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Oleksandr Iena. “Modification of Simpson moduli spaces of 1-dimensional sheaves by vector
bundles, an experimental example”.

Abstract. This thesis deals with the following question. Given a moduli space of coherent
sheaves on a projective variety with a fixed Hilbert polynomial, to find a natural construction
that replaces the subvariety of the sheaves that are not locally free on their support (we call such
sheaves singular) by some variety consisting of sheaves that are locally free on their support.
We consider this problem on the example of the coherent sheaves on P, with Hilbert polynomial
3m + 1.

Given a singular coherent sheaf F with singular curve C as its support we replace F by
locally free sheaves £ supported on a reducible curve CyUCY, where Cj is a partial normalization
of C' and (] is an extra curve bearing the degree of £. These bundles resemble the bundles
considered by Nagaraj and Seshadri (cf. [19], [20], [26]). Many properties of the singular 3m + 1
sheaves are inherited by the new sheaves we introduce in this thesis (we call them R-bundles).
We consider R-bundles as natural replacements of the singular sheaves.

R-bundles refine the information about 3m+1 sheaves on P,. Namely, for every isomorphism
class of singular 3m + 1 sheaves there are I’; many equivalence classes of R-bundles.

There is a variety M of dimension 10 that may be considered as the space of all the isomor-
phism classes of the non-singular 3m + 1 sheaves on Py together with all the equivalence classes
of all R-bundles. This variety is obtained by blowing up the moduli space of 3m + 1 sheaves
on Py along the subvariety of singular sheaves.

We modify the definition of a 3m + 1 family and obtain a notion of a new family over
an arbitrary variety S. In particular 3m + 1 families of the non-singular sheaves on Py are
families in this sense. New families over one point are either non-singular 3m + 1 sheaves or R-
bundles. For every variety S we introduce an equivalence relation on the set of all new families
over S. The notion of equivalence for families over one point coincides with isomorphism for
non-singular 3m + 1 sheaves and with equivalence for R-bundles.

We obtain a moduli functor M : (Sch) — (Sets) that assigns to every variety S the set
of the equivalence classes of the new families over S. There is a natural transformation of
functors M — M that establishes a relation between M and the moduli functor M of the
3m + 1 moduli problem on Py. There is also a natural transformation M — Hom(__ , M),
inducing a bijection M (pt) = M , which means that M is a coarse moduli space of the moduli

problem M.
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Oleksandr Iena. “Modifizierung von Simpson-Modulrdumen 1-dimensionaler Garben durch
Vektorbiindel, ein experimentelles Beispiel”.

Zusammenfassung. In dieser Dissertation wird die folgende Frage erortert. Gegeben sei
ein Modulraum von koharenten Garben auf einer projektiven Varietat mit festem Hilbertpoly-
nom, zu finden ist eine natiirliche Konstruktion, die die Untervarietdt der Garben, die nicht
lokal frei auf ihrem Tréger sind (solche Garben nennen wir singulér), durch eine andere, aus
lokal freien Garben bestehende Varietat ersetzt. Wir betrachten diese Frage am Beispiel der
kohéarenten Garben auf P, mit Hilbertpolynom 3m + 1.

Sei F eine singulare koharente Garbe mit singularer Kurve C als Trager. Wir ersetzen
F durch 1-dimensionale lokal freie Garben &, deren Trager eine reduzible Kurve Cy U (Y ist,
so dass Cj eine partielle Normalisierung von C' ist und C eine zuséatzliche, den Grad von &
tragende Kurve ist. Diese Vektorbiindel dhneln den von Nagaraj und Seshadri betrachteten
Vektorbiindeln (siehe [19], [20], [26]). Die in dieser Dissertation eingefiihrten neuen Garben
(wir nennen sie R-Biindel) behalten viele Eigenschaften der singuldren 3m + 1 Garben. Wir
betrachten R-Biindel als einen natiirlichen Ersatz fiir die singularen Garben.

R-Biindel préazisieren die Informationen tiber 3m + 1 Garben auf Py. Es gibt namlich P,
viele verschiedene AquivalAe/nzklassen fiir jede Isomorphieklasse von singularen 3m + 1 Garben.

Es gibt eine Varietat M der Dimension 10, die als Raum aller Isomorphieklassen der nicht
singulédren Garben und aller Aquivalenzklassen von R-Biindeln betrachtet werden kann. Diese
Varietét entsteht durch die Aufblasung des Modulraums von 3m + 1 Garben auf Py entlang der
Untervarietat der singularen Garben.

Wir modifizieren die Definition einer 3m + 1 Familie und bekommen fiir jede Varietdat S
einen neuen Begriff einer Familie iiber S. 3m + 1 Familien der nicht singuldren Garben auf P
sind Familien dieser Art. Neue Familien tiber einem Punkt sind entweder nicht singulare 3m+1
Garben oder R-Biindel. Fiir jede Varietat S wird auf der Menge aller R-Biindel iiber S eine
Aquivalenzrelation eingefithrt. Der Aquvalenzbegriff fiir die Familien iiber einem Punkt stimmt
mit dem Isomorphiebegriff fiir nicht singulare 3m 4+ 1 Garben und mit dem Aqulvalenzbegrlff
fiir R-Biindel iiberein. .

Wir konstruieren einen Modulfunktor M : (Sch) — (Sets), der jeder Varietdt S die Menge
der Aquivalenzklassen von R-Biindeln iiber S zuordnet. Eine Bezichung zwischen M und
dem Modulfunktor M des 3m + 1 Modulproblems auf P, wird durch eine natiirliche Trans-
formation der Funktoren M — M festgelegt. Es gibt auch eine natiirliche Transformation
M — Hom(__, M), die eine e Bijektion M(pt) = M induziert, was M zu einem groben Modul-

raum des Modulproblems M macht.
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k
Mat,, (k)
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., “—

, Gm)

blow upof X at Y C X
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group of invertible m x m matrices over k

Jacobian matrix of polynomials ay, ..., a,,
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set of all m x n matrices over k

normal bundle to a subvariety ¥ in X

normal space to a subvariety Y in X at a point x € Y

structure sheaf of X

Picard group of X

projective space of dimension n

projective space associated to a vector space V'

projective bundle associated to a vector bundle £ (classical notation)
projective bundle associated to a quasi-coherent sheaf £ (Grothendieck’s
notation)

category of sets

category of separated schemes of finite type over k

set (closed subvariety) of x € X where F, is not a locally free Ox .
module

subspace generated by a subset W of a vector space V'

support of a sheaf F

tangent space at x € X in X

tangent bundle of X
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Introduction

Important conventions

In this dissertation k is an algebraically closed field of characteristic zero.

We work in the category of separated schemes of finite type over k. We denote this category
by (Sch). The objects of this category are referred to as schemes or varieties interchangeably.
We consider only closed points of them. Note that we do not restrict ourselves to reduced or
irreducible varieties. All the schemes in (Sch) are automatically noetherian.

Dealing with homomorphism between vector bundles and identifying them with matrices

we consider the matrices acting on elements from the right, i. e, the composition X Ay Lz
is given by the matrix A - B.

Some historical remarks and general references

Classification is one of the important problems mathematics deals with. It is often useful to
have a geometrical structure on the space of objects to be classified. This way one comes to
the notion of a moduli space. It was Riemann who already studied moduli of curves.

The study of moduli spaces of sheaves on curves began in Atiyah’s paper [2]. Narasimhan,
Seshadri, Ramanan, and many others studied the moduli of sheaves on Riemann surfaces
(cf. [22], [26], and [21]).

Takemoto in [28] and [29], Gieseker in [7], and Maruyama in [15], [16], and [17] started the
study of moduli spaces of semi-stable sheaves on higher-dimensional varieties. Their construc-
tions were improved by Simpson.

Simpson showed in [27] that for an arbitrary smooth projective variety X and for an arbitrary
numerical polynomial P € Q[m] there is a coarse moduli space Mp(X) of semi-stable sheaves
on X with Hilbert polynomial P. The result of Simpson is an existence result. It is not much
known about the structure of Mp(X) for concrete X and P.

For X = Py and for linear polynomial P the spaces My, ,(IP2) were studied in [14]. Moduli
spaces Mz, 11(P3) and Mg, 1(Py) have been described in [5] and [4].

The modern formulation of a moduli problem in terms of moduli functors is due to Grothen-
dieck (cf. [10]). Dealing with moduli spaces requires techniques from the geometric invariant
theory. The main reference on this subject is [18]. Newstead’s book [23] may also be useful. A
nice overview of the theory of moduli spaces on surfaces is presented by Huybrechts and Lehn
in [13].

Initially posed problem

In general Mp(X) contains isomorphism or S-equivalence classes of sheaves that are not locally
free on their support. Since locally free sheaves are more convenient to work with, it seems

1X



natural to ask for a construction which gives a natural possibility to replace sheaves that are not
locally free on their support by sheaves that are locally free on their support. This dissertation
aims to present such a construction for the moduli space Ms,,.1(Py). Initially the following
questions have been posed to the author.

e To find sheaves that are locally free on their one-dimensional support (new sheaves) and
could be considered as natural replacements of singular 3m + 1 sheaves on Ps.

e To describe the isomorphism classes of the new sheaves and to find if possible a parameter
space for them.

e To replace the notion of a Simpson 3m + 1 family on Py by a new one, where the singular
3m + 1 sheaves on Py are replaced by new sheaves, i. e., to define the corresponding
moduli problem (the corresponding functor).

e To study the relations between the new moduli problem and the Simpson moduli problem
for 3m + 1 sheaves on Ps.

e To investigate the question concerning the existence of a moduli space (fine or coarse) for
the new moduli problem.

e To see how the Simpson moduli space M = Mj,,,1(P2) is related to this question.

Structure of the dissertation

In Chapter 1 we construct R-bundles and discuss their properties. In Section 1.1 we make an
overview of some results from [5] and prove some important statements about 3m + 1 sheaves
on P,. In Section [1.2] we consider a construction of R-bundles. New objects related to the
construction of the R-bundles are studied in Section 1.3.

In Chapter 2/ we describe R-bundles up to isomorphisms (Section 2.1). We introduce also

a notion of equivalence for R-bundles and give the description of the equivalence classes in
Section 2.2. Section 2.3 is intended to illustrate the results of this chapter and to develop some
intuition in dealing with R-bundles.
_ In Chapter 3/families over arbitrary varieties are defined. In Section 3.1 we consider spaces
X and M that parameterize R-bundles and study their properties. Further we construct a
family over X in Section [3.2. Section 3.3 contains a definition of a family over an arbitrary S.
Some properties of such families are studied.

Appendix |Al contains some general results that are used in this dissertation. Section |A.1
presents some statements about flatness and base change, in Section A.2/ we collect some facts
about blow ups. Section |A.3 deals with conics in Py and their relation to 2m + 2 sheaves on
Py. In Section A.4 we discuss some questions concerning gluing locally free sheaves.

Overview of results

Recalling some results from [5]. We consider semi-stable sheaves on Py with Hilbert
polynomial 3m + 1 and call them simply 3m + 1 sheaves. A family of 3m + 1 sheaves over
S (or simply a 3m + 1 family over S) is by definition a flat sheaf F on S x P, such that for
every s € S the restriction Fy of F to the fibre {s} x Py = Py is a 3m + 1 sheaf on Py. It is
known that all 3m + 1 sheaves are stable and there exists a fine moduli space M = Mj,,11(Ps)
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of 3m + 1 sheaves. The latter means that M represents the functor M of this moduli problem.
One sees that 3m + 1 sheaves on Py occur exactly as the non-split extensions

0—=0c—F—k,—0,

where C' = Supp F is the cubic curve in P, supporting F and p is a point on C. The moduli
space M is isomorphic to the universal cubic curve

{((f), {x)) € Pg x Py | f(x) =0},

where Pgy is identified with the space of cubic curves in Ps.
The 3m + 1 sheaves on Py are exactly the sheaves given by resolutions

0 — 205,(—2) 2 Op,(—1) ® Op, — F — 0,

where A = <§1 ;]1) with linear independent linear forms 21, 2o € I'(P2, Op, (1)) and non-zero
2 Q2

determinant. The space of all such matrices is a parameter space of M and is denoted by X.
X is isomorphic to an open subset in k'® and is acted on by the group G = GLy(k) x H, where
H is the group of 2 x 2 matrices

(3 Z)» ek, A0, zel(Py Op,(1)).

The action is defined by the rule (g, h) - A = gAh™'. M is a geometric quotient of X by G, the
quotient morphism is

A= (Zl C]1> — (det A) X (21 A 29).
22 G2

Singular objects. A 3m + 1 sheaf is called singular if it is not locally free on its support.
A point (f) x p € M represents an isomorphism class of a singular sheaf if and only if p is a
singular point of the curve { f = 0} C P,. The subvariety of all singular sheaves in M is denoted
by Mg. The corresponding subvariety in X is denoted by Xg. Both Mg and Xg are smooth of
codimension 2 in M and X respectively. Moreover Xg is a global complete intersection in X
(cf. Lemma [1.7).

New objects. We replace every singular sheaf F supported on a cubic curve C' by invertible
sheaves on curves of the type Cy U C1, where () is a partial normalization of C'. We call the
new objects R-bundles. They occur as flat limits of non-singular 3m + 1 sheaves.

Considering invertible sheaves supported on Cj is not enough since they will not be flat
limits of 3m + 1 sheaves. So the curve (' is important as it guarantees flatness of families of
sheaves that have as their fibres either R-bundles or non-singular 3m + 1 sheaves.

Since 3m + 1 sheaves come together with an embedding of the supporting curve into Ps,
our construction of R-bundles comes together with an embedding of the curve Cy U C} into a
reducible surface Dy U D; containing two irreducible components Dy and D;. This surface is a
flat limit of P,.

Construction of new objects. We consider the singular 3m + 1 sheaves as one-dimensional
flat limits of non-singular 3m + 1 sheaves and describe a construction that substitutes the
singular sheaves by sheaves that are locally free on their support and that are also flat limits
of non-singular 3m + 1 sheaves.
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Let us outline some details. For a matrix A € Xg representing a singular 3m + 1 sheaf on
P, and for B € T4X we consider an open set U C k! containing 0 such that A +¢B € X for
all ¢ from U. We obtain the one parameter family of 3m + 1 sheaves given by the resolution

A+tB
(=

0 — 20px«p,(—2H) —— Ouxp,(—H) & Opxp, — € — 0,

where the divisor H is the pull back of a line A C PPs.
Let Z 5 U x Py be the blow up of U x Py at the point 0 x p, where p € P, is the point
where the 3m + 1 sheaf & = & |{0}><[p>2 given by the matrix A is not free on its support. Let D,

be the exceptional divisor of o. We obtain that the composed morphism Z % U x Py 25 U is
flat.

The fibres Z; of Z — U are isomorphic to P, for ¢ # 0, and Z, = Py := Dy U Dy, where
Dy = Py is the blowing up of the projective plane Py at the point p, and D; = PP, is attached to
P, along the exceptional divisor L of the blowing up Py — Py (cf. Definition [1.11)). The fibres
Z; can be considered as closed subvarieties in Py x IP5.

On 7, = I@’Q we define a divisor H as the pull back of a line h C P, from the first Py and F'
is defined as the pull back of a line f C Py in the second Py, i. e., Oz, (H) = Op,xp,(1,0)|z, and
Oz, (F) = Op,xp,(0,1)|z,. The Picard group of Zj is isomorphic to Z & Z, as free generators
one can take the sheaves Oz (H) and Oy, (F).

The sheaf 0*& has torsion along Dy which is a subsheaf 20p, (—1). We obtain a commutative
diagram

0
!

0 20D1<_1)
0—204(—2H) "M 0 —H) 2 0, & —0
OHQOz(—2H+D1>*>Oz(—H)@OZ g 0

20p, (~1) 0

!

0

and a sheaf £ on Z.

Proposition 1.24. E is locally free on its support if and only if B is a normal vector to Xg at
A, i e, if and only if B € Ty X \ T4 Xs.

We call the one parameter families £ that are locally free on their support new one parameter
families. New one parameter families & are flat over U. We call the fibres 50 of new one
parameter families £ over t = 0 R-bundles on P,.

Properties of R-bundles on P,. R-bundles are supported on reducible curves of the type
Co U C4, where (Y is a curve in Dy, a partial normalization of the curve C' = Supp &y, and C,
is a conic in D = Ps.

The following pictures give an illustration how the curves Cy and C look like.
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Co

Ly
Ci=LiUL

e [t turns out that in all cases the restriction of go to Cpy is isomorphic to the structure
sheaf O¢, of the curve Cj.

e The restriction to C is a 2m + 2 semi-stable sheaf on D; = P, which is locally free on C}
and has degree 1.

e R-bundles are non-trivial extensions
O—>(’)C—>§0H]kq—>0, (%)
where C' = Cy U C] and ¢ is a point of (.
e For an R-bundle £ in generic situation (when the line L is not contained in C) there is a

gluing exact sequence
0—=E—=E&6c,®Ec, — Ecyncy — 0.

e One may consider Z; = P, as a closed subvariety in Py x Py (cf. Definition [1.11)). The
Hilbert polynomials of an R-bundle £ and its restrictions to the curves Cjy and C; with
respect to the invertible sheaf £ = Op,«p,(1,1) are

XERLY) =6m+1, x(Ec,@LM)=4dm+1, x(Ec @L™)=2m+ 2.

We find some characteristic properties of R-bundles.

e We show that R-bundles are exactly those sheaves on Z, given by a resolution (cf. Propo-
sition [1.37 and Proposition [1.57)

0 — 207 (~H = F) = Oz(~H) & Oz, — & — 0, ()
with & = <§1 573) such that det(®|p,) # 0, (®|p,)(q) # 0 for all ¢ € Dy, and the linear

2 g2
forms [ and [y are linear independent and their common zero point in D; does not belong

to L.
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e The restrictions of resolutions (¥%) to the components Dy and D of Z; are resolutions of
Beilinson type (cf. Remarks [1.55 and [1.56). Moreover the morphisms of R-bundles are
in one-to-one correspondence with the morphisms of the corresponding resolutions (see
Proposition [1.40).

e Propositions1.48 and [1.60 say that R-bundles are exactly the bundles on C' that occur as
non-trivial extensions (%), where ¢ € Dy \ L and C'is a curve in Z; given by a resolution

0— Oz (—2F —H) — Oz, — Oc — 0.

e Let 09 : Zy — Py be a contraction of Dy to a point p € Py. Propositions [1.49/ and 1.61
state that a sheaf £ on Zj is an R-bundle if and only if £ is locally free on its support, the
Hilbert polynomial of its restriction £|p, to Dy is 4m + 1, and there is an exact sequence

0—20p,(-L) = 0y F - E—0

for some 3m + 1 sheaf F that is not locally free at the point p. In fact, as we already
noticed, the restriction of an R-bundle to Dy is always isomorphic to the structure sheaf
of a curve Cj given by a resolution

0— Op,(—2F — H) — Op, — O¢, — 0.

Isomorphism classes of R-bundles. If we fix a curve CyUC then the isomorphism classes
of R-bundles supported on this curve are in one-to-one correspondence with an open subset of
C1 (cf. Corollary 2.11)).
There are non-isomorphic R-bundles £ and £’ with isomorphic restrictions ¢, and &, .
There is a parameter space X of all isomorphism classes of R-bundles on Z, (see Defini-
tion 2.1). X is an open subvariety of k*®. There is a natural action of the group G on X.

Proposition 2.2. The orbits of G in X are in one-to-one correspondence with the isomorphism
classes of R-bundles on Ps.

Corollary 2.9 says that there is an orbit space Y” of the action G x X — X. So Y” is the
variety of all isomorphism classes of R-bundles on Z,. The variety Y” is a quasi projective
variety, it may be realized as an open subset of a hypersurface in Py x Py, in particular the
dimension of Y” is 10.

Equivalence classes of R-bundles. To be able to consider R-bundles and the non-singular
3m + 1 sheaves simultaneously it is necessary to introduce an equivalence relation on the set
of R-bundles. For a point A € Xg we introduce the following equivalence relation on the set
of R-bundles constructed at A € Xg (cf. Definition 2.12). Two R-bundles & and & on P,
constructed at the same point A € Xy are called equivalent if there exists an automorphism qz
of Zy that acts identically on Dy = Py and such that ¢*(&;) = &. Our notion of equivalence
corresponds to the notion of equivalence given in Definition 4.1, (ii) from [26].

Theorem 2.19. There is a one-to-one correspondence between the equivalence classes of R-
bundles constructed at A € Xg and points of PN 4.

For a generic A € Xg (when the corresponding singular 3m + 1 sheaf is defined by an
ordinary double point singularity on a cubic curve in IPy) there are only two equivalence classes
with a singular conic C' as a support in D;. Degenerations of A with double-point singularity
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give us only one equivalence class with the curve C being singular. If the singularity is a triple
point, all the equivalence classes have singular curve C. In this case one could identify the line
L = Dy N Dy with the set of all equivalence classes of R-bundles constructed at A.

If we fix a curve Cy U (1, then in a generic situation for every equivalence class of R-bundles
supported on Cy U (' there are two isomorphism classes of R-bundles on Cy U C. There are
curves for which we have a one-to-one correspondence between the isomorphism classes and
the equivalence classes. There are also situations when there is a one-dimensional variety of
isomorphism classes of R-bundles corresponding to a given equivalence class of R-bundles on
Cpo U (. See also Section 2.3 for concrete examples.

Parameter spaces for the new objects. Since Xy and Mg are smooth subvarieties of
codimension 2 in X and M respectively, we may consider the blow up M = Bly, M as the
space whose points are all the isomorphism classes of non-singular 3m + 1 sheaves on P, and
also all the equivalence classes of R-bundles. Note that M is obtained from M by replacing
each point from Mg by P;. Analogously X =Bl X5 X may be seen as a variety parameterizing
the above objects. We give concrete descriptions of X and M as subvarieties in P,-bundles
over X and M respectively.

It turns out that the action of the group G' on X can be uniquely lifted along the blow up
X — X to an action on X (cf. Lemma3.3). The restriction of this action to the exceptional
divisor Ex = PNy, x of X — X is a natural action of G on PNx,/x (cf. Lemma 3.5).

The quotient morphism X — M lifts uniquely to a morphism X % M and we obtain the
commutative diagram
X M

X —— M.

7,

Proposition 3.9. X isa principal vector bundle over M with fibre PG. In particular v : X —
M is a quotient of the action of G on X.

“Universal” family over X. We construct a flat morphism ¥ — X and a sheaf f on Y
locally free on its support and flat over X (cf. Propositions [3.18 and 3.20) such that the fibres of
U are either non- singular 3m + 1 sheaves on P, or R-bundles on ]PQ Moreover, the isomorphism
(for 3m + 1 sheaves) or equivalence (for R-bundles) class of U, corresponds to the point z € X .

So every R-bundle on P, up to equivalence may be realized as a fibre of u. Therefore, one
may consider the sheaf U as a “universal” family of R-bundles together with the non-singular
3m + 1 sheaves.

General families, functor M. In Definition 3.21 we define a family over an arbitrary S.
In particular 3m + 1 families of the non-singular sheaves on Py are families in the sense of
Definition 3.21. For every S € Ob (Sch) we introduce an equivalence relation on the set of all
families over S. For families over one point this relation coincides either with the isomorphism
for non-singular 3m + 1 sheaves or with the equivalence for R-bundles.

For a morphism f : T"— S and for a family over S we define a family over 7. We obtain
this way the map from the set of all families over S to the set of all families over T'. This map is
compatible with the equivalence relations and therefore we obtain a functor M : (Sch) — (Sets)
that assigns to every S € Ob (Sch) the set of the equivalence classes of the families over S.
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There is a natural transformation M — M, where M denotes the functor of the 3m + 1
moduli problem on Ps.

Proposition 3.40. There is a natural transformation of functors
M — Hom(__ M )

and the commutative diagram

—

/{/{V4>Hom(_ , M)

| |

M i>Hom(_ , M).

Main difficulties

Gluing sheaves. The variety P, is reducible, it consists of two components Dy and D;. To
define a sheaf on ]f”g one needs to describe its restrictions to the components Dy and D; and
the “gluing” data that describe how the sheaves on Dy and D; are glued together. There are
non-isomorphic sheaves on P, with isomorphic restrictions to Dy and D;. Therefore, one needs
some gluing statements to describe sheaves on P,.

e A naive description of gluing would be to describe a sheaf F on P, using the exact
sequence
0—>}"—>fDO@}"D1—>]—"L—>O,

where Fp,, Fp,, and F denote the restrictions of F to Dy, Dy, and L = Dy N D,
respectively. But such a sequence exists in general only for vector bundles on P,. We
describe in particular the Picard group of P, by gluing invertible sheaves on Dy and D;
(cf. page 22). The gluing sequence is one of the main tools for the calculations of the
cohomology groups of sheaves on P, (cf. page 25).

e R-bundles are obtained by gluing together a structure sheaf of a curve Cy in Dy and of a
semi-stable 2m + 2 sheaf on D; = Py that is locally free on its support.

A naive description of gluing for an R-bundle £ works only if the support of £ does not
contain the line L = DyN D, (cf. Remark[1.59). We obtain in this case the exact sequence

0— & — 500 EB(C:Cl — 5COQCI — 0.

If the support Supp £ of an R-bundle £ contains the line L, it is not only reducible but
also non-reduced, there is a “double” structure on the line L (see page 47). It seems
difficult do describe the gluing data in this case. Therefore, we describe R-bundles by
means of locally free resolutions of P,.

Locally free resolutions. For coherent sheaves on PP, there are no standard resolutions of
Beilinson type. Nevertheless the properties of locally free resolutions of R-bundles of the type
(xx) are similar to the properties of Beilinson resolutions.

Namely the homomorphisms between the sheaves given by resolutions of this type are in one-
to-one correspondence with the morphisms of the corresponding resolutions and the restrictions
of (xx) to Dy and D; are Beilinson resolutions. One can consider (k%) as a gluing of its
restrictions to Dy and Dy (cf. Proposition [1.58)).
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Computing cohomology. Computing cohomology of invertible sheaves on P, we use the
gluing exact sequence and reduce the question to computing cohomology of Dy and D;. To
compute cohomology of Dy we consider Dq as a hypersurface in Py x P;. For Op,(aH + bF)
there is a resolution (cf. (1.24))

0— Opzxpl(a — ]_,b — 1) — OPQX]}Dl(CL,b) — ODO(aH+ bF) — 0.

Hence the problem reduces to computing cohomology of Py x Py, which is done by using the
Kiinneth formula (cf. (1.25)) from [25].

Equivalence of R-bundles. One should define an equivalence relation on the set of R-
bundles to be able to consider them along with the non-singular 3m + 1 sheaves. There are
non-isomorphic R-bundles which are equivalent. In a generic case there are two isomorphism
classes for a given equivalence class of R-bundles on a fixed curve Cy U C}.

Definition of a family. Both R-bundles and the non-singular 3m + 1 sheaves are coher-
ent sheaves on Py X P, with Hilbert polynomial 6m + 1 with respect to the invertible sheaf
Op,xp,(1,1). The family of sheaves U over X we construct in Section 3.2/ is defined as a sheaf
on Y, where Y is a non-trivial Po-bundle over X x Py. We consider U as a “universal family”
for a moduli problem we want to define. B B

So despite the fact that each fibre U, ¥ € X, of U may be considered as a sheaf on Py x Py
with Hilbert polynomial 6m + 1 there is no way to consider all fibres of ¢/ in the same ambient
space as it has been done for Simpson moduli problems. We achieve however that locally over
the base the general families defined in Section 3.3 may be considered as families of sheaves in
P, x P, with Hilbert polynomial 6m + 1 (cf. Proposition [3.35).
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Chapter 1

Construction of R-bundles

Summary

In this chapter we construct R-bundles and discuss their properties.

In Section 1.1l we make an overview of some results from [5] and prove some important
statements about 3m+1 sheaves on Py, i. e., (semi-)stable sheaves on P, with Hilbert polynomial
3m + 1. We consider the moduli space M = M3,,.1(IPy) of 3m + 1 sheaves on P,. It is known
(cf. [5]) that M is isomorphic to the universal cubic curve.

There is a parameter space X such that M is a geometrical quotient of X. X is isomorphic
to an open subset in k!8. Elements of X are the matrices A defining the resolutions

0— 205,(=2) 2 Op,(—1) & Op, — F — 0.

A 3m + 1 sheaf is called singular if it is not locally free on its support. We describe the closed
subvariety Mg in M of all singular 3m + 1 sheaves on P, and the corresponding subvariety
Xg in X that parameterizes the singular sheaves. The subvarieties Mg and Xg are smooth of
codimension 2 in M and X respectively. We give a description of the subbundle Ty, in T'x.

In Section 1.2/ we propose a construction of R-bundles. We consider the singular 3m + 1
sheaves as one-dimensional limits of non-singular 3m + 1 sheaves and describe a construction
that substitutes the singular sheaves by sheaves locally free on their support that may be also
considered as limits of non-singular 3m + 1 sheaves.

Namely, for A € X3 and B € T4 X we consider an open set U C k! containing 0 such that
A+tB e X for all t from U. We obtain the one parameter family of 3m + 1 sheaves given by
the resolution

A+tB

0 — 2OUXIP2(_2H) —_— OUXPQ(—H) @ OUX]PQ — 8 — 0

Let Z 5 U x P, be the blow up of U x Py at the point 0 x p, where p € P, is the point where
the 3m + 1 sheaf & = g|{0}><]}1>2 given by the matrix A is not free on its support. Let D; be the



exceptional divisor of 0. We obtain then a commutative diagram

0
!

0 2OD1(_1)
0—20,(—20) " o (—H)y @ 0, e ——0
()4)202(—2H+D1)4>Oz<—H)@OZ g 0

20, (—1) 0

!

0

and a sheaf E. Tt turns out that & is flat over U. Its fibre gg over 0 is a sheaf on 7, = I@b = IEQUPQ,
where Py is the blow up of Py at a point and P, is glued together with P, along the exceptional
line of Py (cf. Definition 1.11). The sheaves & that are locally free on their support are
considered to be replacements of the singular 3m + 1 sheaves. The sheaf go is locally free on
its support if and only if B is a normal direction to Xs.

New objects related to the construction of R-bundles are studied in Section 1.3. In partic-
ular we describe the Picard group of I@’Q, we compute for some invertible sheaves on P, their
cohomology groups and the direct images with respect to the canonical projection Py, — P,.
We use those calculations to obtain some properties of R-bundles.

We find some characteristic properties of R-bundles, i. e., properties that may be used to
define them. We see that R-bundles are exactly those sheaves on Z; given by a resolution (cf.
Proposition [1.37 and Proposition [1.57)

0204 (-H—F) 2 04 (-H) & 0y — & — 0,

with & = <g %) such that det(®|p,) # 0, (P|p,)(q) # 0 for all ¢ € Dy, and the linear forms I,

and [y are linear independent and their common zero point in D; does not belong to L.
Propositions 1.48 and Proposition [1.60/ say that R-bundles are exactly the non-trivial ex-
tensions of k,, ¢ € Dy \ L, by O¢, where C is a curve in Z; given by a resolution

0— Oz(—2F —H) — Oz, — Oc — 0.

