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The purpose of this paper is the canonical connection ofidalsglobal gravity field determination following the capt

of Stokes (1849), Bruns (1878), and Neumann (1887) on théaané and modern locally oriented multiscale computation
by use of adaptive locally supported wavelets on the othed h&ssential tools are regularization methods of the Green
Neumann, and Stokes integral representations. The nalkispproximation is guaranteed simply as linear diffeeenc

scheme by use of Green, Neumann, and Stokes wavelets, tieslyecAs an application, gravity anomalies caused by
plumes are investigated for the Hawaiian and Iceland areas.

1 Introduction

Gravity as observed on the Earth’s surface is the combirfedtedf the gravitational mass attraction and the centefug
force due to the Earth’s rotation. The force of gravity pd®s a directional structure to the space above the Earttiscsu

It is tangential to the vertical plumb lines and perpendicto all level surfaces. Any water surface at rest is partlefal
surface. As if the Earth were a homogeneous, spherical bajtg turns out to be constant all over the Earth’s surface,
the well-known quantity).81 ms—2. The plumb lines are directed towards the Earth’s centerasfanand this implies that
all level surfaces are nearly spherical, too. The gravityreases from the poles to the equator by alfcii ms—2. This

is caused by the flattening of the Earth’s figure and the negaffect of the centrifugal force, which is maximal at the
equator. The level surfaces ideal reference surfacesxéonple, for heights.

The traditional concept of physical geodesy (cf., e.g.])[Based on the assumption that all over the Earth theiposit
(e.g., latitude and longitude) and scalar gravitare available. Moreover, it is common practice that the itgional
effects of the sun and moon and of the Earth’s atmospherecaiated for by means of corrections. The gravitational
part of the gravity potential can then be regarded as a hdaofiomction. A classical approach to gravity field modeling
was conceived by G.G. Stokes (1849). He proposed reducingiten gravity accelerations from the Earth’s surface to
the geoid. As the geoid is a level surface, its potentiale@iconstant. The difference between the reduced gravitiyen
geoid and the reference gravity on the so-called normadsalld is called the gravity anomaly. The disturbing potnti
i.e., the difference between the actual and the referenmpal, can be obtained from a (third) boundary value pobl
of potential theory. Its solution is representable in in&dorm, i.e., by the Stokes integral. The disadvantagéehef t
Stokes approach is that the reduction to the geoid requieegitroduction of assumptions concerning the unknown mass
distribution between the Earth’s surface and the geoid.

In this paper we briefly recapitulate the classical apprdadjlobal gravity field determination due to Stokes (1849),
Bruns (1878), and Neumann (1887) by formulating the difiéied/integral relations between gravity disturbancewvity
anomaly, vertical deflections on the one hand and the disigiiotential and the geoidal undulations on the other hand.
The representation of the disturbing potential in termsrafy disturbances, gravity anomalies, and deflectionthef
vertical are written in terms of well-known integral repeagations over the geoid. For practical purposes the iategre
replaced by approximate cubature formulas using certéégration weights and knots within a spherical framewosders
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from the view of constructive approximation, however, thpximate integration formulas are the essential proliheine
spherical framework of determining globally the distudpjpotential and the geoidal heights. On the one hand, Weydis |
of equidistribution (cf. [42]) tells us that numerical igtation and equidistribution of the nodal points are mathigcally
equivalent. To get better and better accuracy in numetitegiration procedures we thus need denser and denserlglobal
over the whole sphere equidistributed data sets. On the b#red, observations in sufficient data width and quality are
only available for certain parts of the Earth’s surface, tiredle are large areas, particularly at sea, where no datpvare

at all (cf. Figure 1). In fact, it should be noted that teme$gravity data coverage now and in the foreseeable fusufiar
from being satisfactory and totally inadequate for the pagoof high precision geoid determinatiorgédbal scale.

Looking at the key aspects in constructive approximatiograivity field determination we are confronted with the
following situation: Almos%0% of the Earth'’s gravity field is smooth. Its modeling by polymial structures, i.e., spherical
harmonics, is the appropriate tool. But what is about theaiaing parts that certainly are of more geophysical and gtod
relevance, today? Because of the lack of terrestrial detd,ftinctions with global support seem to be an inadequate
choice for understanding these geoscientifically sigmfiqgarts in the ‘system Earth’. Even more, globally supmbrte
approximation structures such as spherical harmonicgsmitol a heterogeneous data set, e.g., the Earth’s gravityalies
(see Figure 1) also influence large areas in negative wayenhsufficiently high accuracy has already been obtained by a
fewer equidistributed number of data.

B.G.I. GRAVITY DATA BASE (density per J0°*30°)
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gravity measurements: 12 649 246
10 535 654 marine data & 2 113 592 land data

Fig. 1. Data density and distribution of scalar gravity (doi¢37]).

Nowadays there are two ways out for modeling the Earth’siyréield: thefirst oneis to use spaceborne data (for exam-
ple, collected by the satellites CHAMP, GRACE, and GOCEx¥lndeed give, the opportunity of globally measured and
suitably (equi-)distributed data sets (cf. [4], [5], [69]]. The critical point, however, is that satellite data exponentially
smoothed with respect to the altitude, hence, they are aéd@uality in comparison with terrestrial ones. Sateltitdy
models based on global datasets are reliable only to a maxilenel of accuracy. Nevertheless, the determination of the
Earth’s gravitational field based on spaceborne obsenaifa great challange for future geoscientific researci3ey).

The second onés to use high-precision terrestrial data in their actuaétageneous distribution and to apply a locally
adaptive approximation method. From mathematical pointeyf this requires a careful analysis involving a ‘zooming-
procedure based on locally supported trial structures asctavelets.

The layout of this paper is as follows: First we are concemnitd the idea of calculating globally reflected integral
representations of the disturbing potential by locallyoted ‘zooming-in’ approximations adaptive to the actaedstrial
data width and distribution. In other words, classical gllabhethods of gravity field determination are formulatedeimis
of modern local (isotropic) multiscale framework. Essaitbols are regularizations of the Green, Neumann, andeStok
integral expressions derived by potential theoreticalmedt is shown, that the Green, Neumann, and Stokes kernel,
respectively, provide us with so-called Green, Neumand Stokes scaling functions. Correspondingly, locally sarpgd
wavelets are definable for adaptive (local) multiscale apjpnation. Finally, the efficiency of our methods is illuetied by
some test examples, showing the gravity disturbation chlogglumes in the area of Hawaii and Iceland.

