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Oleksandr Iena. “Modification of Simpson moduli spaces of 1-dimensional sheaves by vector
bundles, an experimental example”.

Abstract. This thesis deals with the following question. Given a moduli space of coherent
sheaves on a projective variety with a fixed Hilbert polynomial, to find a natural construction
that replaces the subvariety of the sheaves that are not locally free on their support (we call such
sheaves singular) by some variety consisting of sheaves that are locally free on their support.
We consider this problem on the example of the coherent sheaves on P2 with Hilbert polynomial
3m + 1.

Given a singular coherent sheaf F with singular curve C as its support we replace F by
locally free sheaves E supported on a reducible curve C0∪C1, where C0 is a partial normalization
of C and C1 is an extra curve bearing the degree of E . These bundles resemble the bundles
considered by Nagaraj and Seshadri (cf. [19], [20], [26]). Many properties of the singular 3m+1
sheaves are inherited by the new sheaves we introduce in this thesis (we call them R-bundles).
We consider R-bundles as natural replacements of the singular sheaves.

R-bundles refine the information about 3m+1 sheaves on P2. Namely, for every isomorphism
class of singular 3m + 1 sheaves there are P1 many equivalence classes of R-bundles.

There is a variety M̃ of dimension 10 that may be considered as the space of all the isomor-
phism classes of the non-singular 3m+1 sheaves on P2 together with all the equivalence classes
of all R-bundles. This variety is obtained by blowing up the moduli space of 3m + 1 sheaves
on P2 along the subvariety of singular sheaves.

We modify the definition of a 3m + 1 family and obtain a notion of a new family over
an arbitrary variety S. In particular 3m + 1 families of the non-singular sheaves on P2 are
families in this sense. New families over one point are either non-singular 3m+1 sheaves or R-
bundles. For every variety S we introduce an equivalence relation on the set of all new families
over S. The notion of equivalence for families over one point coincides with isomorphism for
non-singular 3m + 1 sheaves and with equivalence for R-bundles.

We obtain a moduli functor M̃ : (Sch) → (Sets) that assigns to every variety S the set
of the equivalence classes of the new families over S. There is a natural transformation of
functors M̃ → M that establishes a relation between M̃ and the moduli functor M of the
3m + 1 moduli problem on P2. There is also a natural transformation M̃ → Hom( , M̃),

inducing a bijection M̃(pt) ∼= M̃ , which means that M̃ is a coarse moduli space of the moduli

problem M̃.
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Oleksandr Iena. “Modifizierung von Simpson-Modulräumen 1-dimensionaler Garben durch
Vektorbündel, ein experimentelles Beispiel”.

Zusammenfassung. In dieser Dissertation wird die folgende Frage erörtert. Gegeben sei
ein Modulraum von kohärenten Garben auf einer projektiven Varietät mit festem Hilbertpoly-
nom, zu finden ist eine natürliche Konstruktion, die die Untervarietät der Garben, die nicht
lokal frei auf ihrem Träger sind (solche Garben nennen wir singulär), durch eine andere, aus
lokal freien Garben bestehende Varietät ersetzt. Wir betrachten diese Frage am Beispiel der
kohärenten Garben auf P2 mit Hilbertpolynom 3m + 1.

Sei F eine singuläre kohärente Garbe mit singulärer Kurve C als Träger. Wir ersetzen
F durch 1-dimensionale lokal freie Garben E , deren Träger eine reduzible Kurve C0 ∪ C1 ist,
so dass C0 eine partielle Normalisierung von C ist und C1 eine zusätzliche, den Grad von E
tragende Kurve ist. Diese Vektorbündel ähneln den von Nagaraj und Seshadri betrachteten
Vektorbündeln (siehe [19], [20], [26]). Die in dieser Dissertation eingeführten neuen Garben
(wir nennen sie R-Bündel) behalten viele Eigenschaften der singulären 3m + 1 Garben. Wir
betrachten R-Bündel als einen natürlichen Ersatz für die singulären Garben.

R-Bündel präzisieren die Informationen über 3m + 1 Garben auf P2. Es gibt nämlich P1

viele verschiedene Äquivalenzklassen für jede Isomorphieklasse von singulären 3m + 1 Garben.
Es gibt eine Varietät M̃ der Dimension 10, die als Raum aller Isomorphieklassen der nicht

singulären Garben und aller Äquivalenzklassen von R-Bündeln betrachtet werden kann. Diese
Varietät entsteht durch die Aufblasung des Modulraums von 3m+1 Garben auf P2 entlang der
Untervarietät der singulären Garben.

Wir modifizieren die Definition einer 3m + 1 Familie und bekommen für jede Varietät S
einen neuen Begriff einer Familie über S. 3m + 1 Familien der nicht singulären Garben auf P2

sind Familien dieser Art. Neue Familien über einem Punkt sind entweder nicht singuläre 3m+1
Garben oder R-Bündel. Für jede Varietät S wird auf der Menge aller R-Bündel über S eine
Äquivalenzrelation eingeführt. Der Äquvalenzbegriff für die Familien über einem Punkt stimmt
mit dem Isomorphiebegriff für nicht singuläre 3m + 1 Garben und mit dem Äquivalenzbegriff
für R-Bündel überein.

Wir konstruieren einen Modulfunktor M̃ : (Sch) → (Sets), der jeder Varietät S die Menge

der Äquivalenzklassen von R-Bündeln über S zuordnet. Eine Beziehung zwischen M̃ und
dem Modulfunktor M des 3m + 1 Modulproblems auf P2 wird durch eine natürliche Trans-
formation der Funktoren M̃ → M festgelegt. Es gibt auch eine natürliche Transformation
M̃ → Hom( , M̃), die eine Bijektion M̃(pt) ∼= M̃ induziert, was M̃ zu einem groben Modul-

raum des Modulproblems M̃ macht.
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Basic notations

BlY X blow up of X at Y ⊆ X
det A, |A| determinant of A

AT transpose of A
ev evaluation morphism

GLm(k) group of invertible m×m matrices over k
J(a1, . . . , am) Jacobian matrix of polynomials a1, . . . , am

k base field
Matm×n(k) set of all m× n matrices over k

NY/X normal bundle to a subvariety Y in X
Nx, NxY normal space to a subvariety Y in X at a point x ∈ Y
OX structure sheaf of X

Pic X Picard group of X
Pn projective space of dimension n
PV projective space associated to a vector space V
PE projective bundle associated to a vector bundle E (classical notation)
PE projective bundle associated to a quasi-coherent sheaf E (Grothendieck’s

notation)
(Sets) category of sets
(Sch) category of separated schemes of finite type over k
SingF set (closed subvariety) of x ∈ X where Fx is not a locally free OX,x

module
Span(W ) subspace generated by a subset W of a vector space V
SuppF support of a sheaf F
TxX tangent space at x ∈ X in X
T X tangent bundle of X

½, ↪→ injective morphisms
³ surjective morphisms

viii



Introduction

Important conventions

In this dissertation k is an algebraically closed field of characteristic zero.
We work in the category of separated schemes of finite type over k. We denote this category

by (Sch). The objects of this category are referred to as schemes or varieties interchangeably.
We consider only closed points of them. Note that we do not restrict ourselves to reduced or
irreducible varieties. All the schemes in (Sch) are automatically noetherian.

Dealing with homomorphism between vector bundles and identifying them with matrices

we consider the matrices acting on elements from the right, i. e, the composition X
A−→ Y

B−→ Z
is given by the matrix A ·B.

Some historical remarks and general references

Classification is one of the important problems mathematics deals with. It is often useful to
have a geometrical structure on the space of objects to be classified. This way one comes to
the notion of a moduli space. It was Riemann who already studied moduli of curves.

The study of moduli spaces of sheaves on curves began in Atiyah’s paper [2]. Narasimhan,
Seshadri, Ramanan, and many others studied the moduli of sheaves on Riemann surfaces
(cf. [22], [26], and [21]).

Takemoto in [28] and [29], Gieseker in [7], and Maruyama in [15], [16], and [17] started the
study of moduli spaces of semi-stable sheaves on higher-dimensional varieties. Their construc-
tions were improved by Simpson.

Simpson showed in [27] that for an arbitrary smooth projective variety X and for an arbitrary
numerical polynomial P ∈ Q[m] there is a coarse moduli space MP (X) of semi-stable sheaves
on X with Hilbert polynomial P . The result of Simpson is an existence result. It is not much
known about the structure of MP (X) for concrete X and P .

For X = P2 and for linear polynomial P the spaces Mam+b(P2) were studied in [14]. Moduli
spaces M3m+1(P3) and M3m+1(P2) have been described in [5] and [4].

The modern formulation of a moduli problem in terms of moduli functors is due to Grothen-
dieck (cf. [10]). Dealing with moduli spaces requires techniques from the geometric invariant
theory. The main reference on this subject is [18]. Newstead’s book [23] may also be useful. A
nice overview of the theory of moduli spaces on surfaces is presented by Huybrechts and Lehn
in [13].

Initially posed problem

In general MP (X) contains isomorphism or S-equivalence classes of sheaves that are not locally
free on their support. Since locally free sheaves are more convenient to work with, it seems

ix
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natural to ask for a construction which gives a natural possibility to replace sheaves that are not
locally free on their support by sheaves that are locally free on their support. This dissertation
aims to present such a construction for the moduli space M3m+1(P2). Initially the following
questions have been posed to the author.

• To find sheaves that are locally free on their one-dimensional support (new sheaves) and
could be considered as natural replacements of singular 3m + 1 sheaves on P2.

• To describe the isomorphism classes of the new sheaves and to find if possible a parameter
space for them.

• To replace the notion of a Simpson 3m+1 family on P2 by a new one, where the singular
3m + 1 sheaves on P2 are replaced by new sheaves, i. e., to define the corresponding
moduli problem (the corresponding functor).

• To study the relations between the new moduli problem and the Simpson moduli problem
for 3m + 1 sheaves on P2.

• To investigate the question concerning the existence of a moduli space (fine or coarse) for
the new moduli problem.

• To see how the Simpson moduli space M = M3m+1(P2) is related to this question.

Structure of the dissertation

In Chapter 1 we construct R-bundles and discuss their properties. In Section 1.1 we make an
overview of some results from [5] and prove some important statements about 3m + 1 sheaves
on P2. In Section 1.2 we consider a construction of R-bundles. New objects related to the
construction of the R-bundles are studied in Section 1.3.

In Chapter 2 we describe R-bundles up to isomorphisms (Section 2.1). We introduce also
a notion of equivalence for R-bundles and give the description of the equivalence classes in
Section 2.2. Section 2.3 is intended to illustrate the results of this chapter and to develop some
intuition in dealing with R-bundles.

In Chapter 3 families over arbitrary varieties are defined. In Section 3.1 we consider spaces
X̃ and M̃ that parameterize R-bundles and study their properties. Further we construct a
family over X̃ in Section 3.2. Section 3.3 contains a definition of a family over an arbitrary S.
Some properties of such families are studied.

Appendix A contains some general results that are used in this dissertation. Section A.1
presents some statements about flatness and base change, in Section A.2 we collect some facts
about blow ups. Section A.3 deals with conics in P2 and their relation to 2m + 2 sheaves on
P2. In Section A.4 we discuss some questions concerning gluing locally free sheaves.

Overview of results

Recalling some results from [5]. We consider semi-stable sheaves on P2 with Hilbert
polynomial 3m + 1 and call them simply 3m + 1 sheaves. A family of 3m + 1 sheaves over
S (or simply a 3m + 1 family over S) is by definition a flat sheaf F on S × P2 such that for
every s ∈ S the restriction Fs of F to the fibre {s} × P2

∼= P2 is a 3m + 1 sheaf on P2. It is
known that all 3m + 1 sheaves are stable and there exists a fine moduli space M = M3m+1(P2)
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of 3m + 1 sheaves. The latter means that M represents the functor M of this moduli problem.
One sees that 3m + 1 sheaves on P2 occur exactly as the non-split extensions

0 → OC → F → kp → 0,

where C = SuppF is the cubic curve in P2 supporting F and p is a point on C. The moduli
space M is isomorphic to the universal cubic curve

{(〈f〉, 〈x〉) ∈ P9 × P2 | f(x) = 0},
where P9 is identified with the space of cubic curves in P2.

The 3m + 1 sheaves on P2 are exactly the sheaves given by resolutions

0 → 2OP2(−2)
A−→ OP2(−1)⊕OP2 → F → 0,

where A =

(
z1 q1

z2 q2

)
with linear independent linear forms z1, z2 ∈ Γ(P2,OP2(1)) and non-zero

determinant. The space of all such matrices is a parameter space of M and is denoted by X.
X is isomorphic to an open subset in k18 and is acted on by the group G = GL2(k)×H, where
H is the group of 2× 2 matrices

(
λ z
0 µ

)
, λ, µ ∈ k, λµ 6= 0, z ∈ Γ(P2,OP2(1)).

The action is defined by the rule (g, h) ·A = gAh−1. M is a geometric quotient of X by G, the
quotient morphism is

A =

(
z1 q1

z2 q2

)
7→ 〈det A〉 × 〈z1 ∧ z2〉.

Singular objects. A 3m + 1 sheaf is called singular if it is not locally free on its support.
A point 〈f〉 × p ∈ M represents an isomorphism class of a singular sheaf if and only if p is a
singular point of the curve {f = 0} ⊆ P2. The subvariety of all singular sheaves in M is denoted
by M8. The corresponding subvariety in X is denoted by X8. Both M8 and X8 are smooth of
codimension 2 in M and X respectively. Moreover X8 is a global complete intersection in X
(cf. Lemma 1.7).

New objects. We replace every singular sheaf F supported on a cubic curve C by invertible
sheaves on curves of the type C0 ∪ C1, where C0 is a partial normalization of C. We call the
new objects R-bundles. They occur as flat limits of non-singular 3m + 1 sheaves.

Considering invertible sheaves supported on C0 is not enough since they will not be flat
limits of 3m + 1 sheaves. So the curve C1 is important as it guarantees flatness of families of
sheaves that have as their fibres either R-bundles or non-singular 3m + 1 sheaves.

Since 3m + 1 sheaves come together with an embedding of the supporting curve into P2,
our construction of R-bundles comes together with an embedding of the curve C0 ∪ C1 into a
reducible surface D0 ∪D1 containing two irreducible components D0 and D1. This surface is a
flat limit of P2.

Construction of new objects. We consider the singular 3m+1 sheaves as one-dimensional
flat limits of non-singular 3m + 1 sheaves and describe a construction that substitutes the
singular sheaves by sheaves that are locally free on their support and that are also flat limits
of non-singular 3m + 1 sheaves.
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Let us outline some details. For a matrix A ∈ X8 representing a singular 3m + 1 sheaf on
P2 and for B ∈ TAX we consider an open set U ⊆ k1 containing 0 such that A + tB ∈ X for
all t from U . We obtain the one parameter family of 3m + 1 sheaves given by the resolution

0 → 2OU×P2(−2H)
A+tB−−−→ OU×P2(−H)⊕OU×P2 → E → 0,

where the divisor H is the pull back of a line h ⊆ P2.
Let Z

σ−→ U × P2 be the blow up of U × P2 at the point 0 × p, where p ∈ P2 is the point
where the 3m + 1 sheaf E0 = E|{0}×P2 given by the matrix A is not free on its support. Let D1

be the exceptional divisor of σ. We obtain that the composed morphism Z
σ−→ U × P2

p1−→ U is
flat.

The fibres Zt of Z → U are isomorphic to P2 for t 6= 0, and Z0
∼= P̂2 := D0 ∪ D1, where

D0 = P̃2 is the blowing up of the projective plane P2 at the point p, and D1 = P2 is attached to
P̃2 along the exceptional divisor L of the blowing up P̃2 → P2 (cf. Definition 1.11). The fibres
Zt can be considered as closed subvarieties in P2 × P2.

On Z0 = P̂2 we define a divisor H as the pull back of a line h ⊆ P2 from the first P2 and F
is defined as the pull back of a line f ⊆ P2 in the second P2, i. e., OZ0(H) = OP2×P2(1, 0)|Z0 and
OZ0(F ) = OP2×P2(0, 1)|Z0 . The Picard group of Z0 is isomorphic to Z ⊕ Z, as free generators
one can take the sheaves OZ0(H) and OZ0(F ).

The sheaf σ∗E has torsion along D1 which is a subsheaf 2OD1(−1). We obtain a commutative
diagram

0

0 2OD1(−1)

0 2OZ(−2H) OZ(−H)⊕OZ σ∗E 0

0 2OZ(−2H + D1) OZ(−H)⊕OZ Ẽ 0

2OD1(−1) 0

0

//
σ∗(A+tB)

// // //

// // // //

²²

²²

²²

²²

²²

²²

²²

²²

and a sheaf Ẽ on Z.

Proposition 1.24. Ẽ is locally free on its support if and only if B is a normal vector to X8 at
A, i. e., if and only if B ∈ TAX \ TAX8.

We call the one parameter families Ẽ that are locally free on their support new one parameter
families. New one parameter families Ẽ are flat over U . We call the fibres Ẽ0 of new one
parameter families Ẽ over t = 0 R-bundles on P̂2.

Properties of R-bundles on P̂2. R-bundles are supported on reducible curves of the type
C0 ∪ C1, where C0 is a curve in D0, a partial normalization of the curve C ′ = Supp E0, and C1

is a conic in D1 = P2.
The following pictures give an illustration how the curves C0 and C1 look like.
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• It turns out that in all cases the restriction of Ẽ0 to C0 is isomorphic to the structure
sheaf OC0 of the curve C0.

• The restriction to C1 is a 2m+2 semi-stable sheaf on D1 = P2 which is locally free on C1

and has degree 1.

• R-bundles are non-trivial extensions

0 → OC → Ẽ0 → kq → 0, (∗)
where C = C0 ∪ C1 and q is a point of C1.

• For an R-bundle E in generic situation (when the line L is not contained in C) there is a
gluing exact sequence

0 → E → EC0 ⊕ EC1 → EC0∩C1 → 0.

• One may consider Z0 = P̂2 as a closed subvariety in P2 × P2 (cf. Definition 1.11). The
Hilbert polynomials of an R-bundle E and its restrictions to the curves C0 and C1 with
respect to the invertible sheaf L = OP2×P2(1, 1) are

χ(E ⊗ Lm) = 6m + 1, χ(EC0 ⊗ Lm) = 4m + 1, χ(EC1 ⊗ Lm) = 2m + 2.

We find some characteristic properties of R-bundles.

• We show that R-bundles are exactly those sheaves on Z0 given by a resolution (cf. Propo-
sition 1.37 and Proposition 1.57)

0 → 2OZ0(−H − F )
Φ−→ OZ0(−H)⊕OZ0 → Ẽ0 → 0, (∗∗)

with Φ =
(

l1 q̃1

l2 q̃2

)
such that det(Φ|D0) 6= 0, (Φ|D1)(q) 6= 0 for all q ∈ D1, and the linear

forms l1 and l2 are linear independent and their common zero point in D1 does not belong
to L.
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• The restrictions of resolutions (∗∗) to the components D0 and D1 of Z0 are resolutions of
Beilinson type (cf. Remarks 1.55 and 1.56). Moreover the morphisms of R-bundles are
in one-to-one correspondence with the morphisms of the corresponding resolutions (see
Proposition 1.40).

• Propositions 1.48 and 1.60 say that R-bundles are exactly the bundles on C that occur as
non-trivial extensions (∗), where q ∈ D1 \ L and C is a curve in Z0 given by a resolution

0 → OZ0(−2F −H) −→ OZ0 −→ OC → 0.

• Let σ0 : Z0 → P2 be a contraction of D1 to a point p ∈ P2. Propositions 1.49 and 1.61
state that a sheaf E on Z0 is an R-bundle if and only if E is locally free on its support, the
Hilbert polynomial of its restriction E|D0 to D0 is 4m + 1, and there is an exact sequence

0 → 2OD1(−L) −→ σ∗0F −→ E → 0

for some 3m + 1 sheaf F that is not locally free at the point p. In fact, as we already
noticed, the restriction of an R-bundle to D0 is always isomorphic to the structure sheaf
of a curve C0 given by a resolution

0 → OD0(−2F −H) −→ OD0 −→ OC0 → 0.

Isomorphism classes of R-bundles. If we fix a curve C0∪C1 then the isomorphism classes
of R-bundles supported on this curve are in one-to-one correspondence with an open subset of
C1 (cf. Corollary 2.11).

There are non-isomorphic R-bundles E and E ′ with isomorphic restrictions EC1 and E ′C1
.

There is a parameter space X of all isomorphism classes of R-bundles on Z0 (see Defini-
tion 2.1). X is an open subvariety of k18. There is a natural action of the group G on X.

Proposition 2.2. The orbits of G in X are in one-to-one correspondence with the isomorphism
classes of R-bundles on P̂2.

Corollary 2.9 says that there is an orbit space Y′′ of the action G × X → X. So Y′′ is the
variety of all isomorphism classes of R-bundles on Z0. The variety Y′′ is a quasi projective
variety, it may be realized as an open subset of a hypersurface in P9 × P2, in particular the
dimension of Y′′ is 10.

Equivalence classes of R-bundles. To be able to consider R-bundles and the non-singular
3m + 1 sheaves simultaneously it is necessary to introduce an equivalence relation on the set
of R-bundles. For a point A ∈ X8 we introduce the following equivalence relation on the set
of R-bundles constructed at A ∈ X8 (cf. Definition 2.12). Two R-bundles E1 and E2 on P̂2

constructed at the same point A ∈ X8 are called equivalent if there exists an automorphism φ̃
of Z0 that acts identically on D0 = P̃2 and such that φ̃∗(E1) ∼= E2. Our notion of equivalence
corresponds to the notion of equivalence given in Definition 4.1, (ii) from [26].

Theorem 2.19. There is a one-to-one correspondence between the equivalence classes of R-
bundles constructed at A ∈ X8 and points of PNA.

For a generic A ∈ X8 (when the corresponding singular 3m + 1 sheaf is defined by an
ordinary double point singularity on a cubic curve in P2) there are only two equivalence classes
with a singular conic C1 as a support in D1. Degenerations of A with double-point singularity
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give us only one equivalence class with the curve C1 being singular. If the singularity is a triple
point, all the equivalence classes have singular curve C1. In this case one could identify the line
L = D0 ∩D1 with the set of all equivalence classes of R-bundles constructed at A.

If we fix a curve C0∪C1, then in a generic situation for every equivalence class of R-bundles
supported on C0 ∪ C1 there are two isomorphism classes of R-bundles on C0 ∪ C1. There are
curves for which we have a one-to-one correspondence between the isomorphism classes and
the equivalence classes. There are also situations when there is a one-dimensional variety of
isomorphism classes of R-bundles corresponding to a given equivalence class of R-bundles on
C0 ∪ C1. See also Section 2.3 for concrete examples.

Parameter spaces for the new objects. Since X8 and M8 are smooth subvarieties of
codimension 2 in X and M respectively, we may consider the blow up M̃ = BlM8 M as the
space whose points are all the isomorphism classes of non-singular 3m + 1 sheaves on P2 and
also all the equivalence classes of R-bundles. Note that M̃ is obtained from M by replacing
each point from M8 by P1. Analogously X̃ = BlX8 X may be seen as a variety parameterizing

the above objects. We give concrete descriptions of X̃ and M̃ as subvarieties in P1-bundles
over X and M respectively.

It turns out that the action of the group G on X can be uniquely lifted along the blow up
X̃ → X to an action on X̃ (cf. Lemma 3.3). The restriction of this action to the exceptional

divisor EX
∼= PNX8/X of X̃ → X is a natural action of G on PNX8/X (cf. Lemma 3.5).

The quotient morphism X
ν−→ M lifts uniquely to a morphism X̃

ν̃−→ M̃ and we obtain the
commutative diagram

X̃ M̃

X M.

ν̃ //

ν //
²² ²²

Proposition 3.9. X̃ is a principal vector bundle over M̃ with fibre PG. In particular ν̃ : X̃ →
M̃ is a quotient of the action of G on X̃.

“Universal” family over X̃. We construct a flat morphism Y → X̃ and a sheaf Ũ on Y
locally free on its support and flat over X̃ (cf. Propositions 3.18 and 3.20) such that the fibres of

Ũ are either non-singular 3m+1 sheaves on P2 or R-bundles on P̂2. Moreover, the isomorphism
(for 3m+1 sheaves) or equivalence (for R-bundles) class of Ũx corresponds to the point x ∈ X̃.

So every R-bundle on P̂2 up to equivalence may be realized as a fibre of Ũ . Therefore, one
may consider the sheaf Ũ as a “universal” family of R-bundles together with the non-singular
3m + 1 sheaves.

General families, functor M̃. In Definition 3.21 we define a family over an arbitrary S.
In particular 3m + 1 families of the non-singular sheaves on P2 are families in the sense of
Definition 3.21. For every S ∈ Ob (Sch) we introduce an equivalence relation on the set of all
families over S. For families over one point this relation coincides either with the isomorphism
for non-singular 3m + 1 sheaves or with the equivalence for R-bundles.

For a morphism f : T → S and for a family over S we define a family over T . We obtain
this way the map from the set of all families over S to the set of all families over T . This map is
compatible with the equivalence relations and therefore we obtain a functor M̃ : (Sch) → (Sets)
that assigns to every S ∈ Ob (Sch) the set of the equivalence classes of the families over S.
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There is a natural transformation M̃ → M, where M denotes the functor of the 3m + 1
moduli problem on P2.

Proposition 3.40. There is a natural transformation of functors

M̃ → Hom( , M̃)

and the commutative diagram

M̃ Hom( , M̃)

M Hom( , M).

//

∼= //

µ

²² ²²

Main difficulties

Gluing sheaves. The variety P̂2 is reducible, it consists of two components D0 and D1. To
define a sheaf on P̂2 one needs to describe its restrictions to the components D0 and D1 and
the “gluing” data that describe how the sheaves on D0 and D1 are glued together. There are
non-isomorphic sheaves on P̂2 with isomorphic restrictions to D0 and D1. Therefore, one needs
some gluing statements to describe sheaves on P̂2.

• A naive description of gluing would be to describe a sheaf F on P̂2 using the exact
sequence

0 → F → FD0 ⊕FD1 → FL → 0,

where FD0 , FD1 , and FL denote the restrictions of F to D0, D1, and L = D0 ∩ D1

respectively. But such a sequence exists in general only for vector bundles on P̂2. We
describe in particular the Picard group of P̂2 by gluing invertible sheaves on D0 and D1

(cf. page 22). The gluing sequence is one of the main tools for the calculations of the
cohomology groups of sheaves on P̂2 (cf. page 25).

• R-bundles are obtained by gluing together a structure sheaf of a curve C0 in D0 and of a
semi-stable 2m + 2 sheaf on D1 = P2 that is locally free on its support.

A naive description of gluing for an R-bundle E works only if the support of E does not
contain the line L = D0∩D1 (cf. Remark 1.59). We obtain in this case the exact sequence

0 → E → EC0 ⊕ EC1 → EC0∩C1 → 0.

If the support Supp E of an R-bundle E contains the line L, it is not only reducible but
also non-reduced, there is a “double” structure on the line L (see page 47). It seems
difficult do describe the gluing data in this case. Therefore, we describe R-bundles by
means of locally free resolutions of P̂2.

Locally free resolutions. For coherent sheaves on P̂2 there are no standard resolutions of
Beilinson type. Nevertheless the properties of locally free resolutions of R-bundles of the type
(∗∗) are similar to the properties of Beilinson resolutions.

Namely the homomorphisms between the sheaves given by resolutions of this type are in one-
to-one correspondence with the morphisms of the corresponding resolutions and the restrictions
of (∗∗) to D0 and D1 are Beilinson resolutions. One can consider (∗∗) as a gluing of its
restrictions to D0 and D1 (cf. Proposition 1.58).
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Computing cohomology. Computing cohomology of invertible sheaves on P̂2 we use the
gluing exact sequence and reduce the question to computing cohomology of D0 and D1. To
compute cohomology of D0 we consider D0 as a hypersurface in P2 × P1. For OD0(aH + bF )
there is a resolution (cf. (1.24))

0 → OP2×P1(a− 1, b− 1) → OP2×P1(a, b) → OD0(aH + bF ) → 0.

Hence the problem reduces to computing cohomology of P2 × P1, which is done by using the
Künneth formula (cf. (1.25)) from [25].

Equivalence of R-bundles. One should define an equivalence relation on the set of R-
bundles to be able to consider them along with the non-singular 3m + 1 sheaves. There are
non-isomorphic R-bundles which are equivalent. In a generic case there are two isomorphism
classes for a given equivalence class of R-bundles on a fixed curve C0 ∪ C1.

Definition of a family. Both R-bundles and the non-singular 3m + 1 sheaves are coher-
ent sheaves on P2 × P2 with Hilbert polynomial 6m + 1 with respect to the invertible sheaf
OP2×P2(1, 1). The family of sheaves Ũ over X̃ we construct in Section 3.2 is defined as a sheaf

on Y , where Y is a non-trivial P2-bundle over X̃ × P2. We consider Ũ as a “universal family”
for a moduli problem we want to define.

So despite the fact that each fibre Ũx, x ∈ X̃, of Ũ may be considered as a sheaf on P2×P2

with Hilbert polynomial 6m + 1 there is no way to consider all fibres of Ũ in the same ambient
space as it has been done for Simpson moduli problems. We achieve however that locally over
the base the general families defined in Section 3.3 may be considered as families of sheaves in
P2 × P2 with Hilbert polynomial 6m + 1 (cf. Proposition 3.35).
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Chapter 1

Construction of R-bundles

Summary

In this chapter we construct R-bundles and discuss their properties.
In Section 1.1 we make an overview of some results from [5] and prove some important

statements about 3m+1 sheaves on P2, i. e., (semi-)stable sheaves on P2 with Hilbert polynomial
3m + 1. We consider the moduli space M = M3m+1(P2) of 3m + 1 sheaves on P2. It is known
(cf. [5]) that M is isomorphic to the universal cubic curve.

There is a parameter space X such that M is a geometrical quotient of X. X is isomorphic
to an open subset in k18. Elements of X are the matrices A defining the resolutions

0 → 2OP2(−2)
A−→ OP2(−1)⊕OP2 → F → 0.

A 3m + 1 sheaf is called singular if it is not locally free on its support. We describe the closed
subvariety M8 in M of all singular 3m + 1 sheaves on P2 and the corresponding subvariety
X8 in X that parameterizes the singular sheaves. The subvarieties M8 and X8 are smooth of
codimension 2 in M and X respectively. We give a description of the subbundle TX8 in TX .

In Section 1.2 we propose a construction of R-bundles. We consider the singular 3m + 1
sheaves as one-dimensional limits of non-singular 3m + 1 sheaves and describe a construction
that substitutes the singular sheaves by sheaves locally free on their support that may be also
considered as limits of non-singular 3m + 1 sheaves.

Namely, for A ∈ X8 and B ∈ TAX we consider an open set U ⊆ k1 containing 0 such that
A + tB ∈ X for all t from U . We obtain the one parameter family of 3m + 1 sheaves given by
the resolution

0 → 2OU×P2(−2H)
A+tB−−−→ OU×P2(−H)⊕OU×P2 → E → 0.

Let Z
σ−→ U × P2 be the blow up of U × P2 at the point 0× p, where p ∈ P2 is the point where

the 3m + 1 sheaf E0 = E|{0}×P2 given by the matrix A is not free on its support. Let D1 be the

1
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exceptional divisor of σ. We obtain then a commutative diagram

0

0 2OD1(−1)

0 2OZ(−2H) OZ(−H)⊕OZ σ∗E 0

0 2OZ(−2H + D1) OZ(−H)⊕OZ Ẽ 0

2OD1(−1) 0

0

//
σ∗(A+tB)

// // //

// // // //

²²

²²

²²

²²

²²

²²

²²

²²

and a sheaf Ẽ . It turns out that Ẽ is flat over U . Its fibre Ẽ0 over 0 is a sheaf on Z0 = P̂2
∼= P̃2∪P2,

where P̃2 is the blow up of P2 at a point and P̃2 is glued together with P2 along the exceptional
line of P̃2 (cf. Definition 1.11). The sheaves Ẽ0 that are locally free on their support are

considered to be replacements of the singular 3m + 1 sheaves. The sheaf Ẽ0 is locally free on
its support if and only if B is a normal direction to X8.

New objects related to the construction of R-bundles are studied in Section 1.3. In partic-
ular we describe the Picard group of P̂2, we compute for some invertible sheaves on P̂2 their
cohomology groups and the direct images with respect to the canonical projection P̂2 → P2.
We use those calculations to obtain some properties of R-bundles.

We find some characteristic properties of R-bundles, i. e., properties that may be used to
define them. We see that R-bundles are exactly those sheaves on Z0 given by a resolution (cf.
Proposition 1.37 and Proposition 1.57)

0 → 2OZ0(−H − F )
Φ−→ OZ0(−H)⊕OZ0 → Ẽ0 → 0,

with Φ =
(

l1 q̃1

l2 q̃2

)
such that det(Φ|D0) 6= 0, (Φ|D1)(q) 6= 0 for all q ∈ D1, and the linear forms l1

and l2 are linear independent and their common zero point in D1 does not belong to L.
Propositions 1.48 and Proposition 1.60 say that R-bundles are exactly the non-trivial ex-

tensions of kq, q ∈ D1 \ L, by OC , where C is a curve in Z0 given by a resolution

0 → OZ0(−2F −H) −→ OZ0 −→ OC → 0.

We see that the behavior of R-bundles is quite similar to the behavior of 3m + 1 sheaves,
which is exactly what one could expect.

1.1 3m + 1 sheaves, overview

In this section we will give an overview about semi-stable sheaves on P2 with Hilbert polynomial
3m + 1. We will call such sheaves 3m + 1 sheaves. We will briefly repeat some results from [5]
and also prove some useful lemmata. One could find some useful details in [4].
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1.1.1 Review of [5].

Let us recall that for an arbitrary smooth projective variety X and for an arbitrary numerical
polynomial P ∈ Q[m] there is a coarse moduli space MP (X) of semi-stable sheaves on X with
Hilbert polynomial P . This has been proven by Simpson in [27].

Moduli space M3m+1(P2).

In the case of X = P2 and P = 3m + 1 the space M = M3m+1(P2) was described in [5] and has
been mentioned in [14]. In particular all 3m+1 sheaves are stable and M is a fine moduli space,
i. e., M represents the functor M of this moduli problem. This holds since the coefficients 3
and 1 are coprime. One can show that 3m+1 sheaves on P2 are exactly the non-split extensions

0 → OC → F → kp → 0, (1.1)

where C = SuppF is the cubic curve in P2 supporting F and p is a point on C. The moduli
space M is isomorphic to the universal cubic curve

{(〈f〉, 〈x〉) ∈ P9 × P2 | f(x) = 0},

where P9 = {〈C00, C10, . . . , C03〉} is identified with the space of cubic curves in P2 by

〈C00, C10, . . . , C03〉 ↔ f,

where

f =C00x
3
0 + C10x

2
0x1 + C01x

2
0x2 + C20x0x

2
1+

C11x0x1x2 + C02x0x
2
2 + C30x

3
1 + C21x

2
1x2 + C12x1x

2
2 + C03x

3
2.

(1.2)

Let us recall that a family of 3m + 1 sheaves over S (or simply a 3m + 1 family over S) is
by definition a flat sheaf F on S × P2 such that for every s ∈ S the restriction Fs of E to the
fibre {s} × P2

∼= P2 is a 3m + 1 sheaf on P2.

Parameter space X.

Let us consider the set of the matrices

(
z1 q1

z2 q2

)
, where

z1, z2 ∈ Γ(P2,OP2(1)), q1, q2 ∈ Γ(P2,OP2(2)).

Let us fix some coordinates 〈x0, x1, x2〉 in P2. We can now identify z1 and z2 with some linear
forms

z1 = a0x0 + a1x1 + a2x2, z2 = b0x0 + b1x1 + b2x2, ai, bi ∈ k,
and q1, q2 may be identified with quadratic forms

q1 = A00x
2
0 + A01x0x1 + · · ·+ A22x

2
2, q2 = B00x

2
0 + B01x0x1 + · · ·+ B22x

2
2, Aij, Bij ∈ k.

Thus one can identify the set of all matrices

(
z1 q1

z2 q2

)
with the affine variety k18.

Let us consider

X =

{(
z1 q1

z2 q2

)
| z1 ∧ z2 6= 0, z1q2 − z2q1 6= 0

}
,
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i. e., the set of matrices

(
z1 q1

z2 q2

)
with linear independent forms z1 and z2 and non-zero

determinant. Then X is an open subset in k18 (in the variety of all matrices), hence a quasi-
affine variety.

In [5] it was shown that 3m + 1 sheaves F on P2 are exactly those possessing a resolution

0 → 2OP2(−2)
A−→ OP2(−1)⊕OP2 → F → 0 (1.3)

with the matrix A from X.

Quotient X → M .

Let H be the group of 2× 2 matrices
(

λ z
0 µ

)
, λ, µ ∈ k, λµ 6= 0, z ∈ Γ(P2,OP2(1)).

Then H is an algebraic group, as algebraic variety it is isomorphic to k∗ × k∗ × k3. Consider
then the algebraic group

G = GL2(k)×H. (1.4)

Then G acts on X from the left by the rule

(g, h) · A = gAh−1.

This action corresponds to isomorphisms of exact sequences given by g ∈ GL2(k), h ∈ H:

0 // 2OP2(−2) A // OP2(−1)⊕OP2
// E // 0

0 // 2OP2(−2) //

g

OO

OP2(−1)⊕OP2
//

h

OO

F //

∼=
OO

0.

(1.5)

Since Hom(OP2(−1)⊕OP2 , 2OP2(−2)) = Ext1(OP2(−1)⊕OP2 , 2OP2(−2)) = 0, every morphism
of 3m+1 sheaves lifts uniquely to a morphism of resolutions of the type (1.3). In particular the
isomorphisms of 3m + 1 sheaves lift to the morphisms of the type (1.5). This implies that the
orbits of the action of G on X are in one-to-one correspondence with the isomorphism classes
of 3m+1 sheaves, i. e., with the points of M = M3m+1(P2). Moreover, it has been shown in [5]
that M is a geometric quotient of X by G. For an arbitrary point A ∈ X its stabilizer under
the action of G is the subgroup

St = {( λ 0
0 λ )× ( λ 0

0 λ ) | λ ∈ k∗} .

Hence the action of PG := G/St on X is free and one can show that X is a principal bundle
over M with fibre PG.

As we already mentioned that M is isomorphic to the universal cubic curve, the quotient
morphism X

ν−→ M , which sends A to the isomorphism class [FA] of the corresponding sheaf
FA (for a matrix A ∈ X we denote by FA the sheaf defined by A as in the resolution (1.3)) is
just the morphism given by

A =

(
z1 q1

z2 q2

)
7→ 〈det A〉 × 〈z1 ∧ z2〉. (1.6)

Note that the determinant of A is a cubic curve and the point z1 ∧ z2 is a point on this curve.
We identify here 〈z1 ∧ z2〉 with the point p where both z1 and z2 vanish.
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Lemma 1.1. Let z1 = a0x0 + a1x1 + a2x2 and z2 = b0x0 + b1x1 + b2x2, ai, bj ∈ k, be two linear
independent linear forms. Then 〈z1 ∧ z2〉 = 〈d0, d1, d2〉, where di are the minors of the matrix(

a0 a1 a2

b0 b1 b2

)
, i. e.,

d0 = det

(
a1 a2

b1 b2

)
, d1 = − det

(
a0 a2

b0 b2

)
, d2 = det

(
a0 a1

b0 b1

)
. (1.7)

Proof. The matrices
( a0 a1 a2

a0 a1 a2
b0 b1 b2

)
and

(
b0 b1 b2
a0 a1 a2
b0 b1 b2

)
are clearly degenerate. Therefore, their deter-

minants are zero. Using the expansion formula for determinant along the first row one obtains
a0d0 + a1d1 + a2d2 = 0 and b0d0 + b1d1 + b2d2 = 0, i. e., z1(d0, d1, d2) = z2(d0, d1, d2) = 0. So,
p = 〈d0, d1, d2〉 is the point where both z1 and z2 vanish.

1.1.2 Singular sheaves.

Definition-characterization of singular sheaves.

Lemma 1.2. Let A =

(
z1 q1

z2 q2

)
be a matrix from X. Let p be the point where both linear forms

z1 and z2 vanish. Then the following statements are equivalent.

1) The sheaf F defined by the matrix A as in (1.3) is locally free on its support;

2) at least one of the quadratic forms q1 and q2 does not vanish at p;

3) p is a nonsingular point of the curve C = {det A = 0}.

Proof. Since F is supported on the curve C given by the determinant of the matrix A, one
concludes that Fx, x ∈ C, is not free if and only the rank of the matrix A at the point x is
zero, i. e., if and only if all the entries of the matrix A vanish at x. The only point where
this could hold true is x = p. Therefore, we conclude that F is not locally free if and only if
q1(p) = q2(p) = 0. This we proved the equivalence of 1) and 2).

Let f = det A, then f = z1q2 − z2q1 and one sees that p is a singular point of C if and only
if

∂f

∂z1

(p) =
∂f

∂z2

(p) = 0.

Since
∂f

∂z1

(p) =

(
q2 + z1

∂q1

∂z1

− z2
∂q1

∂z1

)
(p) = q2(p)

and
∂f

∂z2

(p) =

(
z1

∂q2

∂z2

− q1 − z2
∂q1

∂z2

)
(p) = −q1(p),

we obtain the equivalence of 2) and 3). This proves the lemma.

Definition 1.3. Following [5] we call the sheaves that are not locally free on their support
singular sheaves. Sheaves that are not singular are called then non-singular.

From Lemma 1.2, using the description of the quotient map (1.6), one obtains the following
corollary.

Corollary 1.4. A point 〈f〉 × p ∈ M represents an isomorphism class of a singular sheaf if
and only if p is a singular point of the curve {f = 0} ⊆ P2.
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As we already noticed, M is given in P9 × P2 by the equation

f(x0, x1, x2) =C00x
3
0 + C10x

2
0x1 + C01x

2
0x2 + C20x0x

2
1+

C11x0x1x2 + C02x0x
2
2 + C30x

3
1 + C21x

2
1x2 + C12x1x

2
2 + C03x

3
2 = 0,

where P9 = {〈C00, C10, . . . , C03〉} and P2 = {〈x0, x1, x2〉}.

Space M8 and its defining equations.

Let M8 be the subset of M that consists of the isomorphism classes of singular sheaves. By
Corollary 1.4 (〈f〉, 〈x〉) belongs to M8 if and only if 〈x〉 is a singular point of {f = 0}. The
latter holds if and only if the partial derivatives of f vanish at 〈x〉. Since

∂f

∂x0

= 3C00x
2
0 + 2C10x0x1 + 2C01x0x2 + C20x

2
1 + C11x1x2 + C02x

2
2,

∂f

∂x1

= C10x
2
0 + 2C20x0x1 + C11x0x2 + 3C30x

2
1 + 2C21x1x2 + C12x

2
2,

∂f

∂x2

= C01x
2
0 + C11x0x1 + 2C02x0x2 + C21x

2
1 + 2C12x1x2 + 3C03x

2
2,

we obtain that M8 is given by the equations e0, e1, and e2, where

e1 = 3C00x
2
0 + 2C10x0x1 + 2C01x0x2 + C20x

2
1 + C11x1x2 + C02x

2
2,

e1 = C10x
2
0 + 2C20x0x1 + C11x0x2 + 3C30x

2
1 + 2C21x1x2 + C12x

2
2,

e2 = C01x
2
0 + C11x0x1 + 2C02x0x2 + C21x

2
1 + 2C12x1x2 + 3C03x

2
2.

(1.8)

Since

x0
∂f

∂x0

+ x1
∂d

∂x1

+ x2
∂f

∂x2

= 3f,

we conclude that M8 is given in M locally by two equations. Namely in M(x0) := M∩{x0 6= 0}
the equations of M8 are e1 and e2. In M(x1) := M ∩ {x1 6= 0} the equations are e0 and e2 and
in M(x2) := M ∩ {x2 6= 0} they are e0 and e1.

Lemma 1.5. M8 is smooth of codimension 2 in M, i. e. the dimension of M8 is 8. In particular
M8 is a locally complete intersection.

Proof. The part of the jacobian matrix of e0, e1, e2 with respect to the variables C00, . . . , C03

is 


3x2
0 2x0x1 2x0x2 x2

1 x1x2 x2
2 0 0 0 0

0 x2
2 0 2x0x1 x0x2 0 2x2

1 2x1x2 x2
2 0

0 0 x2
0 0 x0x1 2x0x2 0 x2

1 2x1x2 3x2
2


 .

One sees that its rank is always 3. Therefore, M8 is smooth of codimension 3 in P9 × P2. The
codimension of M8 in M is then 2. This proves the lemma.

Space X8.

Let X8 be the subset of all the matrices in X defining singular sheaves.
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Consider a matrix A =

(
z1 q1

z2 q2

)
from X. Let

z1 =a0x0 + a1x1 + a2x2,

z2 =b0x0 + b1x1 + b2x2,

q1 =A00x
2
0 + A01x0x1 + · · ·+ A22x

2
2,

q2 =B00x
2
0 + B01x0x1 + · · ·+ B22x

2
2, ai, bi, Aij, Bij ∈ k.

Then p = 〈d0, d1, d2〉 is the point where both z1 and z2 vanish (we use the notations from (1.7)).
By Lemma 1.2, A lies in X8 if and only if q1(p) = q2(p) = 0. Therefore, we obtain equations
defining X8 in X:

f3 = q2(p) = A00d
2
0 + A01d0d1 + · · ·+ A22d

2
2,

f4 = q2(p) = B00d
2
0 + B01d0d1 + · · ·+ B22d

2
2,

(1.9)

where ai, bi, Aij, and Bij are considered as variables. Hence

X8 = X ∩ V (f3, f4), (1.10)

where V (f3, f4) ⊆ k18 is the affine subvariety given by the polynomials f3 and f4.
Let us see how this equations are connected with those of M8. We have the geometrical

quotient of X by the group G

X
ν−→ M, A =

(
z1 q1

z2 q2

)
7→ (〈det A〉, 〈z1 ∧ z2〉).

It is clear that X8 is the preimage of M8 under ν. This means that the liftings of the equations
of M8 are equations of X8. So let us calculate the liftings (ei ◦ ν)(A) of the equations e0, e1,
and e2 to X.

Lemma 1.6. (ei ◦ ν)(A) = −bif3 + aif4, i = 0, 1, 2.

Proof. From

det

(
z1 q1

z2 q2

)
= (a0x0 + a1x1 + a2x2)·

(A00x
2
0 + A01x0x1 + A02x0x2 + A11x

2
1 + A12x1x2 + A22x

2
2)−

(b0x0 + b1x1+b2x2)·
(B00x

2
0 + B01x0x1 + B02x0x2 + B11x

2
1 + B12x1x2 + B22x

2
2)

one obtains (cf. (1.2)),

C00 =a0B00 − b0A00,

C10 =a0B01 + a1B00 − b0A01 − b1A00,

C01 =a0B02 + a2B00 − b0A02 − b2A00,

C20 =a0B11 + a1B01 − b0A11 − b1A01,

C11 =a0B12 + a1B02 + a2B01 − b0A12 − b1A02 − b2A01,

C02 =a0B22 + a2B02 − b0A22 − b2A02,

C30 =a1B11 − b1A11,

C21 =a1B12 + a2B11 − b1A12 − b2A11,

C12 =a1B22 + a2B12 − b1A22 − b2A12,

C03 =a2B22 − b2A22.



8

The lifting of e0 is

(e0 ◦ ν)(A) =3(a0B00 − b0A00)d
2
0+

2(a0B01 + a1B00 − b0A01 − b1A00)d0d1+

2(a0B02 + a2B00 − b0A02 − b2A00)d0d2+

(a0B11 + a1B01 − b0A11 − b1A01)d
2
1+

(a0B12 + a1B02 + a2B01 − b0A12 − b1A02 − b2A01)d1d2+

(a0B22 + a2B02 − b0A22 − b2A02)d
2
2 =

A00(−3b0d
2
0 − 2b1d0d1 − 2b2d0d2)+

A01(−2b0d0d1 − b1d
2
1 − b2d1d2)+

A02(−2b0d0d2 − b1d1d2 − b2d
2
2)+

A11(−b0d
2
1) + A12(−b0d1d2) + A22(−b0d

2
2)+

B00(3a0d
2
0 + 2a1d0d1 + 2a2d0d2)+

B01(2a0d0d1 + a1d
2
1 + a2d1d2)+

B02(2a0d0d2 + a1d1d2 + a2d
2
2)+

B11(a0d
2
1) + B12(a0d1d2) + B22(a0d

2
2) =

− b0(A00d
2
0 + A01d0d1 + A02d0d2 + A11d

2
1 + A12d1d2 + A22d

2
2)+

a0(B00d
2
0 + B01d0d1 + B02d0d2 + B11d

2
1 + B12d1d2 + B22d

2
2) =

− b0q1(d0, d1, d2) + a0q2(d0, d1, d2) = −b0f3 + a0f4.

We used here that

a0d0 + a1d1 + a2d2 = 0 and b0d0 + b1d1 + b2d2 = 0.

Analogously one obtains (e1 ◦ ν)(A) = −b1f3 + a1f4 and (e2 ◦ ν)(A) = −b2f3 + a2f4.

Since in X locally at least one of d0, d1, d2 is a unit, we conclude that the zero set of the
liftings of e0, e1, e2 coincides with the zero set of f3 and f4.

Lemma 1.7. 0) X8 is an algebraic subvariety of codimension 2 in X given by the equations
f3 = f4 = 0;

1) X8 is smooth;
2) X8 is a global complete intersection in X.