We see that the behavior of R-bundles is quite similar to the behavior of 3m + 1 sheaves,
which is exactly what one could expect.

1.1 3m + 1 sheaves, overview

In this section we will give an overview about semi-stable sheaves on P, with Hilbert polynomial
3m + 1. We will call such sheaves 3m + 1 sheaves. We will briefly repeat some results from [5]
and also prove some useful lemmata. One could find some useful details in [4].



1.1.1 Review of [5].

Let us recall that for an arbitrary smooth projective variety X and for an arbitrary numerical
polynomial P € Q[m] there is a coarse moduli space Mp(X) of semi-stable sheaves on X with
Hilbert polynomial P. This has been proven by Simpson in [27].

Moduli space Mj,,1(Ps).

In the case of X = Py and P = 3m + 1 the space M = M3, +1(P3) was described in [5] and has
been mentioned in [14]. In particular all 3m+-1 sheaves are stable and M is a fine moduli space,
i. e., M represents the functor M of this moduli problem. This holds since the coefficients 3
and 1 are coprime. One can show that 3m+ 1 sheaves on Py are exactly the non-split extensions

0—=0c—F—k,—0, (1.1)

where C' = Supp F is the cubic curve in P, supporting F and p is a point on C. The moduli
space M is isomorphic to the universal cubic curve

{({f),(z)) € Py x Py | f(z) =0},
where Py = {(Co, Cio, - .., Co3)} is identified with the space of cubic curves in Py by
(Co0; C1o, - - -, Coz) < f,
where

f :C(]oi[g + le‘%%l + megxg + CQQII?().%'%"‘

2 3 2 2 3 (12)
CllfL'Ol‘liL'g + COQJTOZEQ + Cgol’l + 0213711'2 + le’leQ + C()gZL'Q.

Let us recall that a family of 3m + 1 sheaves over S (or simply a 3m + 1 family over S) is
by definition a flat sheaf F on S x Py such that for every s € S the restriction F; of £ to the
fibre {s} x Py = Py is a 3m + 1 sheaf on Ps.

Parameter space X.

Let us consider the set of the matrices (21 ;h), where
2 2

21,20 € I'(P2, Op, (1)), q1,q2 € T'(P2, Op,(2)).

Let us fix some coordinates (zg, z1,x2) in Py. We can now identify z; and 2z, with some linear
forms
Z1 = Qoo + A1 + A2xa, 2o = boﬂ?o + b1z + 1)2132, a;, b; € ﬂ(,

and q1, ¢o may be identified with quadratic forms

Q= A00$8 + Anzors + - + A22x§7 q2 = 30033% + Bowory + - -+ + 32296’37 Aij, Bij € k.

Thus one can identify the set of all matrices (zl ;h) with the affine variety k'8.
2 2

Let us consider

X:{<21 Cq];) 121/\2'2750721(]2—22(117&0}7
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i. e., the set of matrices a1 Q
22 Q2

determinant. Then X is an open subset in k'® (in the variety of all matrices), hence a quasi-
affine variety.
In [5] it was shown that 3m + 1 sheaves F on Py are exactly those possessing a resolution

) with linear independent forms z; and z; and non-zero

0 — 20p,(—2) 2 Op,(—1) & Op, — F — 0 (1.3)

with the matrix A from X.

Quotient X — M.

Let H be the group of 2 x 2 matrices
Az
(0 M) o AZpek, A#0, zeT(Py,Op,(1)).

Then H is an algebraic group, as algebraic variety it is isomorphic to k* x k* x k3. Consider

then the algebraic group
G = GLy(k) x H. (1.4)

Then G acts on X from the left by the rule
(g9,h) - A= gAh™'.

This action corresponds to isomorphisms of exact sequences given by g € GLy(k), h € H:

0——20p,(—2) —25 Op,(—1) ® Op, —— £ ——0

gT h] % (1.5)

0—20p,(—2) — Op,(—1) ® Op, — F —— 0.

Since Hom(Op,(—1) @ Op,, 205,(—2)) = Ext'(Op,(—1) ® Op,, 20p,(—2)) = 0, every morphism
of 3m + 1 sheaves lifts uniquely to a morphism of resolutions of the type (1.3). In particular the
isomorphisms of 3m + 1 sheaves lift to the morphisms of the type (1.5). This implies that the
orbits of the action of G on X are in one-to-one correspondence with the isomorphism classes
of 3m+ 1 sheaves, i. e., with the points of M = Ms,,11(P2). Moreover, it has been shown in [5]
that M is a geometric quotient of X by . For an arbitrary point A € X its stabilizer under
the action of GG is the subgroup

St={(3Dx 3| rek).

Hence the action of PG := G/St on X is free and one can show that X is a principal bundle
over M with fibre PG.

As we already mentioned that M is isomorphic to the universal cubic curve, the quotient
morphism X = M, which sends A to the isomorphism class [F4] of the corresponding sheaf
Fa (for a matrix A € X we denote by F4 the sheaf defined by A as in the resolution (1.3))) is
just the morphism given by

A= (Zl q1> — (det A) x (21 A 29). (1.6)

22 {2

Note that the determinant of A is a cubic curve and the point z; A 25 is a point on this curve.
We identify here (z; A z2) with the point p where both z; and z5 vanish.



Lemma 1.1. Let 2y = apxo + a121 + asxe and za = boxo + bix1 + bawo, a;,0; € Kk, be two linear
independent linear forms. Then (z1 A z3) = (dy, d1,ds), where d; are the minors of the matrix

ap a1 asg .
b(] bl bz , . €.,

o a1 Qa9 _ g as _ ag ap
dy = det (b1 52) , di = —det (bo b2) ,  dy = det (bo 51) ) (1.7)
ap a1 a bo b1 b
Proof. The matrices <a3 a1 ai) and <a3 a1 ai) are clearly degenerate. Therefore, their deter-
bo b1 b2 bo b1 ba

minants are zero. Using the expansion formula for determinant along the first row one obtains
aodo + a1d1 + (lgdg = 0 and bodo + bldl + b2d2 = 0, 1. €., Zl(do, dl, dg) = Zg(do, dl, dg) = 0. SO,
p = (dp, dy, ds) is the point where both z; and z5 vanish. O

1.1.2 Singular sheaves.

Definition-characterization of singular sheaves.

22 42
z1 and zy vanish. Then the following statements are equivalent.

Lemma 1.2. Let A = <Zl Q1> be a matriz from X. Let p be the point where both linear forms

1) The sheaf F defined by the matriz A as in (1.3) is locally free on its support;
2) at least one of the quadratic forms ¢ and qz does not vanish at p;

3) p is a nonsingular point of the curve C = {det A = 0}.

Proof. Since F is supported on the curve C' given by the determinant of the matrix A, one
concludes that F,, x € C| is not free if and only the rank of the matrix A at the point x is
zero, i. e., if and only if all the entries of the matrix A vanish at x. The only point where
this could hold true is x = p. Therefore, we conclude that F is not locally free if and only if
¢1(p) = q2(p) = 0. This we proved the equivalence of 1) and 2).

Let f = det A, then f = z1¢g2 — 22¢; and one sees that p is a singular point of C' if and only

if

of v _of

821 p)= 822 (p) =0.
Since of 5 5

_ d9p o0 —
5. ) = (C]z tag - 821) (p) = 2(p)
and of 3 3
_ 9@ %0 - _
D5 (p) = (Z1 9., N2 822) (p) = —ai(p),

we obtain the equivalence of 2) and 3). This proves the lemma. O

Definition 1.3. Following [5] we call the sheaves that are not locally free on their support
singular sheaves. Sheaves that are not singular are called then non-singular.

From Lemma [1.2), using the description of the quotient map (1.6), one obtains the following
corollary.

Corollary 1.4. A point (f) X p € M represents an isomorphism class of a singular sheaf if
and only if p is a singular point of the curve {f =0} C P,.



As we already noticed, M is given in Py x Py by the equation

_ 3 2 2 2
f(:li'o, Xy, CCQ) —00033'0 + Cwl‘ol'l -+ 0011'0.%2 + 020$0$1+

2 3 2 2 3
Clizorize + Cog$0$2 + 0305171 + 021$1£U2 + 0121'1£E2 + 003£B2 =0,

where ]P)g = {<000, 010, ce ,003>} and PQ = {<$0,1’1,$2>}.

Space Mg and its defining equations.

Let Mg be the subset of M that consists of the isomorphism classes of singular sheaves. By
Corollary 1.4/ ((f), (x)) belongs to My if and only if (x) is a singular point of {f = 0}. The
latter holds if and only if the partial derivatives of f vanish at (z). Since

0

a7f = 300037?) -+ 2010%0331 -+ 2001£L'0$2 + Cgol'% + 011£L'1$2 + ngl'g,
0

0

a7f = Clol’g -+ 2020]701'1 + Cn.%ol'Q + 30305[)% —+ 2021]71332 + 012.1’3,
1

0

8710 = 001333 + 01133'01'1 -+ 2002%0372 -+ Cny% + 2012.1'11’2 + 30{]31’%,
2

we obtain that Mg is given by the equations eg, e;, and e, where

€1 = 30001’8 + 2010$05L’1 + 2001$0$2 —+ CQ(]JJ% + 0111712152 —+ 0023?%,
e = 010.23(2) + 2020230.T1 + 0115130332 + 30301‘% -+ 2021.231552 + 01233%, (18)
€y = 0011‘(2) + 0111’01‘1 + ZCOQZE()QTQ + Cgll‘% + 20125(711‘2 + 3003[)3%.

Since

af ad of
xoaxo + e 8x1 + $285L’2 N 3f’

we conclude that Mg is given in M locally by two equations. Namely in M (xq) := M N{xy # 0}
the equations of Mg are e; and es. In M (z1) := M N{x; # 0} the equations are ey and es and
in M(xzq) := M N{zy # 0} they are ey and e;.

Lemma 1.5. Mg is smooth of codimension 2 in M, i. e. the dimension of Mg is 8. In particular
Mg is a locally complete intersection.

Proof. The part of the jacobian matrix of ey, e1, es with respect to the variables Cyy, ..., Co3
is
3x(2) 2rx01r1 2T0X2 m% T1T9 a:% 0 0 0 0

0 73 0  2zom; wmoxe 0 227 2mme X3 0

0 0 T3 0 xoxry 27072 O 2 2myze 373
One sees that its rank is always 3. Therefore, Mg is smooth of codimension 3 in Py x Py. The
codimension of Mg in M is then 2. This proves the lemma. O
Space Xs.

Let Xg be the subset of all the matrices in X defining singular sheaves.



Consider a matrix A = (Zl QI) from X. Let
22 42

Z1 =0pTo + a171 + AT,
29 =boxo + b1y + bowo,
@1 =Aoozg + Anmozy + -+ - + Agpa3,
G2 :Booxg + Boixors + - + Bmx%, a;, by, Aij, Bij € k.
Then p = (dy, d1, d) is the point where both z; and 2z vanish (we use the notations from (1.7)).
By Lemma [1.2, A lies in Xg if and only if ¢;(p) = ¢2(p) = 0. Therefore, we obtain equations
defining Xg in X:
fs = @2(p) = Aodg + Agrdody + - - - + Agads,
f1=aq2(p) = Boodg + Bordody + - - - + Baads,
and B;; are considered as variables. Hence

Xg = X NV(fs, fa), (1.10)

where V (f3, f1) C k'® is the affine subvariety given by the polynomials f3 and f;.
Let us see how this equations are connected with those of Mg. We have the geometrical
quotient of X by the group G

(1.9)

where a;, b;, Ajj,

XL M A= (zl ‘h) — ({det A), (21 A 22)).
22 Q42

It is clear that Xg is the preimage of Mg under v. This means that the liftings of the equations
of Mg are equations of Xg. So let us calculate the liftings (e; o v)(A) of the equations eq, ey,
and ey to X.
Lemma 1.6. (Gi o) I/)(A) = —bzfg + CLZ‘f4, 1= 0, 1, 2.
Proof. From
det (Zl QI) = (aoﬂfo +a1x1 + agl‘g)'
22 Q2
(AO(]«T?) + A01$0$1 + AOQI()JIQ + AHLL’% + Algl’ll’Q + AggI%)—
(bol’o + blxl—i‘ngg)'
(Boozs + Boiwox1 + BoaToTs + B110] + Biowimy + Byywd)
one obtains (cf. (1.2)),

Coo =aoBoo — boAgo,

Cro =aoBo1 + a1 Boo — boAo1 — b1 Ao,

Co1 =aoBoz + azBoo — bo Aoz — ba Ao,

Coo =agB11 + a1 Bo1 — bo A1y — by Ao,

Ci1i =agBia + a1 By + a2 Boy — bg A1z — b1 Aga — ba Ao,
Coz =agBas + az Bz — boAza — ba A,

Cso =a1 By — b1 Ay,

Co1 =a1B1a + aa By — biA1g — ba Ay,

Cha =a1 By + agBia — biAg — byAjs,

Coz =a3Bay — by Ags.



The lifting of eq is

(€0 o v)(A) =3(agByo — boAno)di+
2(aoBo1 + a1 Boo — boAor — b1 Ago)dodi+
2(agBoz + a2 Boo — boAgz — by Ago)doda+
(aoBi1 + ayBoy — bo Ay — by Ao )di+
(aoB12 + a1 Bog + aaBoy — bo A1z — b1 Agy — baAgr)dida+
(agBaz + asBos — boAss — by Ago)d; =
Ago(—3bods — 2bydody — 2bydods )+

A()l 2b0d0d1 - b1d2 - bgdldg)
A02 Zbododg - b1d1d2 - de )
Ay (=bod?) + Ara(—bodydy) + Aga(—bod2)+

Bo1(2aodody + a1d3 + agdydy)+

02(2a0dods + ardidy + asds)+

Bii(apdy) + Biz(agdids) + Bas(agds) =

— bo(Agody + Aordody + Agadods + Arid} 4+ Aradids + Asod3)+
ao(Boodg + Boidody + Boadods + Biid; + Biadids + Basds) =
— bog1(do, di, da) + aogz(do, di, d2) = —bo f3 + ao fa-

(—
(-
(—
Boo(3aod; + 2a1dod; + 2asdods)+
(
(

oy

We used here that
(lodo + a1d1 + a2d2 =0 and bodo + b1d1 + deQ = 0.

Analogously one obtains (e; o v)(A) = —by f3 + a1 f1 and (ex 0 V)(A) = —bafs + as fa. O

Since in X locally at least one of dy, dy, ds is a unit, we conclude that the zero set of the
liftings of eq, e1, eo coincides with the zero set of f3 and f;.

Lemma 1.7. 0) Xy is an algebraic subvariety of codimension 2 in X given by the equations
f3=[f1=0;

1) Xy is smooth;

2) Xg is a global complete intersection in X.

Proof. 0) Follows from (1.10).
1)Let J(fs, f1) be the Jacobian matrix of f3 and f;. We can consider this 2 x 18 matrix as
a block matrix

J(fs f1) = (Ja Joe Ja, JB,).
where

Jai = J(ao,al,ag)(f?n f4)

is the jacobian matrix of f3 and f; with respect to the variables (a;), i = 0,1,2;

oi = Jtbo,b1,00) (f3, fa)

is the jacobian matrix of f3 and f; with respect to the variables (b;), i = 0,1,2;

Ja,; = (o0, Ann) (f35 f4)



is the jacobian matrix of f; and f; with respect to the variables (4;;), ,j € {0, 1,2}, and

JBij == J(Boo ..... ng)(f37 f4)

is the jacobian matrix of f; and f, with respect to the variables (By;), i,j € {0, 1, 2}.

Then 9 2
(dE dody ... dZ 0O 0 ... 0

Since A is an element of Xg C X, the forms z; and z; ale linear independent, i. e., at least one
of the minors dy, dy, dy is not zero. Therefore, one concludes, that the matrix J(f3, f1) has full
rank, i. e., Xy is a smooth subvariety of X.

2) Xg is a locally complete intersection in X as a smooth subvariety of a smooth variety
(see for example [12], II, Example 8.22.1). Since there are two global equation (1.9) of Xy, we
conclude that Xg is a global complete intersection. O]

Let us calculate the tangent equations of Xg in X at a point A € Xy,

A _ apXo + a1 + QAoT9 Aool‘g + A01$01’1 + -+ A22$g
bo[li'[) + blxl + le’Q Bool'% + B()l.’ll'oflfl + -+ BQQ.I'%

Then the Jacobian matrix J(f3, f1) of f3 and fy is

(5) e (). (B8), (3)
9ak ) —0,1,2 Ok ) 1—01.2 9Ai; ij 9Bi; ij
(%) e (BB)ne (3, ()
9ak ) 1.—0,1,2 be ) p=0,1,2 \94ii )5 \9Bij )
Since 8‘953 =0 and af“ =0, we get
() (), (),
9k ) —0,1,2 Ok ) —0,1,2 0Ai; ij
() ) 0 ()
9ak ) p—0,12 \%% 1012 9Bij ) ;;

One clearly has 88 j;?’v = d;d; and gg‘_‘_ = d;d;. We have also
1] ]

s odi -, od, 0fs ~—, (0d , 04,
Dar iZjA”< aakd> o, = 2 <a Gt G, )

v

a1 L 94 ofy od; | 0d;
day %:B”( 8akd) o, = 2 Do (abkd+abkd’ ‘

)

J(f37f4) =

Let us denote

(0, 04 _(od; | 0d,
Qi = (&zkd S d) and B = ((% d; + 6bkd>

In this notations

Ofs dfs Of4 ) f4
a_ak = ZAijaij,ka 8_bk = ZAijﬁij,k, a—ak = Z Bijajk, ZBzgﬁzg k-

ij ij ij



10

Thus
B— Sowo + &1 + Loy ook + -+ + oo
Noxo + MT1 + 1N 77001‘(2) + -+ Ml

is a tangent vector if and only if

Z (Z Aijaij,k> &+ Z (Z Aijﬁij,k) M + Z d;d;&; =0
k ij k ] ij

and

Z <Z Bijal-j,k) & + Z (Z Bijﬁij,k) M + Z d;d;n;; = 0.
k ij k ij ij

Hence the equations

Ti(A) :

Z (Z Aijaij,k> &k + Z (Z Aijﬁij,k) M + Z d;d;&;;
k ij k ij ij
and (1.11)
Ty(A) == Z (Z Bz’jaz’j,k> & + Z <Z Bijﬁij,k) Mk + Z d;d;n;;
k ij k ij i

are tangent equations at point A.
Let us calculate o, and 3. One easily calculates

od; 0 b —b ad,; 0 —ax
a = —b2 0 bo y 81) - as 0 —Qo
Ak ik bl —bo 0 k/ ik —a Ao 0
Let
0 1 -1
(Sik): -1 0 1
1 -1 0

and let us use the following notations. For i and j from {0, 1,2} put

0, i= g
ai_j = . ]
Ay (i,5), 3 7é J
where v(i,7) is the only element in the set {0, 1,2} \ {7, 5} for ¢ # j. Analogously let us define
0 S
bl/(i,j)7 ? 7é J

oh ., od
aak — 92ikYik> abk — 9kilik,

Then

and one finally obtains

A5k = Sikbi_kdj + Sjkbj_kdi and ﬁij,k: = skiai—kdj -+ skjaj—kdi. (112)
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Example 1.8. Let

x
X2

q1
q2

A ) . = Anzors + -+ A22$§7 g2 = Boizoxy + - + 3221103-

Then p = (1,0,0) and we claim then the Jacobian matriz J(fs, f1) at point A is
—App 00 —App 001 00O O0OO0OO0OO0O0O0O0O0OO0OTO0OO
—Bypp 00 =B, 00O0OOO0OO0OO0OO0OT1TO0O0O0OO0OO0)”

1. e., tangent equations at A for

_ Sowo + &121 + Eama oo + . . . an3
NoTo + MT1 + Moz NooTd + . . . a3

{

Proof. We have f3 = q2(p) = Agod? + Aoidody + -+ - + Aspdi. Note that do(A) = 1 and
di1(A) = dy(A) = 0. Since dy = a1by — azby, we have dy(A) =1 and

)
are

oo = Ao + Aoamo

(1.13)
Moo = Bo1&o + Bo2mo-

(9d0 8d0 ad()
Sl =0, SR = ba(d) = 1, o) = —hi(4) =0,
ado ado 8d()
—(A) = —(A) = —as(A) = —(A) =a;(A) =1.
8[)0( ) 07 abl( ) CLQ( ) 07 ab2( ) CLl( )
From d; = —(agby — asby), we have d;(A) = 0 and
adl adl adl
—(A) = —by(A) = —1 —(A) =0 —(A) =0by(A) =0
S =) =1, A =0, ) = h(4) =0,
—(A) = as(A) = —(A) = —(A) = —ag(A) = 0.
S () = ax(4) =0, S =0 ZA) = —an(d) =0
From dy = apb; — a1by, we have dy(A) = 0 and
0d2 8d2 8d2
—(A)=b,(A) = —(A) = —by(A) = —(A) =
SH(A) = bi(4) =0, 2= b)) =0, SR =0,
8d2 8d2 8d2
Y9200 = —ai(A) = —1 T220A) = ao(A) = 204) = 0.
abo( ) (11( ) ) (%1( ) aO( ) 07 (%2( ) 0
Straightforward calculations lead to g—({z = —Ap, g—ﬁ = —Apo, ;A—ﬁ) = 1 and all the other
derivatives are zero.
Similarly one shows that g—f:é = — By, g—{:;* = — By, ;ngo = 1 and all the others derivatives

are zero. This proves the required statement

]
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1.2 R-bundles

We propose here a construction of sheaves which we will use as replacements of the singular
3m + 1 sheaves on P,.

1.2.1 Construction of new one parameter families.
Singular 3m + 1 sheaves as one-dimensional limits of non-singular sheaves.

21 q1

5 g ) from Xg. Let p denote the point where both z; and zj
2 2

Consider some matrix A = (

w1 P1

vanish. Take a matrix B € k'8, B =
Wz P2

), and consider the morphism

lp:k—k'® t— A+tB.

Let U = l,;l(X). Since [p is a morphism, U is an open set in k. In this way we obtain the
morphism

By abuse of notation we will also denote it by [g.

So, we obtain a (one parameter) family 3m + 1 sheaves over U C k, i. e., the sheaf £ on
U x Py, such that for every t from U the restriction & of £ to the fibre {t} x Py is given by the
matrix A; ;== A+ tB € X. In other words the sheaf £ is given by the resolution

0— QOUXPQ(—QH) & OUXIP’Q(_H> D OUXIPQ — 5 — 0. (1.15)
Here H is the pull back of a line h C P,. We choose h such that the point p does not lie on h.

Remark 1.9. Note that by shrinking U we can also assume that & is locally free on its support
forallt € U, t # 0. We can interpret now the singular fibre & as a limit for t — 0 of
nonsingular sheaves &;.

Blow up of U x Ps.
Consider the point (0,p) € U x Py. Let

O'ZUX]PQ—>UX]P)2

be the blowing up of U x Py at (0, p). Let us denote Z := U x Py. Let D; denote the exceptional
divisor of o.

One can describe Z explicitly in coordinates as a subvariety of U x P, x Py. Let us fix some
complementary to z; and z, linear form zg, i. e, a linear form zy such that the forms zy, 21, 22
constitute a basis of the space of linear forms on Py. Then we can consider Z as a subvariety in

U x Py x Py = {(t, (z0, 1, 2), (U0, U1, u2)) },

tZ() Z1 X2

given by the 2 x 2 minors of the matrix (
Ug U U2

), i. e., by the equations
tzouy = upz1,
tzoug = Upz2g, (116)

21U = 22U .
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Let us consider the map
Z L U x PQ p_1> U

and its fibres Z; over t € U. Since the restriction of o to Z'\ Zy is an isomorphism, we conclude

that Z; = Py for t # 0.
Taking t = 0 in (1.16)), we obtain that Zy C {0} x Py x Py is given by the equations

Upgz1 — 0
UpRZo = 0

21U — 22U = 0.
Thus

ZO = {(07 <.ZU07ZE1,I'2>7 <O,U17U2>>| 21U — 29U = 0} U {UO 7& O7t =21 = 29 = 0}

One easily sees that the first set is the proper transform of {0} x P, under o, it is isomorphic

to the blow up Iﬁ’g of Py at the point p (recall that p is given by 23 = zo = 0). We will also
denote it by Dj.
The second set is the projective plane (exceptional divisor of o : Z — U x Py)

Dy =Py = {(0,p, (uo, u1,u2))}

without the line given by uy = 0. Therefore, Z; is isomorphic to the blowing up of Py at the
point p with the projective plane P, attached along the exceptional divisor of this blowing up:
Zy =PyU Dy and PoN Dy is the line L :={t = uy = 21 = 22} = {(0,p, (0, u1,us))}. We proved
the following

Lemma 1.10. The fibres Z; of Z iLU x Py 2 U are all of dimension 2. Moreover Z; is
isomorphic to Py fort # 0, and Zy = Py UIPy, where Py is the blowing up of the projective plane
Py at point p, and Py is attached to Py along the exceptional divisor of the blowing up Py — Ps.

N

P>

(R

Space Zj.
Definition 1.11. We will denote by P, the space Zy we described above, 1. e.,
EDQZI@;QUPQ Q]P)Q XPQ

given by the equations ugz = upzy = 21Uy — zouy = 0, where (ug, uy, us) and (xy, 1, x2) are
points in the first and the second Py from the product Py X Py respectively. We will also denote
by Dy the component Py and by Dy the component Py of Ps.
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Proposition 1.12. The morphism Z 5 U x Py 25 U is flat.

Proof. Since both Z and U are regular, dim Z = 3, dimU = 1, and dim Z; = 2 = dim Z —dim U
for all t € U, the required statement follows from Theorem A.2. n

Remark 1.13. Note that there is a natural section of the projection U x Py 25 U. It is given
by
Ut (21 +twy) A (21 + twy) € Po.

This lifts uniquely to a section s : U — Z of Z 5 U xPy £5 U. In particular we obtain a point

s(0) € Dy \ L.

Z

Dy

U =0

New one parameter families, main construction.

Applying o* to the sequence (1.15) we obtain the sequence

0= 20,(—2H) 29 0,(—H) © 0, — o*(E) — 0,

which remains exact because the sheaf Oz(—2H) is locally free and, therefore, has no torsion
(morphism ¢*(A;) is injective outside of Dy, therefore its kernel may leave only on D).
Note that the support of ¢*(€) on the exceptional divisor D = D is the whole plane D;.
We are going now to modify this sheaf in order to obtain a sheaf with one-dimensional support.
Note that there is a canonical section s € I'(Z, Oz(D)), which gives us the exact sequence

0— Oz(—D) % Oy — Op — 0.
Tensoring with O(D), one gets the exact sequence
0— Oy > 0y(D) — Op®0Oy(D) — 0.
Tensoring this once more with 20,(—2H), we obtain the injective map

s 0
0 — 204(—2H) (&9, 204(—2H + D).

Lemma 1.14. 0*(A;) factorizes uniquely through s, i. e., there exists

20,(—2H + D) 25 O4(—H) & Oy
such that the diagram

204(—2H) " 0, (~H) 8 0,

G| A

204(—2H + D)

commutes.
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Proof. Follows from Lemma [1.15. O]

Lemma 1.15. Let X be a variety and let D C X be a divisor given by the sequence

Let g : Ox — L be a section of a (line) bundle L on X. Suppose that g vanishes on D. Then
g factors uniquely through s, in other words there ezists a unique g € I'(X, L ® Ox(—D)) such

that the diagram

1 4

Ox(D)

commutes.

Proof. The statement follows from the diagram

0 —— O0x(—D) ——— 0% Op 0

g T 0
gl e - gl J9|DO
K A

OHOx(—D)@)ﬁ%Ox@L%OD@EHO

by using the universal property of kernel. O]

Remark 1.16. Note that A, is injective since 20,(—2H + D) is torsion free and since (59)
18 an isomorphism outside of the exceptional divisor D.

Lemma 1.17. There is the following commutative diagram with exact rows and columns:

0
!

0 20p(-1)
" (Ay)
0—>2(’)Z(—2H) ——0z(—H) ® Oy o*& 0
69
OHZOz( 2H+D)—>OZ @OZ g 0.
20p(-1) 0
!
0

Proof. By Lemma 1.15, using the snake lemma one obtains the following commutative diagram
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with exact rows and columns

ﬁ
0 C
o* (Ay)
O—>202(—2H) ——O0z(—H) ® Oy o*€ 0
9
O*)QOz( 2H+D)*>OZ EBOZ g 0,
0

C
l
0

where C = Op ® Oz(—2H + D). Since by Lemma A.3/Op ® Oz(D) = Op(—1), we obtain that
C=20pR0%(D)®@0z(—2H) =20p(—1)®0z(—2H). Since the line h C P, does not contain
the point p, we conclude that H and D do not intersect. Therefore, C = 20p(—1)04(—2H) =
20p(—1). This proves the lemma. O

Proposition 1.18. ¢,(€) ~ &.

Proof. By Lemma A4 RPo,(C) = RPo,(Op(—1)) =0, p = 0. Therefore, after applying o, to
the exact sequence B
0—-C—o0&—E—0,

we obtain 0,(0*&) 2 0, (€). By Lemma A8 0,(c*€) = £, which proves the lemma. O
Remark 1.19. In fact we have even more. Applying o, to the diagram defining & we obtain

o« (0*(Ap))

04)20[])@92(—2]{) OUX[pv2 @OUXI% 4>0'*(O'*5) —0
o |
0——20uxp,(—2H) ) Ouxp,(—H) & Oyyp, — 0,(§) —— 0,

where the above row is isomorphic by Lemma |A.8 to the resolution defining & :

0— QOUXIP’Q( 2H) OUXIP’Q( ) D OUXIP’Q — & — 0.

We can assume without loss of generality that z; = 1, 20 = x5 (make if necessary the
change of coordinates in Py). Take as a complementary form zy = . In this case p = (1,0, 0).
The matrix A is then

T
<:v; Z;) . @1 =Anzory + -+ A3, g = Byzor1 + - + Bas. (1.17)
Note, that since both ¢; and ¢o vanish at p = (1,0,0) there are no monomials x3 in the

expressions of ¢; and ¢o. Let

B — (wl p1> :
Wy P2
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and let

wy = §oxo + 171 + Eaa,

wy = Moo + Ty + N2,

p1 = Eooxy + -+ - + &2,

P2 = NooTg + - - - + N2
Lemma 1.20. Oz(D) = Oz(H — F) = Oz(H) @ Oz(—F), where Oz(F) = 7*Op,(1) and
7. Z — Py is the canonical projection onto the second Py (recall that Z C U x Py x Ps).
Proof. Note that Oz(H) is given by the cocycle h;; = z—” on the open covering Z = (JU;,
Ui = Z(x;) = {z; # 0}. The sheaf Oz(F) is given by the cocycle fy = ;- on the covering
Z = UV, Vie = Z(ug) = {ur # 0}. Then Oz(—F) is given by the cocycle fk_ll = Z—’; and
therefore Oz(H) ® Oz(—F) is given by the cocycle gy ;i = =L - & on the covering Z = |J Wi,

Wix = Z(xi,up) = {z; # 0,uy, # 0}.
Note that the local defining functions of the divisor D are

g on Z(l’i,UO),
Vik = § 5 on Z(xi,w),
T2

o on Z(xi,uz).