2 Gravity Anomalies and Gravity Potential
Thegravity acceleration (gravity) is the resultant of gravitatiomand centrifugal acceleratian
w=v+c. (1)

The centrifugal force arises as a result of the rotation of the Earth about its &ésassume here a rotation of constant
angular velocityw about the rotational axis’ = (0,0, 1), which is further assumed to be fixed with respect to the Earth



direction of plumb line

center of mass

Fig. 2: Gravitationw, centrifugal acceleration gravity acceleratiom.

The centrifugal acceleration acting on a unit mass is déeoutward perpendicularly to the spin axis (see Figuref2hel
e3-axis of an Earth’s fixed coordinate system coincides withakis of rotation, then we have

c(z) = —w?3 A (3 AN 2). (2)
Using the so—calledentrifugal potential
Cz) =
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we can writec = VC'. Applying the Laplace operator gives i = 2w?, thus, the function” is notharmonic.

The direction of the gravity is known as the direction of th@umb line the quantityy = |w| is called thegravity intensity
(often just (scalaryravity). Thegravity potential of the Eartlcan be expressed as the sum of the gravitational poténtial
and the centrifugal potentidl, i.e.,

W=V+C. (4)
The gravity acceleratiow is given by
w=VW =VV +VC. (5)

The surfaces of constant gravity potentiél(z) = const, z € R?, are designated aguipotential (levelpr geopotential)
surfaces of gravityfor more details see, e.g., [14], [16], [39]).

In an Earth'’s fixed coordinate system the centrifugal paaeat is explicitly known. Hence, the determination of equipo-
tential surfaces of the gravity potentldl is strongly related to the knowledge of the gravitationaéptial V. Equipotential
surfaces (see Figure 2) intuitively express the notion mfémtial surfaces, as they are normal to the plumb linesdiye
the direction of the gravity vector.
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1
1
1
1
1

plumb line

Fig. 3: Level surface and plumb line.



According to the classical Newton Law of Gravitation (16&f)owing the density distributiop of a body, the gravita-
tional potential can be computed everywher®&ih More explicitly, the gravitational potenti& of the Earth’s exterior is
given by

V(z) =G W gvy), @ € R¥\Earth, (6)

Earth |I - y|
whered is the gravitational constanG( = 6.6742 - 10~'m? kg—! s~2, for more details see, e.g., [14], [16], [39]). In

consequence, the properties of the gravitational potgBlien the Earth’s exterior are easily described as follows

AV (z) =0, z € R*\Earth. (7

Fig. 4: Regularity at infinity.

Moreover, the gravitational potentill is regular at infinity i.e.,
1
V@) =0(—) |zl = oo,
||

W@l =0 (k) bl = . ®)

Note that, for suitably large valu¢s| (see Figure 4), we havg| < 1|z, hence|z — y| > ||z| — |y|| > 3|x|. Clearly, the
gravitational fieldv = V'V fulfills the following identities:

L-VV(z)=0, V-VV(z)=AV(z)=0, 9)

r € R®\Earth. However, the problem is that in reality the density disttion p is very irregular and known only for parts
of the upper crust of the Earth. It is actually so that we wadikdel to know it from measuring the gravitational field.

Equipotential surfaces of the gravity potenfi@l allow in general no simple representation. This is the neasloy a
reference surface, in physical geodesy usually an ellibsbrevolution, is chosen for the (approximate) constarcof
the geoid. As a matter of fact, the deviations of the gravéldfbf the Earth from the normal field of such an ellipsoid are
small. The remaining parts of the gravity field are gathenesl so—calledlisturbing gravity fieldvT corresponding to the
disturbing potentiall’. Knowing the gravity potential, all equipotential surfaceincluding the geoid — are given by an
equation of the forni (z) = const. By introducingU as the normal gravity potential corresponding to the ediighal field
andT as the disturbing potential (for more details see, e.g], [14], [39]) we are led to a decomposition of the gravity
potential in the form

W=U+T. (20)
In accordance with the Pizzetti concept (see, e.g., [33]) [@e may assume that
(1) the center of the ellipsoid coincides with the centethefgravity of the Earth,

(2) the difference of the mass of the Earth and the mass oflipsad is zero.

Consequently, following the classical approach (see, .6}, [28]), T is given in such a way that

/ T(x) dw(z) =0, (11)
Qr



/ T(z)(e* - 2) dw(z) =0, k=1,2,3. (12)
Qr

A point z of the geoid is projected onto the poinbf the ellipsoid by means of the ellipsoidal normal (see Fagh).
The distance betweenandy is called thegeoidal heightor geoidal undulation

Thegravity anomaly vectois defined as the difference between the gravity veetar) and the normal gravity vector
u(y),u=VU,ie.,

a(z) = w(z) — u(y). (13)

It is also possible to form the difference between the vecioandu at the same point to get thegravity disturbance
vector

0(z) = w(z) — u(x). (14)

Of course, several basic mathematical relations betwaeguhantities just mentioned are known. In what follows weyonl
describe heuristically the fundamental relations. Wet &taobserving that the gravity disturbance vector at thefpoon
the geoid can be written as

0(z) =w(z) —u(z) = V(W(z) —U(x)) = VI'(z). (15)

geoid
........................ W=const :WO

w(x) |N(x) geoidal height

y
/ . ———_ reference
ellipsoid
Vuiy) U = const = W,

Fig. 5: lllustration of the definition of the gravity anomalgctora(z) = w(z) — u(y) and the gravity disturbance vector
0(z) = w(z) — ulx).