Proof. 0) Follows from (1.10).
1)Let J(f3, f4) be the Jacobian matrix of f3 and f4. We can consider this 2× 18 matrix as

a block matrix
J(f3, f4) =

(
Jai

Jbi
JAij

JBij

)
,

where
Jai

= J(a0,a1,a2)(f3, f4)

is the jacobian matrix of f3 and f4 with respect to the variables (ai), i = 0, 1, 2;

Jbi
= J(b0,b1,b2)(f3, f4)

is the jacobian matrix of f3 and f4 with respect to the variables (bi), i = 0, 1, 2;

JAij
= J(A00,...,A22)(f3, f4)
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is the jacobian matrix of f3 and f4 with respect to the variables (Aij), i, j ∈ {0, 1, 2}, and

JBij
= J(B00,...,B22)(f3, f4)

is the jacobian matrix of f3 and f4 with respect to the variables (Bij), i, j ∈ {0, 1, 2}.
Then (

JAij
JBij

)
=

(
d2

0 d0d1 . . . d2
2 0 0 . . . 0

0 0 . . . 0 d2
0 d0d1 . . . d2

2

)
.

Since A is an element of X8 ⊆ X, the forms z1 and z2 ale linear independent, i. e., at least one
of the minors d0, d1, d2 is not zero. Therefore, one concludes, that the matrix J(f3, f4) has full
rank, i. e., X8 is a smooth subvariety of X.

2) X8 is a locally complete intersection in X as a smooth subvariety of a smooth variety
(see for example [12], II, Example 8.22.1). Since there are two global equation (1.9) of X8, we
conclude that X8 is a global complete intersection.

Let us calculate the tangent equations of X8 in X at a point A ∈ X8,

A =

(
a0x0 + a1x1 + a2x2 A00x

2
0 + A01x0x1 + · · ·+ A22x

2
2

b0x0 + b1x1 + b2x2 B00x
2
0 + B01x0x1 + · · ·+ B22x

2
2

)
.

Then the Jacobian matrix J(f3, f4) of f3 and f4 is




(
∂f3

∂ak

)
k=0,1,2

(
∂f3

∂bk

)
k=0,1,2

(
∂f3

∂Aij

)
ij

(
∂f3

∂Bij

)
ij

(
∂f4

∂ak

)
k=0,1,2

(
∂f4

∂bk

)
k=0,1,2

(
∂f4

∂Aij

)
ij

(
∂f4

∂Bij

)
ij


 .

Since ∂f3

∂Bij
= 0 and ∂f4

∂Aij
= 0, we get

J(f3, f4) =




(
∂f3

∂ak

)
k=0,1,2

(
∂f3

∂bk

)
k=0,1,2

(
∂f3

∂Aij

)
ij

0

(
∂f4

∂ak

)
k=0,1,2

(
∂f4

∂bk

)
k=0,1,2

0
(

∂f4

∂Bij

)
ij


 .

One clearly has ∂f3

∂Aij
= didj and ∂f4

∂Bij
= didj. We have also

∂f3

∂ak

=
∑
ij

Aij

(
∂di

∂ak

dj +
∂dj

∂ak

di

)
,

∂f3

∂bk

=
∑
ij

Aij

(
∂di

∂bk

dj +
∂dj

∂bk

di

)
,

∂f4

∂ak

=
∑
ij

Bij

(
∂di

∂ak

dj +
∂dj

∂ak

di

)
,

∂f4

∂bk

=
∑
ij

Bij

(
∂di

∂bk

dj +
∂dj

∂bk

di

)
.

Let us denote

αij,k :=

(
∂di

∂ak

dj +
∂dj

∂ak

di

)
and βij,k :=

(
∂di

∂bk

dj +
∂dj

∂bk

di

)
.

In this notations

∂f3

∂ak

=
∑
ij

Aijαij,k,
∂f3

∂bk

=
∑
ij

Aijβij,k,
∂f4

∂ak

=
∑
ij

Bijαij,k,
∂f4

∂bk

=
∑
ij

Bijβij,k.
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Thus

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

is a tangent vector if and only if

∑

k

(∑
ij

Aijαij,k

)
ξk +

∑

k

(∑
ij

Aijβij,k

)
ηk +

∑
ij

didjξij = 0

and
∑

k

(∑
ij

Bijαij,k

)
ξk +

∑

k

(∑
ij

Bijβij,k

)
ηk +

∑
ij

didjηij = 0.

Hence the equations

T1(A) :=
∑

k

(∑
ij

Aijαij,k

)
ξk +

∑

k

(∑
ij

Aijβij,k

)
ηk +

∑
ij

didjξij

and

T2(A) :=
∑

k

(∑
ij

Bijαij,k

)
ξk +

∑

k

(∑
ij

Bijβij,k

)
ηk +

∑
ij

didjηij

(1.11)

are tangent equations at point A.
Let us calculate αij,k and βij,k. One easily calculates

(
∂di

∂ak

)

ik

=




0 b2 −b1

−b2 0 b0

b1 −b0 0


 ,

(
∂di

∂bk

)

ik

=




0 −a2 a1

a2 0 −a0

−a1 a0 0


 .

Let

(sik) =




0 1 −1
−1 0 1
1 −1 0




and let us use the following notations. For i and j from {0, 1, 2} put

aīj :=

{
0, i = j

aν(i,j), i 6= j
,

where ν(i, j) is the only element in the set {0, 1, 2} \ {i, j} for i 6= j. Analogously let us define

bīj :=

{
0, i = j

bν(i,j), i 6= j
.

Then
∂di

∂ak

= sikbīk,
∂di

∂bk

= skiaīk,

and one finally obtains

αij,k = sikbīkdj + sjkbj̄kdi and βij,k = skiaīkdj + skjaj̄kdi. (1.12)
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Example 1.8. Let

A =

(
x1 q1

x2 q2

)
, q1 = A01x0x1 + · · ·+ A22x

2
2, q2 = B01x0x1 + · · ·+ B22x

2
2.

Then p = 〈1, 0, 0〉 and we claim then the Jacobian matrix J(f3, f4) at point A is

(−A01 0 0 −A02 0 0 1 0 0 0 0 0 0 0 0 0 0 0
−B01 0 0 −B02 0 0 0 0 0 0 0 0 1 0 0 0 0 0

)
,

i. e., tangent equations at A for

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + . . . ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + . . . η22x

2
2

)
,

are {
ξ00 = A01ξ0 + A02η0

η00 = B01ξ0 + B02η0.
(1.13)

Proof. We have f3 = q2(p) = A00d
2
0 + A01d0d1 + · · · + A22d

2
2. Note that d0(A) = 1 and

d1(A) = d2(A) = 0. Since d0 = a1b2 − a2b1, we have d0(A) = 1 and

∂d0

∂a0

(A) = 0,
∂d0

∂a1

(A) = b2(A) = 1,
∂d0

∂a2

(A) = −b1(A) = 0,

∂d0

∂b0

(A) = 0,
∂d0

∂b1

(A) = −a2(A) = 0,
∂d0

∂b2

(A) = a1(A) = 1.

From d1 = −(a0b2 − a2b0), we have d1(A) = 0 and

∂d1

∂a0

(A) = −b2(A) = −1,
∂d1

∂a1

(A) = 0,
∂d1

∂a2

(A) = b0(A) = 0,

∂d1

∂b0

(A) = a2(A) = 0,
∂d1

∂b1

(A) = 0,
∂d1

∂b2

(A) = −a0(A) = 0.

From d2 = a0b1 − a1b0, we have d2(A) = 0 and

∂d2

∂a0

(A) = b1(A) = 0,
∂d2

∂a1

(A) = −b0(A) = 0,
∂d2

∂a2

(A) = 0,

∂d2

∂b0

(A) = −a1(A) = −1,
∂d2

∂b1

(A) = a0(A) = 0,
∂d2

∂b2

(A) = 0.

Straightforward calculations lead to ∂f3

∂a0
= −A01,

∂f3

∂b0
= −A02,

∂f3

∂A00
= 1 and all the other

derivatives are zero.
Similarly one shows that ∂f4

∂a0
= −B01,

∂f4

∂b0
= −B02,

∂f4

∂B00
= 1 and all the others derivatives

are zero. This proves the required statement
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1.2 R-bundles

We propose here a construction of sheaves which we will use as replacements of the singular
3m + 1 sheaves on P2.

1.2.1 Construction of new one parameter families.

Singular 3m + 1 sheaves as one-dimensional limits of non-singular sheaves.

Consider some matrix A =

(
z1 q1

z2 q2

)
from X8. Let p denote the point where both z1 and z2

vanish. Take a matrix B ∈ k18, B =

(
w1 p1

w2 p2

)
, and consider the morphism

lB : k→ k18, t 7→ A + tB.

Let U = l−1
B (X). Since lB is a morphism, U is an open set in k. In this way we obtain the

morphism
lB|U : U → X. (1.14)

By abuse of notation we will also denote it by lB.
So, we obtain a (one parameter) family 3m + 1 sheaves over U ⊆ k, i. e., the sheaf E on

U ×P2, such that for every t from U the restriction Et of E to the fibre {t}×P2 is given by the
matrix At := A + tB ∈ X. In other words the sheaf E is given by the resolution

0 → 2OU×P2(−2H)
At−→ OU×P2(−H)⊕OU×P2 → E → 0. (1.15)

Here H is the pull back of a line h ⊆ P2. We choose h such that the point p does not lie on h.

Remark 1.9. Note that by shrinking U we can also assume that Et is locally free on its support
for all t ∈ U , t 6= 0. We can interpret now the singular fibre E0 as a limit for t → 0 of
nonsingular sheaves Et.

Blow up of U × P2.

Consider the point (0, p) ∈ U × P2. Let

σ : Ũ × P2 → U × P2

be the blowing up of U×P2 at (0, p). Let us denote Z := Ũ × P2. Let D1 denote the exceptional
divisor of σ.

One can describe Z explicitly in coordinates as a subvariety of U ×P2×P2. Let us fix some
complementary to z1 and z2 linear form z0, i. e, a linear form z0 such that the forms z0, z1, z2

constitute a basis of the space of linear forms on P2. Then we can consider Z as a subvariety in

U × P2 × P2 = {(t, 〈x0, x1, x2〉, 〈u0, u1, u2〉)},

given by the 2× 2 minors of the matrix

(
tz0 z1 z2

u0 u1 u2

)
, i. e., by the equations





tz0u1 = u0z1,

tz0u2 = u0z2,

z1u2 = z2u1.

(1.16)
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Let us consider the map
Z

σ−→ U × P2
p1−→ U

and its fibres Zt over t ∈ U . Since the restriction of σ to Z \Z0 is an isomorphism, we conclude
that Zt

∼= P2 for t 6= 0.
Taking t = 0 in (1.16)), we obtain that Z0 ⊆ {0} × P2 × P2 is given by the equations





u0z1 = 0

u0z2 = 0

z1u2 − z2u1 = 0.

Thus

Z0 = {(0, 〈x0, x1, x2〉, 〈0, u1, u2〉)| z1u2 − z2u1 = 0} ∪ {u0 6= 0, t = z1 = z2 = 0}.

One easily sees that the first set is the proper transform of {0} × P2 under σ, it is isomorphic

to the blow up P̃2 of P2 at the point p (recall that p is given by z1 = z2 = 0). We will also
denote it by D0.

The second set is the projective plane (exceptional divisor of σ : Z → U × P2)

D1
∼= P2 = {(0, p, 〈u0, u1, u2〉)}

without the line given by u0 = 0. Therefore, Z0 is isomorphic to the blowing up of P2 at the
point p with the projective plane P2 attached along the exceptional divisor of this blowing up:
Z0 = P̃2 ∪D1 and P̃2 ∩D1 is the line L := {t = u0 = z1 = z2} = {(0, p, 〈0, u1, u2〉)}. We proved
the following

Lemma 1.10. The fibres Zt of Z
σ−→ U × P2

p1−→ U are all of dimension 2. Moreover Zt is
isomorphic to P2 for t 6= 0, and Z0

∼= P̃2∪P2, where P̃2 is the blowing up of the projective plane
P2 at point p, and P2 is attached to P̃2 along the exceptional divisor of the blowing up P̃2 → P2.

»»»»»»»»

»»»»»»»»

»»»»»»»»

@
@

@
@

@
@

@
@

»»»»»»»»

@
@@ @

@@
»»»»»»»»

»

»L

P2

P̃2

Space Z0.

Definition 1.11. We will denote by P̂2 the space Z0 we described above, i. e.,

P̂2 = P̃2 ∪ P2 ⊆ P2 × P2

given by the equations u0z1 = u0z2 = z1u2 − z2u1 = 0, where 〈u0, u1, u2〉 and 〈x0, x1, x2〉 are
points in the first and the second P2 from the product P2× P2 respectively. We will also denote
by D0 the component P̃2 and by D1 the component P2 of P̂2.
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Proposition 1.12. The morphism Z
σ−→ U × P2

p1−→ U is flat.

Proof. Since both Z and U are regular, dim Z = 3, dim U = 1, and dim Zt = 2 = dim Z−dim U
for all t ∈ U , the required statement follows from Theorem A.2.

Remark 1.13. Note that there is a natural section of the projection U × P2
p1−→ U . It is given

by
U 3 t 7→ (z1 + tw1) ∧ (z1 + tw1) ∈ P2.

This lifts uniquely to a section s : U → Z of Z
σ−→ U ×P2

p1−→ U . In particular we obtain a point
s(0) ∈ D1 \ L.

t
£
£
£
£
£
££

£
£
£
£
£
££

B
B

B
B

B
BB

B
B

B
B

B
BBt

t t
t t

³³³³³³

t = 0

D0

D1P2

U

Z
s(0)

New one parameter families, main construction.

Applying σ∗ to the sequence (1.15) we obtain the sequence

0 → 2OZ(−2H)
σ∗(At)−−−−→ OZ(−H)⊕OZ → σ∗(E) → 0,

which remains exact because the sheaf OZ(−2H) is locally free and, therefore, has no torsion
(morphism σ∗(At) is injective outside of D1, therefore its kernel may leave only on D1).

Note that the support of σ∗(E) on the exceptional divisor D = D1 is the whole plane D1.
We are going now to modify this sheaf in order to obtain a sheaf with one-dimensional support.

Note that there is a canonical section s ∈ Γ(Z,OZ(D)), which gives us the exact sequence

0 → OZ(−D)
s−→ OZ → OD → 0.

Tensoring with O(D), one gets the exact sequence

0 → OZ
s−→ OZ(D) → OD ⊗OZ(D) → 0.

Tensoring this once more with 2OZ(−2H), we obtain the injective map

0 → 2OZ(−2H)
( s 0

0 s )−−−→ 2OZ(−2H + D).

Lemma 1.14. σ∗(At) factorizes uniquely through s, i. e., there exists

2OZ(−2H + D)
Ãt−→ OZ(−H)⊕OZ

such that the diagram

2OZ(−2H)
σ∗(At)

//

( s 0
0 s )

²²

OZ(−H)⊕OZ

2OZ(−2H + D)

Ãt

55kkkkkkkkkkkkkk

commutes.
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Proof. Follows from Lemma 1.15.

Lemma 1.15. Let X be a variety and let D ⊆ X be a divisor given by the sequence

0 → OX(−D)
s−→ OX → OD → 0.

Let g : OX → L be a section of a (line) bundle L on X. Suppose that g vanishes on D. Then
g factors uniquely through s, in other words there exists a unique g̃ ∈ Γ(X,L ⊗OX(−D)) such
that the diagram

OX

s
²²

g
// L

OX(D)
g̃

<<xxxxxxxxx

commutes.

Proof. The statement follows from the diagram

0 // OX(−D) s //

g

²²

OX
//

g

²²

0

%%

∃!g̃
ww

OD
//

g|D=0

²²

0

0 // OX(−D)⊗ L s // OX ⊗ L // OD ⊗ L // 0

by using the universal property of kernel.

Remark 1.16. Note that Ãt is injective since 2OZ(−2H + D) is torsion free and since ( s 0
0 s )

is an isomorphism outside of the exceptional divisor D.

Lemma 1.17. There is the following commutative diagram with exact rows and columns:

0

0 2OD(−1)

0 2OZ(−2H) OZ(−H)⊕OZ σ∗E 0

0 2OZ(−2H + D) OZ(−H)⊕OZ Ẽ 0.

2OD(−1) 0

0

//
σ∗(At)

// // //

//
Ãt // // //

²²

( s 0
0 s )

²²

²²

²²

²²

²²

²²

²²

Proof. By Lemma 1.15, using the snake lemma one obtains the following commutative diagram
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with exact rows and columns

0

0 C

0 2OZ(−2H) OZ(−H)⊕OZ σ∗E 0

0 2OZ(−2H + D) OZ(−H)⊕OZ Ẽ 0,

C 0

0

//
σ∗(At)

// // //

//
Ãt // // //

²²

( s 0
0 s )

²²

²²

²²

²²

²²

²²

²²

where C = OD⊗OZ(−2H +D). Since by Lemma A.3 OD⊗OZ(D) = OD(−1), we obtain that
C = 2OD⊗OZ(D)⊗OZ(−2H) = 2OD(−1)⊗OZ(−2H). Since the line h ⊆ P2 does not contain
the point p, we conclude that H and D do not intersect. Therefore, C = 2OD(−1)⊗OZ(−2H) =
2OD(−1). This proves the lemma.

Proposition 1.18. σ∗(Ẽ) ∼= E.

Proof. By Lemma A.4 Rpσ∗(C) = Rpσ∗(OD(−1)) = 0, p > 0. Therefore, after applying σ∗ to
the exact sequence

0 → C → σ∗E → Ẽ → 0,

we obtain σ∗(σ∗E) ∼= σ∗(Ẽ). By Lemma A.8 σ∗(σ∗E) ∼= E , which proves the lemma.

Remark 1.19. In fact we have even more. Applying σ∗ to the diagram defining Ẽ we obtain

0 // 2OU×P2(−2H)

∼= σ∗( s 0
0 s )

²²

σ∗(σ∗(At))
// OU×P2(−H)⊕OU×P2

// σ∗(σ∗E) //

²²

0

0 // 2OU×P2(−2H)
σ∗(Ãt)

// OU×P2(−H)⊕OU×P2
// σ∗(Ẽ) // 0,

where the above row is isomorphic by Lemma A.8 to the resolution defining E:

0 → 2OU×P2(−2H)
At−→ OU×P2(−H)⊕OU×P2 → E → 0.

We can assume without loss of generality that z1 = x1, z2 = x2 (make if necessary the
change of coordinates in P2). Take as a complementary form z0 = x0. In this case p = 〈1, 0, 0〉.
The matrix A is then

(
x1 q1

x2 q2

)
, q1 = A01x0x1 + · · ·+ A22x

2
2, q2 = B01x0x1 + · · ·+ B22x

2
2. (1.17)

Note, that since both q1 and q2 vanish at p = 〈1, 0, 0〉 there are no monomials x2
0 in the

expressions of q1 and q2. Let

B =

(
w1 p1

w2 p2

)
,
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and let

w1 = ξ0x0 + ξ1x1 + ξ2x2,

w1 = η0x0 + η1x1 + η2x2,

p1 = ξ00x
2
0 + · · ·+ ξ22x

2
2,

p2 = η00x
2
0 + · · ·+ η22x

2
2.

Lemma 1.20. OZ(D) ∼= OZ(H − F ) ∼= OZ(H) ⊗ OZ(−F ), where OZ(F ) ∼= π∗OP2(1) and
π : Z → P2 is the canonical projection onto the second P2 (recall that Z ⊆ U × P2 × P2).

Proof. Note that OZ(H) is given by the cocycle hij =
xj

xi
on the open covering Z =

⋃
Ui,

Ui = Z(xi) = {xi 6= 0}. The sheaf OZ(F ) is given by the cocycle fkl = ul

uk
on the covering

Z =
⋃

Vk, Vk = Z(uk) = {uk 6= 0}. Then OZ(−F ) is given by the cocycle f−1
kl = uk

ul
and

therefore OZ(H)⊗OZ(−F ) is given by the cocycle gik,jl =
xj

xi
· uk

ul
on the covering Z =

⋃
Wik,

Wik = Z(xi, uk) = {xi 6= 0, uk 6= 0}.
Note that the local defining functions of the divisor D are

γik =





tx0

xi
on Z(xi, u0),

x1

xi
on Z(xi, u1),

x2

xi
on Z(xi, u2).

Thus the cocycle of OZ(D) is γik

γjl
. Using the defining equations of the blow up Z one easily

calculates γik

γjl
=

xj

xi
· uk

ul
. This coincides with the cocycle gik,jl of OZ(H)⊗OZ(−F ). This proves

the required statement.

Remark 1.21. In this lemma we proved the equivalence of divisors D ∼ H − F .

As a consequence of Lemma 1.20 after the substitution of D by H −F in the diagram from
Lemma 1.17 we obtain the diagram with exact rows and columns:

0

0 2OD(−1)

0 2OZ(−2H) OZ(−H)⊕OZ σ∗E 0

0 2OZ(−H − F ) OZ(−H)⊕OZ Ẽ 0.

2OD(−1) 0

0

//
σ∗(At)

// // //

//
Ãt // // //

²²

( s 0
0 s )

²²

²²

²²

²²

²²

²²

²²

(1.18)

Lemma 1.22. x1 factorizes as x1 = u1 · s, analogously x2 = u2 · s, tx0 = u0 · s.
Proof. We know already that for each of the sections of OZ(H) above there is a factorization

OZ(−H) //

s

²²

OZ

OZ(−H + D)

∃!

88
.
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In Lemma 1.20 we have just shown that OZ(−H + D) ∼= OZ(−F ). We shall show that the
section OZ(−F ) → OZ in the commutative diagram

OZ(−H) //

s

²²

OZ

OZ(−F )

::uuuuuuuuu

equals u1, u2, u0 respectively. Note that factorizing through s means dividing locally by the
local defining equation γik of D. On Z(xi, uk) the section x1 is given by the function x1

xi
. The

defining function of D in this chart is xk

xi
if k 6= 0 and tx0

xi
if k = 0. Thus

x1

xi

/γik =





x1

xi

/
xk

xi
= u1

uk
if k 6= 0,

x1

xi

/
tx0

xi
= u1

u0
if k = 0,

i. e., x1

xi
/γik = u1

uk
. This is a description of the section u1 of OZ(F ). We proved that x1 = u1 · s.

Analogously one proves the statement for x2 and tx0.

As a corollary we obtain the following

Lemma 1.23. Let A be as in (1.17) and let B =

(
w1 p1

w2 p2

)
with

w1 = ξ0x0 + ξ1x1 + ξ2x2,

w1 = η0x0 + η1x1 + η2x2,

p1 = ξ00x
2
0 + · · ·+ ξ22x

2
2,

p2 = η00x
2
0 + · · ·+ η22x

2
2.

Then Ãt equals

(
u1 u1(A01x0 + A11x1 + A12x2) + u2(A02x0 + A22x2)
u2 u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2)

)
+

(
ξ0u0 + tξ1u1 + tξ2u2 ξ00x0u0 + tξ01u1x0 + · · ·+ tξ22u2x2

η0u0 + tη1u1 + tη2u2 η00x0u0 + tη01u1x0 + · · ·+ tη22u2x2

)

and can be treated as a morphism 2OZ(−H − F ) → OZ(−H) ⊕ OZ. We have thus the exact
sequence

0 −→ 2OZ(−H − F )
Ãt−→ OZ(−H)⊕OZ −→ Ẽ → 0. (1.19)

1.2.2 First properties of new one parameter families.

Conditions for local freeness on support.

We constructed a sheaf Ẽ on Z. Let us consider the map Z
σ−→ U×P2

p1−→ U and the restrictions
Ẽt of the sheaf Ẽ to the fibres Zt over t ∈ U . Since the restriction of σ to Z \ Z0 is an

isomorphism, we conclude that Zt
∼= P2 and Ẽt

∼= Et for t 6= 0. So outside of Z0 the sheaf Ẽ is
basically the same as E . In particular Ẽt are locally free on their support for t 6= 0. Thus one
could consider the fibre Ẽ0 as a limit of nonsingular sheaves Et for t → 0. This way we have so
to say replaced the singular sheaf E0 by the sheaf Ẽ0 on the reducible variety Z0.
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The sheaf Ẽ is not locally free (on its support) at some point if and only if the matrix Ãt

vanishes at this point. Since At vanishes only at point (0, p), and since the preimage of (0, p)

is the exceptional divisor D = D1, we conclude that Ãt may only vanish at points lying in D1.
Suppose that the matrix Ãt vanishes at some point from D1. Since from Lemma 1.23 we

have

(Ãt)t=x1=x2=0 =

(
u1 + ξ0u0 A01x0u1 + A02x0u2 + ξ00x0u0

u2 + η0u0 B01x0u1 + B02x0u2 + η00x0u0

)
, (1.20)

vanishing of this matrix is equivalent to

{
ξ00 = A01ξ0 + A02η0,

η00 = B01ξ0 + B02η0.

But these equations are by Example 1.8 exactly the tangent equations at A. We obtained

Proposition 1.24. Ẽ is locally free on its support if and only if B is a normal vector to X8 at
A, i. e., if and only if B ∈ TAX \ TAX8.

So using the normal directions B to X8 at A we obtain new one parameter families Ẽ that
are isomorphic to the initial one parameter families E for t 6= 0 such that the new limit value
“Ẽ0 = lim

t→0
Ẽt” is a sheaf that is locally free on its support .

Let us call the one parameter families Ẽ that are locally free on their support new families
or families of new type.

From now on we consider only the sheaves that are locally free on their support, i. e., those
obtained by the help of normal directions.

Flatness.

Lemma 1.25. Let Ẽ be a new one parameter family.
1) TorOZ

1 (Ẽ ,OD1) = 0 and the restriction of Ẽ to D1 is given by the matrix

ÃD1 = (Ãt)t=x1=x2=0 =

(
u1 + ξ0u0 A01u1 + A02u2 + ξ00u0

u2 + η0u0 B01u1 + B02u2 + η00u0

)
,

i. e., the restriction of Ẽ to D1 is given by the resolution

0 → 2OD1(−1)
ÃD1−−→ 2OD1 → Ẽ|D1 → 0,

in particular Ẽ |D1 is a 2m + 2 sheaf on D1 = P2.

2) TorOZ
1 (Ẽ ,OD0) = 0 and the restriction of Ẽ to P̃2 is given by the matrix

Ã = (Ãt)t=u0=0 =

(
u1 u1(A01x0 + A11x1 + A12x2) + u2(A02x0 + A22x2)
u2 u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2)

)
,

i. e., the restriction of Ẽ to P̃2 is given by the resolution

0 → 2OP̃2
(−H − F )

Ã−→ OP̃2
(−H)⊕OP̃2

→ Ẽ|P̃2
→ 0,

where OP̃2
(F ) ∼= π∗OP1(1) and π : P̃2 → P1 is the canonical projection.
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Proof. 1) Let us restrict the resolution (1.19) to D1. We obtain this way the exact sequence

0 → TorOZ
1 (Ẽ ,OD1) → 2OD1(−L)

Ãt|D1−−−→ 2OD1 → ẼD1 → 0.

We used here that TorOZ
1 (OZ(−H) ⊕ OZ ,OD1) = 0 because OZ(−H) ⊕ OZ is a locally free

sheaf. By Lemma 1.23 we have

ÃD1 := Ãt|D1 =

(
u1 + ξ0u0 A01u1 + A02u2 + ξ00u0

u2 + η0u0 B01u1 + B02u2 + η00u0

)
.

This morphism is injective if and only if det ÃD1 6= 0. One can write

det ÃD1 = (B01u1 + B02u2 + η00u0,−(A01u1 + A02u2 + ξ00u0)) ·
(

u1 + ξ0u0

u2 + η0u0

)
.

Suppose det ÃD1 = 0. Then, since u1 +ξ0u0 and u2 +η0u0 are linear independent, one concludes
that (

A01u1 + A02u2 + ξ00u0

B01u1 + B02u2 + η00u0

)
= λ

(
u1 + ξ0u0

u2 + η0u0

)
, λ ∈ k∗.

This holds if and only if A02 = B01 = 0, x00 = A01ξ0, and η00 = B02η0. Therefore, B is a tangent
direction, which is a contradiction. This proves that the determinant of ÃD1 is non-zero and

hence ÃD1 is injective. Therefore, TorOZ
1 (Ẽ ,OD1) = 0. This proves the first part of the lemma.

2) Let us restrict now the sequence (1.19) to D0 = P̃2. We get the exact sequence

0 → TorOZ
1 (Ẽ ,OP̃2

) −→ 2OP̃2
(−H − F )

Ãt|P̃2−−−→ OP̃2
(−H)⊕OP̃2

−→ ẼP̃2
→ 0.

By Lemma 1.23 we have

Ã := Ãt|P̃2
=

(
u1 u1(A01x0 + A11x1 + A12x2) + u2(A02x0 + A22x2)
u2 u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2)

)
.

Let us prove the injectivity of Ã. For an arbitrary point x from P̃2, let us consider the restriction
Ãx of Ã to the stalk at x:

2OP̃2,x

Ãx−→ 2OP̃2,x.

First of all one sees that for x ∈ P̃2 \ L the map Ãx is the same as Aσ(x), σ(x) ∈ P2. We just

use here that σ is an isomorphism on P̃2 \L. Therefore, we conclude that Ã is injective outside
of L, thus its kernel may only be supported on L. This is impossible since 2OP̃2

(−H − F ) is a
locally free sheaf and hence has no torsion. This proves the second part of the lemma.

Proposition 1.26. The sheaf Ẽ is flat over U .

Proof. Since Ẽ |U\{0} is a 3m + 1 family over U \ {0}, we conclude that Ẽ is flat over each point

t ∈ U , t 6= 0. It remains to prove the flatness for t = 0. The sheaf Ẽ is flat over t = 0 if and
only if the restriction of the resolution

0 → 2OZ(−H − F )
Ãt−→ OZ(−H)⊕OZ −→ Ẽ → 0

to Z0 remains exact, i. e., if the morphism

2OZ(−H − F )|Z0

Ãt|Z0−−−→ (OZ(−H)⊕OZ)|Z0
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is injective. But this is true because the restrictions 2OZ(−H−F )|D1

Ãt|D1−−−→ (OZ(−H)⊕OZ)|D1

and 2OZ(−H − F )|P̃2

Ãt|P̃2−−−→ (OZ(−H) ⊕OZ)|P̃2
are injections by Lemma 1.25. Therefore, the

kernel of Ãt|Z0 can only be supported on L. But 2OZ(−H −F )|Z0 is a locally free sheaf, which

has no torsion. Therefore, Ãt|Z0 is injective. This proves the required statement.
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1.3 New objects on P̂2

We study here the new objects on Z0 = P̂2. The main goal of this section is to give different
characterizations of R-bundles on P̂2.

1.3.1 Invertible sheaves on Z0 and their cohomology.

The Picard group of Z0.

Recall that P̂2 may be considered as a closed subvariety in P2 × P2 (cf. Definition 1.11). We
define a divisor H as the pull back of a line h ⊆ P2 from the first P2 and F is defined as the
pull back of a line f ⊆ P2 in the second P2. In other words we have OZ0(H) = OP2×P2(1, 0)|Z0

and OZ0(F ) = OP2×P2(0, 1)|Z0 .
Recall that Z0 consists of the two components D0 and D1. We will denote by Hi and Fi the

restrictions to Di, i = 0, 1, of the divisors H and F respectively. Since it does not cause any
misunderstandings, we will often write just H and F for the restrictions Hi and Fi.

The intersection L = D0 ∩ D1 is isomorphic to P1 and is a divisor both in D0 and D1.
Of course, one has L ∼ F1 as divisors in D1. It holds also F0 + L ∼ H0 as divisors in D0,
equivalently L ∼ H0 − F0. Note also that H1 ∼ 0.

Note that by Lemma A.16 and Lemma A.17 a locally free sheaf on Z0 is uniquely defined
by its restrictions to the components D0 = P̃2 and D1 = P2.

The Picard group of D1
∼= P2 is isomorphic to Z and the isomorphism is given by

Z→ Pic(D1), b 7→ [OD1(bL)].

The Picard group of D0 is Z⊕ Pic(P2) ∼= Z⊕ Z (cf. [12], V, Proposition 3.2), the isomorphism
is given by the map

Z⊕ Z→ Pic(D0), (a, b) 7→ [OD0(aH + bL)].

Let OD0(aH + b0L) be an invertible sheaf on D0 and let OD1(b1L) an invertible sheaf on
D1. Their restrictions to L are OL(−b0) and OL(b1) respectively, so they define an invertible
sheaf on L if and only if b0 = −b1 = b. The gluing of these two sheaves is isomorphic to
OZ0((a− b)H + bF ) because

OZ0((a− b)H + bF )|D0
∼= OD0((a− b)H0 + bF0) ∼= OD0(aH0 + b(F0 −H0)) ∼= OD0(aH − bL)

and
OZ0((a− b)H + bF )|D1

∼= OD1(bF1) ∼= OD1(bL).

We proved the following lemma.

Lemma 1.27. The Picard group of Z0 is isomorphic to Z⊕ Z. The isomorphism is given by

Z⊕ Z→ Pic(Z0), (a, b) 7→ [OZ0(aH + bF )].

There is also the following isomorphism of Pic(D0) and Pic(Z0):

Pic(D0) → Pic(Z0), [OD0(aH + bL)] = [OD0((a + b)H − bF0)] 7→ [OZ0((a + b)H − bF )].
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Euler characteristic of line bundles on P̃2.

For a divisor δ on P̃2 there is the Riemann-Roch formula (cf. [12], V, Theorem 1.6)

χOP̃2
(δ) =

1

2
δ2 − 1

2
δKP̃2

+ χOP̃2
,

where KP̃2
is a canonical divisor on P̃2. We know that KP̃2

= −3H + L (cf. [12], V, Proposi-
tion 3.3) and that χOP̃2

= χOP2 = 1 (cf. [12], V, Corollary 3.5). Thus one obtains

χOP̃2
(δ) =

1

2
δ2 +

1

2
δ(3H − L) + 1.

For δ = αH − βL, using H2 = 1, L2 = −1, and H · L = 0, we get

χOP̃2
(αH − βL) =

1

2
(αH − βL)2 +

1

2
(αH − βL)(3H − L) + 1 =

1

2
(α2H2 + β2L2) +

1

2
(3αH2 + βL2) + 1 =

1

2
(α2 − β2) +

1

2
(3α− β) + 1 =

1

2
α2 +

3

2
α− 1

2
β2 − 1

2
β + 1.

Thus

χ(OP̃2
(aH + bF0)⊗OP̃2

(mH + mF0)) = χOP̃2
((a + b + 2m)H − (b + m)L) =

1

2
(a + b + 2m)2 +

3

2
(a + b + 2m)− 1

2
(b + m)2 − 1

2
(b + m) + 1 =

3

2
m2 + [2(a + b) + 3− b− 1

2
]m +

1

2
(a + b)2 +

3

2
(a + b)− 1

2
b2 − 1

2
b + 1 =

3

2
m2 +

[
2a + b +

5

2

]
m +

1

2
(a + b)2 +

3

2
(a + b)− 1

2
b2 − 1

2
b + 1.

We proved the following Lemma.

Lemma 1.28. The Hilbert polynomial of the invertible sheaf OP̃2
(a, b) = OP̃2

(aH + bF ) on P̃2

with respect to the sheaf OP̃2
(1, 1) = OP̃2

(H + F ) equals

3

2
m2 +

[
2a + b +

5

2

]
m +

1

2
(a + b)2 +

3

2
(a + b)− 1

2
b2 − 1

2
b + 1. (1.21)

In particular we obtain the following Hilbert polynomials on P̃2 with respect to the sheaf
OP̃2

(1, 1) = OP̃2
(H + F ).

(a, b) = (−2, 0) =⇒ 3

2
m2 − 3

2
m,

(a, b) = (−1,−1) =⇒ 3

2
m2 − 1

2
m,

(a, b) = (−1, 0) =⇒ 3

2
m2 +

1

2
m,

(a, b) = (0,−1) =⇒ 3

2
m2 +

3

2
m,

(a, b) = (0, 0) =⇒ 3

2
m2 +

5

2
m + 1,

(a, b) = (0, 1) =⇒ 3

2
m2 +

7

2
m + 2,

(a, b) = (1, 0) =⇒ 3

2
m2 +

9

2
m + 3,

(a, b) = (1,−1) =⇒ 3

2
m2 +

7

2
m + 1.

(1.22)
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Lemma 1.29. Let F be a 3m + 1 sheaf on P2 such that F is not locally free at point p. Let
σ0 : P̃2 → P2 be the blowing up of p. Let L = OP̃2

(H + F0) ∼= OP̃2
(2H − L). Then σ∗0F has the

Hilbert polynomial 6m + 1 with respect to L.

Proof. Since there is a resolution

0 → 2OP̃2
(−2H) → OP̃2

(−H)⊕OP̃2
→ σ∗0F → 0,

the Hilbert polynomial of σ∗0F is
(

3

2
m2 +

1

2
m

)
+

(
3

2
m2 +

5

2
m + 1

)
− 2

(
3

2
m2 − 3

2
m

)
= 6m + 1.

This proves the lemma.

Euler characteristic of line bundles on Z0.

Lemma 1.30. χOZ0(aH + bF ) = 1
2
(a + b)2 + 3

2
(a + b) + 1.

Proof. For a line bundle OZ0(aH + bF ) by Lemma A.16 there is the gluing sequence

0 → OZ0(aH + bF ) → OP̃2
((a + b)H − bL)⊕OD1(b) → OL(b) → 0.

We are using here that F is equivalent to H − L on P̃2.
By formula (1.22) we obtain

χOP̃2
((a + b)H − bL) =

1

2
(a + b)2 +

3

2
(a + b)− 1

2
b2 − 1

2
b + 1

Since

χOD1(b) =

(
b + 2

2

)
=

1

2
(b + 2)(b + 1) =

1

2
b2 +

3

2
b + 1

and
χOL(b) = b + 1,

we calculate

χOZ0(aH + bF ) =χOP̃2
((a + b)H − bL) + χOD1(b)− χOL(b) =

1

2
(a + b)2 +

3

2
(a + b)− 1

2
b2 − 1

2
b + 1 +

1

2
b2 +

3

2
b + 1− (b + 1) =

1

2
(a + b)2 +

3

2
(a + b) + 1.

This completes the proof.

Lemma 1.31. The Hilbert polynomial of OZ0(aH + bF ) with respect to the invertible sheaf
L = OZ0(H + F ) equals

2m2 + [2(a + b) + 3] ·m +
1

2
(a + b)2 +

3

2
(a + b) + 1. (1.23)

Note that the result depends only on the sum a + b.

Proof. Using Lemma 1.30 we obtain that

χ(OZ0(aH + bF )⊗ L⊗m) =χOZ0((a + m)H + (b + m)F ) =

1

2
(a + b + 2m)2 +

3

2
(a + b + 2m) + 1 =

2m2 + [2(a + b) + 3] ·m +
1

2
(a + b)2 +

3

2
(a + b) + 1.

This proves the required statement.
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Some cohomology groups of sheaves on Z0.

We collect here calculations of cohomology groups for some locally free sheaves on Z0 and D0.

Table of results. We collect some results about cohomology groups in the following table.

Proposition 1.32.
h0 h1 h2

OZ0(−2F ) 0 0 0
OZ0(−H) 0 0 0
OZ0(−F ) 0 0 0
OZ0 1 0 0

OZ0(H − F ) 1 0 0
OZ0(−H + F ) 1 0 0
OZ0(H) 3 0 0
OZ0(F ) 3 0 0

OZ0(−H − F ) 0 0 0
OZ0(H + F ) 6 0 0
OZ0(H + 2F ) 10 0 0

The computations below constitute the proof of Proposition 1.32.

Some key tools for computing cohomologies on Z0. Let us collect here some short exact
sequences. We will make use of the corresponding long exact cohomology sequences.

Recall that for a locally free sheaf G on Z0 by Lemma A.16 there is the gluing exact sequence

0 → G → G|D0 ⊕ G|D1 → G|L → 0.

Note also that OD0 has the locally free resolution

0 → OP2×P1(−1,−1)
x1u2−x2u1−−−−−−→ OP2×P1 → OD0 → 0.

For arbitrary a, b ∈ Z this gives the resolutions

0 → OP2×P1(a− 1, b− 1) → OP2×P1(a, b) → OD0(aH + bF ) → 0. (1.24)

Note also that the restriction homomorphism

H0(D1,OD1(nL)) → H0(L,OL(n))

is always surjective.
To compute the cohomology groups of OP2×P1(µ, ν) we will use the Künneth formula

from [25]:

Hq(Pn × Pm,OPn×Pm(µ, ν)) ∼=
⊕

i+j=q

H i(Pn,OPn(µ))⊗Hj(Pm,OPm(ν)). (1.25)
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Sheaf OZ0. Consider the gluing exact sequence

0 → OZ0 → OD0 ⊕OD1 → OL → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0) → H0(OD0)⊕H0(OD1) → H0(OL)
0−→

→ H1(OZ0) → H1(OD0)⊕H1(OD1) → H1(OL) →
→ H2(OZ0) → H2(OD0)⊕H2(OD1) → H2(OL) → 0.

Note that the map H0(OL) −→ H1(OZ0) is zero because the restriction homomorphism

H0(D1,OD1) → H0(L,OL)

is an isomorphism, it holds H0(D1,OD1)
∼= H0(L,OL) ∼= k. Using that H i(OD0) = H i(OL) = 0

for i = 1, 2, we conclude that H i(OZ0)
∼= H i(OD0), i = 0, 1, 2.

Consider the locally free resolution of OD0 on P2 × P1

0 → OP2×P1(−1,−1)
x1u2−x2u1−−−−−−→ OP2×P1 → OD0 → 0

and the corresponding long exact cohomology sequence

0 → H0(OP2×P1(−1,−1)) −→ H0(OP2×P1) → H0(OD0) →
→ H1(OP2×P1(−1,−1)) −→ H1(OP2×P1) → H1(OD0) →
→ H2(OP2×P1(−1,−1)) −→ H2(OP2×P1) → H2(OD0) →
→ H3(OP2×P1(−1,−1)) −→ H3(OP2×P1) → 0.

By Künneth formula H i(OP2×P1(−1,−1)) = 0, for all i, H i(OP2×P1) = 0 for i 6= 0, and
H0(OP2×P1)

∼= k. Therefore, H1(OD0) = H2(OD0) = 0, H0(OD0)
∼= k. This proves

H1(OZ0) = H2(OZ0) = 0, H0(OZ0)
∼= k.

Sheaf OZ0(H − F ). Consider the gluing exact sequence

0 → OZ0(H − F ) → OD0(H − F )⊕OD1(−L) → OL(−1) → 0.

Since all the cohomology groups of OD1(−L) and OL(−1) are zero, using the long exact coho-
mology sequence we conclude of the above short exact sequence we conclude that OZ0(H−F ) ∼=
OD0(H − F ) for all i. So it remains to compute the cohomology groups of OD0(H − F ).

Consider the locally free resolution

0 → OP2×P1(0,−2)
x1u2−x2u1−−−−−−→ OP2×P1(1,−1) → OD0(H − F ) → 0

and the corresponding long exact cohomology sequence

0 → H0(OP2×P1(0,−2)) −→ H0(OP2×P1(1,−1)) → H0(OD0(H − F )) →
→ H1(OP2×P1(0,−2)) −→ H1(OP2×P1(1,−1)) → H1(OD0(H − F )) →
→ H2(OP2×P1(0,−2)) −→ H2(OP2×P1(1,−1)) → H2(OD0(H − F )) →
→ H3(OP2×P1(0,−2)) −→ H3(OP2×P1(1,−1)) → 0.

By Künneth formula H i(OP2×P1(−1,−1)) = 0, for all i, H i(OP2×P1(0,−2)) = 0 for i 6= 1, and
H1(OP2×P1(0,−2)) ∼= k. Therefore,

H1(OD0(H − F )) = H2(OD0(H − F )) = 0, H0(OD0(H − F )) ∼= k.
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Sheaf OZ0(−H + F ). Consider the gluing exact sequence

0 → OZ0(−H + F ) → OD0(−H + F )⊕OD1(L) → OL(1) → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(−H + F )) → H0(OD0(−H + F ))⊕H0(OD1(L)) → H0(OL(1))
0−→

→ H1(OZ0(−H + F )) → H1(OD0(−H + F ))⊕H1(OD1(L)) → H1(OL(1)) →
→ H2(OZ0(−H + F )) → H2(OD0(−H + F ))⊕H2(OD1(L)) → H2(OL(1)) → 0.

Since H i(OL(1)) = H i(OD1(L)) = 0 for i 6= 0, we obtain the isomorphisms

H i(OZ0(−H − F )) ∼= H i(OD0(−H − F )), i 6= 0.

From the resolution

0 → OP2×P1(−2, 0) −→ OP2×P1(−1, 1) → OD0(−H + F ) → 0

we obtain the long exact cohomology sequence

0 → H0(OP2×P1(−2, 0)) −→ H0(OP2×P1(−1, 1)) → H0(OD0(−H + F )) →
→ H1(OP2×P1(−2, 0)) −→ H1(OP2×P1(−1, 1)) → H1(OD0(−H + F )) →
→ H2(OP2×P1(−2, 0)) −→ H2(OP2×P1(−1, 1)) → H2(OD0(−H + F )) →
→ H3(OP2×P1(−2, 0)) −→ H3(OP2×P1(−1, 1)) → 0.

By Künneth formula we obtain that all the cohomologies of OP2×P1(−2, 0) and OP2×P1(−1, 1)
are zero. Therefore, H i(OD0(−H + F )) = 0 for all i.

We obtain now

H i(OZ0(−H − F )) ∼= H i(OD0(−H − F )) = 0, i 6= 0.

From the exact sequence

0 → H0(OZ0(−H + F )) → H0(OD1(L)) → H0(OL(1)) → 0

using H0(OD1(L)) ∼= k3 and H0(OL(1)) ∼= k2 we conclude that H0(OZ0(−H + F )) ∼= k.
We obtained

H1(OD0(−H + F )) = H2(OD0(−H + F )) = 0, H0(OD0(−H + F )) ∼= k.

Sheaf OZ0(−H). Consider the gluing exact sequence

0 → OZ0(−H) → OD0(−H)⊕OD1 → OL → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(−H)) → H0(OD0(−H))⊕H0(OD1) → H0(OL)
0−→

→ H1(OZ0(−H)) → H1(OD0(−H))⊕H1(OD1) → H1(OL) →
→ H2(OZ0(−H)) → H2(OD0(−H))⊕H2(OD1) → H2(OL) → 0.

We obtain H i(OZ0(−H)) ∼= H i(OD0(−H)), i = 0, 1, 2. Using the resolution

0 → OP2×P1(−2,−1) −→ OP2×P1(−1, 0) → OD0(−H) → 0
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we obtain the long exact cohomology sequence

0 → H0(OP2×P1(−2,−1)) −→ H0(OP2×P1(−1, 0)) → H0(OD0(−H)) →
→ H1(OP2×P1(−2,−1)) −→ H1(OP2×P1(−1, 0)) → H1(OD0(−H)) →
→ H2(OP2×P1(−2,−1)) −→ H2(OP2×P1(−1, 0)) → H2(OD0(−H))

→ H3(OP2×P1(−2,−1)) −→ H3(OP2×P1(−1, 0)) → 0.

By Künneth formula we conclude that H i(OP2×P1(−2,−1)) = Hj(OP2×P1)(−1, 0) = 0 for all i
and j. Therefore, H i(OD0(−H)) = 0 for all i and hence

H i(OD0(−H)) = 0 for all i.

Sheaf OZ0(−F ). Consider the gluing exact sequence

0 → OZ0(−F ) → OD0(−F )⊕OD1(−L) → OL(−1) → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(−F )) → H0(OD0(−F ))⊕H0(OD1(−L)) → H0(OL(−1)) −→
→ H1(OZ0(−F )) → H1(OD0(−F ))⊕H1(OD1(−L)) → H1(OL(−1)) →
→ H2(OZ0(−F )) → H2(OD0(−F ))⊕H2(OD1(−L)) → H2(OL(−1)) → 0.

Since all cohomology groups of the sheaves OD1(−L) and OL(−1) are zero, one obtains the
isomorphisms H i(OZ0(−F )) ∼= H i(OD0(−F )) for all i.

Using the resolution

0 → OP2×P1(−1,−1) −→ OP2×P1(0,−1) → OD0(−F ) → 0

we obtain the long exact cohomology sequence

0 → H0(OP2×P1(−1,−2)) −→ H0(OP2×P1(0,−1)) → H0(OD0(−F )) →
→ H1(OP2×P1(−1,−2)) −→ H1(OP2×P1(0,−1)) → H1(OD0(−F )) →
→ H2(OP2×P1(−1,−2)) −→ H2(OP2×P1(0,−1)) → H2(OD0(−F )) →
→ H3(OP2×P1(−1,−2)) −→ H3(OP2×P1(0,−1)) → 0.

All cohomology groups of the sheaves OP2×P1(−1,−2) and OP2×P1(0,−1) vanish by Künneth
formula, thus the sheaf OD0(−F ) has zero cohomology groups. We obtain finally

H i(OD0(−F )) = 0 for all i.

Sheaf OZ0(H). Consider the gluing exact sequence

0 → OZ0(H) → OD0(H)⊕OD1 → OL → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(H)) → H0(OD0(H))⊕H0(OD1) → H0(OL)
0−→

→ H1(OZ0(H)) → H1(OD0(H))⊕H1(OD1) → H1(OL) →
→ H2(OZ0(H)) → H2(OD0(H))⊕H2(OD1) → H2(OL) → 0.
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As in the case of OZ0 we obtain the isomorphisms H i(OZ0(H)) ∼= H i(OD0(H)), i = 0, 1, 2.
From the resolution

0 → OP2×P1(0,−1) −→ OP2×P1(1, 0) → OD0(H) → 0

we obtain the long exact cohomology sequence

0 → H0(OP2×P1(0,−1)) −→ H0(OP2×P1(1, 0)) → H0(OD0(H)) →
→ H1(OP2×P1(0,−1)) −→ H1(OP2×P1(1, 0)) → H1(OD0(H)) →
→ H2(OP2×P1(0,−1)) −→ H2(OP2×P1(1, 0)) → H2(OD0(H)) →
→ H3(OP2×P1(0,−1)) −→ H3(OP2×P1(1, 0)) → 0.

