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Abstract

We develop a framework for analyzing an executive’s own-company stockholding
and work effort preferences. The executive, characterized by risk aversion and work
effectiveness parameters, invests his personal wealth without constraint in the fi-
nancial market, including the stock of his own company whose value he can directly
influence with work effort. The executive’s utility-maximizing personal investment
and work effort strategy is derived in closed-form, and an indifference utility ra-
tionale is demonstrated to determine his required compensation. Our results have
implications for the practical and theoretical assessment of executive quality and
the benefits of performance contracting. Assuming knowledge of the company’s non-
systematic risk, our executive’s unconstrained own-company investment identifies
his work effectiveness (i.e. quality), and also reflects work effort that establishes a
base-level that performance contracting should seek to exceed.
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1 Introduction

Stemming from the agency theory fundamentals of Ross (1973), Jensen and Meckling

(1976), Holmstrom (1979) and others, there has been much concern for the ‘incentiviza-

tion’ link from equity-based executive compensation to corporate financial performance.

The associated academic literature is extensive.1 Counterpoint to past research, we con-

sider the motivation for an executive with unconstrained (unincentivized) compensa-

tion to voluntarily performance-link his personal wealth. We develop a model framework

that identifies the joint own-company stockholding and work effort strategy of a utility-

maximizing executive. The executive’s compensation is assumed to be incorporated into

his up-front total personal wealth, which he invests variously in a risk-free money market

account, a diversified market portfolio, or his own company’s stock. The executive is able

to beneficially influence the value of his company via work effort; he gains utility from the

increased value of his direct stockholding (within his overall personal portfolio), but loses

utility for his work effort. The executive is characterized by a risk aversion parameter (γ),

and two work effectiveness parameters (κ, representing inverse work productivity, and α,

representing disutility stress).

A feature of our framework is that the executive’s work effort, specified in terms of two

control variables, non-systematic expected return and volatility (µ and σ), can be restated

in terms of a single control variable, the non-systematic Sharpe ratio (λ = (µ − r)/σ,

where r is the risk-free rate of return). This reduces the dimension of the problem and

introduces a parameterization based on the well-known Sharpe ratio performance measure.

The executive’s optimal personal investment and work effort strategy is then derived

in closed-form using stochastic control theory and the corresponding Hamilton-Jacobi-

Bellman equations. Other technical papers similarly concerned with dynamic principal-

agent models include Cadenillas, Cvitanic and Zapatero (2004), Korn and Kraft (2008)

and Ou-Yang (2003), for example.

Our closed-form results demonstrate that an executive with superior work effectiveness

(i.e. higher quality) will undertake more work effort for his company. Furthermore, de-

pending on any change in the company’s non-systematic volatility associated with the

executive’s work effort (i.e. control strategy), due to risk aversion a higher quality exec-

utive will not necessarily undertake a higher own-company stockholding. For application

to empirical data, our framework allows an executive quality measure to be backed-out

from the observed own-company stockholdings of unconstrained executives (assuming

knowledge of non-systematic company volatility). Alternatively, with assumption of ex-

ecutive quality and risk aversion, our framework allows identification of the deviation in

own-company stockholding that results from constraining an executive with performance

contracting.

Freeing executives to self-incentivize may be a reasonable ‘path of least resistance’ in

the light of some recent and not so recent research. For example, Dittmann and Maug

1The summaries of Murphy (1999) and Core, Guay and Larcker (2003) are useful references.
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(2007) were unable to rationalize observed executive compensation. Using a ‘standard’

principal-agent efficient contracting model, their analysis indicated that executives should

not, in general, be compensated with options, and that it would commonly be optimal

for executives to use private savings to purchase additional stock in their own companies.

Bettis, Bizjak and Lemmon (2001) found that high-ranking corporate insiders use collars

and swaps to cover a significant proportion of their own-company stockholdings, allowing

them to unwind the constraint of equity-based compensation. Ross (2004) repudiated the

folklore that giving options to agents makes them more willing to take risks (also see

Carpenter (2000)). Jensen and Murphy (1990) proposed that private political forces in

the managerial labor market constrain pay-performance sensitivity, leading most CEOs

to hold trivial fractions of their firms’ stock. To the contrary, Hall and Liebman (1998)

and Core and Larcker (2002), for example, found support for a link from equity-based

executive compensation to corporate performance.

Whether subject to constrained or unconstrained compensation, an executive’s perfor-

mance incentive will reflect a total wealth perspective. Ofek and Yermack (2000) found

that once managers reach a certain own-company ownership level, they actively rebal-

ance their personal portfolios when awarded equity compensation. Garvey and Milbourn

(2003) found that market risk has little effect on the use of stock-based pay for the aver-

age executive, suggesting that executives can undo any undesired market exposure from

their incentive contracts by adjusting their personal portfolios. We thus maximize our

risk averse executive’s utility with respect to total wealth investable across his own com-

pany’s stock, a diversified market portfolio and a risk-free money market account. Our

approach has parallels with Jin (2002), but uses a continuous-time setting with arguably

a more intuitively appealing specification of work effort and its disutility. See also Cvi-

tanic (2008) for a more general continuous time framework emphasizing incentive effects

when the executive can hedge equity-based compensation. A natural future extension for

our framework is to specify a constrained executive subject to an imposed own-company

stockholding representative of performance contracting, and to contrast his work effort

strategy with that of our unconstrained executive.

The paper is organized as follows. Section 2 introduces the notation and terminology,

and as a first result the optimality problem is reformulated and simplified. In Section 3 the

Hamilton-Jacobi-Bellman equation characterizing the utility maximization problem are

derived, and a closed form solution is established. The results are illustrated in Section 4.

Section 5 concludes.

2 Notation and Set-up

The financial market is defined on a filtered probability space (Ω,F , P, (Ft)t≥0) satisfying

the usual hypothesis and large enough to support two independent standard Brownian

motions, W P = (W P
t )t≥0 and W = (Wt)t≥0. The investment opportunities available to our

executive are a risk-free money market account, a diversified market portfolio and his own
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company’s stocks. The risk-free money market account has the price process B = (Bt)t≥0,

with dynamics

dBt = r Bt dt , B0 = 1 , (2.1)

where r is the instantaneous risk-free rate of return, hence Bt = er t. The price process of

the market portfolio, P = (Pt)t≥0, follows the stochastic differential equation (SDE)

dPt = Pt (µ
P dt + σP dW P

t ) , P0 ∈ R
+ , (2.2)

where µP is the expected return rate of the market portfolio, σP is the market portfolio

volatility and W P = (W P
t )t≥0 denotes a standard Brownian motion. The company’s non-

systematic stock price process, Sµ,σ = (Sµ,σ
t )t≥0, is a controlled diffusion with SDE

dSµ,σ
t = Sµ,σ

t (µt dt + σt dWt) , S0 ∈ R
+ , (2.3)

where µ is the company’s expected return rate in excess of the beta-adjusted market

portfolio’s expected excess return rate (i.e. the expected return compensation for non-

systematic risk), and σ is the company’s non-systematic volatility, both controlled by the

executive. The ‘full’ stock price process is simply a portfolio combination of P and S

dependent on the company’s beta.

The executive influences the company’s stock price dynamics by choice of the control

strategy (µ, σ), which is specified to be associated with work effort. Value is added if µ is

greater than r, indicating excess return compensation for non-systematic risk.2 The exec-

utive’s instantaneous disutility of work effort is represented by ct(µt, σt) for control strat-

egy (µt, σt) at time t. We assume a Markovian disutility rate, i.e., ct(µt, σt) = c(t, v, µt, σt)

where c : [0, T ] × R
+ × [r,∞) × R

+ → R
+
0 is a continuous and suitably differentiable

function.

