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Abstract

In this paper we introduce a cooperative game based on the minimum cut tree

problem which is also known as multi-terminal maximum flow problem. Minimum

cut tree games are shown to be totally balanced and a solution in their core can

be obtained in polynomial time. This special core allocation is closely related to

the solution of the original graph theoretical problem. We give an example showing

that the game is not supermodular in general, however, it is for special cases and for

some of those we give an explicit formula for the calculation of the Shapley value.

Keywords: cooperative game, minimum cut tree, core, Shapley value, cactus graph

1 Introduction

Cooperative games on graphs combine the theories of graphs, optimization, and games.

One classic problem in graph theory is to find a maximum flow. In combinatorial op-

timization there is one central decision maker who controls all resources and aims to

optimize her objective. For the maximum flow problem several efficient algorithms are

known to solve it to optimality. The situation changes if the system is not controlled

by one individual but by several decision makers, the so called players who may have

conflicting objectives. A solution which is optimal for one decision maker or for the sys-

tem as a whole may not be accepted by the others and thus may not be implementable.

Therefore it is desirable to find solutions which are attractive for at least those players

needed to realize them. The maximum flow problem has been investigated intensively

from this game-theoretic perspective: in maximum flow games the edges are controlled
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by players who want a reward for providing the capacity of their edges to the transport

of a good. Kalai and Zemel [KZ82] defined the maximum flow game and showed that

the solution of the corresponding graph theoretical problem yields a core solution of their

game, i.e., an allocation of rewards such that every player has an incentive to cooperate.

Surveys on the maximum flow game and other cooperative games on graphs are given by

Curiel [Cur97] and Borm et al [BHH01].

In this paper we introduce and investigate a game based on the minimum cut tree problem.

We start by summarizing the necessary concepts in cooperative game theory and graph

theory and define the minimum cut tree game in Section 2. Some properties of the game

are discussed in Subsection 3.1 and a variant of the game is defined in Subsection 3.2,

we state and prove a core allocation in Subsection 3.3. Finally, explicit formulas for the

Shapley value of special cases are given in Subsection 3.4.

2 Preliminaries And Notation

2.1 Cooperative Game Theory

A cooperative game with transferable utility consists of a set of players N and a char-

acteristic function v : 2N �→ R mapping every subset of players (a so called coalition)

to a real value. The game is superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for all coalitions

S, T ⊆ N with S ∩ T = ∅. Superadditive reward games incite disjoint coalitions to join.

In a supermodular game v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) holds for all coalitions.

A payoff vector is a vector in R
N assigning a value xi to every player i. An imputation is

a payoff vector which is feasible and efficient –
∑

i∈N xi = v(N) – as well as individually

rational – xi ≥ v({i}) for all i ∈ N . The central question of a cooperative reward game

is: Once a coalition has been formed, how do we allocate the rewards such that every

member of the coalition is satisfied? There are several answers to this question based

on different philosophies. The core C(v) of a game consists of all imputations satisfying
∑

i∈S xi ≥ v(S) for all coalitions S ⊆ N , i.e., every coalition is better off joining the grand

coalition N and the reward of the grand coalition is completely distributed among the

players. The core of a game may be empty, a singleton or a convex polyhedron. A game

with non-empty core is balanced and vice versa. If all its subgames are balanced the game
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is totally balanced. Another important concept is the Shapley value [Sha53], which is the

average over all marginal vectors corresponding to all permutations of players. Let π be a

permutation of N and P (π, i) the predecessors of i w.r.t. π, then a marginal vector mπ(v)

is defined by its entries mπ
i (v) := v(P (π, i) ∪ {i}) − v(P (π, i)). Thus, the Shapley value

can be calculated as φ(v) := 1
n!

∑
π∈ΠN

mπ(v). The Shapley value of a general game may

not lie in the core, however, in supermodular game it is an element of the core. Therefore,

the core of a supermodular game is non-empty. In general, the calculation of the Shapley

value is #P-complete and the decision whether the core of a game is non-empty is in NP

due to results of Deng and Papadimitriou [DP94].