Expanding the potentidl atx according to Taylor's theorem and truncating the serielalibear term we get

. ou
Ul) =U(y) + 5 ()N (2) (16)
(= means approximation in linearized sense). Hef¢y) is the ellipsoidal normal ay, i.e., v'(y) = —u(y)/v(y),

~v(y) = |u(y)|, and the geoid undulatioN (x), as indicated in Figure 5, is the aforementioned distanbedsn andy,
i.e., between the geoid and the reference ellipsoid. Using

W) = luly)l=—v"(y) uly)
= ) VU) =55 () an
we arrive at
_ T(x) - (W(z) -Uy))
M) = uly)
T(x) ~ (W(2) - Uly)) 18)
7(y)
ObservingU (y) = W (z) = const = W, we obtain the so-calleBruns’ formula(cf. [2])
Ng) = L@ _T@) (19)




It should be noted that Bruns’ formula (19) relates the ptglsjuantityl” to the geometric quantitiyv.
In what follows we are interested in introducing the deflatsi of the vertical of the gravity disturbing potential For

this purpose, let us consider the vector field:) = —w(x)/|w(z)|. This gives us the identity (with(x) = |w(z)| and
v(x) = |u(x)])
w(z) = VW (z) = —|w(z)| v(z) = —g(z)v(z). (20)

Furthermore, we have
u(x) = VU(z) = —|u(z)| V() = —y(2)V'(z). (21)

The deflection of the vertica®(x) at the pointz on the geoid is defined to be the angular (i.e., tangentiffi}rénce
between the directiongx) andv’(z), i.e., the plumb line and the ellipsoidal normal throughshee point:

O() = v(z) — V/(2) — ((v(2) — V/(2)) - () (). (22)

Clearly, because of (22§ (x) is orthogonal ta/(x), i.e.,O(z) - v(x) = 0. Since the plumb lines are orthogonal to the
level surfaces of the geoid and the ellipsoid, respectitiéydeflections of the vertical give briefly spoken a measfitiee
gradient of the level surfaces. This aspect will be desdribenore detail below: From (20) we obtain, in connectiorfwit
(22),

w(xz) = VW(x) (23)

= —|w(@)[(O) +v(2) + ((W(z) — v'(2)) - v(2)v(z)).

Altogether we get for the gravity disturbance vector

w(z) —u(r) = VT(zx) (24)
—Jw(@)[ (©(x) + ((v(z) — V() - v(z)) v(z))
(lw(@)] = [u(=)]) v/ (2).

The magnitude

D(z) = |lw(z)| — |u(z)] = g(z) — ~(z) (25)
is called thegravity disturbancewhile
A(z) = |w(z)| — [u(y)| = g(=) — () (26)

is called thegravity anomaly
Since the vector(z) — v/(z) is (almost) orthogonal to’(z), it can be neglected in (24). Hence, it follows that
w(z) —u(z) = VIT(x) (27)
= —|w(@)|0(z) — (w(@)] - |u(x)]) V' ().
The gradientVT'(z) can be split into a normal part (pointing into the directidn/¢x)) and an angular (tangential) part
(characterized by the surface gradi&fit). It follows that

VT (z) = %(m)u(z) + ﬁv*T(I). 28)

By comparison of (27) and (28) we therefore obtain

oT

D(z) = g(z) = 7(2) = [w(z)| — [u(z)| = -5~ (2), (29)

14
i.e., the gravity disturbance, beside being the differanaaagnitude of the actual and the normal gravity vector)ss a

the normal component of the gravity disturbance vectordititéon, we are led to the angular, i.e., (tangential) défdial
equation

%'V*T(:p) — _jw(z)| O(x). (30)



Since|O(z)| is a small quantity, it may be (without loss of precision) tiplied either by—|w(z)| or by —|u(z)], i.e.,
—g(x) or by —(x)

The reference ellipsoid deviates from a sphere only by diesbf the order of the flattening. Therefore, in numerical
calculations, if we treat the reference ellipsoid as a spfder = {x € R® |z = R, R = |z], £ € Q}, Q = O, (with
mean radiugk as defined by, e.g., [16], [17]) this may cause a relativerarirthe same order (for more details the reader
is referred to standard textbooks of physical geodesy, (@], [17]). If this error is permissible, we are allowedr&place
|u(RE)| by its spherical approximatio@M / R? such that

ViT(RE) = —G?MG(RQ, (31)

whereG is the gravitational constant ardd is the constant of the mass. By virtue of Bruns’ formula welfyniénd

G G

CVN(RE) = - Le(Re), €9 (32)
ie.,

ViN(R¢) = —RO(RE), &€ (33)

In other words, the knowledge of the geoid undulations adltve determination of the deflections of the vertical byrigki
the surface gradient on the unit sphere.
From the identity (29) it follows that

oT
~5 (@ =D(@) = |w@)] () (34)
v
= |w@)|=7(y) - 5.7 ) N(2)
v
= Al2) ~ 55() Na),
whereA represents the scalar gravity anomaly as defined by (26)r@ing Bruns’ formula (19) we get
0T 1 Oy
In well-knownspherical approximatiomwe have (see, e.g., [16])
GM
1) = |uly)| = Wa (36)
vy y GM
- = L.V =2 37
Y (y) B v(y) PE (37)
and
1 Oy 2
== 38
T =T 9
This leads us to the basic relations
“D(x) = % VT(z), z€ Qg (39)
and
—Az) = % -VT(z) + |72|T(:17), x € Qg, (40)

as so-calledundamental equations of physical geodesy

In the sense of physical geodesy (cf., e.g., [16]), the nmgpof the spherical approximation should be carefully kept
in mind. It is used only for expressions relating to smallmfitees of the disturbing potential, the geoidal undulatipthe
gravity disturbances, the gravity anomalies, etc. Acyual all geodetic approaches, the reference surface wiknbe
understood to be a sphere in any geometrical sense, butayalis an ellipsoid (see [1] for more details). However, a@s th



flattening of this ellipsoid is very small, the ellipsoidatfulas are expandable into Taylor series in terms of thiefiatg,
and then all terms containing higher order expressionssdfidiitening may be neglected. In this way together with blata
pre-reduction processes of gravity formulas are obtaihatldre rigorously valid for the sphere.

It should be mentioned that, in the gravity disturbancesgradity anomalies all significantly tectonic processe obee
visible (see Figures 8, 12). In accordance with Newton's lagvgravity disturbances and gravity anomalies permit the
conclusion of an irregular density distribution inside Beath. Unfortunately, gravity anomalies do not determiniguely
the interior density distribution of the Earth. Geoid uratidns are the measure of the pertubations in the hydrostati
equilibrium. They do not show essential correlations todiséribution of the continents (see Figure 13).