The executive’s initial wealth, inclusive of his compensation, is invested in the financial

market. Ongoing continuous time portfolio adjustment is assumed to be free of short-

selling constraints, and self-financing (i.e. no funds are added to or withdrawn from the

executive’s portfolio). The portfolio is allocated with fraction πP = (πP
t )t≥0 invested

in the market portfolio, fraction πS = (πS
t )t≥0 invested in the company’s stocks, and the

remainder in the risk-free account. For investment strategy π = (πP , πS) and initial wealth

V0 > 0, the executive’s wealth process, V π = (V π
t )t≥0, is

dV π
t = V π

t

(
(1 − πP

t − πS
t ) dBt/Bt + πP

t dPt/Pt + πS
t dSµ,σ

t /Sµ,σ
t

)
, V0 > 0 , (2.4)

The executive is assumed to maximize his terminal utility for time horizon T , subject

to some utility function U , which will be specified when deriving closed-from solutions.

Assuming the control of the company’s stock price behavior (µ, σ) is determined exoge-

nously, the executive’s optimal investment decision is then described by

Φ̂(t, v) = sup
π∈Π(t,v)

E
t,v[U(V π

T )] , for (t, v) ∈ [0, T ] × R
+, (2.5)

2The control strategy (µ, σ) can be conceptualized as the executive’s corporate investment or financing
strategy. For example, identifying and initiating positive net present value projects and optimal debt
versus equity financing entails work effort that adds value and affects volatility.
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where Π(t, v) denotes the set of all admissible portfolio strategies π at time t corresponding

to the initial wealth v (see for example Korn and Korn (2001)), U is a utility function, and

E
t,v denotes the conditional expectation with Vt = v; and the exogenously given control

(µ, σ) affecting the dynamics of S in (2.3) is suppressed in our notation.

Definition 2.1. Let 0 ≤ t ≤ T , t fixed. Further let (µ, σ) take values in (r,∞)× (0,∞)∪
{(r, 0)}. By A(t, v) we denote the set of admissible strategies (π, µ, σ) =

(
(πP , πS), µ, σ

)

corresponding to an initial capital of v > 0 at time t, i.e. {Fu ; t ≤ u ≤ T}-predictable
processes such that,

(i) the wealth equation

dV π
u = V π

u

(
(1 − πP

u − πS
u ) dBu/Bu + πP

u dPu/Pu + πS
u dSµ,σ

u /Sµ,σ
u

)
, Vt = v ,

has a unique non-negative solution and satisfies

∫ T

t

[
(V π

u )2
(
(πP

u σP )2 + (πS
uσu)

2
)]

du < ∞ P − a.s. ,

where (µ, σ) affects V π via Sµ,σ ,

(ii) and

E

[
U(V π

T )− +

∫ T

t

cu(µu, σu)du

]
< ∞ .

The optimal investment and control decision is then the solution of

Φ(t, v) = sup
(π,µ,σ)∈A(t,v)

E
t,v

[
U(V π

T ) −

∫ T

t

cu(µu, σu) du

]
, for (t, v) ∈ [0, T ] × R

+, (2.6)

where E
t,v denotes the conditional expectation at t with Vt = v, and the utility function

U satisfies U = Uγ for some γ > 0. To ensure sensible solutions we require µ ≥ r, which

effectively bars the executive from destroying company value (µ < r) and potentially

profiting by shorting the company’s stocks.

2.1 Restating the Set-up

First a decomposition result for the optimal investment and control problem in (2.6) is

derived. The original four-dimensional maximization problem can be solved in two steps.

The first step is minimizing the disutility rate for a target non-systematic Sharpe ratio

λ = (µ−r)/σ obtaining c⋆(t, v, λ). This will be done in Proposition 2.1. Then we will show

in Theorem 2.2 that the optimal investment and control problem can then be restated as

a maximization problem over the three controls πP , πS and λ, where c is replaced by c⋆

in (2.6).

The following conditions are required for existence and uniqueness of c⋆.
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Assumption 2.1. The function c : [0, T ] × R
+ × [r,∞) × R

+ → R
+
0 , (t, v, µ, σ) 7→

c(t, v, µ, σ) satisfies:

(i) c is continuous in t and v, and twice continuously differentiable in µ and σ;

(ii) Fix (t, v, λ) ∈ [0, T ] × R
+ × R

+
0 , then

lim sup
σց0

λ
∂c

∂µ
(t, v, r + λ σ, σ) +

∂c

∂σ
(t, v, r + λ σ, σ) ≤ 0 ,

and

sup
σ>0

λ
∂c

∂µ
(t, v, r + λ σ, σ) +

∂c

∂σ
(t, v, r + λ σ, σ) > 0 .

(iii) It holds

(µ − r)2 ∂2c

∂µ2
+ 2 σ (µ − r)

∂2c

∂µ ∂σ
+ σ2 ∂2c

∂σ2
> 0 .

(iv) For all (t, v): infσ>0 c(t, v, r, σ) = 0.

In Assumption 2.1, (i) is a natural smoothness condition, (ii) and (iii) are ensuring

uniqueness and existence, respectively, of the disutility c⋆(t, v, λ) depending on the Sharpe

ratio λ, and (iv) is a natural norming condition attributing no disutility when no excess

return is generated (µ = r) for a specific volatility choice.

A function c which fullfilles the conditions of Assumption 2.1 is for example

c(t, v, µ, σ) = κ

(
µ − r

σ

)α

+ ν (σ − σ0)
2 ,

where µ ≥ r, σ > 0, κ, ν ≥ 0, α > 0 and σ0 > 0 is the base-level own-company risk.

Lemma 2.1. Suppose Assumption 2.1 holds, then the minimization problem

min
{σ>0:µ=r+λ σ}

c(t, v, µ, σ) , for (t, v, λ) ∈ [0, T ] × R
+ × R

+
0 , (2.7)

admits a unique solution σ⋆(t, v, λ).

Proof. Fix (t, v, λ) ∈ [0, T ]×R
+×R

+
0 and define the function f by f(σ) = c(t, v, r+λ σ, σ),

for λ ≥ 0. We need to show that for f a minimizing σ⋆ = σ⋆(t, v, λ) exists and is unique.
Computing the first and second derivatives and Assumption 2.1 gives

f ′(σ) = λ
∂c

∂µ
(t, v, r + λ σ, σ) +

∂c

∂σ
(t, v, r + λ σ, σ) ,

and

f ′′(σ) = λ2 ∂2c

∂µ2
(t, v, r + λ σ, σ) + 2 λ

∂2c

∂σ∂µ
(t, v, r + λ σ, σ) +

∂2c

∂σ2
(t, v, r + λ σ, σ) ,
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Now f ′ is continuous differentiable and f ′′ is continuous by the differentiability assump-
tions on c. Using elementary calculus rationale, the minimization problem minσ>0 f(σ)
admits a solution if f ′(σ⋆) = 0 has a solution and f ′′(σ⋆) > 0, moreover, the stronger
condition f is strictly convex, i.e. f ′′ > 0, implies the solution is a minimizer and unique.
Part (iii) of Assumption 2.1 gives the strict convexity of f .

Finally, for f ′(σ⋆) = 0 to admit a solution it is sufficient that f ′ starts below zero,
f ′(0+) < 0, and then the strict convexity implies that f ′ is strictly increasing. Thus
requiring that f ′ takes on a positive value for some σ ensures the existence of σ with
f ′(σ⋆) = 0. Assumption 2.1 (ii) implies these conditions.

