
FACHBEREICH MATHEMATIK

Funktionalanalysis
und GEOmathematik

Schriften Zur

W. Freeden, T. Fehlinger, M. Klug, 

D. Mathar, K. Wolf

Classical Globally Reflected Gravity Field 

Determination in Modern Locally Oriented 

Multiscale Framework

Bericht 39 – September 2008



Classical Globally Reflected Gravity Field Determination in Modern
Locally Oriented Multiscale Framework

W. Freeden1∗, T. Fehlinger1, M. Klug 1, D. Mathar1, and K. Wolf1

1 University of Kaiserslautern
Geomathematics Group
67663 Kaiserslautern
P.O. Box 3049
Germany

Dedicated to Kurt Lambeck, President of the Australian Academy of Science

The purpose of this paper is the canonical connection of classical global gravity field determination following the concept
of Stokes (1849), Bruns (1878), and Neumann (1887) on the onehand and modern locally oriented multiscale computation
by use of adaptive locally supported wavelets on the other hand. Essential tools are regularization methods of the Green,
Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference
scheme by use of Green, Neumann, and Stokes wavelets, respectively. As an application, gravity anomalies caused by
plumes are investigated for the Hawaiian and Iceland areas.

1 Introduction

Gravity as observed on the Earth’s surface is the combined effect of the gravitational mass attraction and the centrifugal
force due to the Earth’s rotation. The force of gravity provides a directional structure to the space above the Earth’s surface.
It is tangential to the vertical plumb lines and perpendicular to all level surfaces. Any water surface at rest is part of alevel
surface. As if the Earth were a homogeneous, spherical body gravity turns out to be constant all over the Earth’s surface,
the well-known quantity9.81 ms−2. The plumb lines are directed towards the Earth’s center of mass, and this implies that
all level surfaces are nearly spherical, too. The gravity decreases from the poles to the equator by about0.05 ms−2. This
is caused by the flattening of the Earth’s figure and the negative effect of the centrifugal force, which is maximal at the
equator. The level surfaces ideal reference surfaces, for example, for heights.

The traditional concept of physical geodesy (cf., e.g., [36]) is based on the assumption that all over the Earth the position
(e.g., latitude and longitude) and scalar gravityg are available. Moreover, it is common practice that the gravitational
effects of the sun and moon and of the Earth’s atmosphere are accounted for by means of corrections. The gravitational
part of the gravity potential can then be regarded as a harmonic function. A classical approach to gravity field modeling
was conceived by G.G. Stokes (1849). He proposed reducing the given gravity accelerations from the Earth’s surface to
the geoid. As the geoid is a level surface, its potential value is constant. The difference between the reduced gravity onthe
geoid and the reference gravity on the so-called normal ellipsoid is called the gravity anomaly. The disturbing potential,
i.e., the difference between the actual and the reference potential, can be obtained from a (third) boundary value problem
of potential theory. Its solution is representable in integral form, i.e., by the Stokes integral. The disadvantage of the
Stokes approach is that the reduction to the geoid requires the introduction of assumptions concerning the unknown mass
distribution between the Earth’s surface and the geoid.

In this paper we briefly recapitulate the classical approachto global gravity field determination due to Stokes (1849),
Bruns (1878), and Neumann (1887) by formulating the differential/integral relations between gravity disturbance, gravity
anomaly, vertical deflections on the one hand and the disturbing potential and the geoidal undulations on the other hand.
The representation of the disturbing potential in terms of gravity disturbances, gravity anomalies, and deflections ofthe
vertical are written in terms of well-known integral representations over the geoid. For practical purposes the integrals are
replaced by approximate cubature formulas using certain integration weights and knots within a spherical framework. Seen
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from the view of constructive approximation, however, the approximate integration formulas are the essential problemin the
spherical framework of determining globally the disturbing potential and the geoidal heights. On the one hand, Weyl’s law
of equidistribution (cf. [42]) tells us that numerical integration and equidistribution of the nodal points are mathematically
equivalent. To get better and better accuracy in numerical integration procedures we thus need denser and denser globally
over the whole sphere equidistributed data sets. On the other hand, observations in sufficient data width and quality are
only available for certain parts of the Earth’s surface, andthere are large areas, particularly at sea, where no data aregiven
at all (cf. Figure 1). In fact, it should be noted that terrestrial gravity data coverage now and in the foreseeable futureis far
from being satisfactory and totally inadequate for the purpose of high precision geoid determination atglobalscale.

Looking at the key aspects in constructive approximation ofgravity field determination we are confronted with the
following situation: Almost70% of the Earth’s gravity field is smooth. Its modeling by polynomial structures, i.e., spherical
harmonics, is the appropriate tool. But what is about the remaining parts that certainly are of more geophysical and geodetic
relevance, today? Because of the lack of terrestrial data, trial functions with global support seem to be an inadequate
choice for understanding these geoscientifically significant parts in the ‘system Earth’. Even more, globally supported
approximation structures such as spherical harmonics applied to a heterogeneous data set, e.g., the Earth’s gravity anomalies
(see Figure 1) also influence large areas in negative way, where a sufficiently high accuracy has already been obtained by a
fewer equidistributed number of data.

Fig. 1: Data density and distribution of scalar gravity (dueto [37]).

Nowadays there are two ways out for modeling the Earth’s gravity field: thefirst oneis to use spaceborne data (for exam-
ple, collected by the satellites CHAMP, GRACE, and GOCE). They, indeed give, the opportunity of globally measured and
suitably (equi-)distributed data sets (cf. [4], [5], [6], [9]). The critical point, however, is that satellite data areexponentially
smoothed with respect to the altitude, hence, they are of lower quality in comparison with terrestrial ones. Satellite-only
models based on global datasets are reliable only to a maximum level of accuracy. Nevertheless, the determination of the
Earth’s gravitational field based on spaceborne observations is a great challange for future geoscientific research (cf. [37]).
The second oneis to use high-precision terrestrial data in their actual heterogeneous distribution and to apply a locally
adaptive approximation method. From mathematical point ofview this requires a careful analysis involving a ‘zooming-in’
procedure based on locally supported trial structures suchas wavelets.

The layout of this paper is as follows: First we are concernedwith the idea of calculating globally reflected integral
representations of the disturbing potential by locally oriented ‘zooming-in’ approximations adaptive to the actual terrestrial
data width and distribution. In other words, classical global methods of gravity field determination are formulated in terms
of modern local (isotropic) multiscale framework. Essential tools are regularizations of the Green, Neumann, and Stokes
integral expressions derived by potential theoretical means. It is shown, that the Green, Neumann, and Stokes kernel,
respectively, provide us with so-called Green, Neumann, and Stokes scaling functions. Correspondingly, locally supported
wavelets are definable for adaptive (local) multiscale approximation. Finally, the efficiency of our methods is illustrated by
some test examples, showing the gravity disturbation caused by plumes in the area of Hawaii and Iceland.

2 Gravity Anomalies and Gravity Potential

Thegravity acceleration (gravity)w is the resultant of gravitationv and centrifugal accelerationc

w = v + c. (1)

The centrifugal forcec arises as a result of the rotation of the Earth about its axis.We assume here a rotation of constant
angular velocityω about the rotational axisε3 = (0, 0, 1)T , which is further assumed to be fixed with respect to the Earth.
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Fig. 2: Gravitationv, centrifugal accelerationc, gravity accelerationw.