Thus the cocycle of Oz(D) is % Using the defining equations of the blow up Z one easily
J
calculates % = 2—1 . Z—’; This coincides with the cocycle g, ;i of Oz(H) ® Oz(—F). This proves
J 7
the required statement. O

Remark 1.21. In this lemma we proved the equivalence of divisors D ~ H — F.

As a consequence of Lemma [1.20 after the substitution of D by H — F' in the diagram from
Lemma 1.17 we obtain the diagram with exact rows and columns:

0
!

0 205 (~1)
0—20,(—20) "M 0,(~H)® 0, oE—0 (1.18)
(I
0——20,(—H — F) 25 04(—H) & Oy g 0.
20, (~1) 0

0
Lemma 1.22. x; factorizes as x1 = uy - s, analogously xo = us - s, txg = ug - S.

Proof. We know already that for each of the sections of Oz (H) above there is a factorization

O4(~H) —— Oy .

Oz(—H + D)
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In Lemma 1.20 we have just shown that Oz(—H + D) = Oz(—F). We shall show that the
section Oz(—F) — Oy in the commutative diagram

Oz<—H) —_— OZ

L~

Oz(—F)

equals uq, us, ug respectively. Note that factorizing through s means dividing locally by the
local defining equation v;; of D. On Z(w;,u) the section x; is given by the function #*. The

defining function of D in this chart is 2= if k # 0 and “2 if k£ = 0. Thus

mofme w2
X1 acl/azl u 1 ’
— [k = i

i mo [l wm ),

T Ty uo

ie, 2 Jyg = Z—i This is a description of the section u; of Oz(F'). We proved that 7 = u; - s.
Analogously one proves the statement for x5 and tx. O]

As a corollary we obtain the following

Lemma 1.23. Let A be as in (1.17) and let B = (zl ?) with
2 P2
wy = §oxo + {171 + §oT,
wy = Noxo + Mx1 + 1N222,
p1 = 500373 + o+ 5225U§7
P2 = 7700$(2) + -+ 7722$g-

Then Avt equals

uy ur(Aoizo + A1y + Aiaxa) + us (Ao + Apas)
Uy uy(Bo1xo + B11w1 + Biawa) + ua(Boexg + Baoxa)

Soup + t§1ur + t&us  §ooTolo + to1urTo + - - - + oy
Moo + tniuy + tnaua  MooTolo + t1o1U1 T + - - + IM2Uz T

and can be treated as a morphism 207(—H — F) — Oz(—H) & Oz. We have thus the exact
sequence

0= 204(—H — F) 24 04(—H)® 0y — & — 0. (1.19)

1.2.2 First properties of new one parameter families.
Conditions for local freeness on support.

We constructed a sheaf £ on Z. Let us consider the map Z 5 U x Py 25 U and the restrictions
& of the sheaf £ to the fibres Z;, over ¢ € U. Since the restriction of ¢ to Z \ Zy is an
isomorphism, we conclude that Z; = P, and E & fort # 0. So outside of Z; the sheaf £ is
basically the same as £. In particular & are locally free on their support for ¢ # 0. Thus one
could consider the fibre & as a limit of nonsingular sheaves & for ¢ — 0. This way we have so
to say replaced the singular sheaf & by the sheaf & on the reducible variety Z,.
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The sheaf € is not locally free (on its support) at some point if and only if the matrix A,
vanishes at this point. Since A; vanishes only at point (0,p), and since the preimage of (0, p)
is the exceptional divisor D = Dy, we conclude that ,Zt may only vanish at points lying in D,.

Suppose that the matrix A, vanishes at some point from D;. Since from Lemma [1.23 we

have p 1
~ uy + oo 01Zo1 + Aot + {ooTolo
Atz = , 1.20
(At)me1=ra=0 (U2 +mouo  Bo1zour + BoaTouz + UOOIOUO) (1.20)

vanishing of this matrix is equivalent to

Soo = Ao1&o + Ao2no,
Moo = Bo1&o + Boano.

But these equations are by Example 1.8 exactly the tangent equations at A. We obtained

Proposition 1.24. E is locally free on its support if and only if B is a normal vector to Xg at
A, i e, if and only if B € TaX \ T4 Xs.

So using the normal directions B to Xg at A we obtain new one parameter families & that
are isomorphic to the initial one parameter families £ for ¢ # 0 such that the new limit value
“Eo = lir% & is a sheaf that is locally free on its support .

Let us call the one parameter families & that are locally free on their support new families
or families of new type.

From now on we consider only the sheaves that are locally free on their support, i. e., those
obtained by the help of normal directions.

Flatness.

Lemma 1.25. Let & be a new one parameter family.
1) Jor®%(E,0p,) = 0 and the restriction of € to Dy is given by the matriz

Apy = (A))imeymayeo = uy + §ouo  Aorur + Aoguz + Eootio
' T uz + nottg  Borur + Boaus + nootio )

1. e., the restriction ofg to Dy 1s given by the resolution

Ap, ~
0— QODI(—l) — QODl — (S'|D1 — 0,

in particular <‘,~’|D1 15 a 2m + 2 sheaf on Dy = Ps.
2) Tor% (€, Op,) = 0 and the restriction of £ to Py is given by the matrix

A — (g = (1 w1 (Ao + Auay + Aigw) + a(Apyg + A

i. €., the restriction ofE to Py is given by the resolution
0—20; (~H—F) % 05 (~H)® 05, — E|5, — 0,

where O, (F) = 7*Op, (1) and 7 : Py — Py is the canonical projection.
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Proof. 1) Let us restrict the resolution (1.19) to D;. We obtain this way the exact sequence

At\Dl

0— 907"?2(5, ODl) — 2OD1(— ) 2(9[)1 — SDl — 0.

We used here that Jor%(O4(—H) & Oz, Op,) = 0 because Oz(—H) & Oy is a locally free
sheaf. By Lemma [1.23| we have

~ = _(wm + &oug  Aprur + Agaus + Egouo
AD1 = At|D1 - '

Ug + Moty Bo1uy + Boaua + Moolio

This morphism is injective if and only if det A p, 7 0. One can write

A uy + §ou
det Ap, = (Boiu1 + Bozusa + nootto, —(Aorur + Agauz + &ootto)) - ( i 0) :

Uz + ToUo

Suppose det A p, = 0. Then, since uy +&pup and ug +nug are linear independent, one concludes

that
(A01U1 + Agaus + 500“0) _ ) <U1 + fouo) A€ Kk
Boiur + Bogus + nooto Uz + Moo )’ '
This holds if and only if Ay = By = 0, 00 = Ao180, and 1o = Boa1no. Therefore, B is a tangent
direction, which is a contradiction. This proves that the determinant of AD1 is non-zero and
hence A p, is injective. Therefore, Jor{* (5 Op,) = 0. This proves the first part of the lemma.
2) Let us restrict now the sequence (1.19) to Dy = P5. We get the exact sequence

~ Alg ~
0 — Jor{?(€,05)) — 205 (—H — F) —2 O (—~H) & O3, — &_— 0.
By Lemma [1.23 we have

A=A s = ur ur(Agiwo + Anry + Appry) + up(Aoaro + Azors)
' tPy uy  uy(Boixo + Biiw1 + Biawa) + ua(Boexg + Bagxa) )

Let us prove the injectivity of A. For an arbitrary point x from @2, let us consider the restriction
A, of A to the stalk at z:

A 90

Po,x*

205

Pa,x

First of all one sees that for z € Py \ L the map A, is the same as Ag(z), 0() € Py We just

use here that ¢ is an isomorphism on P, \ L. Therefore, we conclude that A is injective outside
of L, thus its kernel may only be supported on L. This is impossible since QOﬁZ(—H —F)isa
locally free sheaf and hence has no torsion. This proves the second part of the lemma. Il

Proposition 1.26. The sheafg s flat over U.

Proof. Since £| lo\{o} is @ 3m + 1 family over U \ {0}, we conclude that & is flat over each point

t € U, t #0. It remains to prove the flatness for ¢ = 0. The sheaf £ is flat over t = 0 if and
only if the restriction of the resolution

0—20,(-H—F) 25 0,(-H) &0y — € -0
to Zy remains exact, i. e., if the morphism

At\zo

20z(—H — F)|z, — (Oz(=H) ® Oz)| 7
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Atlpy

is injective. But this is true because the restrictions 20,(—H — F)|p, — (Oz(—H)®O%)|p,
Arly

and 20z(—H — F)g, —2 (O4(—H) ® Oz)ls, are injections by Lemma [1.25. Therefore, the

kernel of Az, can only be supported on L. But 20,(—H — F)|, is a locally free sheaf, which

has no torsion. Therefore, A;|z, is injective. This proves the required statement. O
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1.3 New objects on P,

We study here the new objects on Z; = P,. The main goal of this section is to give different
characterizations of R-bundles on Ps.

1.3.1 Invertible sheaves on Z; and their cohomology.
The Picard group of 7.

Recall that ﬁ"g may be considered as a closed subvariety in Py x Py (cf. Definition 1.11). We
define a divisor H as the pull back of a line h C Py from the first Py and F is defined as the
pull back of a line f C Py in the second Py. In other words we have Oz (H) = Op,«p,(1,0)]|z,
and OZO(F) = OP2><P2<07 1)|Z0‘

Recall that Z, consists of the two components Dy and D;. We will denote by H; and F; the
restrictions to D;, ¢ = 0,1, of the divisors H and F' respectively. Since it does not cause any
misunderstandings, we will often write just H and F' for the restrictions H; and F;.

The intersection L = Dy N Dy is isomorphic to P; and is a divisor both in Dy and D;.
Of course, one has L ~ F} as divisors in D;. It holds also Fy + L ~ Hy as divisors in Dy,
equivalently L ~ Hy — Fy. Note also that H; ~ 0.

Note that by Lemma |A.16 and Lemma A.17 a locally free sheaf on Zj is uniquely defined
by its restrictions to the components Dy = Py and Dy = Ps.

The Picard group of D; = Py is isomorphic to Z and the isomorphism is given by

Z — Pic(Dy), b [Op,(bL)].

The Picard group of Dy is Z @ Pic(Ps) = Z & Z (ct. [12], V, Proposition 3.2), the isomorphism
is given by the map

7 &7 — Pic(Dy), (a,b) — [Op,(aH + bL)].

Let Op,(aH + byL) be an invertible sheaf on Dy and let Op,(b;L) an invertible sheaf on
D;. Their restrictions to L are Op(—by) and Op(b;) respectively, so they define an invertible
sheaf on L if and only if by = —b; = b. The gluing of these two sheaves is isomorphic to
Oz,((a — b)H + bF') because

Oz ((a—b)H 4+ bF)|p, = Op,((a —b)Hy + bFy) = Op,(aHy + b(Fy — Hy)) = Op,(aH — bL)

and
Oz((a—b)H 4+ bF)|p, = Op, (bF) = Op, (bL).

We proved the following lemma.

Lemma 1.27. The Picard group of Zy is isomorphic to 7. @ 7Z. The isomorphism is given by
7 &7 — Pic(Zy), (a,b) — [Oz(aH + bF)).
There is also the following isomorphism of Pic(Dy) and Pic(Zy):

Pic(Do) — Pic(Zo),  [Opy(aH + bL)] = [Op,((a+ b)H — bFy)] — [Oz((a + b)H — bF)).
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Euler characteristic of line bundles on I?DQ.

For a divisor § on P, there is the Riemann-Roch formula (cf. [12], V, Theorem 1.6)
1, 1
XO%,(6) = 307 — 50Kz, + X0,

where Kp, is a canonical divisor on Py. We know that Kp, = —3H + L (cf. [12], V, Proposi-
tion 3.3) and that xOp, = xOp, =1 (cf. [12], V, Corollary 3.5). Thus one obtains

1 1
XO5,(6) = 552 +50B3H = L) + 1.
For § = aH — 8L, using H> =1, L? = —1,and H - L = 0, we get

\Os,(aH — AL) :%(aH _BL? 4 %(aH CBL)BH L) +1—

1 1

5(0421-[2 + B2L%) + 5(304}[2 +BL*) +1=

1, 5 o 1 1, 3 1., 1

~(a? — ~(3a — 1= Sa— =B — g +1.
2(a 6)+2(3a B) + 5 +2a 25 25+

Thus
X(O@2(GH + bF0)®O@2(mH +mEy)) = X(Dﬁ,g((a +b+2m)H — (b+m)L) =

1 1 1
—(a+b+2m)2+g(a+b+2m)—§(b+m)2—§(b+m)+1:

2

3 1 1 , 3 1, 1

= 2 b —bh— = - b = b) — b —-b+1=
5™m +[2(a+b)+3 2]m+2(a+ ) +2(a+ ) 5 5 +

3 5 1 , 3 1, 1

5 +{2a+b+2}m+2(a+b) +2(a+b) 2b 2b+1.

We proved the following Lemma.

Lemma 1.28. The Hilbert polynomial of the invertible sheaf Og, (a,b) = O, (aH + bF) on P,
with respect to the sheaf O, (1,1) = Op (H + F') equals

3, 5 1 , 3 1, 1
5 +[2a—|—b+2]m+2(a+b) -|—2(a—|—b) 2b 2b+1. (1.21)

In particular we obtain the following Hilbert polynomials on @2 with respect to the sheaf
0@2(1, 1) = O@Q(H + F).

(a,b) = (—2,0)  — ;mQ—gm, (@,b) = (0,0) — gm2+gm+1,
(@b) = (—1,-1) —> ng—%m, (@b = (0,1)  —s ;m2~l—gm+2, .
(a,b) = (—1,0) = gm2+%m, (a,b) = (1,0) = gm2+§m+3, |
(a,b) = (0, 1) — §m2—l—gm, (a,b) =(1,-1) = gm2+gm+1.
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Lemma 1.29. Let F be a 3m + 1 sheaf on Py such that F is not locally free at point p. Let
0o : Py — Py be the blowing up of p. Let L= Op (H + Fy) = Op (2H — L). Then o3 F has the
Hilbert polynomial 6m + 1 with respect to L.

Proof. Since there is a resolution
0— 20@2(—2]{) — OE(_H) S¥) Oﬁ% — oy F — 0,
the Hilbert polynomial of ofF is

3 1 3 5 3 3
<§m2+§m) + <§m2+ §m+ 1> —2 (§m2 — 5m) =6m+ 1.

This proves the lemma. O

Euler characteristic of line bundles on Z,.

Lemma 1.30. xOy (aH + bF) = 3(a+b)* + 3(a+b) + 1.
Proof. For a line bundle Oy, (aH + bF') by Lemma [A.16/ there is the gluing sequence
0 — Og,(aH +bF) — Op ((a+b)H — bL) ® Op, (b) — OL(b) — 0.

We are using here that F'is equivalent to H — L on ENDQ.
By formula (1.22) we obtain

1 1 1
XOs,(a+B)H —bBL) = L(a+ D> + Sa+b) — 21— 1b+ 1

Since
b+ 2

XOp, (b) = ( 9

1 1, 3
)-2(b+2)(b+1)_2b b+l

and

we calculate

XOz(aH + bF) =xOf,((a + b)H — bL) + xOp,(b) — xOL(b) =

1 3 1 1 1 3
- b)? + = b)) — b — b+ 1+ +=b+1—(b+1)=
2(a—|—)+2(a+)2 So+1+50+ b+ (b+1)
1 3
5(a+b)2+§(a+b)+1.
This completes the proof. Il

Lemma 1.31. The Hilbert polynomial of Oz, (aH + bF') with respect to the invertible sheaf
L=0z(H+F) equals

2m2+[2(a—|—b)+3]-m+%(a+b)2—l—g(a—l—b)+1. (1.23)

Note that the result depends only on the sum a + b.
Proof. Using Lemma [1.30 we obtain that

X(Oz,(aH +bF) @ LZ™) =xOg ((a +m)H + (b+m)F) =

1 3
§(a+b+2m)2+§(a—l—b+2m)+1:

1 3
2m2+[2(a+b)+3]-m+§(a+b)2+§(a+b)+1.

This proves the required statement. Il
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Some cohomology groups of sheaves on 7.

We collect here calculations of cohomology groups for some locally free sheaves on Zy and Dy.

Table of results. We collect some results about cohomology groups in the following table.

Proposition 1.32.

KO B B2

Oz(=2F) 0 0 0
Oz,(—H) 0 0 0
Oz, (—F) 0 0 0
Oz 1 0 0
OzH-F) 1 0 0
Oun(=H+F) 1 0 0
OZ()(H) 3 0 0
OZ()(F) 3 0 0
Ozxp(-H—-F) 0 0 0
OnH+F) 6 0 0
Oy(H+2F) 10 0 0

The computations below constitute the proof of Proposition [1.32.

Some key tools for computing cohomologies on Z,. Let us collect here some short exact
sequences. We will make use of the corresponding long exact cohomology sequences.
Recall that for a locally free sheaf G on Z; by LemmalA.16/there is the gluing exact sequence

0—G—Glp, ®G|p, — G| — 0.

Note also that Op, has the locally free resolution

T1Uu2—T2UL
_

0 — Op,xp, (—1,-1) Op,xp, — Op, — 0.
For arbitrary a,b € Z this gives the resolutions
0 — Op,xp,(a— 1,0 — 1) — Op,xp,(a,b) — Op,(aH + bF) — 0. (1.24)
Note also that the restriction homomorphism

H°(Dy,0p,(nL)) — H°(L,Or(n))

is always surjective.
To compute the cohomology groups of Op,xp, (11, ) we will use the Kiinneth formula
from [25]:

HY(P, x Py, Op, xp,, (11, ) = @ H'(Py, Op, (1) @ H (P, Op,, (v)). (1.25)

i+j=q
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Sheaf Oy,. Consider the gluing exact sequence
0— Oy — Op,®0Op, — O — 0.

This gives the long exact cohomology sequence

0 — H(Og,) — H(Op,) ® H(Op,) — H(Op) 5

— H'(Ogz,) — H'(Op,) ® H(Op,) — H'(O,) —
— H*(Ogz,) — H*(Op,) ® H*(Op,) — H*(O1) — 0.

Note that the map H°(Op) — H*(Oy,) is zero because the restriction homomorphism
H°(Dy,0p,) — H°(L,Op)

is an isomorphism, it holds H°(Dy, Op,) = H°(L,O,) = k. Using that H(Op,) = H(O1) =0
for i = 1,2, we conclude that H(Og,) = H (Op,), i = 0,1, 2.
Consider the locally free resolution of Op, on Py x Py

0 — Op,xp, (—1,—1) amTeR, Op,xp, — Op, — 0

and the corresponding long exact cohomology sequence

0 — H%(Op,xp, (=1, 1)) = H*(Op,xp,) = H’(Op,) —
HY(Op,xp,(—1,-1)) — H (Op,xp,) — H' (Op,) —
((’)ngpl( 1,-1)) — H2(O[[D2><[p>1) — H2( .) —

— H° (Olp’zXlP’l( L, - 1)) (OIngIPl)

By Kinneth formula H*(Op,yp,(—1,—1)) = 0, for all i, H(Op,xp,) = 0 for i # 0, and
H°(Op,xp,) = k. Therefore, H'(Op,) = H*(Op,) =0, H°(Op,) = k. This proves

Hl(OZO) :HQ(OZO) :07 HO(OZO) =k

Sheaf Oy (H — F). Consider the gluing exact sequence
0— OZ(](H — F) — ODO(H — F) D OD1<—L) — OL(—l) — 0.

Since all the cohomology groups of Op,(—L) and Op(—1) are zero, using the long exact coho-

mology sequence we conclude of the above short exact sequence we conclude that Oz (H —F') =

Op,(H — F) for all i. So it remains to compute the cohomology groups of Op,(H — F).
Consider the locally free resolution

0— OP?XPl(O’ _2> = OP2><P1(L _1) - ODO(H - F) —0

and the corresponding long exact cohomology sequence

0— HO(O]P’QX]PH (07 _2)) - HO(OP2XP1(17 _1)) - HO(ODO(H - F)) -
- HI(OP2XP1(07 _2)> - HI(O[P’2><[P’1(17 1)) - HI(ODO(H - F ) -
- HQ(OIP’QXIPH (07 _2)) - HZ(O]P’QXIPH(L _1)) - HZ(ODD(H - F)) -
- H3(OP2><1P1 (07 _2)) - H3(OP2><[P’1(17 _1)) — 0.
By Kiinneth formula H*(Op,xp,(—1,—1)) = 0, for all i, H(Op,xp,(0,—2)) = 0 for i # 1, and

H(Op,xp, (0, —2)) = k. Therefore,
HY(Op,(H — F)) = H*(Op,(H — F)) =0, H"(Op,(H - F)) =k.
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Sheaf Oy, (—H + F). Consider the gluing exact sequence
0—0z(-H+F)— Op,(—H+ F)® Op,(L) — O(1) — 0.
This gives the long exact cohomology sequence

0 — HOz(~H + F)) = H(Op,(—H + F)) @ H*(Op, (L)) — H(OL(1)) >
— H'(Oz,(—H + F)) — H(Op,(—H + F)) & H'(Op, (L)) — H'(OL(1)) —
— H*(Oz,(—H + F)) — H*(Op,(—H + F)) & H*(Op, (L)) — H*(O(1)) — 0.

Since H'(Or(1)) = H(Op, (L)) = 0 for ¢ # 0, we obtain the isomorphisms
H'(Oz,(~H — F)) = H(Op,(—H — F)), i#0.
From the resolution
0 — Op,xp, (—2,0) — Op,xp, (—1,1) = Op,(—H + F) — 0
we obtain the long exact cohomology sequence

)) = H(Opy(—H + F)) —
) = H'(Op,(—H + F)) —
)) = H*(Op,(—H + F)) —
)

By Kiinneth formula we obtain that all the cohomologies of Op,xp,(—2,0) and Op,«p,(—1,1)
are zero. Therefore, H(Op,(—H + F)) = 0 for all .
We obtain now

H (O (—H — F)) = H{(Op,(~H — F)) =0, i#0.
From the exact sequence
0 — HY(Og,(—H + F)) — H(Op,(L)) — H(Or(1)) = 0

using H(Op, (L)) 2 k* and H°(OL(1)) = k* we conclude that H*(Ogz (—H + F)) 2 k.
We obtained

HY(Op,(—H + F)) = H*(Op,(—H + F)) =0, H%Op,(—H + F)) = k.

Sheaf Oz, (—H). Consider the gluing exact sequence
0— OZO(—H) — ODQ(_H) ) ODl — OL — 0.

This gives the long exact cohomology sequence

) — H(Op) %

( ) (
— H'(Oz,(—H)) — H'(Op,(—H)) & H'(Op,) — H'(O) —
( ) (

We obtain H (Oz,(—H)) = H(Op,(—H)), i = 0,1,2. Using the resolution

(
0— OPQXIPl(_27 _1) - OIP2><1P’1(_17O> - ODO(_H) —0
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we obtain the long exact cohomology sequence

0— HO(OP2XP1(_2? _1)) — H (OP2><IP1<_170)) - HO<ODO<_H)> -
- Hl(OPQXP1( 2, _1)) - Hl(OPQX]PH(_LO)) - Hl(ODo(_H)) -
- H2(OIF’2><IP’1( 2, _1)) - H2<OP2><IP1( 170)) - H2<OD0<_H))

- HS(OPQXP1(_27 _1)) - H3<OP2><]P1(_170)) —0

By Kiinneth formula we conclude that H'(Op,xp,(—2,—1)) = H?(Op,xp,)(—1,0) = 0 for all i
and j. Therefore, H'(Op,(—H)) = 0 for all i and hence

H'(Op,(—H)) =0 forall i.

Sheaf Oy, (—F). Consider the gluing exact sequence
0— OZO(_F) — ODO(_F) D ODI(—L) — OL(—l) — 0.
This gives the long exact cohomology sequence

0 — HY(Oz,(=F)) — H’(Op,(~F)) & H*(Op,(~L)) — H(Or(-1)) —
— H'(Og,(=F)) = H'(Op,(~F)) & H'(Op,(~L)) — H'(O1(-1)) —
— H*(Oz,(—F)) — H*(Op,(~F)) & H*(Op,(=L)) — H*(Or(-1)) — 0.
Since all cohomology groups of the sheaves Op, (—L) and Op(—1) are zero, one obtains the

isomorphisms H'(Oz,(—F)) =2 H(Op,(—F)) for all 4.

Using the resolution
0— OP2><IP’1(_1’ _1) - OP2XP1<O’ _1) - ODO(_F) —0

we obtain the long exact cohomology sequence

0 — H°(Op,xp,(—1,—-2)) — H°(Op,xp, (0, 1)) — H'(Op,(—F)) —
— HY(Op,xp,(—1,-2)) — H(Op,xp, (0, —1)) — H(Op,(—F)) —
— H*(Op,xp, (=1, -2)) = H*(Op,up, (0, —1)) — HZ( o(—F)) —
— H3(Op,up, (—1,-2)) — H*(Op,xp, (0, —1)) —

All cohomology groups of the sheaves Op,xp,(—1, —2) and Op,xp, (0, —1) vanish by Kiinneth
formula, thus the sheaf Op,(—F') has zero cohomology groups. We obtain finally

H'(Op,(—F)) =0 forall i.

Sheaf Oz (H). Consider the gluing exact sequence
0— OZO(H) — ODO(H) D ODl — O — 0.

This gives the long exact cohomology sequence

0 — H(O7,(H)) — H'(Op,(H)) & H(Op,) — H(O) >
— H'(Og,(H)) = H'(Op,(H)) ® H'(Op,) — H(OL) —
— H*(O,(H)) — H*(Op,(H)) & H*(Op,) — H*(Or) — 0.
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As in the case of Oz, we obtain the isomorphisms H'(Oz (H)) = H(Op,(H)), i =0,1,2.
From the resolution

0— OPQXPI(()? _1) - OPQX[PH(LO) - ODO(H) — 0
we obtain the long exact cohomology sequence

0— HO(O%XE(O, —1)) — H°(Op,xp,
H'(Op,xp, (0, —1)

— HQ(OPQXPI(O, -1)
H?(Op,xp, (0, —1)

All the cohomologies of Op,xp, (0, —1) are zero by Kiinneth formula. Therefore H(Op,(H)) =
H(Op,xp,(1,0)) for all 5. Again using Kiinneth formula we conclude that H(Op,xp,(1,0)) =0
for ¢ # 0 and H°(Op,xp,(1,0)) = H°(Op,(1)) @ H*(Op,) = T'(Py, Op,(1)) = k?. We obtain

finally
HY (O (H) 2K, H(Oz(H)) =0, i £0.

Sheaf Oy, (F). Consider the gluing exact sequence
0— OZO(F) — ODO(F) D ODl(L) — OL(l) — 0.

This gives the long exact cohomology sequence

0 — HO(O(F)) — HYOp,(F)) :
(

) OH
= H(O(F)) = H'(Op,(F)) & H(Op, (L)) — H'(O1(1)) —
— H2(02,(F)) = HX(Op,(F)) & H*(Op, (L)) — HX(O1(1)) — 0.

Note that the map H°(Op, (L)) — H°(OL(1)) is surjective, therefore the homomorphism
HO(Or(1)) — HY(Og,(F)) is zero. We have H'(Op, (L)) = H*(Op,(L)) = 0 and H'(O(1)) =
H?*(Or(1)) = 0. Therefore, H(Oyz (F)) = H'(Op,(F)), i = 1,2, and we have the exact
sequence

0 — H(Og,(F)) — H*(Op,(F)) ® H°(Op,(L)) — H*(OL(1)) — 0. (1.26)
From the resolution
0— OIP’2><1P’1(_170) - OPQXP1(O> 1) - ODO(F) — 0

we obtain the long exact cohomology sequence

0— HO(O%XE(—L 0)) — H°(Op,xp,(0,1)) — H*(Op,(F)) —

H'(Op,xp, (—1,0)) = H'(Op,xp,(0,1)) — H'(Op,(F)) —

— HQ(OPQXlPl(_]‘?O)) — H*(Op,xp, (0,1)) — HQ( o(F) —
H?(Op,xp, (—1,0)) — H*(Op,xp, (0,1)) —

The cohomology groups of Op,«p, (—1,0) are all zero, hence for all ¢ we obtain the isomorphisms
HZ(ODO(F» = Hi(OPQXIszl (0, 1)) Since Hi((’)p%pl (O, 1)) = 0, 1 7& 0, and HO(OI%XPI (0, 1)) = ]kQ,
we conclude that H'(Op,(F)) = 0 for i # 0 and H°(Op,(F)) = k* Therefore, one gets
H(Oz,(F)) = 0 for i # 0 and from the exact sequence (1.26), using H°(Op, (L)) = k* and
H°(Or(1)) @ k2, we conclude that H (O, (F)) has dimension 3. We obtained

HO(OZO(F)) = k?)’ HZ(OZO(F)) =0, ¢ #0.
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Sheaf Oy, (—H — F). Consider the gluing exact sequence
0— Oz(—H—-F)— Op,(—H — F)® Op,(—L) — Or(-1) — 0.
This gives the long exact cohomology sequence
F)) = H*(Op,(—H = F)) & H°(Op,(~L)) = H(Or(~1)) =

H—
H —F)) — H'(Op,(~=H — F)) ® H'(Op,(~L)) — H'(O(-1)) —
H —F)) — H*(Op,(—H — F)) & H*(Op,(~L)) — H*(Or(-1)) — 0.