All the cohomologies of OP2×P1(0,−1) are zero by Künneth formula. Therefore H i(OD0(H)) ∼=
H i(OP2×P1(1, 0)) for all i. Again using Künneth formula we conclude that H i(OP2×P1(1, 0)) = 0
for i 6= 0 and H0(OP2×P1(1, 0)) = H0(OP2(1)) ⊗ H0(OP1)

∼= Γ(P2,OP2(1)) ∼= k3. We obtain
finally

H0(OZ0(H)) ∼= k3, H i(OZ0(H)) = 0, i 6= 0.

Sheaf OZ0(F ). Consider the gluing exact sequence

0 → OZ0(F ) → OD0(F )⊕OD1(L) → OL(1) → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(F )) → H0(OD0(F ))⊕H0(OD1(L)) → H0(OL(1))
0−→

→ H1(OZ0(F )) → H1(OD0(F ))⊕H1(OD1(L)) → H1(OL(1)) →
→ H2(OZ0(F )) → H2(OD0(F ))⊕H2(OD1(L)) → H2(OL(1)) → 0.

Note that the map H0(OD1(L)) → H0(OL(1)) is surjective, therefore the homomorphism
H0(OL(1)) → H1(OZ0(F )) is zero. We have H1(OD1(L)) = H2(OD1(L)) = 0 and H1(OL(1)) =
H2(OL(1)) = 0. Therefore, H i(OZ0(F )) ∼= H i(OD0(F )), i = 1, 2, and we have the exact
sequence

0 → H0(OZ0(F )) → H0(OD0(F ))⊕H0(OD1(L)) → H0(OL(1)) → 0. (1.26)

From the resolution

0 → OP2×P1(−1, 0) −→ OP2×P1(0, 1) → OD0(F ) → 0

we obtain the long exact cohomology sequence

0 → H0(OP2×P1(−1, 0)) −→ H0(OP2×P1(0, 1)) → H0(OD0(F )) →
→ H1(OP2×P1(−1, 0)) −→ H1(OP2×P1(0, 1)) → H1(OD0(F )) →
→ H2(OP2×P1(−1, 0)) −→ H2(OP2×P1(0, 1)) → H2(OD0(F )) →
→ H3(OP2×P1(−1, 0)) −→ H3(OP2×P1(0, 1)) → 0.

The cohomology groups of OP2×P1(−1, 0) are all zero, hence for all i we obtain the isomorphisms
H i(OD0(F )) ∼= H i(OP2×P1(0, 1)). Since H i(OP2×P1(0, 1)) = 0, i 6= 0, and H0(OP2×P1(0, 1)) ∼= k2,
we conclude that H i(OD0(F )) = 0 for i 6= 0 and H0(OD0(F )) ∼= k2. Therefore, one gets
H i(OZ0(F )) = 0 for i 6= 0 and from the exact sequence (1.26), using H0(OD1(L)) ∼= k3 and
H0(OL(1)) ∼= k2, we conclude that H i(OZ0(F )) has dimension 3. We obtained

H0(OZ0(F )) ∼= k3, H i(OZ0(F )) = 0, i 6= 0.
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Sheaf OZ0(−H − F ). Consider the gluing exact sequence

0 → OZ0(−H − F ) → OD0(−H − F )⊕OD1(−L) → OL(−1) → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(−H − F )) → H0(OD0(−H − F ))⊕H0(OD1(−L)) → H0(OL(−1))
0−→

→ H1(OZ0(−H − F )) → H1(OD0(−H − F ))⊕H1(OD1(−L)) → H1(OL(−1)) →
→ H2(OZ0(−H − F )) → H2(OD0(−H − F ))⊕H2(OD1(−L)) → H2(OL(−1)) → 0.

Since H i(OL(−1)) = H i(OD1(−L)) = 0 for all i, we obtain for all i the isomorphisms

H i(OZ0(−H − F )) ∼= H i(OD0(−H − F )).

From the resolution

0 → OP2×P1(−2,−2) −→ OP2×P1(−1,−1) → OD0(−H − F ) → 0

we obtain the long exact cohomology sequence

0 → H0(OP2×P1(−2,−2)) −→ H0(OP2×P1(−1,−1)) → H0(OD0(−H − F )) →
→ H1(OP2×P1(−2,−2)) −→ H1(OP2×P1(−1,−1)) → H1(OD0(−H − F )) →
→ H2(OP2×P1(−2,−2)) −→ H2(OP2×P1(−1,−1)) → H2(OD0(−H − F )) →
→ H3(OP2×P1(−2,−2)) −→ H3(OP2×P1(−1,−1)) → 0.

By Künneth formula we compute H i(OP2×P1(−2,−2)) = H i(OP2×P1(−1,−1)) = 0 for all i.
Therefore, H i(OD0(−H − F )) = 0 for all i.

Sheaf OZ0(−2F ). Consider the gluing exact sequence

0 → OZ0(−2F ) → OD0(−2F )⊕OD1(−2L) → OL(−2) → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(−2F )) → H0(OD0(−2F ))⊕H0(OD1(−2L)) → H0(OL(−2)) −→
→ H1(OZ0(−2F )) → H1(OD0(−2F ))⊕H1(OD1(−2L)) → H1(OL(−2)) →
→ H2(OZ0(−2F )) → H2(OD0(−2F ))⊕H2(OD1(−2L)) → H2(OL(−2)) → 0.

All cohomology groups of OD1(−2L) are zero, we have also that H0(OL(−2)) = H2(OL(−2)) =
0 and H1(OL(−2)) ∼= k. Therefore, H0(OZ0(−2F )) ∼= H0(OD0(−2F )) and we obtain the exact
sequence

0 → H1(OZ0(−2F )) → H1(OD0(−2F )) → k→ H2(OZ0(−2F )) → H2(OD0(−2F )) → 0

From the resolution

0 → OP2×P1(−1,−3) −→ OP2×P1(0,−2) → OD0(−2F ) → 0

we obtain the long exact cohomology sequence

0 → H0(OP2×P1(−1,−3)) −→ H0(OP2×P1(0,−2)) → H0(OD0(−2F )) →
→ H1(OP2×P1(−1,−3)) −→ H1(OP2×P1(0,−2)) → H1(OD0(−2F )) →
→ H2(OP2×P1(−1,−3)) −→ H2(OP2×P1(0,−2)) → H2(OD0(−2F )) →
→ H3(OP2×P1(−1,−3)) −→ H3(OP2×P1(0,−2)) → 0.
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By Künneth formula H i(OP2×P1(−1,−3)) = 0 for all i. We have also H i(OP2×P1(0,−2))
for i 6= 1, and H1(OP2×P1(0,−2)) ∼= k. Thus H0(OD0(−2F )) = H2(OD0(−2F )) = 0 and
H1(OD0(−2F )) ∼= k. We get this way H0(OZ0(−2F )) = 0 and the exact sequence

0 → H1(OZ0(−2F )) → k→ k→ H2(OZ0(−2F )) → 0,

where the morphism k → k is the morphism H1(OD0(−2F )) → H1(OL(−2)) induced by the
restriction map OD0(−2F ) → OL(−2).

Claim. The restriction homomorphism

k ∼= H1(OD0(−2F )) → H1(OL(−2)) ∼= k

is an isomorphism.

Proof. Consider the exact sequence

0 → OD0(−H − 3F )
( u2 −u1 )−−−−−→ 2OD0(−H − 2F )

(x1
x2 )−−−→ OD0(−2F ) → OL(−2) → 0

and its splitting in the two short exact sequences

0 → OD0(−H − 3F ) −→ 2OD0(−H − 2F ) → A→ 0

and
0 → A→ OD0(−2F ) → OL(−2) → 0.

First of all note that all the cohomologies of OD0(−H− aF ) are zero. This follows by Künneth
formula from the long exact cohomology sequence that corresponds to the resolution

0 → OP2×P1(−2,−a− 1) −→ OP2×P1(−1,−a) → OD0(−H − aF ) → 0.

Then from the long exact cohomology sequence

H i(2OD0(−H − 2F )) → H i(A) → H i+1(OD0(−H − 3F ))

one concludes that H i(A) = 0 for all i. From the long exact cohomology sequence

H1(A) → H1(OD0(−2F )) → H1(OL(−2)) → H2(A).

we obtain that the homomorphism H1(OD0(−2F )) → H1(OL(−2)) is an isomorphism.

From this claim and from the exact sequence

0 → H1(OZ0(−2F )) → H1(OD0(−2F )) → H1(OL(−2)) → H2(OZ0(−2F )) → 0

we conclude that H1(OZ0(−2F )) = 0, i = 1, 2. We obtained that

H i(OZ0(−2F )) = 0, for all i.
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Sheaf OZ0(H + 2F ). Consider the gluing exact sequence

0 → OZ0(H + 2F ) → OD0(H + 2F )⊕OD1(2L) → OL(2) → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(H + 2F )) → H0(OD0(H + 2F ))⊕H0(OD1(2L)) → H0(OL(2))
0−→

→ H1(OZ0(H + 2F )) → H1(OD0(H + 2F ))⊕H1(OD1(2L)) → H1(OL(2)) →
→ H2(OZ0(H + 2F )) → H2(OD0(H + 2F ))⊕H2(OD1(2L)) → H2(OL(2)) → 0.

Note that the restriction homomorphism H0(OD1(2L)) → H0(OL(2)) is surjective. Since
H i(OD1(2L)) = H i(OL(2)) = 0 for i 6= 0 we conclude that H i(OZ0(H + 2F )) ∼= H i(OD0(H +
2F )) for i 6= 0.

From the resolution

0 → OP2×P1(0, 1) −→ OP2×P1(1, 2) → OD0(H + 2F ) → 0

we obtain the long exact cohomology sequence

0 → H0(OP2×P1(0, 1)) −→ H0(OP2×P1(1, 2)) → H0(OD0(H + 2F )) →
→ H1(OP2×P1(0, 1)) −→ H1(OP2×P1(1, 2)) → H1(OD0(H + 2F )) →
→ H2(OP2×P1(0, 1)) −→ H2(OP2×P1(1, 2)) → H2(OD0(H + 2F )) →
→ H3(OP2×P1(0, 1)) −→ H3(OP2×P1(1, 2)) → 0.

By Künneth formula one concludes that H i(OP2×P1(0, 1)) = 0 for i 6= 0 and that

H0(OP2×P1(0, 1)) ∼= H0(OP2)⊗H0(OP1(1)) ∼= k2.

Again by Künneth formula we obtain H i(OP2×P1(1, 2)) = 0 for i 6= 0 and

H0(OP2×P1(1, 2)) ∼= H0(OP2(1))⊗H0(OP1(2)) ∼= k3 ⊗ k3 ∼= k9.

We conclude this way that H1(OD0(H + 2F )) = H2(OD0(H + 2F )) = 0 and that H0(OD0(H +
2F )) ∼= k7.

Since dim H0(OD1(2L)) = 6 and dim H0(OL(2)) = 3, then using the exact sequence

0 → H0(OZ0(H + 2F )) → H0(OD0(H + 2F ))⊕H0(OD1(2L)) → H0(OL(2)) → 0

we conclude that H0(OZ0(H + 2F )) ∼= k10. We proved that

H0(OZ0(H + 2F )) ∼= k10, H i(OZ0(H + 2F )) = 0, i 6= 0.

Sheaf OZ0(H + F ). Consider the gluing exact sequence

0 → OZ0(H + F ) → OD0(H + F )⊕OD1(L) → OL(1) → 0.

This gives the long exact cohomology sequence

0 → H0(OZ0(H + F )) → H0(OD0(H + F ))⊕H0(OD1(L)) → H0(OL(1))
0−→

→ H1(OZ0(H + F )) → H1(OD0(H + F ))⊕H1(OD1(L)) → H1(OL(1)) →
→ H2(OZ0(H + F )) → H2(OD0(H + F ))⊕H2(OD1(L)) → H2(OL(1)) → 0
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and from H i(OD1(L)) = H i(OL(1)) = 0, i 6= 0, we obtain the isomorphisms H i(OZ0(H +F )) ∼=
H i(OD0(H + F )), i 6= 0, and the exact sequence

0 → H0(OZ0(H + F )) → H0(OD0(H + F ))⊕H0(OD1(L)) → H0(OL(1)) → 0

From the resolution

0 → OP2×P1 −→ OP2×P1(1, 1) → OD0(H + F ) → 0

we obtain the long exact cohomology sequence

0 → H0(OP2×P1) −→ H0(OP2×P1(1, 1)) → H0(OD0(H + F )) →
→ H1(OP2×P1) −→ H1(OP2×P1(1, 1)) → H1(OD0(H + F )) →
→ H2(OP2×P1) −→ H2(OP2×P1(1, 1)) → H2(OD0(H + F )) →
→ H3(OP2×P1) −→ H3(OP2×P1(1, 1)) → 0.

Using Künneth formula we compute H0(OP2×P1(1, 1)) ∼= k6, H0(OP2×P1)
∼= k and all the other

cohomology groups of the sheaves OP2×P1(1, 1) and OP2×P1 are zero. Therefore, H i(OD0(H +
F )) = 0, i 6= 0, and H0(OD0(H+F )) ∼= k5. Since dim H0(OD1(L)) = 3 and dim H0(OL(1)) = 2,
we conclude that H0(OZ0(H + F )) ∼= k6.

We proved that

H0(OZ0(H + F )) ∼= k6, H i(OZ0(H + F )) = 0, i 6= 0.

Some direct images.

Let us calculate some direct images with respect to the contraction

σ0 : Z0 → P2.

We will consider OZ0 as a sheaf on P2 × P2 given by the ideal sheaf IZ0 :

0 → IZ0 → OP2×P2 → OZ0 → 0. (1.27)

Lemma 1.33. The ideal sheaf IZ0 of Z0 is given by the resolution

0 → OP2×P2(−2,−1)⊕OP2×P2(−1,−2)

(
u0 −u2 u1
0 −x2 x1

)

−−−−−−−−→ 3OP2×P2(−1,−1)

(
x1u2−x2u1

u0x1
u0x2

)

−−−−−−−−→ IZ0 → 0.

Proof. It is clear that this sequence is a complex. Suppose that

(a, b, c)
(

x1u2−x2u1
u0x1
u0x2

)
= a(x1u2 − x2u1) + bu0x1 + cu0x2 = 0.

Then a = ξu0 and ξ(x1u2 − x2u1) + bx1 + cx2 = x1(ξu2 + b) + x2(c − ξu1) = 0 and therefore
c− ξu1 = ηx1 and (ξu2 + b) = −ηx2. We obtain that

c = ξu1 + ηx1, b = −ξu2 − ηx2,

thus (
a b c

)
=

(
ξ η

) (
u0 −u2 u1

0 −x2 x1

)
.

This proves that the sequence is exact in the middle term. One sees also that
(

u0 −u2 u1
0 −x2 x1

)
is

injective.
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Consider the diagram

Z0 P2 × P2

P2

ι //

σ0

½½
44

44
44

4

p
¥¥




,

where ι is the inclusion of Z0 in P2 × P2 and p = p1 is the projection on the first factor. By
abuse of notation we identify the sheaves on Z0 with their images under ι∗, i. e., we consider
them as sheaves on P2×P2. Then for every OZ0 module F we have Rkσ0∗F ∼= Rkp∗F for all k.

Lemma 1.34. Rkp∗OP2×P2(m, n) ∼= OP2(m)⊗Hk(P2,OP2(n)).

Proof. Recall (cf. [12], III, Proposition 8.1) that Rkp∗OP2×P2(m,n) is the sheaf associated to
the presheaf

U 7→ Hk(U × P2,OP2×P2(m,n)|U×P2).

For an affine open set U ⊆ P2 using the Künneth formula we obtain

Hk(U × P2,OP2×P2(m,n)|U×P2)
∼= H0(U,OP2(m))⊗Hk(P2,OP2(n)) =

= OP2(m)(U)⊗Hk(P2,OP2(n)).

Therefore, we conclude that Rkp∗OP2×P2(m,n) ∼= OP2(m) ⊗ Hk(P2,OP2(n)). This proves the
required statement.

Sheaf OZ0. From the resolution of IZ0 we obtain the long exact sequence

0 → p∗OP2×P2(−2,−1)⊕ p∗OP2×P2(−1,−2) → 3p∗OP2×P2(−1,−1) → p∗IZ0 →
→ R1p∗OP2×P2(−2,−1)⊕R1p∗OP2×P2(−1,−2) → 3R1p∗OP2×P2(−1,−1) → R1p∗IZ0 →
→ R2p∗OP2×P2(−2,−1)⊕R2p∗OP2×P2(−1,−2) → 3R2p∗OP2×P2(−1,−1) → R2p∗IZ0 → . . .

Using Lemma 1.34 we conclude that Rkp∗IZ0 = 0 for all k > 0.
From the sequence (1.27) one obtains the long exact sequence

0 → p∗IZ0 → p∗OP2×P2 → p∗OZ0 →
→ R1p∗IZ0 → R1p∗OP2×P2 → R1p∗OZ0 →
→ R2p∗IZ0 → R2p∗OP2×P2 → R2p∗OZ0 → . . .

Since Rkp∗IZ0 = 0 for all k, we conclude

Rkσ0∗OZ0
∼= Rkp∗OP2×P2

∼=
{
OP2 if k = 0,

0 if k 6= 0 .

Sheaf OZ0(−H). Tensoring the sequence (1.27) with OP2×P2(−1, 0) we obtain the exact
sequence

0 → IZ0(−1, 0) → OP2×P2(−1, 0) → OZ0(−H) → 0.

The sequence

0 → OP2×P2(−3,−1)⊕OP2×P2(−2,−2) −→ 3OP2×P2(−2,−1) −→ IZ0(−1, 0) → 0.

is also exact. Hence, using Lemma 1.34, from the long exact sequence

0→p∗(OP2×P2(−3,−1)⊕OP2×P2(−2,−2))→3p∗OP2×P2(−2,−1)→p∗IZ0(−1, 0)→
→R1p∗(OP2×P2(−3,−1)⊕OP2×P2(−2,−2))→3R1p∗OP2×P2(−2,−1)→R1p∗IZ0(−1, 0)→
→R2p∗(OP2×P2(−3,−1)⊕OP2×P2(−2,−2))→3R2p∗OP2×P2(−2,−1)→R2p∗IZ0(−1, 0)→ . . .
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we conclude that Rkp∗IZ0(−1, 0) = 0 for all k > 0. Therefore, using the long exact sequence

0 → p∗IZ0(−1, 0) → p∗OP2×P2(−1, 0) → p∗OZ0(−H) →
→ R1p∗IZ0(−1, 0) → R1p∗OP2×P2(−1, 0) → R1p∗OZ0(−H) →
→ R2p∗IZ0(−1, 0) → R2p∗OP2×P2(−1, 0) → R2p∗OZ0(−H) → . . .

we obtain

Rkσ0∗OZ0(−H) ∼= Rkp∗OP2×P2(−1, 0) ∼=
{
OP2(−1) if k = 0,

0 if k 6= 0 .

Sheaf OZ0(−H − F ). Tensoring the sequence (1.27) with OP2×P2(−1,−1) we obtain the
exact sequence

0 → IZ0(−1,−1) → OP2×P2(−1,−1) → OZ0(−H − F ) → 0.

The sequence

0 → OP2×P2(−3,−2)⊕OP2×P2(−2,−3) −→ 3OP2×P2(−2,−2) −→ IZ0(−1,−1) → 0.

is also exact. Hence, using Lemma 1.34, from the long exact sequence

0→p∗OP2×P2(−3,−2)⊕p∗OP2×P2(−2,−3)→3p∗OP2×P2(−2,−2)→p∗IZ0(−1,−1)→
→R1p∗OP2×P2(−3,−2)⊕R1p∗OP2×P2(−2,−3)→3R1p∗OP2×P2(−2,−2)→R1p∗IZ0(−1,−1)→
→R2p∗OP2×P2(−3,−2)⊕R2p∗OP2×P2(−2,−3)→3R2p∗OP2×P2(−2,−2)→R2p∗IZ0(−1,−1)→ . . .

we conclude Rkp∗IZ0(−1,−1) = 0 for k 6= 1 and R1p∗IZ0(−1,−1) ∼= OP2(−2). Lemma 1.34
implies also Rkp∗OP2×P2(−1,−1) = 0 for all k. Hence from the exact sequence

0 → p∗IZ0(−1,−1) → p∗OP2×P2(−1,−1) → p∗OZ0(−H − F ) →
→ R1p∗IZ0(−1,−1) → R1p∗OP2×P2(−1,−1) → R1p∗OZ0(−H − F ) →
→ R2p∗IZ0(−1,−1) → R2p∗OP2×P2(−1,−1) → R2p∗OZ0(−H − F ) → . . .

we conclude that
Rkp∗OZ0(−H − F ) ∼= Rk+1p∗IZ0(−1,−1), k > 0.

Thus

Rkp∗OZ0(−H − F ) =

{
OP2(−2) if k = 0,

0 if k 6= 0 .

We proved the following lemma.

Lemma 1.35.

R0σ0∗OZ0
∼= OP2 , R0σ0∗OZ0(−H) ∼= OP2(−1), R0σ0∗OZ0(−H − F ) ∼= OP2(−2),

Rkσ0∗OZ0 = Rkσ0∗OZ0(−H) = Rkσ0∗OZ0(−H − F ) = 0, k > 0.

1.3.2 R-bundles on P̂2, their properties.

Definition 1.36. Let us call the fibres Ẽ0 of new one parameter families Ẽ over t = 0 R-
bundles or R-sheaves on Z0. R stays here for “replacement”. One could call them simply
new sheaves on Z0.

As it has been shown above that R-bundles are exactly those constructed by the help of
normal to X8 directions.

We are going now to describe different exact sequences with R-bundles.
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Locally free resolutions of R-bundles on Z0.

Let σ0 denote the restriction of σ to Z0, i. e., σ0 is a map Z0 → P2. Let us recall the meaning
of H and F . H is given by a line in D0 = P̃2 that does not meet L. The divisor F is given,
say, by equation u1 = 0 and has as components the line F1 := {u1 = 0} in D1

∼= P2 and the

line F0 := {u1 = 0} in D0 = P̃2.

Since Ẽ is flat over U , restricting (1.19) to Z0 we obtain the exact sequence

0 → 2OZ(−H − F )|Z0

Ãt|Z0−−−→ OZ(−H)|Z0 ⊕OZ |Z0 → Ẽ0 → 0.

As OZ |Z0
∼= OZ0 , OZ(−H)|Z0

∼= OZ0(−H), OZ(−H−F )|Z0
∼= OZ0(−H−F ), we obtain the

exact sequence

0 → 2OZ0(−H − F )
Ãt|Z0−−−→ OZ0(−H)⊕OZ0 → Ẽ0 → 0, (1.28)

where

Ãt|Z0 =

(
u1 + ξ0u0 u1(A01x0 + A11x1 + A12x2) + u2(A02x0 + A22x2) + ξ00x0u0

u2 + η0u0 u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2) + η00x0u0

)

and we interpret the entries of this matrix as sections of the corresponding locally free sheaves
on Z0. Let us collect our observations in the following proposition.

Proposition 1.37. Every R-bundle on Z0 has a resolution

0 → 2OZ0(−H − F )

(
l1 q̃1

l2 q̃2

)

−−−−−→ OZ0(−H)⊕OZ0 → Ẽ0 → 0, (1.29)

where l1, l2 ∈ Γ(Z0,OZ0(F )) ∼= Γ(D1,OD1(F )) ∼= k3, and q̃1, q̃2 ∈ Γ(Z0,OZ0(H + F )) ∼= k6.

Moreover, the matrix Φ =
(

l1 q̃1

l2 q̃2

)
has the following properties:

• l1 and l2 are linear independent and their common zero point l1 ∧ l2 in D1
∼= P2 does not

belong to L;

• det(Φ|D0) 6= 0;

• (Φ|D1)(q) 6= 0 for all q ∈ D1, in particular det(Φ|D1) 6= 0.

Remark 1.38. Note that the point l1 ∧ l2 ∈ D1 is exactly the point s(0) from Remark 1.13.

Proposition 1.39. Let E be a sheaf on Z0 given by a resolution

0 → 2OZ0(−H − F )
Φ−→ OZ0(−H)⊕OZ0 → E → 0.

Then applying σ0∗ to this sequence gives the exact sequence

0 → 2OP2(−2)
σ0∗Φ−−−→ OP2(−1)⊕OP2 → σ0∗E → 0.

In particular push forwards of R-bundles on Z0 are 3m + 1 sheaves on P2.

Proof. Follows from Lemma 1.35.

R-bundles on Z0 have the following important property, which makes resolutions (1.28)
similar to the Beilinson resolutions of coherent sheaves on Pn (cf. [3]).
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Proposition 1.40. Every morphism between sheaves possessing resolutions of the type (1.28)
can be uniquely lifted to a morphism of the corresponding resolutions. In particular this holds
for R-bundles.

Proof. A lifting exists if and only if

Ext1(OZ0(−H)⊕OZ0 , 2OZ0(−H − F )) = 0.

There is a unique lifting if and only if

Ext1(OZ0(−H)⊕OZ0 , 2OZ0(−H − F )) = Hom(OZ0(−H)⊕OZ0 , 2OZ0(−H − F )) = 0.

Since

Ext1(OZ0(−H)⊕OZ0 , 2OZ0(−H − F )) =

= 2 Ext1(OZ0(−H),OZ0(−H − F ))⊕ 2 Ext1(OZ0 ,OZ0(−H − F )),

it is enough to show that Ext1(OZ0(−H),OZ0(−H−F )) = Ext1(OZ0 ,OZ0(−H−F )) = 0. Since
the sheaf OZ0(−H) is locally free, one obtains (cf. [12], III, Proposition 6.7 and Proposition 6.3,
(c))

Exti(OZ0(−H),OZ0(−H − F )) = H i(OZ0(H)⊗OZ0(−H − F )) = H i(OZ0(−F ))

and
Exti(OZ0 ,OZ0(−H − F )) = H i(OZ0(−H − F )).

By Proposition 1.32 all cohomology groups of OZ0(−F ) and OZ0(−H − F ) are zero. One
concludes that

Ext1(OZ0(−H)⊕OZ0 , 2OZ0(−H − F )) = Hom(OZ0(−H)⊕OZ0 , 2OZ0(−H − F )) = 0.

This completes the proof.

Remark 1.41. 1) Since Γ(Z0,OZ0) = k, we conclude that the set of endomorphisms of the
sheaf 2OZ0(−H − F ) is just the set Mat2×2(k) of 2× 2 matrices over k.

2) The set of endomorphism of OZ0(−H)⊕OZ0 can be identified with the set of the matrices
( a b

c d ), where a ∈ Hom(OZ0(−H),OZ0(−H)) ∼= k, b ∈ Hom(OZ0(−H),OZ0)
∼= Γ(Z0,OZ0(H)),

c ∈ Hom(OZ0 ,OZ0(−H)) ∼= Γ(Z0,OZ0(−H)), d ∈ Hom(OZ0 ,OZ0)
∼= k. We have also an

isomorphism Γ(Z0,OZ0(H)) ∼= Γ(P2,OP2(1)) and Γ(Z0,OZ0(H)) ∼= Γ(P2,OP2(−1)) = 0. That

is why we can interpret the endomorphisms of OZ0(−H) ⊕ OZ0 as matrices

(
λ z
0 µ

)
, where

λ, µ ∈ k and z is a linear form over P2.

Remark 1.42. Note that from the uniqueness of the lifting it follows that isomorphisms between
R-bundles lift to automorphisms of OZ0(−H) ⊕ OZ0 and thus the induced endomorphisms of
2OZ0(−H−F ) are also automorphisms in this case. In other words, isomorphisms of R-bundles
give rise to invertible matrices.

Lemma 1.43. 1) Let E be an R-bundle on Z0. Then Tor
OZ0
1 (E ,OD1) = 0.

2) Let E be an R-bundle on Z0. Then Tor
OZ0
1 (E ,OP̃2

) = 0.
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Proof. 1) The proof is absolutely the same as that of Lemma 1.25, 1). We restrict the resolution
of the type (1.28) to D1 and obtain the exact sequence

0 → Tor
OZ0
1 (E ,OD1) → 2OD1(−L)

ÃD1−−→ 2OD1 → ED1 → 0,

where

ÃD1 =

(
u1 + ξ0u0 A01u1 + A02u2 + ξ00u0

u2 + η0u0 B01u1 + B02u2 + η00u0

)
.

This matrix is injective because it has been obtained by the help of a normal direction.
2) The proof is absolutely the same as that of Lemma 1.25, 2). We consider the resolution

of the type (1.28). Restricting this resolution to P̃2 we obtain the exact sequence

0 → Tor
OZ0
1 (E ,OP̃2

) → 2OP̃2
(−H − F )

Ã−→ OP̃2
(−H)⊕OP̃2

→ EP̃2
→ 0,

where

Ã =

(
u1 u1(A01x0 + A11x1 + A12x2) + u2(A02x0 + A22x2)
u2 u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2)

)
.

Let us prove the injectivity of Ã. For an arbitrary point x from P̃2, let us consider the restriction
Ãx of Ã to the stalk at x:

2OP̃2,x

Ãx−→ 2OP̃2,x.

First of all one sees that for x ∈ P̃2 \ L the map Ãx is the same as Aσ(x), σ(x) ∈ P2. We just

use here that σ is an isomorphism on P̃2 \L. Therefore, we conclude that Ã is injective outside
of L, thus its kernel may only be supported on L. This is impossible since 2OP̃2

(−H − F ) is a
locally free sheaf and hence has no torsion. This proves the second part of the lemma.

Hilbert polynomials of R-bundles on P̂2, comparison with 3m + 1 sheaves on P2.

Let us compute Hilbert polynomials of R-bundles with respect to the sheaf L := OZ0(1, 1) =
OZ0(H + F ).

Lemma 1.44. Let E be an R-bundle on Z0 = P̂2, then its Hilbert polynomial with respect to L
equals 6m + 1.

Proof. Note that E have a resolution of the type

0 → 2OZ0(−H − F ) → OZ0(−H)⊕OZ0 → E → 0.

Therefore, to compute the Hilbert polynomial of E it is enough to compute the Hilbert poly-
nomials of the sheaves OZ0(−H − F ), OZ0(−H) and OZ0 .

In Lemma 1.31 we computed the Hilbert polynomials of the sheaves OZ0(a, b). In particular
for a + b = 0 we obtain the Hilbert polynomial of OZ0 :

2m2 + 3m + 1.

For a + b = −1 we obtain the Hilbert polynomial of OZ0(−H) and OZ0(−F ) :

2m2 + m.

For a+b = −2 we obtain the Hilbert polynomial of OZ0(−2H), OZ0(−2F ) and of OZ0(−H−F ):

2m2 −m.
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We compute now

χ(E ⊗ L⊗m) = χ(OZ0(−H)⊗ L⊗m) + χ(OZ0 ⊗ L⊗m)− χ(OZ0(−H − F )L⊗m)

= (2m2 + m) + (2m2 + 3m + 1)− 2(2m2 −m)

= 6m + 1.

This completes the proof.

Note that our fibres P2 and Z0 lie in the product P2 × P2. We have just calculated the
Hilbert polynomial of R-bundles on Z0 with respect to the sheaf OZ0(H +F ) ∼= OP2×P2(1, 1)|Z0 .
To be able to compare the Hilbert polynomials of “new” and “old” sheaves one must calculate
the Hilbert polynomials of “old” sheaves with respect to the sheaf OP2×P2(1, 1)|P2 .

Lemma 1.45. OP2×P2(1, 1)|P2
∼= OP2(2).

Proof. First of all note that the fibres P2 are embedded into P2 × P2 by the maps

P2
jt−→ P2 × P2, 〈x0, x1, x2〉 → (〈x0, x1, x2〉, 〈tx0, x1, x2〉)

for t 6= 0. Let π1 and π2 be the projections P2 × P2 → P2. Then

OP2×P2(1, 1)|P2
∼=j∗t (π

∗
1OP2(1)⊗ π∗2OP2(1)) ∼= j∗t π

∗
1OP2(1)⊗ j∗t π

∗
2OP2(1) ∼=

(π1jt)
∗OP2(1)⊗ (π2jt)

∗OP2(1).

But the morphisms π1jt = idP2 and π2jt = (〈x0, x1, x2〉 7→ 〈tx0, x1, x2〉) are automorphisms of
P2. Therefore, (π1jt)

∗OP2(1) ∼= (π2jt)
∗OP2(1) ∼= OP2(1) and we obtain

OP2×P2(1, 1)|P2
∼= OP2(1)⊗OP2(1) ∼= OP2(2).

This proves the statement of the lemma.

For every 3m + 1 sheaf F on P2 its Hilbert polynomial with respect to OP2×P2(1, 1)|P2 is

χ(F ⊗ (OP2(2))⊗m) = χ(F ⊗OP2(2m)) = 3(2m) + 1 = 6m + 1.

We see that “new” and “old” sheaves have the same Hilbert polynomial 6m + 1.

Remark 1.46. Note that if we consider P2 embedded as above into the product P2 × P2,
then there are two different twisting sheaves OP2(1, 0) := OP2×P2(1, 0)|P2 and OP2(0, 1) :=
OP2×P2(0, 1)|P2 that are both isomorphic to OP2(1).

If we consider Z0 = P̂2 embedded into P2 × P2, then OZ0(H) = OZ0(1, 0) = OP2×P2(1, 0)|Z0

and OZ0(F ) = OZ0(0, 1) = OP2×P2(0, 1)|Z0

R-bundles as extensions.

First of all let us prove the following lemma.

Lemma 1.47. 1) Let l1, l2 ∈ Γ(Z0,OZ0(F )) be two linear independent forms. Then the homo-
morphism

OZ0

( l1 l2 )−−−−→ 2OZ0(F )

is injective.
2) Let q be the common zero point of l1 and l2 in D1. If q lies outside of L, then there is

the exact sequence

0 → OZ0(−2F )
( l2 −l1 )−−−−−→ 2OZ0(−F )

(
l1
l2

)

−−−→ OZ0 → kq → 0.
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Proof. 1) For l ∈ Γ(Z0,OZ0(F )), the kernel of OZ0

l−→ OZ0(F ) may only be supported on the
zero set of l. For all l different from αu0, α ∈ k, this zero set is a subscheme of dimension 1 in
Z0. But there is no 1-dimensional torsion of OZ0 . Therefore, l is injective for all l 6= αu0.

Suppose that the kernel of (l1, l2) is different from zero. Then from the considerations above
it follows that both l1 and l2 are multiples of u0, hence they are linear dependent, which is a
contradiction.

2) The sequence

2OZ0(F )

(
l1
l2

)

−−−→ OZ0 → kq → 0

is exact as the pull back of the exact sequence

2OD1(F )

(
l1
l2

)

−−−→ OD0 → kq → 0

on D1
∼= P2. Let K be the kernel of 2OZ0(F )

(
l1
l2

)

−−−→ OZ0 . By part 1) of this lemma and by the
universal property of kernel we conclude that OZ0(−2F ) is a submodule of K and there is the
commutative diagram with injective arrows

K 2OZ0(F )

OZ0(−2F )

// //

;; ( l2 −l1 )

;;wwwwwwwwwOO

i

OO
.

From the exact sequence

0 → K → 2OZ0(F )

(
l1
l2

)

−−−→ OZ0 → kq → 0

using Lemma 1.31 we conclude that the Hilbert polynomial of K is

2(2m2 + m)− (2m2 + 3m + 1) + 1 = 2m2 −m,

which coincides with the Hilbert polynomial of OZ0(−2F ). Therefore, the inclusion

OZ0(−2F )
i−→ K

is an isomorphism. This proves the second statement of the lemma.

Proposition 1.48. Let Ẽ0 be an R-bundle, and let
(

l1 q̃1

l2 q̃2

)
be as in (1.29). Let C be the support

of Ẽ0, i. e., the curve given by the equation l1q̃2 − l2q̃1 = 0. Let q = 〈l1 ∧ l2〉 ∈ D1 \ L be the
point where l1 and l2 vanish (cf. Proposition 1.37), then there is a non-trivial extension

0 → OC → Ẽ0 → kq → 0.

Proof. By Lemma 1.47 there is the exact sequence

0 → OZ0(−2F −H)
( l2 −l1 )−−−−−→ 2OZ0(−F −H)

(
l1
l2

)

−−−→ OZ0(−H) → kq → 0.

Let us split this exact sequence into two short exact sequences

0 → A→ OZ0(−H) → kq → 0
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and

0 → OZ0(−2F −H)
( l2 −l1 )−−−−−→ 2OZ0(F −H) → A→ 0.

We obtain then the commutative diagram

0 0

0 OZ0(−2F −H) OZ0 OC 0

0 2OZ0(−H − F ) OZ0(−H)⊕OZ0 Ẽ0 0

0 A OZ0(−H) kq 0

0 0

//
−(l1q̃2−l2q̃1)

// // //

//

(
l1 q̃1

l2 q̃2

)

// // //

// // // //

²²

( l2 −l1 )

²²

²²

²²

²²

( 0 1 )

²²

( 1
0 )

²²

²²

(
l1
l2

)
((QQQQQQQQQQQQQQQQQQQQ

with exact rows and columns. By snake lemma this induces the exact sequence

0 → OC → Ẽ0 → kq → 0

that makes the above diagram a 9-diagram. We proved that Ẽ is an extension of kq by OC .

If this extension is trivial, then Ẽ ∼= OC ⊕ kq and hence σ0∗kq
∼= kp is a direct summand of

the 3m + 1 sheaf σ0∗Ẽ on P2 (cf. Proposition 1.39). This contradicts the stability of 3m + 1

sheaves on P2. Therefore, Ẽ is a non-trivial extension of kq by OC . We proved the required
statement.

Factor of a pull back of a 3m + 1 sheaf.

Restricting (1.18) to Z0 and using the flatness of Ẽ over U one obtains the commutative diagram
with exact rows and columns

0

2OD1(−L)

2OZ0(−2H) OZ0(−H)⊕OZ0
σ∗0E 0

0 2OZ0(−H − F ) OZ0(−H)⊕OZ0 Ẽ0 0.

2OD1(−L) 0

0

σ∗0A
// // //

//
Ãt|Z0 // // //

( s 0
0 s )

²²

²²

²²

²²

²²

²²

²²

(1.30)

In particular there is an exact sequence

0 → 2OD1(−L) → σ∗0E → Ẽ0 → 0.

Therefore, we obtain the following property of R-bundles on P̂2.
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Proposition 1.49. For every R-bundle E on P̂2 there exists a 3m + 1 sheaf F on P2 singular
at a point p ∈ P2 and the exact sequence

0 → 2OD1(−L) → σ∗0F → E → 0,

where σ0 : P̂2 → P2 is the contraction of D1 to the point p.

Let us return back to the diagram (1.30).

Lemma 1.50. The kernel of σ∗0A is isomorphic to 2OD1(−L) and there is the following locally
free resolution of σ∗0E:

2OZ0(−2H − F )

(
u0 0
0 u0

)

−−−−−→ 2OZ0(−2H)
σ∗0A−−→ OZ0(−H)⊕OZ0 −→ σ∗0E → 0. (1.31)

Proof. As u0x1 = u0x2 = 0 at Z0, it is clear that the image of

2OZ0(−2H − F )

(
u0 0
0 u0

)

−−−−−→ 2OZ0(−2H)

lies in the kernel of σ∗0A. Let us show that the kernel consists of multiples of u0.
As A is an injective morphism on P2, we conclude that the kernel of σ∗0A can be supported

only on D1. Let us consider the open sets

W0i = {x0 6= 0, ui 6= 0} (1.32)

in k× P2 × P2. Then D1 is covered by this sets. The morphism σ∗0A looks as

(x1

x0

x1

x0
(. . . ) + x2

x0
(. . . )

x2

x0

x1

x0
(. . . ) + x2

x0
(. . . )

)

We will calculate the kernel in each of these sets. Every W0i can be identified with k×k2×
k2 ∼= k5. Then Z ∩W0i can be identified with k3. As Z is given in by the minors of the matrix

(
tx0 x1 x2

u0 u1 u2

)
,

the local coordinates for Z ∩W00 are t, u1

u0
, and u2

u0
. We have in this case

x1

x0

= t
u1

u0

,
x2

x0

= t
u2

u0

. (1.33)

The equation for Z0 in this chart is t = 0.
The tuple (a, b) belongs to the kernel of σ∗0A if and only if (a, b)σ∗0A is a multiple of t but

this is always the case because in this case σ∗0A is a multiple of t by (1.33). Thus (a, b) is
generated by the identity matrix.

The local coordinates for Z ∩W01 are x1

x0
, u0

u1
, and u2

u1
. We have in this case

t =
x1

x0

u0

u1

,
x2

x0

=
x1

x0

u2

u1

. (1.34)

The equation for Z0 in this chart is x1

x0

u0

u1
= 0.

The tuple (a, b) belongs to the kernel of σ∗0A if and only if (a, b)σ∗0A is a multiple of x1

x0

u0

u1
.

By (1.34) the matrix σ∗0A is a multiple of x1

x0
. Therefore, (a, b) = (u0

u1
a′, u0

u1
b′), i. e., (a, b) is

generated by the matrix

(u0

u1
0

0 u0

u1

)
.
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The local coordinates for Z ∩W02 are x2

x0
, u0

u2
, and u1

u2
. We have in this case

t =
x2

x0

u0

u2

,
x1

x0

=
x2

x0

u1

u2

. (1.35)

The equation for Z0 in this chart is x2

x0

u0

u2
= 0.

The tuple (a, b) belongs to the kernel of σ∗0A if and only if (a, b)σ∗0A is a multiple of x2

x0

u0

u2
.

By (1.35) the matrix σ∗0A is a multiple of x2

x0
. Therefore, (a, b) = (u0

u2
a′, u0

u1
b′), i. e., (a, b) is

generated by the matrix

(u0

u2
0

0 u0

u2

)
.

We have shown that every element from the kernel of σ∗0A is generated by

2OZ0(−2H − F )

(
u0 0
0 u0

)

−−−−−→ 2OZ0(−2H).

Since
(

u0 0
0 u0

)
is annihilated by the equations of D1, there is a factorization

2OZ0(−2H − F ) 2OZ0(−2H).

2OD1(−L)

(
u0 0
0 u0

)

//

## ##GG
GG

GG
GG

G

φ

;;wwwwwwwww

Moreover the restriction of φ to D1 is equal to

2OD1(−L)

(
u0 0
0 u0

)

−−−−−→ 2OD1 ,

thus is injective. This implies that φ is injective outside of L. But 2OD1(−L) has no torsion as
a locally free sheaf on D1. Therefore, φ is injective. By abuse of notation we will write

(
u0 0
0 u0

)
for φ.

Proposition 1.51. Every R-bundle Ẽ0 possesses the commutative diagram

0 0

2OD1(−L)
2OD1(−L)

0 2OD1(−L) 2OZ0(−2H) OZ0(−H)⊕OZ0
σ∗0E 0

0 2OZ0(−H − F ) OZ0(−H)⊕OZ0 Ẽ0 0

2OD1(−L) 0

0

// (
u0 0
0 u0

)//
σ∗0A

// // //

//
Ãt|Z0 // // //

²²

(
u0 0
0 u0

)

²²

( s 0
0 s )

²²

²²

²²

²²

²²

²²

²²

qqqqqqqqqqqqqq

qqqqqqqqqqqqqq
(1.36)

with exact rows and columns.

Proof. Follows from diagram (1.30) by applying Lemma 1.50.

Corollary 1.52. We obtain also a locally free resolution of OD1(−L)

OZ0(−2H − F )
u0−→ OZ0(−2H)

s−→ OZ0(−H − F ) −→ OD1(−L) → 0. (1.37)

There is also the following exact sequence we will use later:

0 → OD1(−L)
u0−→ OZ0(−2H)

s−→ OZ0(−H − F ) −→ OD1(−L) → 0. (1.38)
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Restrictions of R-bundles to D0 and D1.

From Lemma 1.25, 1) we already know that the restriction E|D1 of an R-bundle E on Z0 to D1

is a 2m + 2 sheaf on P2. In particular we obtain (cf. section A.3) that the support C1 of the
sheaf E|D1 is a conic in P2.

Let us describe the restrictions of R-bundles to D0.

Lemma 1.53. 1) For a fixed matrix A ∈ X8, the restriction to P̃2 of each R-bundle E con-

structed at the point A is isomorphic to OC0, where the curve C0 = {det Ã = 0} ⊆ P̃2 is the
support of EP̃2

.
2) This isomorphism is unique up to multiplication by a non-zero constant.

Proof. 1) We will show that there is a surjective morphism OP̃2
→ EP̃2

with kernel isomorphic
to the ideal sheaf of C0. Therefore, EP̃2

∼= OC0 .
We have the resolution

0 → 2OP̃2
(−H − F )

Ã−→ OP̃2
(−H)⊕OP̃2

β−→ EP̃2
→ 0, Ã =

(
u1 Q1

u2 Q2

)
.

The morphism

2OP̃2
(−H − F )

(u1
u2 )−−−→ OP̃2

(−H)

is obtained by the pulling back from P1 to P̃2 of the exact Euler sequence

2OP1(−1)
(u1

u2 )−−−→ OP1 → 0

and by tensoring it with OP̃2
(−H). Therefore, 2OP̃2

(−H − F )
(u1

u2 )−−−→ OP̃2
(−H) is a surjection

and the canonical map

α = (OP̃2
↪→ OP̃2

(−H)⊕OP̃2

β−→ Ẽ|P̃2
)

is then surjective as well. We obtained a surjection OP̃2

α−→ Ẽ|P̃2
. Straightforward calculations

show that its kernel consists of those sections which are multiples of the determinant of Ã.
Therefore, the kernel of α coincides with the ideal sheaf of C0. Let us see this on stalks.
For a point x ∈ P̃2 consider f ∈ OP̃2,x such that α(f) = 0. This means β(0, f) = 0 and

therefore from the exactness of the sequence above it follows that (0, f) = (ξ, η)Ãx for some
(ξ, η) ∈ 2OP̃2

(−H − F )x. Let

Ãx =

(
l1 w1

l2 w2

)
, l1, l2, w1, w2 ∈ OP̃2,x.

Then (0, f) = (ξ, η)Ãx = (ξl1+ηl2, ξw1 +ηw2), i. e., ξl1 +ηl2 = 0 and f = ξw1 +ηw2. Note that
since the sections u1 and u2 do not vanish simultaneously, at least one of l1 and l2 is invertible
in OP̃2,x. Let us assume without loss of generality that l1 is invertible. Then ξ = −l−1

1 ηl2 and
thus

f = ξw1 + ηw2 = −l−1
1 ηl2w1 + ηw2 = l−1

1 η(−l2w1 + l1w2) = l−1
1 η · det Ãx,

which proves the required statement.
2) Since C0 is a compact curve, one gets Hom(Ẽ0|P̃2

, Ẽ0|P̃2
) ∼= Hom(OC0 ,OC0)

∼= k, i. e.,

Ẽ0|P̃2
and OC0 are simple sheaves. This implies Hom(Ẽ0|P̃2

,OC0)
∼= k, which proves the second

part of the lemma.
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Remark 1.54. Note that the Hilbert polynomial with respect to OD0(H + F ) of the sheaf B
given by the resolution

0 → 2OP̃2
(−H − F ) −→ OP̃2

(−H)⊕OP̃2
−→ B → 0,

is 4m + 1. In particular this holds for the sheaf OC0 from Lemma 1.25.

Proof. Using (1.22) and the resolution of B we obtain that Hilbert polynomial of B is

(
3

2
m2 +

1

2
m

)
+

(
3

2
m2 +

5

2
m + 1

)
− 2

(
3

2
m2 − 1

2
m

)
= 4m + 1.

This proves the required statement.

Remark 1.55. Note that the restriction of resolution (1.29) to the component D1 = P2 is a

Beilinson resolution of Ẽ0 on P2.

Remark 1.56. One can also show that the restriction of (1.29) to D0 = P̃2 is the resolution of
Beilinson type from [1], Theorem 8.

Proof. Recall that P̃2
∼= P(OP1⊕OP1(−1)) is a P1-bundle over P1 (cf. [12], V, Example 2.11.5).

Let π : P̃2 → P1 be the projection.
The relative sheaf Orel(1) defined by the sheaf OP1 ⊕ OP1(−1) is isomorphic to OP̃2

(L) ∼=
OP̃2

(H − F ) = OP̃2
(1,−1) (cf. [12], V, Proposition 2.8). We obtain then the sheaf

Orel(1) ∼= OP̃2
(1,−1).

Since Ω1
P1

∼= OP1(−2), we obtain Ω1
P1

(1) ∼= OP1(−1) and

π∗(Ω1(1)) ∼= π∗OP1(−1) = OP̃2
(0,−1).

The dual Q∗ of the canonical quotient sheaf Q is defined by the exact sequence

0 → Q∗ → π∗(OP1 ⊕OP1(−1)) → Orel(1) → 0.

Since π∗(OP1 ⊕OP1(−1)) ∼= OP̃2
⊕OP̃2

(0,−1) and Orel(1) ∼= OP̃2
(1,−1), we get

0 → Q∗ → OP̃2
⊕OP̃2

(0,−1) → OP̃2
(1,−1) → 0.

Using (1.22) we compute the Hilbert Polynomial of Q∗ with respect to OP̃2
(1, 1)

(
3

2
m2 +

5

2
m + 1

)
+

(
3

2
m2 +

3

2
m

)
−

(
3

2
m2 +

7

2
m + 1

)
=

3

2
m2 +

1

2
m.

Since Q∗ is an invertible sheaf, it has the form OP̃2
(a, b) for some a and b. By (1.21) its Hilbert

polynomial is

3

2
m2 +

[
2a + b +

5

2

]
m +

1

2
(a + b)2 +

3

2
(a + b)− 1

2
b2 − 1

2
b + 1.