The centrifugal acceleration acting on a unit mass is directed outward perpendicularly to the spin axis (see Figure 2). If the
ε3-axis of an Earth’s fixed coordinate system coincides with the axis of rotation, then we have

c(x) = −ω2ε3 ∧ (ε3 ∧ x). (2)

Using the so–calledcentrifugal potential

C(x) =
ω2

2
|ε3 ∧ (ε3 ∧ x)|

=
ω2

2

(

(x · ε1)2 + (x · ε2)2
)

=
ω2

2
(x2

1 + x2
2) (3)

we can writec = ∇C. Applying the Laplace operator gives us∆C = 2ω2, thus, the functionC is not harmonic.
The direction of the gravityw is known as the direction of theplumb line, the quantityg = |w| is called thegravity intensity
(often just (scalar)gravity). Thegravity potential of the Earthcan be expressed as the sum of the gravitational potentialV
and the centrifugal potentialC, i.e.,

W = V + C. (4)

The gravity accelerationw is given by

w = ∇W = ∇V + ∇C. (5)

The surfaces of constant gravity potentialW (x) = const, x ∈ R
3, are designated asequipotential (level,or geopotential)

surfaces of gravity(for more details see, e.g., [14], [16], [39]).
In an Earth’s fixed coordinate system the centrifugal potential C is explicitly known. Hence, the determination of equipo-
tential surfaces of the gravity potentialW is strongly related to the knowledge of the gravitational potentialV . Equipotential
surfaces (see Figure 2) intuitively express the notion of tangential surfaces, as they are normal to the plumb lines given by
the direction of the gravity vector.

plumb line

level surface

ν(x)

w(x)

x

Fig. 3: Level surface and plumb line.
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According to the classical Newton Law of Gravitation (1687), knowing the density distributionρ of a body, the gravita-
tional potential can be computed everywhere inR

3. More explicitly, the gravitational potentialV of the Earth’s exterior is
given by

V (x) = G

∫

Earth

ρ(y)

|x − y| dV (y), x ∈ R
3\Earth, (6)

whereG is the gravitational constant (G = 6.6742 · 10−11m3 kg−1 s−2, for more details see, e.g., [14], [16], [39]). In

consequence, the properties of the gravitational potential (6) in the Earth’s exterior are easily described as follows:

∆V (x) = 0, x ∈ R
3\Earth. (7)

0

y

x
|x|
2

Fig. 4: Regularity at infinity.

Moreover, the gravitational potentialV is regular at infinity, i.e.,

|V (x)| = O

(

1

|x|

)

, |x| → ∞,

|∇V (x)| = O

(

1

|x|2
)

, |x| → ∞. (8)

Note that, for suitably large values|x| (see Figure 4), we have|y| ≤ 1
2 |x|, hence,|x − y| ≥ ||x| − |y|| ≥ 1

2 |x|. Clearly, the
gravitational fieldv = ∇V fulfills the following identities:

L · ∇V (x) = 0, ∇ · ∇V (x) = ∆V (x) = 0, (9)

x ∈ R
3\Earth. However, the problem is that in reality the density distributionρ is very irregular and known only for parts

of the upper crust of the Earth. It is actually so that we wouldlike to know it from measuring the gravitational field.

Equipotential surfaces of the gravity potentialW allow in general no simple representation. This is the reason why a
reference surface, in physical geodesy usually an ellipsoid of revolution, is chosen for the (approximate) construction of
the geoid. As a matter of fact, the deviations of the gravity field of the Earth from the normal field of such an ellipsoid are
small. The remaining parts of the gravity field are gathered in a so–calleddisturbing gravity field∇T corresponding to the
disturbing potentialT . Knowing the gravity potential, all equipotential surfaces – including the geoid – are given by an
equation of the formW (x) = const. By introducingU as the normal gravity potential corresponding to the ellipsoidal field
andT as the disturbing potential (for more details see, e.g., [14], [16], [39]) we are led to a decomposition of the gravity
potential in the form

W = U + T. (10)

In accordance with the Pizzetti concept (see, e.g., [33], [34]) we may assume that

(1) the center of the ellipsoid coincides with the center of the gravity of the Earth,

(2) the difference of the mass of the Earth and the mass of the ellipsoid is zero.

Consequently, following the classical approach (see, e.g., [16], [28]), T is given in such a way that
∫

ΩR

T (x) dω(x) = 0, (11)
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∫

ΩR

T (x)(εk · x) dω(x) = 0, k = 1, 2, 3. (12)

A point x of the geoid is projected onto the pointy of the ellipsoid by means of the ellipsoidal normal (see Figure 5).
The distance betweenx andy is called thegeoidal height, or geoidal undulation.

Thegravity anomaly vectoris defined as the difference between the gravity vectorw(x) and the normal gravity vector
u(y), u = ∇U , i.e.,

α(x) = w(x) − u(y). (13)

It is also possible to form the difference between the vectors w andu at the same pointx to get thegravity disturbance
vector

δ(x) = w(x) − u(x). (14)

Of course, several basic mathematical relations between the quantities just mentioned are known. In what follows we only
describe heuristically the fundamental relations. We start by observing that the gravity disturbance vector at the point x on
the geoid can be written as

δ(x) = w(x) − u(x) = ∇(W (x) − U(x)) = ∇T (x). (15)

geoid
W=const =W0

reference

ellipsoid
U = const = W

0

y

x

w(x)

u(y)

u(x)

(x)

N(x)

’(x)

geoidal height

Fig. 5: Illustration of the definition of the gravity anomalyvectorα(x) = w(x) − u(y) and the gravity disturbance vector
δ(x) = w(x) − u(x).

Expanding the potentialU atx according to Taylor’s theorem and truncating the series at the linear term we get

U(x)
.
= U(y) +

∂U

∂ν′ (y)N(x) (16)

(
.
= means approximation in linearized sense). Here,ν′(y) is the ellipsoidal normal aty, i.e., ν′(y) = −u(y)/γ(y),

γ(y) = |u(y)|, and the geoid undulationN(x), as indicated in Figure 5, is the aforementioned distance betweenx andy,
i.e., between the geoid and the reference ellipsoid. Using

γ(y) = |u(y)| = −ν′(y) · u(y)

= −ν′(y) · ∇U(y) = −∂U

∂ν′ (y) (17)

we arrive at

N(x) =
T (x) − (W (x) − U(y))

|u(y)|

=
T (x) − (W (x) − U(y))

γ(y)
. (18)

ObservingU(y) = W (x) = const = W0 we obtain the so-calledBruns’ formula(cf. [2])

N(x) =
T (x)

|u(y)| =
T (x)

γ(y)
. (19)
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It should be noted that Bruns’ formula (19) relates the physical quantityT to the geometric quantityN .
In what follows we are interested in introducing the deflections of the vertical of the gravity disturbing potentialT . For

this purpose, let us consider the vector fieldν(x) = −w(x)/|w(x)|. This gives us the identity (withg(x) = |w(x)| and
γ(x) = |u(x)|)

w(x) = ∇W (x) = −|w(x)| ν(x) = −g(x)ν(x). (20)

Furthermore, we have

u(x) = ∇U(x) = −|u(x)| ν′(x) = −γ(x)ν′(x). (21)

The deflection of the verticalΘ(x) at the pointx on the geoid is defined to be the angular (i.e., tangential) difference
between the directionsν(x) andν′(x), i.e., the plumb line and the ellipsoidal normal through thesame point:

Θ(x) = ν(x) − ν′(x) − ((ν(x) − ν′(x)) · ν(x)) ν(x). (22)

Clearly, because of (22),Θ(x) is orthogonal toν(x), i.e.,Θ(x) · ν(x) = 0. Since the plumb lines are orthogonal to the
level surfaces of the geoid and the ellipsoid, respectively, the deflections of the vertical give briefly spoken a measureof the
gradient of the level surfaces. This aspect will be described in more detail below: From (20) we obtain, in connection with
(22),

w(x) = ∇W (x) (23)

= −|w(x)| (Θ(x) + ν′(x) + ((ν(x) − ν′(x)) · ν(x))ν(x)) .