0— HO(OZ

0

(=
(OZO(
- H2(OZO(
Since H'(O(—1)) = H(Op,(—L)) = 0 for all i, we obtain for all ¢ the isomorphisms
H'(Oz,(—H — F)) = H'(Op,(—H — F)).
From the resolution

0— OIP2><IF’1(_27 _2) - OngPl(_l, _1) — ODO(—H — F) — 0

we obtain the long exact cohomology sequence

0— HO(OPQXIPH( 2, 2)) - H0<OIP2><IP1(_17 _1)) - HO(ODO(_H - F)) -
<OP2XP1( 2, 2)) - Hl(oﬂ”zx]}’ﬁ( L, _1)) - HI(ODO(_H - F)) -
- H2(0P2><IP’1( 27 2)) - H2<O]P’2><IP1( L, _1>) - H2(OD0(_H - F)) -
(OP2><P1( 2,— )) - H3<O]P2><]P1( 1, _1>) — 0
By Kiinneth formula we compute H'(Op,xp,(—2,—2)) = H(Op,xp,(—1,—1)) = 0 for all 4
Therefore, H(Op,(—H — F)) = 0 for all i.
Sheaf Oz (—2F). Consider the gluing exact sequence
0— Ogz,(—2F) — Op,(—2F) ® Op,(—2L) — Or(-2) — 0.
This gives the long exact cohomology sequence
0 — HO(Oz,(~2F)) — HY(Op,(~2F)) & H(Op, (~2L)) — HO(O1(~2)) —
— H'(Oz,(—2F)) — H'(Op,(=2F)) & H'(Op,(—2L)) — H'(OL(-2)) —
— H*(Oz,(—2F)) — H*(Op,(—2F)) ® H*(Op,(—2L)) — H*(O1(-2)) — 0.
All cohomology groups of Op, (—2L) are zero, we have also that H°(Or(—2)) = H*(Op(-2)) =

0 and H'(OL(—2)) = k. Therefore, H(Oz,(—2F)) = H°(Op,(—2F)) and we obtain the exact

sequence
0 — H'(Oz,(-2F)) — H'(Op,(—2F)) = k — H*(Oz,(-2F)) — H*(Op,(—2F)) = 0
From the resolution
0 — Op,xp, (=1, =3) = Op,xp, (0, —2) — Opy(—2F) — 0

we obtain the long exact cohomology sequence

0 — H(Op,xp,(—1,-3)) — H°(Op,xp, (0, —2)) — H*(Op,(—2F)) —
— H'(Op,xp,(—1,-3)) = H'(Op,xp, (0, =2)) — H'(Op,(—2F)) —
— H*(Op,xp, (—1,-3)) — H*(Op,xp, (0, —2)) — H*(Op,(—2F)) —
— H*(Op,xp, (—1,-3)) — H*(Op,xp,(0,—2)) — 0
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By Kiinneth formula H*(Op,xp,(—1,—-3)) = 0 for all i. We have also H*(Op,xp, (0, —2))
for i # 1, and H'(Op,xp, (0,—2)) = k. Thus H°(Op,(—2F)) = H*(Op,(—2F)) = 0 and
HY(Op,(—2F)) = k. We get this way H(Oz,(—2F)) = 0 and the exact sequence

0 — H(Og,(—2F)) = k =k — H*(Oz,(—2F)) — 0,

where the morphism k — k is the morphism H'(Op,(—2F)) — H'(Or(—2)) induced by the
restriction map Op,(—2F) — O(-2).

Claim. The restriction homomorphism
k= H'(Op,(—2F)) — H (OL(—2)) 2 k
1S an tsomorphism.

Proof. Consider the exact sequence
0— Op,(—H — 3F) 27", 00, (—H — 2F) &), Opy(—2F) — Op(=2) — 0
and its splitting in the two short exact sequences

0— Op,(—H —3F) = 20p,(—H —2F) - A— 0

and
0—A— Op,(—2F) — Op(-2) — 0.

First of all note that all the cohomologies of Op,(—H — aF') are zero. This follows by Kiinneth
formula from the long exact cohomology sequence that corresponds to the resolution

0 — Op,xp, (=2, —a — 1) = Op,xp, (=1, —a) — Op,(—H — aF’) — 0.
Then from the long exact cohomology sequence
H'(20p,(—H — 2F)) — H'(A) — H"™(Op,(—H — 3F))
one concludes that H*(A) = 0 for all i. From the long exact cohomology sequence
H'(A) — H'(Op,(~2F)) — H(04(~2)) — H*(A).
we obtain that the homomorphism H!'(Op,(—2F)) — H'(O(—2)) is an isomorphism. O

From this claim and from the exact sequence
0 — H'(Og,(-2F)) — H'(Op,(=2F)) — H'(O1(~2)) — H*(Oz,(-2F)) = 0
we conclude that H'(Oz, (—2F)) =0, i = 1,2. We obtained that

H(Oz,(—2F)) =0, for all i.
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Sheaf Oz, (H + 2F). Consider the gluing exact sequence
0— Oy (H+2F) — Op,(H+2F)® Op,(2L) — O(2) — 0.

This gives the long exact cohomology sequence

0 — H(Oy(H + 2F)) — H(Op,(H + 2F)) & H*(Op, (2L)) — H°(0L(2)) >

— H'(Og,(H +2F)) — H'(Op,(H + 2F)) & H'(Op,(2L)) — H'(OL(2)) —
— HY(Oy,(H +2F)) — H*(Op,(H + 2F)) & H*(Op, (2L)) — H*(O.(2)) — 0.

Note that the restriction homomorphism H®(Op,(2L)) — H°(O.(2)) is surjective. Since
H'(Op,(2L)) = H(Or(2)) = 0 for i # 0 we conclude that H(Oy, (H + 2F)) = H(Op,(H +
2F)) for i # 0.

From the resolution

0— O[P2><IP1(O, 1) — OPQXP1(172) — ODO(H —+ 2F> — 0

we obtain the long exact cohomology sequence

0 — H°(Op,xp,(0,1)) — H*(Op,yp,(1,2)) — H(Op,(H + 2F)) —
— HY(Op,xp,(0,1)) — H' (Op,xp,(1,2)) — H (Op,(H + 2F)) —
— H*(Op,xp,(0,1)) — H*(Op,xp, (1,2)) — H*(Op,(H + 2F)) —
— H?*(Op,xp,(0,1)) — H*(Op,xp,(1,2)) — 0

By Kiinneth formula one concludes that H*(Op,xp, (0,1)) = 0 for i # 0 and that
H®(Op,xp,(0,1)) = H*(Op,) ® H(Op, (1)) = k.
Again by Kiinneth formula we obtain H*(Op,xp, (1,2)) = 0 for i # 0 and
H(Op,xp,(1,2)) = H*(Op,(1)) ® H*(Op,(2)) 2 k* @ k* =~ k°.

We conch71de this way that H'(Op,(H + 2F)) = H*(Op,(H + 2F)) = 0 and that H°(Op,(H +
2F>S)i:c£§ciim H°(Op,(2L)) = 6 and dim H°(O(2)) = 3, then using the exact sequence

0 — H°(Og,(H +2F)) — H°(Op,(H + 2F)) ® H°(Op, (2L)) — H*(Or(2)) — 0
we conclude that H(Ogz,(H + 2F)) = k'°. We proved that

H(Oz,(H +2F)) 2 k', H'(Oz(H+2F)) =0, i#0.

Sheaf Oz (H + F). Consider the gluing exact sequence
0— 0z (H+F)— Op,(H+F)®Op,(L)— Or(1) — 0.
This gives the long exact cohomology sequence

0 — H(Oz(H + F)) = H(Op,(H + F)) & H(Op, (L)) — H*(O,(1)) =
— H'(Oz,(H + F)) — H'(Op,(H + F)) & H'(Op, (L)) — H'(O(1)) —
— H*(Oz,(H + F)) — H*(Op,(H + F)) & H*(Op, (L)) — H*(O(1)) — 0



and from H'(Op, (L)) = H(O(1)) = 0, i # 0, we obtain the isomorphisms H* (O, (H + F)) =
H (Op,(H + F)), i # 0, and the exact sequence

0 — H(Oz,(H + F)) — H*(Op,(H + F)) & H(Op, (L)) — H*(O(1)) — 0
From the resolution
0— OP2><P1 - OP2><P1(17 1) - ODO(H+ F) —0

we obtain the long exact cohomology sequence

0 — H(Op,xp,) = H(Op,xp, (1,1)) = H(Op,(H + F)) —

H'(Op,xp,) — H' (Opyxp,(1,1)) — H(Op,(H + F)) —

— H2(OP2xP1) — H*(Op,xp, (1,1)) — H2( o(H+F)) —
H*(Op,xp,) — H*(Op,xp, (1,1)) —

Using Kiinneth formula we compute H°(Op,xp, (1,1)) 2 kb, H°(Op,xp,) = k and all the other
cohomology groups of the sheaves Op,«p,(1,1) and Op,yp, are zero. Therefore, H'(Op,(H +
F))=0,i#0,and H*(Op,(H+F)) 2 Kk°. Since dim H°(Op, (L)) = 3 and dim H°(O(1)) = 2,
we conclude that H°(Oz,(H + F)) = k°.

We proved that

H(Oy(H+ F)) 2Kk H(Oz(H+F))=0, i#0.

Some direct images.

Let us calculate some direct images with respect to the contraction
09 : Zy — Ps.
We will consider Oy, as a sheaf on Py X Py given by the ideal sheaf Zy,:
0—Zy — Op,up, = Oz, — 0. (1.27)

Lemma 1.33. The ideal sheaf Iz, of Zy is given by the resolution

T1U2—T2U1
uoTy

(uo —u2 Ul
0 —z2 21 upT2
_ R e

— 0.

0— OPQX]P’Q(_27 _1) D OPZXP2(_17 _2) 3OP2XP2<_17 _1)

0

Proof. Tt is clear that this sequence is a complex. Suppose that

T1U2—To2UL
(a,b,c) ( oz > = a(z1us — wouy) + bugry + cupry = 0.

Then a = uy and £(xius — Tauy) + by + cxy = x1(§us + b) + z2(c — uy) = 0 and therefore
¢ —&uy = nzy and (ug + b) = —nzo. We obtain that

c=¢&u; +nxy, b=—Euy—nx,,
thus
Uy —Uy U
@b 9=y ).
ug —u2 ul) iS

This proves that the sequence is exact in the middle term. One sees also that ( e
injective. 0
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Consider the diagram
ZO — ]P)Q X ]P)Q s

N/

where ¢ is the inclusion of Zj in Py x Py and p = p; is the projection on the first factor. By
abuse of notation we identify the sheaves on Zj with their images under ¢, i. e., we consider
them as sheaves on Py x [Py. Then for every Oz, module F we have RFoy, F = RFp, F for all k.

Lemma 1.34. R*p,Op,xp,(m,n) = Op,(m) @ H*(Py, Op,(n)).

Proof. Recall (cf. [12], IIT, Proposition 8.1) that R*p,Op,xp,(m,n) is the sheaf associated to
the presheaf
U — Hk(U X IP)Q, Opzx]}nz(m,nﬂUX]pz).

For an affine open set U C P, using the Kiinneth formula we obtain

Hk<U x Py, O]P’QXIP’Q(m’ n)‘UXPQ) = HO<U7 OIP’z(m)) ® Hk<]P27 OP2(”)) =
= Op,(m)(U) ® H*(Py, Op, (n)).
Therefore, we conclude that R*p,Op,xp,(m,n) = Op,(m) @ H*(Py, Op,(n)). This proves the

required statement. O

Sheaf O,. From the resolution of Z, we obtain the long exact sequence

0 — p*OPgXPQ(_27 _1) @ p*OPQX]PQ(_17 _2> - 3p*OP2><P2(_17 _1) - p*IZO -
— Rlp*O]P’QX]P’Q(_Qa _1) @ Rlp*OIP’gx]P’g(_la _2) - 3R1p*OP2XP2(_17 _1) - Rlp*IZ() -
- R2p*OP2XP2(_27 _1) @ R2p*OP2XP2(_17 _2) - 3R2p*OP2XP2(_17 _1) - R2p*IZQ —_ ...

Using Lemma [1.34 we conclude that Rfp,Z,, = 0 for all k > 0.
From the sequence (1.27) one obtains the long exact sequence

O - p*IZO - p*OPQX[Pz - p*OZO -
- Rlp*IZU - Rlp*OPQXPQ - Rlp*OZ() -
— R?p,. Tz, — R*p.Op,xp, — R*p.Oyy — ...

Since R*p,Zz, = 0 for all k, we conclude

Op, ifk=0,

Rf00,04 =~ REp,Op, wp, =
704H20 = S P Paxby {o ith£0.

Sheaf Oy (—H). Tensoring the sequence (1.27) with Op,«p,(—1,0) we obtain the exact
sequence
0— IZO(_L 0) — O]p2><[p>2(—1,0) — OZO(_H) — 0.

The sequence
0 — Opyxpy (=3, —1) © Op,yupy (=2, —2) — 308, xp,(—2, —1) — Lz, (—1,0) — 0.
is also exact. Hence, using Lemma [1.34, from the long exact sequence
0= pu(Opyxp, (=3, =1) B Op,yxp, (=2, —2)) = 3puOp,xp, (=2, —1) = p.Z7,(—1,0) —

_>R1p*(0%><19’2(_37 _1>@OP2 ><IP2(_27 _2)) _>3R1p*OIP2 ><IF’2(_27 _1) HRlp*IZO(_lv O) -
— R2p.(Opyxp, (—3, = 1) B Op,up, (=2, —2)) = 3R*p,Op, xp, (=2, —1) — R*p,T7,(—1,0) —. ..
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we conclude that R¥p,Zz,(—1,0) = 0 for all k£ > 0. Therefore, using the long exact sequence

0 — pZz,(—1,0) = pOp,xp,(—1,0) — p,. Oz (—H) —
— R'p,Z,,(—1,0) — R'p,Op,xp,(—1,0) — R'p, Oz (—H) —
— R?p,Z7,(—1,0) — R*p,Op,xp,(—1,0) — R*p, Oz (—H) — ...
we obtain
Op,(—1) ifk=0,
0 itk+#0.

Sheaf Oy, (—H — F). Tensoring the sequence (1.27) with Op,xp,(—1,—1) we obtain the
exact sequence

RkUO*OZO(_H> = RRP*OszPQ(_LO) = {

0— IZO(_L —1) — OIPQXIPQ(_L —1) — OZO(_H - F) — 0.
The sequence
0 — O]}DQXPQ(—B, —2) @ OPQX]}»Q(—Q, —3) — 30]1»2><]1m2(—2, —2) — IZO(_L —1) d 0
is also exact. Hence, using Lemma [1.34) from the long exact sequence
OHP*OPQXPQ<_37_2>@p*OP2XP2(_27 _3>_>3p*OP2><]P2(_27_2) Hp*IZO(_]'?_]')_}
HRlp*OPQXPQ(_37_2)®R1p*OP2XP2<_27_3>_)BRlp*OPQXPQ(_27_2)_>Rlp*IZO(_17_1)_>
_)RZP*O]P‘zx]P’Q<—3,—2)@R2p*0P2XP2(—2,—3) —>3R2p*01p2><]p2(—2,—2) —>R2p*IZO(—1,—1) — ...
we conclude RFp,Zz (—1,—1) = 0 for k # 1 and R'p.Z;,(—1,—1) = Op,(—2). Lemma [1.34
implies also R*p,Op,xp,(—1,—1) = 0 for all k. Hence from the exact sequence
0— p*IZO(_]‘7 _1> - p*OIP’2><IP’2(_17 _1) - p*OZO(_H - F) -
— Rlp*IZO(—l, —1) — Rlp*OPQX[PQ(—l, —1) — Rlp*OZO(—H — F) —
— R?p,T7,(—1,—1) = R*p,Op,xp,(—1,—1) — R?p, Oy (—~H — F) — ...
we conclude that
Rp, Oz (—H — F) = R*p, 7, (—1,-1), k=>0.

Thus
Op,(—2) ifk=0
Rip. 0 (1 — F) = 172 TEZ0
0 itk#0.

We proved the following lemma.
Lemma 1.35.

ROO'O*OZO = OI[DQ, ROJO*OZO(—H) = OPQ(—l), ROO'O*OZO(—H — F) = OPQ(—Q),
RkO'()*OZO = RkUO*OZO(—H) = RkO'()*OZO(—H — F) = O, k> 0.

1.3.2 R-bundles on I@’Q, their properties.

Definition 1.36. Let us call the fibres 50 of new one parameter families E overt = 0 R-
bundles or R-sheaves on Zy. R stays here for “replacement”. One could call them simply
new sheaves on 7.

As it has been shown above that R-bundles are exactly those constructed by the help of
normal to Xy directions.
We are going now to describe different exact sequences with R-bundles.
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Locally free resolutions of R-bundles on 7.

Let 0g denote the restriction of o to Zy, i. e., 0¢ is a map Zy; — P,. Let us recall the meaning
of H and F. H is given by a line in Dy = P, that does not meet L. The divisor F is given,
say, by equation u; = 0 and has as components the line Fy := {u; = 0} in D; = P, and the
line FO = {u1 = 0} in Do = ]FQ.

Since € is flat over U, restricting (1.19) to Zy we obtain the exact sequence

Atlz,

0 — 207(—H — F)|z, —> Oz(—H)|2, @ Ozlz, — & — 0.

As Ozlz, 2 Oz, Oz(—H) |z, = Oz, (—H), Oz(—H — F)|z, = Oz,(—H — F'), we obtain the

exact sequence

0 — 20, (—H - F) 212, 0, (—H) & 0y, — & — 0, (1.28)

gt|Z _(wm+ Eouo  ur(Aoiwo + Ay + Araxa) + us(Aaro + Aaxa) + oot
0 ug + noty w1 (Boixo + Biixy + Biaxa) + ua(Boaxo + Baaa) + nooTolo

and we interpret the entries of this matrix as sections of the corresponding locally free sheaves
on Zy. Let us collect our observations in the following proposition.

Proposition 1.37. Fvery R-bundle on Zy has a resolution
(2
0— 20z (—H - F) 224, 0, (~H) & Oy, — & — 0, (1.29)
where ll, l2 € F(Zo, OZ()(F)) = F(Dl, ODl(F)) = k?), and al, 52 € F(Zo, OZ()(H + F)) = kﬁ.

hq

Iy g ) has the following properties:

Moreover, the matrix ® = (

e [ and ly are linear independent and their common zero point [y N\ ly in Dy = Py does not
belong to L;

o det(P|p,) #0;
e (®|p,)(q) #0 for all ¢ € Dy, in particular det(®|p,) # 0.
Remark 1.38. Note that the point [y A\ ly € Dy is exactly the point s(0) from Remark1.15.

Proposition 1.39. Let £ be a sheaf on Zy given by a resolution
0204 (—H—F)2 0y (-—H) & 0z — £ — 0.

Then applying o, to this sequence gives the exact sequence

00+ P

0— 2(9]}»2(—2) e O]}D2(—1) D OPQ — 0'0*5 — 0.
In particular push forwards of R-bundles on Zy are 3m + 1 sheaves on Ps.

Proof. Follows from Lemma [1.35. O]

R-bundles on Z, have the following important property, which makes resolutions (1.28)
similar to the Beilinson resolutions of coherent sheaves on P, (cf. [3]).
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Proposition 1.40. Every morphism between sheaves possessing resolutions of the type (1.28)
can be uniquely lifted to a morphism of the corresponding resolutions. In particular this holds

for R-bundles.

Proof. A lifting exists if and only if
Ext' (O, (—H) ® Og,,205,(-H — F)) = 0.
There is a unique lifting if and only if
Ext'(Oz,(—H) ® Oy,,204,(—H — F)) = Hom(Oz,(—H) ® Oz,,204,(—H — F)) = 0.

Since

Ext' (O, (—H) ® Oz,,20,(-H — F)) =
= 2Ext}(Oz,(—H),0z,(—H — F)) ® 2Ext'(Oy,, Oz,(—H — F)),

it is enough to show that Ext'(Oz,(—H), Oz,(—H —F)) = Ext'(Og,, Oz,(—H —F)) = 0. Since
the sheaf Oy, (—H) is locally free, one obtains (cf. [12], III, Proposition 6.7 and Proposition 6.3,

(c))
EXti(OZO(_H)7OZ0(_H - F)) = Hi<OZ0<H) ® OZ()(_H - F)) = Hi<OZ0(_F))

and
Ext'(Og,, Oz,(—H — F)) = H(Oy,(—H — F)).

By Proposition [1.32 all cohomology groups of Oz, (—F) and Oz (—H — F) are zero. One
concludes that

Ext'(Oz,(—H) ® Og,,204,(—H — F)) = Hom(Oy,(—H) ® Oz,,20,(—H — F)) = 0.
This completes the proof. Il

Remark 1.41. 1) Since I'(Zy,Oz,) = k, we conclude that the set of endomorphisms of the
sheaf 20z, (—H — F)) is just the set Matoyxa(k) of 2 x 2 matrices over k.

2) The set of endomorphism of Oz,(—H)® Oy, can be identified with the set of the matrices
(a8), where a € Hom(Og (—H), Oz (—H)) =k, b € Hom(Oy (—H),Oy,) = I'(Zy, Oy, (H)),
¢ € Hom(Og,, Oz (—H)) = T'(Zy,0z,(—H)), d € Hom(Og,,Oz) = k. We have also an
isomorphism U'(Zy, Oz, (H)) = T'(Py, Op,(1)) and I'(Zy, Oz,(H)) = I'(Py, Op,(—1)) = 0. That

is why we can interpret the endomorphisms of Oz, (—H) & Oz, as matrices , where

0

A\ €k and z is a linear form over Ps.

Remark 1.42. Note that from the uniqueness of the lifting it follows that isomorphisms between
R-bundles lift to automorphisms of Oz,(—H) @ O, and thus the induced endomorphisms of
204,(—H—F) are also automorphisms in this case. In other words, isomorphisms of R-bundles
give rise to invertible matrices.

Lemma 1.43. 1) Let £ be an R-bundle on Zy. Then ﬂor?z‘) (€,0p,) =0.
2) Let € be an R-bundle on Zy. Then ,%T’?ZO (£,05,)=0
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Proof. 1) The proof is absolutely the same as that of Lemma[1.25, 1). We restrict the resolution
of the type (1.28) to D; and obtain the exact sequence

A
0 — Jor;, 2(E,0p,) — 20p,(—L) —25 20p, — Ep, — 0,
where

A’D _(wut Souo  Aorur + Agguz + oo
! ug + Moy Boruy + Boaua + nootly )

This matrix is injective because it has been obtained by the help of a normal direction.
2) The proof is absolutely the same as that of Lemma [1.25, 2). We consider the resolution

of the type (1.28). Restricting this resolution to P, we obtain the exact sequence
0 — Jory™(E,05,) — 205 (~H — F) 2 05 (~H) @ 03, — &, — 0,
where

A= uy uy(Aoizo + A1y + Ajaxs) + us (Ao + Agpas)
uy  uy(Boixo + Biiwy + Biawa) + uz(Boexg + Bagxa) )

Let us prove the injectivity of A. For an arbitrary point x from ﬁ)27 let us consider the restriction
A, of A to the stalk at x:

Ay
— 203, ,-

205

Pa,x

First of all one sees that for x € ]?”Z \ L the map A, is the same as Ao(z), 0(z) € Py We just
use here that ¢ is an isomorphism on P \ L. Therefore, we conclude that A is injective outside

of L, thus its kernel may only be supported on L. This is impossible since 205 (—H — F) is a
locally free sheaf and hence has no torsion. This proves the second part of the lemma. n

Hilbert polynomials of R-bundles on ]13’2, comparison with 3m + 1 sheaves on Ps.

Let us compute Hilbert polynomials of R-bundles with respect to the sheaf £ := Oy (1,1) =
Oz (H + F).

Lemma 1.44. Let £ be an R-bundle on Zy = Py, then its Hilbert polynomaial with respect to L
equals 6m + 1.

Proof. Note that £ have a resolution of the type
0—20z(—H—F)— Oz(—H)® Oz, — & — 0.

Therefore, to compute the Hilbert polynomial of £ it is enough to compute the Hilbert poly-
nomials of the sheaves Oz, (—H — F), Oz,(—H) and Og,.

In Lemma [1.31/ we computed the Hilbert polynomials of the sheaves Oz, (a,b). In particular
for a + b = 0 we obtain the Hilbert polynomial of Oy,:

2m* 4 3m + 1.
For a + b = —1 we obtain the Hilbert polynomial of Oz (—H) and Oz (—F) :
2m? + m.
For a+b = —2 we obtain the Hilbert polynomial of Oz, (—2H), Oz, (—2F) and of Oy, (—H —F):

om? —m.
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We compute now
X(E® L) = x(Oz,(—H) @ L5™) + x(Oz, @ LZ™) = x(Oz,(—H — F)L™)
= (2m* +m) + (2m* + 3m + 1) — 2(2m* — m)
=6m + 1.
This completes the proof. Il

Note that our fibres Py and Zj lie in the product Py x P,. We have just calculated the
Hilbert polynomial of R-bundles on Z, with respect to the sheaf Oz, (H + F) = Op,xp,(1,1)]|z,-
To be able to compare the Hilbert polynomials of “new” and “old” sheaves one must calculate
the Hilbert polynomials of “old” sheaves with respect to the sheaf Op,xp, (1, 1)|p,.

Lemma 1.45. Op,xp,(1,1)[p, = Op,(2).
Proof. First of all note that the fibres Py are embedded into Py x Py by the maps
P, LN Py x Py, (xq, 21, 22) — ((xo, 21, X2), (tx, T1,T2))
for t # 0. Let m; and 7y be the projections Py x Py — P5. Then
Op,xp, (1, 1) [p, =5/ (77 Op, (1) ® 308, (1)) = jim1 Op, (1) @ j;mOp, (1) =
(m15¢)"Op, (1) @ (m27:)* Op, (1).

But the morphisms m1j; = idp, and moj; = ({(xo, z1,x2) — (txo, 1, 22)) are automorphisms of
Py. Therefore, (m1:)*Op, (1) = (m27:)*Op, (1) = Op, (1) and we obtain

Op,xp,(1,1)[p, = Op, (1) ® Op, (1) = Op,(2).

This proves the statement of the lemma. O]
For every 3m + 1 sheaf F on Py its Hilbert polynomial with respect to Op,xp,(1, 1)|p, is
X(F @ (0p,(2)%™) = x(F @ Op,(2m)) = 3(2m) + 1 = 6m + 1.

We see that “new” and “old” sheaves have the same Hilbert polynomial 6m + 1.

Remark 1.46. Note that if we consider Py embedded as above into the product Py x Ps,
then there are two different twisting sheaves Op,(1,0) := Op,xp,(1,0)|p, and Op,(0,1) :=
Op,xp,(0,1)|p, that are both isomorphic to Op,(1).

If we consider Zy = P, embedded into Py X Py, then Oz, (H) = Oz, (1,0) = Op,xp,(1,0)]| 2,
and OZO (F) = OZO (07 1) = O]P’2><P2 (07 1)’20

R-bundles as extensions.

First of all let us prove the following lemma.

Lemma 1.47. 1) Let 1,1y € T'(Zy, Oz, (F)) be two linear independent forms. Then the homo-
morphism

OZO M) 2OZ0<F)

18 injective.
2) Let q be the common zero point of Iy and ly in Dy. If q lies outside of L, then there is
the exact sequence

(i)

0— OZ0<_2F> M 20Z0<_F) —— OZO — kq — 0.
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Proof. 1) For | € T'(Zy, Og,(F)), the kernel of Oy, 4 Oz, (F) may only be supported on the
zero set of [. For all [ different from awug, o € k, this zero set is a subscheme of dimension 1 in
Zy. But there is no 1-dimensional torsion of Oy,. Therefore, [ is injective for all [ # auy.
Suppose that the kernel of (I, l5) is different from zero. Then from the considerations above
it follows that both [; and [, are multiples of ug, hence they are linear dependent, which is a
contradiction.
2) The sequence

(i)

204, (F) —> Oz, — k;, — 0

is exact as the pull back of the exact sequence

(i)

20p,(F) —= Op, =k, — 0

l1
on Dy = Py. Let K be the kernel of 20, (F) M Oyz,. By part 1) of this lemma and by the
universal property of kernel we conclude that Oz (—2F) is a submodule of IC and there is the

commutative diagram with injective arrows
K—— 204, (F) .
1A
Oz, (—2F)

From the exact sequence

(i)

0— K —20z(F) —5 0z, —k,—0
using Lemma [1.31] we conclude that the Hilbert polynomial of I is
2(2m* +m) — (2m* + 3m + 1) + 1 = 2m? — m,
which coincides with the Hilbert polynomial of Oz, (—2F'). Therefore, the inclusion
Oy (—2F) 5 K
is an isomorphism. This proves the second statement of the lemma. O]

Proposition 1.48. Let g'o be an R-bundle, and let (l1 @) be as in (1.29). Let C be the support

l2 g2
of gg, i. e., the curve given by the equation l1ga — logy = 0. Let g = (I3 Als) € Dy \ L be the
point where l; and ly vanish (cf. Proposition[1.87), then there is a non-trivial extension

0—>(’)C—>§0—>ﬂ<§q—>().

Proof. By Lemma [1.47| there is the exact sequence

(i)

0 — Oy (—2F — H) L2790, (—F — H) 24 0, (~H) — k, — 0.
Let us split this exact sequence into two short exact sequences

0—A— Oy(—H)—k,—0



and
0 Oy (—2F — H) L2 00, (F— H) - A — 0.

We obtain then the commutative diagram

0 0

| |

—(lig2—laq1
0= Oy (—2F — H) 020 o Oc—0

(la —l1) (01)

hq
l2 q2

0%2020(—H—F) >OZO(_H)@OZO goHO

(5)

0 A Oz (—H) —k,—0
| |
0 0

with exact rows and columns. By snake lemma this induces the exact sequence

0—>Oc—>§0—>kq—>0

41

that makes the above diagram a 9-diagram. We proved that £ is an extension of k, by Oc.

If this extension is trivial, then £ Oc¢ @ k, and hence o¢,k, = k, is a direct summand of
the 3m + 1 sheaf 0(,£ on Py (cf. Proposition [1.39). This contradicts the stability of 3m + 1
sheaves on P,. Therefore, £ is a non-trivial extension of k, by Oc. We proved the required

statement.

Factor of a pull back of a 3m + 1 sheaf.

]

Restricting (1.18) to Zy and using the flatness of & over U one obtains the commutative diagram

with exact rows and columns

0
!

20p,(—L)

2020(—2H) 4)020(—]?) ) OZO 4)0’854)0

Gy

In particular there is an exact sequence
0 — 20p,(=L) — 0t& — & — 0.

Therefore, we obtain the following property of R-bundles on P,.

—20z,(-H)® Oz — & ——0.

(1.30)
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Proposition 1.49. For every R-bundle £ on P, there exists a 3m + 1 sheaf F on Py singular
at a point p € Py and the exact sequence
0—20p,(—L) = oy F - € — 0,
where oy : I@’g — Py 1s the contraction of Dy to the point p.
Let us return back to the diagram (1.30).

Lemma 1.50. The kernel of oA is isomorphic to 20p,(—L) and there is the following locally
free resolution of o3& :

ug O

( 0 uo)
-
Proof. As ugx; = ugre = 0 at Zp, it is clear that the image of

('8 )

20, (—2H — F) 20,4, (—2H) D% 0, (—H) @ Oy — 02€ — 0. (1.31)

20, (—2H — F) 20, (—2H)

lies in the kernel of o5 A. Let us show that the kernel consists of multiples of wuy.
As A is an injective morphism on Py, we conclude that the kernel of o5 A can be supported
only on D;. Let us consider the open sets

in k x Py x P;. Then D; is covered by this sets. The morphism ojA looks as
We will calculate the kernel in each of these sets. Every Wy, can be identified with k x k? x
k? =2 k®. Then Z N Wy,; can be identified with k3. As Z is given in by the minors of the matrix

tZL‘() 1 T2
Ug U1 Uo ’
the local coordinates for Z N Wy are t, -+, and 2 - . We have in this case

— 2 (1.33)
$0 Uo 930 Uo
The equation for Z; in this chart is ¢ = 0.

