
A. Klar, N. Marheineke, R. Wegener

Hierarchy of mathematical models  
for production processes of technical 
textiles

Berichte des Fraunhofer ITWM, Nr. 156 (2009)



© Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2009

ISSN 1434-9973

Bericht 156 (2009)

Alle Rechte vorbehalten. Ohne ausdrückliche schriftliche Genehmigung des 
Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner 
Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren 
oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, ver-
wendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen 
Wiedergabe.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können  
bezogen werden über:

Fraunhofer-Institut für Techno- und 
Wirtschaftsmathematik ITWM 
Fraunhofer-Platz 1

67663 Kaiserslautern 
Germany

Telefon:		 06 31/3 16 00-0 
Telefax:		  06 31/3 16 00-10 99 
E-Mail:		  info@itwm.fraunhofer.de 
Internet:	 www.itwm.fraunhofer.de



Vorwort

Das Tätigkeitsfeld des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik 
ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung 
sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech-
no- und Wirtschaftsmathematik bedeutsam sind.

In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts kontinu-
ierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissenschaft 
vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Mathema-
tik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit inter-
nationalen Institutionen und Hochschulen in den Bereichen Ausbildung und For-
schung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Bericht-
reihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Dissertati-
onen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu 
aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.

Darüber hinaus bietet die Reihe ein Forum für die Berichterstattung über die zahl-
reichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirt-
schaft.

Berichterstattung heißt hier Dokumentation des Transfers aktueller Ergebnisse aus 
mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen 
und Softwareprodukte – und umgekehrt, denn Probleme der Praxis generieren 
neue interessante mathematische Fragestellungen.

Prof. Dr. Dieter Prätzel-Wolters 
Institutsleiter

Kaiserslautern, im Juni 2001
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for production processes of technical textiles
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Abstract: In this work we establish a hierarchy of mathematical modelsfor the numerical simulation of the produc-
tion process of technical textiles. The models range from highly complex three-dimensional fluid-solid interactions to
one-dimensional fiber dynamics with stochastic aerodynamic drag and further to efficiently handable stochastic surrogate
models for fiber lay-down. They are theoretically and numerically analyzed and coupled via asymptotic analysis, similarity
estimates and parameter identification. The model hierarchy is applicable to a wide range of industrially relevant production
processes and enables the optimization, control and designof technical textiles.
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1 Introduction

Technical textiles are nonwoven webs of fibers that find theirapplication in various branches of industry, e.g. in textile,
hygiene, automobile and building industry. Typical products are clothing textiles, baby diapers, oil and water filters, sound
proofing, insulating material etc. Depending on their use, the textiles have to satisfy certain properties. An important
common property for the quality assessment of the fabrics isthe homogeneity of the fiber web.

A long-term objective in industry is the optimal design of the production process with respect to the desired product
specification. Therefore, it is necessary to model, simulate and control the production process of technical textiles.Of main
practical relevance are transversal, rotational and oscillating processes. Differing in details, they have in principal three
things in common: spinning, entanglement and lay-down. Theindividual fibers are obtained by a continuous extrusion of
a molten granular through narrow nozzles. Then, they are stretched and entangled by acting turbulent air flows to form a
web, while laying down on a moving conveyor belt, figure 1.

In this paper, we present a hierarchy of mathematical modelsthat enables the simulation and control of the production
process and even more the prediction and optimization of textile properties, e.g. homogeneity of mass distribution and
directional arrangement. The models range from a highly complex three-dimensional fluid-solid problem with slender
bodies in turbulent flows to an one-dimensional fiber motion with stochastic aerodynamic drag force and further to an
efficiently evaluable stochastic surrogate model for the fiber lay-down. So far, we have analyzed the models separately in
theoretical and numerical works. In this paper, we bring them together for the first time. Based on our previously derived
results, we couple them using asymptotic analysis, similarity estimates and parameter identification and show their wide
range of industrially relevant applications.

The numerical simulations of the spinning and turbulent lay-down regimes in the production processes are performed
on the basis of a stochastic generalized string model that isdeduced from a Cosserat rod [3] being capable of large,
geometrically nonlinear deformations. The interactions of fiber and turbulent flow are thereby incorporated by a stochastic
drag force. This force model has been derived on top of ak-ǫ description for the turbulent flow field in [23]. The turbulence
effects on the fiber dynamics are modeled by a correlated random Gaussian force and its asymptotic limit on a macroscopic
fiber scale by Gaussian white noise with a flow-dependent amplitude that carries the information of kinetic turbulent energy,
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Figure 1: Production of technical textiles.Left to right: Plant, laminar lay-down regime, nonwoven material (Photosby
Neumag, www.neumag.saurer.com).

dissipation rate and correlation lengths. Numerical studies under the conditions of a production process for technical textiles
show good agreement to the experimental observations, see [24] for a non-linear Taylor drag and [25] for a generalized drag
model. Due to the huge amount of physical details, the simulations of the fiber spinning and lay-down usually require an
extremely large computational effort and high memory storage. This makes the optimization and control of the production
process and the product properties very difficult and sometimes even impossible. Since all fibers are realizations of thesame
stochastic process for the underlying turbulent flow field, we have come up with the idea, [12], to introduce a surrogate
stochastic process that do not describe the full dynamics ofthe fiber, but instead its two-dimensional image on the conveyor
belt. Containing parameters that characterize the production process (turbulence influence, buckling behavior, spinning
speed, velocity of conveyor belt etc.), this simplified lay-down model of stochastic differential equations can be calibrated
by help of a full dynamical simulation for a single fiber. Then, it enables the fast and efficient calculation of thousands of
fibers for the nonwoven production. In [12] the associated Fokker-Planck equation and stationary solution are investigated
for the case of a non-moving conveyor belt. Without turbulence noise the surrogate model is an Hamiltonian system, for
small noise stochastic averaging is applied to derive a stochastic equation for the energy and related functionals of the
stochastic process. Ergodicity of the process is proven andexplicit rates for the convergence to the stationary solution are
obtained in [14]. The assumption of a non-moving conveyor belt is abandoned in [5] where the hydrodynamic (large noise)
limit is studied for a transversal production process. Using the method of multiple scales and the Chapman-Enskog method
transient and stationary joint probability distributionsare determined.

This paper is structured as follows. Starting with the modelling of the fiber dynamics in turbulent flows in section 2,
we embed the stochastic generalized string model in the theory of Cosserat rods. Thereby, we pay special attention to
the derivation of the stochastic aerodynamic drag force. Insection 3 we present the theory for the surrogate stochastic
lay-down model. In particular, we generalize the lay-down model so that it shows similar regularity than the string model
and is, moreover, applicable to transversal, rotating and oscillating production processes. Section 4 deals with the coupling
of the models via an appropriate parameter identification. Using the proposed model hierarchy, we conclude with the
simulation of technical textiles and the investigation of production principles for practically relevant processes.

2 Models for fiber dynamics

The description of the fiber dynamics in a flow requires in principal a two-way coupling of fiber and flow with appropriate
interface conditions. In case of slender fibers and turbulent flows, the needed high resolution and adaptive grid refinement
make the direct numerical simulation of the coupled three-dimensional fluid-solid-problem not only extremely costly and
complex, but also mostly impossible for practically relevant applications. Due to the slender geometry the fiber influence
on the flow is often negligibly small. Therefore, it makes sense to derive an asymptotic one-dimensional fiber model and
to associate to the aerodynamic force a stochastic drag thatcharacterizes the turbulent flow effects on the fiber and enables
an one-way coupling.

2.1 Cosserat rod theory

A fiber is a slender long body, i.e. a rod in the context of three-dimensional continuum mechanics, Because of its slender
geometry, its dynamics might be reduced to an one-dimensional description by averaging the underlying balance laws
over its cross-sections. This procedure is based on the assumption that the displacement field in each cross-section canbe
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expressed in terms of a finite number of vector- and tensor-valued quantities. The most relevant case is the special Cosserat
rod theory that consists of only two constitutive elements,a curve specifying the position and an orthonormal director
triad characterizing the orientation of the cross-sections. In the following we introduce the special Cosserat rod theory
axiomatically and leave its detailed derivation, justification and generalization to literature [3].