Altogether we get for the gravity disturbance vector

w(x) − u(x) = ∇T (x) (24)

= −|w(x)| (Θ(x) + ((ν(x) − ν′(x)) · ν(x)) ν(x))

− (|w(x)| − |u(x)|) ν′(x).

The magnitude

D(x) = |w(x)| − |u(x)| = g(x) − γ(x) (25)

is called thegravity disturbance, while

A(x) = |w(x)| − |u(y)| = g(x) − γ(y) (26)

is called thegravity anomaly.

Since the vectorν(x) − ν′(x) is (almost) orthogonal toν′(x), it can be neglected in (24). Hence, it follows that

w(x) − u(x) = ∇T (x) (27)
.
= −|w(x)|Θ(x) − (|w(x)| − |u(x)|) ν′(x).

The gradient∇T (x) can be split into a normal part (pointing into the direction of ν(x)) and an angular (tangential) part
(characterized by the surface gradient∇∗). It follows that

∇T (x) =
∂T

∂ν
(x)ν(x) +

1

|x|∇
∗T (x). (28)

By comparison of (27) and (28) we therefore obtain

D(x) = g(x) − γ(x) = |w(x)| − |u(x)| = − ∂T

∂ν′ (x), (29)

i.e., the gravity disturbance, beside being the differencein magnitude of the actual and the normal gravity vector, is also
the normal component of the gravity disturbance vector. In addition, we are led to the angular, i.e., (tangential) differential
equation

1

|x|∇
∗T (x) = −|w(x)| Θ(x). (30)
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Since|Θ(x)| is a small quantity, it may be (without loss of precision) multiplied either by−|w(x)| or by −|u(x)|, i.e.,
−g(x) or by−γ(x).

The reference ellipsoid deviates from a sphere only by quantities of the order of the flattening. Therefore, in numerical
calculations, if we treat the reference ellipsoid as a sphere ΩR = {x ∈ R

3 | x = Rξ, R = |x|, ξ ∈ Ω}, Ω = Ω1, (with
mean radiusR as defined by, e.g., [16], [17]) this may cause a relative error of the same order (for more details the reader
is referred to standard textbooks of physical geodesy (e.g., [16], [17]). If this error is permissible, we are allowed toreplace
|u(Rξ)| by its spherical approximationGM/R2 such that

∇∗
ξT (Rξ) = −GM

R
Θ(Rξ), (31)

whereG is the gravitational constant andM is the constant of the mass. By virtue of Bruns’ formula we finally find

GM

R2
∇∗

ξN(Rξ) = −GM

R
Θ(Rξ), ξ ∈ Ω, (32)

i.e.,

∇∗
ξN(Rξ) = −R Θ(Rξ), ξ ∈ Ω. (33)

In other words, the knowledge of the geoid undulations allows the determination of the deflections of the vertical by taking
the surface gradient on the unit sphere.

From the identity (29) it follows that

− ∂T

∂ν′ (x) = D(x) = |w(x)| − γ(x) (34)

.
= |w(x)| − γ(y) − ∂γ

∂ν′ (y) N(x)

= A(x) − ∂γ

∂ν′ (y) N(x),

whereA represents the scalar gravity anomaly as defined by (26). Observing Bruns’ formula (19) we get

A(x) = − ∂T

∂ν′ (x) +
1

γ(y)

∂γ

∂ν′ (y) T (x). (35)

In well-knownspherical approximationwe have (see, e.g., [16])

γ(y) = |u(y)| =
GM

|y|2 , (36)

∂γ

∂ν′ (y) =
y

|y| · ∇γ(y) = −2
GM

|y|3 , (37)

and

1

γ(y)

∂γ

∂ν′ (y) = − 2

|y| . (38)

This leads us to the basic relations

−D(x) =
x

|x| · ∇T (x), x ∈ ΩR, (39)

and

−A(x) =
x

|x| · ∇T (x) +
2

|x|T (x), x ∈ ΩR, (40)

as so-calledfundamental equations of physical geodesy.

In the sense of physical geodesy (cf., e.g., [16]), the meaning of the spherical approximation should be carefully kept
in mind. It is used only for expressions relating to small quantities of the disturbing potential, the geoidal undulations, the
gravity disturbances, the gravity anomalies, etc. Actually, in all geodetic approaches, the reference surface will never be
understood to be a sphere in any geometrical sense, but it always is an ellipsoid (see [1] for more details). However, as the
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flattening of this ellipsoid is very small, the ellipsoidal formulas are expandable into Taylor series in terms of the flattening,
and then all terms containing higher order expressions of the flattening may be neglected. In this way together with suitable
pre-reduction processes of gravity formulas are obtained that are rigorously valid for the sphere.

It should be mentioned that, in the gravity disturbances andgravity anomalies all significantly tectonic processes become
visible (see Figures 8, 12). In accordance with Newton’s lawthe gravity disturbances and gravity anomalies permit the
conclusion of an irregular density distribution inside theEarth. Unfortunately, gravity anomalies do not determine uniquely
the interior density distribution of the Earth. Geoid undulations are the measure of the pertubations in the hydrostatic
equilibrium. They do not show essential correlations to thedistribution of the continents (see Figure 13).

3 Modeling of Gravity Disturbances, Gravity Anomalies, andDeflections of the Ver-
tical by Haar Wavelets

Wavelets enable us to break up functions into many simple pieces at different scales and positions. Thus, three features
are incorporated in this way of thinking about geodeticallyrelevant wavelets: Wavelets are ‘building blocks’ that enable
fast decorrelation of gravity data. Whenever we are interested in a multiscale analysis of local ‘fine-structure’ within a
smooth(er) global structure, wavelets are the mathematical tools of choice. They are the natural means for investigating
signals as, e.g., the gravity disturbance or the gravity anomaly, in small bounded areas out of a global context by the power
of a ’zooming-in’ process.

The wavelets are constructed by use of scaling functions (inthe jargon of functional analysis, Dirac sequences) showing
the property of tending to the Dirac kernelδ (understood in distributional sense) given by

δ(ξ · η) =

∞
∑

n=0

2n + 1

4π
Pn(ξ · η). (41)

Multiscale modeling can be performed in frequency domain based on specific features within a spherical harmonic context
(see, e.g., [7], [9], [10]). But it can also be done exclusively in space domain, and this is the approach that should be
presented here.

More formally, let{Hρj}j∈N0
be a Dirac family ofL2-scaling functions such thatHρj tends to the Dirac kernel as the

’scale’ j tends to infinity. Then the convolution

F ρj (ξ) =

∫

Ω

Hρj (ξ · η)F (η) dω(η), F ∈ L2(Ω), (42)

is aj-level approximation of F, i.e., a low-pass filtered versionof F . Moreover, the approximate identity

lim
j→∞

‖F ρj − F‖L2(Ω) = 0 (43)

can be guaranteed. In other words, as the scaling functionsHρj converge to the Dirac functional, the functionsF ρj tend to
the limit function

F (ξ) =

∫

Ω

δ(ξ · η)F (η) dω(η), F ∈ L2(Ω), (44)

(understood inL2-topology).
The wavelets{(WH)ρj}j∈N0

are nothing else than differences of two consecutive scaling functions,

(WH)ρj = Hρj+1 − Hρj , j ∈ N0, (45)

such that the detail information inF ρj+1 that is not included inF ρj is provided by

(WF )ρj (ξ) =

∫

Ω

(WH)ρj (ξ · η)F (η) dω(η), F ∈ L2(Ω). (46)

In consequence, the multiscale process is determined by twoparameters, viz. the scalej characterizing the ‘zooming-in’
width and the position ξ indicating the ‘zooming-in’ center. With increasing scalej, the
wavelets{(WH)ρj}j∈N0

extract more and more detailed information out ofF .