2.2 Minimum Cut Tree Problem

Let G = (V, E) be an undirected graph and w : E �→ R+ a weight function on its edges.

In order to calculate the maximum flow or minimum cut between any pair of vertices one

could solve n(n−1)
2

single source - single sink problems. Gomory and Hu [GH61] came up

with a smarter algorithm solving the problem in O(n4). Their procedure yields a minimum

cut tree T of G such that every edge e of T induces a cut te in G and the weight of e is

equal to the sum of the weights of edges of the original graph G in the cut, denoted by

wte . Given any pair of vertices u, v ∈ V , the minimum cut in G separating them equals

the minimum cut in T in terms of capacity and vertex partition. An edge of T is not

necessarily an edge of G. In the remainder of this paper, if we minimize an objective

function over the set of trees in a graph, these trees may also contain edges which are not

edges of the original graph. The problem can be described by minT : tree in G

∑
e∈T wte or

alternatively by minT : tree in G

∑
e∈T we · lTe where lTe is the number of edges on the path

in T connecting the endvertices of e. The complexity of the Gomory-Hu algorithm can

be improved to O(nτ) using a better maximum flow algorithm with complexity O(τ), e.g.

the algorithm of Goldberg and Rao [GR98] with O(min(n
2
3 , m

1
2 )m log(n2

m
) log U) where U

is the largest weight and all weights are integral. In the following we review the minimum

cut tree algorithm of Gomory and Hu:

Algorithm 2.1. Algorithm of Gomory and Hu

Input: undirected graph G = (V, E), weight function w : E �→ R+

Output: minimum cut tree T

1. Initialize V (T ) := {V (G)}, E(T ) := ∅
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2. Choose X ∈ V (T ) with |X| ≥ 2, if none exists go to 6.

3. Choose u, v ∈ X with u �= v

Execute for all connected components C of T \ X:

Let SC :=
⋃

Y ∈V (C) Y

Let (G′, w′) arise from (G, w) by contracting SC to a single vertex vC

(So V (G′) = X ∪ {vC : C is a connected component of T \ X})

4. Find a minimum u − v-cut (U ′, V (G′) \ U ′) in (G′, w′)

Let W ′ := V (G′) \ U ′

Set U := (
⋃

vc∈U ′\X SC) ∪ (U ′ ∩ X) and W := (
⋃

vc∈W ′\X SC) ∪ (W ′ ∩ X)

5. Set V (T ) := (V (T ) \ {X}) ∪ {U ∩ X, W ∩ X}
For each edge e = {X, Y } ∈ E(T ) incident to vertex X do:

If Y ⊆ U then set e′ := {U ∩ X, Y } else set e′ := {W ∩ X, Y }
Set E(T ) := (E(T ) \ {e}) ∩ {e′} and w(e′) := w(e)

Set E(T ) := E(T ) ∪ {{U ∩ X, W ∩ X}} and w({U ∩ X, W ∩ X}) := w′(U ′, W ′)

Go to 2.

6. Replace all {x} ∈ V (T ) by x and all {{x}, {y}} ∈ E(T ) by {x, y}
STOP

An example for the minimum cut tree of a graph is shown in Figure 1 in Subsection 3.1.

2.3 Definition Of The Minimum Cut Tree Game

Let G = (N ∪r, E) be an undirected graph with edge set E and vertex set {i1, . . . , in}∪r.

The specified vertex r is the root vertex. The other vertices are owned by and will be

identified with players. We denote Nr := N ∪ r. Let w : Nr ×Nr �→ R+ ∪{0} be a weight

function mapping pairs of vertices to non-negative numbers. Let S ⊆ N be a coalition,

then Sr := S ∪ r and GSr is the subgraph of G induced by Sr.

The characteristic function of a cooperative minimum cut tree game is defined as follows:

v(S) = min
T : tree in GSr

∑

i<j∈Sr

wij · lTij .

