
1

CORBA Lacks Venom
Kevin Curran, Gerard Parr

Telecommunications & Distributed Systems Research Group
Northern Ireland Knowledge Engineering Laboratory

University of Ulster, Coleraine Campus, Northern Ireland, UK
Email: kj.curran@ulst.ac.uk

Abstract

Distributed objects bring to distributed computing such desirable properties of modularisation, abstraction and reuse
easing the burden o f development and maintenance by diminishing the gap between implementation and real-world
objects. Distributed ob jects, however, need a consistent f ramework in which inter-object communication may take
place. The Common Object Request Broker Architecture (CORBA) is a distributed object standard. CORBA’s primary
protocol i s the Internet Interoperable Object Protocol limited to b locked synchronous remote procedure calls, over
TCP/IP which is inappropriate for systems requiring timely guarantees.

The Real-time Wide Area Network Dissemination Architecture Protocol (RWANDA) overcomes the synchronous
limitation by building on top of an asynchronous group communication model where applications only pay for required
quality of service (QoS) such as multicast, virtual synchrony and encrypted communication. In RWANDA, information
sources use c hannels to d isseminate information to a po tentially large and changing set of channel subscribers.
RWANDA recognises the differing media characteristics and transport requirements of multimedia b y providing a
protocol composition framework that extends to incorporate ye t unsupported communication p rotocols, qualities of
service and optimised multimedia stacks. RWANDA provides an a synchronous foundation necessary for developing a
large scale wide area network continuous media protocol.

Key words: Distributed systems, multimedia, object frameworks, middleware, continuous media

1 Introduction

The Object Management Group (OMG) is a consortium of more than 300 hardware, software and end-user companies.
Some of the principal OMG partners are DEC, with its Objectbroker product, IONA Technologies Ltd. (Dublin,
Ireland), with its Orbix implementation, and IBM, with its Distributed System Object Model (SOM/DSOM)
[Tibbitts95]. These c ompanies along with ObjectDesign, were a uthors of the Common Object Request Broker
Architecture (CORBA) [OMG95]. CORBA specifies the architecture of an Object Request Broker (ORB). The ORB is
defined to enable and regulate interoperability between objects and applications being part of a larger vision called the
Object Management Architecture (OMA).

The CORBA specification does not address implementation details and leaves many areas undefined. This
unfortunately resulted in proprietary technologies used by the various CORBA vendors, which contrasts with the single
Microsoft OLE specification and implementation [Betz94].

1.1 CORBA
The Common Object Request Broker Architecture , introduced in 1991, is the Object Management Group's answer to
the need for interoperability among the rapidly proliferating number of hardware and software products. Simply stated,
CORBA allows applications to communicate with one another no matter where they are located or who has designed
them. CORBA defines true interoperability by specifying how Object Request Broker’s from different vendors can
interoperate. It defines the Interface Definition Language (IDL) and the Application Programming Interfaces that enable
client/server object interaction within a specific implementation of an ORB.

2

Figure 1.1 : CORBA method calls through IIOP

The ORB, illustrated in figure 1.1 is the middleware that establishes the c lient-server r elationships between objects.
Using an ORB, a client can transparently invoke a method on a server object, which can be on the same machine or
across a network. The ORB intercepts the call and is responsible for finding an object that can implement the request,
pass it the parameters, invoke its method, and return the results. The client does not have to be aware of where the object
is located, its programming language, its operating system, or any other system aspects that are not part of an object's
interface. In so doing, the ORB provides interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

In fielding typical client/server applications, developers use their own design or a recognised standard to d efine the
protocol to be used between the devices. Protocol definition depends on the implementation language, network transport
and a dozen other factors. ORBs simplify this process. With an ORB, the protocol is defined through the application
interfaces via a single implementation language-dependent specification, the IDL. And ORBs provide flexibility. They
let programmers choose the most appropriate operating system, execution environment and even programming language
to use for each component of a system under construction. More importantly, they allow the integration of existing
components. In an ORB-based solution, developers simply model the legacy component using the same IDL they use for
creating new objects, then write "wrapper" code that translates between the standardized bus and the legacy interfaces.

1.2 Request-Reply Limitations

Application-level protocols come in two b asic varieties: request-reply and p eer-to-peer. The former are typically
synchronous: The client must wait for the server to fulfil a request before it can do any other processing. The latter are
asynchronous: The client can continue processing data and perform other tasks while waiting for the server to respond.

Synchronous request-reply mechanisms such as used by CORBA increases congestion in already overloaded networks
[Birman96]. If an application times out before the client has heard back from the server, the client simply resubmits its
request. This can create a vicious cycle of time-outs and retransmission that i ncreases the network load and
correspondingly decreases performance.