Clearly, there are millions of scaling functions generating difference wavelet functions. Of particular economy and effi-
ciency for purposes of numerical computation, however, arewavelet kernels given in terms of elementary functions and
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possessing a local support. But also locally supported trial functions are nothing new, having been discussed already by
Haar (1910) in one–dimensional Euclidean theory (see [15]). The spherical Haar wavelet is zero outside a small spherical
cap. In fact, Haar wavelets represent an ideal choice for locally oriented ’zooming-in’-approximationof geodetic quantities,
since signal values outside their spherical support are nottaken into account at all. Consequently, local improvements can
be guaranteed for smaller and smaller local parts with increase in accuracy, but without any deterioration of the approxi-
mated signal in all other parts outside. Note that the size ofthe local support depends on the scalej of the waveletHρj ,
i.e., with increasing scalej its diameter decreases. This is the reason why the wavelet concept allows an ideal ’zooming-in’
process to local (high frequency) phenomena.

The apparatus of (smoothed) Haar scaling and wavelet functions should be concretized: Let{ρj}j∈N0
be a sequence with

limj→∞ ρj = 0 (for example,ρj = 2−j or ρj = 1 − cos 2−jπ). The(smoothed) Haar scaling functions{Hρj}j∈N0
, are

defined by

Hρj (ξ · η) =

{

0, ρj < 1 − ξ · η ≤ 2

(k+1
2π

)ρ
−(k+1)
j (ξ · η − 1 + ρj)

k, 0 ≤ 1 − ξ · η ≤ ρj

whereξ, η are elements of the unit sphereΩ andk denotes a (fixed) polynomial degree. Note, that the smoothedHaar
scaling functionHρj occurs to be rotationally invariant, i.e., it is a so-calledzonal function. Correspondingly, thesmoothed
Haar wavelets(WH)ρj , are defined as the difference of two consecutive scaling functions, i.e.

(WH)ρj = Hρj+1 − Hρj , j ∈ N0. (47)

Due to its definition as zonal function the Haar wavelet has a spherical cap as local support onΩ, i.e.,

Sρj (ξ) = supp (WH)ρj (ξ·) = {η ∈ Ω|1 − ξ · η ≤ ρj}. (48)

Explicitly written out, the Haar wavelets (see Figure 7) read as follows

(WH)ρj (ξ · η) =































0, ρj < 1 − ξ · η ≤ 2

−(k+1
2π

)ρ
−(k+1)
j (ξ · η − 1 + ρj)

k, ρj+1 < 1 − ξ · η ≤ ρj

(k+1
2π

)
(

ρ
−(k+1)
j+1 (ξ · η − 1 + ρj+1)

k

−ρ
−(k+1)
j (ξ · η − 1 + ρj)

k
)

, 0 ≤ 1 − ξ · η ≤ ρj+1.

scalej = 3, k = 0, 2, 3, 5 scalej = 0, 1, 2, 3, k = 5

Fig. 6: Illustration of the smoothed Haar wavelets (ρj = 2−j).

Fig. 7: Illustration of the smoothed Haar wavelet on the sphere (ρj = 2−j , j = 2, 3, 4, k = 5).
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Fig. 8: The gravity disturbanceD.

Note, that the degreek regulates the order of differentiability, i.e., the chosensmoothness property of the Haar kernel.

4 Modeling of the Disturbing Potential from Gravity Disturb ances by Neumann Wavelets

Since the disturbing potentialT (see Figure 9) is a harmonic function in the exteriorΩext
R of the sphereΩR around the

origin with a radiusR, we are confronted with a boundary value problem of potential theory to determineT in Ωext
R from

prescribed gravity disturbanceD or gravity anomalyA, respectively. Moreover, it should be noted that, at the present state
of practice, much more gravity anomalies are available thangravity disturbances. In future, because of GPS-technology,
it may be expected that the gravity disturbances become moreimportant than the gravity anomalies (for more details see,
e.g., [17]). This is the reason why both problems will be discussed here.

The determination of the disturbing potentialT in the outer spaceΩext
R of ΩR, from known gravity disturbancesD on

ΩR (see Figure 8), leads us to the Neumann (type) boundary valueproblem:

(Modified) Exterior Neumann Problem (ENP):We are givenD ∈ C(0)(ΩR) with

∫

ΩR

D(x) dω(x) = 0 (49)

and
∫

ΩR

D(x)(εk · x) dω(x) = 0, k = 1, 2, 3. (50)

Then the functionT : Ωext
R → R given by

T (x) =
1

4πR

∫

ΩR

N(x, y)D(y) dω(y) (51)

with theNeumann kernel functionN : Ωext
R × Ωext

R → R

N(x, y) =
2R

|x − y| + ln

( |x| + |x − y| − R

|x| + |x − y| + R

)

(52)

is the unique solution of the exterior Neumann boundary value problem:

(i) T is continuously differentiable inΩext
R and twice continuously differentiable inΩext

R , i.e.,
T ∈ C(1)(Ωext

R ) ∩ C(2)(Ωext
R ),

(ii) T is harmonic inΩext
R , i.e.,∆T = 0 in Ωext

R ,

(iii) T is regular at infinity, i.e.,

|T (x)| = O
(

1
|x|

)

, |∇T (x)| = O
(

1
|x|2
)

as|x| → ∞,
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Fig. 9: The disturbing potentialT .

(iv)
∫

ΩR
T (x) dω(x) = 0

and
∫

ΩR
T (x)(εk · x) dω(x) = 0, k = 1, 2, 3.

(v) − x
|x| · ∇T (x) = D(x), x ∈ ΩR.

For pointsx, y ∈ ΩR we (formally) get the so–calledNeumann formulawhich is an improper integral overΩR

T

(

Rx

|x|

)

=
1

4πR

∫

ΩR





√
2

√

1 − x
|x| ·

y
|y|

+ ln





√

2 − 2 x
|x| ·

y
|y|

2 +
√

2 − 2 x
|x| ·

y
|y|







D

(

Ry

|y|

)

dω(y).

Note that the surface integral (53) indeed has to be extendedover the whole surface. In accordance with our approach it is
valid under the following assumptions: (i) the mass within the reference ellipsoid is equal to the mass of the Earth, (ii)the
potential of the geoid and the reference ellipsoid are equal, (iii) the center of the reference ellipsoid is coincident with the
center of the Earth, (iv) there are no masses outside, (v) theapproximation is simplyfied in spherical sense.

The identity (53) formulated in an equivalent way over the unit sphereΩ yields

T (Rξ) =
R

4π

∫

Ω

N(ξ · η)D(Rη) dω(η), ξ ∈ Ω (53)

where theNeumann kernelis given by

N(ξ · η) =

√
2√

1 − ξ · η − ln

(

1 +

√
2√

1 − ξ · η

)

, 1 − ξ · η 6= 0. (54)

Note that

N(Rξ, Rη) = N(ξ · η), ξ, η ∈ Ω. (55)

The essential idea now is that the improper integral (53) canbe regularized, e.g., by replacing the zonal kernel

S(ξ · η) =

√
2√

1 − ξ · η , 1 − ξ · η 6= 0, (56)

by the space–regularized zonal kernel (see Figure 10)

Sρ(ξ · η) =























R

ρ

(

3 − 2R2

ρ2
(1 − ξ · η)

)

, 0 ≤ 1 − ξ · η ≤ ρ2

2R2

√
2√

1 − ξ · η , ρ2

2R2 < 1 − ξ · η ≤ 2.
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Fig. 10: The kernelϑ 7→ Sρ(cosϑ) (57) for severalρ.