3 Modeling of Gravity Disturbances, Gravity Anomalies, andDeflections of the Ver-
tical by Haar Wavelets

Wavelets enable us to break up functions into many simpleegiat different scales and positions. Thus, three features
are incorporated in this way of thinking about geodeticadlievant wavelets: Wavelets are ‘building blocks’ thatldeaa
fast decorrelation of gravity data. Whenever we are intetkg a multiscale analysis of local ‘fine-structure’ witha
smooth(er) global structure, wavelets are the mathemdtiots of choice. They are the natural means for investigati
signals as, e.qg., the gravity disturbance or the gravityralg, in small bounded areas out of a global context by thegpow
of a 'zooming-in’ process.

The wavelets are constructed by use of scaling functionthéargon of functional analysis, Dirac sequences) shgwin
the property of tending to the Dirac kerrnie{understood in distributional sense) given by

= 2n+1
0E&-m =~

n=0

Po(€-m). (41)

Multiscale modeling can be performed in frequency domaselan specific features within a spherical harmonic context
(see, e.g., [7], [9], [10]). But it can also be done exclulsivie space domain, and this is the approach that should be
presented here.

More formally, let{ H#s }jeN0 be a Dirac family ofl.2-scaling functions such thd&f#; tends to the Dirac kernel as the
'scale’ j tends to infinity. Then the convolution

Foe) = [ (e F@) doto). Fe1X@) “2)
is aj-level approximation of F, i.e., a low-pass filtered versidri’. Moreover, the approximate identity
i [[F? — Fllpa(g) = 0 (43)

can be guaranteed. In other words, as the scaling funclidngonverge to the Dirac functional, the functiofig tend to
the limit function

() = /Q 5(¢-mF() dw(n), FeLX(Q), (a4)

(understood irL.2-topology).
The wavelet{ (W H)#i } e, are nothing else than differences of two consecutive sgélinctions,

(WH)P# = HPi** — H", j € Ny, (45)

such that the detail information if*i+1 that is not included irF'#: is provided by

WP () = [ WHP: (€ n)Fn) duti).  F €179, (46)
In consequence, the multiscale process is determined bpanameters, viz. the scajecharacterizing the ‘zooming-in’
width and the position £ indicating the ‘zooming-in’ center. With increasing scalg, the
wavelets{ (W H)"s } jcn, extract more and more detailed information oufof

Clearly, there are millions of scaling functions genemtitifference wavelet functions. Of particular economy affd e
ciency for purposes of numerical computation, howeverwareelet kernels given in terms of elementary functions and



possessing a local support. But also locally supportetiftriections are nothing new, having been discussed alregdy b
Haar (1910) in one—dimensional Euclidean theory (see [T5j¢ spherical Haar wavelet is zero outside a small spHerica
cap. Infact, Haar wavelets represent an ideal choice fatlporiented 'zooming-in’-approximation of geodetic aniiies,
since signal values outside their spherical support ar¢éafen into account at all. Consequently, local improveseah

be guaranteed for smaller and smaller local parts with ag&en accuracy, but without any deterioration of the approx
mated signal in all other parts outside. Note that the sizh®focal support depends on the scalef the waveletH #7,

i.e., with increasing scalgits diameter decreases. This is the reason why the waveieepballows an ideal 'zooming-in’
process to local (high frequency) phenomena.

The apparatus of (smoothed) Haar scaling and wavelet furethould be concretized: Lgp; }jeNO be a sequence with
lim;_. p; = 0 (for examplep; = 277 or p; = 1 — cos 2777). The(smoothed) Haar scaling functiod$7#s }jeNO, are
defined by

HP(E-n) = { —(k
€-m) (B ® (e -1+ )k, 0<1—-€-n<p;

where¢, n are elements of the unit spheeand & denotes a (fixed) polynomial degree. Note, that the smodtfzed
scaling functionH/*; occurs to be rotationally invariant, i.e., it is a so-calteshal function. Correspondingly, tisenoothed
Haar waveletW H)?4, are defined as the difference of two consecutive scalingtifoms, i.e.

(WH)P# = HPi+1 — HPi 5 € Ny. (47)
Due to its definition as zonal function the Haar wavelet hgsteescal cap as local support éhi.e.,
8P7(§) = supp (WH)? (&) = {n € Q1 = &-n < p;}. (48)
Explicitly written out, the Haar wavelets (see Figure 7)dea follows
—(k+1
WHY(E ) —(%)pj(“(é-n—lﬂ%)k, pi+1 <1—=E§-n<p;
een) = —(k+1
(52 (o (€ m =14 pya)¥
—(k
—pj(“)(§-77—1+pj)’“), 0<1-&-n<pjs.
r ‘ ‘ i ‘ ‘ [—x=0 8 ' ' i ' "] [—scale 0
—_—k=2 —scale 1
I 1= 6 -
4 4
2+ 4 2t
3 2 R 0 1 2 3 -3 -2 -1 0 1 2 3
scalej =3,k =0,2,3,5 scalej =0,1,2,3,k=5

Fig. 6: lllustration of the smoothed Haar wavelgts & 277).

|
. A

Fig. 7: lllustration of the smoothed Haar wavelet on the splfe, = 277, j = 2,3,4, k = 5).




Fig. 8: The gravity disturbanc®.

Note, that the degreleregulates the order of differentiability, i.e., the chosemothness property of the Haar kernel.

4 Modeling of the Disturbing Potential from Gravity Disturb ances by Neumann Wavelets

Since the disturbing potentidl (see Figure 9) is a harmonic function in the extefitj* of the spherd2y around the
origin with a radiusR, we are confronted with a boundary value problem of potétiteory to determing” in Q% from
prescribed gravity disturbande or gravity anomaly4, respectively. Moreover, it should be noted that, at thegméestate

of practice, much more gravity anomalies are available tramity disturbances. In future, because of GPS-techiyplog
it may be expected that the gravity disturbances become mmertant than the gravity anomalies (for more details see,
e.g., [17]). This is the reason why both problems will be désed here.

The determination of the disturbing potentiain the outer spac%* of 2, from known gravity disturbance® on
Qr (see Figure 8), leads us to the Neumann (type) boundary patixem:

(Modified) Exterior Neumann Problem (ENR)e are givenD € C(©)(Qg) with

D(z) dw(z) =0 (49)
Qr

and

D(z)(e® - x) dw(z) =0, k=1,2,3. (50)
Qr

Then the functior” : Q%" — R given by

1

T(x)=m 5 N(z,y)D(y) dw(y) (51)

with the Neumann kernel functiol : Q%" x Q% — R

2R |$|+|x—y|—R>
N(z,y) = In( 52
(@) |z—y|+“<|z|+|x—y|+R 2)

is the unique solution of the exterior Neumann boundaryesahoblem:

@) Tis contigously differentiable i@T}g“f and twice continuously differentiable {5t i.e.,
T € CHOQEH) N CA(QLY),
(i) T is harmonicin%*, i.e., AT = 0in Q%,
(iii) T is regular at infinity, i.e.,
IT(z)| = O ( ! ) VT (z)] = O (ﬁ) as|z| — oo,

[z
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Fig. 9: The disturbing potentidl.

