Exploiting MOOs to Support Multiple Views
of Complex Software Development Processes

Elisabetta Di Nitto

Alfonso Fuggetta

Vito Sodano

Giuseppe Valetto
CEFRIEL — Politecnico di Milano
Via Fucini, 2 1-20133, Milano
Tel: +39-2-239541 Fax: +39-2-23954254
e-mail: {dinitto, fuggetta}Qelet.polimi.it, sodano@sia.it, valettoQcefriel.it

1 Introduction

Multi-User Dimensions (MUDs) [3], and their
Object—Oriented versions (MOOs) [6], are geographi-
cally distributed, programmable client-server systems
that support the cooperation of multiple users ac-
cording to the virtual environment metaphor. In this
metaphor, users are allowed to concurrently navigate
in a set of “virtual” rooms. Rooms are interconnected
through doors and may contain objects. Users are
allowed to explore the contents of rooms, create and
manipulate objects, and contact other users visiting
the same room.

Since the initial development of MUD1 (1978),
MOOs have been employed for entertainment and so-
cialization within connected and distributed communi-
ties of heterogeneous users. MOOs have recently also
attracted a good deal of academic attention from var-
ious viewpoints: some researchers are interested, for
example, in the social implications of this kind of col-
laborative computing, and in general in their psycho-
logical, anthropological, and sociological connotations
[7]. Moreover, there are already a significant number
of applications of MOOs to promote the cooperation
of dispersed members of a community, organization, or
interest group [4, 5]. This is usually limited to virtual
meetings and document sharing, but new extensions
of the basic MOO idea offer more advanced CSCW
features [9]. In particular, some recent research has
pointed out that MOOs are suitable to define and sup-
port the processes according to which collaborative
activities are carried out. For instance, in PROMO
[8] the MOO technology is exploited to define, rep-
resent and support software processes. These efforts
aim to address some of the most relevant challenges
for the research work in process and workflow tech-
nologies: the creation of advanced metaphor for pro-

cess representation and enactment (i.e., execution).!
These enhancements become more and more neces-
sary as processes are becoming increasingly complex,
collaborative, and decentralized. Moreover, the num-
ber and profiles of potential users of these technologies
is growing rapidly. It is therefore necessary to identify
powerful means that scale both in term of easy-of-use
and flexibility, and also as far as their ability to work
in large geographical settings is concerned.

During the past year we have explored a specific
limitation of existing process/workflow technology:
they are substantially unable to describe a process
according to different points of view [1]. We have
decided to exploit the MOO basic technology and
metaphor in order to provide users with three coex-
isting and consistent views of the same process:
artifact—based, task—based, and workspace—based. In
the artifact—based view, MOO rooms have been used
to gather together all the artifacts related to the same
product components. In the task—based view, each
room stores all the artifacts pertaining to a process
step. Finally, in the workspace—based view, rooms rep-
resent human agents’ workspaces. Users are allowed to
navigate and operate using any of these views. They
can switch to a different view at any time. Moreover,
any operation accomplished in a view is consistently
and instantaneously reflected in the other two views.
This approach has been validated by developing a pro-
totype of a multi-view MOO that has been used to
model and enact a software development process.

This paper illustrates the main achievements of our
work and is structured as follows. Section 2 presents
the main concepts of MOOs and their high-level ar-

1n this paper, we consider the terms process and workflow as
synonymous [10]. Consistently, we do not make any distinction
between PCEs (Process Centered Environments) and WFMSs
(WorkFlow Management Systems).

Owns

Invokes verbs on

Holds

| Character Invokes verbs on Thing
Is contained in Is contained in
Room Accesses
Is home of
«
B
]
c
c
Q
(8]
Accepts Exit Accepts

Figure 1: Main entities of a MOO.

chitecture. Section 3 discusses how to exploit MOOs
to model processes. Moreover, it presents the three
views and defines the consistency constraints that hold
among them. Section 4 provides a quick overview on
the implementation of our prototype and describes the
test bed we have defined to validate the prototype. Fi-
nally, Section 5 provides some final considerations and
illustrated our research agenda.