Here, i < j ∈ Sr implies that each vertex pair is only considered once.
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3 Minimum Cut Tree Game

3.1 Examples And Properties

Two examples will be used to visualize some of the considerations in this section. Let

G be the unweighted complete graph with n vertices plus root. We refer to the game it

implies as unitgame. The minimum cut tree for a coalition S ⊆ N is always a star tree,

no matter which vertex is the center, lij = 1 if either i or j is the center and lij = 2 else.

As a tree for |S| players has |S| + 1 vertices, |S| tree edges and (|S|+1)×|S|
2

− |S| non-tree

edges, we get v(S) = |S| + 2 · ( (|S|+1)×|S|
2

− |S|) = |S|2.

The game referred to as second game is defined by the graph in Figure 1. On the right

hand side the minimum cut tree is given for S = N . The values of the coalitions are given

in Table 1.

r

1

2 4

3

4

4

2

3

2

5

r

1

2 4

3

7

7

7

6

Figure 1: Example of a game with four players

S v(S) S v(S) S v(S) S v(S) S v(S)

1 4 4 0 1,4 7 3,4 7 1,3,4 18

2 4 1,2 8 2,3 6 1,2,3 10 2,3,4 17

3 2 1,3 6 2,4 6 1,2,4 17 1,2,3,4 27

Table 1: Values of the coalitions

We give a construction scheme to obtain restricted trees which will be used in several

proofs later on.

Construction 3.1. Given a graph G = (N, E), a minimum cut tree T Nr and a coalition

S ⊆ N , we construct a tree T|Sr by restricting T Nr to S. First, T|Sr is initialized with all

vertices of Sr and no edges. Now, for every vertex i ∈ S we look at the path from i to
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r in T Nr , denominated by P T Nr

ir . Let wi be the weight of the first edge on P T Nr

ir starting

from i and let j be the first vertex of Sr on this path. Observe that j may be equal to r.

Connect i and j in T|Sr by an edge with weight wi.

Lemma 3.2. The weight of the restricted tree T|Sr obtained by Construction 3.1 is not

smaller than the weight of a minimum cut tree in GSr , i.e.,

∑

e∈T|Sr

we ≥ min
T Sr∈GSr

∑

e∈T Sr

wGSr

te .

Proof. First, we have to show that we in T|Sr is not smaller than wGSr

te , the weight of the

cut induced by e in GSr . Let i and j be the endvertices of e with i being further away

from r. Let Ui := {k ∈ N : i ∈ P T Nr

kr }, Ui contains all vertices who are connected to r via

i, by definition it also contains i. The cut (Ui, Nr \ Ui) has weight we, however, the cut

defined by (i, j) in GSr contains only a subset of this edges, namely (Ui∩S, (Nr \Ui)∩Sr).

Therefore, we ≥ wGSr

te and we get

∑

e∈T|Sr

we ≥
∑

e∈T|Sr

wGSr

te ≥ min
T Sr∈GSr

∑

e∈T Sr

wGSr

te

observing that a tree with the same edges as T|Sr may not be the minimum cut tree for

GSr .

Theorem 3.3. The minimum cut tree game is superadditive.

Proof. Let T S∪T∪r be a minimum cut tree of the union S ∪T , we construct trees T|Sr and

T|Tr restricted to vertices in Sr and Tr as in Construction 3.1, in this case N = S ∪ T .

Doing this, the weight of each edge of T S∪T∪r is assigned to exactly one of the restricted

trees depending on its endvertex which is further away from r. Now,

v(S) + v(T ) ≤
∑

e∈T|Sr

we +
∑

e∈T|Tr

we = min
T S∪T∪r: tree in GS∪T∪r

∑

e∈T S∪T∪r

wGS∪T∪r

te = v(S ∪ T ).

The first inequality follows from Lemma 3.2.

