (3.34), we have the linear PDE only along
(t, g(t, z)) as

gt +
µ2

σ2
zgz +

µ2

2σ2
z2gzz + e−rt(r + s) = 0 . (3.35)2See Jonsson and Sir
ar [JS02℄ and p. 134 of Korn [Kor97℄ for the details of the dual approa
h.
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ondition
φ(T, ṽ) =

1

p

(
1 −

(
(1 − ṽerT )+

)p)
, (3.36)where for our problem, we have p > 1. We derive the terminal 
ondition for g(t, z) asfollows

φṽ(T, ṽ; p) = erT
(
1 − erT ṽ

)p−1
1ṽ<e−rT = z

⇒ ṽ = e−rT
(
1 − z

1
p−1e

−rT
p−1

)+

.Therefore, the problem is now to solve the following paraboli
, linear PDE
∂g

∂t
+
µ2

σ2
z
∂g

∂z
+

µ2

2σ2
z2∂

2g

∂z2
+ e−rt(r + s) = 0, (3.37)with the terminal 
ondition

g(T, z) = c
(
1 − zβcβ

)+
, (3.38)where

c := e−rT and β :=
1

p− 1
.Furthermore, the dis
ounted optimal leverage fun
tion α̃∗(t) 
an be written in terms ofthe dual fun
tion only

α̃∗(t) = − µ

σ2
z
∂g

∂z
, (3.39)and it is related to the wealth ṽ via the equality

ṽ = g(t, z) ≡ φ−1
ṽ (t, z). (3.40)Equation (3.37) 
an be redu
ed to a standard heat equation by means of some simplestandard 
hange of variable. De�ne

a =
µ2

σ2
, τ(t, z) = T − t, and y(t, z) = ln z.We rewrite (3.37) with the de�nition below

g̃(τ(t, z), y(t, z)) := g(t, z)Hen
e, we have the partial derivatives
∂g

∂t
=
∂g̃

∂τ

∂τ

∂t
+
∂g̃

∂y

∂y

∂t
=
∂g̃

∂τ
(−1),
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∂g

∂z
=
∂g̃

∂τ

∂τ

∂z
+
∂g̃

∂y

∂y

∂z
=
∂g̃

∂y

1

z
,and

∂2g

∂z2
= − 1

z2

∂g̃

∂y
+

1

z

(
∂2g̃

∂y2

1

z

)
=

1

z2

(
∂2g̃

∂y2
− ∂g̃

∂y

)
.Plugging these partial derivatives into (3.37), the PDE will have 
onstant 
oe�
ients as

∂g̃

∂τ
=
a

2

(
∂2g̃

∂y2
+
∂g̃

∂y

)
+ (r + s)e−r(T−τ). (3.41)Now, we want to represent (3.41) in an inhomogeneous heat equation form as de�ned tobe

∂ĝ

∂τ̂
=

∂ĝ

∂x2
+ Θ(τ̂ ), (3.42)where −∞ < x < ∞, τ̂ > 0 and Θ(·) is a 
ontinuous, bounded fun
tion on R × (0,∞).Using the following 
hange of variables,

x(τ, y) = y +
a

2
τ, and τ̂ (τ, y) =

a

2
τ,rewriting (3.41) by using

ĝ(τ̂(τ, y), x(τ, y)) := g̃(τ, y),we obtain
∂ĝ

∂τ̂
=
∂2ĝ

∂x2
+

2(r + s)

a
e−r(T− 2τ̂

a )

︸ ︷︷ ︸
=:Θ(τ̂)

, (3.43)whi
h is the standard heat equation with the inhomogeneous term Θ(·) depending onlyon the time variable. The expression in (3.43) has a unique solution for −∞ < x < ∞and τ̂ > 0, where Θ(τ̂ ) is bounded and 
ontinuous on R × (0,∞) as
ĝ(τ̂ , x) =

∫ ∞

−∞
G(x, ξ, τ̂)f(ξ)dξ

︸ ︷︷ ︸
=:I1

+

∫ τ̂

0

∫ ∞

−∞
G(x, ξ, τ̂ − t′)Θ(t′)dξdt′

︸ ︷︷ ︸
=:I2

, (3.44)where the Green fun
tion denoted by G(·) is de�ned as
G(x, ξ, τ) =

1

2
√
πτ

exp

(
−(x− ξ)2

4τ

)
, (3.45)and f(·) denotes the initial 
ondition for the heat equation de�ned for

t = T ⇒ τ̂ = 0, and x = y as
f(ξ) := ĝ(0, ξ) = c(1 − eβξcβ)+. (3.46)
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al
ulate the integral I1, whi
h is similar to a Bla
k and S
holes Put option as,
I1 =