2 Basic concepts and architecture of
MOOs

MOOs support the definition of virtual environ-
ments. In most cases, MOOs are at the same time in-
stances and extensions of the LambdaMOO [6] system,
conceived at the Xerox PARC laboratories. Lamb-
daMOO offers all the basic characteristics and services
upon which it is possible to build, and operate Object
Oriented virtual environment. Its class hierarchy and
its interpreted proprietary programming language al-
low its users to customize and enrich the environment,
by providing fast prototyping facilities for cooperative
programming.

MOOs are composed of virtual rooms connected by
erits. Rooms may contain objects of any kind, rep-
resented by instances of the thing class, and can be
visited by characters. Characters can either repre-
sent human beings or robots, i.e.computerized agents.
Characters can hold and/or own things. Moreover,
they can move across rooms. Exits may be associated
with access constraints that control characters’ navi-
gation, depending on the things they hold or on the
state of the rooms they leave and enter. Figure 1 shows
all the mentioned MOO elements and the relationship
among them.

[T T
Player Generic Room Thing
Utity
T
[—— ——
N El Process Process
rocess Elemen Process Element]
image as aRoof | RePOMY | limage as a Thin Element
Generic Generic Generic
Artitact Resource Task
Generic Generic
Process Tool Workspace
Engineer

Figure 2: The MOO Class Hierarchy and its process-
oriented extension.

MOOs are based on a simple client/server architec-
ture. The server manages an object-oriented database
containing the MOO elements, as well as client con-
nection and communication. Clients enable users to
access the MOO. Traditional clients are simple telnet
terminals, and they visualize textual descriptions of
rooms, characters and objects. However, several at-
tempts to provide new graphical and multimedia in-
terfaces are being carried out, as shown in [11, 12].

All the MOO objects are equipped with a set of pro-
grammable verbs (i.e. methods) that can be invoked
either by other MOO objects or by users. MOO el-
ements are structured in a specialization hierarchy.
They are illustrated in Figure 2 by rounded-angle
boxes. The Player class and its specializations repre-
sent types of characters, with different set of privileges
and right over the environment.

Users are associated with a scope, based on their
location in the MOO, that defines the objects that
are visible to them and the verbs they can invoke. A
MOO programmer can extend and modify the MOO
objects by specializing them. It is represented within
the MOO by the character type Programmer.

3 Exploiting MOOs to model pro-
cesses

Typically, a process is described in terms of its ac-
tivities, the artifacts produced and consumed during
the course of the process, and the resources needed
to pursue the process objectives. A typical process
is composed of hundreds and even thousands of such
entities. They are related through a variety of rela-
tionships that represent, for instance, the precedence
among tasks or the responsibility of a human resource
(see Figure 3). Representing such information is a
very complex task. Powerful and effective formalisms
and languages are needed, to support process compre-
hension and specification, and to enable an effective

Uses
Has

Is enabled fo use

Is i with Can access

Is com%osed of
Artifact

Is a parameter of

Agent Uses Tools

|
Contains

Invokes
Is enabled to execute
Consumes

Is executed by exploiting

Activity Uses Resource

Precedes

Reads / Modifies

Figure 3: Main constituents of a process.

enactment of the process.

Depending on their nature and origin, existing
modeling languages (and the corresponding execution
environments) tend to emphasize specific aspects of a
process. For instance, notations such as Petri nets or
Statecharts are typically oriented to describe the ac-
tivities carried out in the process, their precedence re-
lationship, and the artifacts used and produced during
their execution. An ideal modeling language should
make it possible to represent, study, and enact a pro-
cess by exploiting multiple, coherent, and complemen-
tary views. Each view should represent a different
“slicing” or perspective on the process, and should
be able to emphasize specific facets of process perfor-
mance and behavior.

We believe that there are at least three viewpoints
that should be supported and that are directly related
to the main process entities mentioned at the begin-
ning of this section: tasks, artifacts, and resources.
In this section, we would like to show how the MOO
metaphor can be exploited to pursue this multi-view
approach. For this reason we will briefly illustrate a
case study to illustrate our experimentation. Then we
discuss how the MOO metaphor can be used to create
multiple views of the same process. Finally, we illus-
trate the constraints and basic mechanisms that need
to be put in place the guarantee the consistency and
coherence among the different views.