The tuple (a,b) belongs to the kernel of oj A if and only if (a,b)ojA is a multiple of ¢ but
this is always the case because in this case ofA is a multiple of ¢ by (1.33). Thus (a,b) is
generated by the identity matrix.

The local coordinates for Z N Wy, are zé “0 , and 2. We have in this case

P ﬂ“ﬂ' (1.34)
To U1 i To Uy
The equation for Zy in this chart is 73 = 0.
The tuple (a,b) belongs to the kernel of ojA if and only if (a,b)ofA is a multlple of 71 Z‘i
By (1.34) the matrix oA is a multiple of {*. Therefore, (a,b) = (J a, w2, i e, (a,b) is

o0
generated by the matrix <161 %)
ul



The local coordinates for Z N Wy, are £ and . We have in this case

t:ﬂ@ n_mwm
Touz  Xo Lo Uz
The equation for Z; in this chart is £2 ZO = 0.
The tuple (a,b) belongs to the kernel of oy A if and only if

(a,
By (L.35) the matrix oA is a multiple of 2. Therefore, (a,b0) = (;2d',120'), 1.

7ul

0 =
We have shown that every element from the kernel of oA is generated by

20
generated by the matrix (“2 )

ug 0
204, (—2H — F) M 20, (—2H).
Since (%0 uoo) is annihilated by the equations of Dy, there is a factorization
('8 o)

20p,(—L)

Moreover the restriction of ¢ to D; is equal to

(6 )

20p,(—L) 20p,,

JogA s a multlple of Z2%0
o (ab) is
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(1.35)

'U«Q

thus is injective. This implies that ¢ is injective outside of L. But 20p, (—L) has no torsion as

a locally free sheaf on D;. Therefore, ¢ is injective. By abuse of notation we will write (

for ¢.
Proposition 1.51. Fvery R-bundle g'o possesses the commutative diagram
0 0
1
20p,(—L

/ (o)

0—20p,(—L) ——=204,(—2H) —— Oz, (—H) & Oz, — 05E —— 0

(6 )

with exact rows and columns.
Proof. Follows from diagram (1.30) by applying Lemma [1.50.
Corollary 1.52. We obtain also a locally free resolution of Op,(—L)

Oz (—2H — F) =% Oy (—2H) > Oy (~H — F) — Op,(—L) — 0.

There is also the following exact sequence we will use later:

0— Op,(=L) =% Oy (—2H) > Oy (—H — F) — Op,(—L) — 0.

uOO)
0 wug

]

(1.36)

(1.37)

(1.38)
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Restrictions of R-bundles to Dy and D;.

From Lemma 1.25, 1) we already know that the restriction &|p, of an R-bundle £ on Z, to D,
is a 2m + 2 sheaf on Py. In particular we obtain (cf. section [A.3) that the support C; of the
sheaf &|p, is a conic in Py.

Let us describe the restrictions of R-bundles to Dy.

Lemma 1.53. 1) For a fized matriz A € Xg, the restriction to IF’Q of each R-bundle £ con-
structed at the point A is isomorphic to O¢,, where the curve Cy = {detg =0} C Py is the
support of &, .

2) This isomorphism is unique up to multiplication by a non-zero constant.

Proof. 1) We will show that there is a surjective morphism O3, — &, with kernel isomorphic
to the ideal sheaf of Cy. Therefore, 5@2 = Oc¢,-
We have the resolution

0= 205,(~H — F) % O3, (~H) © O, > &, - 0. A= (143)).

The morphism

205,(—H — F) @_é)) Op,(—H)

is obtained by the pulling back from P; to P, of the exact Euler sequence

20p,(—1) Ga), Op, — 0

ui
and by tensoring it with O (—H). Therefore, 205 (—-H — F) M Op,(—H) is a surjection
and the canonical map

a= (05— O (-H)® 05, 2 €5

is then surjective as well. We obtained a surjection Op, N \ng. Straightforward calculations

show that its kernel consists of those sections which are multiples of the determinant of A.
Therefore, the kernel of a coincides with the ideal sheaf of Cy. Let us see this on stalks.
For a point « € Py consider f € Op,, such that a(f) = 0. This means 3(0, f) = 0 and

therefore from the exactness of the sequence above it follows that (0, f) = (¢,7)A, for some

(€,m) € 205,(=H = F),. Let

~ l
Aac = <l; wl) ) l17127w17w2 € 0@2@'

Wa
Then (0, f) = (f,n)gx = (El1+nly, Ewy+nws), 1. e, Eli+nly = 0 and f = {w; +nws. Note that
since the sections u; and us do not vanish simultaneously, at least one of [; and [, is invertible
in (’)@M. Let us assume without loss of generality that [; is invertible. Then & = —I;'nly and
thus B
[ = &wi + nwy = =l nlywy + nws = 17 (—lywy + hws) =17 'n - det A,

which proves the required statement. B _

2) Since Cjy is a compact curve, one gets Hom(&lp,, &olp,) = Hom(Og,, Oc,) = k, i. e,

go|@>2 and O¢, are simple sheaves. This implies Hom(go@, O¢,) = k, which proves the second
part of the lemma. O
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Remark 1.54. Note that the Hilbert polynomial with respect to Op,(H + F') of the sheaf B
given by the resolution

0— 205, (-H—-F)— Op (-H)® Op, = B—0,
is 4m + 1. In particular this holds for the sheaf O¢, from Lemma 1.25.

Proof. Using (1.22) and the resolution of B we obtain that Hilbert polynomial of B is

3 1 3 5) 3 1
<§m2+ Em) + (§m2+§m+1) -2 (§m2 — §m) =4m + 1.

This proves the required statement. [

Remark 1.55. Note that the restriction of resolution (1.29) to the component Dy = Py is a
Beilinson resolution of & on Ps.

Remark 1.56. One can also show that the restriction of (1.29) to Dy = P, is the resolution of
Beilinson type from [1l], Theorem 8.

Proof. Recall that Py = P(Op, ® Op, (—1)) is a P1-bundle over Py (cf. [12], V, Example 2.11.5).
Let 7 : ]T”Z — [Py be the projection.

The relative sheaf O,q(1) defined by the sheaf Op, © Op,(—1) is isomorphic to O (L) =
Op,(H — F) = 05,(1,-1) (cf. [12], V, Proposition 2.8). We obtain then the sheaf

Ora(1) = O, (1, —1).
Since Qp, = Op, (—2), we obtain Qp (1) = Op,(—1) and
T (QN(1)) = 7 Op, (1) = O3, (0, -1).
The dual Q* of the canonical quotient sheaf Q is defined by the exact sequence
0— Q" — m*(Op, ® Op,(—1)) = Oraa(1) — 0.
Since 7 (Op, ® Op,(—1)) = Oz, © Op_(0,—1) and Ora(1) = Op (1, —1), we get
0— Q" — O, ®05,(0,-1) = O3, (1,-1) — 0.

Using (1.22) we compute the Hilbert Polynomial of Q* with respect to O (1,1)

Sy 2m 1) 4 (B2 2 S D) = 2 4 L

Since Q* is an invertible sheaf, it has the form O _(a,b) for some a and b. By (1.21) its Hilbert
polynomial is

3 5 1 5 3 1, 1
5 +{2a+b+2}m+2(a+b) —i—2(a+b) 2b 2b+1.

Therefore, comparing the coefficients we obtain

5 1 1 3 1 1
2 5= 5 5 2+ 3 — B~ -b+1=0.
a+b+2 5 and 2(oH—b) +2(a+b) 21) 2b~|— 0
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Thus b = —2a — 2 and

1 3 1 1 3 5
5(@—1—2)2—5(@—1-2)—5(4a2+8a+4)+§(2a+2)+1:—§a2—§a—1:0.

So a must satisfy 3a?+5a+2 = 0. The only integer root of this equation is @ = —1 (the second
root is —%) So a = —1and b = —2a — 2 = 0. We obtained

Q" = 05 (-1,0).

Since Py = P(Op, ® Op,(—1)) = P(Op, & Op, (1)), we may apply now Theorem 8 from [1]. Let
us formulate the statement of that theorem here for the case of Py — P;.

Claim. Every sheaf F on Py = P(Op, & Op,(—1)) = P(Op, & Op, (1)) is obtained as a coho-
mology of the complex C%, where

Ch= P H(F@(0p(—q) ® Ora(—h)) @ 7 (04 (q)) @ A"Q". (1.39)
q+h=s—p
Using that 7*(Qf (¢)) and A"Q* are zero for ¢ and h different from 0 or 1, using that
™(Qp, (1)) = O05,(0,-1), Ow(1) =05 (1,-1), and Q' = Op,(—1,0)
we obtain the formula

Ch= @@ H(F(~h.h—q) @05 (~h,—q), (1.40)

q+h=s—p
a, he{0,1}

where F(—h,h —q) = F ® Op (=h,h — q). We need the cohomologies of the sheaves F,
F(=1,1), F(0,~1), F(~1,0).

Claim. The cohomologies of the sheaves F, F(—1,1), F(0,—1), F(—1,0)are described in the
following table.

R hl R
F 1 0 0
F(=1,0) 0 2 0
FO,-1) 0 0 0
F(-1,1) 0 1 0

Proof of the Claim. The restrictions of R-bundles to Dy = P, are the structure sheaves of their
support, i. e., every such a sheaf is given by the resolution

0—>O@2(—H—2F)—>OH}2—>.7:—>0.

Using this resolution and computing the cohomology of the invertible sheaves on P, by means of
the exact sequences (1.24)) and the corresponding long exact sequences (using Kiinneth formula
for the product Py x P;) we obtain the required statement. O

Using (1.40) we obtain finally C7* = Ck = C%2 = 0 and

CF' = H'(Py, F(—1,0)) ® 05 (—1,-1),
C% = H'(Pa, F(—1,1)) ® O3,(~1,0) & H(Py, F) @ O;..
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Therefore, the resolution of the sheaf F is
0— H'(F(-1,0)) ® O3, (=1,-1) = H'(F(-1,1)) ® O3, (—1,0) ® H*(F) ® O3, — F — 0,

ie.,

0— 205, (-1,-1) = 05,(-1,0) ® O3, = F — 0

But the restriction of (1.29) to Dy = P, is also a resolution of this type. We proved the required
statement. O

Double structure.

We want to show here that an R-bundle on Zj is not always defined only by its restrictions to
Do =Py and Dy = P5y. Let us consider an example.

2
Let A= (™1 0 and let B = 0 g
Ty Xo(T1 + T2) 0 0

Xs at the point A in this case (cf. (1.13), Example [1.8). The matrix on Z; is then

A“ 3! UpTo
B U9 U2($1+$2) '

The support of the sheaf is given by the determinant of A B, by the equation

). Note that B is a normal direction to

u1u2(a:1 + l’z) — UgUaXy = 0.

In this case the support of the R-bundle defined by Ap consists of lines and L is one of those
lines.

Dy

Let us consider the situation in the chart Z N Wy = k?® (cf. (1.32)). In this case the local

coordinates are
€ Ug U2
Y= —, vg:=—, and vy = —.
Zo Uy Uy

The equation for Zy in this chart is y;v9 = 0. The matrix A g is then

1 Vo
vy vy (14 w2) )

Its determinant is vay; (1 4 v2) — vove. The ideal of the support is then

(y1v0, Va1 (1 + v2) — vov2).
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Take some point z at L such that z is different from the intersection points with other lines of
the support and let us consider the situation at the stalk at z. Then vy # 0 and 1 4+ vy # 0,
i. e., are invertible. We obtain the ideal of the support at z:

(100, y1(1 4 v2) — vo) = (7 (L4 v2), 1 (1 + v2) — o) = (7, (1 + v2) — wp).

It is obviously contained in the ideal (yi,vg) of L but is not equal to it. This means we have a
“double” structure on L, i. e, the support of the R-bundle in this case is not a reduced variety.

1.3.3 The inverse constructions.

We have already proven many properties of R-bundles. In fact some of them may be used as
characteristic properties, i. e., one could use them to define R-bundles.

Locally free resolutions.

Let us show that the converse of Proposition 1.37 holds true.

l2 g2

Proposition 1.57. Let ® : 20z,(—H —F) — Oz,(—=H)©Og,, ® = (ll ‘zl>, have the following

properties:

e [ and ly are linear independent and their common zero point Iy N\ ly in Dy = Py does not
belong to L;

o det(®|p,) # 0;
o (®|p,)(q) #0 for all g € Dy, in particular det(®|p,) # 0.

Then the cokernel of ®, i.e., the sheaf € defined by the exact sequence
0204 (-H—F)2 04(-H)& 0z — € — 0

1s an R-bundle.

Proof. 1t is enough to show that £ is a fibre of a new one-dimensional family over ¢ = 0 (cf.
Definition [1.36/ on page [35).

First of all note that ® never vanishes, hence £ is locally free on its support.

Let

_ Eouo + arug + agus oot + ur(Anzo + A1i1zy + Ar2xa) + us (Ao + Axws)
notg + biuy + boug  MooTouo + w1 (Boi1xo + Bi1x1 + Biawa) + ua(Boaxo + Baaxs) )

Take

_(a1x1 + asxs x1(Anzo + Anan + Arawa) + 22 (Ao + Asas) _ (oo &ood
A= B = 9.
bixy + boxe  x1(Boixo + Biiwy + Biaxa) + x2(Boaxg + Baaxa) Noxo  Mooxy

Since [; A Iy lies outside of L, we conclude that aibs — asb; # 0 and hence a;x; + asrs and
b1x1 + bz are linear independent. Moreover, det A = 0 if and only if det(®|p,) = 0. Therefore,
we conclude that A lies in X and then in Xj.

Then @ is obtained applying the construction at A € Xg along B. Note that B is a normal
direction by Proposition [1.24. ]
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In Proposition [1.57 we use the properties of ®|p, and ®|p, on Dy and D; respectively. So
it would be natural if R-bundles were defined just by morphisms

<I>|DO (I)‘Dl

20p,(—H — F) —% Op,(—H) ® Op, and 20p,(—F) —% 20p,.

Let is formulate this idea properly.
Let
0— 20p,(—H — F) 2% Op,(—H) ® Op, — & — 0

and
0 — 20p,(—F) 25 20p, — & — 0

be two exact sequences and let &y and ®; be compatible on L = Dy N D;. Consider the gluing
sequences (cf. Lemmata A.16/ and [A.17)

0— QOZO(_H - F) — QODO(—H - F) D QODI(—F) — QOL(—l) — 0

and
0— OZO(_H) D OZO - (ODO(_H) % ODO) © 20D1 — QOL — 0.

Using the compatibility of &5 and ®;, the universal property of kernel, and the snake lemma
we obtain the commutative diagram with exact rows and columns

0 0
! l

—QN—O

0205 (—H — F) = 20p,(—H — F) & 20p,(—F) —20(—1) —0

v [ qum

0 Oy (—H) & Oz — (Op,(—H) @ Op,) @ 20p, —— 20, —0.
| |

A EgDE Ty Eg) ——0)
l | |
0 0 0

So, @y and ®; define an injective homomorphism 204, (—H — F) 2, Oz (—H)® Oy (—H —F)
with ®|p, = &g and ®|p, = ;.
We obtained the following “gluing” of resolutions.

Proposition 1.58. A resolution of the type (1.29) is uniquely defined by its restrictions to Dy
and Dy, which are resolutions of Beilinson type (cf. Remark!1.56 and Remark1.55).

Let ®g; := Pp|, = Py|p. If &y and Py satisfy the conditions of Proposition [1.57, then

I <1wul lwu?’), where the linear forms wy,wqy € I'(L, Or(1)) are linear independent.
2 Wy
If at least one of ws and wy is different from zero, then ®q; is injective and C = 0. In this

case we have the “gluing” exact sequence
O—>5—>50€B51—>501—>0

and the sheaf &y is supported on the zero set of the determinant w;ws — w3w, of the matrix
®g1, i. e., at most on two points from L.
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0

O) and therefore the morphism

If both w3 and wy are zero, we get &y = (Zl
2

On(—2) Y27, 90, (1)

is the kernel of ®y;. Hence C = Op(—2). In this case &y is isomorphic to O and the support
of the sheaf £ contains the line L. In this case we have a “double structure” on L (cf. page 47).

Remark 1.59. In particular we see that the gluing for an R-bundle exists if and only if the
line L is not contained in the support of that sheaf.

Extensions.
We are going to prove here the converse of Proposition [1.48.

Proposition 1.60. Let C' C Z, be a curve defined by the eract sequence
0— Oy (—2F — H) L 05 25 Oc — 0.

Let q be a point from D1\ L and let £ be an invertible sheaf on C such that there is a non-trivial
extension
0—-0c %€k, —o.

Then the sheaf £ is an R-bundle.

Proof. We are going to show that £ has a resolution of the type (1.29). Then by Proposition[1.57
we will conclude that £ is an R-bundle. The proof basically repeats with minor modifications
the second part of the proof of Lemma 5.3 from [4].

Recall that k, has a resolution as in Lemma [1.47. Tensoring that resolution Oz, (—H), we
obtain the exact sequence

(i)

0— Oy (—2F — H) L2 00, (—F — 1) ~2L 0, (~H) 2k, — 0.
Claim. Ext'(Oz,(-H),O¢) = 0.

Proof. Since O, (—H) is a locally free sheaf, we have Ext' (O, (—H), Oc) = HY(Oc®0y4,(H)).
Therefore, it is enough to show that H'(O¢ ® Oy, (H)) = 0. Tensoring the defining sequence
of C' with Oy, (H) we obtain a resolution of O¢ ® Oy, (H):

0— OZO(—QF) — OZO(H) — Oc ® OZO(H) — 0.

From the corresponding long exact cohomology sequence using that H?(Zy, Oz (—2F)) =
HY(Zy,0z,(H)) = 0 (see Proposition 1.32) we conclude that H*(O¢ @ Oz, (H)) = 0. O

Thus there exists a lifting Oz, (—H) L, & of p, 1. e., b3 = p. We obtain thus a surjective
homomorphism O, (—H)® Oz, X £ defined by p = (), where a = p;a. There is the diagram
with commutative squares and exact rows and columns

p1 p T P2

0 Oc - E
| l |
0 0

0




o1

Note that since « is injective the kernel of a coincides with the kernel of py, i.e., with the
image of f. As (g) bs = (g ) p2 = 0, we conclude that the image of (g ) b lies in the kernel of
[, which coincides with the image of a.. Since by Proposition 1.32

Ext (Og(—H — F), Oy, (—2F — H)) 2 H'(Zy,Oy,(—F)) = 0,

we conclude that there is a lifting () of — (g ) b, i.e., the diagram
(i)
207,(—H = F) 2 0g,(—H)

5 () |-
0Oz (—H —2F) ! OVZO £ Im(a) — 0

commutes. In other words this means that ¢a+101b = ¢a+1:b = 0. We obtain a homomorphism

O (—2F — H) ®20z,(—F — H) % Oz (-H) ® Oy, U= (ﬁ qfl) .

l2 q2

0 f fa

Since it holds W -p= [l ¢ (b> = | l1b+ qua | =0, one concludes that Im ¥ is contained
la @ l2b + qaa

in ker p. Standard diagram chasing shows that ker p C Im W. Therefore, the sequence

Oz (—2F — HY® 205, (—F — H) 2% Oz (-H) & Oz L € -0
is exact. We obtain the diagram with commutative squares and with exact rows and columns:

0
1

0 OZo(_2F_H)
(l2 =l1)

0
0%020(—2F—H)m>@zo(—2F—H)@2@20(—F—H)£>2(9Z0(—F—H)%0

; v o ()

(01)

0 Oz, Oz, (—H) @& Oy, Oz, (—H)——0
D1 p |
0 Oc | q 0.
1 : |

0 ; |

From —(ligo — log1)a = (12—t ) (&) a = — (12 —1a) (g) b = 0 by the universal property of kernel
it follows that there exists an endomorphism A of Oz, (—H — 2F) such that the diagram

20, (—H — 2F)
3/\ o J(—(llqz—lzth)

B
0= Og(—H —2F) —1 5 0y ——% 5 Tm(a) —0

commutes. We can treat A as an element from k because the endomorphism group of Oy, (—H —
2F) is isomorphic to k. We obtained \f = —(l1g2 — loq1)-
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Suppose A = 0. Then (-a ) (g) = 0 and by the universal property of kernel (-4 a1 )

factors through the kernel of (g) This means that there is some £ € I'(Zy, Oy, (F)) that
makes the diagram

OZO(—H - F)

Hg (—q2 q1)
e

YT (1 -1 )
0—— Oz (—F) —27 90, — L0, (F) =0

0 f 0 f
commute. Therefore, ¥ = (51 g?) and its image coincides with the image of <§1 0). This
2 —€l2 20

implies that £ is a direct sum of the cokernels of Oy (—H — 2F) =N Oy, and of 204,(—H —
1

F) M Oz, (=h), ie., € = Oc @ k,. This is a contradiction because we assumed that the

extension

0—0ceL Kk, -0

is non-trivial. This proves A # 0 and therefore f = u(l1gs — laqy) for u = —A~1. In particular
we also obtain that l;g2 — laq1 # 0 (because otherwise f = 0).

Consider the automorphism (é Mé2 _§ll> of Oy, (—2F — H) ®204,(—F — H). Then

1 ,U/ZQ —/Lll 1 ,U/ZQ —,ull 0 /L(l1QQ — lgql) 0 0
0 1 0 =10 1 0 ly ¢ =|h a
0 0 1 0 0 1 ly Q2 la g

and we finally conclude that £ is given by the resolution

hq
0 — 204 (—H —F) M Oz(—H)® Oz, L € — 0.

a1
We used here that the morphism Oy, (—H — F) M Oz,(—H) @ Oy, is injective because
the Hilbert polynomial of its kernel is zero. This completes the proof of Proposition 1.60. []
Factor of a pull back of a 3m + 1 sheaf.

We are going to prove here the converse of Proposition [1.49.
Let 0¢ : Zy — 3 be a contraction of Dy to a point p € Py, say p = (1,0,0) = {x; = x5 = 0}.
Let us consider a sheaf £ on Z; such that there is an exact sequence

0-20p,(-L) S aFrLe—o0 (1.41)
for some 3m + 1 sheaf F that is not locally free at the point p. Let us also assume that
e & is locally free on its support;
e Hilbert polynomial of &£|p, is 4m + 1.

Using (1.21)) one sees that the last condition holds in particular if £|p, is the structure sheaf
of a curve Cj given by a resolution

0— ODO(—2F— H) — ODO — OCO — 0.

We will prove the following proposition.
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Proposition 1.61. The sheaf £ as described above is an R-bundle.

The considerations below constitute a proof of Proposition [1.61] As F is a 3m + 1 sheaf,
there is a resolution of F

0 — 20p,(—2h) 2 Op,(—h) & Op, — F — 0

I $1()+CL’2()

for some matrix A € Xg, A = <x2 w1(...) F ()

). By pulling back this resolution we

obtain the exact sequence

2020( ) OZO( )@OZOLO'Sf—)O

By Lemma [1.50) the kernel of 0§ A is isomorphic to 20p, (—L) and is given by the map

(8 )
20D1(—L) —_— 2020(—2H)

Using the snake lemma we obtain thus the following commutative diagram with exact rows and
columns

: 3
20p,(=L) 20p,(—L)
/ (% ) J
0—20p, (—L) (TO)QOZO( 2H) T 0, (“H) B Oy T 03 F ——0 (1.42)
Je
0 K Oz,(—H) & Oy, -, E——0.
2(’)D1l(—L) 0

O

This diagram is similar to diagram (1.36)). We are going to prove that the sheaf K is isomorphic
to 204,(—H — F) and that the sheaf £ is an R-bundle.
Let us consider the resolution of 20p, (—L) (cf. Corollary [1.52)

up 0 50
0 — 20p,(—L) M 204,(—2H) M 20z,(-H — F) — Op,(—L) — 0, (1.43)
and the resolution
(%O 1?0> oA -
0— QODI(—L) EEE— QOZ()(—QH) RELEEN OZO(_H) D OZO - O'SF — 0. (144)

of 0§ F. Let us split the long exact sequence (1.44) into two short exact sequences:

0—20p,(—L) =204,(— 2H)LA>OZO( H)® Oy, — 0F —0. (1.45)

R
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Lemma 1.62. 1) (oF)|p, = 20p,;
2) The restriction of (1.44) to Dy remains exact. In particular Ep, is given by the resolution

0Dq

6
0— 20p,(—L) =5 20p, —5 Ep, — 0.

and has Hilbert polynomial 2m + 2.

Proof. 1) Consider the restriction of (1.44) to D;. Then (Og,(—H) ® Og)|p, = 20p, since H
and D; do not intersect. Moreover, (o4A)|p, = 0. This implies that 7p, is an isomorphism.
We proved the first part.

2) Let us restrict the sequence (1.41) to D;. Using 1) we obtain the exact sequence

0D,

Op,
20D1(—L) — 20D1 — 5[)1 — 0.
Note that op, is the same as o outside of L. Therefore, op, is injective outside of L. Thus the

kernel of pop, can be only supported on L. But 20p,(—L) has no torsion. That is why op, is
injective. We obtained the exact sequence

oD,

0
0— 20p,(—L) =5 20p, —5 Ep, — 0.
This proves the lemma. Il

Lemma 1.63. 1) The restriction of (1.44) to Dy remains ezxact;
2) %r?zo (03 F,Op,) =0 and %T?ZO (€,0p,) =0.

Proof. 1) Let us consider the restriction of the resolution (1.41) to Dy = Py. We get the exact

sequence
QDO

20p,(=L)fs, — (03 F)lp, — &, — 0.
It holds also 20p, (—L)[3, = 20L(—1), thus there is an exact sequence

0
20 (1) 2% (02 F) py —2 Ep, — 0.
Since we assumed that &, has the Hilbert polynomial 4m + 1, since the Hilbert polynomial of
(08 F)p, is 6m + 1 by Lemma [1.29 and the Hilbert polynomial of 20, (—1) is 2m, we conclude
that the Hilbert polynomial of the kernel of gop, is zero. That is why pp, is injective.
2) Restricting (1.31)) to P, we obtain the complex

(o5 )5,

205 (—2H — F) N 205, (—2H) Oz, (—H) ® 03, — (03F)Jz, — 0.

Thus 907“?20(05.7: ,Op,) is just the kernel of (05A)|z,. The kernel of o5A can only live on
L because the morphism oy : Zy — Py is an isomorphism outside of D;. Since the sheaf

Op,(—2H) is locally free, this means that the kernel is zero, therefore 907’?20(05.7:, Op,) =0.

o . e .
As Jor; (03 F,Op,) = 0, and since we have shown that gp, is injective, there is an exact

sequence
oD,

0 — Jory(€,05) % 20,(~1) 2% (03F) -
This proves that for?z" (£,05,) = 0. We proved the second statement of the lemma. O

We will use the following lemma.
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Lemma 1.64. Hom(20,,(—H — F), A) = Ext'(204,(-H — F), A) = 0.
Proof. Since 204,(—H — F) is a locally free sheaf on Zj, it holds
Hom(20,,(—H — F),A) =2 H°(QA(H + F)), Ext'(204(—H — F),A) = H'(2A(H + F)),
where A(H + F) := A® Oz, (H + F). Let us use the left part of the sequence (1.45):
0 — 20p,(—L) = 204, (-2H) — A — 0.
After tensoring by Oy, (H + F') we obtain the exact sequence
0—20p, =20z (-H+F)— A(H+F)— 0.
Therefore, there is a long exact cohomology sequence

0 — H(20p,) = H*(20,(~H + F)) — H(A(H + F)) —
— H'(20p,) — H'(204,(-H + F)) — H'(A(H + F)) — H*(20p,) — ....

Since it holds H'(20p,) = H*(20p,) = 0 and H°(20p,) = k?, since by Proposition [1.32 we
have H*(Oyz,(—H + F)) 2k and H'(Oz,(—H + F)) = 0, we conclude that H*(A(H + F)) =
H'(A(H + F)) = 0. This proves the lemma. O

Proposition 1.65. Every morphism o : 20p, — o3F lifts uniquely to the morphism of the
resolutions (1.43) and (1.44).

Proof. Let us consider the exact sequence
0—=A— 0Oz (—H)® Oy — oy F — 0.
Applying Hom(20,,(—H — F),__ ) we obtain the long exact sequence

0 — Hom(20y4,(—H — F), A) — Hom(204,(—H — F),Oz,(—H) ® Oz,) —

— Hom(20y,(—H — F),0,F) — Ext'(204,(—H — F), A).
The existence of the lifting of a to the morphism A : 20, (—H + F) — O, (—H) ® Oy, follows
from the first part of Lemma [1.64] i. e., from Ext' (204, (—H — F), A) = 0. The uniqueness of

this lifting follows from the second part of the lemma, i. e, from Hom(204,(—H — F'), A) = 0.
We obtained a commutative diagram

QOZO(—H — F) — QODI(—L)

OZO(_H) D OZ() 4)0’8?
This induces uniquely a morphism 20z, (—2H) — A such that the diagram

s 0
2020(—2]']) MZOZO(—H — F) *>20D1(—L) =0

B gl Ja

O*)A;)OZO(_H) @OZO ul O'éf 0.
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Applying Hom(20y,, _ ) to the exact sequence
0 — 20p,(—L) - 204, (-2H) - A—0
we obtain the long exact sequence
0 — Hom(20y,(—2H),20p,(—L)) — Hom(204,(—2H),204,(—2H)) —
— Hom(20y,(-2H), A) — Ext'(204,(-2H),20p,(—L)).

Since
Hom(20z,(—2H),20p,(—L)) =2 H*(40p,(—L)) =0

and
Ext'(204,(—2H),20p,(—L)) = H*(40p,(—L)) = 0,

we obtain the isomorphism
Hom(20z,(—2H),202,(—2H)) = Hom(20,4,(—2H), A).

This means there is a unique lifting of B’ to a morphism B : 204,(—2H) — 204,(—2H), i. e.,
there is the following commutative diagram.

0 2@D1(—L)(@>)zozo(—2ﬂ) (52) 20, (—H — F) —20p,(—L) -0 (1.46)
JB (% 0) JH!B i KJ Ja

0-20p,(—L)—=20z,(-2H) —— Oz, (-H) ® Oz, —— 04 F 0.
We proved the proposition. O

Let us now return to the situation given in (1.41), i. e., as a we consider the morphism p.
By Proposition [1.65 there is a unique lifting of ¢ to a morphism of resolutions. Let A and B
be the lifting morphisms as in (1.46).

Proposition 1.66. A is mjective and the sequence

0— 204 (—H—F) 2 0 (-H) B0y =€ -0
is exact. In particular K = 204,(-H — F).
Proof. Let us restrict the diagram (1.46) to D;. We obtain the commutative diagram

20p, —2—20p,(—L) — 20p,(—L) =0

J{B lel lgm

™
20, ————20p, ——— (0;F)p, —0
with exact rows. This means that the horizontal arrows in the right square are isomorphisms.
By Lemma [1.62 op, is injective. Therefore, Ap, is injective as well.
Let us consider the restriction of (1.46) to Dg. This gives us the commutative diagram

s 0
00— QODO(—QH) (0482 QODO(—H - Fo) — QOL(—l) —0

JB AD{ ng

o5 A T
0—20p,(—2H) — Op,(—H) & Oz, — (0{F)p, — 0.
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with exact rows. The lower row is exact because ojA is injective on Dy \ L and hence its kernel
may only be supported on L, which is impossible as 20p,(—2H) is a locally free sheaf. The
upper row is just the locally free resolution of 20,

s 0
0 — 20p,(—L) (), 20p, — 20, — 0

twisted by Op,(—H — Fp).