However, a superadditive game cannot be transformed to a minimum cut tree game in

general, i.e., there may be no graph G implying a minimum cut tree game with the same

characteristic function. Let a three-player game be defined by w(S) = 1 for |S| = 1,

w(S) = 4 for |S| = 2 and w(S) = 10 for |S| = 3. It differs from the unitgame only by

the value of the grand coalition and it is superadditive. A graph implying a minimum
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cut tree game with the same values has to have weight 1 for every edge adjacent to the

root, as v(S) = wir for S = {i}. Furthermore, for any other edge (i, j) with i, j �= r we

get v({i, j}) = 2 + wij + min{1, wij} and this is not equal to 4 for wij �= 1. Therefore,

the only graph which yields the required values for coalitions with less than 3 players is

the complete unweighted graph with four vertices. But, as we know from the unitgame

v(N) = |N |2 = 9 �= 10 = w(N).

Theorem 3.4. Minimum cut tree games with at most three players are supermodular.

Proof. If |N | = 3 coalitions are either disjoint or one contains the other or they have one

player in common. Supermodularity follows from superadditivity for the first two cases.

Let S∩T = {i}. We use the restriction from Construction 3.1 with a modification. When

we consider vertex i as an S-vertex, we assign it to the next vertex of S on the path from

i to r in the minimum cut tree for the grand coalition. Its weight is not (Ui, Nr \ Ui)

but (Ui ∩ S, (Nr \ Ui) ∩ Sr) and still the argumentation of Lemma 3.2 holds. For T|Tr we

restrict analogously. The only edge in (Ui, Nr \Ui) whose weight we assign twice is (i, r).

As v({i}) = wir, we have v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Supermodularity for games with more than three players is not given in general as can

be seen in Table 1, in this game coalitions S = {1, 2, 4} and T = {2, 3, 4} violate the

condition for supermodularity, as v(S) + v(T ) = 17 + 17 > 6 + 27 = v(S ∩ T ) + v(S ∪ T ).

3.2 Edge Player Variant

An edge player variant of the minimum cut tree game is implied by an undirected graph

G = (V, M) with vertex set V and edge set {j1, . . . , jm}. Given a coalition S ⊆ M ,

GS denotes the subgraph of G containing all vertices but only edges of players in S and

wS
e = we for j ∈ S whereas wS

e = 0 else. The corresponding characteristic function is

v(S) = min
T : tree in G

∑

e∈S

we · lTe = min
T : tree in G

∑

e∈M

wS
e · lTe .

Theorem 3.5. The edge player variant is superadditive.

Proof. Let wS
e , wT

e , and wS∪T
e be defined as above, then wS∪T

e = wS
e +wT

e and at least one
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of the latter summands is equal to 0. We get

v(S ∪ T ) = min
T : tree in G

∑

e∈S∪T

wS∪T
e · lTe

= min
T : tree in G

(
∑

e∈S∪T

wS
e · lTe +

∑

e∈S∪T

wT
e · lTe )

= min
T : tree in G

(
∑

e∈S

wS
e · lTe +

∑

e∈T

wT
e · lTe )

≥ min
T : tree in G

∑

e∈S

wS
e · lTe + min

T ′: tree in G

∑

e∈T

wT
e · lT ′

e

= v(S) + v(T )

3.3 Core Allocations

Theorem 3.6. Let G be a graph defining the minimum cut tree game v, let T Nr be any

minimum cut tree of G and assign to each vertex i ∈ N the weight of the first edge of the

path from i to the root in T Nr , i.e., xi = wGNr

tij
where (i, j) ∈ P T Nr

ir . Then x = (xi)i∈N is

a core allocation for v.

Proof. Obviously, the allocation is efficient, i.e.,
∑

i∈N xi = v(N). It remains to show that

the coalitions are satisfied, i.e.,
∑

i∈S xi ≥ v(S) for all S ⊆ N . Therefore, we construct the

restricted tree T|Sr according to Construction 3.1. The weight of T|Sr is equal to
∑

i∈S xi

and thus by Lemma 3.2 not smaller than v(S).