Changing the parameters as described above from πP , πS, and (µ, σ) to πP , πS, and

λ, and replacing c by c⋆ requires adapting Definition 2.1 to the new setting. Before we

present the new framework, observe that the company’s non-systematic stock dynamics

w.r.t. to λ (and σ⋆(λ)) now read:

dSλ
t = Sλ

t [r dt + λσ⋆(t, v, λ) dt + σ⋆(t, v, λ) dWt] , S0 ∈ R
+ . (2.8)

Definition 2.2. Let 0 ≤ t ≤ T , t fixed, and let λ take values in [0,∞). Define c⋆ by

c⋆(t, v, λ) := c(t, v, r + λ σ⋆(t, v, λ), σ⋆(t, v, λ)) = min
{σ>0:µ=r+λ σ}

c(t, v, µ, σ) . (2.9)

Then by A′(t, v) we denote the set of admissible strategies (π, λ) =
(
(πP , πS), λ

)
corre-

sponding to an initial capital of v > 0 at time t, i.e. {Fu ; t ≤ u ≤ T}-predictable processes
such that,

(i) the wealth equation

dV π
u = V π

u

(
(1 − πP

u − πS
u ) dBu/Bu + πP

u dPu/Pu + πS
u dSλ

u/Sλ
u

)
, Vt = v ,

has a unique non-negative solution and satisfies
∫ T

t

[
(V π

u )2
(
(πP

u σP )2 + (πS
uσ⋆

u)
2
)]

du < ∞ P − a.s. ,

where λ affects V π via Sλ ,

(ii) and

E

[
U(V π

T )− +

∫ T

t

c∗u(λu) du

]
< ∞ .

Theorem 2.2. Suppose (2.6) admits a solution Φ, then it coincides with the value function
of the optimal control problem

Φ(t, v) = sup
(π,λ)∈A′(t,v)

E
t,v

[
U(V π

T ) −

∫ T

t

c⋆(u, V π
u , λu) du

]
, for (t, v) ∈ [0, T ] × R

+ ,

(2.10)
where A′(t, v) and c⋆ are given in Definition 2.2.
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Proof. Let

J(t, v; π, µ, σ) := E
t,v

[
U(V π

T ) −

∫ T

t

c(u, V π
u , µ(u, V π

u ), σ(u, V π
u )) du

]

and

J ′(t, v; π, λ) := E
t,v

[
U(V π

T ) −

∫ T

t

c⋆(u, V π
u , λ(u, V π

u )) du

]
.

The assertion is proven if we show that

sup
(π,µ,σ)∈A(t,v)

J(t, v; π, µ, σ) = sup
(π,λ)∈A′(t,v)

J ′(t, v; π, λ) ,

i.e. the performance functionals J and J ′ admit the same value function Φ(t, v).
By c⋆(t, v, λ) := c(t, v, r + λσ⋆, σ⋆) = min{σ>0:µ=r+λσ} c(t, v, µ, σ) we have:

J(t, v; π, µ, σ) = E
t,v

[
U(V π

T ) −

∫ T

t

c(u, V π
u , µ(u, V π

u ), σ(u, V π
u )) du

]

≤ E
t,v

[
U(V π

T ) −

∫ T

t

c⋆

(
u, V π

u ,
µ(u, V π

u ) − r

σ(u, V π
u )

)
du

]
= J ′

(
t, v; π,

µ − r

σ

)
,

implying

sup
(π,µ,σ)∈A(t,v)

J(t, v; π, µ, σ) ≤ sup
(π,µ,σ)∈A(t,v)

J ′(t, v; π,
µ − r

σ
) = sup

(π,λ)∈A′(t,v)

J ′(t, v; π, λ) . (∗)

Now c⋆(t, v, λ) := c(t, v, r + λσ⋆, σ⋆) gives:

J ′(t, v; π, λ) = E
t,v

[
U(V π

T ) −

∫ T

t

c⋆(u, V π
u , λ(u, V π

u )) du

]

= E
t,v

[
U(V π

T ) −

∫ T

t

c(u, V π
u , r + λσ⋆, σ⋆) du

]
= J(t, v; π, r + λσ⋆, σ⋆) ,

and then

sup
(π,λ)∈A′(t,v)

J ′(t, v; π, λ) = sup
(π,λ)∈A′(t,v)

J(t, v; π, r + λσ⋆, σ⋆) ≤ sup
(π,µ,σ)∈A(t,v)

J(t, v; π, µ, σ) . (∗∗)

Combining (∗) and (∗∗) finishes the proof.

3 Optimal Strategies

In this section we will use stochastic control techniques to derive closed-form solutions

to our investment and control decision problem in Equation (2.10) for special choices of

the utility and disutility function, in particular we derive closed-form solutions for utility
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functions with constant relative risk aversion. For the relative risk aversion parameter

γ > 0 the utility function U is:

U(v) =






v1−γ

1 − γ
, for γ > 0 and γ 6= 1

log(v) , for γ = 1 ,

(3.1)

and the cost of effort (or disutility) c⋆ is assumed to satisfy:

c⋆(t, v, λ) = κ v1−γ λα

α
, γ > 0 , (3.2)

where κ > 0 is the inverse work productivity, α > 2 the disutility stress, and the scaling

factor v1−γ is based on a similar formulation for the intertemporal utility from consump-

tion in a constant relative risk aversion setting.

For the remainder of the paper we assume that the control problem (2.10) admits a

value function Φ ∈ C1,2.

To guarantee that the candidates which we will derive for the optimal Sharpe ratio,

stockholding strategy and value function are indeed the optimal ones, we have to consider

a more restrictive class of admissible strategies:

Definition 3.1. Let 0 ≤ t ≤ T , t fixed, and let λ take values in [0,∞).Then by A′
γ(t, v)

we denote the set of admissible strategies (π, λ) ∈ A′(t, v), such that

(i) for 0 < γ < 1:
∫ T

t

λ2
u du ≤ C < ∞ , for some C ∈ R

+
0 , (3.3)

(ii) for γ = 1:

E

[∫ T

t

(πP
u σP )2 + (πS

uσ⋆
u)

2 du

]
< ∞ , (3.4)

(iii) for γ > 1:
∫ T

t

(
πP

u σP
)4

+
(
πS

u σ⋆
u

)4
du ≤ C1 < ∞ , for some C1 ∈ R

+
0 , (3.5)

∫ T

t

πS
uσ⋆

uλu du ≥ C2 > −∞ , for some C2 ∈ R
+
0 . (3.6)

The optimal investment and control decision then reads:

Φ(t, v) = sup
(π,λ)∈A′

γ (t,v)

E
t,v

[
U(V π

T ) −

∫ T

t

c⋆(u, V π
u , λu) du

]
, for (t, v) ∈ [0, T ] × R

+ ,

(3.7)

Remark 3.1. One directly sees that A′
γ(t, v) is a subset of A′(t, v). Therefore the results

derived in the previous sections remain valid for A′
γ(t, v), too.
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3.1 Hamilton-Jacobi-Bellman Equation

Having formulated the optimal investment and control decision problem with respect

to the parameter set (π, λ) as in equation (3.7), we can write down the corresponding

Hamilton-Jacobi-Bellman equation; thereby note that we formulate this equation w.r.t.

general utility functions U and disutility functions c⋆:

0 = sup
(π,λ)∈R×[0,∞)

[
(L(π,λ) Φ)(t, v) − c⋆(t, v, λ)

]
, for (t, v) ∈ [0, T ) × R

+,

U(v) = Φ(T, v) , for v ∈ R
+ ,

(3.8)

where the differential operator L(π,λ) is given by

(Lπ,λg)(t, v) =
∂g

∂t
(t, v) +

∂g

∂v
(t, v) v (r + πS λ σ⋆(t, v, λ) + πP (µP − r))

+
1

2

∂2g

∂v2
(t, v) v2 ((πS σ⋆(t, v, λ))2 + (πP σP )2) .

(3.9)

Potential maximizers πP ⋆

, πS⋆

and λ⋆ of the HJB (3.8) can be calculated by establishing

the first order conditions:

πP ⋆

(t, v) = −
(µP − r)

v(σP )2

Φv(t, v)

Φvv(t, v)
,

πS⋆

(t, v) = −
λ⋆(t, v)

vσ⋆(t, v, λ⋆(t, v))

Φv(t, v)

Φvv(t, v)
,

(3.10)

where λ⋆ is the solution of the implicit equation

λ
Φ2

v(t, v)

Φvv(t, v)
+ c⋆

λ(t, v, λ) = 0 for all (t, v) ∈ [0, T ] × R
+ , (3.11)

where we have already used representation (3.10) to simplify the equation.