This leads us to the following space–regularized representation of the disturbing potential (see Figure 9) in terms of
known gravity disturbances onΩR

T ρ(Rξ) =
R

4π

∫

1−ξ·η>
ρ2

2R2

√
2√

1 − ξ · ηD(Rη) dω(η)

− R

4π

∫

1−ξ·η> ρ2

2R2

ln

(

1 +

√
2√

1 − ξ · η

)

D(Rη) dω(η)

+
R

4π

∫

1−ξ·η≤ ρ2

2R2

R

ρ

(

3 − 2R2

ρ2
(1 − ξ · η)

)

D(Rη) dω(η)

− R

4π

∫

1−ξ·η≤ ρ2

2R2

ln

(

1 +
R

ρ

(

3 − 2R2

ρ2
(1 − ξ · η)

))

D(Rη) dω(η).

In other words, a low–pass filtered version ofT is given by

T ρ(Rξ) =
R

4π

∫

Ω

Nρ(ξ · η)D(Rη) dω(η), (57)

where the regularized Neumann kernel reads as follows

Nρ(ξ · η) = Sρ(ξ · η) − ln(1 + Sρ(ξ · η)), ξ, η ∈ Ω. (58)

Note thatt 7→ Sρ(t), t ∈ [−1, 1], given by

Sρ(t) =























R

ρ

(

3 − 2R2

ρ2
(1 − t)

)

, 0 ≤ 1 − t ≤ ρ2

2R2

√
2√

1 − t
, ρ2

2R2 < 1 − t ≤ 2

is continuously differentiable. Moreover, we have (cf. Figure 11)

S

(

1 − ρ2

2R2

)

= Sρ

(

1 − ρ2

2R2

)

(59)

and

S′
(

1 − ρ2

2R2

)

= (Sρ)′
(

1 − ρ2

2R2

)

. (60)
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1−ρ2/(2R2)

21/2

2R/ρ

3R/ρ

S(t)

Sρ(t)

0 1−1

1

t

Fig. 11: The functionsS andSρ on the intervall[−1, 1) and[−1, 1], respectively.

Furthermore,S andSρ are monotonically increasing with

S(t) ≥ Sρ(t) ≥ 1 (61)

for all t ∈ [−1, 1). Furthermore,

S(t) − Sρ(t) =

{ √
2√

1−t
− R

ρ

(

3 − 2R2

ρ2 (1 − t)
)

, 0 < 1 − t ≤ ρ2

2R2

0, ρ2

2R2 < 1 − t ≤ 2.

Elementary calculations give

∫ +1

−1

|S(t) − Sρ(t)| dt =

∫ 1

1− ρ2

2R2

(S(t) − Sρ(t)) dt

= O(ρ) (62)

asρ → 0, hence, it follows that

lim
j→∞

∫ +1

−1

|S(t) − Sρj (t)| dt = 0. (63)

Observing the properties of the functionsS andSρ we find

| ln(S(t)) − ln(Sρ(t))| ≤ |S(t) − Sρ(t)| (64)

and

|ln(1 + S(t)) − ln(1 + Sρ(t))| ≤ 1

2
|S(t) − Sρ(t)| . (65)

Consequently, we have
∫

Ω

|ln(1 + S(ξ · η)) − ln(1 + Sρ(ξ · η))| dω(η) = O(ρ). (66)

SinceD(R·) : Ω → R is continuous and, therefore, uniformly bounded onΩR, we finally obtain in connection with (66)

lim
j→∞

sup
ξ∈T

|T (Rξ) − T ρj(Rξ)| = lim
j→∞

sup
ξ∈T

R

4π

∣

∣

∣

∣

∫

Ω

(N(ξ · η) − Nρj (ξ · η))D(Rη) dω(η)

∣

∣

∣

∣

= 0

for all subsetsT ⊂ Ω, provided that{ρj}j∈N0
is a sequence withlim

j→∞
ρj = 0.

Corresponding to the sequence{Nρj}j∈N0
of Neumann scaling functionsNρj given by

Nρj (ξ · η) =

{

Sρj (ξ · η) − ln(1 + Sρj (ξ · η)), 0 ≤ 1 − ξ · η ≤ ρ2
j

2R2

S(ξ · η) − ln(1 + S(ξ · η)),
ρ2

j

2R2 < 1 − ξ · η ≤ 2,
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we introduce the sequence{(WN)ρj}j∈N0
of Neumann waveletsgiven by

(WN)ρj (ξ · η) = Nρj+1 (ξ · η) − Nρj (ξ · η), ξ, η ∈ Ω. (67)

Written out their representations read as follows

(WN)ρj (ξ · η) =



































Sρj+1(ξ · η) − ln(1 + Sρj+1(ξ · η))

−Sρj(ξ · η) + ln(1 + Sρj (ξ · η)), 0 ≤ 1 − ξ · η ≤ ρ2
j+1

2R2

S(ξ · η) − ln(1 + S(ξ · η))

−Sρj(ξ · η) + ln(1 + Sρj (ξ · η)),
ρ2

j+1

2R2 < 1 − ξ · η ≤ ρ2
j

2R2

0,
ρ2

j

2R2 < 1 − ξ · η ≤ 2.

In other words,(ξ, η) 7→ (WN)ρj (ξ · η), ξ, η ∈ Ω, is a zonal function (dependent only on the scalar productξ · η of two
unit vectorsξ andη). The function has the local support

Sρj (ξ) = supp (WN)ρj (ξ·) =

{

η ∈ Ω|1 − ξ · η ≤
ρ2

j

2R2

}

. (68)

Clearly, for increasingj the local support of the Neumann wavelets becomes smaller and smaller such that a ‘zooming-
in’ calculation can be assured for locally distributed gravity disturbances (without globally violating Weyl’s law ofequidis-
tribution).

5 Modeling of the Disturbing Potential from Gravity Anomali es by Stokes Wavelets

The determination of the disturbing potentialT onΩext
R from known gravity anomaliesA onΩR (see Figure 12) leads us

to the Stokes boundary value problem.

Fig. 12: Gravity anomaliesA.

Exterior Stokes Problem (ESP):
We are givenA ∈ C(0)(ΩR) with

∫

ΩR

A(x) dω(x) = 0 (69)

and
∫

ΩR

A(x)(εk · x) dω(x) = 0, k = 1, 2, 3. (70)



15

Then the functionT : Ωext
R → R given by

T (x) =
1

4πR

∫

ΩR

A(y)St(x, y) dω(y) (71)

with theStokes kernel function (briefly called Stokes kernel)

St(x, y) =
R

|x| +
2R

|x − y| −
5R2

|x|2
x

|x| ·
y

|y| −
3R

|x|2 |x − y| (72)

− 3
R2

|x|2
x

|x| ·
y

|y| ln

(

|x| − R x
|x| ·

y
|y| + |x − y|

2|x|

)

is the unique solution of the exterior Stokes boundary valueproblem (see, e.g., [16]):

(i) T is continuously differentiable inΩext
R and twice continuously differentiable inΩext

R , i.e.,
T ∈ C(1)(Ωext

R ) ∩ C(2)(Ωext
R ),

(ii) T is harmonic inΩext
R , i.e.,∆T = 0 in Ωext

R ,

(iii) T is regular at infinity,

(iv)
∫

ΩR
T (x) dω(x) = 0,

and
∫

ΩR
T (x)(εk · x) dω(x) = 0, k = 1, 2, 3,

(v) − x
|x| · ∇T (x) − 2

|x|T (x) = A(x), x ∈ ΩR.