The allocation described in the theorem above will be called Gomory-Hu cut allocation

in the following. As the minimum cut tree is not unique in general, the allocation is not

unique either.

Theorem 3.7. For minimum cut tree games it holds:

(i) The core is never empty and a core element can be found in O(n4).

(ii) The core is a singleton if and only if there are no edges with positive weight which

are not adjacent to the root.

(iii) The convex hull of any set of Gomory-Hu cut allocations is a subset of the core.

(iv) They are totally balanced.

(v) They are a proper subset of maximum flow games.
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Proof. (i) Every graph has a corresponding minimum cut tree which yields a core allo-

cation by Theorem 3.6. The complexity results from the complexity of the minimum

cut tree algorithm by Gomory and Hu [GH61].

(ii) If wij = 0 for all i, j �= r then v(N) =
∑

i∈N wir. A core allocation satisfies

xi ≥ v({i}) = wir and we get
∑

i∈N wir ≤
∑

i∈N xi = x(N) = v(N) =
∑

i∈N wir.

Therefore, xi = wir is the only core allocation.

Let wij > 0 for some i, j �= r, let T Nr be a minimum cut tree for Nr and x be the

corresponding Gomory-Hu cut allocation. There are three cases for the position of

i, j and r: j ∈ P T Nr

ir (or vice versa) or r ∈ P T Nr

ij or none of the vertices is on a path

between the other two. In the first case wij is a component of xi and in the other

cases of xi and xj. Define x′ by x′
i = xi − wij, x′

j = xj + wij and x′
k = xk else. We

only have to show that x′(S) ≥ v(S) for i ∈ S and j /∈ S. Following Construction

3.1 the argument of Lemma 3.2 still holds if we do not assign weight wij to vertex

i ∈ S as the cut in GSr would not contain (i, j) anyway. Every convex combination

of x and x′ is an element of the core as well.

(iii) Given any minimum cut tree in Nr, the corresponding Gomory-Hu cut allocation is

in the core by Theorem 3.6. As the core is convex, the result follows.

(iv) The minimum cut tree game is balanced as its core is never empty and every subgame

of a minimum cut tree game is a minimum cut tree game and therefore, it is balanced

itself.

(v) The class of totally balanced games is equivalent to the class of maximum flow

games [KZ82] and there are totally balanced games which cannot be transformed

to a minimum cut tree game, e.g., the superadditive game above.

We introduce a core allocation for the edge player variant which also leads to another core

allocation of the original game.

Theorem 3.8. Let G be a graph defining the edge player variant of the minimum cut tree

game v, let T be any minimum cut tree of G and assign to each edge e ∈ M its weight

multiplied with the number of cuts it is in, i.e., xe = we · lTe . Then x = (xe)e∈M is a core

allocation for v.
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Proof. The allocation is efficient. The payoff to a coalition S is x(S) =
∑

e∈S we · lTe which

is not smaller than the value of a minimum cut tree, v(S) = minT ′: tree in G

∑
e∈S we ·lT

′
e .

Theorem 3.9. Let G be a graph defining the minimum cut tree game v, let T N be any

minimum cut tree of G and assign to each vertex i ∈ N a share of the weights of its incident

edges multiplied with the number of cuts they are in, i.e., xi = wir · lTir +
∑

j �=i,r λij ·wij · lTij
with λij + λji = 1 and 0 ≤ λij ≤ 1. Then x = (xi)i∈N is a core allocation for v which is

denoted as Gomory-Hu committee allocation.

Proof. Let w be the edge player variant of the minimum cut tree game and let y be the

allocation in its core as given in Theorem 3.9. Now, let N be the set of vertex players

who play committee games (cf. Curiel et al [CDT89]) on the edges of G. An edge joins

a coalition if and only if its two endvertices join the coalition, this makes the endvertices

so called veto players. If one endvertex of the edge is the root then the other endvertex is

a dictator. Observe that we have the same power structure as in the vertex player game

– for every coalition S ⊆ N its value is the weight of the minimum cut tree in the graph

containing all edges with both endvertices in Sr. The reward ye of an edge in the edge

player variant can be shared in an arbitrary proportion among the corresponding veto

players or dictators.