The RPC paradigm inherently supports the c lient-server architecture, however as it i s a synchronous technology, it
requires that client and server are always available and functioning, a condition that's difficult to guarantee. When either
client or server are unavailable (blocked), the RPC paradigm fails. For instance, if the network is down or the remote
system is not functioning properly, the c lient simply keeps idling un til t he a pplication times out (with the
aforementioned effect on network traffic). When it comes to RPCs, whatever a c lient application can do-and how
quickly it can do it-is almost wholly dependent on the availability of the server.

When a client program developed using RPCs is compiled, the compiler introduces local stubs that stand in for remote
functions. When the a pplication requires a remote function it actually invokes the local stub. The underlying RPC
mechanism is responsible for making the remote procedure available to the client at run time.

For this reason, RPCs require a mechanism to report problems with blocked clients or servers. One common approach is
to use e rror messages that establish a c onduit for detailed information about a problem. Other mechanisms include
request timers, which allow requests to time out-thus unblocking a client.

3

More sophisticated recovery mechanisms allow a blocked procedure call to be redirected to an alternative server. But if
a c lient process has to b e re-routed via a n RPC, application performance may suffer. Not all RPCs are strictly
synchronous. A few support some form of asynchronous communications, which typically involves a nonblocking
function call. But these RPCs are more the exception than the rule and can be exceedingly difficult to implement. In
addition, because most RPC-based systems have no way of establishing peer-to-peer r elationships, they are not well
suited to object-oriented programming. Implementing a distributed object-oriented environment using RPC development
tools demands resources and involves significant application overhead.

Peer-to-peer protocols do not possess this limitation, but they are not without drawbacks. Once the client has passed a
message along to the server, it is free to go about its business. Unfortunately, it's also free to pass along more messages.
It is easy to see how (under the wrong circumstances) peer-to-peer protocols can drive up traffic volumes exponentially.
Ironically, the master-slave relationship that typifies request-reply protocols also guards against this scenario. As long as
the client is waiting to hear from the server, it is unable to do anything else.

Ultimately, it's not a question of one communications protocol being better than another. Both can increase the strain on
a network (under different conditions) and both must be treated with caution.

1.3 Generic Transport Stack Limitations

Multimedia is composed o f varying types such as audio, video, plain text, control information etc. and within these
types, there exists a multitude of formats such as JPEG, MPG etc. Therefore to use the same protocol stacks to cater for
all these transport types is not the ideal scenario.

Transport protocols such as CORBA’s IIOP, Java’s RMI and DCOM all transport the varying media types through the
same protocol stack. Therefore if a video file is transported through the same connection as an audio file, the video data
will have to adopt the packet size allocated to the audio file. Audio in general runs more efficiently with smaller packet
sizes. Isochronous Multimedia traffic can tolerate some loss, the problem is that data which misses it’s expected delivery
time is of no use. Therefore it is more efficient to lose smaller packets than larger packets. However, increased packets
means increased header processing in routers. Small packet sizes are not optimal for graphical data.

The ideal transport protocol for dissemination-oriented communication provides a basic service that supports multicast
streams, with incremental extensions and specialisation’s to support conversational and request-response communication
as part of the same base protocol mechanism [Cheriton95].

Traditional t ransport protocols utilise an identical stack for all the media. A more e fficient method would construct
optimised protocol stacks for each of the media e.g. audio, text, video. Maximum benefit would be achieved if this could
be implemented at run-time to cater for the applications particular preferences.

1.4 CORBA Limitations

The CORBA model is lacking for the class of systems requiring real-time guarantees [Cingser96]. It is fundamentally
based on a blocked synchronous RPC model [Resnick96], rather than an asynchronous Message-oriented middleware
(MOM) model, which hinders the creation of real-time systems.

Currently most real-time CORBA systems are implemented on UDP/IP connectionless protocols, acting as a "plumbing"
approach to the rest of the system which is structured on top of CORBA protocol.

In the case of CORBA, one might suggest basing the multimedia data transport work on top of the IIOP protocol. There
is however a peculiar difference that must be noticed when developing, for example, a real motion video application and
a traditional networked one: building video applications on top o f inherently request/reply computational model like
CORBA, inevitably requires implementing the a udio and video d elivery outside CORBA requests. The ORB based
model suits perfectly well i n most cases when searching databases, managing objects and p erforming tasks on a

4

request/reply basis is needed, but modern video applications require much more than just this kind of behaviour. They
need streaming capabilities and sensible Quality of Service in the delivery of data. It is a generally well-known fact that
multimedia systems require substantial support from the underlying transport and signalling protocols to p rovide
adequate QoS [OrbTalk97].

The IIOP protocol doesn't currently equip CORBA with any streaming capabilities.That said, one must openly admit
that, without introducing proprietary extensions to CORBA, one cannot do without the so-called "plumbing approach"
i.e. handling audio/video transmission on a different network protocol layer. There is currently no standard protocol on
the Internet, providing multimedia programmers with the ability to control and negotiate the quality of service of a given
stream of multimedia data.