Kinematic and dynamic framework. A special Cosserat rod in the three-dimensional Euclidean space (identified with
R

3 via a fixed Cartesian basis) is defined by a curver : (sa, sb)×R → R
3 and an orthonormal director triad{d1,d2,d3} :

(sa, sb) × R → R
3 wheres ∈ (sa, sb) ⊂ R denotes a material cross-section (material point) of the rod. The derivatives of

the curver with respect to timet and material parameters are the velocity and the tangent field,

v = ∂tr, τ = ∂sr.

Due to the orthonormality of the directors there exist vector-valued functionsω (angular velocity) andκ (generalized
curvature) satisfying

∂tdk = ω × dk, ∂sdk = κ × dk

for k = 1, 2, 3. The definitions ofv, τ as well asω,κ imply the compatibility conditions,

∂tτ = ∂sv, ∂tκ = ∂sω + ω × κ.

Combing the kinematic equations with the dynamic ones, i.e.the balance laws for linear and angular momentum, yields
the full framework of the special Cosserat rod theory

∂tr = v, ∂tdk = ω × dk

∂tτ = ∂sv, ∂tκ = ∂sω + ω × κ (1)

(̺A)∂tv = ∂sn + f , ∂th = ∂sm + τ × n + l.

The line density(̺A) is defined as Lagrangian quantity in the reference configuration and is hence time-independent. To
complete the system, the angular momentum line densityh has to be specified in terms of the kinematic quantities by a
geometrical model, the contact force and couplen, m by material laws and the external loads (body force and body couple
line density)f , l by the considered application.

Remark 2.1 System(1) is formulated in a Lagrangian setting. Alternatively, any other parameterizationϕ could be
chosen. Assumingϕ fulfills the initial value problem∂tϕ(s, t) = u(ϕ(s, t), t), ϕ(s, 0) = ϕ0(s). Then, the appropriate
re-parameterization of all fields carries convective termswith speedu into system(1). Instead of imposingu, a constraint
might be prescribed so thatu becomes the associated Lagrangian multiplier and hence an additional unknown of the
system. A well-known constraint is the arc-length parameterization of the fiber curve that yields the Eulerian setting.

For the detailed discussion of closure relations that are useful for production processes of technical textiles we de-
compose any vector fieldx of our rod theory in the director basis{d1,d2,d3}, i.e. x =

∑3
k=1 xkdk. Note that the

corresponding component triplex = (x1, x2, x3) in the director basis is strictly to distinguish from the original vector field
x in the fixed Cartesian basis.

Geometric modeling. In general, the angular momentumh depends linearly on the angular speedω. To model this
functional dependence we need an ansatz how the three-dimensional geometry changes with respect to the deformations
of the Cosserat rod. A central role plays the tensor-valued moment of inertia(̺J)(s, t) = (̺J)ij(s)di(s, t) ⊗ dj(s, t),
where the associated matrix(̺J) = (̺J)i,j=1,...,3 is defined in the reference configuration and is hence time-independent.
For a homogeneous, circular cross-section of diameterd, we have(̺J) = (̺I) diag(1, 1, 2) with I = π/64d4. Here, we
distinguish three geometric models. The easiest one neglects all angular inertia effects, i.e.

h = 0. (2)

The resulting degenerated equation∂sm + τ × n + l = 0 might be inserted in the linear momentum equation to simplify
the system, see section 2.2. The standard model for elastic Cosserat rods

h = (̺J) · ω
involves the conservation of the cross-sectional shapes under deformation. In contrast, three-dimensional incompressibility
leads to shrinking of the cross-sections when stretching the body. This can be described by

h =
1

τ3
(̺J) · ω,

see for example [30,31] modeling a viscous jet.

3



Material laws. The most important principle for the formulation of material laws for the contact force and couplen, m
is the objectivity, this means the invariance with respect to spatial translation and rotation as well as to time shifts.For
this reason, it is most elegant to prescribe the constitutive laws in the director basis{d1,d2,d3}. We present here two
types that are relevant for our application: elastic materials and viscoelastic materials of differential type one. For a general
classification we refer to [3]. Constitutive laws are often combined with algebraic constraints restricting the dynamics. Take
for example the Kirchhoff constraintτ = d3, thenn as Lagrangian multiplier to the constraint becomes a variable of the
system (1). The non-extensibility can be weaken by introducing a modified Kirchhoff constraintτ = τ3d3, τ3 > 0. Then,
only the normal contact force componentsn1 andn2 are Lagrangian multipliers, whereas the tangential onen3 together
with the contact couplem have to be specified by a material law.

Elastic materials are generally given by

n(s, t) = n̂(τ(s, t), κ(s, t), s), m(s, t) = m̂(τ(s, t), κ(s, t), s).

For solidified elastic fibers in the production process of technical textiles, the extensibility is negligible. Hence, it makes
sense to replace the law forn by the Kirchhoff constraint. Additionally, the linear Bernoulli-Euler law for m might be
imposed. For circular cross-sections, we particularly obtain

τ = (0, 0, 1), m = (EI) diag(1, 1, (1 + νp)
−1) · κ (3)

with Young’s modulusE and Poisson numberνp, see section 2.2 for an application.
Viscoelastic materials of differential type one are generally given by

n(s, t) = n̂(τ(s, t), κ(s, t), ∂tτ(s, t), ∂tκ(s, t), s), m(s, t) = m̂(τ(s, t), κ(s, t), ∂tτ(s, t), ∂tκ(s, t), s).

For higher differential type, derivatives of higher order are involved consistently. A more general class are viscoelastic
materials of type rate equation wheren andm satisfy evolution equations. As an example the upper-convective Maxwell
(UCM) model or its non-linear generalizations, e.g. the Giesekus model, are used in spinning processes, [13,20]. For high
temperature regions close to the spinning nozzle, the fiberstend to behave like incompressible viscous jets. Then, they
are covered by an relation of differential type one with generalized Kirchhoff constraint. For circular cross-sections, we
particularly obtain

τ1 = τ2 = 0, n3 = 3(µA)
∂tτ3
τ2
3

, m = 3(µI) diag(1, 1, 2/3) · ∂tκ

τ3
3

with dynamic viscosityµ of the jet. These constitutive laws are linear in the rates ofthe strain variablesτ , κ, see [30, 31]
for their derivation in an Eulerian framework.

External loads. Depending on the considered production process, the external loadsf , l might rise from gravity and / or
electromagnetic fields in case of charged fibers. Fiber-walland fiber-fiber interactions might be incorporated by additional
geometrical constraints and associated Lagrangian contact forces. For processes with turbulent lay-down regime, a chal-
lenging task is the modelling of the aerodynamic drag that wewill discuss in more detail in section 2.2.2. Note that we
suppress body couples,l = 0, in the following.

Remark 2.2 For certain scenarios, asymptotic analysis allows the formally strict derivation of an one-dimensional model.
However, the leading-order terms with respect to the slenderness parameter do not result in rod models, but in string models
where all angular momentum effects cancel out. They have theform

(̺A) ∂ttr = ∂s

(

N
∂sr

‖∂sr‖

)

+ f ,

supplemented with a material law for the scalar-valued tractionN . For a viscous jet,N = 3(µA) ∂t‖∂sr‖/‖∂sr‖2 holds
as in the above rod theory, see asymptotic derivation in [25,28] for curved and [8, 9] for straight viscous fibers in an
Eulerian framework.