If B =0, then (§ 0y Ap, = 0. Since the section s is non-zero (in local charts) over Dy \ L,
we conclude that ADO is zero on Dy \ L. Therefore, ADO = 0 and we get gop, = 0. But thisis a
contradiction, since pp, is injective by Lemma 1.63.

If B has rank 1, then we can write

- (23 22) (A, 1) € K2, (a,b) # (0,0), (A, 1) # (0,0).

In this case the kernel of B is isomorphic to O, (—2H) and is generated by the matrix (1 —A).
We know also that oA = (xl 0 ) Let ADO = (3 6). Note that by Lemma [1.15/ there is
2

) )

(351 Ch) _ (8 0) (Ul 51)
To Qo 0 s)\ug @/

From Bop(A) = (39) Ap, it follows that

(69 (B(ng)-4) =0,

hence by a similar argument as above

g - B Ui al o Aa  Ab (75} al . )\(aul + bU,Q) )\(cﬁl + bag)
Do — ~ - ~ - ~ ~ :

Uz G2 pa pb) \us g plaus +bug)  p(ag + bga)
Note that (a,b) # (0,0) and u; and uy are linear independent. Therefore, (au; + bus) # 0
and the kernel of A is generated by (u —)\) and is isomorphic to Oz (—H — F'). Since by
Lemma [1.63/ op, is injective, by snake Lemma we conclude that the kernels of B and of Ap,
are isomorphic. But Oz (—2H) 2 Oz, (—H — F'), because Op,(L) # O, (weuse '~ H — L).

The contradiction we obtained shows that B may not have rank 1. B
We showed that B is an invertible matrix. This implies in particular that Ap, is injective.

a unique factorization

Applying the 5-lemma to the diagram (1.46) we conclude that Ais an injective morphism. By
construction of A as a lifting of o we have 7’ o A= 0, hence A factorizes uniquely through IC,
i. e., there is a commutative diagram

20, (—H — F)

=LA ~
e A

KA Oy (—H) @ O

The injectivity of A implies the injectivity of the induced morphism 2. The cokernel of ¢ has
zero Hilbert polynomial because from (1.42) it follows that K has the same Hilbert polynomial
as 20z,(—H — F), namely 2(2m? — m) (cf. page [38). Therefore, 1 is an isomorphism. This
proves the required statement. Il
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Corollary 1.67. 907’?20 (€,0p,) =0

Proof. Restricting

020 (—H — F) 5 Oy (H)® Oy ™ € =0

to Dy we obtain the exact sequence

A mh
0 — Jor, (€, 0p,) — 20p,(—L) 25 20p, —2 Ep, — 0.

As we noticed in the proof of Proposition 1.66, A p, is injective. Therefore, for?z‘) (£,0p,) = 0.
We proved the required statement. Il

Remark 1.68. Note that since B in (1.46)) is invertible, then acting on the upper row with
GLa(k) we can always attain that B is an identity matriz.

GLa2(k) GLQ k) GL2 (k) GL2(k)
(Y (w0 ) ( 0) @ @

0%2(9[)1(— ) QOZO( 2H) QOZO —H — F)HQODI(—L)AO

g e §

0 ug

O%QODI(— )HQOZO( 2H *}OZO EBOZO ul O'Sf 0.

Lemma 1.69. Let B be an identity matriz, let

A= r1 x1(Aoizo + A1z + Aiaxs) + x2(Agero + Apts)
zy x1(Boixo + Biiw1 + Biawa) + x2(Boexo + Bagxa) )

Then

A- uy + Eouo  ur(Anzo + Az + Apxa) + us(Aato + Axa) + oot
ug + Moty u1(Boizo + Biixy + Biaza) + us(Boaxo + Baaa) + nooTolo

for some &, Mo, oo and noo.
Proof. Straightforward calculations with cocycles of the corresponding locally free sheaves. [

By Proposition [1.57 we conclude that £ is an R-bundle. This completes the proof of Propo-
sition [1.61L

Proposition 1.70. Every morphism of R-bundles & — &, lifts uniquely to a morphism of
resolutions of the type (1.41).
In particular isomorphisms of R-bundles lift to isomorphisms of resolutions.

Proof. By Proposition 1.49 R-bundles have resolutions of the type (1.41). To prove the required
statement it is enough to show that for every 3m + 1 sheaf F on P, it holds

Hom (o} F,20p,(—L)) = Ext' (0} F,20p,(—L)) = 0.
Let us consider again the exact sequence (1.45). From the short exact sequence

0—-A— Oz (—H)® Oy — oy F — 0
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we obtain the long exact sequence

0 — Hom(oyF,20p,(—L)) — Hom(Oyz,(—H) ® Og,,20p,(—L)) — Hom(A,20p,(—L)) —
— Bxt'(0F,20p,(— L)) — Ext'(Oz,(—H) ® O,,20p,(—L)) — ...

Since the sheaf Oz, (—H) @ Oy, is locally free we obtain

I

Hom(Og,(—H) ® Og,,20p,(—L))
Ext'(Oz,(—H) & Oz,,20p,(—L))

H°(40p, (L))
H'(40p, (L))

9

0
0.

I

Therefore, Hom(o3F,20p,(—L)) = 0 and Ext' (04 F,20p,(—L)) = Hom(A, 20p, (—L)).
Using the exact sequence

0— QODI(—L) — QOZO(—2H> — ./4 — 0
we obtain the injective homomorphism
0 — Hom(A,20p,(—L)) — Hom(204,(—2H),20p,(—L)).

From Hom(20y,(—2H),20p,(—L)) = H°(40p,(—L)) = 0 we get Ext' (65 F,20p,(—L)) = 0
This completes the proof. n



Chapter 2

Equivalence of R-bundles

Summary

In this chapter we consider R-bundles on P, up to equivalence.

In Section 2.1 we describe the set of the isomorphism classes of R-bundles on P,. We show
that on the set of the classes of isomorphism of R-bundles there is a natural structure of a
quasi-projective variety.

In Section 2.2/ we introduce the following equivalence relation on the set of R-bundles con-
structed at the same point A € Xg (cf. Definition 2.12). Two R-bundles & and & be on P,
constructed at the same point A € Xg are called equivalent if there exists an automorphism
¢ of Zy that acts identically on Dy = Py and such that ¢*(&;) = &. Our notion of equiva-
lence is similar to the notion of equivalence given in Definition 4.1, (ii) from [26]. We show in
Theorem 2.19 that the equivalence classes are in one-to-one correspondence with the points in
projective normal space PNy = P(Ty X/T4X5s).

For a given A € X we consider also the question about the number of the equivalence classes
of R-bundles constructed at A with singular curve C, where C; denotes the supporting curve
in D;. For a generic A € Xg (when the corresponding singular 3m + 1 sheaf is defined by an
ordinary double point singularity on a cubic curve in IPy) there are only two equivalence classes
with a singular conic C' as a support in D;. Degenerations of A with double-point singularity
give us only one equivalence class with the curve C] being singular. If the singularity is a triple
point, all the equivalence classes have singular curve C. In this case one could identify the line
L = Dy N Dy with the set of all equivalence classes of R-bundles constructed at A.

In Section 2.3 we present for every type of singular 3m+-1 sheaves on P, a detailed illustration
to Theorem 2.19 and compare the equivalence and the isomorphism classes of R-bundles. We
see that in the generic case R-bundles are line bundles on the curves of the types X; and Xs
considered in [26].

2.1 Classes of isomorphism of R-bundles
We will describe here the set of the isomorphism classes of R-bundles on P,. We will show that

this space may be identified with the set of orbits of some group action on some quasi-affine
variety. We will also show that there exists an orbit space of that action.

60
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2.1.1 Isomorphism classes as orbits of a group action.
Let us consider the set of the matrices

l 0 ~ ~
b = (l; g;) ; lla l2 € F(Z(h OZO(F)), qi1, g2 < F(Zo, OZO(F -+ H)) (21)

Note that by Proposition 1.32/ I'(Zy, Oz, (F)) = I'(D1, Op, (Fy)) = I'(IP2, Op, (1)) is a 3-dimen-
sional vector space which may be identified with the space of linear forms in variables ug, u,
ug (coordinates of Dy = IPy).

We have also I'(Zy, O, (H)) = T'(P,, Op,(H)) = I'(Py, Op,(1)). This means that the vector
space I'(Zy, Oz, (H)) may be considered as the space of linear forms in xg, 1, 2.

The dimension of I'(Zy, Oz, (F + H)) is 6, as a basis of I'(Zy, Oz, (F + H)) one could choose
the set

{[L’()Uo, ToUy, TolU2, T1U1, T1U, $2U2}.

Therefore, one can consider the space A of all matrices (2.1) just as the affine variety k'®.

Definition 2.1. Let X' be the open set in the set of all matrices (2.1) defined by the following
conditions:

e the determinant A = l1qa — laq1 and its restrictions to Dy and D1 are non-zero;
e 1 Nly #0, 4. e., Iy and ly are linear independent;
e the common zero point of Iy and ls in Dy lies outside of L.
Let X be the open set in X' given by an extra condition:
e & does not vanish on D;.

There is a natural action of the group G (cf. (1.4)) on the set A of all matrices of the
type (2.1) and also on X" and X. G acts from the left by the rule

(g,h) - ® = gdh™".

On X' this action corresponds to isomorphisms of exact sequences given by g € GLy(k), h € H:

0——20, (—H — F)—25 0, (-H)® Oy —— £ ——0

A

0——204(—H —F)——0z,(—H)® Oz — F —0.

By Proposition 1.40/ isomorphisms of such exact sequences are in one-to-one correspondence
with the isomorphisms & = F. In other words, this means that the orbits of G in X’ are in one-
to-one correspondence with the isomorphism classes of the sheaves on Z; given by resolutions
of the type

0204 (-H—F)3 04 (-H) @0y — € —0, ®cX.

The sheaves given by such resolutions for ¢ € X are by Propositions [1.37 and [1.57 exactly
R-bundles on Z; = IP,. We proved the following proposition.

Proposition 2.2. The orbits of G in X are in one-to-one correspondence with the isomorphism
classes of R-bundles on Ps.
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2.1.2 Orbit space.

It would be nice to understand whether there is a natural geometrical structure on the space
of isomorphism classes of R-bundles on P.

Lemma 2.3. Let ® € X/, then its stabilizer is the group
St={() x (G| Aek}=k"

Proof. Let ® = (ll %) and suppose that (%) € GLy(k) and (3 ;) € H are such that

l2 g2
(o) ()= G )
c d la g la @ 0 u)
Comparing the entries one obtains
aly +bly = ANy, cly +dls = Ny, aqr +bge = 2ly + pqr, cq1 + dgs = zls + pgs
and therefore a =d =\, b=c =0, and

A=paq =zl, (A= p)g =zl

If A # p, then det ® = 0, which is a contradiction since ® € X. Thus A = p and zl; = zl, = 0.
We obtain z - (I1,l3) = 0 and conclude then by Lemma [1.47 that z = 0. Finally we obtain

a b\ (A z\ (A O
c d)  \0O p) \O A’
This proves the statement of the lemma. O

Corollary 2.4. The induced action of the group PG = G /St on X' is free.

Consider the vector space V = I'(Zy, Oz,(H + 2F')). By Proposition 1.32 its dimension is
10. Then PV = Py. One can represent an element f € V' as a polynomial

f = C()JZ()U?) + 01ZE0U0U1 + CQZE()U,()UQ + Cgl'()u%—f—

2 2 2 2
C4$0U1U2 + C5$0u2 + C6$1U1 + C7$1U1U2 + ng1u2 + 0917211,2

with relations ziug = 2aug = T1Uus — Ta2u; = 0.
The set V; of those f that vanish on

Dlz{ZL‘l:[EQ:O}

consists of f = Cexiut + Crriugus + Cyziui + Comaus, i. e., is a subspace of dimension 4 in V.
The set Vj of those f that vanish on Dy = {ug = 0} consists of

2 2 2 2 2
[ = Csxoui + Cazouius + Cszouy + Cezruy + Craugug + Cexius + Coxatss

and hence form a subspace of dimension 7 in V.
Consider the morphism

X' LPV x Dy, @= (ﬁl f’{) = (L@ — bagy) x (L Al).
2 2

First of all we have the following obvious lemma.
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Lemma 2.5. 9 is G-invariant, i. e., 9(g - ®) = J(P) for all g € G and ¢ € X'.
Let Y C PV x D; be the universal curve defined by

Y = {(f) x(q) | f(q) =0}.

Let us consider the open set of Y given by
Y = YN (PV\ (PV UPV)) x (D1 \ L).

In other words Y’ consists of those (f) x (¢) from Y such that ¢ does not lie on the line L and
f does not vanish identically on Dy or on D;.
Note that the image of 9 is contained in Y’ by definition of X'.

Lemma 2.6. There is a section s : Y — X' of ¥ : X' = Y, i. e., a morphisms that satisfies
Vos=idy. In particular this implies that 9(X') = Y'.

Proof. Let us show that X’ 5 Y’ is surjective. Take any point (fYy x {q) in Y. Let (q) =
(ug, uq,us) and let

2 2
f :Col’guo + C’lxououl + CQI()U()UQ + 031E0U1+
2 2 2 2
C4£L'0U1U2 + C5[L’[)U2 + C6x1u1 + C7$1U1U2 + 08*7:1“2 + Cgl’QUQ =0.

Since ¢ € D \ L, we conclude that u; = £up and uy = nug for some &, n € k. As g € Dy, we
have 1 = x5 = 0. Therefore,

0= f(q) ZCO%US + 0151U0U3 + 0277%“(2) + 0352%“3 + 04577%“8 + 057]29501@3 =
u?)xo(Co + C1€ + Con + C3€% + Cuén + 05772>,

and we obtain Cy = —(C1€ + Con + C382 + Cyén + Csn?).  Using this and the equalities
ugx1 = UpT2 = 0 we obtain
[ == (Ci& + Con + C56% + Cuén + Csn*)woug + Crzguouy + Coxguoug + Cszous+
Cyzourug + Cswous + Comius + Crryuiug + Csrius + Comguy =
Chavgug(uy — &uo) + Camouo(us — nuo) + Cso(uf — E2ug) + Camo(uyus — Enug)+
Csxo(us — n*ug) + Cszyul + Crzyuiuy + Cgzius + Cozous =
(w1 — &uo)(Crzouo + Cazo(ur + Euo)) + (u2 — nuo) (Cazouo + Cso(uz + nug))+
Cywo(urug — Eugug + Eugug — Enud) + Comrut + Crayugug + Cgzyus + Comgus =
(uy — &ug) (Crazgug + Caxo(ur + Eug) + Cyxous)+
(ug — nug)(Caxoug + Csxo(ug + nug) + ECywoug)+
Cexrur(uy — Eug) + Cropug (ug — nug) + Csriug(ug — nug) + Comaug(ug — nug) =
(uy — &ug)(Crzoug + Csxo(ur + Eug) + Cyxous + Cozqug)+
(ug — nug) (Coxgug + Csxo(us + nug) + ECsxoug + Crriug + Cszyug + Coxaus).

The latter means that f is the determinant of the matrix
P — uy — &ug gl 7
U — NUp  q1

G = —(Coxoug + Cszo(ug + nug) + ECyxoug + Crzug + Csxiug + Coxaus)

where
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and

aQ = Cll’ouo —+ Cgl’o(ul -+ §u0) + C4$0U2 -+ Cﬁxlul.
Note that 9(®) = (f) X (¢) and that ® belongs to X'. This shows that we have constructed the
morphism

SY S X, () x (LEm) o (“ ~tw @) ,

Uz —NUup G

such that ® o s = idy.. This proves the required statement. O]
Let us consider the morphism 9 : X' — Y.

Proposition 2.7. (Y, 4) is an orbit space of the action GxX' — X', i. e., the fibres of X' 2y
coincide with the orbits of this action and for every G-invariant morphism p : X' — T there
exists a unique morphism Y' — T such that the diagram

X —— Y’

N
w3

T

commutes.

Proof. Let us prove that the fibres of ¥ coincide with the orbits of G. Suppose ¥(®) = (),

for some matrices o
. L ¢ _ l1 91
o = (l2 &,2> and V¥ = (l'Q @)
We will show that ® and W lie in the same orbit.

Since (1 A ly) = (I} Aly), we conclude that the spaces ki + kil and kl} + ki, coincide.
Therefore, there exists g € GLy(k) such that

() =9-(4)
and we may assume that [; =1, 1 =1, 2.
Multiplying one of the matrices ® and ¥ by (3 9) for an appropriate A € k* we may also
assume that the determinants of ® and ¥ are equal, i. e., that
Lga — gy = hgy — g,
This means that
@ dair ) 1) =0

and hence by Lemma [1.47/ we conclude that

(@2 — @y =@ + @) = 2+ (o, =),
for some z € I'(Zy, Oz,(H)). Thus ¢ = ¢ + 22, ¢1 = ¢ + zl1, and one concludes that

1 =z
o-u(3).

This proves that ® and W lie in the same orbit of G.

Let now p : X — T be a G-invariant morphism. Since the points of Y’ are in one-to-one
correspondence with the orbits of G in X', there exists a unique set theoretical map w : Y — T
such that @w o = p. Namely, w(y) = p(x), where x € X' is an arbitrary point from the
preimage of y € Y’ under ¢J. It remains to prove that w is a morphism. Using the section
from Lemma 2.6/ we obtain @w(y) = p(s(y)), i. e., w = p o s. Therefore, w is a morphism as a
composition of two morphisms. This completes the proof of the proposition. Il
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Corollary 2.8. X' =Y’ x PG, where PG = G/St is the factor group modulo the stabilizer St
(cf. Lemma 2.5).

Proof. Let s be the section from Lemma 2.6. By Corollary 2.4/ we have a free action of PG on
X'. By Proposition 2.7 its orbit space is Y’. Therefore, the morphism

Y xPG—-X, (y,9) —g-s(y)

is a bijection. By Zariski main theorem (cf. [8], 6.1.14 and [9], 4.4.3) one concludes that it is
an isomorphism (note that Y and X’ are smooth). O

Corollary 2.9. Y = 9¥(X) is an open subvariety of Y. (Y",¥|x) is an orbit space of the action
GxX—->Xand X=2Y" xPG.

Proof. Since X C X' is invariant under the action of G, Proposition 2.7/ implies that (Y”,4|x)
is an orbit space of the action of G on X. From Corollary 2.8 we obtain X 2 Y” x PG. Since X
is an open subvariety in X’ and Y” = 9(X) = s71(X), one concludes that Y” is an open subset
in Y. O

Corollary 2.10. Let & and E" be two R-bundles on Py. Let C' = Supp &’ and C" = Supp &”.
By Proposition 1.48 we obtain two non-trivial extensions

0—>@C/—>5/—>]kq/—>07

and
0 — OC” — 5” — kq// — 0’

where ¢ and q" are some points on C'\ Dy and C"\ Dy respectively.
Proposition 2.7 says that £ and E" are isomorphic if and only if C' = C" and ¢' = ¢".

Corollary 2.11. Let us fiz a curve C C Zy given by a resolution
0— Oz (—2F —H) — Oz — Oc — 0.

Then the isomorphism classes of R-bundles supported on C' are in one-to-one correspondence
with the points of some open subset of C'\ Dy.
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2.2 A description of equivalence classes of R-bundles

We introduce here an equivalence relation on the set of R-bundles constructed at point A € Xg
and describe the equivalence classes.

Definition 2.12. Let £ and & be two sheaves of the type (‘,N’O, i. e., sheaves constructed at the
same point A € Xg. We call them equivalent if there exists an automorphism ¢ of Zy that acts
identically on Py and such that ¢*(&E;) = &,.

Remark 2.13. 1) The relation “to be equivalent” defined in Definition [2.12 is in fact an
equivalence relation on the set of R-bundles constructed at a fized point A € Xg.

2) Definition 12.12 is similar to Definition 4.1, (ii) of equivalence for vector bundles on X
from [26].

2.2.1 Group action on D;.
Let us consider Dy = Py and the line L = {ug = 0}.

Lemma 2.14. Automorphism of Dy = Py acting identically on the line L = {uy = 0} are
exactly those of the form

e

o

Py 3 (uo, u1, ug) +— ((uo, ur, uz) (§

Proof. Note that all the automorphisms of Py are linear, i. e., of the form

aj a a
<U0, u17u2> = <(u07u17 UZ) <gg§ gzi gz§>>

apo aol ao2

for some invertible matrix (g;g a1 a12 > Then the points (0, uy, ug) from the line L are mapped

to (ajouy + agous, a11uy + ag g, a1oty + aus). To obtain an automorphism acting identically
on L it should necessarily hold a;g = asg = ao1 = a12 = 0 and ay; = ags. As the matrix is
defined up to multiplication by a non-zero scalar, one may take a;; = aso = 1. This proves the

lemma since the automorphisms given by the matrices of the type (815%) act identically on
L.
Remark 2.15. Note that there is a natural action of the group of the matrices <§ g ’01y> on the

set of all conics in D;.

Let C} be a conic on D; that is not a double line. Then there are five possible situations:

I) C consist of two components one of which is the line L;

IT) C is smooth and C7 N L consists of two points;

IV

)
)
IIT) 4 is singular, i. e., has two components, and C; N L consists of two points;
) (4 is smooth and C N L consists of a single point, i. e., L is a tangent line to Cf;
)

\Y%

(', is singular and C} N L consists of a single point.
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¢ [

p1 D2 b1 P2

¢ [ope ) G [

p p

Proposition 2.16. Fach of the types of conics above is invariant under the action of the group
of the invertible matrices §§§ .
Conics of the type 1) lie in the same orbit of the action if and only if the intersection points

of their components coincide.
Let Cy and Cy be two conics of the same type but not those of the type I). Then Cy and Cy lie
in the same orbit if and only if their intersection sets with L coincide, 1. e., if CyNL = CyN L.

Proof. Straightforward. O

2.2.2 Main result.

One can assume without loss of generality, that the coefficients Ay, Ai1, and Aqs in ¢ are zero.
Indeed, applying the (affine) automorphism of X

X5 S R I (R | 1 —(Apixo + Az + Aroxs) 7
22 Q2 29 q2) \0O 1

which sends A = (73 &) to

T xo(Ao2zo + Azox2)
Ty ga — Ta(Anzo + Anzy + Apxe) )’

one can always make Ay, A1 and Ay zero.

Proposition 2.17. Let & and & be two equivalent sheaves constructed at the point A, Ay =
Ay = Ag = 0 using directions

B, = oo +&101 + Eaa oo + - - ooy
Moo + MT1 + Noea NooLy + - - - 1a2h

and , )
B, — (HoTo+ pndy+ [Tz [looTg T+ - - - f2als

5 =
IZ0¢) + 12 + Vo V()()ZE(Q) —+ ... VQQJ]%

respectively. We claim that By and By represent the same point in PN 4, where Ny = Na(Xg) =
TA(X)/Ta(Xsg) is the normal space at point A to Xg.
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Proof. By Lemma [1.25/the restrictions of the sheaves £ and & to D; are given by the matrices
A, = uy + &oto Apauz + Eootto
up + oty Borur + Bogua + Moot )

and
A, — (W + Holo Agauz + pooto
—
us + voug  Boiuy + Bogug + voouo

respectively, i. e., we have the exact sequences
0— 20D1<_1) & 20D1 — 51|D1 — 0

and )
0 — 20p,(—1) =2 20p, — &lp, — 0.

The sheaf &|p, is supported on the curve given by the determinant

f1 = det(Ay) =Boui — Agaus + Boguyus + (Egmo0 — Mooo ) g+
(&0Bo1 + moo)uotr + (§0Boz — Eoo — MoAoz) uous.

The support of the sheaf &|p, is given by

fo := det(As) =Bgiu] — Agauj + Bosuits + (Hovoo — Vopoo) g+
(ttoBo1 + voo)uour + (toBo2 — proo — YoAoz)uots.

Let gg : Zoy — Zgy be an isomorphism that is identical on P,. Let & s, 5*(51) be the isomorphism
between & and ¢*(&;). By Proposition [1.40 £ can be uniquely lifted to the morphism of
resolutions -
02205 (—H - F) 2250, (-H) & Oy, & 0 (2.2)
len e I
#* (A1)

0-20z,(—H — F) =5 0z,(—H) & Oz, — ¢*(&,) — 0,

where b = byzo + bix1 + boxzs. Note that by Remark [1.42] both matrices (ab) and (
invertible.
Let ¢ := ¢|p, : Py — P5. Since ¢ acts identically on L, it is given by

B
<U0,U1,U2> = <(U0,U1,U2) <§ é ’&;))

) are

Qo

a
0

We have also ¢*(&1|p,) = &|p,- Then, since isomorphic sheaves have the same support, it
holds Afy = f1 0 ¢(ug, uy,us2), A € k*. We have

f1 0 d(ug, ur,uz) = fi(aug, Bug + uy, yug + ug) =
Bo1(Buo 4+ u1)? — Aga(vuo + u2)? + Boa(Buo + ur) (yuo + uz)+
(€m0 — Moo ) ug+
(§oBo1 + moo) o (Bug + ur) + (§oBoz — oo — Mo Aoz)ue(yue + uz) =
Boiu; — Aopus + Boougua+
[Bo15? — Ao2y* 4+ B2y + (€00 — mooo) &+
(&0Bot + mo0)B + (§0Boz — &oo — Mo Avz2)ay]ug+
(2B018 + Boxy + (§0Bor + noo) ) uous +
(—2A02’Y + B2 + (50302 — oo — 770/402)04)“0%2-
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Comparing the coefficients we obtain the following equations

(A\By1 = Bo
Mgz = Apa
AByy = By
AMpovoo — Vottoo) = Bor8* — Aoay*+Bo2 By + (omoo — mooo)a’+ (2.3)

+(§0Bo1 + noo)aB + (§oBoz — &oo — MoAo2)ay
Ao Bor + vo0) = 2Bo1 8 + Boay + (0 Bo1 + Moo)
\)\(HoBoz — Moo — VOAOQ) = —2A02”Y + Bpo 3 + (50302 — &oo — 7701402)(1-

Consider the case By = Aga = Bpa = 0. Then the above system of equations is equivalent
to the system

Apor00 — vottoo) = (Eomoo — Mooo)a® + (1100) e + (—&oo) Y
A00) = (n0o) v
A(—Ho00) = (—&oo)av-

In particular it follows that Apgy — oo = 0 and Avgg — angy = 0.

Since the tangent equations in the case By = Apa = Bya = 0 are just {oo = 1oo = 0 (see
Example 1.8, (1.13)), we conclude that ABy — aBy is a tangent vector to Xg at A. Therefore,
By and Bs represent the same vector in PN 4.

We can assume now that at least one of the coefficients By, Ags, and Bys is not zero. Then
in the system (2.3) A = 1, and we can rewrite it in the form

HoVoo — Voloo = 30162 - A0272+B()267 + (&oMoo — 770500)062‘1‘
+(&oBo1 + Moo)af + ({0 Boz — oo — MoAoz2)ay
28018 + Boay = (t0Bo1 + v00) — (§oBo1 + 100)
Bo28 — 2A027 = (o Boz — oo — Yo Ao2) — (§0Boz — &oo — MoAoz)av.
From the resolution
0— 20p,(—1) 25 20p, — & |p, — 0

applying ¢* we obtain the exact sequence

* Al "
0 — 200, (~1) L% 20, — ¢7(£)|p, — 0.

Restricting (2.2) to D; we obtain the following commutative diagram with exact rows

OHQODI(—l) LQODl —>(€2|D1 —0

(24)] " &) |om (2.4)

00— 20D1 (—1) — 20D1 — ¢*(€1|D1) —0.
Restricting this once more to L we will get the commutative square

QOL@J)EBJLQOL

enl L |69

u *

20, (—1) ~225 20,
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Therefore, comparing the entries 1.1 and 2.1 we obtain
a=a=d#0, b=c=0.

Since
A, = (W + &ouo Apaua + oo
L=
us + notty  Borur + Boaua + Mootio

we obtain that

¢*A1 _ (ul + ﬁuo) + SOCYUO AOZ(UQ + ’YUO) ~+ Enoarug _
(ug + yup) + nocwy  Bor(u1 + Bug) + Boa(uz + yug) + noocvitg

uy + (B + o) uo Apoug + (Ao2y + oor)ug
ug + (v + no)ug  Boruyr + Bogug + (Bo1 S + B2y + o) ug )

us + vyug  Boiur + Bogug + voouo

(8 2) o (A1) = Ay (8 %)

comparing the entries on the places 1.1 and 2.1 we get

A, — (U1 + Lolo Agatia + plooUo )
2 — )

from the condition

po =B +&a and vy =7+ na.
Comparing the entries on the place 1.2 one obtains
a( Aotz + (Agay + Eooax)ug) = bo(uy + o) + d( Aotz + pootio)
and therefore B B B
bop =0, aAg =dAp, a(Awy+ &oa) = dugo.

Comparing the entries on the place 2.2 and using by = 0 one obtains

a(Bo1uy + Bogua + (Bo1 8 + Bozy + noo)ug) = d(Boiur + Bogua + vootio)
and therefore
aBo1 = dByi, aBy = dBoz, a(Boif + Boay + mooc) = duio.
Recall that we are considering now the case when at least one of the coefficients Ao, Bo1, and
By is different from zero. Therefore, we conclude that a = d and thus
poo = Aoy + oo and  vog = Bo1 3 + B2y + noocr-

We proved that

o = B+ &

Vo =7 + o«

oo = A2y + Soox

voo = Bo18 + Bo2y + nooc
Therefore,

B = po — oo, ¥ =1 — Mo,
troo — Eooax = Agy = Aoz (v — o),
voo — Moo = Bo1 8 + Bozy = Bo1(po — o) + Boz2(vo — mocv).

The last two equalities mean that By —aB; € T4(Xs), so By and By represent the same element
in PN,4. This proves Proposition 2.17. [
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Proposition 2.18. Let By and By be two equivalent normal directions at the point A € Xsg,
A = A1 =0, i. e, By and By represent the same point in PN 4. Then the sheaves & and &
on Zy constructed along By and Bs respectively are equivalent.

Proof. Let
B, = (f{ﬂo + &1 + oo fooxg) +---+ fmxz)
NoTo + T1 + M2 NooTy + -+ + N22xs
and

B, — (Ho%o + 1121 + paZy  flooTg + -+ oo
2 Voo + V121 + Voo 1/0017% + -+ 1/22.1:% )

Since By and B, define the same point in PN 4 and since the tangent equations at A are
oo = Ao2mo
nNoo = Bo1&o + Bozmo,
it follows that
too — Eooax = Agz(vo — Mo
Voo — Moo = Boi(pto — &ox) + Boz(vo — mor)

for some a € k*.