One may build real-time requests using one-way CORBA operations. However, some CORBA implementations seem to
execute some subsequent one-way operations in a LIFO fashion [RMI97]. These resulted in the need to b uild yet
another kind of "sequencing protocol" and introduced considerable jitter into the video stream, confirming the notion
that applying the CORBA request/reply model i s not appropriate when streaming time-dependent data transfer is
required.

CORBA calls are not asynchronous in reality [Resnick96], since the CORBA specification clearly permits the ORB to
even block while sending a one-way call. Such behaviour is highly undesirable when h igh speed video is to b e
transmitted and displayed.

Another problem within real-time CORBA systems is the lack of f acilities to cope with n otification to multiple
subscribers of state changes in objects. This is due to the design of the CORBA event framework. However this may be
overcome through building atop IP multicast. Applications built with static compile-time interfaces with these object
models, are just as monolithic and inflexible as local address-space C++ program’s [Schmidt97], appearing internally
as 'object' systems to the developer but not externally to the user.

Present-day ORB's limit the number of object invocations per process to a relatively low 500-1000 calls per second
[Maffeis97]. What if an object is to be distributed to 20 workstations, has 50 attributes, and changes once per second?
CORBA doesn't yet have a standard for doing this, but the OMG will allow passing of objects by value in CORBA 3.0
[Mosj94].

It has been stated that t his is using 'today's technology to b uild yesterday's applications' [Cingiser96]. For this
community of users, who desire to build static compile-time applications that access existing databases, CORBA is a
worthwhile approach. It provides an object oriented model that maps well to network programming abstractions e.g.
Object interfaces. It is somewhat akin to programming with Remote Procedure Calls only at a higher level.

CORBA seems likely to continue to expand in terms of end-users, nonetheless there needs to b e a shift i n the
foundational infrastructure before it is capable of supporting large scale isochronous multimedia applications.

2 The RWANDA Protocol

The RWANDA protocol has arisen to cater for the ca tegory of large-scale isochronous wide a rea multimedia
applications. RWANDA builds upon the iBus framework [Maffeis97]. We have stated the lack of timely guarantees,
scalability, object abstractions and inefficient transport protocols offered to a greater or lesser degree by CORBA. The
RWANDA protocol i s outlined below and the implementation of a real-time multimedia dissemination protocol i s
outlined with specific mention of the problems that RWANDA helps to overcome in an application of this nature.

2.1 Protocol Elements

The protocol elements (objects) consist of basically of four components. These are :

1. Channel 2. Talker application 3. Listener application 4. Posting 5. Filter

5

2.1.1 Channels

Channels are a multicast medium into which taker applications push objects, and to which listener applications can
subscribe to receive those objects.

A channel maps into an IP multicast group or a point-to-point UDP connection. Uniform resource locators are used for
naming channels. These are denoted by a URL such as Videoplayer://227.134.3.63/videos/indy

2.1.2 Talker Applications

These are Java applications that push or pull Java objects via one or more channels.

2.1.3 Listener Applications

These are Java applications that subscribe to one or more channels to receive Java objects such as the recipients of a
video conference.

2.1.4 Posting

These are serializable Java objects sent through channels. This is the actual data to be transmitted such as the video,
audio or whiteboard text.

2.1.5 Filter

Filters extract the different media types from within the application and create suitable run-time protocol stacks to
enable streamlined transport communication. Filters are responsible for re-assembling the flows at the receiver.

Figure 2.1 : RWANDA protocol elements

2.2 Dynamically Composable QoS Stacks

Central to the framework QoS is the ability to maintain multiple protocol stacks. A protocol stack consists of a linear
list of protocol objects and represents a quality of service such as reliable delivery, virtual synchrony [Gosling96,
Cingiser96], or encrypted communication. The framework provides the services necessary for supporting n ew
communication protocols and qualities of service. Java has been chosen for the implementation of Jareal as it allows
the construction of a system without platform specific extension libraries such as dynamic link libraries which must be
in place before communication can take place in the CORBA model.

RWANDA consists of a set of Java c lasses for r epresenting Uniform Resource Locators, protocol stacks, the
framework API and posting objects. Dynamically composable protocol stacks overcome the limitations imposed b y
generic protocol stacks. A dynamically protocol stack allows optimisation for particular traffic. The RWANDA

6

framework allows protocol stacks to be composed dynamically (e.g. at run-time). This allows for a flexible architecture
suited to client application needs.