∫ ∞

−∞
c(1 − eβξcβ)+ 1

2
√
πτ̂

exp

(
−(x− ξ)2

4τ̂

)
dξ. (3.47)Now, 
hanging the variable with

−(x− ξ)√
2τ̂

= u⇔ dξ =
√

2τ̂du and ξ = x+ u
√

2τ̂we have
I1 6= 0 ⇔ u <

ln( 1
cβ ) − xβ

β
√

2τ̂
= − ln(c) + x√

2τ̂
,therefore,

I1 =
[
cΦ

(
− ln(c) + x√

2τ̂

)

−cβ+1

∫ − ln(c)+x√
2τ̂

−∞

1√
2π

exp

(
−(u−

√
2τ̂β)2

2

)
exp

(
τ̂β2 + βx

)
du

]
.Again, 
hanging the variable

u−
√

2τ̂β = v ⇔ du = dv,and the upper bound for the integral is
− ln(c) + x√

2τ̂
− β

√
2τ̂ .Hen
e, we have

I1 = cΦ

(
− ln(c) + x√

2τ̂

)
− cβ+1 exp

(
τ̂β2 + βx

)
Φ

(
− ln(c) + x√

2τ̂
− β

√
2τ̂

)
, (3.48)where Φ(·) denotes the standard normal distribution fun
tion.Furthermore, the double integral I2 in (3.44) 
an be expressed as

I2 =

∫ τ̂

0

2(r + s)

a
exp

(
−r
(
T − 2t′

a

))
dt′
∫ ∞

−∞

1√
4π(τ̂ − t′)

exp

(
− (x− ξ)2

4(τ̂ − t′)

)
dξ

︸ ︷︷ ︸
=1

=
2(r + s)

a
exp(−rT )

∫ τ̂

0

exp

(
2rt′

a

)
dt′

=
e−rT (r + s)

r
(e

2rτ̂
a − 1)



3.4 Model Proposal 127Transforming the variables ba
k, and using the fa
t that
ĝ(τ̂(τ, y), x(τ, y)) = g̃(τ, y) = g(t, z)we arrive at the unique solution to (3.37) given by

g(t, z) = e−rT Φ[d1(t, z)] − zβe
(β+1)

„

β µ2

2σ2 (T−t)−rT

«

Φ[d2(t, z)]

+
r + s

r

(
e−rt − e−rT

)
,where

d1(t, z) =
rT − ln z − µ2

2σ2 (T − t)√
µ2

σ2 (T − t)
,and

d2(t, z) = d1(t, z) − β

√
µ2

σ2
(T − t).Remember the optimal dis
ounted leverage fun
tion α̃∗(t) is given by

α̃∗(t) = − µ

σ2
z
∂g

∂z
=

µ

σ2
κβzβΦ(d2(t, z)) (3.49)As we have

gz = e−rTϕ[d1(t, z)]d
1
z − κ

(
βzβ−1Φ[d2(t, z)] + zβϕ[d2(t, z)]d

2
z

)

= −κβzβ−1Φ(d2(t, z))with
κ := e

(β+1)

„

β µ2

2σ2 (T−t)−rT

«

,and
d1

z = d2
z := − 1√

µ2

σ2 (T − t)

1

z
,denoting the standard normal density fun
tion with ϕ(·), we have an expli
it formula ofthe optimal leverage strategy. Note that, Z(t) (the optimal dual variable) is related tothe asset value by