Therefore, comparing the coefficients we obtain

2a + b +
5

2
=

1

2
and

1

2
(a + b)2 +

3

2
(a + b)− 1

2
b2 − 1

2
b + 1 = 0.
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Thus b = −2a− 2 and

1

2
(a + 2)2 − 3

2
(a + 2)− 1

2
(4a2 + 8a + 4) +

1

2
(2a + 2) + 1 = −3

2
a2 − 5

2
a− 1 = 0.

So a must satisfy 3a2 +5a+2 = 0. The only integer root of this equation is a = −1 (the second
root is −2

3
). So a = −1 and b = −2a− 2 = 0. We obtained

Q∗ ∼= OP̃2
(−1, 0).

Since P̃2 = P(OP1 ⊕OP1(−1)) = P(OP1 ⊕OP1(1)), we may apply now Theorem 8 from [1]. Let

us formulate the statement of that theorem here for the case of P̃2
π−→ P1.

Claim. Every sheaf F on P̃2 = P(OP1 ⊕ OP1(−1)) = P(OP1 ⊕ OP1(1)) is obtained as a coho-
mology of the complex C•

F , where

Cp
F =

⊕

q+h=s−p

Hs(F ⊗ π∗(OP1(−q))⊗Orel(−h))⊗ π∗(Ωq
P1

(q))⊗ ∧hQ∗. (1.39)

Using that π∗(Ωq
P1

(q)) and ∧hQ∗ are zero for q and h different from 0 or 1, using that

π∗(Ω1
P1

(1)) ∼= OP̃2
(0,−1), Orel(1) ∼= OP̃2

(1,−1), and Q∗ ∼= OP1(−1, 0)

we obtain the formula

Cp
F =

⊕

q+h=s−p
q, h∈{0,1}

Hs(F(−h, h− q))⊗OP̃2
(−h,−q), (1.40)

where F(−h, h − q) = F ⊗ OP̃2
(−h, h − q). We need the cohomologies of the sheaves F ,

F(−1, 1), F(0,−1), F(−1, 0).

Claim. The cohomologies of the sheaves F , F(−1, 1), F(0,−1), F(−1, 0)are described in the
following table.

h0 h1 h2

F 1 0 0
F(−1, 0) 0 2 0
F(0,−1) 0 0 0
F(−1, 1) 0 1 0

Proof of the Claim. The restrictions of R-bundles to D0 = P̃2 are the structure sheaves of their
support, i. e., every such a sheaf is given by the resolution

0 → OP̃2
(−H − 2F ) → OP̃2

→ F → 0.

Using this resolution and computing the cohomology of the invertible sheaves on P̃2 by means of
the exact sequences (1.24) and the corresponding long exact sequences (using Künneth formula
for the product P2 × P1) we obtain the required statement.

Using (1.40) we obtain finally C−2
F = C1

F = C2
F = 0 and

C−1
F = H1(P̃2,F(−1, 0))⊗OP̃2

(−1,−1),

C0
F = H1(P̃2,F(−1, 1))⊗OP̃2

(−1, 0)⊕H0(P̃2,F)⊗OP̃2
.
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Therefore, the resolution of the sheaf F is

0 → H1(F(−1, 0))⊗OP̃2
(−1,−1) → H1(F(−1, 1))⊗OP̃2

(−1, 0)⊕H0(F)⊗OP̃2
→ F → 0,

i.e.,
0 → 2OP̃2

(−1,−1) → OP̃2
(−1, 0)⊕OP̃2

→ F → 0

But the restriction of (1.29) to D0 = P̃2 is also a resolution of this type. We proved the required
statement.

Double structure.

We want to show here that an R-bundle on Z0 is not always defined only by its restrictions to
D0 = P̃2 and D1 = P2. Let us consider an example.

Let A =

(
x1 0
x2 x2(x1 + x2)

)
and let B =

(
0 x2

0

0 0

)
. Note that B is a normal direction to

X8 at the point A in this case (cf. (1.13), Example 1.8). The matrix on Z0 is then

ÃB =

(
u1 u0x0

u2 u2(x1 + x2)

)
.

The support of the sheaf is given by the determinant of ÃB, by the equation

u1u2(x1 + x2)− u0u2x0 = 0.

In this case the support of the R-bundle defined by ÃB consists of lines and L is one of those
lines.

»»»»»»»»

»

»

»»»»»»»»

»»»»»»»»

@
@

@
@

@
@

@
@

»»»»»»»»

@
@@ @

@@
»»»»»»»»

B
B

B
BB

B
B
BB

D
D
D
D
DD

D
D
DD

¦
¦
¦
¦
¦

¦
¦
¦
¦¦

t t t@
@

@
@

@@

L

u1 = 0

D1

u1 = −u2
u2 = 0

D0

u2 = 0

Let us consider the situation in the chart Z ∩ W01
∼= k3 (cf. (1.32)). In this case the local

coordinates are
y1 :=

x1

x0

, v0 :=
u0

u1

, and v2 :=
u2

u1

.

The equation for Z0 in this chart is y1v0 = 0. The matrix ÃB is then

(
1 v0

v2 v2y1(1 + v2)

)
.

Its determinant is v2y1(1 + v2)− v0v2. The ideal of the support is then

(y1v0, v2y1(1 + v2)− v0v2).
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Take some point z at L such that z is different from the intersection points with other lines of
the support and let us consider the situation at the stalk at z. Then v2 6= 0 and 1 + v2 6= 0,
i. e., are invertible. We obtain the ideal of the support at z:

(y1v0, y1(1 + v2)− v0) = (y2
1(1 + v2), y1(1 + v2)− v0) = (y2

1, y1(1 + v2)− v0).

It is obviously contained in the ideal (y1, v0) of L but is not equal to it. This means we have a
“double” structure on L, i. e, the support of the R-bundle in this case is not a reduced variety.

1.3.3 The inverse constructions.

We have already proven many properties of R-bundles. In fact some of them may be used as
characteristic properties, i. e., one could use them to define R-bundles.

Locally free resolutions.

Let us show that the converse of Proposition 1.37 holds true.

Proposition 1.57. Let Φ : 2OZ0(−H−F ) → OZ0(−H)⊕OZ0, Φ =
(

l1 q̃1

l2 q̃2

)
, have the following

properties:

• l1 and l2 are linear independent and their common zero point l1 ∧ l2 in D1
∼= P2 does not

belong to L;

• det(Φ|D0) 6= 0;

• (Φ|D1)(q) 6= 0 for all q ∈ D1, in particular det(Φ|D1) 6= 0.

Then the cokernel of Φ, i.e., the sheaf E defined by the exact sequence

0 → 2OZ0(−H − F )
Φ−→ OZ0(−H)⊕OZ0 → E → 0

is an R-bundle.

Proof. It is enough to show that E is a fibre of a new one-dimensional family over t = 0 (cf.
Definition 1.36 on page 35).

First of all note that Φ never vanishes, hence E is locally free on its support.
Let

Φ =

(
ξ0u0 + a1u1 + a2u2 ξ00x0u0 + u1(A01x0 + A11x1 + A12x2) + u2(A02x0 + A22x2)
η0u0 + b1u1 + b2u2 η00x0u0 + u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2)

)
.

Take

A =

(
a1x1 + a2x2 x1(A01x0 + A11x1 + A12x2) + x2(A02x0 + A22x2)
b1x1 + b2x2 x1(B01x0 + B11x1 + B12x2) + x2(B02x0 + B22x2)

)
, B =

(
ξ0x0 ξ00x

2
0

η0x0 η00x
2
0

)
.

Since l1 ∧ l2 lies outside of L, we conclude that a1b2 − a2b1 6= 0 and hence a1x1 + a2x2 and
b1x1 +b2x2 are linear independent. Moreover, det A = 0 if and only if det(Φ|D0) = 0. Therefore,
we conclude that A lies in X and then in X8.

Then Φ is obtained applying the construction at A ∈ X8 along B. Note that B is a normal
direction by Proposition 1.24.
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In Proposition 1.57 we use the properties of Φ|D0 and Φ|D1 on D0 and D1 respectively. So
it would be natural if R-bundles were defined just by morphisms

2OD0(−H − F )
Φ|D0−−−→ OD0(−H)⊕OD0 and 2OD1(−F )

Φ|D1−−−→ 2OD1 .

Let is formulate this idea properly.
Let

0 → 2OD0(−H − F )
Φ0−→ OD0(−H)⊕OD0 → E0 → 0

and
0 → 2OD1(−F )

Φ1−→ 2OD1 → E1 → 0

be two exact sequences and let Φ0 and Φ1 be compatible on L = D0 ∩D1. Consider the gluing
sequences (cf. Lemmata A.16 and A.17)

0 → 2OZ0(−H − F ) → 2OD0(−H − F )⊕ 2OD1(−F ) → 2OL(−1) → 0

and
0 → OZ0(−H)⊕OZ0 → (OD0(−H)⊕OD0)⊕ 2OD1 → 2OL → 0.

Using the compatibility of Φ0 and Φ1, the universal property of kernel, and the snake lemma
we obtain the commutative diagram with exact rows and columns

0 0 C

0

0 2OZ0(−H − F ) 2OD0(−H − F )⊕ 2OD1(−F ) 2OL(−1) 0

0 OZ0(−H)⊕OZ0 (OD0(−H)⊕OD0)⊕ 2OD1 2OL 0.

C0 E E0 ⊕ E1 E01 0

0 0 0

// // // //

// // // //

// ∃ // //

²²

∃! Φ
²²

²²

²²

²²

(
Φ0 0
0 Φ1

)

²²

²²

²²

Φ0|L=Φ1|L
²²

²²

²²

²²

²²

// //

So, Φ0 and Φ1 define an injective homomorphism 2OZ0(−H−F )
Φ−→ OZ0(−H)⊕OZ0(−H−F )

with Φ|D0 = Φ0 and Φ|D1 = Φ1.
We obtained the following “gluing” of resolutions.

Proposition 1.58. A resolution of the type (1.29) is uniquely defined by its restrictions to D0

and D1, which are resolutions of Beilinson type (cf. Remark 1.56 and Remark 1.55).

Let Φ01 := Φ0|L = Φ1|L. If Φ0 and Φ1 satisfy the conditions of Proposition 1.57, then

Φ01 =

(
w1 w3

w2 w4

)
, where the linear forms w1, w2 ∈ Γ(L,OL(1)) are linear independent.

If at least one of w3 and w4 is different from zero, then Φ01 is injective and C = 0. In this
case we have the “gluing” exact sequence

0 → E → E0 ⊕ E1 → E01 → 0

and the sheaf E01 is supported on the zero set of the determinant w1w4 − w3w2 of the matrix
Φ01, i. e., at most on two points from L.
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If both w3 and w4 are zero, we get Φ01 =

(
w1 0
w2 0

)
and therefore the morphism

OL(−2)
( w2 −w1 )−−−−−−→ 2OL(−1)

is the kernel of Φ01. Hence C ∼= OL(−2). In this case E01 is isomorphic to OL and the support
of the sheaf E contains the line L. In this case we have a “double structure” on L (cf. page 47).

Remark 1.59. In particular we see that the gluing for an R-bundle exists if and only if the
line L is not contained in the support of that sheaf.

Extensions.

We are going to prove here the converse of Proposition 1.48.

Proposition 1.60. Let C ⊆ Z0 be a curve defined by the exact sequence

0 → OZ0(−2F −H)
f−→ OZ0

p1−→ OC → 0.

Let q be a point from D1\L and let E be an invertible sheaf on C such that there is a non-trivial
extension

0 → OC
α−→ E β−→ kq → 0.

Then the sheaf E is an R-bundle.

Proof. We are going to show that E has a resolution of the type (1.29). Then by Proposition 1.57
we will conclude that E is an R-bundle. The proof basically repeats with minor modifications
the second part of the proof of Lemma 5.3 from [4].

Recall that kq has a resolution as in Lemma 1.47. Tensoring that resolution OZ0(−H), we
obtain the exact sequence

0 → OZ0(−2F −H)
( l2 −l1 )−−−−−→ 2OZ0(−F −H)

(
l1
l2

)

−−−→ OZ0(−H)
p2−→ kq → 0.

Claim. Ext1(OZ0(−H),OC) = 0.

Proof. SinceOZ0(−H) is a locally free sheaf, we have Ext1(OZ0(−H),OC) ∼= H1(OC⊗OZ0(H)).
Therefore, it is enough to show that H1(OC ⊗ OZ0(H)) = 0. Tensoring the defining sequence
of C with OZ0(H) we obtain a resolution of OC ⊗OZ0(H):

0 → OZ0(−2F ) −→ OZ0(H) −→ OC ⊗OZ0(H) → 0.

From the corresponding long exact cohomology sequence using that H2(Z0,OZ0(−2F )) =
H1(Z0,OZ0(H)) = 0 (see Proposition 1.32) we conclude that H1(OC ⊗OZ0(H)) = 0.

Thus there exists a lifting OZ0(−H)
b−→ E of p, i. e., bβ = p. We obtain thus a surjective

homomorphism OZ0(−H)⊕OZ0

p−→ E defined by p = ( b
a ), where a = p1α. There is the diagram

with commutative squares and exact rows and columns

00 0

E kqOC 0.0

0OZ0(−H)OZ0(−H)⊕OZ0
OZ00

// α //
β

// //

²²²²²²

p2

²²

∃ b

ww

p1

²²

p

²²

//
( 0 1 )

//
( 1

0 )
// //

a

''OOOOOOOOOOOOOOO
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Note that since α is injective the kernel of a coincides with the kernel of p1, i.e., with the
image of f . As

(
l1
l2

)
bβ =

(
l1
l2

)
p2 = 0, we conclude that the image of

(
l1
l2

)
b lies in the kernel of

β, which coincides with the image of α. Since by Proposition 1.32

Ext1(OZ0(−H − F ),OZ0(−2F −H)) ∼= H1(Z0,OZ0(−F )) = 0,

we conclude that there is a lifting ( q1
q2 ) of − (

l1
l2

)
b, i.e., the diagram

OZ0 Im(a)

OZ0(−H)2OZ0(−H − F )

OZ0(−H − 2F )0 0
a //

−b
²²

(
l1
l2

)

//

∃ ( q1
q2 )

²²

//
f

// //

commutes. In other words this means that q1a+l1b = q2a+l2b = 0. We obtain a homomorphism

OZ0(−2F −H)⊕ 2OZ0(−F −H)
Ψ−→ OZ0(−H)⊕OZ0 , Ψ =

(
0 f
l1 q1

l2 q2

)
.

Since it holds Ψ · p =




0 f
l1 q1

l2 q2




(
b
a

)
=




fa
l1b + q1a
l2b + q2a


 = 0, one concludes that Im Ψ is contained

in ker p. Standard diagram chasing shows that ker p ⊆ Im Ψ. Therefore, the sequence

OZ0(−2F −H)⊕ 2OZ0(−F −H)
Ψ−→ OZ0(−H)⊕OZ0

p−→ E → 0

is exact. We obtain the diagram with commutative squares and with exact rows and columns:

00 0

E kqOC 0.0

0OZ0(−H)OZ0(−H)⊕OZ0
OZ00

02OZ0(−F −H)OZ0(−2F −H)⊕ 2OZ0(−F −H)OZ0(−2F −H)0

OZ0(−2F −H)0

0

// α //
β

// //

²²²²²²

p2

²²

∃ b

ss

p1

²²

p

²²

//
( 0 1 )

//
( 1

0 )
// //

a

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVV

(
l1
l2

)

²²

f

²²

( 1 0 )
//

( 0
1 )

//// //

Ψ
²²

( l2 −l1 )

²²²²

²²

From −(l1q2− l2q1)a = ( l2 −l1 ) ( q1
q2 ) a = − ( l2 −l1 )

(
l1
l2

)
b = 0 by the universal property of kernel

it follows that there exists an endomorphism λ of OZ0(−H − 2F ) such that the diagram

OZ0 Im(a)

2OZ0(−H − 2F )

OZ0(−H − 2F )0 0
a //

−(l1q2−l2q1)

²²

//
f

// //

∃ λ

ww

commutes. We can treat λ as an element from k because the endomorphism group of OZ0(−H−
2F ) is isomorphic to k. We obtained λf = −(l1q2 − l2q1).
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Suppose λ = 0. Then ( −q2 q1 )
(

l1
l2

)
= 0 and by the universal property of kernel ( −q2 q1 )

factors through the kernel of
(

l1
l2

)
. This means that there is some ξ ∈ Γ(Z0,OZ0(F )) that

makes the diagram

2OZ0 OZ0(F )

OZ0(−H − F )

OZ0(−F )0 0

(
l1
l2

)

//

(−q2 q1 )

²²

//
( l2 −l1 )

// //

∃ ξ

vv

commute. Therefore, Ψ =

(
0 f
l1 −ξl1
l2 −ξl2

)
and its image coincides with the image of

( 0 f
l1 0
l2 0

)
. This

implies that E is a direct sum of the cokernels of OZ0(−H − 2F )
f−→ OZ0 and of 2OZ0(−H −

F )

(
l1
l2

)

−−−→ OZ0(−h), i.e., E ∼= OC ⊕ kq. This is a contradiction because we assumed that the
extension

0 → OC
α−→ E β−→ kq → 0.

is non-trivial. This proves λ 6= 0 and therefore f = µ(l1q2 − l2q1) for µ = −λ−1. In particular
we also obtain that l1q2 − l2q1 6= 0 (because otherwise f = 0).

Consider the automorphism
(

1 µl2 −µl1
0 1 0
0 0 1

)
of OZ0(−2F −H)⊕ 2OZ0(−F −H). Then




1 µl2 −µl1
0 1 0
0 0 1


 ·Ψ =




1 µl2 −µl1
0 1 0
0 0 1







0 µ(l1q2 − l2q1)
l1 q1

l2 q2


 =




0 0
l1 q1

l2 q2




and we finally conclude that E is given by the resolution

0 → 2OZ0(−H − F )

(
l1 q1

l2 q2

)

−−−−→ OZ0(−H)⊕OZ0

p−→ E → 0.

We used here that the morphism OZ0(−H − F )

(
l1 q1

l2 q2

)

−−−−→ OZ0(−H) ⊕ OZ0 is injective because
the Hilbert polynomial of its kernel is zero. This completes the proof of Proposition 1.60.

Factor of a pull back of a 3m + 1 sheaf.

We are going to prove here the converse of Proposition 1.49.
Let σ0 : Z0 → P2 be a contraction of D1 to a point p ∈ P2, say p = 〈1, 0, 0〉 = {x1 = x2 = 0}.

Let us consider a sheaf E on Z0 such that there is an exact sequence

0 → 2OD1(−L)
%−→ σ∗0F θ−→ E → 0 (1.41)

for some 3m + 1 sheaf F that is not locally free at the point p. Let us also assume that

• E is locally free on its support;

• Hilbert polynomial of E|D0 is 4m + 1.

Using (1.21) one sees that the last condition holds in particular if E|D0 is the structure sheaf
of a curve C0 given by a resolution

0 → OD0(−2F −H) −→ OD0 −→ OC0 → 0.

We will prove the following proposition.
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Proposition 1.61. The sheaf E as described above is an R-bundle.

The considerations below constitute a proof of Proposition 1.61 As F is a 3m + 1 sheaf,
there is a resolution of F

0 → 2OP2(−2h)
A−→ OP2(−h)⊕OP2 → F → 0

for some matrix A ∈ X8, A =

(
x1 x1(. . . ) + x2(. . . )
x2 x1(. . . ) + x2(. . . )

)
. By pulling back this resolution we

obtain the exact sequence

2OZ0(−2H)
σ∗0A−−→ OZ0(−H)⊕OZ0

π−→ σ∗0F → 0.

By Lemma 1.50 the kernel of σ∗0A is isomorphic to 2OD1(−L) and is given by the map

2OD1(−L)

(
u0 0
0 u0

)

−−−−−→ 2OZ0(−2H).

Using the snake lemma we obtain thus the following commutative diagram with exact rows and
columns

0 0

2OD1(−L) 2OD1(−L)

0 2OD1(−L) 2OZ0(−2H) OZ0(−H)⊕OZ0
σ∗0F 0

0 K OZ0(−H)⊕OZ0 E 0.

2OD1(−L) 0

0

// (
u0 0
0 u0

)//
σ∗0A

// π // //

// // π′ // //

²²

(
u0 0
0 u0

)

²²

²²

²²

²²

²²

%

²²

θ

²²

²²

ppppppppppppp

ppppppppppppp
(1.42)

This diagram is similar to diagram (1.36). We are going to prove that the sheaf K is isomorphic
to 2OZ0(−H − F ) and that the sheaf E is an R-bundle.

Let us consider the resolution of 2OD1(−L) (cf. Corollary 1.52)

0 → 2OD1(−L)

(
u0 0
0 u0

)

−−−−−→ 2OZ0(−2H)
( s 0

0 s )−−−→ 2OZ0(−H − F ) −→ OD1(−L) → 0, (1.43)

and the resolution

0 → 2OD1(−L)

(
u0 0
0 u0

)

−−−−−→ 2OZ0(−2H)
σ∗0A−−→ OZ0(−H)⊕OZ0

π−→ σ∗0F → 0. (1.44)

of σ∗0F . Let us split the long exact sequence (1.44) into two short exact sequences:

0 2OD1(−L) 2OZ0(−2H) OZ0(−H)⊕OZ0
σ∗0F 0.

A

// //
σ∗0A

// // //

'' ''OOOOOOO

77

77ooooooo

(1.45)
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Lemma 1.62. 1) (σ∗0F)|D1
∼= 2OD1;

2) The restriction of (1.44) to D1 remains exact. In particular ED1 is given by the resolution

0 → 2OD1(−L)
%D1−−→ 2OD1

θD1−−→ ED1 → 0.

and has Hilbert polynomial 2m + 2.

Proof. 1) Consider the restriction of (1.44) to D1. Then (OZ0(−H)⊕OZ0)|D1
∼= 2OD1 since H

and D1 do not intersect. Moreover, (σ∗0A)|D1 = 0. This implies that πD1 is an isomorphism.
We proved the first part.

2) Let us restrict the sequence (1.41) to D1. Using 1) we obtain the exact sequence

2OD1(−L)
%D1−−→ 2OD1

θD1−−→ ED1 → 0.

Note that %D1 is the same as % outside of L. Therefore, %D1 is injective outside of L. Thus the
kernel of %D1 can be only supported on L. But 2OD1(−L) has no torsion. That is why %D1 is
injective. We obtained the exact sequence

0 → 2OD1(−L)
%D1−−→ 2OD1

θD1−−→ ED1 → 0.

This proves the lemma.

Lemma 1.63. 1) The restriction of (1.44) to D0 remains exact;

2) Tor
OZ0
1 (σ∗0F ,OD0) = 0 and Tor

OZ0
1 (E ,OD0) = 0.

Proof. 1) Let us consider the restriction of the resolution (1.41) to D0 = P̃2. We get the exact
sequence

2OD1(−L)|P̃2

%D0−−→ (σ∗0F)|P̃2

θD0−−→ EP̃2
→ 0.

It holds also 2OD1(−L)|P̃2

∼= 2OL(−1), thus there is an exact sequence

2OL(−1)
%D0−−→ (σ∗0F)D0

θD0−−→ ED0 → 0.

Since we assumed that EP̃2
has the Hilbert polynomial 4m + 1, since the Hilbert polynomial of

(σ∗0F)D0 is 6m + 1 by Lemma 1.29 and the Hilbert polynomial of 2OL(−1) is 2m, we conclude
that the Hilbert polynomial of the kernel of %D0 is zero. That is why %D0 is injective.

2) Restricting (1.31) to P̃2 we obtain the complex

2OP̃2
(−2H − F )

0−→ 2OP̃2
(−2H)

(σ∗0A)|P̃2−−−−−→ OP̃2
(−H)⊕OP̃2

−→ (σ∗0F)|P̃2
→ 0.

Thus Tor
OZ0
1 (σ∗0F ,OD0) is just the kernel of (σ∗0A)|P̃2

. The kernel of σ∗0A can only live on
L because the morphism σ0 : Z0 → P2 is an isomorphism outside of D1. Since the sheaf

OD0(−2H) is locally free, this means that the kernel is zero, therefore Tor
OZ0
1 (σ∗0F ,OD0) = 0.

As Tor
OZ0
1 (σ∗0F ,OD0) = 0, and since we have shown that %D0 is injective, there is an exact

sequence

0 → Tor
OZ0
1 (E ,OP̃2

)
0−→ 2OL(−1)

%D0−−→ (σ∗0F)D0 .

This proves that Tor
OZ0
1 (E ,OP̃2

) = 0. We proved the second statement of the lemma.

We will use the following lemma.
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Lemma 1.64. Hom(2OZ0(−H − F ),A) = Ext1(2OZ0(−H − F ),A) = 0.

Proof. Since 2OZ0(−H − F ) is a locally free sheaf on Z0, it holds

Hom(2OZ0(−H − F ),A) ∼= H0(2A(H + F )), Ext1(2OZ0(−H − F ),A) ∼= H1(2A(H + F )),

where A(H + F ) := A⊗OZ0(H + F ). Let us use the left part of the sequence (1.45):

0 → 2OD1(−L) → 2OZ0(−2H) → A→ 0.

After tensoring by OZ0(H + F ) we obtain the exact sequence

0 → 2OD1 → 2OZ0(−H + F ) → A(H + F ) → 0.

Therefore, there is a long exact cohomology sequence

0 → H0(2OD1) → H0(2OZ0(−H + F )) → H0(A(H + F )) →
→ H1(2OD1) → H1(2OZ0(−H + F )) → H1(A(H + F )) → H2(2OD1) → . . . .

Since it holds H1(2OD1) = H2(2OD1) = 0 and H0(2OD1)
∼= k2, since by Proposition 1.32 we

have H0(OZ0(−H + F )) ∼= k and H1(OZ0(−H + F )) = 0, we conclude that H0(A(H + F )) =
H1(A(H + F )) = 0. This proves the lemma.

Proposition 1.65. Every morphism α : 2OD1 → σ∗0F lifts uniquely to the morphism of the
resolutions (1.43) and (1.44).

Proof. Let us consider the exact sequence

0 → A→ OZ0(−H)⊕OZ0 → σ∗0F → 0.

Applying Hom(2OZ0(−H − F ), ) we obtain the long exact sequence

0 → Hom(2OZ0(−H − F ),A) → Hom(2OZ0(−H − F ),OZ0(−H)⊕OZ0) →
→ Hom(2OZ0(−H − F ), σ∗0F) → Ext1(2OZ0(−H − F ),A).

The existence of the lifting of α to the morphism Ã : 2OZ0(−H +F ) → OZ0(−H)⊕OZ0 follows
from the first part of Lemma 1.64, i. e., from Ext1(2OZ0(−H − F ),A) = 0. The uniqueness of
this lifting follows from the second part of the lemma, i. e, from Hom(2OZ0(−H − F ),A) = 0.
We obtained a commutative diagram

2OZ0(−H − F ) 2OD1(−L)

OZ0(−H)⊕OZ0
σ∗0F .

//

//
''OOOOOOOOOOOO

∃! Ã
²²

α

²²

This induces uniquely a morphism 2OZ0(−2H) → A such that the diagram

2OZ0(−H − F ) 2OD1(−L)

OZ0(−H)⊕OZ0
σ∗0F

//

π //

Ã
²²

α

²²

2OZ0(−2H)

A
∃!B′

²²
//

( s 0
0 s )//

0 //

0

0.

//

//
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Applying Hom(2OZ0 , ) to the exact sequence

0 → 2OD1(−L) → 2OZ0(−2H) → A→ 0

we obtain the long exact sequence

0 → Hom(2OZ0(−2H), 2OD1(−L)) → Hom(2OZ0(−2H), 2OZ0(−2H)) →
→ Hom(2OZ0(−2H),A) → Ext1(2OZ0(−2H), 2OD1(−L)).

Since
Hom(2OZ0(−2H), 2OD1(−L)) ∼= H0(4OD1(−L)) = 0

and
Ext1(2OZ0(−2H), 2OD1(−L)) ∼= H1(4OD1(−L)) = 0,

we obtain the isomorphism

Hom(2OZ0(−2H), 2OZ0(−2H)) ∼= Hom(2OZ0(−2H),A).

This means there is a unique lifting of B′ to a morphism B : 2OZ0(−2H) → 2OZ0(−2H), i. e.,
there is the following commutative diagram.

2OZ0(−H − F ) 2OD1(−L)

OZ0(−H)⊕OZ0
σ∗0F

//

π //

Ã
²²

α

²²

2OZ0(−2H)

2OZ0(−2H)

∃!B
²² σ∗0A

//

( s 0
0 s )//2OD1(−L)

2OD1(−L)

(
u0 0
0 u0

)

//

0

0.

//

//

B
²²

(
u0 0
0 u0

)

//0

0

//

//

(1.46)

We proved the proposition.

Let us now return to the situation given in (1.41), i. e., as α we consider the morphism %.

By Proposition 1.65 there is a unique lifting of % to a morphism of resolutions. Let Ã and B
be the lifting morphisms as in (1.46).

Proposition 1.66. Ã is injective and the sequence

0 → 2OZ0(−H − F )
Ã−→ OZ0(−H)⊕OZ0

π′−→ E → 0

is exact. In particular K ∼= 2OZ0(−H − F ).

Proof. Let us restrict the diagram (1.46) to D1. We obtain the commutative diagram

2OD1(−L) 2OD1(−L)

2OD1 (σ∗0F)D1

//

πD1 //

ÃD1
²²

%D1

²²

2OD1

2OD1

B

²²
0 //

0 // 0

0

//

//

with exact rows. This means that the horizontal arrows in the right square are isomorphisms.
By Lemma 1.62 %D1 is injective. Therefore, ÃD1 is injective as well.

Let us consider the restriction of (1.46) to D0. This gives us the commutative diagram

2OD0(−H − F0) 2OL(−1)

OD0(−H)⊕OZ0 (σ∗0F)D0

//

π //

ÃD0
²²

%D0

²²

2OD0(−2H)

2OD0(−2H)

B
²² σ∗0A

//

( s 0
0 s )//0

0 //

0

0.

//

//

//
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with exact rows. The lower row is exact because σ∗0A is injective on D0 \L and hence its kernel
may only be supported on L, which is impossible as 2OD0(−2H) is a locally free sheaf. The
upper row is just the locally free resolution of 2OL

0 → 2OD0(−L)
( s 0

0 s )−−−→ 2OD0 → 2OL → 0

twisted by OD0(−H − F0).

If B = 0, then ( s 0
0 s ) ÃD0 = 0. Since the section s is non-zero (in local charts) over D0 \ L,

we conclude that ÃD0 is zero on D0 \ L. Therefore, ÃD0 = 0 and we get %D0 = 0. But this is a
contradiction, since %D0 is injective by Lemma 1.63.

If B has rank 1, then we can write

B =

(
λa λb
µa µb

)
, (λ, µ) ∈ k2, (a, b) 6= (0, 0), (λ, µ) 6= (0, 0).

In this case the kernel of B is isomorphic to OZ0(−2H) and is generated by the matrix
(
µ −λ

)
.

We know also that σ∗0A =

(
x1 q1

x2 q2

)
. Let ÃD0 =

(
α β
γ δ

)
. Note that by Lemma 1.15 there is

a unique factorization (
x1 q1

x2 q2

)
=

(
s 0
0 s

)(
u1 q̃1

u2 q̃2

)
.

From Bσ∗0(A) = ( s 0
0 s ) ÃD0 it follows that

( s 0
0 s )

(
B

(
u1 q̃1

u2 q̃2

)
− Ã

)
= 0,

hence by a similar argument as above

ÃD0 = B

(
u1 q̃1

u2 q̃2

)
=

(
λa λb
µa µb

)(
u1 q̃1

u2 q̃2

)
=

(
λ(au1 + bu2) λ(aq̃1 + bq̃2)
µ(au1 + bu2) µ(aq̃1 + bq̃2)

)
.

Note that (a, b) 6= (0, 0) and u1 and u2 are linear independent. Therefore, (au1 + bu2) 6= 0

and the kernel of Ã is generated by
(
µ −λ

)
and is isomorphic to OZ0(−H − F ). Since by

Lemma 1.63 %D0 is injective, by snake Lemma we conclude that the kernels of B and of ÃD0

are isomorphic. But OZ0(−2H) 6∼= OZ0(−H −F ), because OD0(L) 6∼= OZ0 (we use F ∼ H −L).
The contradiction we obtained shows that B may not have rank 1.

We showed that B is an invertible matrix. This implies in particular that ÃD0 is injective.

Applying the 5-lemma to the diagram (1.46) we conclude that Ã is an injective morphism. By

construction of Ã as a lifting of % we have π′ ◦ Ã = 0, hence Ã factorizes uniquely through K,
i. e., there is a commutative diagram

2OZ0(−H − F )

OZ0(−H)⊕OZ0 .K // //

²²

Ã
²²

∃! ı

ww

The injectivity of Ã implies the injectivity of the induced morphism ı. The cokernel of ı has
zero Hilbert polynomial because from (1.42) it follows that K has the same Hilbert polynomial
as 2OZ0(−H − F ), namely 2(2m2 − m) (cf. page 38). Therefore, ı is an isomorphism. This
proves the required statement.



58

Corollary 1.67. Tor
OZ0
1 (E ,OD1) = 0.

Proof. Restricting

0 → 2OZ0(−H − F )
Ã−→ OZ0(−H)⊕OZ0

π′−→ E → 0

to D1 we obtain the exact sequence

0 → Tor
OZ0
1 (E ,OD1) → 2OD1(−L)

ÃD1−−→ 2OD1

π′D1−−→ ED1 → 0.

As we noticed in the proof of Proposition 1.66, ÃD1 is injective. Therefore, Tor
OZ0
1 (E ,OD1) = 0.

We proved the required statement.

Remark 1.68. Note that since B in (1.46) is invertible, then acting on the upper row with
GL2(k) we can always attain that B is an identity matrix.

2OZ0(−H − F ) 2OD1(−L)

OZ0(−H)⊕OZ0
σ∗0F

//

π //

Ã
²²

α

²²

2OZ0(−2H)

2OZ0(−2H)

B
²² σ∗0A

//

( s 0
0 s )//2OD1(−L)

2OD1(−L)

(
u0 0
0 u0

)

//

0

0.

//

//

B
²²

(
u0 0
0 u0

)

//0

0

//

//

GL2(k)

ªª

GL2(k)

ªª

GL2(k)

ªª

GL2(k)

ªª

Lemma 1.69. Let B be an identity matrix, let

A =

(
x1 x1(A01x0 + A11x1 + A12x2) + x2(A02x0 + A22x2)
x2 x1(B01x0 + B11x1 + B12x2) + x2(B02x0 + B22x2)

)
.

Then

Ã =

(
u1 + ξ0u0 u1(A01x0 + A11x1 + A12x2) + u2(A02x0 + A22x2) + ξ00x0u0

u2 + η0u0 u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2) + η00x0u0

)

for some ξ0, η0, ξ00 and η00.

Proof. Straightforward calculations with cocycles of the corresponding locally free sheaves.

By Proposition 1.57 we conclude that E is an R-bundle. This completes the proof of Propo-
sition 1.61.

Proposition 1.70. Every morphism of R-bundles E1 → E2 lifts uniquely to a morphism of
resolutions of the type (1.41).

In particular isomorphisms of R-bundles lift to isomorphisms of resolutions.

Proof. By Proposition 1.49 R-bundles have resolutions of the type (1.41). To prove the required
statement it is enough to show that for every 3m + 1 sheaf F on P2 it holds

Hom(σ∗0F , 2OD1(−L)) = Ext1(σ∗0F , 2OD1(−L)) = 0.

Let us consider again the exact sequence (1.45). From the short exact sequence

0 → A→ OZ0(−H)⊕OZ0 → σ∗0F → 0
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we obtain the long exact sequence

0 → Hom(σ∗0F , 2OD1(−L)) → Hom(OZ0(−H)⊕OZ0 , 2OD1(−L)) → Hom(A, 2OD1(−L)) →
→ Ext1(σ∗0F , 2OD1(−L)) → Ext1(OZ0(−H)⊕OZ0 , 2OD1(−L)) → . . .

Since the sheaf OZ0(−H)⊕OZ0 is locally free we obtain

Hom(OZ0(−H)⊕OZ0 , 2OD1(−L)) ∼= H0(4OD1(−L)) = 0,

Ext1(OZ0(−H)⊕OZ0 , 2OD1(−L)) ∼= H1(4OD1(−L)) = 0.

Therefore, Hom(σ∗0F , 2OD1(−L)) = 0 and Ext1(σ∗0F , 2OD1(−L)) ∼= Hom(A, 2OD1(−L)).
Using the exact sequence

0 → 2OD1(−L) → 2OZ0(−2H) → A→ 0

we obtain the injective homomorphism

0 → Hom(A, 2OD1(−L)) → Hom(2OZ0(−2H), 2OD1(−L)).

From Hom(2OZ0(−2H), 2OD1(−L)) ∼= H0(4OD1(−L)) = 0 we get Ext1(σ∗0F , 2OD1(−L)) = 0.
This completes the proof.



Chapter 2

Equivalence of R-bundles

Summary

In this chapter we consider R-bundles on P̂2 up to equivalence.
In Section 2.1 we describe the set of the isomorphism classes of R-bundles on P̂2. We show

that on the set of the classes of isomorphism of R-bundles there is a natural structure of a
quasi-projective variety.

In Section 2.2 we introduce the following equivalence relation on the set of R-bundles con-
structed at the same point A ∈ X8 (cf. Definition 2.12). Two R-bundles E1 and E2 be on P̂2

constructed at the same point A ∈ X8 are called equivalent if there exists an automorphism
φ̃ of Z0 that acts identically on D0 = P̃2 and such that φ̃∗(E1) ∼= E2. Our notion of equiva-
lence is similar to the notion of equivalence given in Definition 4.1, (ii) from [26]. We show in
Theorem 2.19 that the equivalence classes are in one-to-one correspondence with the points in
projective normal space PNA = P(TAX/TAX8).

For a given A ∈ X8 we consider also the question about the number of the equivalence classes
of R-bundles constructed at A with singular curve C1, where C1 denotes the supporting curve
in D1. For a generic A ∈ X8 (when the corresponding singular 3m + 1 sheaf is defined by an
ordinary double point singularity on a cubic curve in P2) there are only two equivalence classes
with a singular conic C1 as a support in D1. Degenerations of A with double-point singularity
give us only one equivalence class with the curve C1 being singular. If the singularity is a triple
point, all the equivalence classes have singular curve C1. In this case one could identify the line
L = D0 ∩D1 with the set of all equivalence classes of R-bundles constructed at A.

In Section 2.3 we present for every type of singular 3m+1 sheaves on P2 a detailed illustration
to Theorem 2.19 and compare the equivalence and the isomorphism classes of R-bundles. We
see that in the generic case R-bundles are line bundles on the curves of the types X1 and X2

considered in [26].

2.1 Classes of isomorphism of R-bundles

We will describe here the set of the isomorphism classes of R-bundles on P̂2. We will show that
this space may be identified with the set of orbits of some group action on some quasi-affine
variety. We will also show that there exists an orbit space of that action.

60
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2.1.1 Isomorphism classes as orbits of a group action.

Let us consider the set of the matrices

Φ =

(
l1 q̃1

l2 q̃2

)
, l1, l2 ∈ Γ(Z0,OZ0(F )), q̃1, q̃2 ∈ Γ(Z0,OZ0(F + H)). (2.1)

Note that by Proposition 1.32 Γ(Z0,OZ0(F )) ∼= Γ(D1,OD1(F0)) ∼= Γ(P2,OP2(1)) is a 3-dimen-
sional vector space which may be identified with the space of linear forms in variables u0, u1,
u2 (coordinates of D1 = P2).

We have also Γ(Z0,OZ0(H)) ∼= Γ(P̃2,OP̃2
(H)) ∼= Γ(P2,OP2(1)). This means that the vector

space Γ(Z0,OZ0(H)) may be considered as the space of linear forms in x0, x1, x2.
The dimension of Γ(Z0,OZ0(F +H)) is 6, as a basis of Γ(Z0,OZ0(F +H)) one could choose

the set
{x0u0, x0u1, x0u2, x1u1, x1u2, x2u2}.

Therefore, one can consider the space A of all matrices (2.1) just as the affine variety k18.

Definition 2.1. Let X′ be the open set in the set of all matrices (2.1) defined by the following
conditions:

• the determinant ∆ = l1q̃2 − l2q̃1 and its restrictions to D0 and D1 are non-zero;

• l1 ∧ l2 6= 0, i. e., l1 and l2 are linear independent;

• the common zero point of l1 and l2 in D1 lies outside of L.

Let X be the open set in X′ given by an extra condition:

• Φ does not vanish on D1.

There is a natural action of the group G (cf. (1.4)) on the set A of all matrices of the
type (2.1) and also on X′ and X. G acts from the left by the rule

(g, h) · Φ = gΦh−1.

On X′ this action corresponds to isomorphisms of exact sequences given by g ∈ GL2(k), h ∈ H:

0 // 2OZ0(−H − F ) Φ // OZ0(−H)⊕OZ0
// E // 0

0 // 2OZ0(−H − F ) //

g

OO

OZ0(−H)⊕OZ0
//

h

OO

F //

∼=
OO

0.

By Proposition 1.40 isomorphisms of such exact sequences are in one-to-one correspondence

with the isomorphisms E ∼=−→ F . In other words, this means that the orbits of G in X′ are in one-
to-one correspondence with the isomorphism classes of the sheaves on Z0 given by resolutions
of the type

0 → 2OZ0(−H − F )
Φ−→ OZ0(−H)⊕OZ0 → E → 0, Φ ∈ X′.

The sheaves given by such resolutions for Φ ∈ X are by Propositions 1.37 and 1.57 exactly
R-bundles on Z0 = P̂2. We proved the following proposition.

Proposition 2.2. The orbits of G in X are in one-to-one correspondence with the isomorphism
classes of R-bundles on P̂2.
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2.1.2 Orbit space.

It would be nice to understand whether there is a natural geometrical structure on the space
of isomorphism classes of R-bundles on P̂2.

Lemma 2.3. Let Φ ∈ X′, then its stabilizer is the group

St = {( λ 0
0 λ )× ( λ 0

0 λ ) | λ ∈ k∗} ∼= k∗.
Proof. Let Φ =

(
l1 q1

l2 q2

)
and suppose that ( a b

c d ) ∈ GL2(k) and
(

λ z
0 µ

) ∈ H are such that

(
a b
c d

)(
l1 q1

l2 q2

)
=

(
l1 q1

l2 q2

)(
λ z
0 µ

)
.

Comparing the entries one obtains

al1 + bl2 = λl1, cl1 + dl2 = λl2, aq1 + bq2 = zl1 + µq1, cq1 + dq2 = zl2 + µq2

and therefore a = d = λ, b = c = 0, and

(λ− µ)q1 = zl1, (λ− µ)q2 = zl2.

If λ 6= µ, then det Φ = 0, which is a contradiction since Φ ∈ X. Thus λ = µ and zl1 = zl2 = 0.
We obtain z · (l1, l2) = 0 and conclude then by Lemma 1.47 that z = 0. Finally we obtain

(
a b
c d

)
=

(
λ z
0 µ

)
=

(
λ 0
0 λ

)
.

This proves the statement of the lemma.

Corollary 2.4. The induced action of the group PG = G/St on X′ is free.

Consider the vector space V = Γ(Z0,OZ0(H + 2F )). By Proposition 1.32 its dimension is
10. Then PV ∼= P9. One can represent an element f ∈ V as a polynomial

f = C0x0u
2
0 + C1x0u0u1 + C2x0u0u2 + C3x0u

2
1+

C4x0u1u2 + C5x0u
2
2 + C6x1u

2
1 + C7x1u1u2 + C8x1u

2
2 + C9x2u

2
2

with relations x1u0 = x2u0 = x1u2 − x2u1 = 0.
The set V1 of those f that vanish on

D1 = {x1 = x2 = 0}
consists of f = C6x1u

2
1 + C7x1u1u2 + C8x1u

2
2 + C9x2u

2
2, i. e., is a subspace of dimension 4 in V .

The set V0 of those f that vanish on D0 = {u0 = 0} consists of

f = C3x0u
2
1 + C4x0u1u2 + C5x0u

2
2 + C6x1u

2
1 + C7x1u1u2 + C8x1u

2
2 + C9x2u

2
2

and hence form a subspace of dimension 7 in V .
Consider the morphism

X′ ϑ−→ PV ×D1, Φ =

(
l1 q̃1

l2 q̃2

)
7→ 〈l1q̃2 − l2q̃1〉 × 〈l1 ∧ l2〉.

First of all we have the following obvious lemma.
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Lemma 2.5. ϑ is G-invariant, i. e., ϑ(g · Φ) = ϑ(Φ) for all g ∈ G and Φ ∈ X′.
Let Y ⊆ PV ×D1 be the universal curve defined by

Y = {〈f〉 × 〈q〉 | f(q) = 0}.
Let us consider the open set of Y given by

Y′ = Y ∩ (PV \ (PV0 ∪ PV1))× (D1 \ L)).

In other words Y′ consists of those 〈f〉 × 〈q〉 from Y such that q does not lie on the line L and
f does not vanish identically on D0 or on D1.

Note that the image of ϑ is contained in Y′ by definition of X′.

Lemma 2.6. There is a section s : Y′ → X′ of ϑ : X′ → Y′, i. e., a morphisms that satisfies
ϑ ◦ s = idY′. In particular this implies that ϑ(X′) = Y′.

Proof. Let us show that X′ ϑ−→ Y′ is surjective. Take any point 〈f〉 × 〈q〉 in Y′. Let 〈q〉 =
〈u0, u1, u2〉 and let

f =C0x0u
2
0 + C1x0u0u1 + C2x0u0u2 + C3x0u

2
1+

C4x0u1u2 + C5x0u
2
2 + C6x1u

2
1 + C7x1u1u2 + C8x1u

2
2 + C9x2u

2
2 = 0.

Since q ∈ D1 \ L, we conclude that u1 = ξu0 and u2 = ηu0 for some ξ, η ∈ k. As q ∈ D1, we
have x1 = x2 = 0. Therefore,

0 = f(q) =C0x0u
2
0 + C1ξx0u

2
0 + C2ηx0u

2
0 + C3ξ

2x0u
2
0 + C4ξηx0u

2
0 + C5η

2x0u
2
0 =

u2
0x0(C0 + C1ξ + C2η + C3ξ

2 + C4ξη + C5η
2),

and we obtain C0 = −(C1ξ + C2η + C3ξ
2 + C4ξη + C5η

2). Using this and the equalities
u0x1 = u0x2 = 0 we obtain

f =− (C1ξ + C2η + C3ξ
2 + C4ξη + C5η

2)x0u
2
0 + C1x0u0u1 + C2x0u0u2 + C3x0u

2
1+

C4x0u1u2 + C5x0u
2
2 + C6x1u

2
1 + C7x1u1u2 + C8x1u

2
2 + C9x2u

2
2 =

C1x0u0(u1 − ξu0) + C2x0u0(u2 − ηu0) + C3x0(u
2
1 − ξ2u2

0) + C4x0(u1u2 − ξηu2
0)+

C5x0(u
2
2 − η2u0) + C6x1u

2
1 + C7x1u1u2 + C8x1u

2
2 + C9x2u

2
2 =

(u1 − ξu0)(C1x0u0 + C3x0(u1 + ξu0)) + (u2 − ηu0)(C2x0u0 + C5x0(u2 + ηu0))+

C4x0(u1u2 − ξu2u0 + ξu2u0 − ξηu2
0) + C6x1u

2
1 + C7x1u1u2 + C8x1u

2
2 + C9x2u

2
2 =

(u1 − ξu0)(C1x0u0 + C3x0(u1 + ξu0) + C4x0u2)+

(u2 − ηu0)(C2x0u0 + C5x0(u2 + ηu0) + ξC4x0u0)+

C6x1u1(u1 − ξu0) + C7x1u1(u2 − ηu0) + C8x1u2(u2 − ηu0) + C9x2u2(u2 − ηu0) =

(u1 − ξu0)(C1x0u0 + C3x0(u1 + ξu0) + C4x0u2 + C6x1u1)+

(u2 − ηu0)(C2x0u0 + C5x0(u2 + ηu0) + ξC4x0u0 + C7x1u1 + C8x1u2 + C9x2u2).

The latter means that f is the determinant of the matrix

Φ =

(
u1 − ξu0 q̃1

u2 − ηu0 q̃1

)
,

where

q̃1 = −(C2x0u0 + C5x0(u2 + ηu0) + ξC4x0u0 + C7x1u1 + C8x1u2 + C9x2u2)
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and
q̃2 = C1x0u0 + C3x0(u1 + ξu0) + C4x0u2 + C6x1u1.

Note that ϑ(Φ) = 〈f〉× 〈q〉 and that Φ belongs to X′. This shows that we have constructed the
morphism

s : Y′ → X′, 〈f〉 × 〈1, ξ, η〉 7→
(

u1 − ξu0 q̃1

u2 − ηu0 q̃1

)
,

such that Φ ◦ s = idY′ . This proves the required statement.

Let us consider the morphism ϑ : X′ → Y′.

Proposition 2.7. (Y′, ϑ) is an orbit space of the action G×X′ → X′, i. e., the fibres of X′ ϑ−→ Y′
coincide with the orbits of this action and for every G-invariant morphism ρ : X′ → T there
exists a unique morphism Y′ → T such that the diagram

X′ Y′

T

ϑ //

ρ

ÂÂ
??

??

∃!ÄÄ

commutes.

Proof. Let us prove that the fibres of ϑ coincide with the orbits of G. Suppose ϑ(Φ) = ϑ(Ψ),
for some matrices

Φ =

(
l1 q̃1

l2 q̃2

)
and Ψ =

(
l′1 q̃′1
l′2 q̃′2

)
.

We will show that Φ and Ψ lie in the same orbit.
Since 〈l1 ∧ l2〉 = 〈l′1 ∧ l′2〉, we conclude that the spaces kl1 + kl2 and kl′1 + kl′2 coincide.