The executive’s optimal wealth allocation to his own company depends on his stock

price dynamics control decision, λ = λ⋆, whereas allocation to the market portfolio does

not. However, recalling that the own-company allocation is with respect to the company’s

non-systematic stock price process, implicit to this result is that the executive’s actual

market portfolio allocation is the net of his ‘full’ market portfolio allocation (πP ) and the

systematic exposure of his own-company stockholding dependent on the company’s beta.

Substituting the maximizers (3.10) in the HJB (3.8) then yields:

Φt(t, v) + Φv(t, v) v r −
1

2
(λ⋆(t, v))2 Φ2

v(t, v)

Φvv(t, v)
−

1

2
(λP )2 Φ2

v(t, v)

Φvv(t, v)
− c⋆(t, v, λ⋆(t, v)) = 0 ,

(3.12)

where λP :=
µP − r

σP
.

In the following we aim at solving Equation (3.12) for the choices (3.1) and (3.2) of the

utility and disutility functions.
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3.2 Closed-Form Solutions

In this section we present the closed-form solutions to our control problem (3.7) for the

utility and disutility functions specified in (3.1) and (3.2).

Theorem 3.1 (The power utility case: γ > 0 and γ 6= 1). The full solution of the
maximization problem (3.7) can then be summarized by the strategy

λ⋆(t, v) =

(
1

κ γ
f(t)

) 1
α−2

, πP ⋆
(t, v) =

µP − r

γ (σP )2
, πS⋆

(t, v) =
λ⋆(t, v)

γ σ⋆(t, v, λ⋆(t, v))
,

(3.13)
and value function

Φ(t, v) =
v1−γ

1 − γ
f(t) , (3.14)

where

f(t) = e
(1−γ)

(
r+ 1

2

λ2
P
γ

)
(T−t)



1 −
(α − 2)

(
1

κ γ

) 2
α−2

α (2 γ r + λ2
P )

(
e

1−γ
α−2

(
2 r+

λ2
P
γ

)
(T−t)

− 1

)



−α−2
2

.

(3.15)

Proof. First observe that a function F of the form F (λ) = a λ2 − b λα, λ ≥ 0, for given
constant a, b > 0 and α > 2, has a unique maximizer λ⋆ and maximized value F (λ⋆) given
by

λ⋆ =

(
2 a

α b

) 1
α−2

, and F (λ⋆) = (α − 2) α− α
α−2 2

2
α−2 a

α
α−2 b−

2
α−2 . (3.16)

Using this insight the first order condition for λ⋆ in Equation (3.11) is now solved. Set

a =
1

2

Φ2
v

−Φvv
, and b =

κ

α
v1−γ ,

then Equation (3.16) gives

λ⋆ =

(
1

κ v1−γ

Φ2
v

−Φvv

) 1
α−2

, and F (λ⋆) =
α − 2

2 α

(
κ v1−γ

)− 2
α−2

(
Φ2

v

−Φvv

) α
α−2

.

Now Equation (3.12) reads

0 = Φt + Φv v r +
1

2

Φ2
v

−Φvv

(
µP − r

σP

)2

+
α − 2

2 α

(
κ v1−γ

)− 2
α−2

(
Φ2

v

−Φvv

) α
α−2

. (3.17)

Using the separation ansatz Φ(t, v) = f(t) v1−γ

1−γ
results in

Φt = ḟ
v1−γ

1 − γ
, Φv = f v−γ , Φvv = −γ f v−γ−1 , and f(T ) = 1 . (3.18)
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Equation (3.17) then becomes

0 = ḟ
v1−γ

1 − γ
+ f v1−γ r +

1

2

f v1−γ

γ

(
µP − r

σP

)2

+
α − 2

2 α

(
κ v1−γ

)− 2
α−2

(
f v1−γ

γ

) α
α−2

.

Dividing by v1−γ

1−γ
and recalling λP = (µP − r)/σP gives

ḟ = f

[
−(1 − γ)

(
r +

1

2

λ2
P

γ

)]
+ f

α
α−2

[
−(1 − γ)

κ

2

α − 2

α

(
1

κ γ

) α
α−2

]
. (3.19)

This is a Bernoulli ODE of the form ḟ = a1 f + an fn, with solution

f(t)1−n = C eG(t) + (1 − n) eG(t)

∫ t

0

e−G(s) an ds ,

where G(t) = (1 − n)
∫ t

0
a1(s) ds and C an arbitrary constant. In our setting we have

n = α
α−2

and

(1 − n) =
−2

α − 2
, a1 = −(1 − γ)

(
r +

1

2

λ2
P

γ

)
, and an = −(1 − γ)

κ

2

α − 2

α

(
1

κ γ

) α
α−2

.

The formal solution f(t)1−n is explicitly calculated in three steps. First, compute

G(t) = −
2 a1 t

α − 2
, and

∫ t

0

e−G(s) an(s) ds =
α − 2

2

an

a1

(
e

2 a1 t

α−2 − 1
)

,

then

f(t) = ea1 t

(
C −

an

a1

(
e

2 a1 t

α−2 − 1
))−α−2

2

.

Finally, solve for C by using f(T ) = 1 and

C = e
2 a1 T

α−2 +
an

a1

(
e

2 a1 T

α−2 − 1
)

.

Note also that f(0) = C−α−2
2 . Now

f(t) = e−a1 (T−t)

(
1 −

an

a1

(
e−

2 a1
α−2

(T−t) − 1
))−α−2

2

.

Plugging in a1 and an then yields the result for f(t). Using Φv

Φvv
= − v

γ
and the first order

condition in Equation (3.10) we obtain the claimed optimal strategies λ⋆, πP ⋆
and πS⋆

.
Note that our claimed optimal controls are deterministic and continuous on a compact
support, so there are uniformly bounded, which shows that (πS⋆

, πP ⋆
, λ⋆) ∈ A′

γ(t, v).

The following theorem gives the results for the log-utitility case.
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Theorem 3.2 (The log-utility case, γ = 1). The full solution of the maximization problem
(3.7) can then be summarized by the strategy

λ⋆(t, v) = κ− 1
α−2 , πP ⋆

(t, v) =
µP − r

(σP )2
, and πS⋆

(t, v) =
λ⋆(t, v)

σ⋆(t, v, λ⋆(t, v))
, (3.20)

and value function

Φ(t, v) = log(v) +

[
r +

1

2

(
µP − r

σP

)2

+
α − 2

2 α
κ− 2

α−2

]
(T − t) . (3.21)

Proof. As in the power-utility case, first the implicit first order condition for λ⋆ in Equa-
tion 3.11 is made explicit. This time set

a =
1

2

Φ2
v

−Φvv

, and b =
κ

α
,

then Equation 3.16 gives

λ⋆ =

(
1

κ

Φ2
v

−Φvv

) 1
α−2

, and F (λ⋆) =
α − 2

2 α
κ− 2

α−2

(
Φ2

v

−Φvv

) α
α−2

.

The PDE for log-utility reads now

0 = Φt + Φv v r +
1

2

Φ2
v

−Φvv

(
µP − r

σP

)2

+
α − 2

2 α
κ− 2

α−2

(
Φ2

v

−Φvv

) α
α−2

. (3.22)

Using the ansatz Φ(t, v) = log(v) + ϕ(T − t) results in

Φt = −ϕ , Φv =
1

v
, Φvv = −

1

v2
, and Φ(T, v) = log(v) = U(v) .

Then Equation (3.22) reduces to

ϕ = r +
1

2

(
µP − r

σP

)2

+
α − 2

2 α
κ− 2

α−2 .