2.2 Stochastic generalized string model

The Cosserat rod theory allowing for large, geometrically nonlinear deformations enables in principal the numerical sim-
ulation of the fiber dynamics in production processes of technical textiles for different materials (viscous, viscoelastic,
elastic) and external loads (gravity, electric fields, fiber-wall contacts including friction, fiber-fiber contact, aerodynamic
drag forces). But it is still quite complex in this generality. For the resulting properties of the technical textiles the lay-down
regime plays an essential role. Thus, focusing on the handling of solidified inextensible elastic fibers in turbulent flows, we
introduce an appropriately adapted framework, a so-calledstochastic generalized string model.
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2.2.1 Embedding into Cosserat rod theory

Restricting to circular cross-sections of diameterd, we consider (1) with the easiest geometric model suppressing angu-
lar inertia (2) and the Euler-Bernoulli material law in combination with the Kirchhoff-constraint (3). Then, the angular
momentum equation formulated in the director basis reads

∂s((EI)κ1) −
νp

1 + νp
(EI)κ2κ3 − n2 = 0, ∂s((EI)κ2) +

νp

1 + νp
(EI)κ1κ3 + n1 = 0, ∂sM = 0

with torsion coupleM = (EI)κ3/(1+νp). Therefore, the contact forcen is determined except of its tangential component
N = n3, i.e.

n =

(

− νp

1 + νp
(EI)κ1κ3 − ∂s((EI)κ2)

)

d1 +

(

− νp

1 + νp
(EI)κ2κ3 + ∂s((EI)κ1)

)

d2 +Nd3

Using∂sdk = κ × dk and the Kirchhoff constraint we obtain with some calculus

n = Tτ − ∂s((EI)∂sτ ) +M(τ × ∂sτ )

whereT = N − (EI)‖∂sτ‖2 denotes a generalized tangential contact force. Insertingthis relation in system (1), the
special Cosserat rod theory reduces to

∂tr = v

∂tτ = ∂sv

(̺A)∂tv = ∂s(Tτ − ∂s((EI)∂sτ )) +M(τ × ∂ssτ ) + f , ∂sM = 0

‖τ‖ = 1.

Thereby,T acts as Lagrangian multiplier to the inextensibility constraint. Note that we neglect torsion,M = 0, which can
be justified by appropriate boundary conditions, e.g. a freefiber end. Thus, to simulate the fiber dynamics for the variables
r, T , we end up with the following fourth order wavelike system ofpartial differential equations together with the algebraic
constraint of inextensibility,

‖∂sr‖ = 1, (̺A) ∂ttr = ∂s(T∂sr − ∂s((EI)∂ssr)) + f , (4)

supplemented with appropriate initial and boundary conditions as well as specified external body forces. It has the structure
of a string model (remark 2.2), but contains additional bending effects. Hence, we refer to this type of model as generalized
string model.

Remark 2.3 In case of both fiber ends fixed, the directors are prescribed in sa, sb. Insertingκ3 = d2 · ∂sd1 in ∂sM = 0,
the following boundary value problem has additionally to besolved for each time,

∂s

(

1

1 + νp
(EI)d2 · ∂sd1

)

= 0, dk(sa, t) = dk,a(t), dk(sb, t) = dk,b(t), k = 1, 2

yielding the torsion coupleM . The directors{d1,d2, τ} can be expressed in terms of a triad{η1,η2, τ} associated to
the curver that satisfies the geometrical torsion-free conditionη2 · ∂sη1 = 0 (for an explicit representation see [28]),

d1 = cosψη1 + sinψη2, d2 = − sinψη1 + cosψη2,

thenκ3 = ∂sψ holds. This simplifies the boundary value problem to

∂s

(

1

1 + νp
(EI)∂sψ

)

= 0, ψ(sa, t) = ψa(t), ψ(sb, t) = ψb(t),

whose solution readsψ(s, t) = ψa(t) + (ψb − ψa)(t)ι(sa, s)/ι(sa, sb) with ι(sa, s) =
∫ s

sa
(1 + νp)/(EI) ds′. Hence,

M(s, t) = M(t) = (ψb − ψa)(t)/ι(sa, sb),

whereψa andψb have to be computed from the directors and the torsion-free triad at the boundary.
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2.2.2 Stochastic drag force

Apart from gravity, the fiber motion in the turbulent lay-down regime is essentially affected by the aerodynamics. To
determine the aerodynamic force on the fiber (i.e. the stresson the fiber boundary in outer normal direction), a two-
way coupling of fiber and flow with appropriate interface conditions is in general necessary. However, in the asymptotic
framework of an one-dimensional generalized string model,we associate to the force a stochastic drag that represents the
turbulent flow effects on the fiber and allows an one-way coupling, see [23] for a detailed derivation. Then, system (4)
becomes

‖∂sr‖ = 1,

(̺A) ∂ttrds dt = { ∂s(T ∂sr − ∂s((EI) ∂ssr)) + (̺A)g + a(r, ∂tr, ∂sr, s, t) } ds dt (5)

+ A(r, ∂tr, ∂sr, s, t) · dws,t

with gravityg and aerodynamicsa, A as external forces, where

a(x,w, τ , s, t) = m(τ , ū(x, t)−w, k(x, t), ν(x, t), ρ(x, t), d(s)),

A(x,w, τ , s, t) = L(τ , ū(x, t)−w, k(x, t), ν(x, t), ρ(x, t), d(s)) · D(τ , ū(x, t)−w, k(x, t), ε(x, t), ν(x, t)).

The aerodynamic force is deduced on basis of a stochastick-ε turbulence model [21]. Expressing the instantaneous
flow velocity as sum of a mean and a fluctuating part, the Reynolds-averaged Navier-Stokes equations (RANS) yield a
deterministic description for the mean velocityū : R

3 ×R
+
0 → R

3, whereas two further transport equations for the kinetic
turbulent energyk : R

3 × R
+
0 → R

+ and dissipation rateε : R
3 × R

+
0 → R

+ characterize the random fluctuationsu′

according tok = E[u′ · u′]/2 andε = ν E[∇u′ : u′] with kinematic viscosityν, densityρ of the air and expectationE[.].
Analogously, the aerodynamic force is split into a mean and afluctuating part. Acting as additive Gaussian noise in (5),
it depends on the flow quantities̄u, k, ε, andν, ρ. Thereby, the deterministic mean forcem : R

2 × R
3 × (R+)4 → R

3

as well as the associated splitting operatorL : R
2 × R

3 × (R+)4 → R
3×3 are essentially determined by the chosen air

drag model which is a function of the mean relative velocity between fluid and fiber,̄u(r, t) − ∂tr, and the fiber tangent
∂sr. The correlated fluctuations are asymptotically approximated by Gaussian white noise with turbulence-dependent
amplitude, where(ws,t, (s, t) ∈ (R+

0 )2) denotes aR3-valued Wiener process (Brownian motion). The amplitudeD :
R

2 × R
3 × (R+)3 → R

3×3 represents the integral effects of the localized centered Gaussian velocity fluctuations on the
relevant fiber scales by containing the necessary information of the spatial and temporal correlations of the double-velocity
fluctuations. Consequently, the performance of the aerodynamic force mainly relies on two models, i.e. the air drag model
(inducingm andL) and the turbulence correlation approximation (inducingD).

Applying the global-from-local concept of [23], appropriate global models are obtained by superposing local ones.
Therefore, we have analyzed, tested and validated experimentally drag models for an incompressible flow around an in-
clined infinitely long circular cylinder and correlation models for incompressible homogeneous isotropic turbulencein
various works [23, 24, 26]. In [24] a nonlinear Taylor drag [33] is applied which is generalized in [26] to fit to all possible
flow regimes. The double-velocity correlation tensor has been constructed such that it initially satisfies the Kolmogorov
universal equilibrium theory [11] as well as the local distribution of the kinetic energyk and dissipation rateε provided
by thek-ε turbulence model. For its dynamic behavior, Taylor’s hypothesis of frozen turbulence pattern [32] originally
proposed in [23] and incorporated in [24] is weaken in [26] byprescribing a temporal decay of the local correlations. The
latest modifications extend the applicability range of the stochastic force model crucially, see [26] for details and figure 2
for a numerical simulation under industrial conditions.

Remark 2.4 For mean flows tangentially directed to the fiber and small velocity fluctuations of orderǫ, ǫ≪ 1 (cf. figure 2),
existence and uniqueness of a weak solution to(5) are proved in [22] for fixed inlet and stress-free fiber end. Expanding the
quantities in(5) in terms ofǫ, the solution in leading orderr(0), T (0) is the position of rest with the contact force balancing
gravity and mean aerodynamic drag force. Using the algebraic constraint yields the vertical position component up to
O(ǫ2) andT (1). This reduces one degree of freedom in the evolution equation and halves the number of unknowns. In first
order, a linear system of stochastic differential equations for the horizontal components is found which can be embedded in
the class of linear wave problems with additive noise. The applicability of the general solution concepts, see [6], is thereby
given by the existence of a semigroup and the Hilbert-Schmidt property of the noise amplitude.