Take
B = o — oo, =1y — o,
and let 5 5
¢ = (8 (1) %) : Py — Po, <U0,U1,U2> = <(U0,U1,U2) <8 5 %))
Let
AVB _ Uy + £0U0 U1A12$2 + UQ(AOQJIO + AQQIL’Q) -+ fooxou()
! ug + Moty u1(BoiTo + Brix1 + Biata) + ua(Boaxo + Baara) + nooxot ) |
and
A, = (™ + poUo Uy A19g + us(Agaxo + Azea) + tooTolo
2 ug + vug  ui(Bo1xg + Brixy + Biaxa) + ua(Boaxo + Baaka) + VooTolo

be the matrices defining the sheaves & and &. Consider 5: Zo — Zy such that (Z\Dl = ¢ and
¢|p, = idp,. Then ¢*(Ap,) equals

<(U1+BUO)+§oauo (u1+Buo) Araza+ (w2 +yuo) (Ao +A2x2) +Eooaxxoug > _

(ug+vyug)+noaug  (u1+Bug)(Borxo+ Biixi+ Biaxa)+ (uz +vyu) (Bogxo+ Baaxa) +nogxoug

_ (w+(B+E&)uo uy Ao +ug(Agaxo+ A2ax2) + (v Ao2 +Eooa) Touo
uz+(y+no)ug  ui(Boixo+ Biixi+ Biaxa) +ua(Boaxo+ Bawa) + (6 Bo1 +vBo2 +nooc) xouo )

Since we took
B =po— o, v=ro— o,
we can rewrite the tangent equations as
oo — Soo = Ag2y, Voo — Moo = Bo1 8 + Boay-

It follows that ¢ (ZBI) = AVBQ. Therefore, there is an isomorphism 5*(51) = &, which means
that the sheaves & and & are equivalent. O

Theorem 2.19. There is a one-to-one correspondence between the equivalence classes of R-
bundles constructed at A € Xg and points of PN 4.

Proof. Follows from Proposition 2.17 and Proposition 2.18|. Il
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2.2.3 R-bundles with singular curve (.

We have shown that the points of PN4(Xg) = P; parameterize the equivalence classes of R-
bundles at a point A € Xg. For a fixed A we are going to investigate how many equivalence
classes of R-bundles at A with singular curve C there are. Recall that for an R-bundle £
constructed at A we denote the support of the restriction £|p, by Cj.

Criterion for (] to be singular.

Proposition 2.20. Let A € Xg be as in (1.17) and let £ be an R-bundle constructed at A by
the help of a normal direction B € TaX \ T4 Xs.
Then the support of E|p, is a non-smooth conic (two lines) if and only if the direction B

satisfies the equation
B01T12 - A02T22 + (BOQ - AOl)T1T2 == O, (25)

where Ty = §oo — Ao1€o — Aoano and Tz = noo — Bo1§o — Bozmo-
Proof. From Lemma [1.25 we have that the support of £ |p, is given by the equation

det (™ + &ouo  Anur + Agaus + Eootto
us +notty  Borur + Boaua + Nootio
(§om00 — 770500)“3 + (&0 Bo1 + 1Moo — noAor)uour + (§oBoz — Eoo — MoAoz2)uous = 0.

The symmetric matrix corresponding to this quadratic form is

> = B(]lu% — Aogug + <B02 — Agl)U1U2+ (26)

omoo — Mo&o0 %(50301 + Moo — 10 A01) %(50302 — €00 — Mo Ao2)
Q = | 3(&Bor + 100 — M0A0) By +(Bo2 — A1)
%(50302 — &oo — MoAo2) %(302 — Ap) —Ap

By Lemma A.9 we know that the conic (2.6) consists of two lines (or one doubled line) if and
only if the determinant of the above matrix is zero. Straightforward calculations show that

—4 det Q = BOlT12 — A02T22 -+ (BOQ - AOl)T1T2J

where T7 = &y — Ap1&o — Ao2no and Ty = 1y — Bo1&o — Boeno are tangent equations to Xg at
the point A (cf. (1.13)). This proves the required statement. O

For fixed coefficients Agy, Aga, Bo1, and By we can decompose (2.5) into linear factors:
BT} — Ap2T3 + (Boa — Ao))Th T = (anTh + i Te)(anTh + B2T5). (2.7)
Note, that the intersection of the support of an R-bundle with the line L is given by the

determinant of the matrix
ur  Aprur + Agaus
us Boiui + Bpug )’

i. e., by the polynomial Byju? — Agou3 + (Boa — Ag1)uius. There are three possible situations:
® Cl NL= L;

e (1 N L consists of two points;

e (1 N L consists of a single point.

Let us investigate all these situations. Let C' be the support of the singular 3m + 1 sheaf given
by A, i. e., the cubic curve in P, given by the determinant of the matrix A. Let p € C be the
point where the corresponding 3m + 1 sheaf is not free on its support, i. e., the singular point
of C' of A given by the linear forms of A (cf. (1.6) and Lemma [1.2).
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The case when Agp =0, By =0, and By, — Ag; = 0.

This is the case when C1'NL = L, i. e., when the whole line L lies in the support of an R-bundle.
One sees also that this is the case when p € C' is a triple singular point of C'. In other words p
is an intersection of tree lines.

For all normal directions the curve C consists in this case of two different lines one of which
is L. So there are no R-bundles with smooth curve C; in this case.

We are going now to consider the cases when at least one of the coefficients Ags, Boi, and
By — A is different from zero.

The case of non-zero discriminant.

Let us consider the case when the discriminant A = (Bgy — Ag1)? + 4Ag1 By is non-zero. This
means that the intersection of the support of an R-bundle with L consists of two points given
by

Bmu% — Aozug + (B02 - A01)U1U2 =0.

Then the linear forms [ = ay T} + 5175 and ly = aoT + (213 in variables T and T from (2.7)
are linear independent and we can consider them as tangent equations to Xg at A. Then
TaXs = Z(l1) N Z(lz). One can represent a zero set of (2.5) as a union Z(l1) U Z(la).
Let B and B’ be two non-tangent to Xg directions at the point A.
Then they define the same point in PN4(X3) if and only if there exists
a non-zero constant A such that B — AB’ € T4(Xs). The last condition
is equivalent to the vanishing of both /; and I3 on the matrix B — AB'.
Z(l2) o LaXs Assume that both B and B’ belong to Z(l;). As we assumed them
to be non-tangent, we have l5(B) # 0 and l5(B’) # 0. Take A # 0 such
that lo(B) — My(B') =0, 1. e., A =13(B)/l3(B’). Then l;(B—AB') =0
and lo(B—AB') =0, i. e., B and B’ define the same point in PN 4(X5).
Analogously one shows that all the directions from Z(l3) define the

TaX | Z(1y)

same point in PN4(Xg).

Let B € Z(ly) and B’ € Z(l3) be two non-tangent to Xy directions at the point A. Then
they define the same point in PN4(X3) if and only if both /; and l; vanish on the matrix B—AB’
for some non-zero A. Since B € Z(l;), we obtain [;(B — AB’) = —Al1(B’). Since B’ € Z(ly),
we get [o(B — AB’) = [3(B). Finally we conclude that B € Z(l;) and B’ € Z(l5) define the
same point in PN4(X3) if and only if [;(B’) = l3(B) = 0. But this is only possible for tangent
directions B and B’. We obtained a contradiction and showed this way that all the normal
directions to Xg at the point A that give singular conics in Dy = Py give only two points in
PN4(Xg), one point corresponds to the component Z(l;) and the another one corresponds to
Z(1y).

The case we have just considered is exactly the case when the point p € C' is an ordinary
double point singularity of C.

The case of zero discriminant.

In this case By TE — ApaT§ + (Bog — Ao1)T1 Ty = [? for a non-trivial linear form | = o7} + T5.
This means that the curve C is singular if and only if [ = 0. The
intersection of the support of an R-bundle with L consists of a single
point given by au; + fBugs = 0.

As at least one of o and [ is different from zero, we can choose
Z(1) TaXs some T;, among 717 and 75 such that 7T;, and [ are linear independent
and we may consider them as tangent equations to Xg at A. Take two

TyX
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normal directions By, By € Z(l). Then T;,(B;) # 0 and T;,(B2) # 0. Therefore, for A = %
) 2
we have that

Z(Bl — )\Bg) =0 and EO(Bl — /\Bz) = O,

which means that B; — ABs is a tangent direction and thus B; and B, are equivalent normal
directions.

We have shown that there is only one point in PN4(Xs) with singular curve C4.

The case of zero discriminant correspond to the case of a degenerated double point singu-
larity p € C.
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2.3 Examples

Using concrete examples we give here an illustration to Theorem 2.19.

For every singularity type of a cubic curve in Py we fix a matrix A € Xg and consider the
set of R-bundles constructed at A. Note that the intersection set of C} with L is completely
described by the matrix A.

For a fixed A we describe the set of the equivalence classes of R-bundles with the curve
C of fixed type (see page 66). If the type of C; is different from I), by Proposition 2.16 it is
enough to fix only one such curve (see also Definition 2.12).

2.3.1 Generic case.

1 xa(To + 22)
T2 L1Xo

curve in Py given by the determinant of this matrix. This
curve has an ordinary double point singularity. Then for all
directions B the curve () is given by the determinant of the

matrix
2220 — w2(T2 +20) =0 (Ul uz(zo + ZL‘Q)) .

Let us fix the matrix A = . Let C be a

U2 U1To

The intersection of Cy with the line L is given by the equation u? — uZ = 0 and consists of

two points. Tangent equations at the point A are £y = 19 and 199 = &o.

For a direction
B— oo + &171 + Eao 500»’173 + 5221'%
NoTo + TT1 + Moz MooZd + -+ + Nao3

the restriction to D; of the corresponding sheaf is given by the matrix

(Ul + &oup U + 500U0>

Uz + NoUp UL + NooUo

The support of that sheaf on D; is then the curve given by the determinant of this matrix:

C = {uf - Ug + (&Moo — 770500)“(2) + (&0 + Moo)uous — (Mo + Eoo)uoua }-

Remark 2.21 (comparison with [26]). One sees that Cy is a normalization of C' (Cy is a proper
transform of C').

If the conic C7 is smooth, then it is isomorphic to Py and thus the support of an R-bundle
in this situation is a curve of type X (see [20], pp. 212-213).

If C is singular, then it is just a union of two lines and thus the whole support Cy U Cy 1is
a curve of type Xs.

We conclude that R-bundles in the generic case are line bundles on the curves Xy or Xs.

Smooth curve C].

We are going to describe the equivalence classes of those R-bundles constructed at the point A
that have smooth curve C. By Proposition 2.16! it is enough to fix one such curve because the
intersection of C with L is completely described by the matrix A.

Let us fix some smooth conic section on P, that intersects with L in the points {u? —u3 = 0},
say u? — u3 — upuy = 0, and let us see which directions B give us this conic section.
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N

From the equations above we obtain

§oMoo — Mo&oo = 0,
&o + Moo = 0,
Mo + oo = 1,

thus & = 1 — 19, Moo = —&o, and —&3 — (1 — mg)no = 0. So we have two parameters & and 7
subject the relation

& + (1 —mo)no = 0.
We obtain that C; = {u? — u3 — upu; = 0} if and only if the matrix B is of the form

B — fl‘o + 51131 + €2x2 (1 — 7])378 + e+ fgzxg
NTo 4+ My + N2ty —Exg+ -+ oo

where the parameters ¢ and 7 satisfy the equation
E—n+n=0.

One can rewrite B as
0 3 9 0 0 —uxf &1y + o Enmoxs + - + Ex03
B= V) + + o)+ 3)-
(0 0 ) : ( 0 _753> 7 ro 0 MmT1 + 122 No1Tox1 + -+ 7722$§

This means that the directions which give us the curve {u? — u3 — ugus = 0} is a hypersurface

in some 16-dimensional affine subspace of T4 X that is complementary to T4 Xs.

For a direction B with the curve u? — u3 — uguy = 0 the matrix on Zj is

Ap = up 4 Eug  uz(To + 22) + (1 — n)uexo
U + Mg w1y — {Upo '

In particular this means that for fixed parameters £ and 1 we always obtain the same matrix
and thus the same sheaf.
Suppose that two matrices

gB _ (wmt Eug  uz(xo + 22) + (1 — n)upxo
Ug + Mg w1y — oo

and
Ao (1t Eug  us(ro+ x2) + (1 — 1 )uezo
B — / /
Uz + 1 U u1zo — §'ugo
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define isomorphic sheaves. Then by Proposition 1.40/ and Remark 1.42 there is a commutative

a6

Ay
- . . ~ (A oz a b\ ~ . :
with invertible vertical arrows. Therefore, Ap 0 4 =l. 4 Ap:. Comparing the entries

on the place 1.1 we obtain
AMur + &ug) = a(uy + §'up) + blug + n'up).
Thus b=0,a=A#0,¢=¢.
Comparing the entries on the place 2.1 we obtain
Mug + nug) = c(ug + §'up) + d(us + n'ug).

Thusc=0, A=d=a,n=1'
We obtained that two matrices B and B’ define isomorphic sheaves if and only if £ = ¢
and n = 1. That is why we can interpret the curve £ — n? + 7 = 0 in the normal plane

o2
k- <:%0 (;2> +k- (;) éj 0) = k2 as the set of all isomorphism classes of the sheaves supported
— 2 0

on CyUC, C = {u? — u3 — upuy = 0}, that we obtain at the point A = (il $2(io;- x2))
2 120

Fn?+n=0

The group of invertible matrices <§

5
1
0

%) acts on the set of conics in P,. Let us calculate

the stabilizer of the conic C} = uf —u3 —ugus = 0. An element <§ g %) sends (] into the curve

given by the polynomial

(Bug+u1)? — (yuo +u2)* — aug(yug +us) = ud —uj + (5% — 7 — ay)ug + 2Bugus — (2 + a)ugus.

= 1 should
3) =1id or
1

To obtain the same curve C; the equalities 3> — 4% — ay =0, 28 = 0, and 2 + «
hold true (we compare the coefficients). Thus either v = 0 and o = 1, i. e, (gg
_ . . a By . -101
v -ne (51) - (§1)
Suppose that two matrices
Ap— (™ +&uo  ua(zo + 2) + (1 — n)ugzo
Uz + NUo uyg — EupTo

and
A = up + &g us(xo + w2) + (1 — 1 )ugxo
B — / /
U + 1" Ug urzo — §'ugo
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define equivalent sheaves. Then either { = ¢ and n = 7/, i. e., the sheaves are isomorphic, or
they are not isomorphic but there is an isomorphism of the sheaves defined by ¢*Ap and Ap/,

where ¢ = (Io)“fé). As

01

¢*ZB _ uy — Eug ug(xo + T2) + Nuozo
us + (1 —n)ug U1 + Eupxo

by the considerations above this means £ = —¢ and ' = 1 — 7. So for a fixed equivalence class
there are exactly two points on the curve &2 — n? + 1 = 0 defining that class. We claim that
for a point (£,n) from the curve above the second point defining the same equivalence class is
just the point on the curve defining the same normal direction. Indeed, let us fix a point (£, 7)
on the curve £2 — n? +n = 0, and let us see what points on this curve define the same normal
direction. Let (£',7n’) be such a point. Then

B (f:vo—l—... (1—77):5%4—...)7

nro+... —&xd4---+

B ({’xo—{—... (1—77’)338—1—...)7

B 77'96’0—1—... —f’x(2)_|_..._+_
and B — O[B’ c TAX for some « c k*. AS
B_QB/:(<§_06§/)JJO+... (1_77_05(1_77,))I2—|—,,_>
(n—an)zg+... (=6&—(—a))a2+---+ )’

using tangent equations at A we get £ —af’ =0 and 2(n — an’) =1 — . Thus £ = af’ and
n=15%+an. Using & —n? +n=E—n*+n =0 we obtain

2412 I -« /2 l-—a /
0=a¢"~|—7—+an | +—F—+an =

2 2
25,2 2,2 4 2,+1—a 1-a\?> 1-a 1—a\?
o’ — o - = - .
g Ty 2 2 2

Therefore, either « = 1 or a = —1. This means that either (,n) = (¢,71) or (§,n) =
(=&, 1—7).
Singular curve (4.
Let us fix some singular (reducible) curve through the points u; = uy and u; = —usy on the line

L = {ug = 0}, say

uf + ug + 2uguy — uz = (ug — g + up) Uy + g + up) = 0.

N e

\
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To obtain this curve the following equations should hold true:

SoMoo — MoSoo = 1,
§o + Moo = 2,
Mo + &oo = 0.

So ngo = 2 — &, oo = —No, and (2 — &) + 773 = 1. Therefore,

B— Exg + &1 + Eamo —Tlxg + -+ §2Q$§
nTo + My + nere (2 —&)xd 4 -+ mprd )’

where the parameters £ and 7 satisfy the equation £(2—&)+n*—1= (n—£6+1)(n+&—1) =0,
is the general form of the normal directions that give us the curve C. Of course we need 7 # 0,
because otherwise, B is a tangent direction.

One can rewrite

0 0 zo 0 0 —a3 Sy + &y Enwory 4 -+ Loy
B = + + O) + 2.
(0 21’3) 5 < 0 —33%) U (.1'0 0 ) <771£U1 + M2Z2 Mo1Tox1 + -+ 772295%
This means that the set of directions which give us the curve {u? — u3 + 2ugus + u = 0} is

a hypersurface (two hyperplanes) in some 16-dimensional affine normal subspace of Ty X.
For a direction B with the curve u? — u3 + 2ugus + u2 = 0 the matrix on Zj is

i (w + up  us(xo + T2) — Nuoxg
B — .
ug +nug w1 + (2 — &)upo

In particular this means that for fixed parameters £ and 1 we always obtain the same matrix
and thus the same sheaf.
Suppose that two matrices

i (w + ug  uz(xg + T2) — Nuozo
B =
ug + nug w1 + (2 — &)upro

and
i, _(m + &ug  ug(o + 2) — N'upzo
B — / !
uy +n'ug  wizo + (2 — & )upxo

define isomorphic sheaves. Then by Proposition 1.40/ and Remark [1.42 there is a commutative

a6

Aps
o . . ~ (A =z a b\ ~ . :
with invertible vertical arrows. Therefore, Ap = Ap. Comparing the entries

0 u c d
on the place 1.1 we obtain

Aug + &ug) = alug + &'ug) + bug + n'ug).
Thus b=0,a=X#0,£=¢.
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Comparing the entries on the place 2.1 we obtain
Aug +nug) = c(ur + ug) + d(uz + n'ug).

Thus ¢ = 0, A = d = a, n = 1. We obtained again that two matrices B and B’ define
isomorphic sheaves if and only if £ =& and n =17/,
Let us calculate the stabilizer of the conic C; = {u? — u2 + ug + 2upu; = 0}. An element

<§ [g %) sends (] into the curve given by the polynomial

(Bug + u1)? — (yup + u2)? + a*ug + 2cu(Bug + up) =
ui —ui + (8% — 2+ a® + 2a8)uf + (28 + 2a)uguy — 2yugus.

To obtain the same curve, we have the equations —2v = 0, 28 +2a = 2, 32 —v?+a?+2a8 = 1.
Therefore, § =1 — a and v = 0. So the stabilizer of (' is the group

Suppose that two matrices

i (w + Eup  uz(xo + T2) — Nue
B =
us +nug w1z + (2 — &)upxg

and
Ao — (W +&ug  up(xo + 72) — U
B — / et
uy +n'ug  wrro + (2 — £ )uox

define equivalent sheaves. Then either { = ¢ and = 7/, i. e., the sheaves are isomorphic, or

they are not isomorphic but there is an isomorphism of the sheaves defined by gb*/Nl p and Ap,
al-a0

where ¢ = (8 ! (1]> As

v u + (€ + 1 — a)ug us (o + x2) — anuoxg
¢ AB - )
Ug + anug w1z + (2 — upzro + (1 — a)upxg

by the considerations above aé +1 — a = £ and an = n'. One easily sees that this holds if
and only if the points (£,7) and (£,7) lies on the same line through the point (1,0). Thus we
showed that the points the curve (n —§ +1)(n+ & — 1) = 0 define the same equivalence class
of R-bundles if and only if they belong to the same component of this curve. But to lie in the
same components (hyperplanes) is the same as to define the same normal direction.

\

nH4E+1=0

(1,0)

n4E—1=0

\



81

2.3.2 The case of a cuspidal curve.

e

rirg — 25 =

For a direction

T 13

Let us fix the matrix A = (
Lo T1Xg

). Then for all directions

B the curve Cj is given by the determinant of (ul u2x2). The
Uz U1To

intersection of Cy with the line L is given by the equation u? = 0
and consists of a single point. Tangent equations at the point A
are {oo = 0 and 790 = &o-

B— (foxo + &+ Smy oot o fzﬂ%)

NoTo + MT1 + Mo 7700$% + - Mt

the restriction of the corresponding sheaf to Dy is given by the matrix

(Ul + oo Sooto > ‘

Uz + NolUp U1 + NooUo

The support of that sheaf on D; is then the curve given by the determinant of this matrix:

C1 = {uf + (Som00 — M0&oo)ug + (o + Moo)uour — Egotiouz = 0}

Smooth curve (.

Let us fix some smooth conic section on Py which intersects with L at the points {u; = 0}, say
u? — uguy = 0, and let us see which directions B give us this conic section.

%

Co

i 3
\1

1

\

We obtain then the equations

&oMoo — Mo&oo = 0,
§o + Moo = 0,
—&oo = —1.

Thus &y = 1, 100 = —&o, and —&§ — 0y = 0.
We obtained that C; = {u} — ugus = 0} if and only if the matrix B is of the form

B — (§x0 -+ £1I1 + €2$2 .I% + -+ fQQI% )

NTo + M + naxs —Exf + -+ -+ N3

where the parameters & and 7 satisfy the equation £2 +n = 0.
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[

For a direction B with the curve u? — upus = 0 the matrix on Z; is

2{ uy + 5160 U2Z2 + UpTo
B = )
Us +Nug w1y — EUpTo

Absolutely analogously as above in the generic case one sees that the points from the curve
€% + 1 = 0 define different isomorphism classes of sheaves.

Since an element <§ flj %) sends (' into the curve given by the polynomial
(Bug + u1)? — aug(yup + ug) = uj + 2Buouy + (8 — ay)uj — augus,

to obtain the same curve, we have the equations 23 = 0, 3> —avy = 0, and —« = —1. Therefore,
the stabilizer of (] is trivial, i.e., consists only of the identity matrix. This implies that the
curve £2 + 1 = 0 in k? parameterizes the equivalence classes of sheaves.

One easily sees that different points on the curve £2 +n = 0 correspond to different normal
directions.

Singular curve (.

We fix here a singular curve C through the point u; = 0 at the line L, say C; = {u? — u3 =

(ug — ug)(u1 + ug) = 0}.
/DV

Co

N TR

Cy

\

This is possible if and only if

§oMoo — Moo = —1,
&o + 1o = 0,
—&oo = 0.

Therefore,
B— §xo + &1y + &axa oy + -+ €
NTo + My + ety —Exf+ -+ mpas )
where €2 = 1, is the general form of normal direction defining a sheaf with the curve C; =
{u? —u? =0}.
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For a direction B with the curve u? — u2 = 0 the matrix on Z is

ZB _ (Ul + &g U9 ) .

U +Nuy  U1To — EUTo

As above, we see that different points with &2 = 1 define different isomorphism classes of
sheaves. Let us have a look at the equivalence classes.
First of all we again need to compute the stabilizer group of the curve uf — u2 = 0. Since

the matrix (Og g %) sends the given curve into the curve

(Bug + u1)2 — ang = uf + (62 — a2)u(2) + 2Buguy = 0,

to get the same curve we get the equations 8 = 0 and a? = 1. Thus the stabilizer group is
10~ 10~
{(358) 1verfu{(§39) 10en}.

ZB _ <U1 + &y U X9 )

U +Nuy  U1To — EUpTo

Two matrices

and
i uy + &'ug U2T
B = / /
uz +n'ug  urTy — g
0
define equivalent sheaves if and only if there exists ¢ = <§) ! %), a? =1, such that the sheaves

given by Ap and ¢*(KB) are isomorphic. Since

o (Ap) = ( uy + aug (yuo + uz) 2 ) _ ( wy + Eaug . )

Yug + U + naug  uixy — EqugTg us + (na+ Y)ug  uire — Equgry

the latter means ¢ = a and ' = na + . But for each (£,n) and (&,7') with €2 = £? =1
there exists a = £'/¢ and v = 1’ — an for which the equations hold. Therefore, all the sheaves
with the curve C; = {u? — u2 = 0} are equivalent. One also sees that the points with £? =1
define the same normal direction.

2.3.3 Three lines with simple intersections.

Ty 0
Ty T2Xg
are in this case yo = 0 and 79y = 19. For a general direction

B— Sowo + &1 + ama Eood + -+ + Eoo
NoTo + T1 + Moz NooZd + -+ - + Nao3

We start here from the matrix A = ( ) . The tangent equations

we obtain a sheaf on Z; given by the matrix

<U1 + &ouo §00Uo T )

Uz + Moy  UaUg + NooUoTo

TOIX1x9 = 0
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Uy
U2
The restriction to Dy is given by the matrix

(Ul + ouo Soollo ) '

L = . . 0 .
The restriction to Py is given by ( . ) and is supported on the curve ujusxg = 0.
270

Uz + ToUp U2 + TooUo
Its support on Dy is the curve C given by the polynomial
uytis 4 (€700 — Mo€oo) g + Mootiots + (Eo — Eoo)totia-
The intersection of the support of the sheaf with the line L consists of two points u; = 0 and
Ug = 0.
Smooth curve (.

Let us fix some smooth curve Cy, say Cy = {ujug + u% = 0}.

S

\

We obtain this curve if and only if

SomMoo — MoSoo = 1,
& — &0 =0,
Moo = 0,

or, equivalently, if and only if

B— Exo + &1x1 + &g fw(z) + -+ f22$§
NTo + MT1 + M2To Mo1ToT1 + * -+ + Mool

with £n = —1. For a direction B with the curve ujus + u2 = 0 the matrix on Z is

EB _ (Ul + Eug fuox(]) ‘

Uz +Nug  U2Tg

Thus we obtain a “curve” &n = —1 in k? of R-bundles in this case.
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Note, that this curve is isomorphic to k*.
As above one easily sees that different points of this curve give us non-isomorphic sheaves.

The matrix (§ g %) sends the curve (' into the curve

(Buo + 1) (yug + ug) + ®ud = uyus + (By + a?)ug + Bugus + yueu;, = 0.

Thus the stabilizer of C; consists of two matrices (é g §> and (%1

Ay = (Ul + &uo fuol‘o)

Ug +NUug  U2Tg

00
1 (1)> Therefore, two sheaves

given by the matrices

and

zsz/ _ (u1 + ug f’uomo)

Up + Uy U

1

—OoO O
N———

define equivalent sheaves if and only if they are either equal or if Ap = qﬁ*(ﬁ g) for ¢ = < %

¢*(A“B) _ (Ul —&ug —fuol‘o)

o~ O

Since

Uz — NUg U2

the latter means (£',7) = (—=§, —n). But this is the same as to say that the points (£,7n) and
(&',n') define the same normal direction. Indeed this is the case if and only if B’ — aB € Ty Xs
for some non-zero scalar a.. As

' (¢ —adae+ ... (€ —ab)adit...
B_QB((n’—an)xw... 0-x3+0... )

and since the tangent equations are {yy = 0 and 799 = 19, we obtain ¢’ = a& and ' = an. Using
En=¢&n = -1, weget a® = 1,0 (¢,7) = £(&,n) is the condition for two points to define the
same normal direction.

Singular curve C}.

Here we fix a singular curve C, say Cy = {ujus + upuy = uq(uz + up) = 0}.

%

Co

NSt e

C

\

This is possible for
§oMoo — 1000 = 0,
§o — &oo = 0,
noo = 1,
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Thus
B— 5.%‘0 + 511’1 -+ 52%2 fIg + -+ 522.%‘%
NTo + MIT1 + 72X $3 + -+ 7722$%

with £ — &n =0 and

Uy + NUy  UZg + UpZg

A, = <U1 + Eug §uoTo ) '

So, we get the “curve” {(1—n) = 0 (without the point (0, 1), which defines in this case a tangent
direction) of R-bundles with the curve Cy = uy(us + ug). All this sheaves are non-isomorphic.

One can calculate that the stabilizer of C'; in this case consists of all the matrices of the form

(5“1”?), a € k"
00 1
For ¢ = <3 ) 16a> and
00 1
A, - (w+ ) §upo
5=
Uz +NUy U2Xy + UpZo
we have
wl X uy + §aug §aupxg
¢*(Ap) = _ _ :
us + (1 — a+najug ugzg + (1 — @)upz + aupxg

Therefore, two sheaves given by

A, = (u1 +8uo  Suomo )

Uz +NUy U2Xy + UpZo

and by
x uy + &'ug oz
AB/ = U + ,
2 +NUg UTo + UpTo

are equivalent if and only if ¢ = o and ' = 1 — a+ na for some non-zero scalar a. Rewriting
this equations as £’ = o€ and 1 — 7’ = a(1 —n) we see that the sheaves above are equivalent if
and only if the points (£, 7) and (£',7') lie in the same component (line) of the curve £(1—n) = 0.
As in the examples above this corresponds to equal normal directions: each component of the
curve £(1 —n) = 0 gives us a normal direction.

2.3.4 Transversal intersection of a line with a smooth conic.

We fix for this case the matrix A = (il :U;fl). Tangent equa-
2 1

tions are £y = & and 71y = 0. For a general direction B the
matrix on Zj is

A= (U1 + &oug  u1To + foouoiﬁo)
B= .

2
x1(2f — wox2) =0 Up + Moty ULT1 + TooUoTo
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Restricting to D, we obtain

<U1 +&oup Uy + foouo)

U + Moo TooUo
and the curve (' is given by the determinant of this matrix
(00 — 10)uour + (§oMoo — 770500)%3 — SooUoUa — UiUa.

The intersection of the support of the sheaf with the line L consists of two points u; = 0 and
Ug = 0.

Smooth curve C].

Let us fix C) = {u? — ujuy = 0},

//DV

i@

\/,

then
omoo — Mo&o0 = 1,
Moo — Mo = 0,
—&o0 = 0,
and

B— §xo + &1+ &ma LnTory + -0+ €03
NTo + M1+ e DTG+ a2

with &n = 1. Thus
1 uy + ug U1To
B pr—
Uz +MNug U1 + NUpTo

and we obtain in this case a “curve” £n = 1 of R-bundles non-isomorphic to each other.