2.3 Mixed Media eXtraction - MMX

Multimedia more so than other applications is recognised as containing distinct media formats deserving of distinct
transportation treatment. As already mentioned, audio packets can be shipped much smaller than video packets. We are
concerned with timeliness rather than reliability. Depending on whether compression is present or not we can also vary
the size of audio and video p ackets. Text media in the c ontext of f iles or control data a ssociated with a video
conference requires acknowledgements – as provided by the TCP protocol.

Traditional frameworks push these varying types through identical protocol stacks. No op timisation for each media
type is performed.

Figure 2.3 : Filtering of isochronous media streams

RWANDA filters the data depending on the source e.g. audio (Microphone), Video (Cam) or text (File transfer) and
composes a protocol stack suitable for transmission of the media as illustrated in figure 2.3. This will entail separate
streams from the same application being multicast t o the same IP group address and applications recomposing the
streams into an integrated application.

RWANDA composes these protocol stacks as late as run-time depending on the need for r e-adaptability. Standard
recognised objects are audio, video or text objects. These can be expanded in the future, to include a greater number of
objects and indeed specialised media types within these groups. RWANDA provides essentially a reconfigurable plug-
and-play network protocol architecture intended for adaptive applications. The basic functionality of RWANDA is to
provide tailored run-time media protocol stacks.

RWANDA’s architecture revolves around the notion of a protocol stack. Such a stack is constructed from modules,
which can be stacked and re-stacked in a variety of ways to meet t he c ommunication demands of its applications.
RWANDA’s protocols implement, among others, basic sliding window protocols, fragmentation and re-assembly,
flow-control, encryption and message ordering.

7

3 Conclusion

The design of and development of a distributed application is quite complex. The development of these applications
can be simplified using distributed objects models. These models typically provide interface description languages, or
strong object oriented reference frameworks which allow the developer to concentrate exclusively on the development
of server’s objects and customer invocations of methods without worrying about network communication. The server’s
objects interfaces are clearly defined, and as a result the final development becomes easier. CORBA promises much in
the c reation of interoperable object, however, it falls s hort when it comes to ease of programming, costs, object
orientation features and real-time guarantees. It provides s uitable resources for the c reation of non real-time
applications.

RWANDA is built upon a Java middleware application, closely modelled on the iBus framework, supporting event
driven applications on top of group communication protocols implements a quality of service framework that allows
programmers to compose protocol stacks for unreliable communication, reliable multicast, virtual synchrony, message
encryption, and so forth. This provides a framework where applications need only pay for quality of services they need.
iBus also allows the dynamic creation of protocol stacks which brings an increased flexibility to network programming
allowing stacks to b e c omposed o f relevant functionality. Channels allows for a large scale groups of receivers to
receive information. The c hannels also allows heterogeneous receivers with differing capabilities to receive
information.

RWANDA’s recognises the differing media characteristics and transport requirements within multimedia and provides
run-time composable protocol stacks. This allows the tailoring of specific stacks to cater for the varying media. The
run-time property allows for a flexible development environment, delaying the necessity for defining protocols until the
latest possible stage thus allowing extension’s of media to the a rchitecture. Traditional methods do not have this
flexibility. RWANDA provides the multicast group process abstractions necessary upon which a Large Scale wide area
network real-time multimedia protocol may be developed.

References

[Betz94], Betz, Mark, "Interoperable Objects", Dr. Dobb's , 1994.

[Birman96] Birman, Kenneth P., Building reliable and secure distributed systems. Manning Publications Co., US. 1996

[Cheriton95] Cheriton, David. Dissemination-Oriented Communication Systems, Stanford University, Tech Report, 1995

[Cingser96] Cingser, Lisa., Dipippo, Roman., Expressing and enforcing timing constraints in a CORBA environment., 1996.

[Maffeis97] Maffeis, Silvano. iBus - The Java Intranet Software Bus, http://www.olsen.ch , 1997.

[OMG95] The Common Object Request Broker: Architecture and Specification, OMG, http://www.omg.org, July 1995

[Resnick96] Resnick, Ron. Toward the Integration of WWW and Distributed Object Technology: Distributed Objects on the
WWW. OPSLA'96 http://www.eng.uci.edu/~peilei/index.html , 1996.

[RFC 1644] Braden, R. T., T/TCP-TCP Extensions for Transactions, Functional Specification, 38 pages, July 1994.

[RFC 1819] Deering, S. Internet Stream Protocol Version 2 (ST2) Protocol Specification, August 1995

[RMI97] RMI and IIOP FAQ, http://www.javasoft.com/pr/1997/ june/statement970626-01.faq.html , June 1997

[Schmidt97] Schmidt, D., Levine, D. Harrison, T. An ORB endsystem architecture for hard real-time scheduling. Submitted to
OMG in response to RFI ORBOS/96-09-02, Feb 1997.

[Tibbitts95] Tibbitts, Fred, "CORBA: A Common Touch for Distributed Applications", Data Communications, May 1995