Finally noting Φ2
v/Φvv = −1 and recalling the first order condition for the portfolio

strategy in Equation (3.10) establish the claimed optimal controls. Again, our claimed
controls are deterministic and continuous on a compact support, so there are uniformly
bounded, which then proves that (πS⋆

, πP ⋆
, λ⋆) ∈ A′

γ(t, v). Note that we also obtain the
form of the optimal strategies by formally setting γ = 1 in Theorem 3.1.

3.3 Verification Theorem

The solutions of the maximization problems given in Theorem 3.1 and Theorem 3.2 are

candidates for the optimal work effort and own-company stockholding of the control prob-

lem in (3.7). In this section we will verify that under sufficient assumptions these are indeed

optimal.
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Theorem 3.3 (Verification Result). Let κ > 0 and α > 2. Assume that the investor has
a utility and disutility function of the form given in (3.1) and (3.2). Then the candidates
given in (3.13) - (3.15) are the optimal Sharpe ratio and stockholding strategy and value
function of the optimal control problem (3.7) for the case γ > 0 and γ 6= 1 and the can-
didates given in (3.20) and (3.21) are the optimal Sharpe ratio and stockholding strategy
and value function of the optimal control problem (3.7) for the case γ = 1.

Proof. Define the performance functional of our optimal investment and control decision
by

J ′(t, v; π, λ) := E
t,v

[
U (V π

T ) −

∫ T

t

c⋆
u(λu) du

]
.

Our candidates are optimal if we have

J ′(t, v; π⋆, λ⋆) = Φ(t, v) and J ′(t, v; π, λ) ≤ Φ(t, v) , for all (π, λ) ∈ A′
γ(t, v) .

Part 1: γ > 0 and γ 6= 1.
Let (π, λ) ∈ A′

γ(t, v). Since Φ ∈ C1,2, we obtain by Ito’s formula:

Φ(T, V π
T ) −

∫ T

t

κ (V π
u )1−γ λα

u

α
du = Φ(t, v) +

∫ T

t

Φt(u, V π
u ) du

+

∫ T

t

Φv(u, V π
u )V π

u

[
(1 − πP

u − πS
u ) r + πP

u µP + πS
u (r + λ σ⋆

u)
]

du

+

∫ T

t

Φv(u, V π
u )V π

u πP
u σP dW P

u +

∫ T

t

Φv(u, V π
u )V π

u πS
u σ⋆

u dWu

+ 1/2

∫ T

t

Φvv(u, V π
u ) (V π

u )2 [(πP
u σP )2 + (πS

uσ⋆
u)

2
]

du −

∫ T

t

κ (V π
u )1−γ λα

u

α
du

= Φ(t, v) +

∫ T

t

{
Φt(u, V π

u ) + Φv(u, V π
u )V π

u

[
r + πS

u λ σ⋆
u + πP

u (µP − r)
]

+ 1/2 Φvv(u, V π
u ) (V π

u )2 [(πPσP )2 + (πS
uσ⋆

u)
2
]
− κ (V π

u )1−γ λα
u

α

}
du

+

∫ T

t

Φv(u, V π
u )V π

u πP
u σP dW P

u +

∫ T

t

Φv(u, V π
u )V π

u πS
u σ⋆

u dWu . (3.23)

For the optimality candidates given in (3.13 - 3.15) we have

E
t,v

[∫ T

t

Φv(u, V π⋆

u )V π⋆

u πP ⋆

u σP dW P
u +

∫ T

t

Φv(u, V π⋆

u )V π⋆

u πS⋆

u σ⋆
u dWu

]
= 0 . (3.24)

To verify Equation (3.24) it is sufficient to prove the square-integrability condition

E

[∫ T

t

(
Φv(u, V π⋆

u )V π⋆

u

[
πP ⋆

u σP + πS⋆

u σ⋆
u

])2
du

]
< ∞ . (∗)
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Now plugging in the candidates from (3.13 - 3.15) yields

Φv(u, V π⋆

u )V π⋆

u

[
πP ⋆

u σP + πS⋆

u σ⋆
u

]
=

(
V π⋆

u

)1−γ

γ

[
µP − r

σP
+

(
1

κγ
f(u)

) 1
α−2

]
. (∗∗)

The RHS of (∗∗) is
(
V π⋆

u

)1−γ
times a deterministic and continuous function on the compact

set [0, T ]. The deterministic part is therefore uniformly bounded and additionally, V π⋆

u

satisfies the wealth equation

dV π⋆

t = V π⋆

t

[
r dt + λ2

P/γ dt + (λ⋆(t, V π⋆

t ))2/γ dt + λP/γ dW P
t + λ⋆(t, V π⋆

t )/γ dWt

]
.

Recalling that λ⋆(t, v) is a deterministic function in t and does further not depend on
v, we see that V π⋆

t follows a log-normal distribution for all t ≥ 0 with parameters being
uniformly bounded for all t ∈ [0, T ]. Since all moments of a log-normally distributed
random variable exist, (∗) holds proving (3.24).
Additionally, Φ satisfies the HJB equation (3.8), i.e. for (π, λ) = (π⋆, λ⋆) and the choice
(3.2) of the disutility function we have:

Φt(u, V π⋆

u ) + Φv(u, V π⋆

u )V π⋆

u

[
r + πS⋆

u λ⋆ σ⋆
u + πP ⋆

u (µP − r)
]

+ 1/2 Φvv(u, V π⋆

u )
[
(V π⋆

u πP ⋆

σP )2 + (V π⋆

u πS⋆

u σ⋆
u)

2
]
− κ

(
V π⋆

u

)1−γ (λ⋆
u)

α

α
= 0 .

For (π, λ) = (π⋆, λ⋆), the expectation of equation (3.23) using that Φ(T, v) = v1−γ/(1−γ)
is:

E
t,v

[(
V π⋆

T

)1−γ

1 − γ

]

− E
t,v

[∫ T

t

κ
(
V π⋆

u

)1−γ (λ⋆
u)

α

α
du

]
= J ′(t, v; π⋆, λ⋆) = Φ(t, v) .

The optimality of our candidates is finally shown if we have for all (π, λ) ∈ A′
γ(t, v) :

E
t,v

[
(V π

T )1−γ

1 − γ

]
− E

t,v

[∫ T

t

κ (V π
u )1−γ (λu)

α

α
du

]
= J ′(t, v; π, λ) ≤ Φ(t, v) . (3.25)

Also, since Φ satisfies the HJB equation (3.8), we get for all (π, λ) ∈ A′
γ(t, v) :

Φt(u, V π
u ) + Φv(u, V π

u )V π
u

[
r + πS

u λ σ⋆
u + πP

u (µP − r)
]

+ 1/2 Φvv(u, V π
u )
[
(V π

u πPσP )2 + (V π
u πS

u σ⋆
u)

2
]
− κ (V π

u )1−γ (λu)
α

α
≤ 0 .

Substituting this in Equation (3.23) and recalling that

Φt(t, v) = ḟ(t)
v1−γ

1 − γ
, Φv(t, v) = f(t) v−γ , Φvv(t, v) = −γ f(t) v−γ−1 (3.26)

we get:

Φ(T, V π
T ) −

∫ T

t

κ (V π
u )1−γ λα

u

α
du

≤ Φ(t, v) +

∫ T

t

(V π
u )1−γf(u)πP

u σP dW P
u +

∫ T

t

(V π
u )1−γf(u)πS

uσ⋆
u dWu

︸ ︷︷ ︸
=:M t

T

.
(3.27)
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Part 1.1: 0 < γ < 1.
To verify equation (3.25) for the case 0 < γ < 1 we will show that the local martingale
M t

T is a supermartingale. Applying again Ito’s formula and using (3.26) yields:

Φ(T, V π
T ) = Φ(t, v) +

∫ T

t

ḟ(u)
(V π

u )1−γ

1 − γ
du +

∫ T

t

f(u)(V π
u )1−γ

[
r + πP

u (µP − r)

+ πS
u λσ⋆

u

]
du +

∫ T

t

(V π
u )1−γπP

u σP dW P
u +

∫ T

t

(V π
u )1−γπS

u σ⋆
u dWu

− 1/2

∫ T

t

γf(u)(V π
u )1−γ

[
(πP

u σP )2 + (πS
u σ⋆

u)
2
]

du

= Φ(t, v) + M t
T +

∫ T

t

(V π
u )1−γ

1 − γ

{
ḟ(u) + f(u)

[
(1 − γ)

(
r + πP

u λσP + πS
uλσ⋆

u

)

−
γ

2
(1 − γ)

(
(πP

u σP )2 + (πS
uσ⋆

u)
2
)]}

du .