Therefore, there exists g ∈ GL2(k) such that

(
l1
l2

)
= g ·

(
l′1
l′2

)

and we may assume that li = l′i, i = 1, 2.
Multiplying one of the matrices Φ and Ψ by ( λ 0

0 λ ) for an appropriate λ ∈ k∗ we may also
assume that the determinants of Φ and Ψ are equal, i. e., that

l1q̃2 − l2q̃1 = l1q̃
′
2 − l2q̃

′
1.

This means that

(q̃2 − q̃′2,−q̃1 + q̃′1)
(

l1
l2

)
= 0

and hence by Lemma 1.47 we conclude that

(q̃2 − q̃′2,−q̃1 + q̃′1) = z · (l2,−l1),

for some z ∈ Γ(Z0,OZ0(H)). Thus q̃2 = q̃′2 + zl2, q̃1 = q̃′1 + zl1, and one concludes that

Φ = Ψ ·
(

1 z
0 1

)
.

This proves that Φ and Ψ lie in the same orbit of G.
Let now ρ : X′ → T be a G-invariant morphism. Since the points of Y′ are in one-to-one

correspondence with the orbits of G in X′, there exists a unique set theoretical map $ : Y′ → T
such that $ ◦ ϑ = ρ. Namely, $(y) = ρ(x), where x ∈ X′ is an arbitrary point from the
preimage of y ∈ Y′ under ϑ. It remains to prove that $ is a morphism. Using the section
from Lemma 2.6 we obtain $(y) = ρ(s(y)), i. e., $ = ρ ◦ s. Therefore, $ is a morphism as a
composition of two morphisms. This completes the proof of the proposition.
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Corollary 2.8. X′ ∼= Y′ × PG, where PG = G/St is the factor group modulo the stabilizer St
(cf. Lemma 2.3).

Proof. Let s be the section from Lemma 2.6. By Corollary 2.4 we have a free action of PG on
X′. By Proposition 2.7 its orbit space is Y′. Therefore, the morphism

Y′ × PG → X′, (y, g) 7→ g · s(y)

is a bijection. By Zariski main theorem (cf. [8], 6.1.14 and [9], 4.4.3) one concludes that it is
an isomorphism (note that Y′ and X′ are smooth).

Corollary 2.9. Y′′ = ϑ(X) is an open subvariety of Y′. (Y′′, ϑ|X) is an orbit space of the action
G× X→ X and X ∼= Y′′ × PG.

Proof. Since X ⊆ X′ is invariant under the action of G, Proposition 2.7 implies that (Y′′, ϑ|X)
is an orbit space of the action of G on X. From Corollary 2.8 we obtain X ∼= Y′′×PG. Since X
is an open subvariety in X′ and Y′′ = ϑ(X) = s−1(X), one concludes that Y′′ is an open subset
in Y′.

Corollary 2.10. Let E ′ and E ′′ be two R-bundles on P̂2. Let C ′ = Supp E ′ and C ′′ = Supp E ′′.
By Proposition 1.48 we obtain two non-trivial extensions

0 → OC′ → E ′ → kq′ → 0,

and
0 → OC′′ → E ′′ → kq′′ → 0,

where q′ and q′′ are some points on C ′ \D0 and C ′′ \D0 respectively.
Proposition 2.7 says that E ′ and E ′′ are isomorphic if and only if C ′ = C ′′ and q′ = q′′.

Corollary 2.11. Let us fix a curve C ⊆ Z0 given by a resolution

0 → OZ0(−2F −H) → OZ0 → OC → 0.

Then the isomorphism classes of R-bundles supported on C are in one-to-one correspondence
with the points of some open subset of C \D0.
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2.2 A description of equivalence classes of R-bundles

We introduce here an equivalence relation on the set of R-bundles constructed at point A ∈ X8

and describe the equivalence classes.

Definition 2.12. Let E1 and E2 be two sheaves of the type Ẽ0, i. e., sheaves constructed at the
same point A ∈ X8. We call them equivalent if there exists an automorphism φ̃ of Z0 that acts
identically on P̃2 and such that φ̃∗(E1) ∼= E2.

Remark 2.13. 1 ) The relation “to be equivalent” defined in Definition 2.12 is in fact an
equivalence relation on the set of R-bundles constructed at a fixed point A ∈ X8.

2 ) Definition 2.12 is similar to Definition 4.1, (ii) of equivalence for vector bundles on Xk

from [26].

2.2.1 Group action on D1.

Let us consider D1 = P2 and the line L = {u0 = 0}.
Lemma 2.14. Automorphism of D1 = P2 acting identically on the line L = {u0 = 0} are
exactly those of the form

P2 3 〈u0, u1, u2〉 7→ 〈(u0, u1, u2)
(

α β γ
0 1 0
0 0 1

)
〉 ∈ P2

Proof. Note that all the automorphisms of P2 are linear, i. e., of the form

〈u0, u1, u2〉 7→ 〈(u0, u1, u2)
(

a00 a01 a02
a10 a11 a12
a20 a21 a22

)
〉

for some invertible matrix
(

a00 a01 a02
a10 a11 a12
a20 a21 a22

)
. Then the points 〈0, u1, u2〉 from the line L are mapped

to 〈a10u1 + a20u2, a11u1 + a21u2, a12u1 + a22u2〉. To obtain an automorphism acting identically
on L it should necessarily hold a10 = a20 = a21 = a12 = 0 and a11 = a22. As the matrix is
defined up to multiplication by a non-zero scalar, one may take a11 = a22 = 1. This proves the

lemma since the automorphisms given by the matrices of the type
(

α β γ
0 1 0
0 0 1

)
act identically on

L.

Remark 2.15. Note that there is a natural action of the group of the matrices
(

α β γ
0 1 0
0 0 1

)
on the

set of all conics in D1.

Let C1 be a conic on D1 that is not a double line. Then there are five possible situations:

I) C1 consist of two components one of which is the line L;

II) C1 is smooth and C1 ∩ L consists of two points;

III) C1 is singular, i. e., has two components, and C1 ∩ L consists of two points;

IV) C1 is smooth and C1 ∩ L consists of a single point, i. e., L is a tangent line to C1;

V) C1 is singular and C1 ∩ L consists of a single point.
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Proposition 2.16. Each of the types of conics above is invariant under the action of the group

of the invertible matrices
(

α β γ
0 1 0
0 0 1

)
.

Conics of the type I) lie in the same orbit of the action if and only if the intersection points
of their components coincide.

Let C1 and C2 be two conics of the same type but not those of the type I). Then C1 and C2 lie
in the same orbit if and only if their intersection sets with L coincide, i. e., if C1∩L = C2∩L.

Proof. Straightforward.

2.2.2 Main result.

One can assume without loss of generality, that the coefficients A01, A11, and A12 in q1 are zero.
Indeed, applying the (affine) automorphism of X

X 3
(

z1 q1

z2 q2

)
7→

(
z1 q1

z2 q2

)(
1 −(A01x0 + A11x1 + A12x2)
0 1

)
,

which sends A = ( x1 q1
x2 q2 ) to

(
x1 x2(A02x0 + A22x2)
x2 q2 − x2(A01x0 + A11x1 + A12x2)

)
,

one can always make A01, A11 and A12 zero.

Proposition 2.17. Let E1 and E2 be two equivalent sheaves constructed at the point A, A01 =
A11 = A12 = 0 using directions

B1 =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + . . . ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + . . . η22x

2
2

)

and

B2 =

(
µ0x0 + µ1x1 + µ2x2 µ00x

2
0 + . . . µ22x

2
2

ν0x0 + ν1x1 + ν2x2 ν00x
2
0 + . . . ν22x

2
2

)

respectively. We claim that B1 and B2 represent the same point in PNA, where NA = NA(X8) =
TA(X)/TA(X8) is the normal space at point A to X8.
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Proof. By Lemma 1.25 the restrictions of the sheaves E1 and E2 to D1 are given by the matrices

A1 =

(
u1 + ξ0u0 A02u2 + ξ00u0

u2 + η0u0 B01u1 + B02u2 + η00u0

)
,

and

A2 =

(
u1 + µ0u0 A02u2 + µ00u0

u2 + ν0u0 B01u1 + B02u2 + ν00u0

)

respectively, i. e., we have the exact sequences

0 → 2OD1(−1)
A1−→ 2OD1 → E1|D1 → 0

and
0 → 2OD1(−1)

A2−→ 2OD1 → E2|D1 → 0.

The sheaf E1|D1 is supported on the curve given by the determinant

f1 := det(A1) =B01u
2
1 − A02u

2
2 + B02u1u2 + (ξ0η00 − η0ξ00)u

2
0+

(ξ0B01 + η00)u0u1 + (ξ0B02 − ξ00 − η0A02)u0u2.

The support of the sheaf E2|D1 is given by

f2 := det(A2) =B01u
2
1 − A02u

2
2 + B02u1u2 + (µ0ν00 − ν0µ00)u

2
0+

(µ0B01 + ν00)u0u1 + (µ0B02 − µ00 − ν0A02)u0u2.

Let φ̃ : Z0 → Z0 be an isomorphism that is identical on P̃2. Let E2
ξ−→ φ̃∗(E1) be the isomorphism

between E2 and φ̃∗(E1). By Proposition 1.40 ξ can be uniquely lifted to the morphism of
resolutions

OZ0(−H)⊕OZ0 E2

OZ0(−H)⊕OZ0 φ̃∗(E1)

//

//

(
ā b̄
0 d̄

)

²²

ξ
²²

2OZ0(−H − F )

2OZ0(−H − F )

( a b
c d )

²² φ̃∗(Ã1)
//

Ã2 //0

0 //

// 0

0,

//

//

(2.2)

where b̄ = b̄0x0 + b̄1x1 + b̄2x2. Note that by Remark 1.42 both matrices ( a b
c d ) and

(
ā b̄
0 d̄

)
are

invertible.
Let φ := φ̃|P2 : P2 → P2. Since φ acts identically on L, it is given by

〈u0, u1, u2〉 7→ 〈(u0, u1, u2)
(

α β γ
0 1 0
0 0 1

)
〉.

We have also φ∗(E1|D1)
∼= E2|D1 . Then, since isomorphic sheaves have the same support, it

holds λf2 = f1 ◦ φ(u0, u1, u2), λ ∈ k∗. We have

f1 ◦ φ(u0, u1, u2) = f1(αu0, βu0 + u1, γu0 + u2) =

B01(βu0 + u1)
2 − A02(γu0 + u2)

2 + B02(βu0 + u1)(γu0 + u2)+

(ξ0η00 − η0ξ00)α
2u2

0+

(ξ0B01 + η00)αu0(βu0 + u1) + (ξ0B02 − ξ00 − η0A02)αu0(γu0 + u2) =

B01u
2
1 − A02u

2
2 + B02u1u2+

[B01β
2 − A02γ

2 + B02βγ + (ξ0η00 − η0ξ00)α
2+

(ξ0B01 + η00)αβ + (ξ0B02 − ξ00 − η0A02)αγ]u2
0+

(2B01β + B02γ + (ξ0B01 + η00)α)u0u1+

(−2A02γ + B02β + (ξ0B02 − ξ00 − η0A02)α)u0u2.
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Comparing the coefficients we obtain the following equations





λB01 = B01

λA02 = A02

λB02 = B02

λ(µ0ν00 − ν0µ00) = B01β
2 − A02γ

2+B02βγ + (ξ0η00 − η0ξ00)α
2+

+(ξ0B01 + η00)αβ + (ξ0B02 − ξ00 − η0A02)αγ

λ(µ0B01 + ν00) = 2B01β + B02γ + (ξ0B01 + η00)α

λ(µ0B02 − µ00 − ν0A02) = −2A02γ + B02β + (ξ0B02 − ξ00 − η0A02)α.

(2.3)

Consider the case B01 = A02 = B02 = 0. Then the above system of equations is equivalent
to the system





λ(µ0ν00 − ν0µ00) = (ξ0η00 − η0ξ00)α
2 + (η00)αβ + (−ξ00)αγ

λ(ν00) = (η00)α

λ(−µ00) = (−ξ00)α.

In particular it follows that λµ00 − αξ00 = 0 and λν00 − αη00 = 0.
Since the tangent equations in the case B01 = A02 = B02 = 0 are just ξ00 = η00 = 0 (see

Example 1.8, (1.13)), we conclude that λB2 − αB1 is a tangent vector to X8 at A. Therefore,
B1 and B2 represent the same vector in PNA.

We can assume now that at least one of the coefficients B01, A02, and B02 is not zero. Then
in the system (2.3) λ = 1, and we can rewrite it in the form





µ0ν00 − ν0µ00 = B01β
2 − A02γ

2+B02βγ + (ξ0η00 − η0ξ00)α
2+

+(ξ0B01 + η00)αβ + (ξ0B02 − ξ00 − η0A02)αγ

2B01β + B02γ = (µ0B01 + ν00)− (ξ0B01 + η00)α

B02β − 2A02γ = (µ0B02 − µ00 − ν0A02)− (ξ0B02 − ξ00 − η0A02)α.

From the resolution
0 → 2OD1(−1)

A1−→ 2OD1 → E1|D1 → 0

applying φ∗ we obtain the exact sequence

0 → 2OD1(−1)
φ∗(A1)−−−−→ 2OD1 → φ∗(E1)|D1 → 0.

Restricting (2.2) to D1 we obtain the following commutative diagram with exact rows

0 // 2OD1(−1)

( a b
c d )

²²

A2 // 2OD1(
ā b̄0
0 d̄

)

²²

// E2|D1

ξ|D1
²²

// 0

0 // 2OD1(−1)
φ∗(A1)

// 2OD1
// φ∗(E1|D1) // 0.

(2.4)

Restricting this once more to L we will get the commutative square

2OL(−1) 2OL

2OL(−1) 2OL.

(u1 ∗
u2 ∗ ) //

(u1 ∗
u2 ∗ ) //

( a b
c d )

²²

(
ā b̄0
0 d̄

)

²²
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Therefore, comparing the entries 1.1 and 2.1 we obtain

a = ā = d 6= 0, b = c = 0.

Since

A1 =

(
u1 + ξ0u0 A02u2 + ξ00u0

u2 + η0u0 B01u1 + B02u2 + η00u0

)
,

we obtain that

φ∗A1 =

(
(u1 + βu0) + ξ0αu0 A02(u2 + γu0) + ξ00αu0

(u2 + γu0) + η0αu0 B01(u1 + βu0) + B02(u2 + γu0) + η00αu0

)
=

(
u1 + (β + ξ0α)u0 A02u2 + (A02γ + ξ00α)u0

u2 + (γ + η0α)u0 B01u1 + B02u2 + (B01β + B02γ + η00α)u0

)
.

As

A2 =

(
u1 + µ0u0 A02u2 + µ00u0

u2 + ν0u0 B01u1 + B02u2 + ν00u0

)
,

from the condition (
a 0
0 a

)
φ∗(A1) = A2

(
a b̄0

0 d̄

)

comparing the entries on the places 1.1 and 2.1 we get

µ0 = β + ξ0α and ν0 = γ + η0α.

Comparing the entries on the place 1.2 one obtains

a(A02u2 + (A02γ + ξ00α)u0) = b̄0(u1 + µ0u0) + d̄(A02u2 + µ00u0)

and therefore
b̄0 = 0, aA01 = d̄A02, a(A02γ + ξ00α) = d̄µ00.

Comparing the entries on the place 2.2 and using b̄0 = 0 one obtains

a(B01u1 + B02u2 + (B01β + B02γ + η00α)u0) = d̄(B01u1 + B02u2 + ν00u0)

and therefore

aB01 = d̄B01, aB02 = d̄B02, a(B01β + B02γ + η00α) = d̄ν00.

Recall that we are considering now the case when at least one of the coefficients A02, B01, and
B02 is different from zero. Therefore, we conclude that a = d̄ and thus

µ00 = A02γ + ξ00α and ν00 = B01β + B02γ + η00α.

We proved that

µ0 = β + ξ0α

ν0 = γ + η0α

µ00 = A02γ + ξ00α

ν00 = B01β + B02γ + η00α

Therefore,
β = µ0 − ξ0α, γ = ν0 − η0α,

µ00 − ξ00α = A02γ = A02(ν0 − η0α),

ν00 − η00α = B01β + B02γ = B01(µ0 − ξ0α) + B02(ν0 − η0α).

The last two equalities mean that B2−αB1 ∈ TA(X8), so B1 and B2 represent the same element
in PNA. This proves Proposition 2.17.
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Proposition 2.18. Let B1 and B2 be two equivalent normal directions at the point A ∈ X8,
A01 = A11 = 0, i. e, B1 and B2 represent the same point in PNA. Then the sheaves E1 and E2

on Z0 constructed along B1 and B2 respectively are equivalent.

Proof. Let

B1 =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

and

B2 =

(
µ0x0 + µ1x1 + µ2x2 µ00x

2
0 + · · ·+ µ22x

2
2

ν0x0 + ν1x1 + ν2x2 ν00x
2
0 + · · ·+ ν22x

2
2

)
.

Since B1 and B2 define the same point in PNA and since the tangent equations at A are{
ξ00 = A02η0

η00 = B01ξ0 + B02η0,

it follows that

µ00 − ξ00α = A02(ν0 − η0α)

ν00 − η00α = B01(µ0 − ξ0α) + B02(ν0 − η0α)

for some α ∈ k∗.
Take

β = µ0 − ξ0α, γ = ν0 − η0α,

and let
φ =

(
α β γ
0 1 0
0 0 1

)
: P2 → P2, 〈u0, u1, u2〉 7→ 〈(u0, u1, u2)

(
α β γ
0 1 0
0 0 1

)
〉.

Let

ÃB1 =

(
u1 + ξ0u0 u1A12x2 + u2(A02x0 + A22x2) + ξ00x0u0

u2 + η0u0 u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2) + η00x0u0

)
,

and

ÃB2 =

(
u1 + µ0u0 u1A12x2 + u2(A02x0 + A22x2) + µ00x0u0

u2 + ν0u0 u1(B01x0 + B11x1 + B12x2) + u2(B02x0 + B22x2) + ν00x0u0

)

be the matrices defining the sheaves E1 and E2. Consider φ̃ : Z0 → Z0 such that φ̃|D1 = φ and

φ̃|D0 = idD0 . Then φ̃∗(ÃB1) equals
(

(u1+βu0)+ξ0αu0 (u1+βu0)A12x2+(u2+γu0)(A02x0+A22x2)+ξ00αx0u0

(u2+γu0)+η0αu0 (u1+βu0)(B01x0+B11x1+B12x2)+(u2+γu0)(B02x0+B22x2)+η00αx0u0

)
=

=
(

u1+(β+ξ0α)u0 u1A12x2+u2(A02x0+A22x2)+(γA02+ξ00α)x0u0

u2+(γ+η0α)u0 u1(B01x0+B11x1+B12x2)+u2(B02x0+B22x2)+(βB01+γB02+η00α)x0u0

)
.

Since we took
β = µ0 − ξ0α, γ = ν0 − η0α,

we can rewrite the tangent equations as

µ00 − ξ00α = A02γ, ν00 − η00α = B01β + B02γ.

It follows that φ̃∗(ÃB1) = ÃB2 . Therefore, there is an isomorphism φ̃∗(E1) ∼= E2, which means
that the sheaves E1 and E2 are equivalent.

Theorem 2.19. There is a one-to-one correspondence between the equivalence classes of R-
bundles constructed at A ∈ X8 and points of PNA.

Proof. Follows from Proposition 2.17 and Proposition 2.18.
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2.2.3 R-bundles with singular curve C1.

We have shown that the points of PNA(X8) ∼= P1 parameterize the equivalence classes of R-
bundles at a point A ∈ X8. For a fixed A we are going to investigate how many equivalence
classes of R-bundles at A with singular curve C1 there are. Recall that for an R-bundle E
constructed at A we denote the support of the restriction E|D1 by C1.

Criterion for C1 to be singular.

Proposition 2.20. Let A ∈ X8 be as in (1.17) and let E be an R-bundle constructed at A by
the help of a normal direction B ∈ TAX \ TAX8.

Then the support of E|D1 is a non-smooth conic (two lines) if and only if the direction B
satisfies the equation

B01T
2
1 − A02T

2
2 + (B02 − A01)T1T2 = 0, (2.5)

where T1 = ξ00 − A01ξ0 − A02η0 and T2 = η00 −B01ξ0 −B02η0.

Proof. From Lemma 1.25 we have that the support of Ẽ |D1 is given by the equation

det

(
u1 + ξ0u0 A01u1 + A02u2 + ξ00u0

u2 + η0u0 B01u1 + B02u2 + η00u0

)
= B01u

2
1 − A02u

2
2 + (B02 − A01)u1u2+

(ξ0η00 − η0ξ00)u
2
0 + (ξ0B01 + η00 − η0A01)u0u1 + (ξ0B02 − ξ00 − η0A02)u0u2 = 0.

(2.6)

The symmetric matrix corresponding to this quadratic form is

Q =




ξ0η00 − η0ξ00
1
2
(ξ0B01 + η00 − η0A01)

1
2
(ξ0B02 − ξ00 − η0A02)

1
2
(ξ0B01 + η00 − η0A01) B01

1
2
(B02 − A01)

1
2
(ξ0B02 − ξ00 − η0A02)

1
2
(B02 − A01) −A02




.

By Lemma A.9 we know that the conic (2.6) consists of two lines (or one doubled line) if and
only if the determinant of the above matrix is zero. Straightforward calculations show that

−4 det Q = B01T
2
1 − A02T

2
2 + (B02 − A01)T1T2,

where T1 = ξ00 − A01ξ0 − A02η0 and T2 = η00 − B01ξ0 − B02η0 are tangent equations to X8 at
the point A (cf. (1.13)). This proves the required statement.

For fixed coefficients A01, A02, B01, and B02 we can decompose (2.5) into linear factors:

B01T
2
1 − A02T

2
2 + (B02 − A01)T1T2 = (α1T1 + β1T2)(α2T1 + β2T2). (2.7)

Note, that the intersection of the support of an R-bundle with the line L is given by the
determinant of the matrix (

u1 A01u1 + A02u2

u2 B01u1 + B02u2

)
,

i. e., by the polynomial B01u
2
1 −A02u

2
2 + (B02 −A01)u1u2. There are three possible situations:

• C1 ∩ L = L;

• C1 ∩ L consists of two points;

• C1 ∩ L consists of a single point.

Let us investigate all these situations. Let C be the support of the singular 3m + 1 sheaf given
by A, i. e., the cubic curve in P2 given by the determinant of the matrix A. Let p ∈ C be the
point where the corresponding 3m + 1 sheaf is not free on its support, i. e., the singular point
of C of A given by the linear forms of A (cf. (1.6) and Lemma 1.2).
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The case when A02 = 0, B01 = 0, and B02 − A01 = 0.

This is the case when C1∩L = L, i. e., when the whole line L lies in the support of an R-bundle.
One sees also that this is the case when p ∈ C is a triple singular point of C. In other words p
is an intersection of tree lines.

For all normal directions the curve C1 consists in this case of two different lines one of which
is L. So there are no R-bundles with smooth curve C1 in this case.

We are going now to consider the cases when at least one of the coefficients A02, B01, and
B02 − A01 is different from zero.

The case of non-zero discriminant.

Let us consider the case when the discriminant ∆ = (B02 − A01)
2 + 4A01B01 is non-zero. This

means that the intersection of the support of an R-bundle with L consists of two points given
by

B01u
2
1 − A02u

2
2 + (B02 − A01)u1u2 = 0.

Then the linear forms l1 = α1T1 + β1T2 and l2 = α2T1 + β2T2 in variables T1 and T2 from (2.7)
are linear independent and we can consider them as tangent equations to X8 at A. Then
TAX8 = Z(l1) ∩ Z(l2). One can represent a zero set of (2.5) as a union Z(l1) ∪ Z(l2).

t

TAX Z(l1)

Z(l2) TAX8

Let B and B′ be two non-tangent to X8 directions at the point A.
Then they define the same point in PNA(X8) if and only if there exists
a non-zero constant λ such that B−λB′ ∈ TA(X8). The last condition
is equivalent to the vanishing of both l1 and l2 on the matrix B− λB′.

Assume that both B and B′ belong to Z(l1). As we assumed them
to be non-tangent, we have l2(B) 6= 0 and l2(B

′) 6= 0. Take λ 6= 0 such
that l2(B)−λl2(B

′) = 0, i. e., λ = l2(B)/l2(B
′). Then l1(B−λB′) = 0

and l2(B−λB′) = 0, i. e., B and B′ define the same point in PNA(X8).
Analogously one shows that all the directions from Z(l2) define the

same point in PNA(X8).
Let B ∈ Z(l1) and B′ ∈ Z(l2) be two non-tangent to X8 directions at the point A. Then

they define the same point in PNA(X8) if and only if both l1 and l2 vanish on the matrix B−λB′

for some non-zero λ. Since B ∈ Z(l1), we obtain l1(B − λB′) = −λl1(B
′). Since B′ ∈ Z(l2),

we get l2(B − λB′) = l2(B). Finally we conclude that B ∈ Z(l1) and B′ ∈ Z(l2) define the
same point in PNA(X8) if and only if l1(B

′) = l2(B) = 0. But this is only possible for tangent
directions B and B′. We obtained a contradiction and showed this way that all the normal
directions to X8 at the point A that give singular conics in D1 = P2 give only two points in
PNA(X8), one point corresponds to the component Z(l1) and the another one corresponds to
Z(l2).

The case we have just considered is exactly the case when the point p ∈ C is an ordinary
double point singularity of C.

The case of zero discriminant.

In this case B01T
2
1 −A02T

2
2 + (B02 −A01)T1T2 = l2 for a non-trivial linear form l = αT1 + βT2.

t

TAX

Z(l) TAX8

This means that the curve C1 is singular if and only if l = 0. The
intersection of the support of an R-bundle with L consists of a single
point given by αu1 + βu2 = 0.

As at least one of α and β is different from zero, we can choose
some Ti0 among T1 and T2 such that Ti0 and l are linear independent
and we may consider them as tangent equations to X8 at A. Take two
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normal directions B1, B2 ∈ Z(l). Then Ti0(B1) 6= 0 and Ti0(B2) 6= 0. Therefore, for λ =
Ti0

(B1)

Ti0
(B2)

we have that
l(B1 − λB2) = 0 and Ti0(B1 − λB2) = 0,

which means that B1 − λB2 is a tangent direction and thus B1 and B2 are equivalent normal
directions.

We have shown that there is only one point in PNA(X8) with singular curve C1.
The case of zero discriminant correspond to the case of a degenerated double point singu-

larity p ∈ C.
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2.3 Examples

Using concrete examples we give here an illustration to Theorem 2.19.
For every singularity type of a cubic curve in P2 we fix a matrix A ∈ X8 and consider the

set of R-bundles constructed at A. Note that the intersection set of C1 with L is completely
described by the matrix A.

For a fixed A we describe the set of the equivalence classes of R-bundles with the curve
C1 of fixed type (see page 66). If the type of C1 is different from I), by Proposition 2.16 it is
enough to fix only one such curve (see also Definition 2.12).

2.3.1 Generic case.

t

x2
1x0 − x2(x2 + x0) = 0

Let us fix the matrix A =

(
x1 x2(x0 + x2)
x2 x1x0

)
. Let C be a

curve in P2 given by the determinant of this matrix. This
curve has an ordinary double point singularity. Then for all
directions B the curve C0 is given by the determinant of the
matrix (

u1 u2(x0 + x2)
u2 u1x0

)
.

The intersection of C0 with the line L is given by the equation u2
1 − u2

2 = 0 and consists of
two points. Tangent equations at the point A are ξ00 = η0 and η00 = ξ0.

For a direction

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

the restriction to D1 of the corresponding sheaf is given by the matrix

(
u1 + ξ0u0 u2 + ξ00u0

u2 + η0u0 u1 + η00u0

)
.

The support of that sheaf on D1 is then the curve given by the determinant of this matrix:

C1 = {u2
1 − u2

2 + (ξ0η00 − η0ξ00)u
2
0 + (ξ0 + η00)u0u1 − (η0 + ξ00)u0u2}.

Remark 2.21 (comparison with [26]). One sees that C0 is a normalization of C (C0 is a proper
transform of C).

If the conic C1 is smooth, then it is isomorphic to P1 and thus the support of an R-bundle
in this situation is a curve of type X1 (see [26], pp. 212–213).

If C1 is singular, then it is just a union of two lines and thus the whole support C0 ∪ C1 is
a curve of type X2.

We conclude that R-bundles in the generic case are line bundles on the curves X1 or X2.

Smooth curve C1.

We are going to describe the equivalence classes of those R-bundles constructed at the point A
that have smooth curve C1. By Proposition 2.16 it is enough to fix one such curve because the
intersection of C1 with L is completely described by the matrix A.

Let us fix some smooth conic section on P2 that intersects with L in the points {u2
1−u2

2 = 0},
say u2

1 − u2
2 − u0u2 = 0, and let us see which directions B give us this conic section.
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From the equations above we obtain





ξ0η00 − η0ξ00 = 0,

ξ0 + η00 = 0,

η0 + ξ00 = 1,

thus ξ00 = 1− η0, η00 = −ξ0, and −ξ2
0 − (1− η0)η0 = 0. So we have two parameters ξ0 and η0

subject the relation
ξ2
0 + (1− η0)η0 = 0.

We obtain that C1 = {u2
1 − u2

2 − u0u1 = 0} if and only if the matrix B is of the form

B =

(
ξx0 + ξ1x1 + ξ2x2 (1− η)x2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 −ξx2
0 + · · ·+ η22x

2
2

)
,

where the parameters ξ and η satisfy the equation

ξ2 − η2 + η = 0.

One can rewrite B as

B =

(
0 x2

0

0 0

)
+ ξ

(
x0 0
0 −x2

0

)
+ η

(
0 −x2

0

x0 0

)
+

(
ξ1x1 + ξ2x2 ξ01x0x1 + · · ·+ ξ22x

2
2

η1x1 + η2x2 η01x0x1 + · · ·+ η22x
2
2

)
.

This means that the directions which give us the curve {u2
1 − u2

2 − u0u2 = 0} is a hypersurface
in some 16-dimensional affine subspace of TAX that is complementary to TAX8.

For a direction B with the curve u2
1 − u2

2 − u0u2 = 0 the matrix on Z0 is

ÃB =

(
u1 + ξu0 u2(x0 + x2) + (1− η)u0x0

u2 + ηu0 u1x0 − ξu0x0

)
.

In particular this means that for fixed parameters ξ and η we always obtain the same matrix
and thus the same sheaf.

Suppose that two matrices

ÃB =

(
u1 + ξu0 u2(x0 + x2) + (1− η)u0x0

u2 + ηu0 u1x0 − ξu0x0

)

and

ÃB′ =

(
u1 + ξ′u0 u2(x0 + x2) + (1− η′)u0x0

u2 + η′u0 u1x0 − ξ′u0x0

)
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define isomorphic sheaves. Then by Proposition 1.40 and Remark 1.42 there is a commutative
diagram


λ z

0 µ




²²


a b

c d




²²

ÃB //

ÃB′
//

with invertible vertical arrows. Therefore, ÃB

(
λ z
0 µ

)
=

(
a b
c d

)
ÃB′ . Comparing the entries

on the place 1.1 we obtain

λ(u1 + ξu0) = a(u1 + ξ′u0) + b(u2 + η′u0).

Thus b = 0, a = λ 6= 0, ξ = ξ′.
Comparing the entries on the place 2.1 we obtain

λ(u2 + ηu0) = c(u1 + ξ′u0) + d(u2 + η′u0).

Thus c = 0, λ = d = a, η = η′.
We obtained that two matrices B and B′ define isomorphic sheaves if and only if ξ = ξ′

and η = η′. That is why we can interpret the curve ξ2 − η2 + η = 0 in the normal plane

k·
(

x0 0
0 −x2

0

)
+k·

(
0 −x2

0

x0 0

)
∼= k2 as the set of all isomorphism classes of the sheaves supported

on C0 ∪ C1, C1 = {u2
1 − u2

2 − u0u2 = 0}, that we obtain at the point A =

(
x1 x2(x0 + x2)
x2 x1x0

)
.

s
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ξ2 − η2 + η = 0

(0, 1
2 )

The group of invertible matrices
(

α β γ
0 1 0
0 0 1

)
acts on the set of conics in P2. Let us calculate

the stabilizer of the conic C1 = u2
1−u2

2−u0u2 = 0. An element
(

α β γ
0 1 0
0 0 1

)
sends C1 into the curve

given by the polynomial

(βu0 +u1)
2− (γu0 +u2)

2−αu0(γu0 +u2) = u2
1−u2

2 +(β2−γ2−αγ)u2
0 +2βu0u1− (2γ +α)u0u2.

To obtain the same curve C1 the equalities β2 − γ2 − αγ = 0, 2β = 0, and 2γ + α = 1 should

hold true (we compare the coefficients). Thus either γ = 0 and α = 1, i. e.,
(

α β γ
0 1 0
0 0 1

)
= id or

γ 6= 0, α = −γ, γ = 1, i. e.,
(

α β γ
0 1 0
0 0 1

)
=

( −1 0 1
0 1 0
0 0 1

)
.

Suppose that two matrices

ÃB =

(
u1 + ξu0 u2(x0 + x2) + (1− η)u0x0

u2 + ηu0 u1x0 − ξu0x0

)

and

ÃB′ =

(
u1 + ξ′u0 u2(x0 + x2) + (1− η′)u0x0

u2 + η′u0 u1x0 − ξ′u0x0

)
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define equivalent sheaves. Then either ξ = ξ′ and η = η′, i. e., the sheaves are isomorphic, or
they are not isomorphic but there is an isomorphism of the sheaves defined by φ∗ÃB and ÃB′ ,

where φ =
( −1 0 1

0 1 0
0 0 1

)
. As

φ∗ÃB =

(
u1 − ξu0 u2(x0 + x2) + ηu0x0

u2 + (1− η)u0 u1x0 + ξu0x0

)

by the considerations above this means ξ′ = −ξ and η′ = 1− η. So for a fixed equivalence class
there are exactly two points on the curve ξ2 − η2 + η = 0 defining that class. We claim that
for a point (ξ, η) from the curve above the second point defining the same equivalence class is
just the point on the curve defining the same normal direction. Indeed, let us fix a point (ξ, η)
on the curve ξ2 − η2 + η = 0, and let us see what points on this curve define the same normal
direction. Let (ξ′, η′) be such a point. Then

B =

(
ξx0 + . . . (1− η)x2

0 + . . .
ηx0 + . . . −ξx2

0 + · · ·+
)

,

B′ =
(

ξ′x0 + . . . (1− η′)x2
0 + . . .

η′x0 + . . . −ξ′x2
0 + · · ·+

)
,

and B − αB′ ∈ TAX for some α ∈ k∗. As

B − αB′ =
(

(ξ − αξ′)x0 + . . . (1− η − α(1− η′))x2
0 + . . .

(η − αη′)x0 + . . . (−ξ − (−αξ′))x2
0 + · · ·+

)
,

using tangent equations at A we get ξ − αξ′ = 0 and 2(η − αη′) = 1 − α. Thus ξ = αξ′ and
η = 1−α

2
+ αη′. Using ξ2 − η2 + η = ξ′2 − η′2 + η′ = 0 we obtain

0 =α2ξ′2 −
(

1− α

2
+ αη′

)2

+
1− α

2
+ αη′ =

α2ξ′2 − α2η′2 + α2η′ +
1− α

2
−

(
1− α

2

)2

=
1− α

2
−

(
1− α

2

)2

.

Therefore, either α = 1 or α = −1. This means that either (ξ, η) = (ξ′, η′) or (ξ, η) =
(−ξ′, 1− η′).

Singular curve C1.

Let us fix some singular (reducible) curve through the points u1 = u2 and u1 = −u2 on the line
L = {u0 = 0}, say

u2
1 + u2

0 + 2u0u1 − u2
2 = (u1 − u2 + u0)(u1 + u2 + u0) = 0.
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To obtain this curve the following equations should hold true:





ξ0η00 − η0ξ00 = 1,

ξ0 + η00 = 2,

η0 + ξ00 = 0.

So η00 = 2− ξ0, ξ00 = −η0, and ξ0(2− ξ0) + η2
0 = 1. Therefore,

B =

(
ξx0 + ξ1x1 + ξ2x2 −ηx2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 (2− ξ)x2
0 + · · ·+ η22x

2
2

)
,

where the parameters ξ and η satisfy the equation ξ(2− ξ)+η2−1 = (η− ξ +1)(η + ξ−1) = 0,
is the general form of the normal directions that give us the curve C1. Of course we need η 6= 0,
because otherwise, B is a tangent direction.

One can rewrite

B =

(
0 0
0 2x2

0

)
+ ξ

(
x0 0
0 −x2

0

)
+ η

(
0 −x2

0

x0 0

)
+

(
ξ1x1 + ξ2x2 ξ01x0x1 + · · ·+ ξ22x

2
2

η1x1 + η2x2 η01x0x1 + · · ·+ η22x
2
2

)
.

This means that the set of directions which give us the curve {u2
1 − u2

2 + 2u0u2 + u2
0 = 0} is

a hypersurface (two hyperplanes) in some 16-dimensional affine normal subspace of TAX.
For a direction B with the curve u2

1 − u2
2 + 2u0u2 + u2

0 = 0 the matrix on Z0 is

ÃB =

(
u1 + ξu0 u2(x0 + x2)− ηu0x0

u2 + ηu0 u1x0 + (2− ξ)u0x0

)
.

In particular this means that for fixed parameters ξ and η we always obtain the same matrix
and thus the same sheaf.

Suppose that two matrices

ÃB =

(
u1 + ξu0 u2(x0 + x2)− ηu0x0

u2 + ηu0 u1x0 + (2− ξ)u0x0

)

and

ÃB′ =

(
u1 + ξ′u0 u2(x0 + x2)− η′u0x0

u2 + η′u0 u1x0 + (2− ξ′)u0x0

)

define isomorphic sheaves. Then by Proposition 1.40 and Remark 1.42 there is a commutative
diagram


λ z

0 µ




²²


a b

c d




²²

ÃB //

ÃB′
//

with invertible vertical arrows. Therefore, ÃB

(
λ z
0 µ

)
=

(
a b
c d

)
ÃB′ . Comparing the entries

on the place 1.1 we obtain

λ(u1 + ξu0) = a(u1 + ξ′u0) + b(u2 + η′u0).

Thus b = 0, a = λ 6= 0, ξ = ξ′.
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Comparing the entries on the place 2.1 we obtain

λ(u2 + ηu0) = c(u1 + ξ′u0) + d(u2 + η′u0).

Thus c = 0, λ = d = a, η = η′. We obtained again that two matrices B and B′ define
isomorphic sheaves if and only if ξ = ξ′ and η = η′.

Let us calculate the stabilizer of the conic C1 = {u2
1 − u2

2 + u2
0 + 2u0u1 = 0}. An element(

α β γ
0 1 0
0 0 1

)
sends C1 into the curve given by the polynomial

(βu0 + u1)
2 − (γu0 + u2)

2 + α2u0 + 2αu0(βu0 + u1) =

u2
1 − u2

2 + (β2 − γ2 + α2 + 2αβ)u2
0 + (2β + 2α)u0u1 − 2γu0u2.

To obtain the same curve, we have the equations −2γ = 0, 2β +2α = 2, β2−γ2 +α2 +2αβ = 1.
Therefore, β = 1− α and γ = 0. So the stabilizer of C1 is the group

{(
α 1−α 0
0 1 0
0 0 1

)
| α ∈ k∗

}

Suppose that two matrices

ÃB =

(
u1 + ξu0 u2(x0 + x2)− ηu0x0

u2 + ηu0 u1x0 + (2− ξ)u0x0

)

and

ÃB′ =

(
u1 + ξ′u0 u2(x0 + x2)− η′u0x0

u2 + η′u0 u1x0 + (2− ξ′)u0x0

)

define equivalent sheaves. Then either ξ = ξ′ and η = η′, i. e., the sheaves are isomorphic, or
they are not isomorphic but there is an isomorphism of the sheaves defined by φ∗ÃB and ÃB′ ,

where φ =
(

α 1−α 0
0 1 0
0 0 1

)
. As

φ∗ÃB =

(
u1 + (αξ + 1− α)u0 u2(x0 + x2)− αηu0x0

u2 + αηu0 u1x0 + α(2− ξ)u0x0 + (1− α)u0x0

)
,

by the considerations above αξ + 1 − α = ξ′ and αη = η′. One easily sees that this holds if
and only if the points (ξ, η) and (ξ′, η′) lies on the same line through the point (1, 0). Thus we
showed that the points the curve (η − ξ + 1)(η + ξ − 1) = 0 define the same equivalence class
of R-bundles if and only if they belong to the same component of this curve. But to lie in the
same components (hyperplanes) is the same as to define the same normal direction.

s
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η − ξ + 1 = 0

η + ξ − 1 = 0

(1, 0)
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2.3.2 The case of a cuspidal curve.

t
x2

1x0 − x3
2 = 0

Let us fix the matrix A =

(
x1 x2

2

x2 x1x0

)
. Then for all directions

B the curve C0 is given by the determinant of

(
u1 u2x2

u2 u1x0

)
. The

intersection of C0 with the line L is given by the equation u2
1 = 0

and consists of a single point. Tangent equations at the point A
are ξ00 = 0 and η00 = ξ0.

For a direction

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

the restriction of the corresponding sheaf to D1 is given by the matrix

(
u1 + ξ0u0 ξ00u0

u2 + η0u0 u1 + η00u0

)
.

The support of that sheaf on D1 is then the curve given by the determinant of this matrix:

C1 = {u2
1 + (ξ0η00 − η0ξ00)u

2
0 + (ξ0 + η00)u0u1 − ξ00u0u2 = 0}.

Smooth curve C1.

Let us fix some smooth conic section on P2 which intersects with L at the points {u1 = 0}, say
u2

1 − u0u2 = 0, and let us see which directions B give us this conic section.
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C1

C0

L

D1

D0

We obtain then the equations





ξ0η00 − η0ξ00 = 0,

ξ0 + η00 = 0,

−ξ00 = −1.

Thus ξ00 = 1, η00 = −ξ0, and −ξ2
0 − η0 = 0.

We obtained that C1 = {u2
1 − u0u2 = 0} if and only if the matrix B is of the form

B =

(
ξx0 + ξ1x1 + ξ2x2 x2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 −ξx2
0 + · · ·+ η22x

2
2

)
,

where the parameters ξ and η satisfy the equation ξ2 + η = 0.
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¯
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t

ξ2 + η = 0

For a direction B with the curve u2
1 − u0u2 = 0 the matrix on Z0 is

ÃB =

(
u1 + ξu0 u2x2 + u0x0

u2 + ηu0 u1x0 − ξu0x0

)
.

Absolutely analogously as above in the generic case one sees that the points from the curve
ξ2 + η = 0 define different isomorphism classes of sheaves.

Since an element
(

α β γ
0 1 0
0 0 1

)
sends C1 into the curve given by the polynomial

(βu0 + u1)
2 − αu0(γu0 + u2) = u2

1 + 2βu0u1 + (β2 − αγ)u2
0 − αu0u2,

to obtain the same curve, we have the equations 2β = 0, β2−αγ = 0, and −α = −1. Therefore,
the stabilizer of C1 is trivial, i.e., consists only of the identity matrix. This implies that the
curve ξ2 + η = 0 in k2 parameterizes the equivalence classes of sheaves.

One easily sees that different points on the curve ξ2 + η = 0 correspond to different normal
directions.

Singular curve C1.

We fix here a singular curve C1 through the point u1 = 0 at the line L, say C1 = {u2
1 − u2

0 =
(u1 − u0)(u1 + u0) = 0}.
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This is possible if and only if




ξ0η00 − η0ξ00 = −1,

ξ0 + η00 = 0,

−ξ00 = 0.

Therefore,

B =

(
ξx0 + ξ1x1 + ξ2x2 ξ01x0x1 + · · ·+ ξ22x

2
2

ηx0 + η1x1 + η2x2 −ξx2
0 + · · ·+ η22x

2
2

)
,

where ξ2 = 1, is the general form of normal direction defining a sheaf with the curve C1 =
{u2

1 − u2
0 = 0}.
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¦¦ξ = 1

ξ = −1

ξ = 0

For a direction B with the curve u2
1 − u2

0 = 0 the matrix on Z0 is

ÃB =

(
u1 + ξu0 u2x2

u2 + ηu0 u1x0 − ξu0x0

)
.

As above, we see that different points with ξ2 = 1 define different isomorphism classes of
sheaves. Let us have a look at the equivalence classes.

First of all we again need to compute the stabilizer group of the curve u2
1 − u2

0 = 0. Since

the matrix
(

α β γ
0 1 0
0 0 1

)
sends the given curve into the curve

(βu0 + u1)
2 − α2u2

0 = u2
1 + (β2 − α2)u2

0 + 2βu0u1 = 0,

to get the same curve we get the equations β = 0 and α2 = 1. Thus the stabilizer group is
{(

1 0 γ
0 1 0
0 0 1

)
| γ ∈ k

}
∪

{( −1 0 γ
0 1 0
0 0 1

)
| γ ∈ k

}
.

Two matrices

ÃB =

(
u1 + ξu0 u2x2

u2 + ηu0 u1x0 − ξu0x0

)

and

ÃB′ =

(
u1 + ξ′u0 u2x2

u2 + η′u0 u1x0 − ξ′u0x0

)

define equivalent sheaves if and only if there exists φ =
(

α 0 γ
0 1 0
0 0 1

)
, α2 = 1, such that the sheaves

given by ÃB′ and φ∗(ÃB) are isomorphic. Since

φ∗(ÃB) =

(
u1 + ξαu0 (γu0 + u2)x2

γu0 + u2 + ηαu0 u1x0 − ξαu0x0

)
=

(
u1 + ξαu0 u2x2

u2 + (ηα + γ)u0 u1x0 − ξαu0x0

)
,

the latter means ξ′ = αξ and η′ = ηα + γ. But for each (ξ, η) and (ξ′, η′) with ξ2 = ξ′2 = 1
there exists α = ξ′/ξ and γ = η′ − αη for which the equations hold. Therefore, all the sheaves
with the curve C1 = {u2

1 − u2
0 = 0} are equivalent. One also sees that the points with ξ2 = 1

define the same normal direction.

2.3.3 Three lines with simple intersections.

¡
¡

¡
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¡
¡
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t

x0x1x2 = 0

We start here from the matrix A =

(
x1 0
x2 x2x0

)
. The tangent equations

are in this case ξ00 = 0 and η00 = η0. For a general direction

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

we obtain a sheaf on Z0 given by the matrix
(

u1 + ξ0u0 ξ00u0x0

u2 + η0u0 u2u0 + η00u0x0

)
.
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The restriction to P̃2 is given by

(
u1 0
u2 u2x0

)
and is supported on the curve u1u2x0 = 0.

The restriction to D1 is given by the matrix
(

u1 + ξ0u0 ξ00u0

u2 + η0u0 u2 + η00u0

)
.

Its support on D1 is the curve C1 given by the polynomial

u1u2 + (ξ0η00 − η0ξ00)u
2
0 + η00u0u1 + (ξ0 − ξ00)u0u2.

The intersection of the support of the sheaf with the line L consists of two points u1 = 0 and
u2 = 0.

Smooth curve C1.

Let us fix some smooth curve C1, say C1 = {u1u2 + u2
0 = 0}.
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We obtain this curve if and only if




ξ0η00 − η0ξ00 = 1,

ξ0 − ξ00 = 0,

η00 = 0,

or, equivalently, if and only if

B =

(
ξx0 + ξ1x1 + ξ2x2 ξx2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 η01x0x1 + · · ·+ η22x
2
2

)

with ξη = −1. For a direction B with the curve u1u2 + u2
0 = 0 the matrix on Z0 is

ÃB =

(
u1 + ξu0 ξu0x0

u2 + ηu0 u2x0

)
.

Thus we obtain a “curve” ξη = −1 in k2 of R-bundles in this case.

s

³³³³³³

³³³³³³

ξη + 1 = 0

(0, 0)
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Note, that this curve is isomorphic to k∗.
As above one easily sees that different points of this curve give us non-isomorphic sheaves.

The matrix
(

α β γ
0 1 0
0 0 1

)
sends the curve C1 into the curve

(βu0 + u1)(γu0 + u2) + α2u2
0 = u1u2 + (βγ + α2)u2

0 + βu0u2 + γu0u1 = 0.

Thus the stabilizer of C1 consists of two matrices
(

1 0 0
0 1 0
0 0 1

)
and

( −1 0 0
0 1 0
0 0 1

)
. Therefore, two sheaves

given by the matrices

ÃB =

(
u1 + ξu0 ξu0x0

u2 + ηu0 u2x0

)

and

ÃB′ =

(
u1 + ξ′u0 ξ′u0x0

u2 + η′u0 u2x0

)

define equivalent sheaves if and only if they are either equal or if ÃB′ = φ∗(ÃB) for φ =
( −1 0 0

0 1 0
0 0 1

)
.

Since

φ∗(ÃB) =

(
u1 − ξu0 −ξu0x0

u2 − ηu0 u2x0

)
,

the latter means (ξ′, η′) = (−ξ,−η). But this is the same as to say that the points (ξ, η) and
(ξ′, η′) define the same normal direction. Indeed this is the case if and only if B′−αB ∈ TAX8

for some non-zero scalar α. As

B′ − αB =

(
(ξ′ − αξ)x0 + . . . (ξ′ − αξ)x2

0 + . . .
(η′ − αη)x0 + . . . 0 · x2

0 + . . .

)

and since the tangent equations are ξ00 = 0 and η00 = η0, we obtain ξ′ = αξ and η′ = αη. Using
ξη = ξ′η′ = −1, we get α2 = 1, so (ξ′, η′) = ±(ξ, η) is the condition for two points to define the
same normal direction.

Singular curve C1.

Here we fix a singular curve C1, say C1 = {u1u2 + u0u1 = u1(u2 + u0) = 0}.
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This is possible for 



ξ0η00 − η0ξ00 = 0,

ξ0 − ξ00 = 0,

η00 = 1,
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Thus

B =

(
ξx0 + ξ1x1 + ξ2x2 ξx2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 x2
0 + · · ·+ η22x

2
2

)

with ξ − ξη = 0 and

ÃB =

(
u1 + ξu0 ξu0x0

u2 + ηu0 u2x0 + u0x0

)
.