For pointsx = Rξ, y = Rη ∈ ΩR we (formally) get an analogue to the Neumann formula, calledStokes’ formula,
which again represents an improper integral overΩR

T (Rξ) =
1

4πR

∫

ΩR

St(Rξ, Rη)A(Rη) dω(Rη). (73)

Equivalently we have

T (Rξ) =
R

4π

∫

Ω

St(ξ · η)A(Rη) dω(η), (74)

where

St(ξ · η) = S(ξ · η) − 6(S(ξ · η))−1 + 1 − 5ξ · η − 3ξ · η ln

(

1

S(ξ · η)
+

1

(S(ξ · η))2

)

.

Note that

St(Rξ, Rη) = St(ξ · η), ξ, η ∈ Ω. (75)

From Bruns’ formula

N(Rξ) = T (Rξ)
R2

GM
(76)

we get the geodial undulations (see Figure 13).
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Fig. 13: Geoidal undulationsN .

Again, the improper integral (74) can be regularized, e.g.,by replacing the zonal kernelS (see (56)) by the space–
regularized zonal kernelSρ (see (57)).

In fact, the regularization (57) leads us to the following regularized global representation of the disturbing potential
corresponding to gravity anomalies as boundary data

T ρ(Rξ) =
R

4π

∫

Ω

Stρ(ξ · η)A(Rη) dω(η) (77)

with (see Figure 12)

Stρ(ξ · η) = Sρ(ξ · η) − 6(S(ξ · η))−1 + 1 − 5ξ · η − 3ξ · η ln

(

1

Sρ(ξ · η)
+

1

(Sρ(ξ · η))2

)

. (78)

The integrands ofT (Rξ) andT ρ(Rξ) differ only on the spherical capSρ(ξ) = {η ∈ Ω
∣

∣1 − ξ · η ≤ ρ2

2R2 }. Here we have

St(ξ · η) − Stρ(ξ · η) = (S(ξ · η) − Sρ(ξ · η)) − 3ξ · η ln

(

1

S(ξ · η)
+

1

(S(ξ · η))2

)

+3ξ · η ln

(

1

Sρ(ξ · η)
+

1

(Sρ(ξ · η))2

)

.

Now it follows that for allt ∈ [−1, 1) with 1 − t ≤ ρ2

2R2

ln

(

1

S(t)
+

1

(S(t))2

)

− ln

(

1

Sρ(t)
+

1

(Sρ(t))2

)

(79)

= ln (1 + S(t)) − ln(1 + Sρ(t)) − 2 (ln (S(t)) − ln(Sρ(t))) .

Furthermore, by use of the already known properties of the functionsS andSρ on [−1, 1) we get

∣

∣

∣

∣

ln

(

1

S(t)
+

1

(S(t))2

)

− ln

(

1

Sρ(t)
+

1

(Sρ(t))2

)∣

∣

∣

∣

= O(|S(t) − Sρ(t)|). (80)

In connection with (62) we therefore find

lim
ρ→0

sup
ξ∈T

|T (Rξ) − T ρ(Rξ)| = 0 (81)

for every subsetT ⊂ Ω.
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Fig. 14: The regularized Stokes kernelϑ 7→ Stρ(cos ϑ) for severalρ.

Next we consider theStokes scaling function{Stρj}j∈N0
. Correspondingly, theStokes wavelets{(WSt)ρj}j∈N0

are given
by

(WSt)ρj (ξ · η) = (St)ρj+1 (ξ · η) − (St)ρj (ξ · η), ξ, η ∈ Ω. (82)

In other words,(ξ, η) 7→ (WSt)ρj (ξ ·η), ξ, η ∈ Ω, is a zonal function with local supportSρj (ξ). Its explicit representation
reads as follows

(WSt)ρj (ξ · η) =











































Sρj+1(ξ · η) − 3ξ · η ln
(

1
S

ρj+1 (ξ·η)
+ 1

(Sρj+1 (ξ·η))2

)

−Sρj(ξ · η) + 3ξ · η ln
(

1
S

ρj (ξ·η)
+ 1

(Sρj (ξ·η))2

)

, 0 ≤ 1 − ξ · η ≤ ρ2
j+1

2R2

S(ξ · η) − 3ξ · η ln
(

1
S(ξ·η) + 1

(S(ξ·η))2

)

−Sρj(ξ · η) + 3ξ · η ln
(

1
S

ρj (ξ·η)
+ 1

(Sρj (ξ·η))2

)

,
ρ2

j+1

2R2 < 1 − ξ · η ≤ ρ2
j

2R2

0,
ρ2

j

2R2 < 1 − ξ · η ≤ 2.

It should be pointed out that all integrals involving Stokeswavelet functions have not to be extended over the whole
sphere. Instead the integral have to be taken over the scale dependent capsSρj (ξ). Again, a ‘zooming-in’ procedure to
more and more local areas is easily implementable.

6 Modeling of the Disturbing Potential from Deflections of the Vertical by Green
Wavelets

The (unique) solutionT of the differential equation for the surface gradient

∇∗
ξT (Rξ) = −GM

R
Θ(Rξ), ξ ∈ Ω, (83)

satisfying
∫

Ω

T (Rξ) dω(ξ) = 0, (84)

∫

Ω

T (Rξ)(ξ · εk) dω(ξ) = 0, k = 1, 2, 3, (85)

can be formulated in terms of Green’s function with respect to the Beltrami operator [8], [10] given by

G(ξ · η) = 1 + ln

(

1

(S(ξ · η))2

)

, 1 − ξ · η 6= 0, (86)

as follows

T (Rξ) =
GM

4πR

∫

Ω

∇∗
ηG(ξ · η) · Θ(Rη) dω(η), ξ ∈ Ω. (87)
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An easy calculation yields

∇∗
ηG(ξ · η) = ∇∗

η(1 − 2 ln(S(ξ · η))) (88)

= −2
S′(ξ · η)

S(ξ · η)
(ξ − (ξ · η)η)

= −1

2
(S(ξ · η))2(ξ − (ξ · η)η).

Thus it follows that

T (Rξ) =
R

4π

∫

Ω

g(ξ, η) · Θ(Rη) dω(η), (89)

where

g(ξ, η) = −GM

2R2
(S(ξ · η))2 (ξ − (ξ · η)η) , ξ, η ∈ Ω. (90)

ReplacingS by Sρ we get as regularizationT ρ of T corresponding to deflections of the vertical as data set

T ρ(Rξ) =
R

4π

∫

Ω

gρ(ξ, η) · Θ(Rη) dω(η), (91)

where

gρ(ξ, η) = −GM

2R2
(Sρ(ξ · η))2(ξ − (ξ · η)η), ξ, η ∈ Ω. (92)

From the properties known forS andSρ we are able to derive that

∫

Ω

(

(S(ξ · η))2 − (Sρ(ξ · η))2
)

(ξ − (ξ · η)η) · Θ(Rη) dω(η)

=

∫

1− ρ2

2R2 ≤ξ·η≤1

(

(S(ξ · η))2 − (Sρ(ξ · η))2
)

·
√

1 − (ξ · η)2 · ξ − (ξ · η)η

|ξ − (ξ · η)η| · Θ(Rη) dω(η)

= O(ρ) (93)

provided thatΘ(R·) is a continuous vector field onΩ. Consequently, we have

lim
ρ→0

sup
ξ∈T

|T (Rξ) − T ρ(Rξ)| = 0 (94)

for all subsetsT ⊂ Ω.