Now recalling that

ḟ = f

[
−(1 − γ)

(
r +

1

2

λ2
P

γ

)]
+ f

α
α−2

[

−(1 − γ)
κ

2

α − 2

α

(
1

κ γ

) α
α−2

]

and keeping in mind that λ⋆
u =

(
1

κγ
f(u)

) 1
α−2

we get:

Φ(T, V π
T ) = Φ(t, v) + M t

T +

∫ T

t

(V π
u )1−γf(u)

[
−

1

2γ
λ2

P −
1

2γ
(λ⋆

u)
2α − 2

α
+ πP

u λP σP

+ πS
u λuσ

⋆
u − 1/2 γ(πP

u σP )2 − 1/2 γ(πS
uσ⋆

u)
2
]
du .

Some side calculations including completing the square then yield:

M t
T = Φ(T, V π

T )︸ ︷︷ ︸
(1)

−Φ(t, v)︸ ︷︷ ︸
(2)

+
λ2

P

2γ

∫ T

t

(V π
u )1−γf(u) du

︸ ︷︷ ︸
≥0

+
1

2γ

α − 2

α

∫ T

t

(V π
u )1−γf(u)(λ⋆

u)
2 du

︸ ︷︷ ︸
≥0

+
γ

2

∫ T

t

(σ⋆
u)

2

(
πS

u −
λu

γσ⋆
u

)2

+ σ2
P

(
πP

u −
λP

γσP

)2

du

︸ ︷︷ ︸
≥0

−
1

2γ

∫ T

t

λ2
u du

︸ ︷︷ ︸
(3)

−
λ2

P

2γ
(T − t) .

For 0 < γ < 1, we have that (1) > 0 , (2) is Ft-measurable an thus deterministic at
time t. Due to condition (3.3), (3) is Ft-measurable too for all t and bounded by the real
constant C. Thus, M t

T is a local martingale which is bounded from below, i.e.

M t
T ≥ −Φ(t, v) −

1

2γ

(
C + λ2

P (T − t)
)

.

This implies that M t
T is a supermartingale and therefore equation (3.27) simplifies to

Φ(T, V π
T ) −

∫ T

t

κ (V π
u )1−γ λα

u

α
du ≤ Φ(t, v) .
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Taking the expectation on both sides then yields equation (3.25) which finishes the proof
for the case 0 < γ < 1.
Part 1.2: γ > 1.
To verify equation (3.25) for the case γ > 1 we will impose conditions under which the
local martingale M t

T is a martingale. The straightforward condition for this is

E

[∫ T

t

(V π
u )2(1−γ)f 2(u)

(
(πuσ

P )2 + (σ⋆
uπ

S
u )2
)

du

]
< ∞ . (3.28)

But this condition is not handsome enough for our purposes. In what follows we will derive
conditions which are independent from the wealth process.
For the integrand of (3.28) the following estimate is valid:

(V π
u )2(1−γ)f 2(u)

(
(πuσ

P )2 + (σ⋆
uπ

S
u )2
)
≤

1

2
f 4(u) (V π

u )4(1−γ)

︸ ︷︷ ︸
(1)

+
1

2

(
(πuσ

P )2 + (σ⋆
uπ

S
u )2
)2

︸ ︷︷ ︸
(2)

From this equation one directly obtains that condition (3.5) in Def. 3.1 ensures that

1

2
E

[∫ T

t

(
(πuσ

P )2 + (σ⋆
uπ

S
u )2
)2

du

]
< ∞ . (3.29)

Note that in expression (1), f is a deterministic function on the compact set [0, T ] and
therefore sup

t≤u≤T
f 4(u) < ∞. So what is left, is to ensure that

1

2
E

[∫ T

t

(V π
u )4(1−γ) du

]
< ∞ . (3.30)

The solution of the wealth equation (2.4) expressed w.r.t. to the parameter λ applying
variation of constants is:

V π
t = V π

0 ert+
∫ t
0 πP

u λP σP +πS
u λuσ⋆

u du eLt−
1
2
〈L〉t ,

where Lt =
∫ t

0
πP

u σP dW P
u +

∫ t

0
πS

u σ⋆
udWu and 〈L〉t =

∫ t

0
(πP

u σP )2 + (πS
uσ⋆

u)
2du .

Using this we have that

(V π
t )4(1−γ) = (V π

0 )4(1−γ) e4(1−γ)[rt+
∫ t
0 πP

u λP σP +πS
uλuσ⋆

u du] e4(1−γ)Lt−
1
2

4(1−γ)〈L〉t

= (V π
0 )4(1−γ) e4(1−γ)[rt+

∫ t

0
πP

u λP σP +πS
uλuσ⋆

u du]

· e4(1−γ)Lt−
1
2

16(1−γ)2〈L〉t e
1
2

16(1−γ)2〈L〉t−
1
2

4(1−γ)〈L〉t

= (V π
0 )4(1−γ) e4(1−γ)Lt−

1
2

16(1−γ)2〈L〉t e4(1−γ)[(2(1−γ)− 1
2
)+rt+

∫ t
0 πP

u λP σP +πS
u λuσ⋆

u du] .

Condition (3.30) is fullfilled, if for example we have that

Zt := e4(1−γ)Lt−
1
2

16(1−γ)2〈L〉t ∈ L2(P ) ,
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and that

Rt := e4(1−γ)[(2(1−γ)− 1
2
)+rt+

∫ t
0 πP

u λP σP +πS
u λuσ⋆

u du] ∈ L2(P ) .

We consider the square of Zt:

Z2
t = e8(1−γ)Lt−

1
2

32(1−γ)2〈L〉t

= e8(1−γ)Lt−64(1−γ)2〈L〉te48(1−γ)2〈L〉t

≤
1

2
e16(1−γ)Lt−

1
2
256(1−γ)2〈L〉t

︸ ︷︷ ︸
(1)

+
1

2
e96(1−γ)2〈L〉t

︸ ︷︷ ︸
(2)

.

Condition (3.5) of Def. 3.1 then implies the Novikov condition for expression (1) and at
the same time that expression (2) belongs to L1(P ). So we have that Zt ∈ L2(P ).
To guarantee that Rt ∈ L2(P ), we need that

E

[∫ T

t

e8(1−γ)[(2(1−γ)− 1
2
)+rs+

∫ s
0 πP

u λP σP du+
∫ s
0 πS

uλuσ⋆
u du] ds

]
< ∞ .

This condition is then implied by conditions (3.5) and (3.6) of Def. 3.1, where we note
that 8(1 − γ) < 0 for γ > 1.
Now (3.30) is proved and since (3.29) holds, we have finally fullfilled condition (3.28).
Part 2: γ = 1.
Just using analogous arguments as in the power utility case we arrive at

E
t,v
[
log(V π⋆

T )
]
− E

t,v

[∫ T

t

κ
(λ⋆

u)
α

α
du

]
= J ′(t, v; π⋆, λ⋆) = Φ(t, v) .