3.1 A simple case study

As a case study, we have selected a well-known ex-
ample, documented in literature [2], and already used
also in the PROMO project. This process is concerned
with Anomaly Management activities, in the context
of an industrial organization that produces telecom-
munication software. The users of this software system

Artifact View

Workspace View Task View

Figure 4: A portion of the Anomaly Management
MOO.

can report anomalies to a customer care center, which
is in charge of generating anomaly reports (ARs). ARs
are evaluated with respect to their relevance and ur-
gency. Approved ARs are then submitted to a Change
Control Board (CCB), formed by Project Managers
and other domain experts. The CCB is in charge of
analyzing incoming ARs and deciding the most appro-
priate action. Approved ARs are turned into Mod-
ification Requests (MRs) of the software product(s).
MRs are assigned to Developer teams for implemen-
tation. Modifications are then reviewed and tested by
the Designers in the light of the corresponding MR
and AR: a Verification and Validation Report (VVR)
is produced. Validated and approved software changes
take part in a new software release that corrects the
reported anomalies.
3.2 Three views of a process

We have identified three main views that apply
to any process and that can be suitably expressed
through the MOO metaphor. They have been ex-
tracted by representing the main concepts employed
for process modeling as basic MOO entities. This in-
cludes finding mappings for the relationships that hold
between elements in each domain.

A workspace-centered view A first metaphor is
based on the idea of mapping user workspaces onto
MOO rooms. According to this view, the MOO layout
(i-e., the way rooms are connected by doors) illustrates
the organizational structure of project teams. Each
team member finds at any moments in his/her room all
the artifacts, tools, and resources he/she is currently

employing. A state is associated to each artifact, indi-
cating the task according to which the artifact is cur-
rently manipulated. Exits implement constraints that
reflect the organization of the team, the corresponding
privileges and permissions, and the policies for task as-
signment. For instance, a team member is not allowed
to move an artifact representing the project plan from
the room of the project leader.

The leftmost side of Figure 4 shows part of the
MOO layout representing the workspace view over
a specific instantiation of the case study of Section
3.1. In the map, the workspaces of the project team
members are represented together with the artifacts
currently held by team members. For instance, So-
dano’s workspace contains the Anomaly Report he is
currently processing.

A workspace-centered view is particularly intuitive
for team members that must accomplish specific tasks.
Working in virtual rooms, they can easily look at and
use the tools and resources they have an hold on. How-
ever, this view does not highlight the overall structure
of the process, in terms of the tasks that are currently
being accomplished or scheduled and of the relation-
ships among them.

A task-centered view The task-centered view
focuses on representing tasks and the relationship
among them. It is the one embraced by [8]. In this
view, tasks are mapped onto MOO rooms. Each room
contains the artifacts that are being used or produced
in the corresponding task. It also contains the tools
and resources necessary to operate the task. Exits
highlight the precedence relationships between tasks
and may be associated with constraints that do not
allow, for instance, artifacts to be moved from a room
to the next one if the preceding task (and/or the ar-
tifacts in question) are not in a proper state.

In Figure 4 we can look at the example of Section
3.1 from the task-centered viewpoint. In the current
state of the process the task Check AR is being exe-
cuted. In fact, the state of the Anomaly Report it
contains specifies that it is under analysis. Notice
that this Anomaly Report and the one in the Sodano’s
workspace are two images (see Section 4.1) of the same
artifact (they have the same ID).

A task-centered view provides a complete descrip-
tion on the structure and accomplishments of a pro-
cess; therefore, it is suitable for activities like process
monitoring. On the other hand, its adoption by hu-
man executors is quite cumbersome. In fact, if users
are involved in more that one task at the same time —
as it is usual in most work practices — they must move

back and forth across rooms to handle all of them.