So, we get the “curve” ξ(1−η) = 0 (without the point (0, 1), which defines in this case a tangent
direction) of R-bundles with the curve C1 = u1(u2 + u0). All this sheaves are non-isomorphic.

s
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A

A
A
A

η = 1

ξ = 0

(0, 1)

One can calculate that the stabilizer of C1 in this case consists of all the matrices of the form
(

α 0 1−α
0 1 0
0 0 1

)
, α ∈ k∗.

For φ =
(

α 0 1−α
0 1 0
0 0 1

)
and

ÃB =

(
u1 + ξu0 ξu0x0

u2 + ηu0 u2x0 + u0x0

)

we have

φ∗(ÃB) =

(
u1 + ξαu0 ξαu0x0

u2 + (1− α + ηα)u0 u2x0 + (1− α)u0x0 + αu0x0

)
.

Therefore, two sheaves given by

ÃB =

(
u1 + ξu0 ξu0x0

u2 + ηu0 u2x0 + u0x0

)

and by

ÃB′ =

(
u1 + ξ′u0 ξ′u0x0

u2 + η′u0 u2x0 + u0x0

)

are equivalent if and only if ξ′ = αξ and η′ = 1−α + ηα for some non-zero scalar α. Rewriting
this equations as ξ′ = αξ and 1− η′ = α(1− η) we see that the sheaves above are equivalent if
and only if the points (ξ, η) and (ξ′, η′) lie in the same component (line) of the curve ξ(1−η) = 0.
As in the examples above this corresponds to equal normal directions: each component of the
curve ξ(1− η) = 0 gives us a normal direction.

2.3.4 Transversal intersection of a line with a smooth conic.

&%

'$

t
x1(x2

1 − x0x2) = 0

We fix for this case the matrix A =

(
x1 x0x1

x2 x2
1

)
. Tangent equa-

tions are ξ00 = ξ0 and η00 = 0. For a general direction B the
matrix on Z0 is

ÃB =

(
u1 + ξ0u0 u1x0 + ξ00u0x0

u2 + η0u0 u1x1 + η00u0x0

)
.
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Restricting to D1 we obtain

(
u1 + ξ0u0 u1 + ξ00u0

u2 + η0u0 η00u0

)

and the curve C1 is given by the determinant of this matrix

(η00 − η0)u0u1 + (ξ0η00 − η0ξ00)u
2
0 − ξ00u0u2 − u1u2.

The intersection of the support of the sheaf with the line L consists of two points u1 = 0 and
u2 = 0.

Smooth curve C1.

Let us fix C1 = {u2
0 − u1u2 = 0},
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then 



ξ0η00 − η0ξ00 = 1,

η00 − η0 = 0,

−ξ00 = 0,

and

B =

(
ξx0 + ξ1x1 + ξ2x2 ξ01x0x1 + · · ·+ ξ22x

2
2

ηx0 + η1x1 + η2x2 ηx2
0 + · · ·+ η22x

2
2

)

with ξη = 1. Thus

ÃB =

(
u1 + ξu0 u1x0

u2 + ηu0 u1x1 + ηu0x0

)

and we obtain in this case a “curve” ξη = 1 of R-bundles non-isomorphic to each other.

s
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ξη = 1

(0, 0)

This curve is isomorphic to k∗.
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One easily sees that the stabilizer of the curve C1 consists of two matrices
(

1 0 0
0 1 0
0 0 1

)
and( −1 0 0

0 1 0
0 0 1

)
. Therefore, two sheaves given by the matrices

ÃB =

(
u1 + ξu0 u1x0

u2 + ηu0 u1x1 + ηu0x0

)

and

ÃB′ =

(
u1 + ξ′u0 u1x0

u2 + η′u0 u1x1 + η′u0x0

)

define equivalent sheaves if and only if the matrices are either equal or if ÃB′ = φ∗(ÃB) for

φ =
( −1 0 0

0 1 0
0 0 1

)
. Since

φ∗(ÃB) =

(
u1 − ξu0 u1x0

u2 − ηu0 u1x1 − ηu0x0

)
,

the latter means (ξ′, η′) = (−ξ,−η).
But this is the same as to say that the points (ξ, η) and (ξ′, η′) define the same normal

direction. Indeed this is the case if and only if B′−αB ∈ TAX8 for some non-zero scalar α. As

B′ − αB =

(
(ξ′ − αξ)x0 + . . . 0 · x2

0 + . . .
(η′ − αη)x0 + . . . (η′ − αη)x0 + . . .

)

and since the tangent equations are ξ00 = ξ0 and η00 = 0, we obtain ξ′ = αξ and η′ = αη. Using
ξη = ξ′η′ = 1, we get α2 = 1, so (ξ′, η′) = ±(ξ, η) is the condition for two points on the curve
ξη = 1 to define the same normal direction.

Singular curve C1.

Let us fix C1 = {u1(u0 − u2) = 0}.
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Then 



ξ0η00 − η0ξ00 = 0,

η00 − η0 = 1,

−ξ00 = 0,

and

B =

(
ξx0 + ξ1x1 + ξ2x2 ξ01x0x1 + · · ·+ ξ22x

2
2

ηx0 + η1x1 + η2x2 (1 + η)x2
0 + · · ·+ η22x

2
2

)
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with ξ(1 + η) = 0. Thus

ÃB =

(
u1 + ξu0 u1x0

u2 + ηu0 u1x1 + (1 + η)u0x0

)

and the curve ξ(1 + η) without the point (0,−1) parameterizes R-bundles with the fixed curve
C1.

s
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A

η = −1

ξ = 0

(0,−1)

The stabilizer of C1 in this case is the group{(
α 0 α−1
0 1 0
0 0 1

)
| α ∈ k∗

}
.

For the matrix

ÃB =

(
u1 + ξu0 u1x0

u2 + ηu0 u1x1 + (1 + η)u0x0

)

and for φ =
(

α 0 α−1
0 1 0
0 0 1

)
we have

φ∗(ÃB) =

(
u1 + ξαu0 u1x0

u2 + (α− 1 + ηα)u0 u1x1 + (1 + η)αu0x0

)
.

Therefore, the sheaves defined by ÃB and by

ÃB′ =

(
u1 + ξ′u0 u1x0

u2 + η′u0 u1x1 + (1 + η′)u0x0

)

are equivalent if and only if ξ′ = αξ and 1+η′ = α(1+η), α ∈ k∗. This means (ξ, η) and (ξ′.η′)
should lie in the same component of the curve ξ(1 + η) = 0.

As in the examples above this corresponds to equal normal directions: each component of
the curve ξ(1 + η) = 0 gives us a normal direction.

2.3.5 Tangent intersection of a line with a smooth conic.

&%

'$
t

x2(x2
1 − x0x2) = 0

For this case let us take the matrix A =

(
x1 x0x2

x2 x1x2

)
. Tangent equa-

tions at this point are ξ00 = η0 and η00 = 0. For a general direction B
the matrix on Z0 is

ÃB =

(
u1 + ξ0u0 u2x0 + ξ00u0x0

u2 + η0u0 u1x2 + η00u0x0

)
.

Restricting to D1 we obtain(
u1 + ξ0u0 u2 + ξ00u0

u2 + η0u0 η00u0

)
,

and thus the curve C1 is in this case given by the polynomial

(ξ0η00 − η0ξ00)u
2
0 − u2

2 + η00u0u1 − (ξ00 + η0)u0u2.

The intersection of this curve with the line L consists of a single point u2 = 0.
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Smooth curve C1.

Let us fix C1 = {u0u1 − u2
2 = 0}.
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Then 



ξ0η00 − η0ξ00 = 0,

η00 = 1,

ξ00 + η0 = 0,

and

B =

(
ξx0 + ξ1x1 + ξ2x2 −ηx2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 x2
0 + · · ·+ η22x

2
2

)

with ξ + η2 = 0. Therefore,

ÃB =

(
u1 + ξu0 u2x0 − ηu0x0

u2 + ηu0 u1x2 + u0x0

)
.

We obtain a “curve” ξ + η2 = 0 of non-isomorphic R-bundles in this case. This curve is
isomorphic to k.

¯
¯
¯
¯
¯̄

¯
¯
¯
¯
¯̄

t

ξ + η2 = 0

The stabilizer of C1 is a trivial group in this case. Thus the points of the curve ξ + η2 = 0
correspond to equivalence classes of R-bundles with the curve C1 = {u0u1−u2

2 = 0} constructed

at the point A =

(
x1 x0x2

x2 x1x2

)
.

Singular curve C1.

We fix here the curve C1 = {u2
0 − u2

2 = (u0 − u2)(u0 + u2) = 0}.
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Then 



ξ0η00 − η0ξ00 = 1,

η00 = 0,

ξ00 + η0 = 0,

and

B =

(
ξx0 + ξ1x1 + ξ2x2 −ηx2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 ξ01x0x1 + · · ·+ η22x
2
2

)

with η2 = 1.
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¦
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¦
¦¦η = 1

η = −1

η = 0

In this case

ÃB =

(
u1 + ξu0 u2x0 − ηu0x0

u2 + ηu0 u1x2

)
.

The matrix
(

α β γ
0 1 0
0 0 1

)
sends the curve C1 into the curve given by the polynomial

α2u2
0 − (γu0 + u2)

2 = (α2 − γ2)u2
0 − u2

2 − 2γu0u2.

Therefore, the stabilizer of the curve C1 is the group
{(

α β 0
0 1 0
0 0 1

)
| α = ±1, β ∈ k

}
. Since for

φ =
(

α β 0
0 1 0
0 0 1

)
, α2 = 1, and for ÃB =

(
u1 + ξu0 u2x0 − ηu0x0

u2 + ηu0 u1x2

)
we have

φ∗(ÃB) =

(
u1 + (β + αξ)u0 u2x0 − ηαu0x0

u2 + ηαu0 u1x2

)
,

the sheaves given by ÃB and by

ÃB′ =

(
u1 + ξ′u0 u2x0 − η′u0x0

u2 + η′u0 u1x2

)

are equivalent if and only if there exist α = ±1 and β ∈ k such that η′ = αη and ξ′ = αξ + β.
But this is always possible, just take α = η′/η and β = ξ′ − αξ.
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2.3.6 Point on a double line.

t

x2
1x0 = 0

We consider the matrix A =

(
x1 0
x2 x0x1

)
. Tangent equations are

ξ00 = 0 and ξ0 = η00. For a general direction B the matrix on Z0

is

ÃB =

(
u1 + ξ0u0 ξ00u0x0

u2 + η0u0 u1x0 + η00u0x0

)
.

Restricting to D1 we obtain

(
u1 + ξ0u0 ξ00u0

u2 + η0u0 u1 + η00u0

)
,

and thus the curve C1 is in this case given by the polynomial

(ξ0η00 − η0ξ00)u
2
0 + u2

1 + (ξ0 + η00)u0u1 − ξ00u0u2.

The intersection of this curve with the line L consists of a single point u1 = 0.

Smooth curve C1.

We fix here C1 = {u2
1 + u0u2 = 0}.
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Then 



ξ0η00 − η0ξ00 = 0,

ξ0 + η00 = 0,

−ξ00 = 1,

and

B =

(
ξx0 + ξ1x1 + ξ2x2 −x2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 −ξx2
0 + · · ·+ η22x

2
2

)

with η − ξ2 = 0. Therefore,

ÃB =

(
u1 + ξu0 −u0x0

u2 + ηu0 u1x0 − ξu0x0

)
.

We have obtained a “curve” η− ξ2 = 0 of R-bundles non-isomorphic to each other. This curve
is isomorphic to k. The stabilizer of C1 in this case is trivial. Therefore, the points on the
curve η − ξ2 = 0 correspond to equivalence classes of sheaves.
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Singular curve C1.

Let us fix the curve C1 = {u2
1 − u2

0}.
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Then 



ξ0η00 − η0ξ00 = −1,

ξ0 + η00 = 0,

−ξ00 = 0,

and

B =

(
ξx0 + ξ1x1 + ξ2x2 ξ01x0x1 + · · ·+ ξ22x

2
2

ηx0 + η1x1 + η2x2 −ξx2
0 + · · ·+ η22x

2
2

)

with ξ2 = 1. We have also

ÃB =

(
u1 + ξu0 0
u2 + ηu0 u1x0 − ξu0x0

)
.

The matrix
(

α β γ
0 1 0
0 0 1

)
sends the curve C1 into the curve given by the polynomial

(βu0 + u1)
2 − α2u2

0 = (β2 − α2)u2
0 + u2

1 + 2βu0u1.

Therefore, the stabilizer of the curve C1 is the group
{(

α 0 γ
0 1 0
0 0 1

)
| α = ±1, γ ∈ k

}
. Since for

φ =
(

α 0 γ
0 1 0
0 0 1

)
, α2 = 1, and for ÃB =

(
u1 + ξu0 0
u2 + ηu0 u1x0 − ξu0x0

)
we have

φ∗(ÃB) =

(
u1 + αξu0 0

u2 + (γ + ηα)u0 u1x0 − αξu0x0

)
,

the sheaves given by ÃB and by

ÃB′ =

(
u1 + ξ′u0 0
u2 + η′u0 u1x0 − ξ′u0x0

)

are equivalent if and only if there exist α = ±1 and γ ∈ k such that ξ′ = αξ and η′ = αη + γ.
But this is always possible, just take α = ξ′/ξ and γ = η′ − αη. We showed that there is only

one equivalence class of sheaves for a singular curve C1 in the case A =

(
x1 0
x2 x0x1

)
.



94

2.3.7 Three lines through one point.

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

t

x1x2(x1 + x2) = 0

We start here from the matrix A =

(
x1 0
x2 x2(x1 + x2)

)
. Tangent equa-

tions at A are ξ00 = η00 = 0. For a general direction B the matrix on
Z0 is

ÃB =

(
u1 + ξ0u0 ξ00u0x0

u2 + η0u0 u2(x1 + x2) + η00u0x0

)
.

Restricting to D1 we obtain
(

u1 + ξ0u0 ξ00u0

u2 + η0u0 η00u0

)
,

and thus the curve C1 is in this case given by the polynomial

(ξ0η00 − η0ξ00)u
2
0 + η00u0u1 − ξ00u0u2 = u0((ξ0η00 − η0ξ00)u0 + η00u1 − ξ00u2).

Note, that the line L is a component of this curve. Since at least one of the coefficients ξ00 and
η00 is different from zero (we consider normal directions), the second component of C1 is a line
though the point pB := 〈ξ00, η00〉 at L.
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L

u1 = 0

D1

u1 = −u2
u2 = 0

pB

D0

L1

Let us denote this line L1. It is clear that two directions B and B′ with different intersection
points pB and pB′ define non-equivalent sheaves because all the allowed automorphism of Z0

are identities on D0 = P̃2. That is why there exists at least P1 many equivalence classes of
R-bundles in this case: each point at L ∼= P1 defines at least one equivalence class. Let us fix
such a point 〈a, b〉. This means that we fix up to multiplication by a non-zero constant the
coefficients ξ00 and η00. Let us fix a line through this point, say L1 = {cu0 + bu1 − au2 = 0}.
Then B defines a sheaf with this line if and only if

B =

(
ξx0 + ξ1x1 + ξ2x2 αax2

0 + · · ·+ ξ22x
2
2

ηx0 + η1x1 + η2x2 αbx2
0 + · · ·+ η22x

2
2

)

with bξ − aη = c for some α ∈ k∗, equivalently

B =

(
ξx0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

ηx0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

with bξ − aη = c and 〈ξ00, η00〉 = 〈a, b〉. In this case

ÃB =

(
u1 + ξu0 ξ00u0x0

u2 + ηu0 u2(x1 + x2) + η00u0x0

)
.
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We claim that two arbitrary directions B and B′ with pB = pB′ define equivalent sheaves.

Indeed, since for φ =
(

α β γ
0 1 0
0 0 1

)
we have

φ∗(ÃB) =

(
u1 + (β + αξ)u0 αξ00u0x0

u2 + (γ + αη)u0 u2(x1 + x2) + αη00u0x0

)
.

Since 〈ξ′00, η
′
00〉 = 〈ξ00, η00〉, we define α from the equality (ξ′00, η

′
00) = α · (ξ00, η00) and put

β = ξ′ − αξ and γ = η′ − αη. Then φ∗(ÃB) = ÃB′ , i.e., the sheaves defined by B and B′ are
equivalent.

We obtained that the line L parameterizes the equivalence classes of R-bundles constructed

at the point A =

(
x1 0
x2 x2(x1 + x2)

)
.

2.3.8 Intersection of a line with a double line.

t

x2
1x2 = 0

We consider the matrix A =

(
x1 0
x2 x2

2

)
. Tangent equations are here

ξ00 = η00 = 0. For a general direction

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

we obtain a sheaf on Z0 given by the matrix
(

u1 + ξ0u0 ξ00u0x0

u2 + η0u0 u2x2 + η00u0x0

)
.

The restriction to D1 is given by the matrix
(

u1 + ξ0u0 ξ00u0

u2 + η0u0 η00u0

)
.

Its support on D1 is the curve C1 given by the polynomial

(ξ0η00 − η0ξ00)u
2
0 + η00u0u1 − ξ00u0u2 = u0((ξ0η00 − η0ξ00)u0 + η00u1 − ξ00u2).

The L is a component of this curve. The second component is the line L1 as in the previous
example.

»»»»»»»»

»

»

»»»»»»»»

»»»»»»»»

@
@

@
@

@
@

@
@

»»»»»»»»

@
@@ @

@@
»»»»»»»»

B
B

B
BB

B
B
BB

¦
¦
¦
¦
¦

¦
¦
¦
¦¦

¦
¦
¦
¦
¦

¦
¦
¦
¦¦

t
tt@

@

@
@

@@

L

u1 = 0

D1

u2 = 0

pB

D0

L1

As in the previous example we obtain that the points on the line L are in one-to-one corre-
spondence with the equivalence classes of R-bundles in this case.
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2.3.9 A line with multiplicity 3.

t

x3
1 = 0

We consider the matrix A =

(
x1 0
x2 x2

1

)
. Tangent equations are here ξ00 = η00 = 0.

For a general direction

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

we obtain a sheaf on Z0 given by the matrix

(
u1 + ξ0u0 ξ00u0x0

u2 + η0u0 u1x1 + η00u0x0

)
.

The restriction to D1 is given by the matrix

(
u1 + ξ0u0 ξ00u0

u2 + η0u0 η00u0

)
.

Its support on D1 is the curve C1 given by the polynomial

(ξ0η00 − η0ξ00)u
2
0 + η00u0u1 − ξ00u0u2 = u0((ξ0η00 − η0ξ00)u0 + η00u1 − ξ00u2).

The L is a component of this curve. The second component is the line L1 as in the previous
examples.

»»»»»»»»

»

»

»»»»»»»»

»»»»»»»»

@
@

@
@

@
@

@
@

»»»»»»»»

@
@@ @

@@
»»»»»»»»

B
B

B
BB

B
B
BB

B
B

B
BB

B
B
BB

B
B

B
BB

B
B
BB

t t@
@

@
@

@@

L

u1 = 0

D1

pB

D0

L1

As in the last two examples one sees that the line L is the line parameterizing the equivalence
classes of R-bundles in this case.



Chapter 3

Families

Summary

We describe the blow ups M̃ = BlM8 M and X̃ = BlX8 X. There is a unique lifting of the action

of the group G (cf. (1.4)) on X to the action on X̃. It turns out that M̃ is a quotient of X̃ by
the group G.

We construct a morphism Y → X̃ and a sheaf Ũ on Y such that Ũ is flat over X̃ and
the fibres of Ũ are either non-singular 3m + 1 sheaves or R-bundles on P̂2. Among the fibres
of Ũ there are all the equivalence classes of R-bundles on P̂2 and all isomorphism classes of
non-singular 3m + 1 sheaves on P2.

In Definition 3.21 we define a family over an arbitrary variety S. In particular 3m + 1
families of the non-singular sheaves on P2 are families in the sense of Definition 3.21. For an
arbitrary variety S we introduce an equivalence relation on the set of all families over S.

For a morphism f : T → S and for a family over S we define a family over T . We obtain
this way the map from the set of all families over S to the set of all families over T . This map is
compatible with the equivalence relations and therefore we obtain a functor M̃ : (Sch) → (Sets)
that assigns to every S ∈ Ob (Sch) the set of the equivalence classes of the families over S.

There is a natural transformation M̃ → M, where M denotes the functor of the 3m + 1
moduli problem on P2. We obtain also a natural transformation M̃ → Hom( , M̃) a bijection

M̃(pt) ∼= Hom(pt, M̃) ∼= M̃ . and the commutative square

M̃ Hom( , M̃)

M Hom( ,M).

//

∼= //
²² ²²

3.1 Spaces BlX8 X and BlM8 M

We investigate here the varieties X̃ = BlX8 X and M̃ = BlM8 M and their relation to each
other. Since X8 and M8 are smooth subvarieties of codimension 2 in X and M respectively,
using Theorem 2.19 we may consider the blow up M̃ as the space whose points are all the
isomorphism classes of non-singular 3m + 1 sheaves on P2 and also all the equivalence classes
of R-bundles. Analogously X̃ may be seen as a variety parameterizing the above objects.
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3.1.1 Space BlM8
M .

Let us consider the blow up M̃ = BlM8 M of M8 in M . Recall that by Lemma 1.5 M8 is smooth

of codimension 2 in M . The exceptional divisor EM of the blow up M̃ → M is isomorphic to
the projective normal bundle PNM8/M = PCM8/M .

Recall that M8 is given in P9 × P2 by equations (1.8). Since M8 is given locally by two

equations (cf. page 6) in M , we can describe M̃ locally over M(x0) = M ∩ {x0 6= 0} by the
equation e1s2 − e2s1 in M(x0)× P1 = {(〈f〉, 〈x〉)× 〈s1, s2〉},

M̃(x0) = {(〈f〉, 〈x〉)× 〈s1, s2〉 ∈ M(x1)× P1 | e1s2 − e2s1 = 0}.
Analogously

M̃(x1) = {(〈f〉, 〈x〉)× 〈s1, s2〉 ∈ M(x1)× P1 | e0s2 − e2s1 = 0}
and

M̃(x2) = {(〈f〉, 〈x〉)× 〈s1, s2〉 ∈ M(x1)× P1 | e0s2 − e1s1 = 0}.
The gluing of M̃(xi) to M̃ are described in the following diagram.

M

M̃(x0)

M̃(x1) M̃(x2)


1 −x0

x1

0 −x2

x1




>>


−

x1

x0
0

−x2

x0
1




¶¶


−

x1

x0
1

−x2

x0
0




®®

²²

88rrrrr
ffLLLLL

The latter means that the gluing of M̃(x0) and M̃(x1) over M(x0x1) is given by the map

(〈f〉, 〈x〉)× 〈s1, s2〉 7→ (〈f〉, 〈x〉)× 〈(s1, s2) ·
(−x1

x0
0

−x2

x0
1

)
〉,

the gluing of M̃(x0) and M̃(x2) over M(x0x2) is given by

(〈f〉, 〈x〉)× 〈s1, s2〉 7→ (〈f〉, 〈x〉)× 〈(s1, s2) ·
(−x1

x0
1

−x2

x0
0

)
〉,

and the gluing of M̃(x1) and M̃(x2) over M(x1x2) is given by

(〈f〉, 〈x〉)× 〈s1, s2〉 7→ (〈f〉, 〈x〉)× 〈(s1, s2) ·
(

1 −x0

x1

0 −x2

x1

)
〉.

Lemma 3.1. Let P2 = U0 ∪ U1 ∪ U2 be the standard covering of P2, i. e., Ui = {xi 6= 0}. Let
T∗ P2 be the cotangent bundle of P2. Then it is given by the following cocycle gij with respect
to the covering {Ui}:

g10 =

(−x1

x0
0

−x2

x0
1

)
, g21 =

(
1 −x0

x1

0 −x2

x1

)
, g20 =

(−x1

x0
1

−x2

x0
0

)
.
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Proof. Let us consider the exact sequence

0 → OP2

( x0 x1 x2 )−−−−−−→ 3OP2(1) → T P2 → 0.

Then locally on U0, U1, and U1 this sequence is

0 → OU0

(
1 x1

x0

x2

x0

)

−−−−−−−−−→ 3OU0




−x1

x0
−x2

x0

1 0
0 1




−−−−−−−−−−→ 2OU0 → 0,

0 → OU1

(
x0

x1
1 x2

x1

)

−−−−−−−−−→ 3OU1




1 0
−x0

x1
−x2

x1

0 1




−−−−−−−−−−→ 2OU1 → 0,

and

0 → OU2

(
x0

x2

x1

x2
1

)

−−−−−−−−−→ 3OU2




1 0
0 1
−x0

x2
−x1

x2




−−−−−−−−−−→ 2OU2 → 0.

One calculates a cocycle g′ij of TX from the commutative diagrams




−x1

x0
−x2

x0

1 0
0 1




//




1 0
−x0

x1
−x2

x1

0 1




//

g′10
²²

,




1 0
−x0

x1
−x2

x1

0 1




//




1 0
0 1
−x0

x2
−x1

x2




//

g′21
²²

,




−x1

x0
−x2

x0

1 0
0 1




//




1 0
0 1
−x0

x2
−x1

x2




//

g′20
²²

.

respectively. We obtain then

g′10 =

(−x0

x1
−x2

x1

0 1

)
, g′21 =

(
1 0
−x0

x2
−x1

x2

)
, g′20 =

(
0 1
−x0

x2
−x1

x2

)
.

To obtain a cocycle of T∗ P2 one needs to invert and to transpose the cocycle of TP2. So
gij = (g′ij

T)−1 and we obtain

g10 =

(−x0

x1
0

−x2

x1
1

)−1

= (−x0

x1

)−1

(
1 0
x2

x1
−x0

x1

)
=

(−x1

x0
0

−x2

x0
1

)
,

g21 =

(
1 −x0

x2

0 −x1

x2

)−1

= (−x1

x2

)−1

(−x1

x2

x0

x2

0 1

)
=

(
1 −x0

x1

0 −x2

x1

)
,

and

g20 =

(
0 −x0

x2

1 −x1

x2

)−1

= (
x0

x2

)−1

(−x1

x2

x0

x2−1 0

)
=

(−x1

x0
1

−x2

x0
0

)
.

This proves the lemma.
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Thus the gluing functions of M̃ are just the functions of the cocycle of T∗ P2.
Let us consider the projective P1-bundle P9 × P(T∗ P2) over P9 × P2. As M is a subvariety

in P9 × P2, we can restrict the bundle P9 × P(T∗ P2) to M . Let us denote

P = (P9 × P(T∗ P2))|M .

Then the gluing data we described above give us a closed embedding of M̃ into P . There is
the following commutative diagram:

M P9 × P2.

P9 × P(T∗ P2)PM̃

// //

²²²² ²²²²

// //// //

ÂÂ ÂÂ
??

??
??

??

In particular the exceptional divisor EM of the blow up M̃ → M is isomorphic to the restriction
P |M8 of P to M8.

3.1.2 Space BlX8
X.

Let X̃
α−→ X be the blowing up of X along X8. Recall that X8 is defined by two equations f3

and f4 (see (1.9)). Then X̃ is a closed subvariety in X×P1 given by the equation t3f4−t4f3 = 0,
i. e.,

X̃ = {A× 〈t3, t4〉 ∈ X × P1 | t3f4 − t4f3 = 0}. (3.1)

Let EX be the exceptional divisor of X̃
α−→ X. Then EX may be identified with X8 × P1.

X8 X

X8 × P1 X̃ X × P1EX = // //

// //

// //

²² ²² {{wwwwwwwwww

The restriction of α to X̃ \ EX gives us an isomorphism X̃ \ EX → X \X8.
Since X8 is a complete intersection (see Lemma 1.7), EX is isomorphic to the projective

normal bundle PNX8/X = PCX8/X of X8 in X. So for a point A ∈ X8 the fibre α−1(A) over
A is isomorphic to the fibre of PNX8/X over A, i. e., to PNA

∼= P1. By Theorem 2.19 we may
interpret PNA as a set of equivalence classes of R-bundles constructed A. So we can interpret
EX as a space that parameterizes the equivalence classes of R-bundles. Hence X̃ parameterizes
the classes of isomorphism of 3m + 1 sheaves on P2 that are locally free on their support and
also the equivalence classes of R-bundles.

3.1.3 Group action on X̃.

Consider the group G = GL2(k)×H, where H is the group of 2× 2 matrices

(
λ z
0 µ

)
, λ, µ ∈ k, λµ 6= 0, z ∈ Γ(P2,OP2(1)).

Recall that G acts on X from the left by the rule

(g, h) · A = gAh−1.
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As we know the orbits of this action are in one-to-one correspondence with the points of
M = M3m+1(P2).

Note that X8 is invariant under the action of G. Therefore, since the blowing up α : X̃ → X
is an isomorphism over X \X8 we obtain an action of G on X̃ \E, E = α−1(X8). Let us describe
this action explicitly.

Lemma 3.2. The action of G on X̃ \ E is given by the rule

(g, h) · (A, 〈t3, t4〉) = (gAh−1, 〈(t3, t4)gT〉).
Proof. Since X̃ ⊆ X × P1 is given by the equation t3f4(A)− t4f3(A) = 0, i. e.,

X̃ = {(A, 〈t3, t4〉) ∈ X × P1 | t3f4(A)− t4f3(A) = 0},
since for a matrix A that does not lie in X8 either f3(A) 6= 0 or f4(A) 6= 0, we obtain that the

map α′ : X \X8 → X̃ \ E defined by

X \X8 3 A 7→ (A, 〈f3(A), f4(A)〉) ∈ X̃ \ E

is the inverse map to α|X̃\E : X̃ \ E → X \ X8. Therefore, an element (g, h) ∈ G acts on a

point (A, 〈t3, t4〉) ∈ X̃ \ E by the rule

(A, 〈t3, t4〉) 7→ A 7→ (g, h) · A = gAh−1 7→ α′(gAh−1) = (gAh−1, 〈f3(gAh−1), f4(gAh−1)〉).
Let us show that 〈f3(gAh−1), f4(gAh−1)〉 = 〈(f3(A), f4(A))gT 〉.

Let A =

(
z1 q1

z2 q2

)
, z1 = a0x0 + a1x1 + a2x2, z2 = b0x0 + b1x1 + b2x2. Let d0, d1 and d2 be

as in (1.7). First of all note that

〈f3(Ah), f4(Ah)〉 = 〈f3(A), f4(A)〉
for all matrices h ∈ H. Clearly, let h =

(
λ z
0 µ

)
. Then Ah =

(
λz1 µq1+z1z
λz2 µq2+z2z

)
and

〈f3(Ah), f4(Ah)〉 =〈(µq1 + z1z)(λ2d0, λ
2d1, λ

2d2), (µq2 + z2z)(λ2d0, λ
2d1, λ

2d2)〉 =

〈µq1(λ
2d0, λ

2d1, λ
2d2), µq2(λ

2d0, λ
2d1, λ

2d2)〉 =

〈q1(d0, d1, d2), q2(d0, d1, d2)〉 = 〈f3(A), f4(A)〉.
It remains to show that 〈f3(gA), f4(gA)〉 = 〈(f3(A), f4(A))gT 〉. Since each matrix g can be
decomposed in a product of elementary matrices corresponding to multiplication of a row by
a scalar and to adding the multiple of a row to another row, it is enough to show this for
elementary matrices. For g =

(
λ 0
0 µ

)
we have gA =

(
λz1 λq1
µz2 µq2

)
, thus

〈f3(gA), f4(gA)〉 = 〈λq1(λµd0, λµd1, λµd2), µq1(λµd0, λµd1, λµd2)〉 =

〈λq1(d0, d1, d2), µq2(d0, d1, d2)〉 = 〈(f3(A), f4(A))
(

λ 0
0 µ

)〉 = 〈(f3(A), f4(A))gT〉.

For g =
(

1 µ
0 1

)
we have gA =

(
z1 + µz2 q1 + µq2

z2 q2

)
and

〈f3(gA), f4(gA)〉 =〈q1(d0, d1, d2) + µq2(d0, d1, d2), q2(d0, d1, d2)〉 =

〈(q1(d0, d1, d2), q2(d0, d1, d2))
(

1 0
µ 1

)〉 = 〈(f3(A), f4(A))gT〉.
Analogously one obtains 〈f3(gA), f4(gA)〉 = 〈(f3(A), f4(A))gT〉 for g =

(
1 0
µ 1

)
.

We have finally showed

〈f3(gAh−1), f4(gAh−1)〉 = 〈(f3(A), f4(A))gT 〉.
Since 〈t3, t4〉 = 〈f3(A), f4(A)〉, we obtain the required statement.
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Lemma 3.3. The action of the group G on X can be uniquely lifted along α to the action on
X̃. In other words there exists the following commutative diagram

G× X̃ //

id×α

²²

X̃

α

²²

G×X // X.

An element (g, h) ∈ G acts by the rule

(g, h) · (A, 〈t3, t4〉) = (gAh−1, 〈(t3, t4)gT〉).

Proof. For a given element (g, h) ∈ G, the automorphism of X̃ \ E

(A, 〈t3, t4〉) 7→ (gAh−1, 〈(t3, t4)gT〉)

from Lemma 3.2 can be uniquely extended to an isomorphism of X̃, which is defined by the
same formula.

Remark 3.4. Note that for an arbitrary point (A, 〈t3, t4〉) ∈ X̃ its stabilizer is as in the case
of the action on X the subgroup

St = {( λ 0
0 λ )× ( λ 0

0 λ ) | λ ∈ k∗} .

Therefore, we can consider the corresponding free action of the group PG = G/St on X̃.

We shall explain the meaning of the group action we have just described above. As the
points (A, 〈t3, t4〉) in X̃, A ∈ X8, are in one-to-one correspondence with the equivalence classes
of R-bundles constructed at A, the action of the group G on the exceptional divisor EX may
be interpreted as an action on the equivalence classes of R-bundles. We already noticed that
EX is isomorphic to PNX8/X .

Note that the tangent bundle of X is trivial, i. e., TX ∼= X × k18. This holds because X is
an open subset of k18 and because there are only trivial vector bundles on kn. The action of G
on X induces the action of G on TX given by

(g, h) · (A,B) = (gAh−1, gBh−1).

Since X8 is invariant under the action of G, there is also an action of G on TX8, which is just
the restriction of the action of G on TX. This way one obtains the induced linear action of G
on NX8/X :

G×NX8/X → NX8/X , (g, h)× (A, [B]) 7→ (gAh−1, [gBh−1]).

Note that the notation (A, [B]) makes sense because NX8/X is trivial (there are global tangent
equations (1.11) of X8). Then

(A, [B]) = A× (T1(A)(B), T1(A)(B)),

where T1(A) and T2(A) are tangent equations at A (cf. (1.11) on page 10). Since the action of
G is linear on NX8/X , we obtain also the action

G× PNX8/X → PNX8/X , (g, h)× (A, 〈[B]〉) 7→ (gAh−1, 〈[gBh−1]〉).
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Lemma 3.5. Let A ∈ X8 and B ∈ TAX \ TAX8, then

(gAh−1, 〈[gBh−1]〉) = (gAh−1, 〈[B]gT〉).
In other words

〈T1(gAh−1)(gBh−1), T1(gAh−1)(gBh−1)〉 = 〈(T1(A)(B), T1(A)(B)) · gT〉.
Proof. Let

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

and let

A =

(
a0x0 + a1x1 + a2x2 A00x

2
0 + A01x0x1 + · · ·+ A22x

2
2

b0x0 + b1x1 + b2x2 B00x
2
0 + B01x0x1 + · · ·+ B22x

2
2

)

be a point from X8.
First of all let us recall (cf. (1.11)) that

T1(A)(B) =
∑

k

(∑
ij

Aijαij,k

)
ξk +

∑

k

(∑
ij

Aijβij,k

)
ηk +

∑
ij

didjξij

and

T2(A)(B) =
∑

k

(∑
ij

Bijαij,k

)
ξk +

∑

k

(∑
ij

Bijβij,k

)
ηk +

∑
ij

didjηij,

where αij,k = sikbīkdj + sjkbj̄kdi and βij,k = skiaīkdj + skjaj̄kdi (see (1.12)).
Let us show that

〈T1(gA)(gB), T1(gA)(gB)〉 = 〈(T1(A)(B), T1(A)(B)) · gT〉.

Let g =

(
a b
c d

)
and let

gA =

(
a′0x0 + a′1x1 + a′2x2 A′

00x
2
0 + A′

01x0x1 + · · ·+ A′
22x

2
2

b′0x0 + b′1x1 + b′2x2 B′
00x

2
0 + B′

01x0x1 + · · ·+ B′
22x

2
2

)
,

gB =

(
ξ′0x0 + ξ′1x1 + ξ′2x2 ξ′00x

2
0 + · · ·+ ξ′22x

2
2

η′0x0 + η′1x1 + η′2x2 η′00x
2
0 + · · ·+ η′22x

2
2

)
.

Then (
A′

ij

B′
ij

)
=

(
a b
c d

)(
Aij

Bij

)
,

(
ξ′ij
η′ij

)
=

(
a b
c d

) (
ξij

ηij

)
,

(
a′k
b′k

)
=

(
a b
c d

)(
ak

bk

)
,

(
ξ′k
η′k

)
=

(
a b
c d

)(
ξk

ηk

)
,

d′i = ∆di,

where ∆ = ad− bc is the determinant of g, and also

α′ij,k = sikb
′̄
ikd

′
j + sjkb

′
j̄kd

′
i = sik(caīk + dbīk)∆dj + sjk(caj̄k + dbj̄k)∆di = ∆(−cβij,k + dαij,k)

and

β′ij,k = skia
′̄
ikd

′
j + skja

′
j̄kd

′
i = ski(aaīk + bbīk)∆dj + skj(aaj̄k + bbj̄k)∆di = ∆(aβij,k − bαij,k).
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Then

T1(gA)(gB) =
∑

k

(∑
ij

A′
ijα

′
ij,k

)
ξ′k +

∑

k

(∑
ij

A′
ijβ

′
ij,k

)
η′k +

∑
ij

d′id
′
jξ
′
ij =

∑

k

(∑
ij

(aAij + bBij)∆(−cβij,k + dαij,k)

)
(aξk + bηk)+

∑

k

(∑
ij

(aAij + bBij)∆(aβij,k − bαij,k)

)
(cξk + dηk)+

∑
ij

∆2didj(aξij + bηij) =

∑

k

(∑
ij

(aAij + bBij)∆
2αij,k

)
ξk+

∑

k

(∑
ij

(aAij + bBij)∆
2βij,k

)
ηk+

∑
ij

∆2didj(aξij + bηij) = ∆2(a · T1(A)(B) + b · T2(A)(B)).

Analogously one calculates

T2(gA)(gB) = ∆2(c · T1(A)(B) + c · T2(A)(B)).

Therefore,

〈T1(gA)(gB), T2(gA)(gB)〉 = 〈(T1(A)(B), T2(A)(B)) ·
(

a c
b d

)
〉.

It remains to show that

〈T1(Ah)(Bh), T2(Ah)(Bh)〉 = 〈T1(A)(B), T2(A)(B)〉.

Let h =

(
λ z
0 µ

)
, z = c0x0 + c1x1 + c2x2, let again

Ah =

(
a′0x0 + a′1x1 + a′2x2 A′

00x
2
0 + A′

01x0x1 + · · ·+ A′
22x

2
2

b′0x0 + b′1x1 + b′2x2 B′
00x

2
0 + B′

01x0x1 + · · ·+ B′
22x

2
2

)
,

Bh =

(
ξ′0x0 + ξ′1x1 + ξ′2x2 ξ′00x

2
0 + · · ·+ ξ′22x

2
2

η′0x0 + η′1x1 + η′2x2 η′00x
2
0 + · · ·+ η′22x

2
2

)
.

Then we obtain the equalities

a′k = λak, b′k = λbk, ξ′k = λξk, η′k = ληk, d′i = λ2di, α′ij,k = λ3αij,k, β′ij,k = λ3βij,k,

and

A′
ij = µAij +

aicj + ajci

1 + δij

, B′
ij = µBij +

bicj + bjci

1 + δij

,

ξ′ij = µξij +
ξicj + ξjci

1 + δij

, η′ij = µηij +
ηicj + ηjci

1 + δij

,
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where

δij =

{
1, i = j

0, i 6= j

is the Kronecker symbol. Therefore, we compute

T1(Ah)(Bh) =
∑

k

(∑
ij

A′
ijα

′
ij,k

)
ξ′k +

∑

k

(∑
ij

A′
ijβ

′
ij,k

)
η′k +

∑
ij

d′id
′
jξ
′
ij =

∑

k

(∑
ij

(µAij +
aicj + ajci

1 + δij

)λ3αij,k

)
λξk+

∑

k

(∑
ij

(µAij +
aicj + ajci

1 + δij

)λ3βij,k

)
ληk+

∑
ij

λ4didj(µξij +
ξicj + ξjci

1 + δij

) =

=µλ4

(∑

k

(∑
ij

Aijαij,k

)
ξk +

∑

k

(∑
ij

Aijβij,k

)
ηk +

∑
ij

didjξij

)
+

λ4
∑

k

∑
ij

aicj + ajci

1 + δij

αij,kξk+

λ4
∑

k

∑
ij

aicj + ajci

1 + δij

βij,kηk+

λ4
∑
ij

didj
ξicj + ξjci

1 + δij

.

Claim.
∑
ij

didj
ξicj + ξjci

1 + δij

=

(∑

k

dkck

)
·
(∑

k

dkξk

)
,

∑
ij

didj
ηicj + ηjci

1 + δij

=

(∑

k

dkck

)
·
(∑

k

dkηk

)
,

∑
ij

aicj + ajci

1 + δij

βij,k =
∑
ij

bicj + bjci

1 + δij

αij,k = 0,

aicj + ajci

1 + δij

αij,k =
bicj + bjci

1 + δij

βij,k = −dk

∑
µ

dµcµ.

Proof. Straightforward calculations.

From this claim it follows

λ4
∑

k

∑
ij

aicj + ajci

1 + δij

αij,kξk + λ4
∑

k

∑
ij

aicj + ajci

1 + δij

βij,kηk + λ4
∑
ij

didj
ξicj + ξjci

1 + δij

= 0

and we obtain T1(Ah)(Bh) = µλ4T1(A)(B). Analogously using the claim above one calculates
T2(Ah)(Bh) = µλ4T2(A)(B). This implies finally

〈T1(Ah)(Bh), T2(Ah)(Bh)〉 = 〈T1(A)(B), T2(A)(B)〉.
This completes the proof of Lemma 3.5.
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Lemma 3.5 says that the natural action of G on PNX8/X coincides with the action on
EX = PNX8/X described in Lemma 3.3.

3.1.4 Quotient X̃ → M̃ .

Note that since ν−1(M8) = X8, we obtain a unique lifting ν̃ of ν, i. e., the commutative diagram

X̃ M̃

X M.
ν //

²² ²²

∃! ν̃ //

Lemma 3.6. The morphism ν : X → M lifts to a morphism ν̃ : X̃ → M̃ that is locally given
by

X̃(d0) → M̃(x0), A× 〈t3, t4〉 7→ (〈det A〉, 〈p(A)〉)× 〈(t3, t4)
(−b1 −b2

a1 a2

)
〉,

X̃(d1) → M̃(x1), A× 〈t3, t4〉 7→ (〈det A〉, 〈p(A)〉)× 〈(t3, t4)
(−b0 −b2

a0 a2

)
〉,

X̃(d2) → M̃(x2), A× 〈t3, t4〉 7→ (〈det A〉, 〈p(A)〉)× 〈(t3, t4)
(−b0 −b1

a0 a1

)
〉,

where p(A) = z1 ∧ z2 = 〈d0, d1, d2〉.

Proof. Let EX be the exceptional divisor of the blow up X̃ → X and let EM be the exceptional
divisor of the blow up M̃ → M . Let us consider the map X \ X8

ν−→ M \M8. Since X \ X8

is isomorphic to X̃ \ EX and since M \ M8 is isomorphic to M̃ \ EM , we obtain the map

X̃ \ EX → M̃ \ EM given by the formulas above. But the same formulas define a morphism

X̃ → M̃ .

Lemma 3.7. Let G be the group from 3.1.3 acting on X̃. Then ν̃ : X̃ → M̃ is G invariant
and the set of the orbits coincides with the set of the fibres ν̃−1(ξ), ξ ∈ M̃ .

Proof. First of all let us show that the points from the same orbit are mapped to the same
point. Consider A× 〈t3, t4〉 and gAh× 〈(t3, t4)gT〉, where

A =

(
a0x0 + a1x1 + a2x2 q1

b0x0 + b1x1 + b2x2 q2

)
, g =

(
α β
γ δ

)
, h =

(
λ z
0 µ

)
.

Assume d0 6= 0 (other two cases are absolutely analogous). Then the linear forms of gAh are

λ(αa0 + βb0)x0 + λ(αa1 + βb1)x1 + λ(αa2 + βb2)x2,

and
λ(γa0 + δb0)x0 + λ(γa1 + δb1)x1 + λ(γa2 + δb2)x2.

The image of A× 〈t3, t4〉 under ν̃ is

(〈det A〉, 〈p(A)〉)× 〈(t3, t4)
(−b1 −b2

a1 a2

)
〉.
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The image of gAh× 〈(t3, t4)gT〉 is

(〈det gAh〉, 〈p(gAh)〉)× 〈(t3, t4)gT

(−λ(γa1 + δb1) −λ(γa2 + δb2)
λ(αa0 + βb0) λ(αa2 + βb2)

)
〉

We know that (〈det A〉, 〈p(A)〉) = (〈det gAh〉, 〈p(gAh)〉). Since

gT

(−λ(γa1 + δb1) −λ(γa2 + δb2)
λ(αa1 + βb1) λ(αa2 + βb2)

)
=

(
α γ
β δ

)(
λ 0
0 λ

)(−γa1 − δb1 −γa2 − δb2

αa1 + βb1 αa2 + βb2

)
=

(
α γ
β δ

)(
λ 0
0 λ

)(
δ −γ
−β α

)(−b1 −b2

a1 a2

)
= λ det g

(−b1 −b2

a1 a2

)
,

we obtain

〈(t3, t4)
(−b1 −b2

a1 a2

)
〉 = 〈(t3, t4)gT

(−λ(γa1 + δb1) −λ(γa2 + δb2)
λ(αa0 + βb0) λ(αa2 + βb2)

)
〉.

Now let us assume that A × 〈t3, t4〉 and A′ × 〈t′3, t′4〉 are mapped to the same point. Since
X → M is a geometrical quotient, we obtain immediately that A′ = gAh for some g and h.

We assume again A ∈ X(d0). Let again

A =

(
a0x0 + a1x1 + a2x2 q1

b0x0 + b1x1 + b2x2 q2

)
, g =

(
α β
γ δ

)
, h =

(
λ z
0 µ

)
.

Then the equality of the images A× 〈t3, t4〉 and A′ × 〈t′3, t′4〉 under ν̃ means

〈(t3, t4)
(−b1 −b2

a1 a2

)
〉 = 〈(t′3, t′4)

(
λ 0
0 λ

) (
δ −γ
−β α

)(−b1 −b2

a1 a2

)
〉.

This implies
〈t′3, t′4〉 = 〈(t3, t4)gT〉.

Therefore, A× 〈t3, t4〉 and A′ × 〈t′3, t′4〉 lie in the same orbit of G.

Lemma 3.8. Let A× 〈t3, t4〉 be a point in X̃, let ξ̃ = ν̃(A× 〈t3, t4〉) be its image under ν̃.

Then there exists an open neighbourhood U of ξ̃ and a morphism sU : U → X̃ such that
ν̃ ◦ sU = iU and sU(ξ̃) = A × 〈t3, t4〉, where iU : U → X̃ is the inclusion map of U in X̃. In

other words there is a local section of ν̃ through every point in X̃.

Proof. First of all note that since X
ν−→ M is a geometrical quotient there is a local section

of ν through every point of X. This means there exists an open neighbourhood V ⊆ M of
ξ := ν(A) and a morphism φV : V → X such that ν ◦ φV = iV and φV (ξ) = A, where iV is the

inclusion map of V in M . Let Ṽ = BlV ∩M8(V ) be the blowing up of M8 ∩ V in V . We may

consider Ṽ as an open subvariety in M̃ using the cartesian diagram

Ṽ M̃

V M.//
iV //

²² ²²

//
i
Ṽ //

As φ−1
V (X8) = M8 ∩ V , by universal property of blowing up there is a unique lifting φ̃V of

φV : V → X that makes the diagram

Ṽ X̃

V X

M̃

M
φV //

²² ²²

∃! φ̃V // ν̃ //

ν //
²²
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commutative. As ν ◦ φV = iV by universal property of blow up we conclude that ν̃ ◦ φ̃V = iṼ .

Clearly Ṽ is an open neighbourhood of ξ̃. Since it holds

ν̃(φṼ (ξ̃)) = ξ̃ = ν̃(A× 〈t3, t4〉),

by Lemma 3.7 we conclude that A × 〈t3, t4〉 and φṼ (ξ̃) lie in the same orbit of G. As both

A × 〈t3, t4〉 and φṼ (ξ̃) lie over A ∈ X, we conclude that they are equal. Hence φ̃V is a local
section of ν̃ through the point A× 〈t3, t4〉. This proves the statement of the lemma.

Recall that a principal bundle with the (algebraic)group G is a fibre bundle P
p−→ B with

the fibre G such that the transition functions are given by the right action of G on itself. Let
us explain this. There exists an open covering {Ui} of B and the isomorphisms φi : p−1(Ui) →
Ui × G such that for all Uij = Ui ∩ Uj the transition function φi ◦ φ−1

j : Uij × G → Uij × G is
given by the rule (b, g) 7→ (b, g · gij(b)) for some morphism gij : Uij → G. It is known that a
principle bundle P may be always realized as a left free action of the group G on P .