The equation corresponding to (3.27) for the log utility case then reads:

Φ(T, V π
T ) −

∫ T

t

κ
λα

u

α
du ≤ Φ(t, v) +

∫ T

t

πP
u σP dW P

u +

∫ T

t

πS
u σ⋆

u dWu ,

where we have used that Φv(t, v) = 1/v. Taking the expectation on both both sides and
keeping in mind that Φ(t, v) = log(v) then yields

E
t,v [log(V π

T )] − E
t,v

[∫ T

t

κ
(λu)

α

α
du

]
= J ′(t, v; π, λ)

≤ Φ(t, v) + E
t,v

[∫ T

t

πP
u σP dW P

u +

∫ T

t

πS
u σ⋆

u dWu

]

︸ ︷︷ ︸
= 0, by (3.4)

.

18



4 Discussion and Implications of Results

Our results in Theorem 3.1, Theorem 3.2, and Theorem 3.3 indicate the unconstrained

executive’s maximized utility and his behavior regarding personal portfolio selection and

choice of work effort in the constant relative risk aversion setup. Subsequently we inves-

tigate the sensitivity of these optimal strategies when varying the characteristics of the

executive: risk aversion, productivity, and disutility stress. Additionally, we derive the fair

compensation for the work effort of the executive in an indifference utility framework, see,

e.g., Lambert, Larcker and Verecchia (1991) for a related approach.

The executive is characterized by the relative risk aversion coefficient (γ > 0), and

two work effectiveness parameters: productivity (1/κ, with κ > 0), and disutility stress

(α, with α > 2). To produce results that have relativity to a base-level of work effort

(i.e. a base-level control strategy specified by the Sharpe ratio λ0), the disutility c⋆ is

reparameterized so that the set-up becomes

U(v) =






v1−γ

1 − γ
, for γ > 0 and γ 6= 1

log(v) , for γ = 1

and

c⋆(t, v, λ) =
κ

α
v1−γ

(
λ

λ0

)α

, for λ ≥ 0 , γ > 0.

For most parts of this section we focus on the optimal effort choice (λ⋆), and pass over the

optimal portfolio strategy (π⋆). The optimal own-company stockholding (πS⋆

) is a function

of the optimal effort choice and of the optimized volatility (σ⋆, derived in Lemma 2.1), that

is not explicitly specified. The optimal holdings in the market portfolio (πP ⋆

) coincides

with the result from classical utility maximization in the constant relative risk aversion

setting, and is therefore of limited interest.

4.1 The Log-Utility Case

The optimal choice of effort in the new parameterizations is λ⋆ = λ
α

α−2

0 κ− 1
α−2 (see Theo-

rem 3.2 for the optimal solution in the original parametrization). We require a minimal

productive efficiency, that is κ−1 > λ−2
0 , to ensure that the optimal work effort is greater

than the corresponding base level, i.e. λ⋆ ≥ λ0. Under this assumption we can formulate

the optimal work effort as a function of productivity and disutility stress, λ⋆ = λ⋆(κ, α),

and calculate the sensitivities

∂λ⋆

∂(1/κ)
=

1/κ

α − 2
λ⋆ > 0 , and

∂λ⋆

∂α
= λ⋆ ln κ/λ2

0

(α − 2)2
< 0 , for α > 2, and κ−1 > λ−2

0 .

The executive’s optimal work effort choice is positively related to his work productivity

parameter ( ∂λ⋆

∂(1/κ)
> 0), and negatively related to his disutility stress parameter (∂λ⋆

∂α
< 0).
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Figure 1 depicts the optimal effort choice (λ⋆) as a function of work productivity (1/κ)

and disutility stress (α), with λ0 = 0.10. As predicted, the optimal effort choice, the

idiosyncratic Sharpe ratio (λ⋆), increases with work productivity (1/κ) and decreases

with disutility stress (α). For moderate and large values of disutility stress, the optimal

effort appears to be mainly driven by the executive’s productivity where we observe a

higher sensitivity for the productivity (1/κ) being close to the designated boundary value

(1/λ2
0 = 100).

Interesting limiting cases are:

lim
κրλ2

0

λ⋆(κ, α) = λ0 and lim
κց0

λ⋆(κ, α) = +∞ , for all α > 2 ,

indicating that the limit for deteriorating work productivity is base-level work effort (λ0),

and ever increasing work productivity yields ever increasing effort (to infinity). Taking

the disutility stress parameter to its boundary cases gives

lim
αց2

λ⋆(κ, α) = +∞ and lim
αր∞

λ⋆(κ, α) = λ0 , for all κ−1 > λ−2
0 ,

indicating that the executive will deliver ever increasing work effort as disutility stress

diminishes (α ց 2), and the totally stressed executive (α ր ∞) will deliver base-level

effort.

The executive’s maximized utility from his optimal personal investment and work effort

decision can be written as difference of the utility from investment and disutility from

effort:

Φ(v, 0) = log v +

[
r +

1

2
(λP )2 +

1

2
(λ⋆)2

]
T

︸ ︷︷ ︸
=E0,v [U(V π⋆

T
)]

−
1

α
(λ⋆)2 T

︸ ︷︷ ︸
E0,v

∫ T

0
c(λ⋆(t,V π⋆

t ) dt

.

Applying indifference utility arguments, the executive’s fair compensation for the cost of

effort can be paid as an upfront cash compensation (∆v). Then the fair compensation is

a cash upfront payment (∆v) that is the solution of:

Φ(v + ∆v, 0) = Φ(v, 0) + E
0,v

[∫ T

0

c(λ⋆(t, V π⋆

t ) dt

]
(4.1)

The solution is

∆v = v

(
e

(λ⋆)2 T

α − 1

)
= v



e
λ2
0 T

α

(
λ2
0

κ

) 2
α−2

− 1



 .

The sensitivities of the compensation (∆v(κ, α)) with respect to changes in the work

productivity and disutility stress parameters are as expected:

∂∆v

∂(1/κ)
=

2

α − 2

1

κ

(λ⋆)2

α
∆v > 0 , for α > 2 and κ−1 > λ−2

0 .
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and

∂∆v

∂α
= −

(
1

α
+

2 ln λ2
0/κ

(α − 2)2

)
(λ⋆)2

α
∆v < 0 , for α > 2 and κ−1 > λ−2

0 .

The executive’s indifference utility compensation therefore increases with his work pro-

ductivity and decreases with his disutility stress.

Figure 2 displays a graph of the the fair cash up-front compensation based on the

indifference utility rationale. The fair compensation (∆v) depends on the executive’s initial

wealth (v), the specific time horizon (T ), and the base-level Sharpe ration (λ0). For the

present case we have chosen v = $5 Mio, T = 10 years, and λ0 = 0.10. Interesting limiting

cases are:

lim
κրλ2

0

∆v(κ, α) = v

(
e

λ2
0 T

α − 1

)
, and lim

κց0
∆v(κ, α) = +∞ , for all α > 2 ,

indicating that the limit for deteriorating work productivity to base-level work effort

(1/λ2
0) is the corresponding fair compensation, and ever increasing work productivity

yields ever increasing fair compensation (to infinity). Taking the disutility stress parameter

to its boundary cases gives

lim
αց2

∆v(κ, α) = +∞ , and lim
αր∞

∆v(κ, α) = v

(
e

λ2
0 T

α − 1

)
, for all κ < λ2

0 ,

indicating that the executive will receive ever increasing fair compensation as disutility

stress diminishes (α ց 2), and the totally stressed executive (α ր ∞) will receive the

base-level compensation (case: λ⋆ = λ0).

4.2 The Power-Utility Case

The optimal effort in the new parametrization reads λ⋆(t) = λ
α

α−2

0 (κγ)−
1

α−2 f(t)
1

α−2 , where

we have dropped the dependence on the variable v. To ensure that the optimal effort is

greater than the base effort we assume r > −
1

2

λ2
P

γ
and

κ−1 ≥






γ λ−2
0 , for 0 < γ < 1 ,

γ λ−2
0 f(0)−1 , for γ > 1 .