An artifact—centered view The artifact—centered
view is based on the idea of representing with a MOO
layout the breakdown structure (PBS) of the product
being developed. In this case, each node of the PBS is
a room in the MOQ, and the connections among nodes
correspond to exits between rooms. The artifacts asso-
ciated with a node in the PBS are contained as things
in the corresponding room. These artifacts can either
be documents (e.g. requirement specifications, or de-
sign documents), source code files, etc. When a MOO
character brings an artifact with him/her, it means
that he/she is locking it for his/her use.

The rightmost side of Figure 4 shows a portion
of the artifact—centered view instantiated for the ex-
ample of Section 3.1. Here we have a product that
is composed of three main elements, components A
and B and another component clustering some re-
lated reports (ARs, MRs, ...). In the Report Folder
the Anomaly Report under analysis by Sodano is in-
dicated together with its state (locked).

An artifact view, as we conceive it, shows the struc-
tural relationships and dependencies between the var-
ious parts of a software product. Therefore, it seems
suitable to accommodate Configuration Management
mechanisms, as well as to enforce policies for the
cooperative usage of artifacts, whether composite or
atomic.

3.3 Inter-view constraints

The views described above are complementary, and
suit the needs of different categories of process execu-
tors. They are also strictly related: the changes per-
formed within a view must not remain local to that
view, but must be properly mirrored in the other ones.
This mirroring can be accomplished if a set of inter-
view constraints is defined and enforced. The con-
straints we have identified so far are related with the
main operations a user can perform in each of the pre-
sented views. Some examples of these constraints are
the following:

e When a character — while operating on an arti-
fact in the workspace-centered view — changes its
state, the artifact must be put in the correspond-
ing task room in the task-centered view.

e When a character activates a task in the task-
centered view, then all the artifacts located in
the corresponding room must appear also in the
character’s workspace in the workspace-centered
view.

e When a character brings an artifact with him /her
from the artifact-centered view, in the workspace-
centered view this artifact must appear in the
character’s workspace room.

4 A prototype of a MOO—-based multi-
ple view PCE

In this section we present the implementation of the
three views outlined in Section 3 and the mechanisms
for maintaining the coherence among the views. We
also provide an example of usage of the resulting PCE,
through our case study.

4.1 Implementing multiple views on top
of LambdaMOO

We have exploited the programmability of Lamb-
daMOO to implement our PCE. In particular, we have
defined in the MOO database the classes that repre-
sent the basic elements of a generic process. They
define the specialization hierarchy rooted by Process
Element in Figure 2. We have also defined two new
process-related types of characters, Process User and
Process Engineer. The former is a generic actor of
the process. The latter has process modeling capa-
bilities and can extend and customize the hierarchy
of process-related classes. Finally, we have defined a
special MOO room called Process Repository that
stores all the process-related objects. This room is
made visible only to the Process Engineer who ac-
cesses it to modify and extend the structure of the
process-related objects. Process Users do not op-
erate directly on the Process Repository or on its
content. Instead, they work on the views defined upon
the above mentioned objects according to the criteria
presented in Section 3. In Figure 2, all the process-
related elements are enclosed by a dashed line.

In a specific view, Process Elements may change
their appearance and structure according to the char-
acteristics of the founding metaphor. For instance,
in the task-centered view, a Generic Task is seen as
a room containing all the other objects involved in
the execution of the task. Therefore, proper mecha-
nisms that transform objects according to predefined
rules and constraints should be implemented within
the MOO. Moreover, these mechanisms should guar-
antee that the operations performed on the views are
correctly mirrored onto the actual object.

Unfortunately, MOOs, per se, do not provide any
suitable mechanism for implementing this dynamic
transformation. To overcome this problem, we have
chosen to define the three views as sets of persistent
elements of the MOO, actually stored as separate ob-
jects in the database. More in detail, for each Process

Element, the MOO database contains three additional
objects, called image objects that are in charge of prop-
erly representing the Process Element in the three
different views. Image objects can be either a special-
ization of room or a specialization of thing, depending
on the MOO element they represent in the view. Users
operate on image objects, but all modifications are
passed to the corresponding Process Element, and
from it to the other images in all the other views. This
simple automatic mechanism for enforcing the inter-
view constraints is part of the implementation of both
the Process Elements and the image objects.