(v) J, T(z)dw(z) =0

and

fQR T(z)(e* - x) dw(x) =0,k = 1,2,3.
™) =1 -VT(z) = D(x), x¢€Qp.

For pointsz, y € Qi we (formally) get the so—calledeumann formulavhich is an improper integral ovély
2_9% Y
T <@> - 2w G D <@> dw(y).
|z| ATR Jop 1— & & R lyl

Note that the surface integral (53) indeed has to be extemderthe whole surface. In accordance with our approachiit is
valid under the following assumptions: (i) the mass witlie teference ellipsoid is equal to the mass of the Earthth@)
potential of the geoid and the reference ellipsoid are ediiiqlthe center of the reference ellipsoid is coinciderithithe
center of the Earth, (iv) there are no masses outside, (\ggpeoximation is simplyfied in spherical sense.

The identity (53) formulated in an equivalent way over thé sphere yields

R

T(R) = 1- [ NG n)D(Rn) deota). €€ (53)

where theNeumann kernds given by
V2 V2

NEn)=————In|1+—oo=),1-¢-n#0. 54

(£n)mn<+m> §n# (54)
Note that

N(RE, Rn) = N(€-n), &ne (55)

The essential idea now is that the improper integral (53)oearegularized, e.g., by replacing the zonal kernel

_ V2
VI=€n
by the space—regularized zonal kernel (see Figure 10)

R 2R? 2
;(3—7(1—60)), 0<1-¢n<m

SE-n) = 1-&§-n#0, (56)

A
S

SPE-n) = /s
VI=&¢n

p2
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Fig. 10: The kernet — S?(cos ) (57) for severap.

This leads us to the following space-regularized represient of the disturbing potential (see Figure 9) in terms of
known gravity disturbances dig

R 2
TP(RE) = g / %D(Rn) dw(n)

17§-n>%
R V2

- 2 In (1 + ﬁ) D(Rn) dW(n)
1-&n> s
R R 2R?

- / = <3 - =g n)) D(Rn) duw(n)
1*5'77§2L;2'
R R 2R?

- I In (1+;(3—7(1_§'77)>)D(R77) dw(n).
1—£'n§%

In other words, a low—pass filtered versioriofs given by

T(RS) = 1= [ N(EmD(Ra) dot), 57)

where the regularized Neumann kernel reads as follows

NP(E-m)=5°(€-n) —In(1+5°(§-m), &mne (58)

Note thatt — S”(¢),t € [-1, 1], given by

R 2R? 2
;<3—7(1—t)>, 0<1—-t< &
SP(t) =
V2 2
Wi g <1—-t<2
is continuously differentiable. Moreover, we have (cf. trig 11)
2 2
p p

and

s (1o ) - (1 £). -
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Fig. 11: The functions$ andS” on the interval[—1, 1) and[—1, 1], respectively.
FurthermoreS andS” are monotonically increasing with

S(t) = S°(t) = 1 (61)

forall t € [-1,1). Furthermore,

2 _R(3_28(1_ _ s
S(t) — 5°(t) = - p ( (1 t)), 02<1 t< £
0 Fm <1-t<2.

Elementary calculations give

+1 1
[ sw-srwna = [ s@-sw) @

_ il
= O(p) (62)
asp — 0, hence, it follows that
+1
lim [S(t) — SPi(t)| dt = 0. (63)
jHOO -1
Observing the properties of the functiofignd.S” we find
[In(S(t)) = In(S*(2))] < [S(t) — 5°(1)] (64)
and
1
[In(1+ S(t)) —In(1 + S°(t))| < B [S(t) — SP(t)] . (65)
Consequently, we have
[ 1+ (€ 0) = Ia(1 + 57 )] dutn) = OLp) (66)

SinceD(R-) : Q — R is continuous and, therefore, uniformly boundedg, we finally obtain in connection with (66)

lim sup |T'(R§) — TP (RE)| = lim sup £

J—oogeT JmoogeT AT

[ (V€)= N5 DB dotn)| = 0
for all subsets”  ©, provided that{p; } jen, is a sequence withim p; = 0.
J—00

Corresponding to the sequen®*i } ;cn, of Neumann scaling functior$#s given by

ij(§'77) _ { Spj(f'n)—ln(1+5pj(§'77))a 02§1—§'77§ gp};
S(&-m) —In(1+ S(&-m)), i <1-&-n<2,



we introduce the sequen¢éiV N)#i } <y, of Neumann wavelegiven by
(WN)Pi(§-n) = NP+t (§-m) = NP (§-m),  &,me . (67)

Written out their representations read as follows

SPrr(§-m) —In(1 + 5P+ (€ - ) .
—8Pi(E-m) +In(1+ 8P (€ m), 0<1—€-n< g
(WNYs () = { SE-n)—In(1+5(-n) . .
—SPi(E ) +In(1+ 8P (E ), HE <1-€&n< £
0, % <1-¢-n<2.

In other words(&,n) — (WN)Pi(£-n),&,n € Q, is a zonal function (dependent only on the scalar proglugtof two
unit vectors¢ andn). The function has the local support

2
S (§) = supp (WN)’”(é):{neﬂll—&nSQp—éQ}. (68)

Clearly, for increasing the local support of the Neumann wavelets becomes smaliesraaller such that a ‘zooming-
in’ calculation can be assured for locally distributed giyadisturbances (without globally violating Weyl's law efjuidis-
tribution).

5 Modeling of the Disturbing Potential from Gravity Anomali es by Stokes Wavelets

The determination of the disturbing potentialon Q$* from known gravity anomalied onQp (see Figure 12) leads us
to the Stokes boundary value problem.

Fig. 12: Gravity anomalied.