V (t) = ertg(t, Z(t)), (3.50)whi
h 
an in general only be solved numeri
ally. In total, we have shown that the HJB-Equation of our sto
hasti
 
ontrol problem thus possesses the desired solution.
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al ResultsIn this se
tion, we present some graphs and simulations for illustrating the behaviour ofthe optimal leverage fun
tion with respe
t to the NAV. We further examine its sensitivitywith respe
t to the duration of the 
ontra
t, and to the volatility of the relative return ofthe risky asset. Moreover, we analyse the behaviour of the optimal leverage with di�erento�ered spreads s and its sensitivity to the exponent p (risk-aversion parameter) 
hara
-terising our loss fun
tion. Also, we 
ompare our optimal leverage fun
tion with the onethat is popular among pra
titioners.After having �xed the present time variable t, we use the following algorithm for deter-mining the optimal leverage fun
tion:1. For given values of NAV v ∈ [0, 1.5] introdu
e ṽ = exp(−rt)v.2. Determine the optimal dual value z∗ whi
h solves the equation g(t, z∗) = ṽ by aroot �nding method (su
h as a Newton type method).3. With the value z∗ obtained in the previous step, 
al
ulate the optimal leveragefun
tion in (3.49) for �xed t, i.e., α̃∗(t, z∗).4. Find α∗(t), i.e., α∗(t) = exp(rt)α̃∗(t)Figures 3.3 and 3.4 show that unlike the standard leverage fun
tion 
ommonly employed inthe industry, αt does not de
rease linearly in V (t) but exhibits a non-monotone behaviour.For V (t) equal to PV L(t) (marked by the red diamond on x-axis), where
PV L(t) ≡ (r + s)

1 − e−r(T−t)

r
+ e−r(T−t) (3.51)is the present value of the outstanding liabilities of the CPDO, then α(t) = 0.When the level of NAV is equal to the liabilities of the CPDO, no further risky investmentis required in order to pay the outstanding 
oupons and repay the prin
ipal investment.The 
ash-in feature is endogenous in the spe
i�
ation of the investor's utility fun
tion(3.22) as no bene�t is asso
iated with a redemption value higher than the initial invest-ment. As soon as V (t) = PV L(t), the CPDO be
omes in e�e
t a risk-less 
oupon payingbond whi
h 
an be unwound at market pri
es or held by investors until maturity. When
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Figure 3.3: Optimal and standard leverage as a fun
tion of V (t). Parameters' set: µ =
0.005, σ = 0.05, r = 0.0005, s = 0.02, T = 10, and p = 1.1
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Figure 3.4: Optimal and standard leverage as a fun
tion of V (t). Parameters' set: µ =
0.005, σ = 0.01, r = 0.0005, s = 0.02, T = 10, and p = 1.1

V (t) de
reases as a 
onsequen
e of losses, due to defaults or adverse spread movements,the optimal leverage α(t) in
reases up to a maximum level, whi
h depends on the spe
i-
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ation of the model parameters, and then de
reases to 0 when
V (t) =

[
(r + s)

1 − e−r(T−t)

r

]
, (3.52)i.e., the present value of the remaining 
oupon payments. This behaviour is related toour spe
i�
ation of the asset dynami
s (3.23) as well as the positivity 
onstraint on V (t).In the 
urrent formulation of the problem 
oupons are always paid by the SPV and the
redit risk a�e
ts only the prin
ipal repayment at maturity. If the present value of thestated 
oupon payments is lower than the initial investment, the SPV 
an always use the
ash a

ount to pay for 
oupons. Our problem spe
i�
ation imposes that V (t) is alwaysgreater than the present value of all outstanding 
oupon payments so that the value ofthe assets is always non negative. The bell shaped fun
tional form of the optimal leveragefun
tion is hen
e explained. As the value of the �rm approa
hes PV L(t) the value of therisky investment must be redu
ed.Note also that in our formulation of the problem, the gap risk, i.e. the risk of jumps inthe asset values whi
h would make V (t) be negative, is equal to zero. The gap risk isusually underwritten by the sponsor of the SPV for a fee. Allowing for the possibility ofjumps and negative assets would 
on
eivably 
hange the shape of the optimal leverageas investors would have an in
entive to in
rease their leverage for small levels of V (t),sin
e the sponsor of the CPDO would bear a 
onsiderable portion of the potential losses.Investors on the other side would retain the upside. In order to 
ontrol the gap risk, it is
ommon pra
tise in the industry to 
ap the maximum leverage. Also, CPDOs are usuallyunwound if the asset value V (t) falls below a stri
tly positive threshold (
ash-out event).We 
onsider the time point t = 0 whi
h starts the period [0, T ], where T denotes thematurity of the CPDO. We observe the leverage fun
tion with respe
t to the NAV inFigure 3.5 with di�erent values of T , and the rest of the parameters do not 
hange. Weobserve that the leverage fun
tion gets lower with in
reasing maturity. This is plausible,on one hand, the 
ash-in point moves to the right with in
reasing maturity, and on theother hand, one has to take a higher risk (i.e. a higher leverage), if he wants to su