Remark 2.5 Originally, the aerodynamic force has been modelled as correlated noise due to the underlying correlated
flow field, [23]. The transition to the simplified uncorrelated model in(5) is only justified for observations on macroscopic
fiber scales where the effects of the correlated model on the fiber are very well approximated by the uncorrelated one
according to theL2 andL∞-similarity estimates in [23]. These conditions are generally given in industrial production
processes of technical textiles as the investigations in [24] show.
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Figure 2: FIDYST simulation of a turbulent lay-down regime:25 fibers are visualized in white in front of the two-
dimensional flow field where the color indicates the magnitude of the mean velocity.

2.2.3 Simulations

The presented stochastic generalized string model for the fiber dynamics is implemented in the software tool FIDYST1.
Starting with the flow computation, e.g. via commercial tools like FLUENT or CFX, the flow data (mean velocity, kinetic
energy, dissipation rate etc.) is handed over to the routinefor the fiber dynamics where the nonlinear stochastic system(5) is
handled by a method of lines. Thereby, the use of a spatial finite difference method of higher order ensures the appropriate
approximation of the algebraic constraint. The Box-Mullermethod generates the Gaussian deviates for the stochastic drag
force. Incorporating the force amplitude on the interpolated flow data explicitly, a semi-implicit Euler method realizes
the time integration. Its stability and accuracy is given byan adaptive time step control. The resulting non-linear system
of equations is solved by a Newton method. Contact forces dueto fiber-wall or fiber-fiber interactions are determined
iteratively.

Figure 2 shows a FIDYST simulation for the turbulent lay-down regime of a transversal spinning process as it arises
in industrial applications. Thousands of individual endless fibers are spun through narrow nozzles that are densely and
equidistantly placed on a row at a spinning beam. The mean flowis homogeneous in direction of the beam and can hence
be considered as two-dimensional. The turbulent fluctuations cause the entanglement and loop forming of the fibers that
finally lay down on the conveyor belt to form a web. The complexity and effort of the computation and parallelization
depend drastically on the number of fibers and the fiber-fiber contacts. In this example, fewer fibers are taken than in
reality, moreover the fiber-fiber contacts are neglected. Their deposition on the conveyor belt is realized via a fiber-wall
contact with friction such that the fibers finally come to rest, [17]. In spite of these simplifications, the simulation is very
time-consuming, storage demanding and not suitable for theproduction of huge nonwoven webs.

Fortunately, it turns out that this high computational effort is not obligatory. Due to the underlying two-dimensional
flow situation, all fibers are realizations of the same stochastic process. Therefore, it makes sense to introduce a simplified
surrogate stochastic process that describes the characteristic image of the fibers on the conveyor belt. Containing typi-
cal process parameters it might be calibrated by the FIDYST simulation of a single fiber and used for the easy and fast
computation of a web of thousands of fibers.

1FIDYST: Fiber Dynamics Simulation Tool developed at Fraunhofer ITWM, Kaiserslautern
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Figure 3: FIDYST simulations of fiber curvesη for different production processes, transversal and rotational spinning
processes.

3 Surrogate stochastic models for fiber lay-down

3.1 Basic model

The idea of the surrogate stochastic models is to describe directly the image of the fiber on the conveyor belt instead of the
complex dynamic fiber lay-down process itself. Generalizing the original approach [12], we model this image by help of a
stochastic process(ξs, αs)s∈R

+

0

∈ R
2 × R whereξ = η − γ is the difference between the arclength parameterized fiber

curveη and an idealized reference curveγ specifying the production process under consideration andwhereα∠(e1, τ )
is the angle between the production directione1 and the tangentτ on the fiber curveη, i.e. τ (α) = (cosα, sinα) and
τ⊥(α) = (− sinα, cosα). The process is given by the following system of stochastic differential equations equipped with
appropriate initial conditionsξ0, α0,

dξs = τ (αs) ds− dγs, dαs = −∇B(ξs) · τ⊥(αs) ds+AdWs. (6)

The first equation expresses the arclength parameterization of the actual fiber curveη, whereas the second equation deter-
mines the characteristic properties of the lay-down process. Here, the term−∇B(ξ) · τ⊥(α) ensures thatξ is localized
around the origin. Hence, the actual fiber curveη stays close to the reference curveγ. A standard model for the buckling
behavior isB(ξ) = (ξ21/σ

2
1 + ξ22/σ

2
2)/2 with so-called throwing rangesσ1, σ2 > 0. In case of isotropyB(ξ) = B(‖ξ‖),

the standard model simplifies toσ1 = σ2. The scalar-valued Wiener process(Ws)s∈R
+

0

perturbs the deterministic. Its am-
plitudeA ≥ 0 contains all random effects of the production process, e.g.the influence of the turbulent flow during the fiber
spinning and lay-down, fiber-fiber contacts. Different types of production processes can be described by the appropriate
choice of a differentiable reference curveγ, for example rotational or oscillating spinning processes, figure 3. However, in
the following we mainly focus onγs = −vse1, modelling a transversal process with fixed spinning position over a moving
conveyor belt. Here,v = vbelt/vin ≥ 0 is the ratio between the belt speedvbelt and the typical production speed (fiber
length per time)vin, i.e. v = 0 holds in case of a non-moving conveyor belt. Fluctuations inthe production speed are
summarized with all the other random effects in the amplitudeA and not explicitly incorporated in the model. The final
mass laid down is proportional to the considered fiber length, whenever the fiber has a uniform thickness. For simplicity
we restrict to this case. Otherwise (6) might be extended by an additional process describing the thickness fluctuations.

The associated Fokker-Planck equation to (6) for the probability densityp : R
2×R×R

+
0 → R

+
0 , (ξ, α, s) 7→ p(ξ, α, s)

is given by

∂sp+

(

τ (α) +
dγ

ds

)

· ∇ξp− ∂α(∇B(ξ) · τ⊥(α)p) =
A2

2
∂ααp. (7)

Remark 3.1 The stochastic lay-down model(6) can be treated as dimensionless with∂ξ1
B(e1) = 1. This corresponds to

a scaled throwing range of order one in belt direction,σ⋆
1 = 1. Consequently,σ⋆

2 = σ2/σ1 andA⋆ =
√
σ1A. In case

of isotropic buckling, it simplifies toB′(1) = 1 or σ⋆
1 = σ⋆

2 = 1 respectively, then the noise amplitudeA⋆ characterizes
exclusively the relation between stochastic and deterministic rates in the behavior of the system. Dropping⋆ we will use
the dimensionless form for different investigations in thefollowing, considering linear and quadratic isotropic buckling
models, i.e.B(‖ξ‖) = ‖ξ‖,B(‖ξ‖) = ‖ξ‖2/2.
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Figure 4: Effect of noiseA on fiber trajectory of (8) for isotropic bucklingB(ξ) = ‖ξ‖2/2. From left to right, top to
bottom: A = 0; 0.1; 1; 2; 5; 10.

3.1.1 Analysis of special case of a stationary conveyor belt

In this section we restrict to the special case of a non-moving conveyor belt(v = 0,γ ≡ 0). Then the stochastic system (6)
and the associated Fokker-Planck equation (7) simplify to

dξs = τ (αs) ds, dαs = −∇B(ξs) · τ⊥(αs) ds+AdWs. (8)

∂sp+ τ (α) · ∇ξp− ∂α(∇B(ξ) · τ⊥(α)p) =
A2

2
∂ααp, (9)

respectively. The stationary solution of (9) is independent of α and has particularly the form

pS(ξ) = c exp(−B(ξ)), c > 0 (10)

wherec is the normalization constant to define the probability measureµ on R
2 × [0, 2π] having densitypS w.r.t. the

Lebesgue measureλ. For the standard buckling modelB mentioned above, the stationary distributionpS is Gaussian with
variance matrixdiag(σ2

1 , σ
2
2) which motivates our used terminology of throwing ranges. For isotropic bucklingB(‖ξ‖) =

‖ξ‖2/2, the influence of the noise amplitudeA on the pathwise behavior of (8) is illustrated in figure 4. In the following,
we deal with the approach to equilibrium of the stochastic process, i.e. with the convergence to the stationary solutionpS.