The Gomory-Hu cut allocation is xi = |N | for all i ∈ N for the unitgame. For the second

game the Gomory-Hu cut allocation is x = (7, 6, 7, 7), whereas Gomory-Hu committee

allocations for λij = 1
2

and λ4i = 1 for all i, j ∈ N are (4, 4, 4, 15) and (7, 6, 6.5, 7.5),

respectively.

In Theorem 3.7 we concluded that every minimum cut tree game is a maximum flow game

and thus, a core allocation can be found in O(n3) once the game is transformed where n is

the number of vertices in the maximum flow game. Kalai and Zemel [KZ82] transformed

a totally balanced game – as the minimum cut tree game – to a maximum flow game as a

minimum game of additive games where each additive game consists of two vertices and n

parallel edges corresponding to the players. The minimum game of these additive games

is their connection in series. In our case this transformation results in a huge number of

vertices.

Theorem 3.10. A supermodular minimum cut tree game of n players can be represented

by the minimum game of at most
(

n
n/2

)
additive games. This bound is sharp.
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Proof. Given a minimum cut tree game with n players, we pick
(

n
n/2

)
marginal vectors and

build additive games with each of them. We have to show that this number is sufficient

and necessary to represent the original game. As for supermodular games all marginal

vectors are in the core, they fulfill
∑

i∈S mi(v) = m(S) ≥ v(S) for every additive game

and also for the minimum game itself. It remains to show that m(S) = v(S) for at least

one additive game, for supermodular games this is the case for every permutation where

the members of S come first. Hence, we need to have every coalition at least once at the

beginning of a permutation. We can build chains of coalitions, i.e., a one-player-coalition

is a subset of a two-player coalition and so on. By the theorem of Dilworth,
(

n
n/2

)
chains

are needed.

The sharpness of the bound can be seen in the unitgame where v(S) = |S|2. For every

player there has to be an edge with weight 1 in at least one additive game. In all other

additive game her edge must not have weight less than 1. To induce the value for a

two-player coalition, the players have to have weight 4 in at least one additive game. This

can never be covered in one additive game for two two-player coalitions, otherwise their

three- or four-player union would have weight less than 9, contradicting the requirement

v(S) = |S|2. Therefore we need at least as many additive games as there are two-player

coalitions. The maximum number of coalitions with the same size is
(

n
n/2

)
for coalitions

with 
n
2
� players.

3.4 Special Cases

Lemma 3.11. For special cases the weight of a minimum cut tree or an upper bound of

it can be found as follows:

(i) Let G be a graph with cut vertex vc, i.e., the deletion of vc increases the number of

components of G. The graph can be decomposed into components not containing any

cut vertex, observe that the cut vertices of the original graph appear in more than

one component. Then a minimum cut tree can be found by composing the minimum

cut trees of the components.

(ii) Let G be a tree graph, then a minimum cut tree is equal to the graph itself and its

weight is the same as well. This holds for forest graphs as well if edges with weight

0 are added to connect the components.
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(iii) Let G be a cycle graph with m edges, then a minimum cut tree is equal to the

maximum spanning tree and its weight is
∑

e∈G we + (m − 2) mine∈G we.

(iv) Let G = (N ∪ r, E) be a graph with root r and let wij ≤ min{wir, wjr} hold for all

i, j �= r, then the minimum cut tree is a star tree with center r and its weight is
∑

i∈N wir + 2
∑

i<j∈N wij

(v) Let G be an unweighted graph with m edges and let δi be the degree of vertex i, the

weight of a minimum cut tree is at most 2 ·m−Δ or equivalently
∑

i∈V δi−Δ where

Δ is the maximum degree of a vertex in G.