Thus, in our approach, the various views of a pro-
cess are represented simply as isolated (i.e. non-
interconnected) portions of the same MOO. The mech-
anism to switch among views exploits the typical nav-
igation facilities of MOOs, that under certain circum-
stances allow teleporting, i.e. the transfer of charac-
ters from a room to another without the need of an
exit connecting the two rooms.

It is clear that our approach to multiple views does
not scale up too well: the object replication can be-
come unacceptable, in case the process repository gets
particularly large; furthermore the addition of other
views to the MOO-based PCE becomes a complex
problem. However, it is adequate to implement some
process examples that validate our approach. A more
sophisticated implementation of a multiple-view PCE
would require the exploitation of proper mechanisms
such as the ones offered by some Object Oriented
DBMSs.

4.2 Validation through the testbench pro-
cess

We have proceeded to implement the case study
by specializing the classes defined in the Process
Repository of our prototype. For instance, we have
created objects for ARs, MRs, etc. as well as spe-
cialized types of characters for the recognizable roles
(e.g. Project Managers, Designers, Developers, etc.).
Moreover, we have created the objects representing
the tasks to be accomplished (modify module, inspect
modification, etc.) and we have identified the rela-
tionships among those objects. Finally, for each view,
we have set up the corresponding MOO layouts. Users
switch among views by invoking the verb switch view
<view-name>, implemented by any room representing
a Process Element image.

In order to get the feeling of how the system works,
let us consider a simple process execution scenario: a
Project Manager (the character Sodano) starts work-
ing within the Task view. In particular, he/she decides
to operate in the Check AR room, where he/she finds

an image of a previously created Anomaly Report that
must be looked at and analyzed for approval. To per-
form the relevant actions the Project Manager invokes
either generic verbs provided by MOOs, that is, enter,
look, etc. or verbs that are specialized by the classes
written for process capture. The verb examine, for in-
stance, is specialized by the Anomaly Report image,
in order to display both the content and — via the in-
vocation of the corresponding examine verb provided
by the Process Element superclass — the state of the
artifact. As a result of the activities of the Project
Manager, the following actions may happen:

e The image of the Anomaly Report in the
Workspace view is placed in the workspace of the
Project Manager.

e The image of the Anomaly Report in the Artifact
view is locked so that verb invocation by other
players is prevented. The state information re-
mains visible and evolves according to the analy-
sis activities carried out by the Project Manager.
In response to those activities, also the location of
the artifact with respect to the PBS represented
in that view may vary.

e Some tool is executed on the terminal of the
Project Manager, to support the analysis of the
AR.

¢ In case the analysis terminates with the approva-
tion of the AR for further action, members of the
CCB who are working in their own workspace are
prompted with a convocation to the CCB Meeting
task room. A copy of the AR in question is at-
tached, to be examined and perhaps annotated.
Other CCB members who are not present in their
workspaces at the moment will not immediately
be aware of the convocation, but will find the re-
lated artifacts in their workspaces when they visit
them.

5 Conclusion and future work

We have presented in this paper some of the results
of our ongoing work. We keep exploring and studying
both the limitations and the advantages of exploiting
MOOs as a framework for process capture that pro-
vides multiple views on a process.

We believe that our proof-of-concept prototype has
served its purpose of demonstrating that the exploita-
tion of MOOs for multi—view description and support
of processes is viable, despite the clumsiness of the
mainly textual user interface of these systems. With

the upcoming advent of richer and user—friendly pre-
sentation facilities, working from within a MOO shall
become easy and natural.

We have also observed that, notwithstanding the in-
trinsic familiarity of humans with the MOO metaphor,
the level of user—riendliness sported by a system like
the one we have depicted is highly dependent on:

e the intuitiveness of the metaphors adopted for the
views;

e their accuracy with respect both the underlying
application domain and the real world situation
they try to mimic;

e the user understanding of the interrelationships
among the views;

e the usability of the tools provided to the user for
interacting and carrying out activities within the
environment without drifting too far from his/her
usual work practice.