Remark 3.2 A formal argument for the existence of a global equilibrium,i.e. convergence to the stationary solutionpS

(10), comes from the following consideration, cf. [7]. Define therelative entropy

H

(

p

pS

)

=

∫

R2

∫ 2π

0

pln

(

p

pS

)

dα dξ. (11)

Then, its temporal change

d

ds
H

(

p

pS

)

= −A
2

2

∫

R2

∫ 2π

0

p

(

∂αln

(

p

pS

))2

dα dξ ≤ 0

can be computed by inserting the Fokker-Planck equation(9). Integration by parts together with assumed periodic and
decaying boundary conditions inα andξ and the fact thatτ · ∇ξpS − ∂α(∇B · τ⊥)pS = 0 yields the result above. From
the weak monotonicity it might be formally concluded thatp converges to a local equilibrium determined bydH/ ds = 0.
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For arbitrary A 6= 0, this stationarity relation holds if and only if the argument is independent ofα, hencep(ξ, α, s) =
ρ(ξ, s)pS(ξ). Plugging this expression forp into the evolution equation(9) gives

∂sρ = 0, ∂ξ1
ρ = 0, ∂ξ2

ρ = 0

because of the linear independence of{1, cosα, sinα}. Due to the normalization condition for the probability densities
this meansρ = 1. Therefore, we have a global equilibriump(ξ, α, s) = pS(ξ).

The arguments described in remark 3.2 have been rigorously justified for similar equations in [34]. The application of these
methods in the context of the present paper is still an open problem. In the following we choose a different route for a
convergence proof and consider the stochastic system (8) directly.

An ergodic result. To prove an ergodic theorem or convergence of the distribution function to a stationary solution, a
diffusion process(ξs, αs)s∈R

+

0

solving (8) and havingµ as invariant measure is constructed. Let the law of this process be
denoted byPµ and the expectation byEµ[·]. Then, this diffusion can be shown to be ergodic with rate of convergence

∥

∥

∥

1

s

∫ s

0

f(ξt, αt) dt− Eµ[f ]
∥

∥

∥

L2(Pµ)
≤ c1

(1

s
+

1

s1/2

(c2
A

+ c3A
))

‖f − Eµ[f ]‖L2(µ), s > 0, (12)

with constantsci > 0, i = 1, 2, 3 and for arbitrary functionsf ∈ L2(µ), see theorem 3.3 for a rigorous statement and [14]
for details. The convergence in (12) implies mean ergodicity of the associated semigroup(Ts)s≥0, i.e.

∥

∥

∥

1

s

∫ s

0

Ttf dt− Eµ[f ]
∥

∥

∥

L2(µ)
≤ c1

(1

s
+

1

s1/2

(c2
A

+ c3A
))

‖f − Eµ[f ]‖L2(µ), s > 0.

The generator of this semigroup is

L = L1 + L2, with L1 =
A2

2
∂αα, L2 = τ (α) · ∇ξ −∇B(ξ) · τ⊥(α)∂α.

Note that the interplay of the operatorsL1 andL2 is crucial for our proof of ergodicity, sinceL1 would not cause an ergodic
behavior by itself. The idea is to project onto the orthogonal complement of the kernel of(L1, D(L1)). On this subspace,
(L1, D(L1)) has a bounded inverse. On the kernel of(L1, D(L1)) in turn, L can be associated with a non-degenerated,
self-adjoint operator(M, D(M)) with

M =
1

2
∆ξ − 1

2
∇B · ∇ξ

in L2(γ) whereγ is the marginal measure ofµ on R
2. Assuming that the Dirichlet form(E , D(E)) corresponding to

(M, D(M)) fulfills a Poincaŕe inequality, ergodicity can be finally shown. Crucial for therate of convergence are Kato
perturbation techniques and a ground state transform. For the detailed proof we refer to [14].

Theorem 3.3 (Ergodic theorem)LetB ∈ C3(R2), ∇B ∈ L2(γ). Assume that there exist0 < a < ∞ and a compact
subsetK ⊂ R

2 such that

(∂ξi
∂ξj

∂ξk
B(ξ))2 + (∂ξi

∂ξj
B(ξ))2 ≤ a

(

∂ξ1
B(ξ)

)2
+

(

∂ξ2
B(ξ)

)2
for all i, j, k ∈ {1, 2}, ξ ∈ R

2 \ K.

Furthermore, assume that the Dirichlet form(E , D(E)) fulfills a Poincaŕe inequality, i.e. there exists0 < c <∞ such that

E(f − Eγ [f ], f − Eγ [f ]) ≥ c
(

f − Eγ [f ], f − Eγ [f ]
)

L2(γ)
for all f ∈ D(E).

Then

∥

∥

∥

1

s

∫ s

0

f(ξt, αt) dt− Eµ[f ]
∥

∥

∥

L2(Pµ)

≤ 1

c1/2

(2

s
+

1

s1/2

(β1(a)c
1/2 + β2(a)c

−1/2

A
+

(

1 +
1√
2

)

A
))

‖f − Eµ[f ]‖L2(µ)

holds for some constants0 < βi(a) <∞, i = 1, 2 independent ofa, as well asf ∈ L2(µ), A > 0, ands > 0.
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Remark 3.4 The assumptions in theorem 3.3 allow potentials of the formB(ξ) = ‖ξ‖n, n = 2, 4 or n ≥ 6, since in these
cases a Poincaŕe inequality holds. More generally, a Poincaré inequality is satisfied, ifB grows as fast as or faster than
‖ξ‖ for largeξ ∈ R

2.

Remark 3.5 Since the adjoint toL w.r.t. the scalar product inL2(µ) is given byL∗ = L1 − L2, we have also er-
godicity with the same rate of convergence for the adjoint process and semigroup. Now, strongly mixing of(T∗

s)s≥0,
i.e. lims→∞ ‖T⋆

sf − Eµ[f ]‖L2(µ) = 0, would implyL1-convergence of the solutionp of the associated Fokker-Planck
equation(9) with normalized non-negative initial distributionp(0) = p0 and Lebesgue measureλ, because

‖p(s) − pS‖L1(λ) =
∥

∥

∥

p(s)

pS
− 1

∥

∥

∥

L1(µ)
= ‖T∗

sp0 − 1‖L1(µ) ≤ ‖T∗
sp0 − 1‖L2(µ).

Since the generator(L, D(L)) is hypoelliptic in the sense of Ḧormander, it is not too hard to show that(Ts)s≥0 is strong
Feller, [14]. Showing that(Ts)s≥0 is additionally irreducible, strongly mixing then followsfrom Doob’s theorem, see
e.g. [6]. But we would like to stress that this considerationdoes not result in an explicit rate of convergence.

Remark 3.6 It is worth mentioning that the stochastic process associated to the generatorM is obtained from the original
process(8) in the large noise limit, see section 3.1.2.

Numerical result. To solve the Fokker-Planck equation (9) numerically, a semi-Lagrangian method can be applied, see
[18]. This time-splitting method consists of two fractional steps. The first step handles the advection part in a Lagrangian
set-up using the modified method of characteristics [10] with adjusted numerical advection to ensure conservation of mass.
The second step uses Eulerian coordinates for the discretization of the reaction-diffusion term.

The numerical simulations then allow the investigation of the rate of convergence to the equilibriumpS w.r.t. an appro-
priately chosen functional. We focus here on the relative entropyH of (11) which is preferable to other functionals because
of its monotonic behavior ins, cf. remark 3.2. Considering the inverse decay ratelimS→∞

∫ S

0 H(p(s)/pS) ds, figure 5
shows its magnitude for various values ofA for linear and quadratic isotropic buckling,B(ξ) = ‖ξ‖ andB(ξ) = ‖ξ‖2/2,
S large. Note that the choice of the initial data affects the results quantitatively, but not qualitatively. Hence, a goodrate of
convergence is found for a finite value ofA from the numerical simulations. This observation is confirmed by the analytical
estimate in theorem 3.3 according to which the speed of convergence is dominated by the factorc1s−1/2(c2A

−1 + c3A)
with constantsci, i = 1, 2, 3, cf. (12). To this point, figure 4 illustrates representative fibers of same lengthS and initial data
(ξ0, α0) that are laid down under quadratic isotropic buckling and the influence of differentA. Obviously, the convergence
to the stationary standard normal distribution takes longer for very small and largeA than for moderate ones,A ≈ 1.