Corresponding to theGreen (vector) scaling functions{gρj}j∈N0
we are able to introduce theGreen wavelets{(Wg)ρj}j∈N0

as follows

(Wg)ρj (ξ, η) = gρj+1(ξ, η) − gρj (ξ, η), ξ, η ∈ Ω. (95)

In explicit representation we have

(Wg)ρj (ξ, η) =































−GM
2R2 (Sρj+1 (ξ · η))2(ξ − (ξ · η)η)

+GM
2R2 (Sρj (ξ · η))2(ξ − (ξ · η)η), 0 ≤ 1 − ξ · η ≤ ρ2

j+1

2R2

−GM
2R2 (S(ξ · η))2(ξ − (ξ · η)η)

+GM
2R2 (Sρj (ξ · η))2(ξ − (ξ · η)η),

ρ2
j+1

2R2 < 1 − ξ · η ≤ ρ2
j

2R2

0,
ρ2

j

2R2 < 1 − ξ · η ≤ 2.

A reconstruction of the disturbing potentialT with Green scaling functions and wavelets is shown in Figure15.
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+

Low pass filtering with scaleJ0 = 6

+

Band pass filtering with scalej = 6

+

Band pass filtering with scalej = 7

+

Band pass filtering with scalej = 8

+

Band pass filtering with scalej = 9

+

Band pass filtering with scalej = 10

+

Band pass filtering with scalej = 11

=

Low pass filtering with scaleJ = 12

Fig. 15: Reconstruction of the potentialT in m2s−2 from vertical deflections in the Hawaiian region using Greenwavelets.
A rough low pass filtering at scale 6 is improved with several band pass filters of scale 6,...,11. The last illustration shows
the approximation ofT at scaleJ = 12.
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7 Multiscale Approximation

Let {Φρj}j∈N0
be one of the scaling functions introduced in this paper (i.e., the Green, Haar, Neumann, or Stokes scaling

function). Let us, as usual, denote by{(WΦ)ρj}j∈N0
the associated wavelet function, i.e.,

(WΦ)ρj = Φρj+1 − Φρj , j ∈ N0. (96)

Let X(R·) : Ω → R denote one of the associated (geodetic) quantities occuring in the integral representations (i.e., in the
aforementioned order, deflection of the vertical, (observed) signal, gravity disturbance, gravity
anomaly).

Summarizing our results we are led to the following ’zooming-in’ scheme of multiscale approximation.

Step 1:First we guarantee a ‘rough’ global (initial) approximation by low pass filtering against the kernelΦρJ0 in form
of a convolution integral

XρJ0 (Rξ) =
R

4π

∫

Ω

ΦρJ0 (ξ · η)X(Rη) dω(η). (97)

Step 2: A first improvement of this rough approximationXρJ0 (Rξ) by detail information at scaleJ0 is provided by
adding the band pass filtered version(WX)ρJ0 given by

(WX)ρJ0 (Rξ) =
R

4π

∫

Ω

(WΦ)ρJ0 (ξ · η)X(Rη) dω(η). (98)

This yields the approximation of scaleJ0 + 1

XρJ0+1(Rξ) = XρJ0 (Rξ) + (WX)ρJ0 (Rξ). (99)

As already pointed out,(WX)ρJ0 (Rξ) is the difference between two smoothings. This expression contains the detail
information ofXρJ0+1(Rξ), that is not contained inXρJ0 (Rξ).

In adaptation to the data situation a (local) ‘zooming-in’ process gives us the functions(WX)ρJ0 (Rξ), . . . , (WX)ρJ0+k(Rξ).
This yields the (local) approximation of scaleJo + k + 1

XρJ0+k+1(Rξ) = XρJ0 (Rξ) +

k
∑

l=0

(WX)ρJ0+l(Rξ). (100)

Of course, the numerical evaluation requires the application of approximate integration formulas forj = J0, . . . , J0 + k

Xρj (Rξ) ≃ R

4π

Nj
∑

k=1

w
Nj

k Φρj (ξ · ηNj

k )X(Rη
Nj

k ), (101)

and

(WX)ρj (Rξ) ≃ R

4π

Nj
∑

k=1

w
Nj

k (WΦ)
ρj (ξ · ηNj

k )X(Rη
Nj

k ), (102)

where the summation (102) has to be extended over the scale dependent capSρj (the symbol≃ means that error between
the right and left side can be neglected). Obviously, for theevery subsetT ⊂ Ω the reconstruction formula

sup
ξ∈T

∣

∣

∣

∣

∣

X(Rξ) − XρJ0 (Rξ) −
∞
∑

l=0

(WX)ρJ0+l(Rξ)

∣

∣

∣

∣

∣

= 0 (103)

holds true. The reconstruction (’zooming-in’ procedure) is illustrated by the following scheme.

(WX)ρJ0 (WX)ρJ0+1

ց ց
XρJ0 −→ ⊕ −→ XρJ0+1 −→ ⊕ −→ XρJ0+2 . . .

In consequence, an efficient and economical method based on regularization in space domain has been found for deter-
mining globally reflected geodetic quantities of classicalphysical geodesy from locally available data sets.
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Fig. 16: Conjectured plume configuration for the Hawaiian area (from [45]).

8 Numerical Application: Plume Anomalies

Finally the multiscale techniques presented here will be used to investigate gravity anomalies caused by plumes. Due to
their local nature we have to use high resolution gravity data, and the ’zooming-in’ approximation as presented here is of
great significance. Especially the locally compact (isotropic) smoothed Haar wavelet turns out to be an essential tool of
scalar and vectorial multiscale decomposition of gravity disturbances, gravity anomalies, and deflections of the vertical,
respectively. As case studies, two prototypes of plumes arechosen, namely the oceanic mid-plate Hawaiian plume and the
ridge-centered Iceland plume. They will be discussed in more detail.

Hawaiian Plume - Topographic Description
In global plate tectonics, hotspots and seamount chains areunderstood as fundamental components nowadays. A stationary
mantle plume located beneath the Hawaiian islands is believed to be responsible for the creation of the Hawaii-Emperor
seamount chain, while the oceanic lithosphere continuously passed over it. The
Hawaii-Emperor chain (see Figure 16) consists of about 100 volcanic islands, atolls, and seamounts that spread nearly
6000 km from the active volcanic island of Hawaii to the 75-80Ma (million years) old Emperor seamounts nearby the
Aleutian trench. With moving further south-east along the island chain, the geological age decreases. The interesting
area is the relatively young south-eastern part of the chain, situated on the Hawaiian swell, a 1200 km broad anomalously
shallow region of the ocean floor, extending from the island of Hawaii to the Midway atoll. Here a distinct geoid anomaly
occurs that has its maximum around the youngest island that coincides with the maximum topography and both decrease
in north-west direction.
The progressive decrease in terms of the geological age is believed to result from the continuous motion of the underlaying
plate or, to be more specific, from the motion of the pacific lithosphere over a stationary mantle plume beneath the youngest
island (cf. [29], [30], [43]).
This plume is supposed to have its origin in the lower mantle (see [21], [29]) or even rise from the core mantle boundary
(cf. [38]). The excess temperature of the plume is assumed tobe more than200◦C and the hot mantle material is expected
to run from the origin up to the upper mantle in a narrow stem with a radius of about 100-200 km (see [31]). With seismic
tomography several features of the Hawaiian mantle plume are detected (cf. [35]). The results deliver a so-called low
velocity zone (LVZ) beneath the lithosphere, starting at a depth of about 130-140 km, beneath the central part of the island
of Hawaii. This LVZ is interpreted as an indication for a partial melting zone localized inside the plume conduit. So-called
P receiver functions suggested an 40 km large uplift in the mantle transition zone at a depth of 660 km, caused by the
rising mantle plume. An in north-west direction increasingshallow of the oceanic lithosphere was obtained withS receiver
functions, that have been interpreted to suggest a thermal rejuvenation of the lithosphere caused by the Hawaiian mantle
plume. The interested reader may be referred to [35] and the references therein.