The conditions above follow from properties of the function f that is a solution of an

ordinary differential equation of Bernoulli-type. Also note that in the new parametrization

f(0) reads

f(0) = e
(1−γ)

(
r+ 1

2

λ2
P
γ

)
T



1 −
(α − 2)

(
λα
0

κ γ

) 2
α−2

α (2 γ r + λ2
P )

(

e
1−γ
α−2

(
2 r+

λ2
P
γ

)
T
− 1

)



−α−2
2

.
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The executive’s fair compensation is derived from Equation (4.1). The cash upfront pay-

ment ∆v is

∆v = v




e

1
2γ

∫ T

0
λ⋆(t)2 dt



1 −
(α − 2)

(
λα
0

κ γ

) 2
α−2

α (2 γ r + λ2
P )

(

e
1−γ
α−2

(
2 r+

λ2
P
γ

)
T
− 1

)



(α−2)
2(1−γ)

− 1




.

Remark 4.1. The presented solution ∆v is derived by using structural properties of the
optimal portfolio strategies. The optimal portfolio strategy π⋆ is identical to that of an
outsider investor π̂⋆ with knowledge of the effort exercised by the executive, that is, the
outside investor knows λ⋆. Denote Φ̂(v, 0) the maximized utility of the outside investor,

then it follows that Φ̂(v, 0) = Φ(v, 0) + E[
∫ T

0
c⋆(λ⋆(t)) dt]. Further, we can calculate

Φ̂(0, v) =
v1−γ

1 − γ
e
(1−γ)

[(
r+ 1

2

λ2
P
γ

)
T+ 1

2γ

∫ T

0
λ⋆(t)2 dt

]

,

and then solve Φ̂(v, 0) = Φ(v + ∆, 0), the indifference utility principle as given in Equa-
tion (4.1), for ∆v.

In contrast to the log-utility case, the sensitivities of the optimal effort λ⋆ and the fair

compensation ∆v with respect to variations in the parameters describing the executive

cannot be given in a compact expression.

First the sensitivities of the optimal work effort (λ⋆) is investigated. Figure 3 displays

the optimal effort (λ⋆) over time for varying risk aversion γ. It is notable that an executive

with a rather low risk aversion (0 < γ < 1) starts at a high effort level and then decreases

over time. For an executive with a rather high risk aversion (γ > 1) the effort starts at

a lower level and increases over time. Observing the executive’s effort over time therefore

potentially reveals his risk aversion. Figure 4 is in line with the previous observation. The

risk aversion is fixed at a rather low value (γ = 0.5), hence the executive’s effort decreases

over time. The executive’s effort (λ⋆) increases with his productivity (κ−1) indicating that

a more productive executive will work harder in order to benefit from the company’s stock

price growth through his investment decision of own-company stockholding. Figure 5 is

similar to the previous setting, but now the disutility stress (α) is varied, with productivity

being fixed (κ−1 = 2000). Increasing susceptibility to stress leads to decreasing effort.

The executive’s fair compensation is now analyzed. The sensitivities of the upfront

cash payment (∆v) is studied with respect to variations in the parameters describing the

executive. Figure 6 shows the fair compensation graphed against productivity (κ−1) and

risk aversion (γ), disutility stress fixed (α = 5). Decreasing risk aversion and increasing

productivity leads to an increasing compensation. This effect becomes more notable for

executives with a rather low risk aversion (γ ≈ 0.5 and below). In Figure 7 the executives

risk aversion is fixed (γ = 0.5) and the other parameters vary. Increasing productivity

(κ−1) and decreasing disutility stress (α) leads to an increasing fair compensation, where

the relationship is more sensitive for small values of disutility stress (α). In Figure 8 the
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executive’s productivity is fixed (κ−1 = 2000), and risk aversion (γ) and disutility stress

(α) are varied. The sensitivities are as observed before, and the effect becomes more

pronounced for a rather low risk aversion (γ ≈ 0.5 and below) and a rather low disutility

stress (α ≈ 4.5). For even lower disutility stress (α ≈ 4 and below) the fair compensation

(∆v) increases rapidly (what cannot be shown in the present figure).

In our framework the executive’s effort choice (λ⋆) and fair compensation (∆v) depend

sensibly on the executive’s characteristics, risk aversion (γ), work productivity (κ−1), and

disutility stress (α). Consequential observations are that the executive’s risk aversion can

be backed out from the exercised effort monitored over time, and that a better qualified

executive (more productivity κ−1 and less disutility stress α) leads not only to a better

performance but also to a higher indifference utility compensation (∆v). Thus the uncon-

strained executive is rewarded twice for talent. First he receives a higher compensation as

a direct reward. Second, he benefits from investing in his own-company stock what can

be termed an indirect reward.

5 Conclusion and Outlook

We establish a model framework that gives insight into an unconstrained executive’s

own-company stockholding and work effort preferences. The executive is characterized

by risk aversion and work effectiveness parameters. We demonstrate that an executive

with superior work effectiveness (i.e. higher quality) will undertake more work effort for

his company. Furthermore, depending on any change in the company’s non-systematic

volatility associated with the executive’s work effort (i.e. control strategy), due to risk

aversion a higher quality executive will not necessarily undertake a higher own-company

stockholding.

For application to empirical data, our framework allows an executive quality measure

to be backed-out from the observed own-company stockholdings of unconstrained exec-

utives (assuming knowledge of non-systematic company volatility). Alternatively, with

assumption of executive quality and risk aversion, our framework allows identification

of the deviation in own-company stockholding that results from constraining an execu-

tive with performance contracting. A future extension for our framework is to specify a

constrained executive subject to an imposed own-company stockholding representative

of performance contracting, and to contrast his work effort strategy with that of our

unconstrained executive.
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Figure 1: The optimal choice of the executive’s effort λ⋆ is graphed against executive’s
characteristics work productivity κ−1 and disutility stress α; with fixed base-level Sharpe
ratio λ0 = 0.10.
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Figure 2: The executive’s fair up-front cash compensation ∆v (based on indifference util-
ity) is graphed against executive’s characteristics work productivity κ−1 and disutility
stress α; with fixed base-level Sharpe ratio λ0 = 0.10, initial wealth v = $5 Mio., and
T = 10.).

27



0
2

4
6

8
10

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

O
pt

im
al

Sh
ar

pe
R

at
io

λ⋆

Risk Aversion γ Time t

Figure 3: The optimal choice of the executive’s effort λ⋆ is graphed against time t and
risk-aversion γ; with fixed base-level Sharpe ratio λ0 = 0.10, disutility stress α = 5, work
productivity κ−1 = 2000.
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Figure 4: The optimal choice of the executive’s effort λ⋆ is graphed against time t and work
productivity κ−1; with fixed base-level Sharpe ratio λ0 = 0.10, disutility stress α = 5, risk
aversion γ = 0.25.
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Figure 5: The optimal choice of the executive’s effort λ⋆ is graphed against time t and
disutility stress α; with fixed base-level Sharpe ratio λ0 = 0.10, work productivity κ−1 =
2000, risk aversion γ = 0.5.
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Figure 6: The executive’s fair up-front cash compensation ∆v (based on indifference util-
ity) is graphed against the executive’s characteristics work productivity κ−1 and risk
aversion γ; with fixed base-level Sharpe ratio λ0 = 0.10, initial wealth v = $5 Mio.,
T = 10, and disutility stress α = 5.
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Figure 7: The executive’s fair up-front cash compensation ∆v (based on indifference util-
ity) is graphed against the executive’s characteristics work productivity κ−1 and disutility
stress α; with fixed base-level Sharpe ratio λ0 = 0.10, initial wealth v = $5 Mio., T = 10,
and risk aversion γ = 0.5.
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Figure 8: The executive’s fair up-front cash compensation ∆v (based on indifference util-
ity) is graphed against the executive’s characteristics risk aversion γ and disutility stress
α; with fixed base-level Sharpe ratio λ0 = 0.10, initial wealth v = $5 Mio., T = 10, and
work productivity κ−1 = 2000.
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