With respect to the latter aspect, there is another in-
teresting point, resulting in a further challenge: in
order to support the work of the users of the environ-
ment in a natural way, a framework for the integration
of external tools must be conceived. MOOs are, by
their nature, eminently self-contained systems: each
of them constitutes a “world” of its own and users
become citizens of that world, completely immersed
in it; more important, all the tools available are de-
scribed, built and operating within the limits of the
MOO. Opening MOOs towards the external “real”
world is no easy business. Anyway, there are some
possibilities: for example, PROMO suggests to exploit
the MOO client—server architecture in an non ortho-
dox fashion to provide a bridge that communicates
and controls generic (legacy) applications. We intend
to further explore this and other options in the future.

We plan to substantially enhance our prototype
as far as the process definition mechanisms are con-
cerned. Currently, the amount of work necessary to
Process Engineers, in order to define and enact a sin-
gle process instance is considerable. Moreover, all of
this work must be carried out at the level of coding,
i.e., programming MOO objects that represent the id-
iosyncrasies of the process. A consequence is also a
low degree of reusability of the work done for each
process case. All these drawbacks are due to the in-
sufficient level and amount of abstraction devoted to
process capture that we have been able to put on top
of the generic MOO classes. Our extension to the
MOO hierarchy provides only very general concepts

and constructs. We are currently working towards the
definition of a more extensive and exhaustive layer for
process definition and support, that must derive from
a highly formalized model of processes in general, as
well as from a precise vision of how the views relate
to the process and among themselves.

Following such a formalization effort, it will be pos-
sible to come up with a set of utilities and tools dedi-
cated to the Process Engineers, and devoted to higher—
level and more efficient process description, manage-
ment and monitoring. We aim to achieve some results
also in this area, that in our opinion will add a signif-
icant amount of value to a MOO-based PCE.

References
[1] V. Ambriola, R. Conradi, and A. Fuggetta.
Process-Centered Software Engineering Environ-

ments. ACM Transactions on Software Engineer-
ing Methodology, July 1997.

[2] S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi,
and G.P. Picco. Modelling and improving an in-
dustrial software process. IEEE Transactions on
Software Engineering, May 1995.

[3] R. Bartle. Early MUD history. Technical report,
Article
posted to USENER group rec.games.mud, 1990.

[10]

http://www.utopia.com/talent/lpb/muddex/bartle.txt.

[4] BioMOO. The biologists’ virtual meeting place.
http://bioinfo.weizmann.ac.il/BioMOO/.

[5] A. Bruckman and M. Resnick. The MediaMOQO
project: constructionism and professional com-
munity. Convergence, 1(1), Spring 1995.

[6] P. Curtis. LambdaMOO programmer’s manual.
Technical
report, Xerox Palo Alto Research Center, 1996.

ftp:/ /parcttp.xerox.com/pub/MOO/LambdaMOO-

1.8.0.p5.

[7] P. Curtis and D. Nichols. MUDs grow up: social
virtual reality in the real world. In The Third
International Conference on Cyberspace, XEROX
Palo Alto Research Center, May 1993.

[8] J.C. Doppke, D. Heimbigner, and A.L. Wolf. Soft-
ware process modeling and execution within vir-
tual environments. ACM Transactions on Soft-
ware Engineering Methodology, January 1998.

[9] S.-M. Kaplan, G. Fitzpatrick, T. Mansfield, and
W.J. Tolone. MUDdling through. In the 20th An-
nual Howaii International Conference on System

Sciences, Washington D.C., 1997. ITEEE Com-
puter Society.

Amit Sheth, editor. NSF Workshop on Work-
flow and Process Automation in Information Sys-

tems: State-of-the-Art and Future Directions.
May 1996.
J. Tennison. WOOM. web object oriented

with multiple ownership. Technical report.
http://psyc.nott.ac.uk/aigr/papers/ WOOM1.0/.

Diversity University.
Platform for experimentation with new and inno-
vative approaches to learning. Technical report.
http://www.academic.marist.edu/duwww.htm.