From a practical point of view, this gives a hint that the process parameters should be adapted in such a way thatA is
in an intermediate range of values in order to obtain the fastest possible decay to equilibrium and hence a fiber web which
is as uniform as possible. However, production processes with non-moving conveyor belt (v = 0) are of minor industrial
relevance. Hence, we proceed with the investigation of the original lay-down model with moving belt (6).

3.1.2 Investigation of noise influence

The small noise limit. In the following we study the lay-down behavior for small noiseA =
√
ǫA and small belt velocity

v = ǫv on respectively long length scaless = s/ǫ, 0 < ǫ ≪ 1, restricting to isotropic bucklingB(ξ) = B(‖ξ‖) with
non-dimensionalizing conditionB′(1) = 1 (cf. remark 3.1). Stochastic averaging leads hereby to a reduced system for the
associated limit energy process asǫ→ 0 for which the characteristic drift and variance coefficients can be determined.

The stochastic averaging approach is motivated from the fact that the system corresponding to a deterministic lay-down
process with non-moving belt,A = 0, v = 0, is Hamiltonian. In polar coordinatesξ = r(cosφ, sinφ) and angleβ = α−φ,
it particularly reads

drs = cosβs ds, dβs =

(

B′(rs) −
1

rs

)

sinβs ds, dφs =
sinβs

rs
ds, (13)

with (r, β) ∈ R
+
0 × [0, 2π). Due to symmetry, the restriction toβ ∈ [0, π] is sufficient. As illustrated in figure 6, the system

moves on closed orbits in the(r, β)-plane with fixpoint(r, β) = (1, π/2). The periodic orbits are given by the level sets
E(r, β) = e ∈ R

+
0 of the Hamiltonian

E(r, β) = B(r) − lnr − ln sinβ (14)

with r ∈ [rmin(e), rmax(e)], 0 < rmin(e) < 1 < rmax(e) for fixed energye. The corresponding Hamiltonian coordinates
are(r, z) with z = ln tan(β/2). The period of motionSE depends generally on the energy,SE(e) = d/de(

∫

E(r,z)<e
drdz)

[12].
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Extending (13) to the full lay-down model with small noiseA =
√
ǫA and small belt velocityv = ǫv on large length

scaless = s/ǫ, we obtain a stochastic Hamiltonian system that has the following form for the scaled(rǫ
s, β

ǫ
s, φ

ǫ
s)s∈R

+

0

-
process,ǫ≪ 1,

drǫ
s =

(

1

ǫ
cosβǫ

s + v cosφǫ
s

)

ds

dβǫ
s =

(

1

ǫ

(

B′(rǫ
s) −

1

rǫ
s

)

sinβǫ
s + v

sinφǫ
s

rǫ
s

)

ds+AdWs.

dφǫ
s =

(

1

ǫ

sinβǫ
s

rǫ
s

− v
sinφǫ

s

rǫ
s

)

ds

or alternatively for the scaled process(rǫ
s, z

ǫ
s, φ

ǫ
s)s∈R

+

0

associated to the Hamiltonian coordinates

drǫ
s =

(

−1

ǫ

∂

∂z
E(rǫ

s, z
ǫ
s) + v cosφǫ

s

)

ds

dzǫ
s =

(

∂

∂r
E(rǫ

s, z
ǫ
s) +

(

v sinφǫ
s

rǫ
s sinβ(zǫ

s)
− A2 cosβ(zǫ

s)

2 sin2 β(zǫ
s)

))

ds+
A

sinβ(zǫ
s)

dWs

dφǫ
s =

(

1

ǫ

sinβ(zǫ
s)

rǫ
s

− v
sinφǫ

s

rǫ
s

)

ds.

Following the approach of [12] for the casev = 0, we introduce the energy process

Gǫ
s = G(rǫ

s, β
ǫ
s) = exp(−E(rǫ

s, β
ǫ
s)) = rǫ

s exp(−B(rǫ
s)) sinβǫ

s,

which is a preferable alternative toE of (14) since it is restricted to the interval[0, 1]. Applying Ito-calculus, we obtain

dGǫ
s = (−A

2

2
Gǫ

s − vGǫ
s

((

B′(rǫ
s) −

1

rǫ
s

)

cosφǫ
s −

1

rǫ
s

cotβǫ
s sinφǫ

s

)

) ds+AGǫ
s cotβǫ

s dWs.

Using the stochastic averaging theorem formally, see e.g. [29] and [1, 2] for an application to stochastic Hamiltonian
systems, we determine the limit processG0

s forGǫ
s, ǫ→ 0, as

dG0
s = a(G0

s) ds+ σ(G0
s) dWs (15)

with drift and variance

a(g) = −A
2

2
g − vg

〈

(

B′(r) − 1

r

)

cosφ− 1

r
cotβ sinφ

〉

(g), σ2(g) = A2g2 〈cot2 β〉(g)
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Note that〈f〉(g) =
∫ SG(g)

0 f(rs, βs, φs) ds/SG(g) with period of motionSG, where(rs, βs, φs) results from the unper-
turbed motion (13) with energyg. Due to the Riemann-Lebesgue lemma we have

−vg
〈

(

B′(r) − 1

r

)

cosφ− 1

r
cotβsinφ

〉

(g) = 0

such that the drift reduces toa(g) = −A2g/2. Consequently, the belt velocityv does not influence the averaged equations
(15), and the limit energy process coincides with the one obtained forv = 0 in [12]. The associated Fokker-Planck equation
is

∂sp+ ∂g(a(g)p) =
1

2
∂gg(σ2(g)p), (16)

complemented with initial data and normalization condition
∫ 1

0
p(g, s) dg = 1. Equipped with appropriate boundary

conditions, (16) can be rewritten in the usual form of a Sturm-Liouville problem. For a numerical investigation of the limit
process and the distribution of process functionals we refer to [12].

The large noise or hydrodynamic limit. Here, we present the large noise limit that is related to the hydrodynamic
limit in kinetic theory. The results are taken from [5]. Here, the lay-down model (6) is considered with largeA, scaling
ǫ = A−2 ≪ 1. Then, the associated Fokker-Planck equation (7) for the normalized probability densityp, equipped with
initial datap(ξ, α, 0) = p0(ξ, α), reads

∂sp+ (τ (α) + ve1) · ∇ξp− ∂α(τ⊥(α) · ∇B(ξ)p) =
1

2ǫ
∂ααp. (17)

To analyzep and derive a stationary solution in leading order, we apply aChapman-Enskog type method with the following
ansatz

p(ξ, α, s; ǫ) =
1

2π
P(ξ, s; ǫ) + ǫ p(1)(ξ, α;P) + ǫ2p(2)(ξ, α;P) + O(ǫ3). (18)

whereP is a solution of the leading order problem∂ααp = 0. We anticipate that after a transient in the fast scaleŝ = ǫs
the slowly-varying densityP becomes independent ofα, as shown by the method of multiple scales. This certainly ignores
an initial layer such that an additional term might be added to account for the effect of initial conditionsp0(ξ, α), [5]. The
higher order termsp(m),m = 1, 2, . . . are assumed to depend ons only through their dependence onP , and we have

∂sP = F (0) + ǫF (1) (19)

whereF (m) are functionals ofP to be determined so thatp(m) are bounded and2π-periodic inα. Inserting (18) and (19)
in (17) yields a hierarchy of problems. To ensure thatP contains all the contributions from the homogeneous equations in
the hierarchy, we have to impose the additional constraints

∫ π

−π p
(m) dα = 0. In O(ǫ), we then find

1

2
∂ααp

(1) = F (0) + (τ (α) + ve1) · ∇ξP − ∂α(τ⊥(α) · ∇B(ξ)P),

∫ π

−π

p(1) dα = 0.