Proof. (i) A minimum cut between two vertices does not contain edges of more than

one component. If it contained edges of at least two components than a proper

subset of these edges would disconnect the two vertices as well and the weight of

this subset would be even smaller. Therefore, minimum cut trees of components are

pairwise independent.

(ii) The tree is the result of the algorithm of Gomory and Hu if in every step the

minimum cut between two vertices adjacent in the original graph is calculated.

This minimum cut consists only of the edge in the original graph.

(iii) In a minimum cut tree there are n − 1 cuts, every cut in a cycle graph contains

at least two edges. Let f = (i, j) be an edge with minimum weight and apply the

algorithm of Gomory and Hu, in every iteration separate two vertices adjacent in

the original graph, do not choose i and j in the same step. A minimum cut between

these vertices contains the edge connecting them and a second edge, preferably an

edge with minimum weight, namely, f . At the end, f contributes to n−1 minimum

cuts and the other edges are contained in one cut.

(iv) Apply the algorithm of Gomory and Hu and choose to separate r and an arbitrary

vertex k. We show that a minimum cut between them is the cut separating k from

all other vertices. Assume the minimum cut separates U ⊆ N from U := Nr \ U ,

with k ∈ U and |U | > 1. The weight of (U,U) is

∑

i∈U, j∈U

wij = wkr +
∑

i∈U\k

wir +
∑

j∈U\r

wkj +
∑

i∈U\k, j∈U\r

wij.

The weight of the cut (k, Nr \ k) is

∑

j∈Nr

wkj = wkr +
∑

i∈U\k

wki +
∑

j∈U\r

wkj
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and is not greater than the weight of (U, U) as wik ≤ wir for all i ∈ N .

(v) Let i be a vertex with maximum degree Δ, now consider the star tree with center i

which is not necessarily a minimum cut tree. Every edge which is non-incident to i

is contained in two cuts, the Δ edges incident to i are contained in one cut and the

edges of the star tree which are not edges of G have weight 0 anyway. Therefore,

the star tree induces total cut weight 2 · (m − Δ) + Δ = 2 · m − Δ. The remainder

follows as 2 · m =
∑

i∈V δi.

Theorem 3.12. Let G be an unweighted graph, let S and T be two coalitions and let

GSr∩Tr be the graph induced by their intersection. We define s := |Sr|, t := |Tr|, c :=

|V (GSr∩Tr)|, and d := |E(GSr∩Tr)|. The number of isolated vertices in GSr∩Tr is denoted

by h and the number of disjoint paths by k. If the following conditions hold

(i) S and T have at least three members each, neither of them is contained in the other

(ii) GSr and GTr are cycle graphs

(iii) GSr∩Tr consists only of disjoint paths or isolated vertices and d ≥ 1 and d + h ≥ 2

(iv) GSr∩Tr = GSr ∪GTr (i.e. there are no arcs having one vertex in S \ T and the other

in T \ S)

then the graph does not imply a supermodular game.

Proof. Observe that c = h + k + d, there are h vertices with degree 4, 2k vertices with

degree 3 and (s − c) + (t − c) + (d − k) vertices with degree 2 in GSr∪Tr . Note that these

numbers would change if (iv) did not hold. It follows from (ii) and Lemma 3.11 that

v(S) = 2(s − 1), v(T ) = 2(t − 1), and v(S ∩ T ) = d. From the same lemma we get an

upper bound for v(S ∪ T ) and therefore,

v(S ∩ T ) + v(S ∪ T ) < d + 2 · (s + t − 2c + d − k) + 3 · 2k + 4 · h − Δ

= 2s + 2t + 3d + 4h + 4k − 4c − Δ

= 2s + 2t − d − Δ

where Δ = 3 if h = 0 and Δ = 4 else. On the other hand v(S) + v(T ) = 2s + 2t − 4. As

d + Δ > 4 by condition (iii), we get v(S ∩ T ) + v(S ∪ T ) < v(S) + v(T ).