Proposition 3.9. X̃ is a principal vector bundle over M̃ with fibre PG. In particular ν̃ : X̃ →
M̃ is a geometrical quotient.

Proof. Let ξ0 be an arbitrary point in M̃ . Then by Lemma 3.8 there exists an open neighbour-
hood U of X̃ and a local section sU : U → X̃ of ν̃. Then the morphism

U × PG → ν̃−1(U), (ξ, g) 7→ g(sU(ξ))

is a bijection. By Zariski main theorem (cf. [8], 6.1.14 and [9], 4.4.3) it is also an isomorphism.

Thus X̃ is a principal vector bundle over M̃ with fibre PG.
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3.2 Construction of a family over X̃

We are going to construct here a variety Y over X̃ and a sheaf Ũ on Y such that the fibres of
Ũ over s ∈ X̃ are either non-singular 3m + 1 sheaves on P2 or R-bundles on P̂2.

3.2.1 Space over X̃.

Let lB : U → X be an embedding of an open set of k in X along a normal direction B ∈ k18

such that 0 ∈ U is the only point in U with the image in X8 (cf. page 12).

Claim. lB uniquely factorizes through X̃
α−→ X, i. e., there exists the commutative diagram

X̃

α

²²

U
lB //

∃! l̃B
??

X

Proof. Follows from the universal property of blow-ups.

Let us consider the commutative diagram

U × P2 X̃ × P2 X × P2

U X̃ X.

l̃B×id
//

α×id
//

l̃B // α //
²² ²² ²²

On X × P2 we have the universal 3m + 1 sheaf U (cf. [5], 6.1). By pulling back we obtain the

family Ū := (α× id)∗U of 3m+1 sheaves over X̃. On U ×P2 we obtain a sheaf E = (lB× id)∗Ū
of the type (1.15). Let S8 = SingU be the closed subvariety of X × P2 where U is not locally
free, i. e.,

S8 = {z1 = z2 = f3 = f4 = 0}.
Lemma 3.10. S8 is isomorphic to X8. In particular S8 is smooth.

Proof. The restriction of X × P2
pr1−−→ X to S8 gives us a morphism S8

pr1−−→ X8. It is enough
to construct the inverse morphism. Consider the morphism X8 → S8 given by the rule A 7→
(A, p(A)), where p(A) = 〈d0(A), d1(A), d2(A)〉, i. e., the point defined by the linear forms of A

(cf. (1.7)). This morphism is obviously the inverse to the S8
pr1−−→ X8.

We obtain that S̃8 := (α× id)−1(S8) is the set of points in X̃ × P2 where the sheaf Ū is not
locally free.

Lemma 3.11. S̃8 is isomorphic to the exceptional divisor X̃8 = α−1(X8) of the blow-up X̃
α−→ X,

in particular S̃8 is smooth.

Proof. There is the morphism S̃8
pr1−−→ X̃8 (restriction of the projection X̃ × P2 → X̃). The

inverse morphism is given by

X̃8 → S̃8, (A, 〈t3, t4〉) 7→ (A, 〈t3, t4〉)× p(A).

This proves the lemma.
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Note that the preimage of S̃8 in U×P2 is just the point (0, p) ∈ U×P2, where p := {z1(A) =
z2(A) = 0}.

Let

τ :
˜̃

X × P2 → X̃ × P2

be the blowing up of X̃ × P2 along S̃8. Then we get the cartesian diagram

Ũ × P2
˜̃

X × P2

U × P2 X̃ × P2,

//

σ

²² l̃B×id
//

τ
²²

where σ is the blow-up of U ×P2 at the point (0, p) and the horizontal arrows are embeddings.

Let us denote Y :=
˜̃

X × P2. Let D̃1 denote the exceptional divisor of τ : Y → X̃. Let D̃0 be
the proper transform of X̃8 × P2. It is isomorphic to the blow up of X̃8 × P2 along S̃8.

As in Chapter 1 let Z = Ũ × P2, let D1 be the exceptional divisor of σ : Z → U × P2, and
let D0 be the proper transform of {0} × P2.

Remark 3.12. Note that D̃0 ∩ Z = D0 and D̃1 ∩ Z = D1.

Let us describe the space Y . First of all note that there is the covering

X̃ × P2 =
⋃

i=3,4
k=0,1,2

X̃(ti)× P2(xk),

where X̃(ti) = X̃ ∩ (X × P1(ti)). Then the blow up of X̃(ti) × P2(xk) is a subvariety in

X̃(ti)× P2(xk)× P2 given by the minors of the matrix

(
u0 u1 u2

fk
z1

xk

z2

xk

)
.

The gluing maps of BlS̃8
(X̃(tj)× P2(xl)) and BlS̃8

(X̃(ti)× P2(xk)) are

BlS̃8
(X̃(tj)× P2(xl))

gik,jl−−−→ BlS̃8
(X̃(ti)× P2(xk)),

(Ã, 〈x〉)× 〈u0, u1, u2〉 7→ (Ã, 〈x〉)× 〈tk
tl
· u0,

xj

xi

· u1,
xj

xi

· u2〉.

Thus Y is embedded in the P2-bundle over X̃ × P2 given by the cocycle

gik,jl =




tk
tl

0 0

0
xj

xi
0

0 0
xj

xi


 .

This is a cocycle of the vector bundle

OX̃×P2
(0,−1)⊕ 2OX̃×P2

(1, 0)

and also
P(OX̃×P2

(0,−1)⊕ 2OX̃×P2
(1, 0)),
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where
OX̃×P2

(0,−1) = OX̃(−1) £OP2 and OX̃×P2
(1, 0) = OX̃ £OP2(1).

Let
PY := P(OX̃×P2

(0,−1)⊕ 2OX̃×P2
(1, 0)),

then there is the commutative diagram

X̃ × P2 X × P1 × P2.

X × P(OP1×P2(0,−1)⊕ 2OP1×P2(1, 0))PYY

// //

²²²² ²²²²

// //// //

ÂÂ ÂÂ
??

??
??

??

We proved the following proposition.

Proposition 3.13. Y is a closed subvariety in a P2-bundle PY over X̃ × P2. In particular the
exceptional divisor D of the blow up τ is isomorphic to the restriction of PY to S̃8.

There is also another possibility to describe the embedding Y ⊆ PY .
Since S̃8 is a locally complete intersection, we have Y = P(IS̃8

), where IS̃8
is the ideal sheaf

of S̃8.
First of all note that the ideal sheaf IS8 of S8 ⊆ X × P2 is given by the surjective homo-

morphism

2OX×P2(−1)⊕ 2OX×P2




z1
z2
f3

f4




−−−−→ IS8 → 0.

Lifting this to X̃ × P2 yields the surjection

2OX̃×P2
(−1)⊕ 2OX̃×P2




z1
z2
f3

f4




−−−−→ IS̃8
→ 0,

where IS̃8
is the ideal sheaf of S̃8 ⊆ X̃ × P2.

Recall that X̃ is a subvariety in X × P1 given by the equation t3f4 − t4f3 = 0 (cf. 3.1.2).
Lifting Euler exact sequence

0 → OP1(−1)
( t4 −t3 )−−−−−→ 2OP1

(
t3
t4

)

−−−→ OP1(1) → 0

from P1 to X × P1 and then to X̃ and to X̃ × P2 one obtains the exact sequence

OX̃×P2
(0,−1)

( t4 −t3 )−−−−−→ 2OX̃×P2

(
t3
t4

)

−−−→ OX̃×P2
(0, 1) → 0,

where we use the notation OX̃×P2
(a, b) := OX̃(b)£OP2(a). As t3f4− t4f3 = 0 on X̃, one obtains

that the composition OX̃×P2
(0,−1)

( t4 −t3 )−−−−−→ 2OX̃×P2

(
f3

f4

)

−−−→ IS̃8
is zero. Therefore, by universal

property of cokernel we obtain there is a unique factorization through OX̃×P2
(0, 1):

OX̃×P2
(0,−1) 2OX̃×P2

OX̃×P2
(0, 1) 0.

IS̃8

( t4 −t3 )
//

(
t3
t4

)

// // //

(
f3

f4

)

²²

0

))SSSSSSSSSSSSSSSSS

∃!
uu
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From this commutative diagram we obtain the commutative diagram

2OX̃×P2
(−1, 0)⊕OX̃×P2

(0,−1) 2OX̃×P2
(−1, 0)⊕ 2OX̃×P2

2OX̃×P2
(−1, 0)⊕OX̃×P2

(0, 1).

IS̃8

// // //




z1
z2
f3

f4




²²²²

( z1
z2
0

)

))SSSSSSSSSSSSSSSSSSSSSSSSSS

uuuukkkkkkkkkkkkkkkkkkkkkkkkkk

Applying the functor P to the right commutative triangle we obtain the commutative diagram
of closed inclusions

P(2OX̃×P2
(−1, 0)⊕ 2OX̃×P2

) P(2OX̃×P2
(−1, 0)⊕OX̃×P2

(0, 1)).

Y = P(IS̃8
)

oo

66mmmmmmmmmmmmm

hhQQQQQQQQQQQQQ

Note that P(2OX̃×P2
(−1, 0)⊕OX̃×P2

(0, 1)) = P(2OX̃×P2
(1, 0)⊕OX̃×P2

(0,−1)) = PY .

Lemma 3.14. 1) The fibres Yx, x ∈ X̃, of the morphism

Y
τ−→ X̃ × P2

p1−→ X̃

are isomorphic to P2 if x does not lie in X̃8.
2) If x belongs to X̃8, then Yx is isomorphic to P̂2 (see Definition 1.11).

Proof. Note that the morphisms we consider are over X, i. e., we have the commutative diagram

Y
τ //

##GG
GG

GG
GG

GG X̃ × P2

p1
//

²²

X̃

α
{{ww

ww
ww

ww
ww

X

The first part of the lemma holds true because τ is an isomorphism over X \X8.

Let now x ∈ X̃8. For an open set U ⊆ k, 0 ∈ U , there exists an embedding l̃B : U → X̃
transversal to X̃8 such that l̃B(0) = x. The required statement follows from the commutative
(cartesian) diagram

Z Y

U × P2 X̃ × P2

U X̃

LB //

σ

²² l̃B×id
//

τ
²²

p1

²² l̃B //

p1

²²

(3.2)

and from Lemma 1.10 because in this case Yx
∼= Z0

∼= P̂2.

Proposition 3.15. The morphism

Y
τ−→ X̃ × P2

p1−→ X̃

is flat.

Proof. By Lemma 3.14, dim(Yx) = 2 for all x ∈ X̃. As dim Y = 20 and dim X̃ = 18, we obtain

dim Yx = 2 = dim Y − dim X̃. Since both Y and X̃ are regular, by Theorem A.2 we conclude
that p1 ◦ τ is flat.
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3.2.2 Construction of a sheaf.

The universal sheaf U on X × P2 is given by the resolution

0 → 2OX×P2(−2H)
Φ−→ OX×P2(−H)⊕OX×P2 → U → 0.

Pulling back this sequence, we obtain

0 → 2OX̃×P2
(−2H)

Φ̄−→ OX̃×P2
(−H)⊕OX̃×P2

→ Ū → 0.

After applying τ ∗ one gets the sequence

0 → 2OY (−2H)
τ∗(Φ̄)−−−→ OY (−H)⊕OY → τ ∗(Ū) → 0,

which remains exact because the sheaf OY (−2H) is locally free and, therefore, has no torsion.
Let D be the exceptional divisor of the blowing up τ . Let s be the canonical section of

OY (D) from the sequence
0 → OY (−D)

s−→ OY → OD → 0.

Then by Lemma 1.15 τ ∗(Φ̄) factorizes through s and we obtain the following commutative
diagram.

0

0 C

0 2OY (−2H) OY (−H)⊕OZ τ ∗Ū 0,

0 2OY (−2H + D) OY (−H)⊕OZ Ũ 0

C 0

0

//
τ∗(Φ̄)

// // //

// Φ̃ // // //

²²

( s 0
0 s )

²²

²²

²²

²²

²²

²²

²²

C = OD ⊗OY (−2H + D) ∼= OD ⊗OY (D)⊗OY (−2H) ∼= OD(−1)⊗OY (−2H).

Remark 3.16. Note that the restriction of Ũ to Z (via LB as in diagram (3.2)) is isomorphic

to the 1-parameter new family Ẽ constructed at l̃B(0) along B (see 1.2.1).

In particular among the fibres of Ũ we obtain all the equivalence classes of R-bundles on P̂2.

Proposition 3.17. τ∗(Ũ) ∼= Ū .

Proof. By projection formula and by Lemma A.4 we have

Rpτ∗(C) ∼= Rpτ∗(OD(−1)⊗OY (−2H)) ∼= Rpτ∗(OD(−1))⊗OX̃×P2
(−2H) = 0

for all p > 0. Therefore, after applying τ∗ to the exact sequence

0 → C → τ ∗Ū → Ũ → 0,

we obtain τ∗(τ ∗Ū) ∼= τ∗(Ũ). Since by Lemma A.8 τ∗(τ ∗Ū) ∼= Ū , one obtains τ∗(Ũ) ∼= Ū .

Proposition 3.18. The sheaf Ũ is flat over X̃.
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Proof. Since the sheaf Ũ is just a 3m + 1 family over X̃ \ α−1(X8), it is enough to prove the
flatness over the points from α−1(X8). For each such a point x consider diagram (3.2).

Consider the sequence

0 → 2OX̃×P2
(−2H)

Φ̄−→ OX̃×P2
(−H)⊕OX̃×P2

→ Ū → 0.

After applying τ ∗ one gets the following sequence on Y :

0 → τ ∗(2OX̃×P2
(−2H))

τ∗Φ̄−−→ τ ∗(OX̃×P2
(−H)⊕OX̃×P2

) → τ ∗Ū → 0.

The sheaf Ũ is by definition a cokernel of the factorization Φ̃ as in the diagram

τ ∗(2OX̃×P2
(−2H)) τ ∗(OX̃×P2

(−H)⊕OX̃×P2
)

τ ∗(2OX̃×P2
(−2H))⊗OY (D)

τ ∗Ū 0

s

²²

τ∗Φ̄ //

∃! Φ̃

55

// // .

Therefore, the restriction L∗B(Ũ) of Ũ to Z is a cokernel of L∗B(Φ̃). Applying L∗B to the diagram
above gives us the diagram

L∗Bτ ∗(2OX̃×P2
(−2H)) L∗Bτ ∗(OX̃×P2

(−H)⊕OX̃×P2
)

L∗B(τ ∗(2OX̃×P2
(−2H))⊗OY (D))

L∗Bτ ∗Ū 0

L∗Bs

²²

L∗Bτ∗Φ̄
//

L∗BΦ̃

44jjjjjjjjjjjjjjjjjjjjjjjj

// // .

Note that pulling back to Z the canonical section s of the exceptional divisor D of the blow
up τ gives the canonical section sZ of the exceptional divisor DZ = D ∩ Z of σ. Therefore,
applying the isomorphism L∗Bτ ∗ ∼= σ∗(l̃B × id)∗ to the previous diagram we will obtain the

diagram defining Ẽ (note that E = (lB × id)∗Ū):

σ∗(2OU×P2(−2H)) σ∗(OU×P2(−H)⊕OU×P2)

σ∗(2OU×P2(−2H))⊗OZ(DZ))

σ∗E 0

sZ

²²

//

55lllllllllllllllllllll

// // .

This means that the restriction of the resolution of Ũ

0 → 2OY (−2H + D)
Φ̃−→ OY (−H)⊕OY −→ Ũ → 0

to the fibre Yx is isomorphic to the restriction of the resolution of Ẽ

0 → 2OZ(−2H + D)
Ãt−→ OZ(−H)⊕OZ −→ Ẽ → 0

to the fibre Z0. Thus we conclude that Φ̃|Yx is injective (because Ãt|Z0 is) and therefore

TorOY
1 (Ũ , OYx) = 0, i. e., Ũ is flat over X̃.
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Remark 3.19. In the proof of Proposition 3.18 we have shown in particular that the fibres of
the sheaf Ũ are either non-singular 3m + 1 sheaves or R-bundles on P̂2.

Proposition 3.20. The sheaf Ũ is locally free on its support.

Proof. Since by Proposition 3.18 the sheaf Ũ is flat over X̃, by Lemma 2.1.7 from [13] it is

enough to show that the fibres of Ũ over the points from X̃ are locally free on their support.
But the fibres are either non-singular 3m + 1 sheaves on P2 or R-bundles. This completes the
proof.

We obtained a family over X̃ which has as its fibres all the non-singular 3m+1 sheaves (up
to isomorphisms) and all R-bundles on P̂2 (up to equivalence).
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3.3 New families over an arbitrary S

In this section we present the construction of a family over X̃. This construction allows us to
construct all R-bundles on P̂2 simultaneously.

3.3.1 Construction of a functor.

Definition.

Definition 3.21. A (new) family over S consists of the following data.

• A flat morphism π : Z → S such that for a point s ∈ S the fibre Zs := π−1(s) is either
isomorphic to P2 or to P̂2 (see Definition 1.11).

• A morphism (contraction) Z
σ−→ S × P2 over S such that over each point s ∈ S the

restriction Zs
σs−→ P2 is either an isomorphism P2 → P2 or the contraction of P2 in

P̂2 = P̃2 ∪ P2 to some point in P2.

• An invertible sheaf L′′ on Z with the following properties.

– The restrictions L′′s to the fibres Zs are isomorphic to OZs(0, 1) (cf. Remark 1.46);

– The sheaf L = L′⊗L′′, where L′ = σ∗(OS £OP2(1)), is a very ample invertible sheaf
on Z relative to S (we use here Definition 4.4.2 from [8] of a relative very ample
sheaf).

• A coherent sheaf E on Z that is flat over S and such that the restrictions Es of E to
the fibres Zs are either non-singular 3m + 1 sheaves if Zs

∼= P2 (cf. Definition 1.3) or
R-bundles on P̂2 if Zs

∼= P̂2.

• A 3m + 1 family F on S × P2 and a surjective morphism σ∗F τ−→ E such that for s ∈ S
the kernel of (σ∗F)s

τs−→ Es is zero in the case Zs
∼= P2 and is isomorphic to 2OD1(−L) if

Zs
∼= P̂2.

• Let SingF be the closed subvariety in S × P2 where F is not free. We require that the
restriction of σ to σ−1(S × P2 \ SingF)

σ−1(S × P2 \ SingF)
σ−→ S × P2 \ SingF

is an isomorphism of open subvarieties.

We denote OZ(1, 0) := L′, OZ(0, 1) := L′′, and analogously OZ(a, b) := L′⊗a ⊗ L′′⊗b.

Example 3.22. 1) R-bundles described in 1.3.2 are families over one point.
2) The one parameter families constructed in 1.2.1 are families over open sets in k.
3) The family over X̃ that was constructed in 3.2 is a family over X̃ in the sense of Defi-

nition 3.21.

Proof. Since the statements 1) and 2) are trivial, it remains to prove 3).

First of all we need the a sheaf L′′ on Y such that L′′s ∼= OYs(0, 1) for every s ∈ X̃.

Consider the exceptional divisor D̃1 of the blow up Y → X̃×P2. Then by Remark 3.12 and by
Lemma 1.20 one concludes OY (D̃1)|Ys

∼= OYs(1,−1). Putting L′′ := OY (−D̃1) ⊗ L′ we obtain
L′′s ∼= OYs(0, 1).
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It remains to prove that L = L′ ⊗ L′′ is a very ample sheaf relative to X̃. Note that the
sheaf Ls is isomorphic to OYs(1, 1) for every s ∈ X̃. Therefore, one concludes that Ls is very
ample relative to {s} as a restriction of the sheaf OP2×P2(1, 1) to Ys ⊆ P2 × P2. Let π be the

projection Y → X̃. Then we have a closed embedding Ys → P(π∗Ls).
Consider the canonical morphism π∗π∗L → L. By Proposition 1.32 we obtain

H1(Zs,Ls) ∼= H1(Zs,OZs(1, 1)s) = 0 and H0(Zs,Ls) ∼= H0(Zs,OZs(1, 1)s)
∼= k6.

Therefore, by the base change theorem we conclude that the canonical map ϕ0(s) : π∗L(s) →
H0(Zs,Ls) is an isomorphism for every s ∈ S. Since Ls

∼= OZs(1, 1) is generated by its global
sections, we conclude that the evaluation map OYs ⊗k H0(Ys,Ls)

ev−→ Ls is surjective for every
s ∈ S.

Note that (π∗π∗L)s
∼= OYs ⊗k (π∗L)(s). Under this identification the restriction of the

canonical homomorphism π∗π∗L → L to the fibre Ys coincides with the composition

OYs ⊗k (π∗L)(s)
id⊗ϕ0(s)−−−−−→ OYs ⊗k H0(Ys,Ls)

ev−→ Ls.

Since ϕ0(s) is a n isomorphism and since ev is surjective, we conclude that (π∗π∗L)s → Ls is

surjective for all s ∈ X̃ and hence π∗π∗L → L is surjective.
Therefore, the surjection π∗π∗L → L induces a morphism Y → P(π∗L). We will show that

this morphism is a closed embedding. Since P(π∗Ls) ∼= P(π∗L)s and since Ys → P(π∗Ls) is
injective, we conclude that Y → P(π∗L) is injective as well. Consider the commutative diagram

Y P(π∗L).

X̃

π

½½
44

44
44

4
//

¥¥




Note that π is a proper morphism. Note also that P(π∗L) → X̃ is separated as a projective
morphism. Then by Corollary 4.8 e), II from [12] we conclude that the morphism Y → P(π∗L)
is proper. In particular it is closed. As we already proved that this morphism is injective, this
implies that Y → P(π∗L) is a closed embedding, i. e., L is a very ample sheaf relative to X̃.

Remark 3.23. Let F be a non-singular 3m + 1 family over S. Put

Z = S × P2, π = p1 : S × P2 → S, σ = idS×P2 , L′′ = OS £OP2(1), E = F

and let τ be the canonical isomorphism εS×P2(F) : id∗S×P2
F ∼=−→ F . Then Z = S×P2 is embedded

into
P(3OS×P2)

∼= (S × P2)× P2

by the diagonal map (s, 〈x〉) 7→ (s, 〈x〉)× 〈x〉. We obtained a family from Definition 3.21. We
constructed a map that sends a non-singular 3m + 1 family over S to a family from Defini-
tion 3.21.

We have now a correspondence

S 7→ set of the families over S.

We would like to have a functor. We need “pull-backs”.
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Pull-backs of the families.

For an arbitrary family over S and for an arbitrary morphism T → S we will construct a family
over T .

Let (π : Z → S, σ,L′′, E ,F , τ) be a family over S and let T
f−→ S be a morphism. Let

ZT

πT

²²

F // Z

π

²²

T
f

// S

be the pull-back diagram. Note that ZT is flat over T , the sheaf F ∗E is flat over T as well
(cf. [12], III, Proposition 9.2, (b)). Since

T × P2

p1

²²

f×id
// S × P2

p1

²²

T
f

// S

is also a pull-back diagram, by universal property of pull-back there exists a unique arrow
σT : ZT → T × P2 that makes the following diagram commutative.

ZT Z

T S

T × P2 S × P2

F //

f
//

πT

²²

π

²²

f×id
//

p1

££¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦
¦

p1

¦¦
¦¦

¦

££¦¦
¦¦

¦¦
¦¦

¦

σ 77oooooooo

∃! σT
77

Note that over each point of T , the morphism σT is either an isomorphism P2
∼= P2 or a

contraction P̂2 → P2 as described in Definition 3.21.

Applying F ∗ to the morphism σ∗F τ−→ E we obtain a surjective morphism F ∗σ∗F F ∗τ−−→ F ∗E
Since the diagram

ZT

σT

²²

F // Z

σ

²²

T × P2
f×id

// S × P2

is commutative we obtain that F ∗σ∗F ∼= σ∗T (f × id)∗F and in this way we get a surjective
morphism σ∗T (f × id)∗F → F ∗E . By abuse of notation we will call this morphism f ∗τ . Note
that (f × id)∗F is a 3m + 1 family as a pull-back of a 3m + 1 family.

Consider the invertible sheaf F ∗L′′. Note that

σ∗T (OT £OP2)
∼= F ∗σ∗(OS £OP2)).

Therefore, the invertible sheaf

σ∗T (OT £OP2)⊗ F ∗L′′ ∼= F ∗σ∗(OS £OP2))⊗ F ∗L′′ ∼= F ∗(σ∗(OS £OP2))⊗ L′′)
is very ample relative to T as a pull back of the sheaf σ∗(OS £OP2))⊗L′′, which is very ample
relative to S by Definition 3.21. So we obtain a family

f ∗(π, σ,L′′, E ,F , τ) := (πT , σT , F ∗L′′, F ∗E , (f × id)∗F , f ∗τ) (3.3)

over T . We will call this family over T the pull-back of the family (π, σ,L′′, E ,F , τ) along f .
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Equivalence of families.

Definition 3.24. Let (π1, σ1,L′′1, E1,F1, τ1) and (π2, σ2,L′′2, E2,F2, τ2) be two families over S, i.
e., σ1 : Z1 → S × P2 and σ2 : Z2 → S × P2. Then they are called equivalent if the following
statements hold true.

• There exists an isomorphism ξ : Z1 → Z2 such that σ1 = σ2 ◦ ξ and such that ξ∗L′′2 ∼= L′′1.

Z1 Z2

S

S × P2

ξ
//

½½
44

44
44

4

¥¥





σ1 --
σ2 33gggggg

p1

vv

• There are isomorphisms e : E1 → ξ∗E2 and φ : F1 → F2 such that the diagram

σ∗1F1

E1

ξ∗σ∗2F1

ξ∗E2

ξ∗σ∗2F2

τ1
ÂÂ ÂÂ
??

??
??

??

ξ∗σ∗2(φ)
//

ξ∗τ2ÄÄÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

e //

oo ∼=
αξ,σ2

(F1)
(3.4)

is commutative.

Here αξ,σ2 : ξ∗σ∗2 → σ∗2 is the canonical isomorphism of functors.

Remark 3.25. For the canonical isomorphisms of functors we use here the notations from [30]
(see Definition 3.10, page 47).

Lemma 3.26. The relation from Definition 3.24 is an equivalence relation.

Proof. 1) Reflexivity. Consider an arbitrary family (π : Z → S, σ,L′′, E ,F , τ) over S. Put
ξ = idZ , then ξ∗L′′ ∼= L′′. Let e : E → id∗Z E be the inverse of εZ(E) : id∗Z E → E , where
εZ : idZ → idCoh(Z) is the canonical isomorphism of functors Coh(Z) → Coh(Z), put also
φ = idF .

Then the commutativity of

σ∗F

E

id∗Z σ∗F

id∗Z E

id∗Z σ∗F
τ1

ÂÂ ÂÂ
??

??
??

??
?

idid∗
Z

σ∗F

id∗Z τ2ÄÄÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

e //

oo ∼=
αidZ,σ(F)

is the same as the commutativity of

σ∗F id∗Z σ∗F

E id∗Z E

εZ(σ∗F)
oo

εZ(E)
oo

τ

²²

id∗Z τ

²²

because αidZ ,σ(F) = εZ(σ∗F). But the commutativity of the last diagram follows because εZ is
a natural transformation of functors. We proved the reflexivity axiom.
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2) Symmetry. Suppose that (π1 : Z1 → S, σ1,L′′1, E1,F1, τ1) is “equivalent” to (π2 : Z2 →
S, σ2,L′′2, E2,F2, τ2). The latter means that there exist ξ, φ and e as in Definition 3.21 and the
commutative diagram

σ∗1F1

E1

ξ∗σ∗2F1

ξ∗E2

ξ∗σ∗2F2.

τ1
ÂÂ ÂÂ
??

??
??

??

ξ∗σ∗2(φ)
//

ξ∗τ2ÄÄÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

e //

oo ∼=
αξ,σ2

(F1)

Denote ξ′ = ξ−1 and apply ξ′∗ to this diagram. We obtain then the commutative diagram

ξ′∗σ∗1F1

ξ′∗E1

ξ′∗ξ∗σ∗2F1

ξ′∗ξ∗E2

ξ′∗ξ∗σ∗2F2.

ξ′∗τ1 ÂÂ ÂÂ
??

??
??

??

ξ′∗ξ∗σ∗2(φ)
//

ξ′∗ξ∗τ2ÄÄÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ξ′∗e
//

oo ∼=
ξ′∗αξ,σ2

(F1)

One can extend this diagram to the commutative diagram

ξ′∗σ∗1F1

ξ′∗E1

ξ′∗ξ∗σ∗2F1

ξ′∗ξ∗E2

ξ′∗ξ∗σ∗2F2

ξ′∗τ1
ÂÂ ÂÂ
??

??
??

??
??

??

ξ′∗ξ∗σ∗2(φ)
//

ξ′∗ξ∗τ2

ÄÄÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ξ′∗e
//

oo ∼=
ξ′∗αξ,σ2

(F1)

id∗Z2
E2

id∗Z2
σ∗2F2

E2.

σ∗2F2

αξ′,ξ(σ∗2F2)
//

αξ′,ξ(E2)
//

id∗Z2
τ2

²²

τ2

²²εZ2
(E2)

//

εZ2
(σ∗2F2)

//

ξ′∗σ∗1F1 ξ′∗σ∗1F2 σ∗2F2

JJJJJJJJJJJJJJJ

JJJJJJJJJJJJJJJ

ξ′∗αξ,σ2
(F1)

OO

ξ′∗αξ,σ2
(F2)

OO

αidZ2
,σ2

OO

ξ′∗σ∗1(φ)
//

αξ′,σ1
(F2)

//

For φ′ = φ−1 and for e′ = (εZ2(E2) ◦ αξ′,ξ(E2) ◦ ξ′∗(e))−1 we obtain finally the commutative
diagram

σ∗2F2

E2

ξ′∗σ∗1F2

ξ′∗E1

ξ′∗σ∗1F1.

τ2
ÂÂ ÂÂ
??

??
??

??

ξ′∗σ∗1(φ′)
//

ξ′∗τ1ÄÄÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

e′ //

oo ∼=
αξ′,σ2

(F1)

Since we also have ξ′∗(L′′1) ∼= ξ′∗ξ∗(L′′2) ∼= L′′2, this means that the family

(π2 : Z2 → S, σ2,L′′2, E2,F2, τ2)

is “equivalent” to the family (π1 : Z1 → S, σ1,L′′1, E1,F1, τ1). This proves the symmetry of the
relation.

3) Transitivity. Let (π1 : Z1 → S,L′′1, σ1, E1,F1, τ1) ∼ (π2 : Z2 → S, σ2,L′′2, E2,F2, τ2) and
(π2 : Z2 → S, σ2,L′′2, E2,F2, τ2) ∼ (π3 : Z3 → S, σ3,L′′3, E3,F3, τ3). Let ξ, e, φ be the data
of the first equivalence, and let ξ′, e′, φ′ be the data of the second equivalence. We have the
commutative diagrams

σ∗1F1

E1

ξ∗σ∗2F1

ξ∗E2

ξ∗σ∗2F2,

τ1
ÂÂ ÂÂ
??

??
??

??

ξ∗σ∗2(φ)
//

ξ∗τ2ÄÄÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

e //

oo ∼=
αξ,σ2

(F1)
σ∗2F2

E2

ξ′∗σ∗3F2

ξ′∗E3

ξ′∗σ∗3F3.

τ2
ÂÂ ÂÂ
??

??
??

??

ξ′∗σ∗3(φ′)
//

ξ′∗τ3ÄÄÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

e′ //

oo ∼=
αξ′,σ3

(F2)
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Applying ξ∗ to the second diagram, attaching the obtained commutative diagram to the first
diagram and extending the resulting diagram we obtain the commutative diagram

(ξ′ξ)∗σ∗3(F1)

ξ∗ξ′∗σ∗3F1σ∗1F1

ξ∗σ∗2F1

ξ∗σ∗2F2 ξ∗ξ′∗σ∗3F2 ξ∗ξ′∗σ∗3F3

(ξ′ξ)∗σ∗3F3.

E1

ξ∗E2 ξ∗ξ′∗E3 (ξ′ξ)∗E3

e
,,ZZZZZZZZZZZZZ

ξ∗e′
//

αξ,ξ′ (E3)
//

αξ,σ2
(F1)jjTTTTTT

ξ∗σ∗2(φ)
**TTTTT

ξ∗αξ′,σ3
(F2)

oo
ξ∗ξ′∗σ∗3(φ′)

//

αξ,ξ′ (σ
∗
3F3)

77oooooooooooo
τ1

¼¼
22

22
22

22
22

22
2

ξ∗τ2
²²

ξ∗ξ′∗τ3

wwoooooooooooo (ξ′ξ)∗τ3

¥¥













ξ∗αξ′,σ3
(F1)

tt

ξ∗ξ′∗σ∗3(φ)

²²

ξ∗ξ′∗σ∗3(φ′φ)

""

(ξ′ξ)∗σ∗3(F1)

OO

αξ′ξ,σ3
(F1)

vv

(ξ′ξ)∗σ∗3(φ′φ)

))

For ξ′′ = ξ′ξ, ψ′′ = ψ′ψ and e′′ = αξ,ξ′(E3) ◦ ξ∗e′ ◦ e we obtain the commutative diagram

σ∗1F1 ξ′′∗σ∗3(F1) ξ′′∗σ∗3F3.

E1 ξ′′∗E3

αξ′′,σ3
(F1)

oo
(ξ′′)∗σ∗3(φ′′)

//

e′′ //

τ1

## ##GG
GG

GG
GG

GG

ξ′′∗τ3
{{{{ww

ww
ww

ww
w

Since L′′1 ∼= ξ∗L′′2 ∼= ξ∗ξ′∗L′′3 ∼= ξ′′∗L′′3, we conclude (π1 : Z1 → S, σ1,L′′1, E1,F1, τ1) ∼ (π3 : Z3 →
S, σ3,L′′3, E3,F3, τ3). This proves the transitivity. In 1), 2), and 3) we proved that the relation
from Definition 3.24 is in fact an equivalence relation.

Lemma 3.27. 1) Consider the map described in Remark 3.23. Then isomorphic 3m+1 families
are mapped to equivalent families.

2) This gives us a map from the set of all classes of isomorphism of non-singular 3m + 1
families over S to the set of the equivalence classes of new families over S.

3) This map is injective. Therefore, the set of all classes of isomorphism of non-singular
3m + 1 families can be considered as a subset in the set of the equivalence classes of families
described in Definition 3.21.

Proof. 1) Let F1 and F2 be two isomorphic non-singular 3m + 1 families over S. And let
φ : F1 → F2 be the corresponding isomorphism. Define e by the condition that the diagram

id∗S×P2
F1

F1

id∗S×P2
id∗S×P2

F1

id∗S×P2
F2

id∗S×P2
id∗S×P2

F2

εS×P2(F1)
'' ''OOOOOOOOOOOOO

id∗S×P2 id∗S×P2(φ)
//

id∗S×P2 εS×P2 (F2)

wwwwooooooooooo

e //

oo
αidS×P2 ,idS×P2

(F1)

commutes (note that all the arrows in this diagram are isomorphisms). Then ξ = idS×P2 , e,
and φ are data that describe an equivalence of the families that correspond to the sheaves F1

and F2.
2) Follows from 1).
3) If two families are equivalent, then in particular their 3m + 1 families are isomorphic by

Definition 3.24. This implies the required injectivity.

Remark 3.28. Note that for families over one point the notion of equivalence from Defini-
tion 3.24 coincides with the equivalence of R-bundles on Z0 from Definition 2.12.
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Let us denote the set of the equivalence classes of new families over S by M̃(S). For a
family (π, σ,L′′, E ,F , τ) we denote its equivalence class by [(π, σ,L′′, E ,F , τ)].

Lemma 3.29. Let (π1, σ1,L′′1, E1,F1, τ1) and (π2, σ2,L′′2, E2,F2, τ2) be two equivalent families

over S and let T
f−→ S be a morphism. Then the pull backs of (π1, σ1,L′′1, E1,F1, τ1) and

(π2, σ2,L′′2, E2,F2, τ2) along f are equivalent families over T .

Proof. Let ξ : Z1 → Z2, φ : F1 → F2, and e : E1 → ξ∗E2 be as in Definition 3.24. Consider the
commutative pull back diagram

Z1T

Z2T

T × P2

T

Z1

Z2

S × P2.

S
f

//

F1 //

F2 //

f×idP2 //

ξ

[[77777777777
σ1

77oooooooo

π1

²²

σ2

**VVVVVVVVVVVVVVV

p1

{{

π2

¾¾

ξT

[[77777777777
σ1T

77ooooooo

π1T

²²

σ2T

**VVVVVVVVVVVVVV

p1

||

π2T

¾¾

Applying F ∗
1 to the diagram (3.4) and using the properties of the canonical isomorphisms we

obtain the commutative diagram

σ1T (f × id)∗F1 ξ∗T σ∗2T (f × id)∗F1 ξ∗T σ∗2T (f × id)∗F2

ξ∗T (σ2F2)
∗F2ξ∗T (σ2F2)

∗F1(σ1F1)
∗F1F ∗

1 σ∗1F1

F ∗
1 E1

ξ∗T F ∗
2 σ∗2F1(ξF1)

∗σ∗2F1F ∗
1 ξ∗σ∗2F1

F ∗
1 ξ∗E2 F ∗

1 ξ∗σ∗2F2 (ξF1)
∗σ∗2F2 ξ∗T F ∗

2 σ∗2F2

(ξF1)
∗E2 ξ∗T F ∗

2 E2

αξT ,σ2T
((f×idP2)∗F1)

oo
ξ∗T σ∗2T (f×idP2 )∗(φ)

//

++VVVVVVVVVVVVVVVVVVVV

##GG
GG

GG
GG

G

··
··
··

F ∗1 τ1
wwwwoooooo

// oo //
f∗τ1

¯¯¯¯¼¼
¼¼
¼¼
¼¼
¼¼
¼

// oo

F ∗1 αξ,σ2
(F2)

ccGGGGGGGGG

ccGGGGGGGGG

ccGGGGGGGGG

F ∗1 e

ÂÂ
??

??
??

??
??

??

F ∗1 ξ∗σ∗2φ

##GG
GG

GG
GG

G

F ∗1 ξ∗τ2
oo // oo

##GG
GG

GG
GG

G

wwoooooooooooo

##GG
GG

GG
GG

G

##GG
GG

GG
GG

G

OO

**UUUUUUUUUUUUUUUUUUUUU

oo

ξ∗T f∗τ2

³³ ³³

and finally the commutative diagram

σ∗1T (f × idP2)
∗F1

F ∗
1 E1

ξ∗T σ∗2T (f × idP2)
∗F1

ξ∗T F ∗
2 E2

ξ∗T σ∗2T (f × idP2)
∗F2.

f∗τ1 '' ''OOOOOOOOOOOO

ξ∗T σ∗2T (f×idP2 )∗(φ)
//

ξ∗T f∗τ2wwwwoooooooooooo

//

oo
αξT ,σ2T

((f×idP2 )∗F1)

Since
ξ∗T F ∗

2L′′2 ∼= F ∗
1 ξ∗L′′2 ∼= F ∗

1L′′1,
we conclude that the pull backs of (π1, σ1,L′′1, E1,F1, τ1) and (π2, σ2,L′′2, E2,F2, τ2) along f are
equivalent families over T .

For an arbitrary morphism f : T → S Lemma 3.29 gives us a well-defined map

f ∗ : M̃(S) → M̃(T ), [(π, σ,L′′, E ,F , τ)] 7→ [f ∗(π, σ,L′′, E ,F , τ)].
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Functorial properties, construction of the functor.

Lemma 3.30. Let (π : Z → S, σ,L′′, E ,F , τ) be a family over S and let T
f−→ S and U

g−→ T be
two morphisms. Then

1) the families id∗S(π, σ,L′′, E ,F , τ) and (π, σ,L′′, E ,F , τ) are equivalent;
2) the families (fg)∗(π, σ,L′′, E ,F , τ) and g∗f ∗(π, σ,L′′, E ,F , τ) are equivalent.

Proof. 1) We have the commutative diagram

σ∗ id∗S×P2
F id∗Z σ∗ id∗S×P2

F .

σ∗F id∗Z σ∗F

αidZ,σ(id∗S×P2 F)
oo

id∗Z ασ,idS×P2
(F)=id∗Z σ∗εS×P2 (F)

²²

ασ,idS×P2
(F)

²²

αidZ,σ(F)
oo

Since id∗S τ is by construction the composition

σ∗ id∗S×P2
F

ασ,idS×P2
F

−−−−−−→ σ∗F
α−1

idZ,σ(F)

−−−−−→ id∗Z σ∗F id∗Z τ−−−→ id∗Z E ,

we obtain the commutative diagram

σ∗ id∗S×P2
F

id∗Z E

id∗Z σ∗ id∗S×P2
F

id∗Z E

id∗Z σ∗F .

id∗S τ
(( ((QQQQQQQQQQQQQQ

id∗Z σ∗εS×P2 (F)
//

id∗Z τ
vvvvmmmmmmmmmmmmmm

oo
αidZ,σ(id∗S×P2 F)

Therefore, φ = εS×P2(F) : id∗S×P2
F → F , ξ = idZ , e = idid∗Z E are the data that describe the

equivalence of id∗S(π, σ,L′′, E ,F , τ) and (π, σ,L′′, E ,F , τ) (note also that ξ∗L′′ = id∗Z L′′).
2) Follows from the commutative diagrams

ZT ZZU

TU S

T × P2 S × P2U × P2

g
//

f
//

G // F //

g×id
//

f×id
//

π

²²

πT

²²

πU

²²

σ 77oooooooo

σT
77ooooooo

σU
77ooooooo

££¦¦
¦¦

¦¦
¦¦

¦¦
¦¦

¦¦
¦

¦¦
¦¦

¦

££¦¦
¦¦

¦¦
¦¦

¦
¦¦

¦¦
¦

££¦¦
¦¦

¦¦
¦¦

¦
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and

id∗ZU
σ∗U(g × id)∗(f × id)∗F id∗ZU

σ∗U(fg × id)∗Fσ∗U(g × id)∗(f × id)∗F

(σT G)∗(f × id)∗F id∗ZU
(σT G)∗(f × id)∗F

G∗σ∗T (f × id)∗F id∗ZU
G∗σ∗T (f × id)∗F id∗ZU

((fg × id)σU)∗F

id∗ZU
G∗(σF )∗FG∗(σF )∗F id∗ZU

(σFG)∗F

G∗F ∗σ∗F id∗ZU
G∗F ∗σ∗F id∗ZU

(FG)∗σ∗F

G∗F ∗E id∗ZU
G∗F ∗E id∗ZU

(FG)∗E .

oo //

oo

²² ²²

²²**UUUUUUUUUUUUUUUUUOO OO

oo

²²²²

oo //

OO OO OO

εZU
(G∗F ∗σ∗F)

oo
id∗ZU

αG,F (σ∗F)
//

G∗F ∗τ
²²²²

id∗ZU
G∗F ∗τ

²²²²

id∗ZU
(FG)∗τ

²²²²εZU
(G∗F ∗E)

oo

id∗ZU
αG,F (E)

//

G∗(f∗τ)

¿¿ ¿¿

g∗(f∗τ)

ÃÃ ÃÃ

id∗ZU
(fg)∗τ

§§§§

Of course we have G∗F ∗L′′ ∼= id∗ZU
(FG)∗L′′, the equivalence data are

ξ = idZU
,

φ =αg×id,f×id(F) : (g × id)∗(f × id)∗F → (fg × id)∗F ,

e = id∗ZU
αG,F (E) ◦ (εZU

(G∗F ∗E))−1 : G∗F ∗E → id∗ZU
(FG)∗E .

We have proven the lemma.

Lemma 3.30 together with Lemma 3.29 say that M̃ is a functor (Sch) → (Sets). We use
here the notations (Sets) and (Sch) for the category of sets and for the category of separated
schemes of finite type over k respectively.

Relation between M̃ and M.

Recall that by M we denote the functor of the 3m + 1 Simpson moduli problem on P2.

Proposition 3.31. There is a natural transformation of functors M̃ µ−→M given by the rule

M̃(S) 3 [(π, σ,L′′, E ,F , τ)] 7→ [F ] ∈M(S), S ∈ (Sch)

Hom(Sets)(M̃(S),M̃(T )) 3 f ∗ 7→ f ∗ ∈ Hom(Sets)(M(S),M(T )), (T
f−→ S) ∈ (Sch)

Proof. Let f : T → S be an arbitrary morphism. By Definition (3.3) the 3m + 1 sheaf of the
pull back family f ∗(π, σ,L′′, E ,F , τ) is the sheaf (f × idP2)

∗F . Therefore, the diagram

M̃(S) M̃(T )

M(S) M(T )

f∗
//

f∗
//

µ(S)

²²

µ(T )

²²

[(π, σ,L′′, E ,F , τ)] [f ∗(π, σ,L′′, E ,F , τ)]

[F ] [(f × idP2)
∗F ]

Â f∗
//

Â f∗
//

_

µ(S)

²²

_

µ(T )

²²

commutes. This proves the required statement.
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3.3.2 Properties of new families.

Space Z as a subvariety in a P2 × P2-bundle over S.

Let us consider a family (π : Z → S, σ,L′′, E ,F , τ) over S. Consider the invertible sheaf

L′ = σ∗(OS £OP2(1)) ∼= σ∗(p∗1OS ⊗ p∗2OP2(1)) ∼= σ∗p∗2OP2(1)

on Z. Let us calculate its direct image G1 = π∗L′.
Lemma 3.32. π∗L′ ∼= 3OS and the canonical morphism π∗π∗L′ → L′ is surjective.

Proof. Since H1(P2,OP2(1)) = 0, using Proposition 1.32 and the definition of L′ from Defini-
tion 3.21) we conclude that

H1(Zs,L′s) ∼= H1(Zs,OZs(1, 0)s) = 0.

Therefore, by the base change theorem the canonical map ϕ0(s) : π∗L′(s) → H0(Zs,L′s) is an
isomorphism for every s ∈ S. Since by Proposition 1.32 H0(Zs,L′s) ∼= k3, applying the base
change theorem using the surjectivity of ϕ−1(s) (by definition) we obtain that G1 = π∗L′′ is a
locally free sheaf of rank 3 on S.

Note also that
π∗L′ ∼= π∗σ∗p∗2OP2(1) ∼= p1∗p

∗
2OP2(1).

Therefore, for an open set U in S we have using the Künneth formula

p1∗p
∗
2OP2(1)(U) = p∗2OP2(1)(U × P2) ∼= OS(U)⊗ Γ(P2,OP2(1)).

Hence p1∗p
∗
2OP2(1) ∼= OS ⊗ Γ(P2,OP2(1)) ∼= 3OS.

Note that (π∗π∗L′)s
∼= OZs ⊗k (π∗L′)(s), where

(π∗L′)(s) = π∗L′/mS,s · π∗L′.

Under this identification the restriction of the canonical homomorphism π∗π∗L′ → L′ to the
fibre Zs coincides with the composition

OZs ⊗k (π∗L′)(s) id⊗ϕ0(s)−−−−−→ OZs ⊗k H0(Zs,L′s) ev−→ L′s,

where ev is the evaluation morphism and ϕ0(s) is the homomorphism from the base change
theorem. We have just shown that ϕ0(s) is an isomorphism. Since L′s ∼= OZs(1, 0) and since
OP2(1) is generated by the global sections, we conclude also that the sheaf L′s is generated by
its global sections as well, hence ev is surjective and we conclude that (π∗π∗L′)s → (L′)s is
surjective for every s ∈ S. Therefore, π∗π∗L′ → L′ is surjective. This proves the statement of
the lemma.

Consider now the sheaf L′′ and its direct image π∗L′′.
Lemma 3.33. The sheaf G2 = π∗L′′ is a locally free sheaf of rank 3 on S and the canonical
morphism π∗G2 = π∗π∗L′′ → L′′ is surjective.

Proof. Since H1(P2,OP2(1)) = 0, using Proposition 1.32 and the properties of L′′ from Defini-
tion 3.21 we conclude that

H1(Zs,L′′s) ∼= H1(Zs,OZs(0, 1)s) = 0.
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Therefore, by the base change theorem the canonical map ϕ0(s) : π∗L′′(s) → H0(Zs,L′′s) is an
isomorphism for every s ∈ S. Since by Proposition 1.32 H0(Zs,L′′s) ∼= k3, applying the base
change theorem using the surjectivity of ϕ−1(s) (by definition) we obtain that G2 = π∗L′′ is a
locally free sheaf of rank 3 on S.

Using the same arguments as in the proof of Lemma 3.32 we conclude that L′′s is generated
by its global sections as the pull back from P2 of the globally generated sheaf OP2(1). There-
fore, (π∗π∗L′′)s → L′′s is surjective for every s ∈ S and one finally obtains that the canonical
homomorphism π∗G2 = π∗π∗L′′ → L′′ is surjective. This completes the proof.

Lemma 3.34. For L = L′ ⊗ L′′ the sheaf G = π∗L is a locally free sheaf of rank 6 on S. The
canonical homomorphism π∗G = π∗π∗L → L is surjective.

Proof. As above we get

H1(Zs,Ls) ∼= H1(Zs,OZs(1, 1)s) = 0 and H0(Zs,Ls) ∼= H0(Zs,OZs(1, 1)s)
∼= k6.

Applying the base change theorem we obtain that G is a locally free sheaf of rank 6.
Since L is very ample relative to S we conclude that π∗π∗L → L is surjective (see also [8],

4.4 and 3.4.7). This completes the proof.

We have already shown that the canonical homomorphisms

π∗(3OS) ∼= π∗π∗L′ ³ L′, π∗G2 = π∗π∗L′′ ³ L′′, π∗G = π∗π∗L ³ L
are surjective. They correspond to some morphisms

Z → P(3OS) ∼= S × P2, Z → P(G2), Z → P(G)

over S. The first map coincides with σ. Since we assumed L relative very ample, the last
morphism is a closed embedding.