Exterior Stokes Problem (ESP):
We are giverd € C(O)(Qg) with

Az) dw(z) =0 (69)
Qr

and

/ A(x)(e® - ) dw(z) =0, k=1,2,3. (70)
Qr



Then the functiol” : Q%" — R given by

1

T(z) = —
(x) 47TR Qr

A(y)St(z,y) dw(y) (71)

with the Stokes kernel function (briefly called Stokes kernel)

R 2R SRz vy 3R

St(z,y) = —+———— = — —Jr—y (72)
@) = ey PR W et
gy (el R ey
2P Tl Tyl o

is the unique solution of the exterior Stokes boundary vahablem (see, e.g., [16]):

(i) T is continuously differentiable if2¢;* and twice continuously differentiable in3*, i.e.,
T € CO(QY) N CA(Q5),

(i) 7'is harmonic i, i.e., AT = 0in Q%F,
(i) T is regular at infinity,
(v) Jq, T(z) dw(z) =0,

and
fQR T(z)(ek - x) dw(z) =0, k=1,2,3,

V) =% -VT(z) — %T(z) = A(z), =€ Qg

|| x|

For pointsx = R, y = Rn € Qg we (formally) get an analogue to the Neumann formula, ceitakes’ formula
which again represents an improper integral avgr

1

T(RE) = = |  St(RE, Rn)A(Bn) dw(Rn). (73)
7 Qr
Equivalently we have
7(Re) = 1= [ St(e A dut). (74
where
St(€-m) = SE-n)—6(SE n) ' +1-56n-3¢ 7 (S(;, T (S(gl,n)y) :
Note that

St(RE, Bn) = St(§-m), &ne. (75)
From Bruns’ formula

R2

N(RS) = T(RE) 7=

(76)

we get the geodial undulations (see Figure 13).



Fig. 13: Geoidal undulationy'.

Again, the improper integral (74) can be regularized, ébg.replacing the zonal kernél (see (56)) by the space—
regularized zonal kerndl” (see (57)).

In fact, the regularization (57) leads us to the followingukarized global representation of the disturbing poténti
corresponding to gravity anomalies as boundary data

T/(RS) = 1= [ St°(& ) A(Rn) dulr) @

with (see Figure 12)

SP(E ) = SEn) oS m) 1= sen =36 b (g ) (79)

The integrands of'(R¢) andT”(R¢) differ only on the spherical caf? (&) = {n € Q1 —¢-n < %}. Here we have

St(€-m) = St(E-m) = (SE-n)—5°(&-n)—3¢nn (S(;. mn (5(51. ,,))2)

1 1
a6 <5P(§-n) * (SP(£~77))2> '

Now it follows that for allt € [—1,1) with 1 — ¢ <

<t
n (% * <s<t>> )
t

1 1
n (sr« Nt <5p<t>)2> (79)
= In(1+5() —In(1+5°(t)) —2(In(S()) — In(S”(¢))) .

Furthermore, by use of the already known properties of thetfansS and.S” on[—1, 1) we get

—1n<5p1(t)+ ! )'zO(|S(t)—Sp(t)|). (80)

1 1
1“ (% * <S<t>>2> S )

In connection with (62) we therefore find

lim sup |T(RE) — T"(RE)| =0 (81)
p=0¢eT

for every subsef” C Q.
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Fig. 14: The regularized Stokes kerrfel- St”(cos ) for several.

Next we consider th8tokes scaling functiofSt*s } jcn, . Correspondingly, th8tokes waveletg W .St)?7 } ey, are given
by

(WSt)Pi (& -m) = (St)P1+1(&-n) — (St)P7(§-m), &ne. (82)

In other words(¢&,n) — (W St)Pi (£-n), &, n € Q, is a zonal function with local suppa$ts (¢). Its explicit representation
reads as follows

Spi (g 7)) — 3¢ - nln(sp]+1(g =+ TEE n))z) >

—=8Pi(€-n) +3§-nln (SP GO SPJ“")V)’ VEITEs o
(WSt)Pi(&-m) = q S(E-n)—3¢- nln(sé DRRECDY (5"))2)

—SPi(&-m) + 3¢ - nln(spy O sﬂﬂ(£n)>2)’ Pj}; SIS

) 2R2<1 §-n<2.

It should be pointed out that all integrals involving Stokesvelet functions have not to be extended over the whole
sphere. Instead the integral have to be taken over the sepkndent cap§®s (). Again, a ‘zooming-in’ procedure to
more and more local areas is easily implementable.

6 Modeling of the Disturbing Potential from Deflections of the Vertical by Green
Wavelets

The (unique) solutiofl” of the differential equation for the surface gradient

vir(re) = -l o(Re), €eq, (83)
satisfying

JRACSEEGE (84)

[ T@eE -y ane) =0, k=123 (85)

Q
can be formulated in terms of Green’s function with respethé Beltrami operator [8], [10] given by

1

G¢-n=1+In|{———= —-¢- 0 86

€m=t4m(ges).  1-Enro (36)
as follows

GM
T(R¢) = V*G(E n) - ©(Rn) dw(n), &€ (87)

AR



An easy calculation yields

ViG(E-n) = Vi(1—2In(S(E n)))
_ 5
= -2 S €= (&-mn)

= (S~ (€ m)

Thus it follows that
R
7(RE) = 1+ [ a(en) - O (Rn) dto)

where

o(Em) =~ Ser (S(E M) €~ (€ m), Enen,

(88)

(89)

(90)

ReplacingS by S” we get as regularizatidfi” of T' corresponding to deflections of the vertical as data set

T(RS) = 1= [ o7(€.n)- ©(Fn) dlr).

where

GM

9" (&m) = =55z (S7(€-m)* (€ —

From the properties known f&& and.S® we are able to derive that

/52((3(5-77))2—(9(677))2) (&= (&-n)n) - ©(Rn) dw(n)

&-nm), &ne.

(91)

(92)

= (SR = (S ) VI e - O )

= Olp)

(93)

provided tha®(R-) is a continuous vector field dn. Consequently, we have

hm sup |[T(RE) —
p=0¢eT

T7(Rg)| =0

for all subsetsg” c Q.

(94)

Correspondingto th&reen (vector) scaling functiodg*’ } jcn, We are able to introduce tigreen wavelet§(Wg)*i } jen,

as follows

(Wag)P (§,m) = g” " (§,m) — g™ (§,m), §;m € Q.