eedin a shorter time.Using di�erent values of the volatility of the relative return of the risky asset resultedin Figure 3.6. We observe that with de
reasing σ, the leverage fun
tion in
reases. This
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Figure 3.5: The optimal leverage fun
tion with respe
t to the NAV for di�erent CPDOmaturities, where the parameter set is µ = 0.005, σ = 0.05, r = 0.04, s = 0.02, T =
1/5/10, and p = 1.1behaviour 
an be explained by the option type �nal utility fun
tion of our problem for-mulation. Further, it is 
lear that one needs some level of volatility to have a 
han
e tosu

eed in generating the ne
essary payo�s, if one is below the 
ash-in point. So witha lower volatility in the underlying, one has to take a higher leveraged position to rea
hsu
h a level of volatility. In the 
ase of σ = 0 and r = 0, if we interpret µ as the spreadpaid by the index investment, then the optimal leverage fun
tion α(t) is linear in V (t),

α(t) =
(1 + s)(T − t) − V (t)

µt
=
PV L(t) − V (t)

µDV 01(t)
(3.53)and the optimal leverage fun
tion derived in this paper 
oin
ides with the leverage fun
tion
ommonly used in the industry.The sensitivity of the optimal leverage fun
tion to the o�ered spread s is explained inFigure 3.7. As the �gure illustrates, with in
reasing s, the leverage fun
tion shifts to theright on the x-axis. This behaviour 
an be explained by the linear in
rease of the requiredpayments.Figure 3.8 demonstrates the sensitivity of the optimal leverage fun
tion with respe
t tovariations of the risk aversion parameter p. There is the obvious tenden
y that the 
loser
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Figure 3.6: The optimal leverage fun
tion with respe
t to the NAV for di�erent volatilities,where the parameter set is µ = 0.005, σ = 0.025/0.05/0.1, r = 0.04, s = 0.02, T = 10,and p = 1.1
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Figure 3.7: The optimal leverage fun
tion with respe
t to the NAV for di�erent o�eredspreads, where the parameters' set is µ = 0.005, σ = 0.05, r = 0.04, s = 0.02/0.03/0.04,
T = 10, and p = 1.1
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p gets to 1, the higher the leverage in the optimal strategy is. However, we observe thatthe leverage is de
reasing when NAV rea
hes small values. The reason for this is that,for those values, the investors be
omes very risk averse. They seem to have a

epted thelosses for small values of NAV and tries to avoid even bigger losses by following a strategyof only a small leverage. It seems that there is a kind of automati
 
ash-out behaviour.This is similar to the behaviour of hedging strategies that one 
an observe in the area ofquantile hedging of sto
k options (e.g., see Föllmer and Leukert [FL99℄). Further, if welook at our 
omputed optimal leverage strategies, they are quite similar to strategies usedin the industry (see below when analysing the dynami
 behaviour of our strategy), al-though they implement a linear leverage that de
reases with in
reasing wealth. However,the 
ash-out feature in the industry strategy limits the risky behaviour of the investor.This 
an be 
ompared with our built-in automati
 
ash-out feature as mentioned above.
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Figure 3.8: Optimal leverage as a fun
tion of Vt for di�erent levels of p. Parameters' set:
µ = 0.005, σ = 0.05, r = 0.04, s = 0.02, T = 10, and p = 1.1/1.3/1.5/1.7/1.9After having analysed the stati
 behaviour of the optimal leverage strategy, we are now il-lustrating its dynami
 performan
e in dependen
e on the underlying NAV pro
ess. There-fore, we simulated independent paths of the NAV via dis
retising the B(t)-pro
ess in (3.16)