For every s ∈ S the canonical homomorphism

H0(Zs,L′s)⊗H0(Zs,L′′s) → H0(Zs,Ls)

is surjective. Therefore, one concludes that the canonical map

G1 ⊗ G2 = π∗L′ ⊗ π∗L′′ → π∗L = G
is surjective as well. Therefore, the corresponding morphism

P(G) → P(G1 ⊗ G2)

is a closed embedding and we obtain the commutative diagram

P(G1)×S P(G2) = (S × P2)×S P(G2),Z

P(G) P(G1 ⊗ G2)

//

// //

²²

²²

²²

ς

²²

where ς : P(G1) ×S P(G2) → P(G1 ⊗ G2) is the Segre embedding (cf. [8], 4.3). From the
commutativity of the diagram we obtain that the morphism

Z → (S × P2)×S P(G2) ∼= P2 ×P(G2)

is a closed embedding. We have shown that Z is a closed subvariety in some P2 × P2-bundle
over S (compare with Proposition 3.13).

Proposition 3.35. Z is a closed subvariety in P2 × P(G2), where G2 = π∗L′′ is a locally free
sheaf of rank 3 on S.

In particular this means that for every point s ∈ S there is an open neighbourhood U of s
such that ZU is a closed subvariety in U × P2 × P2.
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Local existence of resolutions.

Let (π : Z → S, σ,L′′, E ,F , τ) be a family over S. Then F is a 3m + 1 family over S. Let
p1 : S×P2 → S and p2 : S×P2 → P2 be the canonical projections. Then there exists a relative
Beilinson resolution (cf. [24])

0 → p∗1A2 ⊗ p∗2OP2(−2)
Υ−→ (p∗1A1 ⊗ p∗2OP2(−1))⊕ (p∗1A0 ⊗ p∗2OP2) → F → 0, (3.5)

where A2 = R1p1∗(F ⊗ p∗2Ω
2
P2

(2)), A1 = R1p1∗(F ⊗ p∗2Ω
1
P2

(1)), and A0 = R0p1∗(F) are locally
free sheaves on S of rank 2, 1, and 1 respectively.

Let us apply σ∗ to this resolution. Then

σ∗(p∗1A0 ⊗ p∗2OP2)
∼= σ∗p∗1A0 ⊗ σ∗p∗2OP2

∼= π∗A0 ⊗OZ ,

σ∗(p∗1A1 ⊗ p∗2OP2(−1)) ∼= π∗A1 ⊗OZ(−1, 0),

σ∗(p∗1A2 ⊗ p∗2OP2(−2)) ∼= π∗A2 ⊗OZ(−2, 0).

We obtain the commutative diagram with exact rows and columns

0 0

C ′ C

0 C ′ π∗A2 ⊗OZ(−2, 0) (π∗A1 ⊗OZ(−1, 0))⊕ (π∗A0 ⊗OZ) σ∗F 0

0 K (π∗A1 ⊗OZ(−1, 0))⊕ (π∗A0 ⊗OZ) E 0.

C 0

0

// // σ∗Υ // // //

// // // //

²²

²²

²²

²²

²²

²²

²²

τ

²²

²²

Lemma 3.36. The sheaf B := π∗K(1, 1) is a locally free sheaf of rank 2.

Proof. Since by assumption E is flat over S and since the sheaf

(π∗A1 ⊗OZ(−1, 0))⊕ (π∗A0 ⊗OZ)

is flat as a locally free sheaf on Z (recall that Z
π−→ S is flat), we conclude that the sheaf K is

flat over S as well.
By Proposition 1.66 we know that Ks

∼= 2OZs(−1,−1) if Zs
∼= P̂2. If Zs

∼= P2, then Ks
∼=

2OP2(−2, 0) = 2OP2(−1,−1) (cf. Remark 1.46). Thus one concludes that Ks
∼= 2OZs(−1,−1)

for all s ∈ S. The sheaf K(1, 1) := K ⊗OZ(1, 1) is also flat. We have K(1, 1)s
∼= 2OZs .

One has H1(Zs,K(1, 1)s) ∼= H1(Zs, 2OZs) = 0 for every s ∈ S. Therefore, by the base
change theorem the canonical homomorphism

ϕ0(s) : π∗K(1, 1)(s) → H0(Zs,K(1, 1)s) ∼= H0(Zs, 2OZs)
∼= k2

is an isomorphism for every s ∈ S. Again by the base change theorem using the surjectivity of
ϕ−1(s) (by definition) we obtain that π∗K(1, 1) is a locally free sheaf of rank 2.

Proposition 3.37. K ∼= π∗B ⊗OZ(−1,−1), in particular K is a locally free sheaf of rank 2.
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Proof. Consider the canonical homomorphism π∗B = π∗π∗K(1, 1)
η−→ K(1, 1) and its restrictions

π∗π∗K(1, 1)s
ηs−→ K(1, 1)s to the fibres Zs, s ∈ S.

Note that π∗π∗K(1, 1)s
∼= OZs ⊗k (π∗K(1, 1))(s), where

(π∗K(1, 1))(s) = π∗K(1, 1)/mS,s · π∗K(1, 1).

There is the following commutative diagram

OZs ⊗k (π∗K(1, 1))(s)

OZs ⊗k H0(Zs,K(1, 1)s) K(1, 1)s,

id⊗ϕ0(s)
²²

ηs

))SSSSSSSSSSSSSSS

ev //

where ev is the evaluation morphism and ϕ0(s) is the morphism from the base change theorem.
In the proof of Lemma 3.36 we have already shown that ϕ0(s) is an isomorphism for every
s. Since K(1, 1)s

∼= OZs , we conclude that the map ev is an isomorphism and hence ηs =
ev ◦(id⊗ϕ0(s)) is an isomorphism as well. The latter implies that the canonical homomorphism
π∗B = π∗π∗K(1, 1) → K(1, 1) is an isomorphism. This gives K ∼= π∗B⊗OZ(−1,−1). Since the
sheaf B = π∗K(1, 1) is locally free of rank 2, we obtain that K(1, 1) is also a locally free sheaf
of rank 2. This completes the proof.

We obtain finally the commutative diagram with exact rows and columns

0 0

C ′ C

0 C ′ π∗A2 ⊗OZ(−2, 0) (π∗A1 ⊗OZ(−1, 0))⊕ (π∗A0 ⊗OZ) σ∗F 0

0 π∗B ⊗OZ(−1,−1) (π∗A1 ⊗OZ(−1, 0))⊕ (π∗A0 ⊗OZ) E 0.

C 0

0

// // // // //

// // // //

²²

²²

γ

²²

²²

²²

²²

²²

τ

²²

²²

Lemma 3.38. For every point s ∈ S there exists an open neighbourhood U of s such that the
sheaves A2 and B are both isomorphic to 2OU . For an appropriate choice of isomorphisms the
restriction of γ to ZU = π−1(U) is then of the form

2OZU
(−2, 0)

( e 0
0 e )−−−→ 2OZU

(−1,−1)

for some e ∈ Γ(Z,OZ(1,−1)).

Proof. Since both sheaves A2 and B are locally free of rank 2 on S, one concludes that for
every point s ∈ S there exists an open neighbourhood U of s such that both A2 and B and
are isomorphic to 2OU and hence their pull backs along π are free sheaves of rank 2 on ZU .
Therefore, the restriction of γ to ZU is given by a matrix

2OZU
(−2, 0)

( a b
c d )−−−→ 2OZU

(−1,−1), a, b, c, d ∈ Γ(OZU
,OZU

(1,−1)).
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It holds Γ(ZU ,OZU
(1,−1)) = Γ(U, π∗OZU

(1,−1)). Using Proposition 1.32, for every s ∈ S we
obtain H i(Zs,OZs(1,−1)) = 0 for i 6= 0 and H0(Zs,OZs(1,−1)) ∼= k. Therefore, by the base
change theorem we conclude that π∗OZ(1,−1) is a locally free sheaf of rank 1 on S. Thus
making U small enough we may assume that π∗OZU

(1,−1) is isomorphic to OU . Therefore, we
obtain the following isomorphism of OU(U) modules:

Γ(ZU ,OZU
(1,−1)) = Γ(U, π∗OZU

(1,−1)) ∼= Γ(U,OU).

Note that the canonical homomorphism

OU(U) → (π∗OZU
)(U) = OZU

(ZU)

equips Γ(ZU ,OZU
(1,−1)) with a structure of an OU(U) module. As above, using the base

change theorem, we conclude that the sheaf π∗OZ is an invertible sheaf on S and shrinking U
we obtain π∗OZU

∼= OU . Therefore, we obtain an isomorphism of k-algebras

OZU
(ZU) = (π∗OZU

)(U) ∼= OU(U)

and may identify the sections from OZU
(ZU) and OU(U).

Let a′, b′, c′, d′ be the elements of Γ(U,OU) ∼= Γ(ZU ,OZU
) corresponding to a, b, c, d

respectively. Let e ∈ Γ(ZU ,OZU
(1,−1)) be the section that corresponds to 1 ∈ Γ(U,OU) =

OU(U). Then
a = a′ · e, b = b′ · e, c = c′ · e, d = d′ · e

and we obtain the commutative diagram

2OZU
(−2, 0) 2OZU

(−1, 1).

2OZU
(−2, 0)

( a b
c d )

//

(
a′ b′
c′ d′

)
##GG

GG
GG

GG
G

( e 0
0 e )

;;wwwwwwwww

To prove the required statement it is enough to show that the matrix
(

a′ b′
c′ d′

)
is invertible.

Since
σ−1(S × P2 \ SingF)

σ−→ S × P2 \ SingF
is an isomorphism, we conclude that γ is an isomorphism over W = σ−1(S×P2 \SingF). Then
( a b

c d ) is an isomorphism over the intersection of ZU with W . Hence both
(

a′ b′
c′ d′

)
and ( e 0

0 e ) must
be isomorphisms over this set.

Note that there exists locally a section of the morphism W ⊆ Z
π−→ S. Therefore, the

morphism

2OU(U)

(
a′ b′
c′ d′

)

−−−−→ 2OU(U)

is an isomorphism and the same holds for the matrix
(

a′ b′
c′ d′

)
considered as a morphism 2OZU

→
2OZU

. This completes the proof.

As the sheaves B, A0, A1, and A2 are locally free sheaves on S of rank 2, 1, 1 and 2
respectively, the latter means that for every point s ∈ S there exists an open neighbourhood U
of s such that for ZU = π−1(U) we have the resolution

0 → 2OU×P2(−2)
Ψ−→ OU×P2(−1)⊕OU×P2 → FU → 0 (3.6)
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and the commutative diagram with exact rows and columns

0 0

C ′ C

0 C ′ 2OZU
(−2, 0) OZU

(−1, 0)⊕OZU
(σ∗F)U 0

0 2OZU
(−1,−1) OZU

(−1, 0)⊕OZU EU 0.

C 0

0

// // σ∗Ψ // // //

// Φ // // //

²²

²²

( e 0
0 e )

²²

²²

²²

²²

²²

τ

²²

²²

(3.7)

Maps to X̃ and M̃ .

Lemma 3.39. Let (π : Z → S,L′′, σ, E ,F , τ) be a family over S. Then there is an open

covering S =
⋃
i

Si and morphisms χi : Si → X̃ such that ν̃ ◦ χi|Si∩Sj
= ν̃ ◦ χj|Si∩Sj

for every i

and j. This defines a morphism S → M̃ .

Proof. First of all note that there is an open covering of S =
⋃

Si and morphisms Si → X
induced by the 3m+1 family F . All that morphisms composed with the quotient map X

ν−→ M
agree with each other on the intersections Si ∩ Sj and give rise to a unique morphism S → M
such that the sheaf F is the pull back of the universal 3m + 1 family on M with under that
morphism (recall that M is a fine moduli space for the 3m + 1 moduli problem on P2).

Consider the diagram (3.7). From resolution (3.6) we obtain the morphism

aU : U → X, s 7→ Ψs ∈ X.

For every s ∈ U consider the restriction of (3.7) to the fibre Zs. We obtain the commutative
square

2OZs(−2, 0) OZs(−1, 0)⊕OZs

2OZs(−1,−1) OZs(−1, 0)⊕OZs .

(σ∗Ψ)s
//

Φs //

(
es 0
0 es

)

²²

(3.8)

Note that H0(Zs,OZs(1,−1)) ∼= k. Indeed by Proposition 1.32 this holds for Zs
∼= P̂2.

If the fibre Zs is isomorphic to P2, using OP2(1,−1) ∼= OP2 (cf. Remark 1.46) we obtain
H0(P2,OZs(1,−1)) ∼= k as well. So es is unique up to multiplication by a non-zero constant.

We obtain the injective morphism Φs ∈ Hom(2OZU
(−2, 0), 2OZU

(−1, 1)),

Φs =

(
l1 q̃1

l2 q̃1

)
(s) =

(
l1(s) q̃1(s)
l2(s) q̃1(s)

)
, li(s) ∈ Γ(Zs,OZs(0, 1)), qi(s) ∈ Γ(Zs,OZs(1, 1)).

Denote pts := 〈l1(s) ∧ l2(s)〉. We obtain the morphism

bU : U → P1, s 7→ 〈q̃1(s)(pts), q̃2(s)(pts)〉.
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Therefore, one gets the morphism

(aU , bU) : U → X × P1, s 7→ (aU(s), bU(s)).

Then from the commutative square (3.8) we conclude (cf. (1.9)) that

q̃1(s)(pts) · f4(Ψs)− q̃2(s)(pts) · f3(Ψs) = 0.

By (3.1) this means that the image of the morphism (aU , bU) : U → X × P1 lies in X̃.

We obtained a morphism χU = (aU , bU) : U → X̃. We can construct such a morphism in

a neighbourhood of every point s ∈ S. Suppose we have two morphisms χU : U → X̃ and
χU ′ : U ′ → X̃ for two open sets U and U ′ in S.

Consider a point s ∈ U ∩ U ′. We obtain two commutative squares

2OZs(−2, 0) OZs(−1, 0)⊕OZs

2OZs(−1,−1) OZs(−1, 0)⊕OZs ,

(σ∗Ψ)s
//

Φs //

(
es 0
0 es

)

²²

2OZs(−2, 0) OZs(−1, 0)⊕OZs

2OZs(−1,−1) OZs(−1, 0)⊕OZs .

(σ∗Ψ′)s
//

Φ′s //

(
e′s 0
0 e′s

)

²²

(3.9)

Since we have already noticed that H0(Zs,OZs(1,−1)) ∼= k, we obtain that es = λe′s for some
λ ∈ k∗.

The sheaf Es has the resolutions

0 → 2OZs(−1,−1)
Φs−→ OZs(−1, 0)⊕OZs → Es → 0

and

0 → 2OZs(−1,−1)
Φ′s−→ OZs(−1, 0)⊕OZs → Es → 0.

Then (cf. Section 2.1) there is (f, h) ∈ G such that the diagram

2OZs(−1, 1) OZs(−1, 0)⊕OZs

2OZs(−1,−1) OZs(−1, 0)⊕OZs .

Φs //

Φ′s //

g

²²

h
²²

commutes, i. e., Φs = g · Φ′
s · h−1. In particular this implies that bU(s) = bU ′(s) · gT.

Using (3.9) we obtain the commutative diagram

2OZs(−2, 0) OZs(−1, 0)⊕OZs

2OZs(−2, 0) OZs(−1, 0)⊕OZs .

(σ∗Ψ)s
//

(σ∗Ψ′)s
//

λg

²²

h
²²

and therefore Ψs = λg ·Ψ′
s · h−1 and hence aU(s) = λg · aU ′(s) · h−1.

We obtained that χU(s) = (aU(s), bU(s)) and χU ′(s) = (aU ′(s), bU ′(s)) lie in the same orbit

of the action of G on X̃. Therefore, by Lemma 3.7 ν̃ ◦ χU(s) = ν̃χU ′(s). This proves that the
restrictions of ν̃ ◦ χU and ν̃ ◦ χU ′ to U ∩ U ′ coincide.

We proved that one can cover S by open sets Si such that there are morphisms χi : Si → X̃.
Moreover the morphisms ν̃◦χi : Si → M̃ agree on the intersections. We obtain then a morphism
S → M̃ . This completes the proof.
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Note that two equivalent families over S define the same morphism S → M̃ . This gives us
a map

M̃(S) → Hom(S, M̃).

Consider a morphism T
f−→ S and a family (π : Z → S,L′′, σ, E ,F , τ) over S with the induced

morphism S
φ−→ M̃ . From the considerations in the proof of Lemma 3.39 it follows that the

morphism induced by the pull back of (π : Z → S,L′′, σ, E ,F , τ) along f coincides with the
composition φ ◦ f . We obtained the following proposition.

Proposition 3.40. There is a natural transformation of functors

M̃ → Hom( , M̃)

and the commutative diagram

M̃ Hom( , M̃)

M Hom( , M).

//

//

µ

²² ²²



Open questions

There are still questions to be answered.

• It is not clear whether the natural transformation of functors M̃ → Hom( , M̃) we

obtained is an isomorphism (equivalence of functors), i. e., whether the space M̃ is a fine
moduli space of the moduli problem we defined in this thesis. This question is connected
with the existence or non-existence of a descent of the sheaf Ũ over X̃ to a sheaf over M̃ .

• Another question is whether M̃ → Hom( , M̃) is universal in the following sense:

for every natural transformations of functors M̃ → Hom( ,W ) there exists a unique

arrow Hom( , M̃) → Hom( ,W ) (in other words a morphism M̃ → W ) that makes
the diagram

M̃ Hom( , M̃)

Hom( ,W )

//

ÂÂ
??

??
??

?

∃!
ÄÄ

commute.

• It was mentioned in [4] that there is an isomorphism M3m+1(P2) ∼= M3m+2(P2). The
description of the parameter space for M3m+1(P2) and M3m+2(P2) are almost the same.
Therefore, the techniques presented in the dissertation may be applied almost without
changes to the moduli space M3m+2(P2). It is however not clear whether the ideas from
this thesis may be reasonably modified to work for a bigger class of Simpson’s moduli
spaces. We guess it may be needed a sequence of steps similar to the construction de-
scribed in the dissertation to replace the singular sheaves of a moduli space MP (P2) for
a general polynomial P (m).
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Appendix A

General statements

This chapter contains some auxiliary statements that are used in the dissertation. Some of
them may be easily found in the literature and are provided with references. The statements
for which the author have not found the references are provided with proofs.

A.1 Flatness and base change

The following statements are often used in the dissertation.

Theorem A.1 (Base change). Let X
f−→ Y be a projective morphism. Let F be a coherent

sheaf on X which is flat over Y . Let y ∈ Y be a point in Y . Then the natural map

ϕp(y) : Rpf∗(F)⊗ k(y) → Hp(Xy,Fy)

is an isomorphism if and only if it is surjective. In this case it remains isomorphism in a
neighbourhood of y and the following two conditions are equivalent:

1) the natural map

ϕp−1(y) : Rp−1f∗(F)⊗ k(y) → Hp−1(Xy,Fy)

is surjective;
2) Rpf∗(F) is locally free in a neighbourhood of y.

Proof. See [12], III, Theorem 12.11.

Theorem A.2. Let f : X → Y be a morphism of varieties over k, let Y be regular and X be
Cohen-Macaulay. Assume that each fibre of X has dimension dim X − dim Y . Then f is flat.

In particular this holds true if both X and Y are regular.

Proof. See [11], 6.1.5, or [12], III, Ex. 10.9.
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A.2 Some properties of blow ups

We collect here some facts about blow ups. The statements we refer to are provided either with
references or proofs.

A.2.1 Definition and basic properties.

Let us recall the definition and some basic properties of blow ups. For details see also [6], IV,
and [12], II, §7.

Let S ⊆ Y be a closed embedding and let IS = I be the ideal sheaf of S. Then the blow
up BlS Y of Y along S is by definition the scheme

BlS Y := Proj
⊕

d>0

Id

together with the canonical (structure) morphism

Proj (
⊕

d>0

Id)
σ−→ Y

and with the canonical invertible sheaf OBlS Y (1) on BlS Y .
The subscheme D = σ−1(S) is called the exceptional divisor of the blow up σ. It is

canonically isomorphic to the scheme

Proj
⊕

d>0

Id/Id+1

and the embedding D ⊆ BlS Y is induced by the canonical surjective homomorphism
⊕

d>0

Id ³
⊕

f>0

Id/Id+1.

D is a Cartier divisor on BlS Y with the corresponding ideal sheaf

I · OBlS Y = OBlS Y (−D) = OBlS Y (1).

For every morphism f : Z → Y such that f−1(S) is a Cartier divisor, i. e., such that f−1I ·OY

is an invertible sheaf, 1 there exists a unique morphism g : Z → BlS Y with f = σ ◦ g. This
property is called the universal property of blow up.

There is the commutative diagram of the canonical projections

⊕
d>0

Sd I ⊕
d>0

Sd(I/I2)

⊕
d>0

Id
⊕
d>0

Id/Id+1.

// //

²²²²

// //

²²²²

Note that if S is a locally complete intersection, then the vertical arrows of the above
diagram are isomorphisms (cf. [6], IV, Corollary 2.4, and [12], II, Theorem 8.21A). In particular
this induces the isomorphisms

BlS Y = Proj
⊕

d>0

Id ∼= Proj
⊕

d>0

Sd I = P(I)

1Recall that f−1I ·OY = I ·OY is the image of f∗(I) in OZ under the canonical map f∗(I) → f∗OY = OZ ,
see also [12], page 163, Caution 7.12.2.
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and
D = Proj

⊕

d>0

Id/Id+1 ∼= Proj
⊕

d>0

Sd(I/I2) = P(I/I2).

Recall that the sheaf CS/Y = I/I2 is called the conormal sheaf to S in Y . It is a coherent
sheaf on S. If S is a locally complete intersection, then I/I2 is a locally free sheaf on S (cf. [6],
§4, Proposition 3.2).

A.2.2 Some useful statements.

Let Y be smooth and let S ⊆ Y be a locally complete intersection of codimension codim S =
N + 1 > 2. Let σ : X → Y be the blow up of the ideal IS = I of S. Let D be the exceptional
divisor of this blow up. We obtain then a commutative diagram

D X

S Y.

Â Ä //

Â Ä //

σD

²²

σ

²²

Since S is a locally complete intersection we have that the sheaf I/I2 is locally free, X = P(I),
and D = P(I/I2). The embedding D ↪→ X is induced by the projection I → I/I2.

The ideal sheaf of D is

OX(−D) = I · OX = OX(1) = OP(I)(1),

where I · OX is the image of σ∗(I) in OX under canonical map σ∗(I) → σ∗OY = OX .
Since OD(1) is just a restriction of OX(1) to D, i.e., OP(I/I2)(1) = OP(I)(1)|P(I/I2), we

conclude that
OD(1) = OX(1)|D = OX(1)⊗OD = OX(−D)⊗OD,

and therefore OX(D)⊗OD = OD(−1). We proved the following simple lemma.

Lemma A.3. OX(D)⊗OD = OD(−1).

Lemma A.4. 1) Rpσ∗(OD(−1)) = 0 for p > 0.
2) Rpσ∗(OD(n)) = 0 for p > 0, n > 0.

Proof. 1) Note that for any coherent OD-module F we have Rpσ∗(F) = RpσD∗(F). This is
true because for each open set U ⊆ Y we have

Hp(σ−1(U),F) = Hp(σ−1(U) ∩D,F) = Hp(σ−1
D (U ∩ S),F),

i. e., the pre-sheaves defining Rpσ∗(F) and RpσD∗(F) are equal.

Note that D
σD−→ S is a projective bundle over S and therefore is flat. Thus OD(−1) is flat

over S as a locally free sheaf on D. Therefore, we can apply base change.
For each point s ∈ S consider the fibre Ds over s.

Ds
Â Ä //

²²

D

σD

²²{s} Â Ä // S.

Then Ds = PN (recall that codim S = N + 1) and OD(−1)|Ds = ODs(−1). Since for all p > 0

Hp(Ds,ODs(−1)) = Hp(PN ,OPN
(−1)) = 0,
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applying Theorem A.1 we obtain RpσD∗(F) = 0. As we showed that Rpσ∗(F) = RpσD∗(F), we
conclude that Rpσ∗(F) = 0 for p > 0. This proves the first part of the lemma.

2) Analogously, using that Hp(PN ,OPN
(n)) = 0 for p > 0, n > 0, we obtain Rpσ∗(OD(n)) =

0 for p > 0, n > 0.

Lemma A.5. σ∗(OX) ∼= σ∗(OX(D)).

Proof. Let us consider the exact sequence

0 → OX → OX(D) → OX(D)⊗OD → 0.

Since by Lemma A.3 OX(D)⊗OD
∼= OD(−1) we obtain the long exact sequence

0 → σ∗OX → σ∗(OX(D)) → σ∗(OD(−1)) → R1σ∗(OX) → . . .

. . . → Rpσ∗(OX) → Rpσ∗(OX(D)) → Rpσ∗(OD(−1)) → . . . .

From Lemma A.4 we get Rpσ∗(OD(−1)) = 0 for p > 0. Therefore, σ∗(OX) ∼= σ∗(OX(D)),
which proves the lemma.

Lemma A.6. 1) σ∗(OX) ∼= OY ;
2) Rpσ∗(OX) = 0, p > 0.

Proof. 1) First of all note, that σ : X \D → Y \S is an isomorphism. Therefore, for each open
set U ⊆ Y we have OY (U \S) ∼= OX(σ−1(U) \D). Since the codimension of S in Y is > 2, the
restriction map OY (U) → OY (U \ S) is an isomorphism.

Consider the commutative diagram

OY (U) OX(σ−1(U)) = σ∗OX(U)

OY (U \ S) OX(σ−1(U) \D),

//

∼=
²² ∼= //

²²

where the vertical lines are the canonical restrictions and the horizontal correspond to the
canonical homomorphism OY → σ∗OX . Since OX is torsion free, the right vertical arrow
is injective. It follows also from the commutativity of the diagram that it is also surjective.
Therefore, the restriction map

OX(σ−1(U)) → OX(σ−1(U) \D)

is an isomorphism and thus we get that OY (U) → OX(σ−1(U)) is an isomorphism, which means
that σ∗(OX) ∼= OY .

2) Let ID = OX(−D) be the ideal sheaf of D. Then for each n > 0 we have the exact
sequence

0 → In
D/In+1

D → OX/In+1
D → OX/In

D → 0.

We have
ID/I2

D
∼= ID ⊗ (OX/ID) ∼= OX(−D)⊗OD

∼= OD(1)

and
In

D/In+1
D

∼= (ID/I2
D)⊗n ∼= OD(n).

Therefore, by Lemma A.4 Rpσ∗(In
D/In+1

D ) = Rpσ∗(OD(n)) = 0, p > 0. From the long exact
sequence

. . . → Rpσ∗(In
D/In+1

D ) → Rpσ∗(OX/In+1
D ) → Rpσ∗(OX/In

D) → Rp+1σ∗(In
D/In+1

D ) → . . .
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we conclude that Rpσ∗(OX/In+1
D ) ∼= Rpσ∗(OX/In

D) ∼= . . . ∼= Rpσ∗(OX/ID) = Rpσ∗(OD), be-
cause OX/ID = OD. By Lemma A.4 Rpσ∗(OD) = 0, which implies that

Rpσ∗(OX/In
D) = 0, n > 0, p > 0. (A.1)

Grothendieck’s comparison theorem (cf. [9], 4.1.5) states that

lim←−
n

Rpσ∗(F)/In
SRpσ∗(F) ∼= lim←−

n

Rpσ∗(F/In
DF)

for a coherent OX-module F . Taking F = OX an using (A.1) we get

lim←−
n

Rpσ∗(OX)/In
SRpσ∗(OX) ∼= lim←−

n

Rpσ∗(OX/In
D) = 0.

By Krull’s intersection theorem this implies Rpσ∗(OX) = 0.

Lemma A.7. Let E be a locally free sheaf on Y . Then

Rpσ∗(σ∗E) ∼=
{
E , p = 0,

0, p > 0.

Proof. Using the projection formula we obtain

Rpσ∗(σ∗E) ∼= Rpσ∗(σ∗E ⊗ OX) ∼= E ⊗Rpσ∗(OX).

By Lemma A.6 we obtain the required statement.

Lemma A.8. Let F be a coherent sheaf given by a locally free resolution

0 → E1 → E0 → F → 0.

Assume that after applying σ∗ the resulting sequence

0 → σ∗(E1) → σ∗(E0) → σ∗(F) → 0

remains exact. Then

Rpσ∗(σ∗F) ∼=
{
F , p = 0,

0, p > 0.

Proof. From the exact sequence

0 → σ∗(E1) → σ∗(E0) → σ∗(F) → 0

we obtain the long exact sequence

0 → σ∗(σ∗(E1)) → σ∗(σ∗(E0)) → σ∗(σ∗(F)) → . . .

. . . → Rpσ∗(σ∗(E1)) → Rpσ∗(σ∗(E0)) → Rpσ∗(σ∗(F)) → . . . .

Since by Lemma A.7 Rpσ∗(E0) = Rpσ∗(E1) = 0, p > 0, one immediately obtains Rpσ∗(F) = 0,
p > 0. Since we also have the commutative diagram with exact rows

0 // σ∗(σ∗(E1)) // σ∗(σ∗(E0)) // σ∗(σ∗(F)) // 0

0 // E1
//

∼=
OO

E0
//

∼=
OO

F //

OO

0,

we conclude that σ∗(σ∗(F)) ∼= F .
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A.3 Conics in P2 and 2m + 2 sheaves on P2

We discuss here conics in P2 and their connection to 2m + 2 sheaves on P2.

Lemma A.9. Let C = {f(u0, u1, u2) = 0} be a conic. Let Q be the corresponding symmetric
matrix, i. e., f(u0, u1, u2) = (u0, u1, u2)Q(u0, u1, u2)

T. Then
1) C is irreducible if and only if the determinant of Q is not zero;
2) smooth conics are exactly those that are irreducible;
3) C is a union of two different lines if and only if the rank of the matrix Q equals 2;
4) C is a double line if and only if the rank of the matrix Q equals 1.

Proof. 1) After an appropriate linear coordinate change we can bring the conic to the canonical

form λ0u
2
0 + λ1u

2
1 + λ3u

2
3 that corresponds to the diagonal matrix Q =

(
λ0 0 0
0 λ1 0
0 0 λ2

)
. One easily

sees that λ0u
2
0 + λ1u

2
1 + λ3u

2
3 is irreducible if and only if all λi are different from zero, which is

equivalent to det Q 6= 0.
2) C is singular if and only if ( ∂f

∂u0
, ∂f

∂u1
, ∂f

∂u2
) vanishes at some point. Since f(u0, u1, u2) =

(u0, u1, u2)Q(u0, u1, u2)
T, we obtain

(
∂f
∂u0

∂f
∂u1

∂f
∂u2

)
= 2(u0, u1, u2) ·Q,

therefore, C is singular if and only if there is a non-trivial solution of the linear equation

(u0, u1, u2) ·Q = 0.

The latter is equivalent to det Q = 0.
3) and 4) If one of λi equals zero, then this conic is decomposable into linear factors:

λνu
2
ν + λµu

2
µ = (εuν − εuµ)(εuν + εuµ), ε2 = λν , ε2 = −λµ. These factors are equal if and only

if two of λi equal zero. But the number of the coefficients λi different from zero is exactly the
rank of the matrix Q. This proves the statements 3) and 4).

Let E be a sheaf on P2 with Hilbert polynomial 2m + 2 given by the resolution

0 → 2OP2(−1)
( z1 z2

z3 z4 )−−−−→ 2OP2 → E → 0, (A.2)

where z1, z2, z3, z4 are sections of OP2(1) and the determinant z1z4 − z2z3 ∈ Γ(P2,OP2(2)) is
non-zero. We will call such sheaves 2m + 2 sheaves. The sheaf E is supported on the conic

C = {det (( z1 z2
z3 z4 )) = z1z4 − z2z3 = 0} ⊆ P2.

The sheaf E is locally free on its support if and only if the matrix ( z1 z2
z3 z4 ) does not vanish, i. e.,

if there are no common zeros of the sections z1, z2, z3, z4 ∈ Γ(P2,OP2(1)). Equivalently, this
means dimk Span(z1, z2, z3, z4) = 3.

Lemma A.10. 2m + 2 sheaves on P2 with irreducible support are locally free on their support.

Proof. If a 2m+2 sheaf is not locally free on its support, then dimk Span(z1, z2, z3, z4) 6 2, i. e.,
the determinant z1z4 − z2z3 is a homogeneous polynomial of degree 2 in at most 2 variables.
Such a polynomial clearly decomposes into 2 linear factors. This proves the statement of the
lemma.
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Let us clarify when a 2m + 2 sheaf with a non-smooth (reducible) support are locally free
on their support.

Note that an isomorphism of 2m + 2 sheaves extends uniquely to an isomorphism of the
resolutions of the type (A.2). This means that isomorphism classes of 2m + 2 sheaves are
in bijection with the isomorphism classes of sequences of the type (A.2). But the set of the
equivalence classes of these sequences is clearly the set of the orbits of the group action of
GL2(k)×GL2(k) on the set of matrices {( z1 z2

z3 z4 ) | z1z4 − z2z3 6= 0} ⊆ k12 given by the rule

(g, h) ·
(

z1 z2

z3 z4

)
= g

(
z1 z2

z3 z4

)
h−1.

This means that two matrices define the same isomorphism class of 2m + 2 sheaves if and only
if they can be transformed into each other by Gauß algorithm applied to columns and rows.

Lemma A.11. The determinant of the matrix A = ( z1 z2
z3 z4 ) is decomposable into linear factors

if and only if one can transform this matrix by Gauß algorithm (applied both to the rows and

to the columns) to the form
(

z′1 0

z′3 z′4

)
, z′1, z

′
3, z

′
4 ∈ Γ(P2,OP2(1)).

Proof. If z1 and z2 are linear dependent, then the statement of the lemma follows immediately.
So let us assume z1 and z2 to be linear independent. After a change of coordinates we may
assume

A =

(
x1 x2

αx0 + βx1 + γx2 ax0 + bx1 + cx2

)
.

Since there is an equivalence

(
x1 x2

αx0 + βx1 + γx2 ax0 + bx1 + cx2

)
∼

(
x1 x2

αx0 + γx2 ax0 + bx1 + (c− β)x2

)
,

we may assume

A =

(
x1 x2

αx0 + γx2 ax0 + bx1 + cx2

)
.

The determinant of this matrix is the quadratic form

ax0x1 + bx2
1 + cx1x2 − αx0x2 − γx2

2.

By Lemma A.9 this decomposes into linear factors if and only if the determinant of the matrix




0 a
2
−α

2
a
2

b c
2

−α
2

c
2
−γ




is zero. The determinant is

−a

2
·
∣∣∣∣

a
2

c
2

−α
2
−γ

∣∣∣∣−
α

2
·
∣∣∣∣

a
2

b
−α

2
c
2

∣∣∣∣ =− a

2

(
−a

2
· γ +

c

2
· α

2

)
− α

2

(a

2
· c

2
+ b · α

2

)
=

a2γ

4
− αac

4
− bα2

4
.

So, the determinant of the matrix A has a linear factor if and only if

a2γ − αac− bα2 = 0.
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If α = 0 then a2γ = 0. So either γ = 0 or a = 0. If γ = 0, then

A =

(
x1 x2

0 ax0 + bx1 + cx2

)
∼

(
x2 x1

ax0 + bx1 + cx2 0

)
∼

(
ax0 + bx1 + cx2 0

x2 x1

)

and the statement of the lemma holds true. If γ 6= 0, then a = 0 and we may assume that
γ = 1 then

A =

(
x1 x2

x2 bx1 + cx2

)
.

The determinant of this matrix is bx2
1 + cx1x2 − x2

2. Let ξ and η be such that

bx2
1 + cx1x2 − x2

2 = −(x2 + ξx1)(x2 + ηx1).

Then ξη = −b and ξ + η = −c. One gets

A =

(
x1 x2

x2 bx1 + cx2

)
∼

(
x1 x2 + ξx1

x2 bx1 + (c + ξ)x2

)
=

(
x1 x2 + ξx1

x2 bx1 − ηx2

)
∼

(
x1 x2 + ξx1

x2 + ηx1 (b + ηξ)x1

)
=

(
x1 x2 + ξx1

x2 + ηx1 0

)
∼

(
x2 + ηx1 0

x1 x2 + ξx1

)
.

It remains to consider the case α 6= 0. If α 6= 0, then we may assume α = 1. We obtain this
way b = a2γ − ac = a(aγ − c) and

A =

(
x1 x2

x0 + γx2 ax0 + a(aγ − c)x1 + cx2

)
∼

(
x1 x2 − ax1

x0 + γx2 a(aγ − c)x1 + (c− aγ)x2

)
=

(
x1 x2 − ax1

x0 + γx2 (c− aγ)(x2 − ax1)

)
∼

(
x1 x2 − ax1

x0 + γx2 − (c− aγ)x1 0

)
∼

(
x0 + γx2 − (c− aγ)x1 0

x1 x2 − ax1

)
.

This completes the proof of the lemma.

As a corollary we have the following lemma.

Lemma A.12. A 2m + 2 sheaf supported on two lines if locally free on its support if and only
if the linear forms z′1, z

′
3, z

′
4 as in the lemma above are linear independent, i. e., constitute a

basis of Γ(P2,OP2(1)).

Lemma A.13. Let u0, u1, u2 be a basis of Γ(P2,OP2(1)).

1) Then the sheaves given by the matrices

(
u1 0
u0 u2

)
and

(
u2 0
u0 u1

)
are not isomorphic.

2) The sheaf given by the matrix

(
u1 0

αu0 + βu1 + γu2 u2

)
, α 6= 0 is isomorphic to the sheaf

given by the matrix ( u1 0
u0 u2

).

Proof. 1) Suppose that the sheaves defined by the given matrices are isomorphic. This means
there exist two matrices ( a b

c d ) and
(

ā b̄
c̄ d̄

)
from GL2(k) such that

(
a b
c d

)(
u1 0
u0 u2

)
=

(
u2 0
u0 u1

) (
ā b̄
c̄ d̄

)
.
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After multiplying one obtains

(
au1 + bu0 bu2

cu1 + du0 du2

)
=

(
āu2 b̄u2

āu0 + c̄u1 b̄u0 + d̄u1

)
.

Since u0, u1, and u2 form a basis of linear forms on P2, this implies in particular a = b = ā,
which contradicts the invertibility of ( a b

c d ). Therefore, the matrices ( u1 0
u0 u2

) and ( u2 0
u0 u1

) define
non-isomorphic sheaves.

2) Follows from the following equivalences

(
u1 0

αu0 + βu1 + γu2 u2

)
∼

(
u1 0
αu0 u2

)
∼

(
u1 0
u0 α−1u2

)
∼

(
u1 0
u0 u2

)
.

Proposition A.14. (1) On the union of two different lines u1 = 0 and u2 = 0 in P2 there are
exactly two isomorphism classes of 2m + 2 sheaves that are locally free on their support, this
two classes are given by the matrices ( u1 0

u0 u2
) and ( u2 0

u0 u1
), where u0 is any complementary to u1

and u2 linear form.

(2) All 2m + 2 sheaves supported on a smooth conic are locally free on their support.

(3) All 2m+2 sheaves on P2 that are locally free on their support are described in the statements
(1) and (2) of this proposition.

Proof. Follows from the considerations above.
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A.4 Gluing of locally free sheaves

We consider here the so called gluing of locally free sheaves.
Let X be a reduced algebraic variety and let X = X1 ∪ X2 be the decomposition into

irreducible components. We denote Y = X1 ∩X2. Let E be a locally free sheaf on X. We are
going to show that E is uniquely defined by its restrictions to X1 and X2, i. e., the restrictions
of E can be “glued” together to the sheaf E .

Let us consider the commutative diagram of closed embeddings

X2

X1

X.Y

²/ i1

??ÄÄÄÄ

² o
i2

ÂÂ
??

??

o²

j1 ÂÂ
??

??

/²
j2 ??ÄÄÄÄ

Let us consider the following commutative diagram of the restrictions

E (i1j1)
∗E

j∗1i
∗
1Ei∗1E

j∗2i
∗
2Ei∗2E

(i2j2)
∗E .

r1

FF¯̄
¯̄

¯̄
¯̄

//

»»
22

22
22

22

r2

»»
22

22
22

22

//

FF¯̄
¯̄

¯̄
¯̄

ρ1

&&MMMMMMMMMMMMMM

ρ1

88qqqqqqqqqqqqqq

r12 //

We denote EX1 := i∗1E , EX2 := i∗2E , and EY := (i1j1)
∗E . Consider the restrictions r1 : E → EX1

and r2 : E → EX2 .

Lemma A.15. The map E (r1,r2)−−−→ EX1 ⊕ EX2 is injective.

Proof. The map is an isomorphism on X1 \ Y and on X2 \ Y . Therefore, its kernel can be
only supported on Y . But the sheaf E is torsion free as a locally free sheaf. Hence the map is
injective.

As ρ1 and ρ2 are surjective, it follows that the map EX1 ⊕ EX2

(
ρ1
−ρ2

)−−−−→ EY is surjective as
well. Since ρ1 ◦ r1 = ρ2 ◦ ρ2 = r12, we conclude that the image of (r1, r2) lies in the kernel of
(

ρ1
−ρ2

).

Lemma A.16. Let X be reduced, then the sequence

0 → E (r1,r2)−−−→ EX1 ⊕ EX2

(
ρ1
−ρ2

)−−−−→ EY → 0

is exact.

Proof. It remains to prove the exactness in the middle term, i. e., Im(r1, r2) = ker (
ρ1
−ρ2

). We
can consider the question locally, i. e., in affine charts. So we may assume X, X1 and X2 to
be affine. We may also take the open charts small enough, so we also assume E to be trivial,
i. e., isomorphic to the direct sum of the copies of OX . It is also enough to prove the required
statement for invertible sheaves. Let A be a coordinate ring of X, let p1 and p2 be the ideals
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in A of X1 and X2 respectively. Since X is reduced and since X = X1 ∪ X2, the intersection
p1 ∩ p2 is zero. Then the map (r1, r2) corresponds to the injective homomorphism of rings

ι : A → A/p1 ⊕ A/p2, a 7→ (a + p1, a + p2).

The ideal I(Y ) of Y = X1 ∩ X2 is equal to p1 + p2. Then the map (
ρ1
−ρ2

) corresponds to the
surjective ring homomorphism

π : A/p1 ⊕ A/p2 → A/(p1 + p2), (a + p1, b + p2) 7→ a− b + (p1 + p2).

It is clear that the image of ι lies in the kernel of π. Assume (a+p1, b+ p2) 7→ a− b+(p1 + p2).
Then a− b = c1− c2, c1 ∈ p1, c2 ∈ p2, and we obtain a− c1 = b− c2 =: c. Since c + p1 = a + p1

and c + p2 = b + p2, we conclude that ι(c) = (a + p1, b + p2). We proved the exactness of the
sequence

0 → A
ι−→ A/p1 ⊕ A/p2

π−→ A/(p1 + p2) → 0.

This is equivalent to the exactness of the sequence of sheaves. We proved the lemma.

Let E1 and E2 be locally free sheaves on X1 and X2 respectively. Assume that there is an
isomorphism E1|Y ∼= E2|Y . Let us choose some locally free on Y sheaf EY that is isomorphic
to E1|Y ∼= E2|Y . Let us also fix some restrictions ρ1 : E1 → EY and ρ2 : E2 → EY and let us
consider the surjective map

E1 ⊕ E2

(
ρ1
−ρ2

)−−−−→ EY .

Let us denote by E the kernel of (
ρ1
−ρ2

), i. e., let us consider the exact sequence

0 → E (α1,α2)−−−−→ E1 ⊕ E2

(
ρ1
−ρ2

)−−−−→ EY → 0. (A.3)

Let r be the rank of the sheaf EY . Then it is also the rank of the sheaves E1 and E2.
Let us consider the situation locally. Assume that E1 and E2 are locally free, assume also

that X is affine, let A be the coordinate ring of X. Let p1 and p2 be the ideals of X1 and X2

respectively, i. e., A/p1 is the coordinate ring of X1 and A/p2 is the coordinate ring of X2.
Then Y = X1 ∩ X2 has the ideal p1 + p2 and the coordinate ring A/(p1 + p2). The sheaf E1

corresponds to the module (A/p1)
r and the sheaf E2 corresponds to the module (A/p2)

r.
Then the morphism (

ρ1
−ρ2

) corresponds to

(A/p1)
r ⊕ (A/p2)

r → (A/(p1 + p2))
r, (ā1, . . . , ār)⊕ (b̄1, . . . , b̄r) 7→ (a1 − b1, . . . , ar − br).

One easily sees that the kernel of this homomorphism coincides with the morphism

(A/(p1 ∩ p2))
r → (A/p1)

r ⊕ (A/p2)
r, (a1, . . . , ar) 7→ (ā1, . . . , ār)⊕ (ā1, . . . , ār).

If p1 ∩ p2 = 0, which is the case if X is reduced, then the kernel is just Ar and this means that
E is a locally free sheaf.

Let us show that the restrictions of E to X1 and to X2 are isomorphic to E1 and E2 respec-
tively. Let us restrict (A.3) to X1. We obtain the exact sequence

EX1 −→ E1 ⊕ E2|X1

( ρ1

−ρ2|X1

)

−−−−−−→ EY → 0.

morphism (α1, α2) is an isomorphism outside of Y , we conclude that its restriction to X1 is an
isomorphism on X1 \Y as well. As E2|X1 is supported on Y , we conclude that α1|X1 : EX1 → E1



145

is an isomorphism on X1 \ Y , hence its kernel may be only supported on Y . Since EX1 has
no torsion as a locally free sheaf, it follows that the restriction of α1|X1 is injective. Thus one
obtains the exact sequence

0 → EX1 −→ E1 ⊕ E2|X1

( ρ1

−ρ2|X1

)

−−−−−−→ EY → 0.

Note that ρ2|X1 : E2|X1 → EY is an isomorphism. This gives us a splitting of the short exact
sequence above and we obtain that α1|X1 : E|X1 → E1 is an isomorphism. Analogously one
shows that α2|X2 : E|X2 → E2 is an isomorphism. This proves the following lemma.

Lemma A.17 (Gluing). Let X = X1 ∪X1 be as above, let X be reduced, and let E1 and E2 be
two locally free sheaves on X1 and X2 respectively such that their restrictions to Y = X1 ∩X2

are isomorphic. Then the exact sequence (A.3) defines uniquely a locally free sheaf E on X such
that the restrictions of E to Xi coincide with Ei for i = 1, 2.
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Index

2m + 2 sheaves, 139
3m + 1 sheaves, 2

Base change, 134
Beilinson resolution

on Pn, 36
of a 3m + 1 sheaf on P2, 45
relative, of 3m + 1 families, 127

Blow up, 135

Cohomology groups
of invertible sheaves on P̂2, 25

Conormal sheaf, 136

Equivalence of families, 119
Exceptional divisor, 135

of M̃ → M , 98
of X̃ → X, 100

Family
new, 116

one parameter, 19, 116
over X̃, 115, 116

of 3m + 1 sheaves, 3
one parameter, 12
over X, 109

Gluing
of R-bundles, 49, 50
of locally free sheaves, 143, 145
of resolutions, 49

Hilbert polynomial
of R-bundles, 38
of an invertible sheaf on P̃2, 23
of an invertible sheaf on P̂2, 24

Künneth formula, 25

Locally complete intersection, 135, 136

New sheaves on Z0, 35

Picard group of P̂2, 22
Pull backs

of new families, 118

R-bundles on Z0, 35

Universal property of blow up, 135
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Symbols

CS/Y , 136
C0, 44
C1, 44

D0, 13
D̃0, 110
D1, 13
D̃1, 110

EM , 98, 100
EX , 100

Fi, 22

G, 4, 61

Hi, 22

IS8 , 111
IS̃8

, 111

L, 13
L′, 116
L′′, 116
l̃B, 109
lB, 12, 109

M , 3
M8, 6
M̃ , 98
M̃, 122
M, 3
µ : M̃ →M, 124
M(xi), 6

M̃(xi), 98

NA, 67
ν : X → M , 4
ν̃ : X̃ → M̃ , 106
NX8/X , 100

OZ(a, b), 116

P̃2, 13
P̂2, 13

S8, 109
S̃8, 109
(Sch), ix, 124
(Sets), 124

X, 3
X, 61
X̃, 100
X8, 6
X̃8, 109

Y, 63
Y′, 63

Z0, 13
Zt, 13
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isme général des foncteurs représentables; V: Fibres vectoriels, fibres projectifs, fibres en
drapeaux. Familles d’Espaces Complexes et Fondements de la Geom. Anal., Sem. H. Car-
tan 13 (1960/61), No.7-8, 33 p.; No.9, 14 p.; No.10, 11 p.; No.11, 28 p.; No.12, 15 p.
(1962)., 1962.
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tionalen Taras-Shewtschenko-Universität.

August 2003 – August 2005 Studium der Mathematik und Physik an der Technis-
chen Universität Kaiserslautern. Studienschwerpunkt:
algebraische Geometrie und Computeralgebra.

August 2005 Diplom-Mathematiker an der Technischen Universität
Kaiserslautern.

September 2005 – März 2009 Doktorand, Technische Universität Kaiserslautern.



Scientific career

June 25, 1982 born in Kyiv, Ukraine

June 1999 Finished Kyiv Lyceum of Natural Sciences No.145
with a Gold Medal

September 1999 – June 2003 Student at the Faculty of Mechanics and Mathemat-
ics,
National Taras Shevchenko University of Kyiv

June 2003 Bachelor degree in Mathematics with Honour at Na-
tional Taras Shevchenko University of Kyiv

August 2003 – August 2005 Study of Mathematics and Physics at the Technische
Universität Kaiserslautern. Specialization: algebraic
geometry and computer algebra.

August 2005 Diplom-Mathematiker degree at the Technische Uni-
versität Kaiserslautern.

September 2005 – March 2009 PhD student, Technische Universität Kaiserslautern.