In explicit representation we have

SPr+(&-m))? (8§ -
8P (€ - m))*(€
(E-m)*(E— (&
SPi(€-m))* (€ —

QM

%‘é

(Wg) (&,m) n)

[~

R

7 (
7 (
(5
7 (

S+

(&-mn)
—(§&-m)n),
n

(& -mn),

(95)

0<1—&-n< S

2 2
p;é21<1_§77§2i%2
A <1-¢-n<2

A reconstruction of the disturbing potentiilwith Green scaling functions and wavelets is shown in Fiditre
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7 Multiscale Approximation

Let {®i},cn, be one of the scaling functions introduced in this paper, (il Green, Haar, Neumann, or Stokes scaling
function). Let us, as usual, denote PV ®)”s } ;cn, the associated wavelet function, i.e.,

(W) = §Pitt — i j € Ny, (96)

Let X(R-) : 2 — R denote one of the associated (geodetic) quantities ogturithe integral representations (i.e., in the
aforementioned order, deflection of the vertical, (obsdyvesignal, gravity disturbance, gravity
anomaly).

Summarizing our results we are led to the following 'zoomingscheme of multiscale approximation.

Step 1: First we guarantee a ‘rough’ global (initial) approximatioy low pass filtering against the kerriet’o in form
of a convolution integral

X0 (RO = 1 [ @7 (€ n)X (R dt). ©7)

Step 2: A first improvement of this rough approximation®’o (R¢) by detail information at scald, is provided by
adding the band pass filtered versid# X )#7o given by

WX)o (RE) = 1= [ (W (€)X () dl). (99

This yields the approximation of scalg + 1
X0+t (RE) = X070 (RE) + (WX)*% (RE). (99)

As already pointed out,W X )*/o (R¢) is the difference between two smoothings. This expressiotains the detail
information of X?7o+1 (R¢), that is not contained i&X #7/o (R¢).

In adaptation to the data situation a (local) ‘zooming-imdgess gives us the functio® X )*7o (RE), . .., (W X)Plo+k(RE).
This yields the (local) approximation of scalg + & + 1

k
XPlotkti (RE) = XP70 (RE) + ) (WX) 70+ (RE). (100)
=0
Of course, the numerical evaluation requires the apptioadf approximate integration formulas fpe= Jo, ..., Jo + k
X*1(RE) = Zw 1P (€)X (R, (101)
and
P; R ? N; 2y N; N;
(WX)™ (RE) =~ = > Jw” (W) (€)X (R, (102)
k=1

where the summation (102) has to be extended over the sqaadent cag”i (the symbok~ means that error between
the right and left side can be neglected). Obviously, forebery subsef C 2 the reconstruction formula

sup | X (RE) — X*%0(RE) — > (WX)Pro+t(RE)| = (103)
¢eT —

holds true. The reconstruction ('zooming-in’ procedussijlustrated by the following scheme.

(WX)P% (W X)Poo+
N\ N\

XPio s D N XPJo+1 s D > X PJo+2

In consequence, an efficient and economical method baseshatarization in space domain has been found for deter-
mining globally reflected geodetic quantities of classptaysical geodesy from locally available data sets.
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Fig. 16: Conjectured plume configuration for the Hawaiiageafrom [45]).

8 Numerical Application: Plume Anomalies

Finally the multiscale techniques presented here will lexlue investigate gravity anomalies caused by plumes. Due to
their local nature we have to use high resolution gravitpdand the 'zooming-in’ approximation as presented heré is o
great significance. Especially the locally compact (isoigpsmoothed Haar wavelet turns out to be an essential fool o
scalar and vectorial multiscale decomposition of gravistutbances, gravity anomalies, and deflections of thacasdrt
respectively. As case studies, two prototypes of plumestawsen, namely the oceanic mid-plate Hawaiian plume and the
ridge-centered Iceland plume. They will be discussed inena@tail.

Hawaiian Plume - Topographic Description
In global plate tectonics, hotspots and seamount chainsaterstood as fundamental components nowadays. A stationa
mantle plume located beneath the Hawaiian islands is tegliéw be responsible for the creation of the Hawaii-Emperor
seamount  chain, while  the oceanic lithosphere  continyouspassed over it The
Hawaii-Emperor chain (see Figure 16) consists of about X€awic islands, atolls, and seamounts that spread nearly
6000 km from the active volcanic island of Hawaii to the 7588 (million years) old Emperor seamounts nearby the
Aleutian trench. With moving further south-east along thland chain, the geological age decreases. The interesting
area is the relatively young south-eastern part of the ¢lsétimated on the Hawaiian swell, a 1200 km broad anomalously
shallow region of the ocean floor, extending from the islahdawaii to the Midway atoll. Here a distinct geoid anomaly
occurs that has its maximum around the youngest island thiatides with the maximum topography and both decrease
in north-west direction.
The progressive decrease in terms of the geological agéiévée to result from the continuous motion of the underiayi
plate or, to be more specific, from the motion of the paciffegphere over a stationary mantle plume beneath the younges
island (cf. [29], [30], [43]).
This plume is supposed to have its origin in the lower marste [21], [29]) or even rise from the core mantle boundary
(cf. [38]). The excess temperature of the plume is assumbd toore tharR00°C and the hot mantle material is expected
to run from the origin up to the upper mantle in a narrow steth wiradius of about 100-200 km (see [31]). With seismic
tomography several features of the Hawaiian mantle pluraedatected (cf. [35]). The results deliver a so-called low
velocity zone (LVZ) beneath the lithosphere, starting a¢jptt of about 130-140 km, beneath the central part of thedsla
of Hawaii. This LVZ is interpreted as an indication for a fi@rtnelting zone localized inside the plume conduit. Sdezhl
P receiver functions suggested an 40 km large uplift in thetlearansition zone at a depth of 660 km, caused by the
rising mantle plume. An in north-west direction increaséhgllow of the oceanic lithosphere was obtained itteceiver
functions, that have been interpreted to suggest a theejualenation of the lithosphere caused by the Hawaiian rantl
plume. The interested reader may be referred to [35] andefleeemces therein.

Dataset and Implementation
The gravity data used for our numerical computation reprethee gravity anomalies around the islands of Hawaii. Be-
cause of the lack of terrestrial-only data, we used the coatbgravity model EIGEN-GL04C consisting of satellite data
gravimetry, and altimetry surface data. The dataset usedltulate the gravity anomalies was provided by the GFZ-
Potsdam. The sequenpg = 277 is chosen for gravity anomaly modeling and a smoothed Haaekef a polynomial
degree of = 5 turned out to be advantageous for our purposes. Since thelkanction has local support we can restrict
our considerations to the local area of interest. So thstithtions are calculated or880 x 350 pointgrid around the island
of Hawaii, taken from &000 x 5000 longitute-latitude grid (of type [3]). The scalar and va@bsolutions are shown in
Figure 17 and Figure 18.