13



There is only one non-isomorphic graph for four players defining a non-supermodular

game, namely, the unweighted version of the graph in Figure 1 and any of its vertices

can be the root. If a graph contains this graph as an induced subgraph it does not imply

a supermodular game. For five players there are 15 non-isomorphic non-supermodular

graphs.

Theorem 3.13. If G satisfies wij ≤ min{wir, wjr} for all i, j �= r then the game is

supermodular and the Shapley value corresponds to the Gomory-Hu cut allocation.

Proof. If wir = 0 for a vertex i it follows that wij = 0 for all j ∈ N , i.e., the vertex is

isolated in the original graph. We assume, w.l.o.g., that wir > 0 for all i ∈ N . It follows

from Lemma 3.11 that a minimum cut tree of a coalition S is a star tree with center r.

The game is supermodular, because

v(S) + v(T ) =
∑

i∈S

wir + 2
∑

i<j∈S

wij +
∑

i∈T

wir + 2
∑

i<j∈T

wij

=
∑

i∈S∪T

wir + 2
∑

i<j∈S∪T

wij +
∑

i∈S∩T

wir + 2
∑

i<j∈S∩T

wij

= v(S ∪ T ) + v(S ∩ T ).

If a player i enters a coalition S she adds wir + 2
∑

j∈S wij to v(S). In half of the

permutations of N player i enters a coalition already including player j, in this case a

part of her contribution is 2 ·wij which makes wij in average. Player i always adds wir to

the value of a coalition. Therefore the Shapley value of player i is wir +
∑

j∈N wij which

equals the Gomory-Hu cut allocation.

A cactus graph is a graph whose cycles are edge-disjoint. Special cases are tree graphs

and cycle graphs.

Theorem 3.14. For the class of cactus graphs it holds:

(i) Cactus graphs imply supermodular games.

(ii) In tree graphs the Shapley value corresponds to the Gomory-Hu committee allocation

with λij = 1
2

for all i, j ∈ N .

(iii) Let C1, . . . , Ck be the cycles not containing r and Ck+1, . . . , Cl the cycles containing

r. The edge with minimum weight in a cycle Ci is denoted by fi. Then the Shapley

14



value is

φ(i) = wir+
1

2

∑

j �=r

wij+
∑

Ch:i∈V (Ch),h≤k

|V (Ch)| − 2

|V (Ch)|
·wfh

+
∑

Ch:i∈V (Ch),h>k

|V (Ch)| − 2

|V (Ch)| − 1
·wfh

.

Proof. (i) It follows from Lemma 3.11 that the value of a coalition S with cactus graph

GSr is equal to
∑

i∈S wir +
∑

i,j∈S wij +
∑

C: cycle in GSr (n−2) mine∈E(C) we. Observing

that a cycle in the graph of one coalition is in the union of the coalitions and a cycle

in the graph of two coalitions is also in their intersection, the result follows.

(ii) Following from Lemma 3.11, the value of a coalition S is equal to
∑

e∈GSr we or

equivalently
∑

i∈S wir +
∑

i<j∈S wij. If player i enters a coalition already including

player j she adds wir +
∑

j∈S wij to v(S). With the same argument as in Theorem

3.13 the average contribution to the value of a coalition is wir + 1
2

∑
j∈N wij. Hence,

the Shapley value equals the Gomory-Hu committee allocation.

(iii) A player i always contributes wir to the value of a coalition, she adds wij if and only

if player j is already in the coalition, i.e. in half of the cases. Moreover, whenever

player i enters a coalition and therewith closes a cycle C in GSr she adds the weight

of a minimum weight edge in E(C) |V (C)| − 2 times. This happens in 1
|V (C)| of the

cases if r is not in C and in 1
|V (C)|−1

of the cases else.

Planar graphs do not imply supermodular games in general as can be seen in the graph

of Figure 1.

4 Conclusion

We introduced a cooperative game based on the minimum cut tree problem and showed

how a core solution can be obtained. We started our investigations about the Shapley

value on special graphs. Our future research concerns the Shapley value for general graphs

as well as related cooperative cost games and competitive reward games.
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