Dataset and Implementation
The gravity data used for our numerical computation represent the gravity anomalies around the islands of Hawaii. Be-
cause of the lack of terrestrial-only data, we used the combined gravity model EIGEN-GL04C consisting of satellite data,
gravimetry, and altimetry surface data. The dataset used tocalculate the gravity anomalies was provided by the GFZ-
Potsdam. The sequenceρj = 2−j is chosen for gravity anomaly modeling and a smoothed Haar kernel of a polynomial
degree ofk = 5 turned out to be advantageous for our purposes. Since the kernel function has local support we can restrict
our considerations to the local area of interest. So the illustrations are calculated on a350×350 pointgrid around the island
of Hawaii, taken from a5000 × 5000 longitute-latitude grid (of type [3]). The scalar and vectorial solutions are shown in
Figure 17 and Figure 18.

In the multiscale analysis several interesting observations can be detected. By comparing the different positionsξ and
different scalesj, we can see that the local maximum of the energy, that corresponds to the the wavelet variances (see [11],
[27]), contained in the signal of the gravity anomalies starts in the north-west of the Hawaiian islands for scale 2 and travels
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Band pass filtering with
scalej = 6

+
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Fig. 17: Approximation of the gravity anomaliesA in ms−2 of the Hawaiian region with smoothed Haar wavelets. A rough
low pass filtering at scale 6 is improved with several band pass filters of scale 6,...,11.

in south-east direction with increasing scale. It ends up, for scaleJ = 12, in a position at the geologically youngest island
under which the mantle plume is assumed to exist. Again, in the multiresolution property with increasing scale, more and
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more local details of the gravity anomalies appear. The structure of the Hawaiian island chain is clearly reflected in the
scale and space decomposition, as discovered in the global multiscale analysis. Obviously, the energy peak observed at
the youngest island of Hawaii is highly above the energy intensity of the rest of the island chain. This seems to strongly
corroborate the belief of a mantle plume just below the main island of Hawaii. Similar results are also developable from
deflections of the vertical by using Green wavelets (see Figure 15).

Iceland Plume - Topographic Description
The plume beneath Iceland is the prototype of a ridge-centered mantle plume. An interaction between the
North Atlantic ridge and the mantle plume is believed to be the reason for the existence of Iceland, resulting in melt
production and crust generation since the continental break-up in the late Palaeocene and early Eocene 58 Ma ago. Never-
theless, there is still no agreement on the location of the plume before rifting started in the east. Controversal discussions,
whether it was located under central or eastern Greenland about 62-64 Ma ago are still in progress (cf. [35]).
Iceland itself represents the top of a nearly circular rise topography, with the maximum of about 2.8 km above the surround-
ing seafloor in the South of the glacier ’Vatnajökull’. Thisglacier is the largest European one and several active volcanoes
are located beneath it, which are supposed to be feeded by a mantle plume. The surrounding oceanic crust consists of
three different types involving a crust thickness that is more than three times as thick as average oceanic crusts. Seismic
tomography provides evidence of the existence of a mantle plume beneath Iceland, resulting in low velocity zones in the
upper mantle and the transition zone, but also hints for anomalies in the deeper mantle seem to exist. The low velocity
anomalies have been detected in depths ranging from at least400 km up to about 150 km in regional P-wave models.
Above 150 km ambiguous seismic velocity structures were obtained involving regions of low velocities covered by regions
of high-seismic-velocities. Furthermore low S-wave velocities at a depth of about 80 km were indicated by special surface
wave dispersion data, as well (cf. [25]). For a deeper accessinto the theory of the Iceland plume the interested reader may
be referred to [25], [26], [35] and the references therein.

Dataset and Implementation
The gravity data decomposed here represent the gravity anomalies around Iceland. The dataset used to calculate the gravity
anomalies has the same high resolution gravity model as usedin the Hawaiian case study. Again the sequenceρj = 2−j is
chosen and the smoothed Haar kernel has a polynomial degree of k = 5. Since the kernel function has local support we can
restrict our considerations to the local area of interest. To avoid a boundary influence by the surrounding topography, which
was negligible in the Hawaiian case study, we calculate our multiscale decomposition on a larger point grid (300 × 300)
around the Iceland hotspot. So the illustration are restricted to a grid of200× 200 gridpoints around Iceland, taken from a
5000× 5000 longitude-latitude grid of type [3]. The scalar solutions are shown in Figure 19.
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Fig. 18: Approximation of the vector valued vertical deflectionsΘ of the Hawaiian region with smoothed Haar wavelets.
A rough low pass filtering at scale 6 is improved with several band pass filters of scale 6,...,11. The last picture shows the
multiscale approximation at scaleJ = 12.
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Fig. 19: Approximation of the gravity anomaliesA in ms−2 of Iceland with smoothed Haar wavelets. A rough low pass
filtering at scale 6 is improved with several band pass filtersof scale 6,...,11. The last illustration shows the multiscale
approximation at scaleJ = 12.

Some quite interesting observations can be made by looking at the multiscale analysis. In the lower scales (not shown
here) the shape and the center of the signal energy dos not vary remarkably. However, from scale 6 on, the energy analyzed
in the signal travels towards the south-west along the NorthAtlantic ridge and the center of the ’peak’ situated on Iceland
moves south-eastwards along the Greenland-Iceland-Faeroer ridge. In the high scales 9, 10, and 11 the anomaly in the
south-east dominates significantly. This anomaly located in the south-east of Iceland may be interpreted as the signal of the
mantle plume beneath Iceland. Since this anomaly clearly manifests in the high scales, its spatial extension has to be rather
small, which coincides with seismic observations, limiting the radial diameter of the upper part of mantle plumes to about
100 - 150 km.

9 Conclusions

The purpose of this paper is to demonstrate that locally (space) supported wavelets provide a powerful approximation tech-
nique for the investigation of, e.g., local fine-structuredfeatures such as those caused by plumes. The illustrations show that
the presented multiscale procedure allows a scale and spacedependent characterization of this geophysical phenomenon.
As approximate integration rules fast longitude-latitudegrids (as proposed by [3], [44]) have been used; especially in the
case study of the Hawaii plume, which has also been discussedin several papers involving seismic tomography (see, e.g.,
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[45]), we can achieve comparable results for the spatial position of the anomaly caused by the plume. In fact, the wavelet
coefficients can be interpreted as spatial measures of certain frequency bands contained in the signal. Thereby, the wavelet
theory offers an applicable physical approach for detecting plume features.

Concerning the Hawaii plume in more detail, the numerical results show us that the anomaly is located on a north-west
to south-east line below the Hawaiian islands. As the wavelength part of a signal is associated to depth we can also conclude
that the deep parts of the plume, which correspond to the lower scales, are centered below the islands Maui and Oahu. The
higher scales, corresponding to the upper part of the plume,can be localized directly below Hawaii.
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