134 Chapter 3. Optimal Leverage in CPDOsstarting with B(0) = 0. Remember that the paths of B(t) explain the gains/losses pro-
ess, and initially we have V (0) = 1. The maturity of the CPDO in the three simulationsis T = 10 and we �x p = 1.1.The �rst simulation demonstrates the 
ash-in feature of the CPDO strategy. We observein Figure 3.9 that for the simulated path of NAV, the optimal leverage drops to 0 when theNAV rea
hes the PVL (plotted by dashed red line), i.e., α∗(τ) = 0 when PV L(τ) = V (τ).
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Simulation 1: Cash−in

timeFigure 3.9: Sample path with 
ash-in event. Parameters' set: µ = 0.015, σ = 0.025,
r = 0.04, s = 0.02, T = 10, and p = 1.1The se
ond simulation in Figure 3.10 
onsiders the 
ase when the 
ash-in feature of theprodu
t is not a
hieved and the prin
ipal redemption at the maturity is less then theinitial investment, hen
e the strategy defaults.In the last simulation, we 
ompare the behaviour of the NAV dynami
s of both theoptimal and the linear leverage fun
tions with respe
t to the same simulated gain/losspro
ess B(t). The key observation in Figure 3.11 is that, using the proposed optimalleverage fun
tion, the CPDO 
ashes-in approximately after 6 years, whereas with thelinear leverage fun
tion, the strategy 
ashes-in approximately after 8 years. Rememberingthat the major aim of the CPDO strategy is to 
ash-in and o�er the investors (quasi risk-free) high 
oupon rates, we may 
on
lude that usage of the optimal leverage fun
tion we
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Simulation 2: Neither cash−in nor cash−out

timeFigure 3.10: Sample path with default at maturity. Parameters' set µ = 0.0025, σ = 0.05,
r = 0.04, s = 0.02, T = 10, and p = 1.1propose 
an help on 
at
hing an earlier 
ash-in feature.
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s with the standard and the optimalleverage fun
tion with the parameters' set µ = 0.02, σ = 0.05, r = 0.04, s = 0.02, T = 10,and p = 1.1

3.6 SummaryA CPDO is a very re
ent �nan
ial produ
t that is generated on the basis of a simple linearleverage strategy as des
ribed in (3.2). Thus, it still 
ontains the possibility of ending upwith a (bounded) loss, an event that even our optimal strategy 
annot ex
lude. However,by setting up a dynami
 optimisation problem that fo
uses on minimising a possible lossat maturity, we have 
omputed a leverage strategy that possesses an optimality propertyand 
oin
ides with the linear leverage fun
tion used among pra
titioners only for the 
aseof zero interest rate and volatility. If one 
onstrains the CPDO's assets Vt to stay positiveat any time and 
oupons are assumed to be always paid, the optimal leverage exhibits abell shaped form on the SPV asset value. Some numeri
al examples have shown promisingbehaviour of our strategy. It is parti
ularly satisfying that we seem to have an automati

ash-out like behaviour when the NAV has be
ome so small that the probability of beingable to pay out all our promised payments is too low. Further, the 
hoi
e of the risk-aversion parameter p also leaves the investor some freedom to spe
ify his attitude towards



3.6 Summary 137risks as seen in Figure 3.8.Of 
ourse, one should 
onsider more realisti
 gain/loss pro
esses as the Brownian motionwith drift type one that we looked at. Also, the in
lusion of the 
ash-out feature isdesirable aspe
t. In
luding this will not be a big problem from the numeri
al point ofview, but it probably will not allow to solve the 
orresponding dynami
 programmingproblem. For pra
ti
al purposes, one 
ould also use our 
omputed optimal strategy andmodify it in su
h a way that this feature is treated.Our work should be seen as a starting point and it has already demonstrated that anoptimised strategy 
an perform better than an adho
 strategy. In order to derive a 
losedform solution for the leverage fun
tion, we had to resort to a set of simplifying assumptionsfor the dynami
s of the risky investment. In parti
ular, we refrained from modelling thedynami
s of the 
redit index spread and losses arising from the defaults in the underlyingportfolio separately, but instead 
ondensed the returns of this two 
omponents into asingle random pro
ess. Also, in our framework we have not 
onsidered the possibility ofthe negative SPV assets, whi
h in presen
e of jumps in the dynami
s of Vt, would giverise to a 
ontingent payment by the SPV sponsor (typi
ally a bank). Both extensionswould o�er a valid 
ontribution to the understanding of the problem. Finally, one shouldnote that we, indeed, solved a sto
hasti
 
ontrol problem (nearly) expli
itly that has notbeen dealt with in the literature before.
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