The problem has a normalized solution which is2π-periodic inα, provided the average over one period of the right-hand
side of the linear equation vanishes. Hence,

0 = F (0) + v∂ξ1
P , (20)

yieldingF (0). This solvability condition implies that the transport ofP with the belt speedv in e1-direction occurs on the
original scales. Finally, we get

p(1) = −2τ (α) · (∇ξ + ∇B(ξ))P .

To determine the remaining termF (1) in the reduced Fokker-Planck equation forP (19), we proceed with the full problem
in O(ǫ2)

1

2
∂ααp

(2) = F (1) − 2τ (α) · (∇ξ + ∇B(ξ))F (0) + (τ (α) + ve1) · ∇ξp
(1) − ∂α(τ⊥(α) · ∇B(ξ)p(1)),

∫ π

−π

p(2) dα = 0.

13



The solvability condition, i.e. the average of the right-hand side over one period inα vanishes, givesF (1) analogously,

0 = F (1) −∇ξ · (∇ξ + ∇B(ξ))P . (21)

Inserting the conditions (20) and (21) forF (0) andF (1) in (19) yields the reduced Fokker-Planck equation

∂sP = ∇ξ · (ǫ∇ξ + ǫ∇B(ξ) − ve1)P

with stationary solution

PS(ξ) = c exp

(

−B(ξ) − 1

ǫ
vξ1

)

,

c > 0 normalization constant. The associated stochastic differential equation is

dξ = (−ǫ∇B(ξ) + ve1) ds+
√

2ǫdWs.

The stationary distributionPS depends on the noise, asA = ǫ−1/2. This contrasts with the case of a non-moving belt,
v = 0, in which the stationary distribution is the same for deterministic (A = 0) and stochastic (A > 0) dynamics, cf. (10).
In the hydrodynamic limitǫ → 0, PS is only independent ofǫ if v ∼ ǫ. Then, we deal with lay-down processes of large
noiseA and small velocityv, whereA ∼ v−1/2.

Remark 3.7 In this asymptotic regime the fiber lay-down with isotropic bucklingB(ξ) = ‖ξ‖2/2 is described by the
Ornstein-Uhlenbeck process

dξ =

(

− 1

A2
ξ + ve1

)

ds+

√
2

A
dWs, ∂sP = ∇ξ ·

(

1

A2
(∇ξ + ξ) − ve1

)

P .

Its stationary density distribution is standard Gaussian,centered in(A2v, 0).

3.2 Improved smooth model

The basic model (6) gives a continuous fiber curve. To increase the regularity to a continuously differentiableη, we extend
the considered stochastic process to(ξs, αs, κs)s∈R

+

0

∈ R
2×R×R by introducing the curvatureκ of η. Then, the process

is modelled by the following system of stochastic differential equations equipped with appropriate initial conditionsξ0, α0,
κ0,

dξs = τ (αs) ds− dγs, dαs = κs ds, dκs = − 1

R
(κs + τ⊥(αs) · ∇B(ξs)) ds+K dWs. (22)

The first two equations yield a differentiable, arclength parameterized fiber curveη = ξ − γ with curvatureκ. The third
equation states a relaxation of the curvature to the buckling behavior of the basic model with typical relaxation length
R > 0 which is perturbed by a Wiener process with amplitudeK ≥ 0.

White noise limit. The improved smooth model (22) has an asymptotic limit to thebasic one (6), using an appropriate
scaling. The result is well-known in literature [27], it is the white noise limit of the Ornstein-Uhlenbeck process. In
particular, we have the scaling

R = ǫ2R, K =
K

ǫ2
, κ =

κ

ǫ

for (22), yielding the basic model with coefficientA = RK as ǫ → 0. This can be concluded from the following
consideration.

The smooth model accordingly scaled with standard reference curveγs = −vse1 reads

dξǫ
s = (τ (αǫ

s) + ve1) ds, dαǫ
s =

1

ǫ
κǫ

s ds, dκǫ
s = − 1

ǫ2R
(κǫ

s + ǫτ⊥(αǫ
s) · ∇B(ξǫ

s)) ds+
K

ǫ
dWs.

Hereby, the equations for angle and curvature describe a process of Ornstein-Uhlenbeck type, and the scaling is the white
noise scaling of the Ornstein-Uhlenbeck process [4,27]. Considering the associated Fokker-Planck equation

∂sp
ǫ + (τ (α) + ve1) · ∇ξp

ǫ +
1

ǫ

(

κ∂αp
ǫ − 1

R
(τ⊥(α) · ∇B(ξ))∂κp

ǫ

)

=
1

ǫ2

(

1

R
∂κ(κpǫ) +

K2

2
∂κκp

ǫ

)

, (23)
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with decaying boundary conditions inκ, we use a Hilbert expansion for the probability density,pǫ = p(0) + ǫp(1) +O(ǫ2),
in order to derive the limit equation asǫ→ 0. In leading order we have

1

R
∂κ(κp(0)) +

K2

2
∂κκp

(0) = 0.

This equation implies thatp(0) is Gaussian in theκ-variable. More precisely, defining the integrated probability density
p̂ǫ =

∫

R
pǫ dκ and particularlŷp0 =

∫

R
p(0) dκ, we can write

p(0) = p̂0(ξ, α)
1√

πK2R
exp

(

− κ2

K2R

)

.

Proceeding with the problem (23) inO(ǫ),

κ∂αp
(0) − 1

R
(τ⊥(α) · ∇B(ξ))∂κp

(0) =
1

R
∂κ(κp(1)) +

K2

2
∂κκp

(1),

there is no explicit expression forp(1). But multiplying the equation with(−κ) and integrating overκ gives

−K
2R

2
∂αp̂

0 − 1

R
(τ⊥(α) · ∇B(ξ))p̂0 =

1

R

∫

R

κp(1) dκ.

Considering now the integrated Fokker-Planck equation (23)

∂sp̂
ǫ + (τ (α) + ve1) · ∇ξp̂

ǫ +
1

ǫ
∂α

∫

R

κpǫ dκ = 0,

the integral can be expressed in terms ofp̂0 by help of the previous results

∫

R

κpǫ dκ =

∫

R

κ(p(0) + ǫp(1)) dκ+ O(ǫ2) = −ǫ
(

τ⊥(α) · ∇B(ξ)p̂0 +
K2R2

2
∂αp̂

0

)

+ O(ǫ2).

Hence, in the limitǫ→ 0 we recover the Fokker-Planck equation (7) associated to thebasic lay-down model withA = RK,

∂sp̂
0 + (τ (α) + ve1) · ∇ξp̂

0 − ∂α(τ⊥(α) · ∇B(ξ)p̂0) =
K2R2

2
∂ααp̂

0.

Influence of parameters. Studying the smooth model numerically, we focus on the influence of two parameters, the
relaxation lengthR and the noise amplitudeRK = A. Therefore, we restrict to isotropic quadratic buckling and non-
moving conveyor belt in the simulation. Figure 7 visualizesthe effects of small and largeR andA on the fiber trajectory.
As in the basic model, the noise amplitudeA determines the curling behavior and the size of formed loops: the higherA
is, the finer is the entanglement. The relaxation lengthR in contrast is a measure for the steadiness of the fiber curve.For
small relaxation lengthR the curve is qualitatively similar to those obtained from the basic model (see figure 4), whereas
for largerR, it becomes more steady. For further numerical investigations and the derivation of the hydrodynamic limit for
the smooth model analogously to section 3.1.2, we refer to [15].

4 Modelling and simulation of technical textiles

An efficient numerical handling of the complete production process of technical textiles requires the coupling of the stochas-
tic generalized string model for the fiber dynamics with a surrogate stochastic model for the fiber lay-down, see sections2
and 3, respectively. Hereby, we restrict to a FIDYST simulation of a single representative fiber and adjust then the pa-
rameters of the simple surrogate lay-down model so that the resulting fiber path coincides qualitatively and quantitatively
well with the one given by the complex string model. The subsequent run of the surrogate model allows the cheap and fast
simulation of thousands of fibers, yielding the desired fiberweb.
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Figure 7: Effect of relaxation lengthR and noiseRK on trajectories of smooth model (22) forv = 0 andB(ξ) = ‖ξ‖2/2
(cf. figure 4).Top to bottom: R = 10−4; 1. Left to right: RK = 1; 5.