In the multiscale analysis several interesting obsermat@an be detected. By comparing the different positfoasd
different scaleg, we can see that the local maximum of the energy, that carretgto the the wavelet variances (see [11],
[27]), contained in the signal of the gravity anomalieststar the north-west of the Hawaiian islands for scale 2 aankis
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Fig. 17: Approximation of the gravity anomaligisin ms~2 of the Hawaiian region with smoothed Haar wavelets. A rough
low pass filtering at scale 6 is improved with several band fiiters of scale 6,...,11.

in south-east direction with increasing scale. It ends opstale/ = 12, in a position at the geologically youngest island
under which the mantle plume is assumed to exist. Again,@mihltiresolution property with increasing scale, more and



more local details of the gravity anomalies appear. Thecsire of the Hawaiian island chain is clearly reflected in the
scale and space decomposition, as discovered in the glaidascale analysis. Obviously, the energy peak observed at
the youngest island of Hawaii is highly above the energynisity of the rest of the island chain. This seems to strongly
corroborate the belief of a mantle plume just below the mslanid of Hawaii. Similar results are also developable from
deflections of the vertical by using Green wavelets (seerEi6).

Iceland Plume - Topographic Description
The plume beneath Iceland is the prototype of a ridge-cedtanantle plume. An interaction between the
North Atlantic ridge and the mantle plume is believed to be teason for the existence of Iceland, resulting in melt
production and crust generation since the continentakbugan the late Palaeocene and early Eocene 58 Ma ago. Never-
theless, there is still no agreement on the location of thenplbefore rifting started in the east. Controversal dsions,
whether it was located under central or eastern Greenlamat &2-64 Ma ago are still in progress (cf. [35]).
Iceland itself represents the top of a nearly circular g@graphy, with the maximum of about 2.8 km above the sudeun
ing seafloor in the South of the glacier 'Vatnajokull'. Tlgkacier is the largest European one and several active vodsa
are located beneath it, which are supposed to be feeded byhteenpdume. The surrounding oceanic crust consists of
three different types involving a crust thickness that isenthan three times as thick as average oceanic crusts. iBeism
tomography provides evidence of the existence of a mantie@lbeneath Iceland, resulting in low velocity zones in the
upper mantle and the transition zone, but also hints for atiesiin the deeper mantle seem to exist. The low velocity
anomalies have been detected in depths ranging from at46@skm up to about 150 km in regional P-wave models.
Above 150 km ambiguous seismic velocity structures werainbt involving regions of low velocities covered by region
of high-seismic-velocities. Furthermore low S-wave véles at a depth of about 80 km were indicated by special sarfa
wave dispersion data, as well (cf. [25]). For a deeper adogsshe theory of the Iceland plume the interested readgr ma
be referred to [25], [26], [35] and the references therein.

Dataset and Implementation
The gravity data decomposed here represent the gravityaimemaround Iceland. The dataset used to calculate thiygrav
anomalies has the same high resolution gravity model asingbd Hawaiian case study. Again the sequence 277 is
chosen and the smoothed Haar kernel has a polynomial defgkee 6. Since the kernel function has local support we can
restrict our considerations to the local area of interestvioid a boundary influence by the surrounding topographighw
was negligible in the Hawaiian case study, we calculate autiscale decomposition on a larger point gri@ x 300)
around the Iceland hotspot. So the illustration are resttito a grid o200 x 200 gridpoints around Iceland, taken from a
5000 x 5000 longitude-latitude grid of type [3]. The scalar solutiome ahown in Figure 19.
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Fig. 18: Approximation of the vector valued vertical deflens © of the Hawaiian region with smoothed Haar wavelets.
A rough low pass filtering at scale 6 is improved with severaldpass filters of scale 6,...,11. The last picture shows the
multiscale approximation at scale= 12.
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Fig. 19: Approximation of the gravity anomaliesin ms=2 of Iceland with smoothed Haar wavelets. A rough low pass

filtering at scale 6 is improved with several band pass filedrscale 6,...,11. The last illustration shows the muliisca
approximation at scalé = 12.

Some quite interesting observations can be made by lookitigeanultiscale analysis. In the lower scales (not shown
here) the shape and the center of the signal energy dos ryateraarkably. However, from scale 6 on, the energy analyzed
in the signal travels towards the south-west along the Natfgmtic ridge and the center of the 'peak’ situated on Indla
moves south-eastwards along the Greenland-Iceland-&agdge. In the high scales 9, 10, and 11 the anomaly in the
south-east dominates significantly. This anomaly locatdde south-east of Iceland may be interpreted as the sittad o
mantle plume beneath Iceland. Since this anomaly clearhjifiests in the high scales, its spatial extension has tothera

small, which coincides with seismic observations, lingtthe radial diameter of the upper part of mantle plumes taitbo
100 - 150 km.

9 Conclusions

The purpose of this paper is to demonstrate that locallyc@psupported wavelets provide a powerful approximatioh-te
nique for the investigation of, e.g., local fine-structufeatures such as those caused by plumes. The illustratiomsthat

the presented multiscale procedure allows a scale and sigpemdent characterization of this geophysical phenomeno
As approximate integration rules fast longitude-latitggiels (as proposed by [3], [44]) have been used; especialiya
case study of the Hawaii plume, which has also been discussseral papers involving seismic tomography (see, e.g.,



[45]), we can achieve comparable results for the spatiatipof the anomaly caused by the plume. In fact, the wavelet
coefficients can be interpreted as spatial measures ofrtégguency bands contained in the signal. Thereby, theslgav
theory offers an applicable physical approach for detggtinme features.

Concerning the Hawaii plume in more detail, the numericsilitts show us that the anomaly is located on a north-west
to south-east line below the Hawaiian islands. As the wangthepart of a signal is associated to depth we can also cdaclu
that the deep parts of the plume, which correspond to therlsvades, are centered below the islands Maui and Oahu. The
higher scales, corresponding to the upper part of the plaarebe localized directly below Hawaii.
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