4.1 Parameter identification

The performance of the mentioned model reduction depends essentially on the parameter estimation. See for example [19]
for the estimation of parametric diffusion models given by stochastic differential equations. Here, we apply a heuristic
method to identify the parameters. It turns out to be very stable and efficient in a wide range of applications. In case of
a fixed spinning position over a moving conveyor-belt (transversal spinning process), the reference curveγs = −vse1 is
prescribed by the speed ratiov = vbelt/vin. For rotational spinning processes with angle speedωrot, cycloids form out
γs = −vse1 + r(cos(ωs+φ), sin(ωs+φ)). Hereby,ω = ωrot/vin as well asv are given process parameters, whereas the
typical radiusr and phase shiftφ have to be identified, e.g. by the best parametric fit to the fiber curveη. For completeness,
γs = −vse1 + r sin(ωs+ φ)e2 is the reference curve of a spinning process with oscillations normal to the conveyor belt.
In the following, we assume thatγ is known andξ = η−γ is centered in the origin. Moreover, motivated by the dynamical
simulations, we focus on the standard buckling behaviorB(ξ) = (ξ21/σ

2
1 + ξ22/σ

2
2)/2.

Considering a sample ofN equidistantly chosen fiber points with associated angle andcurvature valuesD = (D1, ...,
DN) ∈ (R2 × R × R)N , Di = (ξi, αi, κi) = (ξsi

, αsi
, κsi

) and si+1 − si = △s fixed, we define a functional of
characteristic process properties as

F(D) =





√

∑N
i=1 ξ

2
i,1

N
,

√

∑N
i=1 ξ

2
i,2

N
,max

k

√

∑N−k
i=1 (αi+k − αi)2

k△s(N − k)
,max

k

√

∑N−k
i=1 (κi+k − κi)2

k△s(N − k)



 (24)

with k = 1, 2, ..., kmax andkmax ≪ N . To estimate the parametersP = (σ1, σ2, RK,K) of the surrogate model (22) for a
certain production process, we evaluate a FIDYST simulation and set up a respective data sampleDfidyst where angle and
curvature values are approximated by help of finite differences from the discreteξi, i = 1, ..., N . The best approximation
of the desired quantityF(Dfidyst) = F are obtained by the surrogate modelDsur for the parametersP⋆,

P⋆ = argminP∈(R+

0
)4‖F(Dsur(P)) − F‖2

2.
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Figure 8: Comparison of fiber curves associated to the surrogate lay-down models (left: basic,middle: improved smooth)
and the FIDYST simulation (right) for transversal and rotating spinning processes (cf. figure 3).

To solve this minimization problem, we use a relaxated quasiNewton method with unit Jacobian,P(j+1) = P(j) +ω(F−
F(Dsur(P

(j))), ω > 0 and initial guessP(0) = F. The convincing performance of this approach results from the fact that
the functionalF is a very good estimator for the process parametersP. It is even perfect forσ1 andσ2 in the caseγ = 0,
for RK in the white noise limit (RK = A see section 3.2) and for the noise amplitudeK in general.

Remark 4.1 To identify the parametersP = (σ1, σ2, A) for the basic surrogate model(6) we apply the same strategy as
above, but consider a reduced functional containing only the first three components ofF in (24). The curvatureκ is not
defined in(6).

We apply the parameter identification to transversal and rotational spinning processes. Figure 8 shows fiber trajectories
associated to the basic and improved lay-down model, respectively, in comparison to the underlying FIDYST realization.
Qualitatively, both lay-down models yield a reasonable distribution of the fiber mass. But the behavior of the curvature
is certainly better approximated by the improved smooth one. To come to a more quantitative validation of the surrogate
models, we consider the variance of the increments of angle and curvature, more precisely

Γα(h) =
1√
h

√

E[(αs+h − αs)2], Γκ(h) =
1√
h

√

E[(κs+h − κs)2].

Those maxima enter the functionalF (24) in a discretized version (h = k△s), presupposing ergodicity of the processes.
Figure 9 illustrates the run ofΓα, Γκ for FIDYST and the smooth improved model as well as ofΓα for the basic one.
According to the identification strategy the basic model gives the same maximum as the FIDYST data. Moreover, it shows
the correct decaying behavior. The increase for smallh cannot be achieved due to the lack of differentiability. Theimproved
smooth model overcomes this drawback and gives even more thecorrect decaying behavior inΓκ, yielding a coinciding
entanglement structure.

4.2 Virtual technical textiles

The calibrated surrogate models for fiber lay-down enable the simulation of technical textiles by superposing thousands
of spinning positions. The effects of fiber-fiber interactions are thereby contained in the stochastics of the lay-down.
The homogeneity and load capacity of the resulting fiber web are the most important textile properties for the quality
assessment of industrial nonwoven fabrics. They are essentially determined by the distribution of fiber mass and directional
arrangement in the web which can be studied numerically via Monte-Carlo simulations and validated with experimental
data.
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Figure 9: Comparison ofΓα andΓκ for the data in figure 8.

Figure 10 illustrates technical textiles for a transversalspinning process,γs = −vse1, computed with a calibrated
smooth lay-down model. The homogeneity of the fiber web is ensured by moderate noiseRK = A and small speed ratio
v according to the investigations in section 3.1.2, presupposing an appropriate relation, e.g.d < σ2, between the distanced
of neighboring spinning positions andσ2. The fiber throwing rangeσ1 plays a minor role in the mass distribution. This is
not the case for rotational and oscillating spinning processes. Here, the reference curve

γs = −vse1 + (r1 cos(ωs+ φ), r2 sin(ωs+ φ))

with r1 = r2 or r1 = 0 respectively – in particular the interplay betweenv andω – determines crucially the fiber web. For
given noise, speed ratio and buckling, already slight changes of the angle speed ratioω might cause the transition from an
homogeneous web to one with a characteristic deterministicpattern of undesired strips and holes, see figure 11.

To improve the quality of the industrial fabrics we might apply a technical optimization on the proposed model hierar-
chy. Changing parameters of the plant or conditions of the production process (e.g. turbulent behavior of the flow actingon
the fibers, dynamics of the spinning positions, inflow velocity of the fibers), we firstly evaluate ak-ǫ turbulence simulation
for the fluid flow to compute then the dynamics of a single fiber with the stochastic generalized string model. From the
result we identify the input parameters for the stochastic lay-down model which we use for the simulation of a fiber web.
The parameters and properties of the produced material determine finally the new quality. Apart from these optimization
and control aspects, the model hierarchy allows furthermore the numerical investigation of production principles which
might result in innovative, efficient and cheap design of newproducts, for an industrial application we refer to [16].
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Figure 10: Nonwovens of a transversal spinning process (σ1 = σ2 = R = 1, v = 0.1) for different noise.Left: RK = 1.
Right:RK = 10.
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Figure 11: Lay-down principles for rotational (top, r1 = r2 = 2) and oscillating spinning processes (bottom, r1 = 0,
r2 = 2) with the same parameters as in figure 10 and fixed noiseRK = 1. Left: ω = 0.05. Right:ω = 0.5.

5 Conclusion and outlook

In this work we have established a hierarchy of mathematicalmodels for the simulation of the complete production process
of technical textiles. The models of different complexity –ranging from highly complex three-dimensional fluid-solid
interactions to one-dimensional fiber dynamics with stochastic drag and further to simpler, efficiently handable stochastic
fiber lay-down models – are coupled via asymptotic analysis,similarity estimates, parameter identification and validated
with experimental data. Applicable to a wide range of practically relevant processes, the model hierarchy has already been
used successfully for optimization, control and design of technical textiles in projects with industry.

A long-term objective is the handling of the complete engineering for technical textiles including production process,
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micro-structure and product simulation. This requires theexpansion of our model chain to the product by integrating micro-
structure simulation and design. Our final, industrially motivated goal is the optimal design of the production processwith
respect to the desired product specification. But by then a lot of interesting mathematical challenges have to be tackled.
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