/
/
‘57711 i

(0,0)

[

This curve is isomorphic to k*.
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oo

8) and
i

One easily sees that the stabilizer of the curve C) consists of two matrices (é

(%1 i %). Therefore, two sheaves given by the matrices
i uy + Eug U1To
B p—
Uz + NUg ULy + NUTo

ZB, _ (Ul + &'ug U1Tg )

ug +n'ug urxzy + n'ugxo

O

and

define equivalent sheaves if and only if the matrices are either equal or if Ap = ¢*(ZB) for
100 .
o= ( 0 (1)(1)>. Since
g up — &u ULT
¢ (AB) _ ( 1 § 0 140 ) ’

U — NUy ULT1 — NUTg

the latter means (¢, 1) = (=, —n).
But this is the same as to say that the points (£,71) and (£',7n’) define the same normal
direction. Indeed this is the case if and only if B’ —aB € T4 Xg for some non-zero scalar a.. As

i o (= afzot ... 0-23+... )
b aB_((n’—an)onr... (0 —an)zg+ ...

and since the tangent equations are £y = &y and 199 = 0, we obtain ¢ = af and ' = an. Using
En=¢&n =1, weget a® =1, s0 (¢,n) = £(&,n) is the condition for two points on the curve
&n =1 to define the same normal direction.

Singular curve C}.

Let us fix C = {uy(up — uz) = 0}.

/DV

NSt e

C1

\

Then
&oMoo — Moo = 0,
Moo — 1o = 1,
—&oo = 0,
and

B— §xo + &1y + Eaxa EmToxr A+ Ea03
NxTo + N1 + 1222 (1 + 77)1’3 +--- 4+ ’Ihgxg
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with £(1+n) = 0. Thus

i uy + §ug U1
B pr—
ug +nue  wrry + (1 4+ n)upxo

and the curve £(1 + n) without the point (0, —1) parameterizes R-bundles with the fixed curve
Ch.

The stabilizer of C] in this case is the group
{(8(1)%_1) | aek*}.
00 1

i uy + §ug U1Tg
B pr—
ug + nuy  wrry + (1 4+ n)upxo

For the matrix

a—1

and for ¢ = <§ ) we have

o~ O

0
1

gb*(Z ) = uy + Eaug U1To
B us + (v — T+ na)ug wyzy + (14 n)augxy )

Therefore, the sheaves defined by Ap and by

T (m + &g UL T
B — / /
us +n'ug urzy + (141" ugzo

are equivalent if and only if ¢’ = af and 14+7' = a(1+n), o € k*. This means (£,n) and (£'.7))
should lie in the same component of the curve {(1+n) = 0.

As in the examples above this corresponds to equal normal directions: each component of
the curve (1 +n) = 0 gives us a normal direction.

2.3.5 Tangent intersection of a line with a smooth conic.

T1 Tol2
Ty T1X2
tions at this point are {yp = 19 and ngy = 0. For a general direction B
the matrix on Zj is

A“B _(wut Eouo U + EpoloTo
Us + Moy  U1T2 + NooUoTo )

For this case let us take the matrix A = ( ) Tangent equa-

xz(x% —xzox2) =0
Restricting to D; we obtain

<U1 +&oup Uz + 500U0>

Uz + Moo TooUo
and thus the curve (' is in this case given by the polynomial
(om0 — 770500)%(2) - u% + Mootiots — (§oo + 7o) Uoa-

The intersection of this curve with the line L consists of a single point us = 0.
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Smooth curve (.

Let us fix C7 = {uou; — u3 = 0}.

A
N

Then
&omo0 — 1000 = 0,
noo = 1,
oo + 1m0 =0,

and

B— Exo+ 1wy + Sy —nxd + -+ Ex3
nxo -+ T + UDED) .’L'g + -t 77221‘%

with & +n? = 0. Therefore,

Ap = (u1 + §uo  uamo — T]UOI0>
B = )

Uz +NUy  UIT2 + UgZo

We obtain a “curve” & 4+ n? = 0 of non-isomorphic R-bundles in this case. This curve is

isomorphic to k.
/-.-\

The stabilizer of C} is a trivial group in this case. Thus the points of the curve £ +7n*> = 0
correspond to equivalence classes of R-bundles with the curve C = {uou; —u3 = 0} constructed

at the point A = (xl xOxQ).

Lo X1X2

Singular curve (4.

We fix here the curve C; = {u? — u3 = (up — u2)(up + uz) = 0}.
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NEAH

Then

§omMoo — Moo = 1,

Moo = 0,

oo + 1m0 = 0,
and

B— §xo + 61wy + Sy g+ -+ o
nxo + may + naxe Eo1ZToTy + -+ + N2x3

with n? = 1.

In this case
T <U1 +&uy  UsTo — nuoxo)
B = )
Uz + Nug U1

The matrix <§ g %) sends the curve (] into the curve given by the polynomial

a?ud — (yug + u)? = (® — ¥*)ud — ui — 2yugus.

Therefore, the stabilizer of the curve C is the group {(§ g §> |a=+1,0¢€ ]k}. Since for

O ~ J—
o= (% 7 o), a? =1, and for Ag = (u1 +&uy uaty = Uy we have
001 Uz + Nug U122

& (ZB) _ (Ul + (B4 ad)uy ugxy — 7704U0$0>

Ug + Ny UL

the sheaves given by Ap and by

i up +&'up w2y — n'upxg
B =
us + 1y UL

are equivalent if and only if there exist « = +1 and 3 € k such that ' = an and & = af + (.
But this is always possible, just take a« = n//n and g = £ — a&.
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2.3.6 Point on a double line.

T 0
Ty Tl
¢oo = 0 and &y = nge. For a general direction B the matrix on %,

is
A, — (Ul + Soug 00U )
B — .

Uz + Nolp ULTo + NooUoTo

We consider the matrix A = . Tangent equations are

zizo =0 Restricting to D; we obtain

(U1 + ouo Soollo )

Uz + Moo U1 + NooUo
and thus the curve (' is in this case given by the polynomial
(Eomoo — Mooo)ug + uT + (€0 + 700) ot — EootioUa.

The intersection of this curve with the line L consists of a single point u; = 0.

Smooth curve (.

We fix here C) = {u?} + ugus = 0}.

%

i :
\1

Cy

\

Then
omoo — M0&oo = 0,
o + 100 = 0,
—&o0 = 1,

and

B_ Exo+ oy +Eowy —af + -+ €
nxo + may + naxe —Exf + -+ + N2

with n — €2 = 0. Therefore,
Ay — (U1 + §uo —UpTo >

Uy + Ny U1Te — §UpTo

We have obtained a “curve” n —£? = 0 of R-bundles non-isomorphic to each other. This curve
is isomorphic to k. The stabilizer of €} in this case is trivial. Therefore, the points on the
curve 1 — £2 = 0 correspond to equivalence classes of sheaves.
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Singular curve (4.

Let us fix the curve C) = {uf — u3}.

Co

i L
~— 1

\

Then
Eomoo — Moo = —1,
o + 100 = 0,
—&o0 =0,

and

B— Exo+ &1wy + Soxy Lormory + -+ E3
nNxo + mxy -+ 22 —é:Tg + -+ 7722$%

with €2 = 1. We have also

AVB: <U1+§UQ 0 )

ug +nug  urwe — {UoTo

The matrix (§

o~

%) sends the curve ('} into the curve given by the polynomial
(Bug + u1)? — o?uy = (8> — a®)ug + ui + 2Bugus.

Therefore, the stabilizer of the curve C} is the group {(§ g %) |a==+1,7€ k}. Since for

a0y 9 e Uy + fUO 0
= = — h
) (8 1 (1)), Q 1, and for Ap (UZ Foe o — gy we have
~ U + CYon 0
(A —
¢"(45) (U2 + (v +na)ug urzo — Oéﬁuowo) ’

the sheaves given by A g and by

4, (wt€w 0
B Ug + 77/U0 U1y — gllLon

are equivalent if and only if there exist « = £1 and v € k such that ' = af and ' = an + .
But this is always possible, just take o = £'/¢ and v = i’ — an. We showed that there is only

. . . T 0
one equivalence class of sheaves for a singular curve ' in the case A = (x . )
2 ToT1
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2.3.7 Three lines through one point.

T 0
o X9 (.Tl + i)
tions at A are {yo = 1o = 0. For a general direction B the matrix on

We start here from the matrix A = ( )) . Tangent equa-

Zo is
Ao (W + oo SooUoTo
B — .
ug + Moty Uz(x1 + 2) + Moo
x1x9(x1 +22) =0 Restricting to D; we obtain

(U1 + oo 500“0)

Uz + Tolo  TooUo
and thus the curve (' is in this case given by the polynomial
(€0m00 — Uofoo)ug + nootour — Eoototz = uo((€om00 — M0&00)to + Noots — ootiz)-

Note, that the line L is a component of this curve. Since at least one of the coefficients &g and
oo is different from zero (we consider normal directions), the second component of C is a line
though the point pg := (€00, M00) at L.

N

Let us denote this line L;. It is clear that two directions B and B’ with different intersection
points pp and pp define non-equivalent sheaves because all the allowed automorphism of Z
are identities on Dy = Py. That is why there exists at least P; many equivalence classes of
R-bundles in this case: each point at L = P; defines at least one equivalence class. Let us fix
such a point (a,b). This means that we fix up to multiplication by a non-zero constant the
coefficients &y and 7g9. Let us fix a line through this point, say L; = {cuy + bu; — aug = 0}.
Then B defines a sheaf with this line if and only if

B— §x0 + 51131 + fQLUz ozax% + -+ 522;6%
Nxo + et + 222 Oéb.T% —+ 4 7]221]%

with b — an = c for some «a € k*, equivalently

Exg + &1 + & 5001(2) + 1+ fzﬂg
NTo + MT1 + NaZa Mooy + -+ + N2o3

with b¢ — an = ¢ and (&yo, Mo0) = (a,b). In this case
Ay — (U1 + &uo ooUoZo ) .

U9 + nuo u2(a:1 + $2) + NooUoTo
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We claim that two arbitrary directions B and B’ with pgp = pp: define equivalent sheaves.

Indeed, since for ¢ = <§ g %) we have

qb*(gg) _(wm+ (B + ad)ug a&ooloTo
ug + (v + an)ug  ug(xy + 22) + anouoro )
Since (§p0:M00) = (§oo: 7o0), We define o from the equality (£h0,m00) = o - (§oo,700) and put
f=¢—afand vy =1n —an Then ¢*(Ap) = Ap/, i.e., the sheaves defined by B and B’ are
equivalent.
We obtained that the line L parameterizes the equivalence classes of R-bundles constructed
at the point A = <I1 0 )

i) .172(1'1 + ZEQ)

2.3.8 Intersection of a line with a double line.

: : 0 :
We consider the matrix A = (il xg). Tangent equations are here
2 2

&o0 = Moo = 0. For a general direction

B— Sowo + &1 + ama Eood + -+ + Eon
NoTo + MT1 + Moz NooZd + -+ - + Nao3

we obtain a sheaf on Z; given by the matrix

(Ul + Soug 00U )

Ug + Nolp  U2T2 + NooUoTo

The restriction to D, is given by the matrix

(U1 + &ouo §00U0> ‘

Uz + Moy  Toolo
Its support on D; is the curve C} given by the polynomial
(&omoo — Uofoo)ug + Noototr — Eootiota = Uo((§0moo — Mo&oo)to + Mootr — Eootia)-

The L is a component of this curve. The second component is the line L; as in the previous
example.

Ly

Lo
e

As in the previous example we obtain that the points on the line L are in one-to-one corre-
spondence with the equivalence classes of R-bundles in this case.
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2.3.9 A line with multiplicity 3.

We consider the matrix A = (il ;)2) . Tangent equations are here &,y = 19 = 0.
2 1

_ Soxo + &171 + o1 50095(2) + -+ 522$§
NoTo + MT1 + M2 NooTa + -+ + Moot

w For a general direction
3 =0

we obtain a sheaf on Z; given by the matrix

<U1 + &ouo EooUoTo )

Uz + NolUp UL + NooUoLo

The restriction to Dy is given by the matrix

(Ul + oo 500U0> ‘

Uz + NolUg  TooUo
Its support on D is the curve '} given by the polynomial
(507700 - Uofoo)ug + NooUoU1 — SooloUy = Uo((foﬁoo - 770500)“0 + NooU1 — 500U2)-

The L is a component of this curve. The second component is the line L; as in the previous
examples.

0

N

Ly

0

As in the last two examples one sees that the line L is the line parameterizing the equivalence
classes of R-bundles in this case.



Chapter 3

Families

Summary

We describe the blow ups M =Bl Mg M and X =Bl xs X . There is a unique lifting of the action
of the group G (cf. (1.4)) on X to the action on X. It turns out that M is a quotient of X by
the group G.

We construct a morphism Y — X and a sheaf U on Y such that Z/{ is flat over X and
the fibres of U are either non- singular 3m + 1 sheaves or R-bundles on P,. Among the fibres
of U there are all the equivalence classes of R-bundles on P, and all isomorphism classes of
non-singular 3m + 1 sheaves on Ps.

In Definition 3.21/ we define a family over an arbitrary variety S. In particular 3m + 1
families of the non-singular sheaves on P, are families in the sense of Definition [3.21. For an
arbitrary variety S we introduce an equivalence relation on the set of all families over S.

For a morphism f : T"— S and for a family over S we define a family over 7. We obtain
this way the map from the set of all families over S to the set of all families over T". This map is
compatible with the equivalence relations and therefore we obtain a functor M : (Sch) — (Sets)
that assigns to every S € Ob (Sch) the set of the equivalence classes of the families over S.

There is a natural transformation M — M, where M denotes the functor of the 3m + 1
moduli problem on P,. We obtain also a natural transformation M — Hom(__, M) a bijection

M (pt) = Hom(pt, M) = M. and the commutative square

—~

M%Hom(_,]\/[)

|,

M ——Hom(__, M).

3.1 Spaces Blx, X and Bly, M

We investigate here the varieties X = Blx, X and M = Bly, M and their relation to each
other. Since Xg and Mg are smooth subvarieties of codimension 2 in X and M respectively,
using Theorem 2.19 we may consider the blow up M as the space whose points are all the
isomorphism classes of non-singular 3m + 1 sheaves on P and also all the equivalence classes
of R-bundles. Analogously X may be seen as a variety parameterizing the above objects.

97
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3.1.1 Space Bl M.

Let us consider the blow up M = Blyg M of Mg in M. Recall that by Lemma 1.5/ My is smooth
of codimension 2 in M. The exceptional divisor Fj; of the blow up M — M is isomorphic to
the projective normal bundle PNy, /nr = PCh, /m-

Recall that Mg is given in Py x Py by equations (1.8)). Since Mjy is given locally by two
equations (cf. page 6) in M, we can describe M locally over M (zg) = M N {zy # 0} by the
equation ejsy — egsy in M(xzg) x Py = {((f), (x)) x (s1,$2)},

M (zg) = {({f), (x)) X (s1,82) € M(x1) X Py | €189 — eas1 = 0}.

Analogously

M (z1) = {({f), (x)) X (s1,52) € M(x1) x P1 | egs2 — €251 = 0}
and o

M (z9) = {({f), (x)) x (s1,82) € M(z1) X Py | e9s2 — e181 = 0}.

—_——

The gluing of M (z;) to M are described in the following diagram.

M(.Q?D

o ) foa
)7 )

M

N

1 —%
x1
x1

The latter means that the gluing of M (z() and M (x1) over M(zoz;) is given by the map

() 0)  (nosa) = (). () (oneow)- (2 5))

the gluing of M (x¢) and M (z3) over M (xgxs) is given by

() 0)  (rosa) = (0. () (oneon) (Z2 o))

and the gluing of M (z1) and M (xz5) over M (x1x9) is given by

() fovesa) = (U0 ) < (ones)- (g 22 ))

1

Lemma 3.1. Let Py = Uy U U; U U, be the standard covering of Py, i. e., Uy = {x; # 0}. Let
T* Py be the cotangent bundle of Po. Then it is given by the following cocycle g;; with respect
to the covering {U;}:

(—ﬂ 0 1 —m _mog
g10 = o >, 921=< 51)7 920:( o )
—z 0 -z —z
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Proof. Let us consider the exact sequence

(xo xr1 T2

0= Op, ") 30, (1) — T, — 0.

Then locally on Uy, Uy, and U, this sequence is

_z _Z2
0 o
1 0
(r 5 ) 0 1
0— OUO 30(]0 2OUO - 0,
1 0
_Zo __Z2
(212 01
0— OU1 3OU1 2OU1 — O,
and
1 0
0 1
(ﬂ 1 1) _T _ 1

0— Oy, 22 30y, —2—22,20y, — 0.

One calculates a cocycle gj; of Jx from the commutative diagrams

_o @ 0 oz

xo x0 xo o

10 —n_n 10

0 1 0 1 0 1
e s _— s _— .
E—— E——— E—

1 0 1 0 1 0
R 0 1 0 1

T T

N s

respectively. We obtain then

, [ —z , 10 , 0 1
=0 1) e —a) W= _a)

To obtain a cocycle of T* Py one needs to invert and to transpose the cocycle of TP,. So
Gij = (gz’»jT)’1 and we obtain

—mo 0\ g 1 0 —uq
m= (1) —emr(a )= )
(YR o2 e\
”“‘Q)—%> - (7 1)-G —%)’

0 —z\ To,_q [(—2 22 —a 1
m=(1 2H) =0 (5 5)-(3 )

This proves the lemma. O]

and
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Thus the gluing functions of M are just the functions of the cocycle of T Ps,.
Let us consider the projective Pi-bundle Py x P(T*Py) over Py x Py. As M is a subvariety
in Py x Py, we can restrict the bundle Py x P(T*Py) to M. Let us denote

P = (Py x P(T*P,))| .

Then the gluing data we described above give us a closed embedding of M into P. There is
the following commutative diagram:

Mr—— P— Py x P(T"Py)

Nl

M>—>P9 X PQ.

In particular the exceptional divisor £, of the blow up M — M is isomorphic to the restriction
P‘Mg of P to Mg.

3.1.2 Space Bly, X.

Let X % X be the blowing up of X along Xg. Recall that X3 is defined by two equations f3
and fy (see (1.9)). Then X is a closed subvariety in X xP; given by the equation t3fy—t4f35 = 0,
1. e,

5(: = {A X <t3,t4> e X xP; ‘ t3f4 — t4f3 = 0} (31)
Let E'x be the exceptional divisor of X % X. Then E ¥ may be identified with Xg x Py.

EX :Xg XP1>—>X>—)X X]P)l

| 7

X8>—> X

The restriction of a to X \ Ex gives us an isomorphism X \ Ex — X \ Xs.

Since Xg is a complete intersection (see Lemma [1.7), Ex is isomorphic to the projective
normal bundle PNy, ,x = P%x,,x of X5 in X. So for a point A € X the fibre a'(A) over
A is isomorphic to the fibre of PNy, x over A, i. e., to PNy = P;. By Theorem 2.19 we may
interpret PN4 as a set of equivalence classes of R-bundles constructed A. So we can interpret
Ex as a space that parameterizes the equivalence classes of R-bundles. Hence X parameterizes
the classes of isomorphism of 3m + 1 sheaves on P, that are locally free on their support and
also the equivalence classes of R-bundles.

3.1.3 Group action on X.
Consider the group G = GLy(k) x H, where H is the group of 2 x 2 matrices

(é Z) M€k A0, z €T (P, Opy(1)).

Recall that G acts on X from the left by the rule

(g,h)- A= gAh™,
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As we know the orbits of this action are in one-to-one correspondence with the points of
M = M3m+1(P2)~ .

Note that Xy is invariant under the action of G. Therefore, since the blowingup a: X — X
is an isomorphism over X \ Xg we obtain an action of G on X\ E, F = o !(X3). Let us describe
this action explicitly.

Lemma 3.2. The action of G on X \ E is given by the rule

(9,h) - (A, (ts,ta)) = (AR, {(t3,14)g "))
Proof. Since X C X x P, is given by the equation tsfa(A) —tyfs(A) =0, 1. e.,

5(: = {(A, <t3,t4>) eX xP | t3f4(A) — t4f3( ) = O},
since for a matrix A that does not lie in X either f3(A) # 0 or f4(A) # 0, we obtain that the
map o : X \ Xg — X \ E defined by
X\ X5 3 A (A, (f5(4), f2(A))) e X\ E
is the inverse map to g\ p X\ E — X\ Xg. Therefore, an element (g, h) € G acts on a
point (A, (t3,t5)) € X \ E by the rule
(A, (ts, ta)) = A= (g, h) - A= gAR™" = o/ (gARTY) = (gAR™", (fs(gAR™Y), fa(gART))).

Let us show that (f3(gAh™"), fa(gAR™)) = ((f3(A), f2(A4))g").

Let A = (il ;h), 21 = Qgxg + a1x1 + a9lg, Z9 = bol’o + blilfl + bQ.ﬁL’Q. Let do, dl and d2 be
2 2

as in (1.7). First of all note that

(f3(Ah), f1(Ah)) = (f3(A), f1(A))
for all matrices h € H. Clearly, let h = (6‘ ;) Then Ah = (’\Z1 “‘“’LZ”) and

Azg pqa+zez
(f3(Ah), fa(AR)) =((uq1 + 212)()\2610, Ndy, /\2d2)> (g2 + Z2Z>(/\2d07 Ndy, /\2d2)> =
</MJ1()\2d0, )\Zdla )\2d2)7 MQQO‘QdO; )\th )\zd2)> =
(q1(do, d1, dz), g2(do, dv, da)) = (f3(A), fa(A)).
It remains to show that (f3(gA), f1(gA)) = ((f3(A), f1(A))g"). Since each matrix g can be
decomposed in a product of elementary matrices corresponding to multiplication of a row by

a scalar and to adding the multiple of a row to another row, it is enough to show this for
elementary matrices. For g = (>‘ 0) we have gA = (’\Zl Ay ) thus

0w HZ2 pq2
(f3(gA), fa(gA)) = <)‘QI<>‘/~LdO7 Audl, Aud ), uql(Audo, Audl, Auds)) =
(Aq1(do, d1,dy), pga(do, di, da)) = ((f3 A)(o0)) = (A), f1(A))g").
For g = ( ) we have gA = (21 —Z’UZZ 6 ‘gﬂ%) and
2 2

(f3(gA), f1(gA)) =(q:(do, d1, d2) +MQ2(d07dlad2)7Q2(d07d17d2)> =
<(Q1(do,d1,d2) gz do,dl,dz (}L?) ,f4( )) >

Analogously one obtains (f3(gA), fs(gA)) = ((fs(A), fa(A))g") for g ( 7).
We have finally showed

(f3(gARTY), fa(gARTY)) = ((fs(A), fa(A))g").
Since (t3,t4) = (f3(A), f4(A)), we obtain the required statement. O
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Lemma 3.3. The action of the group G on X can be uniquely lifted along « to the action on
X. In other words there exists the following commutative diagram

GxX—X

iml k

GxX—X.
An element (g, h) € G acts by the rule
(9:h) - (A, {ts, ta)) = (9AR™" ((ts, ta)g"))-
Proof. For a given element (g, h) € G, the automorphism of X \ E
(A, (ts,ta)) = (gART" ((ts, ta)g"))

from Lemma 3.2 can be uniquely extended to an isomorphism of X , which is defined by the
same formula. 0

Remark 3.4. Note that for an arbitrary point (A, (t3,t4)) € X its stabilizer is as in the case
of the action on X the subgroup

St={(G) x G Aek’}.
Therefore, we can consider the corresponding free action of the group PG = G/St on X.

We shall explain the meaning of the group action we have just described above. As the
points (A, (t3,t4)) in X, A € Xg, are in one-to-one correspondence with the equivalence classes
of R-bundles constructed at A, the action of the group G on the exceptional divisor E'x may
be interpreted as an action on the equivalence classes of R-bundles. We already noticed that
Ex is isomorphic to PNx,/x.

Note that the tangent bundle of X is trivial, i. e., TX = X x k'®. This holds because X is
an open subset of k'® and because there are only trivial vector bundles on k™. The action of G
on X induces the action of G on T'X given by

(g.h) - (A, B) = (gAR™", gBh™").

Since Xy is invariant under the action of GG, there is also an action of G' on T' Xy, which is just
the restriction of the action of G on T'X. This way one obtains the induced linear action of G
on Nxg/x:

G % Nxgx = Nxyx. (9:h) x (4, [B]) = (gAh™", [gBh™)).

Note that the notation (A, [B]) makes sense because Nx, x is trivial (there are global tangent
equations (1.11) of Xg). Then

(4,[B]) = A x (T1(A)(B), Ty (A)(B)),

where T7(A) and T(A) are tangent equations at A (cf. (I.11) on page [10). Since the action of
G is linear on Nx,,x, we obtain also the action

G X PNx,x — PNxgx, (9,h) x (A, ([B)])) — (gAR™", ([gBR™'])).
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Lemma 3.5. Let A€ Xg and B € Ty X \ T4 Xg, then
(gAR~Y ([gBh™'])) = (gAR™Y([Blg")).
In other words
(T (gAR™")(gBh™), Ti(gAR™) (gBh™Y)) = ((T1(A)(B), Ty (A)(B)) - g7).

Proof. Let
_ Coro + &1w1 + axa Eoox + -+ + Eos
NoTo + T1 + Moz NooXd + -+ + Nao3

and let
A — (%o + a1y + agTe  Agzi + Apiory + - - + Al
boxo + blxl + ngg Boo.T% + BleOxl + -+ BQQ.Q?%

be a point from Xg.
First of all let us recall (cf. (1.11))) that

T.(A)(B) = Z (Z Az’jaij,k> Sk + Z (Z Aijﬁij,k) Mk + Z did;&;;
k ij k ij ij
and
Ty(A)(B) = (Z Bz’jaij,k> &t (Z Bz‘jﬁz’j,k> m+ Y didjni,
k ij k ] ]

where ayj i = sipbgd; + skbjpd; and B, = spiagd; + spjazd; (see (1.12)).
Let us show that

(T1(gA)(9B), T1(gA)(9B)) = ((T1(A)(B), T (A)(B)) - g").

Let g = <OCL Z) and let

/ / / .2 / /.2
bpzo + byay + bhwe  Bpywd + By woxy + -+ - + Bhas )’

9B = (gaxo + &+ 6T o +---+£;2x%)
MoTo + MT1 +0hTa NogTg + -+ A Ny

() = (0 () Go) = () ()
)= (G G)-C a6

d, = Ad,,

where A = ad — bc is the determinant of g, and also

Then

o = Sikbld; + sjkb;.—kd; = sik(cag + dbg,)Ad; + sji(caz, + dbj) Ad; = A(—cBijx + daijr)
and

ﬁz{j’k = skia;kd;- + Skja;‘kd; = spi(aag, + bbg,)Ad; + sgj(aaj, + bbi)Ad; = AaBijr — bovj).
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Then
o) =3 (St ) 0 X (S Ayt e St

Z Z(G/Aij + bBij) A(—cfBijp + daij,k)) (a&k + bnr.)+

k ij

Z Z(GAU + bBij)A(aﬁing — bOéing)) (c& + d?]k)+
k ij
> N’did;(agi; + biig) =

ij

) (Z(aAij + bBij)AQOéij,k> Skt

k ij

Z (Z(aAij + bBij)Agﬁij,k) e+

S A%dd;(ag; + bniy) = A%(a - Ti(A)(B) + b- To(A)(B)).

]
Analogously one calculates
Ta(gA)(gB) = A%(c- Ti(A)(B) + ¢ - To(A)(B)).
Therefore,

(TgA)9B). Tolg A 95)) = (TANB AN - (5 )

It remains to show that

(T1(AR)(Bh), Ty(Ah)(Bh)) = (T1(A)(B), To(A)(B)).

Let h = (3 Z), 2 = CcoTo + 11 + Ccoxa, let again

Ah = g0 + ay 71 + aywy  Ajgad + Agzory + -+ Ay
bozo + byzy + byza  Byoad + Byywoxs + -+ + Byl )

Bh — <f(l)950 + &lxr + &y f(/)oxg) +oeet féﬂ%) _
MoTo + M1 + nhTe Nyexg + -+ -+ Nhots

Then we obtain the equalities

a = )\akv b;; = Abka gl/c = )\éka 772 = )\nkn d; = /\Qdia a;j,k = A30[1‘]‘,167 ﬂ;j,k: - Agﬁij,ka

and + bic; +0b
A= pA; + 21— B —=uB;;+—2—2"
ij = MAy + 140y ij = MWD + 110,
Licj +&ci niCj + MG
I e J J I B J J
gz] - :uf’bj + 1 + 5” ) 771] MT’Z] + 1 + 5” )
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where
1 i
=4 7
0, i#]

is the Kronecker symbol. Therefore, we compute

Tl(Ah)<Bh> :Z ZAZ] Uk) §k+z <ZA zgk) nk+zdld/
k
Z Z(NAZ‘J‘ + M)/\ aijp | Apt
A Iy 1 —+ 51']'
a;cj + a;c;
Z Z(MAz‘j + L)\ Bk | Mt

A0 d (g 4 SGTEG _
%:A did;(p&ij + s ) =

=u\t (Z (Z Aij@ij,k> Sk + Z (Z Aijﬁij,k) Me + Z didjfij) +
k ij k ij ij
A Z Z e 5a,—7'q g it
A Z Z T U
ij

X*Zd g, %6 &%

1+ 9
Claim.
fzcj + éjcz o
Zd dj———=— 1o, deck defk
77103 + 77ng .
S a2 (z ) (z ).
Zaicj~|—ajciﬁ“ _ZbC]‘l'bCZ O
” 1+ 05 k= - 1+ 05 ijh =
a;cj + a;c; bic; + bjc;
) LI iy = : —d d,c,.
1+ 9 Yiak 1+ Tita, kS k; Hn
Proof. Straightforward calculations. n

From this claim it follows

A a;cj + a;c; 4 a;cj + a;c; 4 Sicj + 8¢
AZZ T g, et ZZ T, Dt A ZdidjT%—o
j

and we obtain T} (Ah)(Bh) = puA*T; 1(A)(B). Analogously using the claim above one calculates
Ty(Ah)(Bh) = uMTy(A)(B). This implies finally
(11 (AR)(Bh), To(Ah)(Bh)) = (Th(A)(B), To(A)(B)).

This completes the proof of Lemma 3.5, m
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Lemma 3.5 says that the natural action of G on PNx,,x coincides with the action on
Ex = PNx,/x described in Lemma 3.3.

3.1.4 Quotient X — M.

Note that since v~ (Mg) = Xg, we obtain a unique lifting 7 of v, i. e., the commutative diagram

Lemma 3.6. The morphism v : X — M lifts to a morphism v : X — M that is locally given
by

X(do) — M(zo), A x (ts,t4) — ((det A, (p(A))) x ((ts,ts) (—aln —b2>>7

1 a2

—_—

)N((dl) — M(x1), A X (t3,ts) — ((det A), (p(A))) x ((t3,14) (_abo —b2>>’

0 ag

R = M, 4 ot = (Gt b ) < (i) (00

0 ai

where p(A) = z1 A z9 = (do, dy, ds).

Proof. Let Ex be the exceptional divisor of the blow up X — X and let Ey; be the exceptional
divisor of the blow up M — M. Let us consider the map X \ Xs 2 M\ Ms. Since X \ Xy

is isomorphic to X \ Ex and since M \ Mjy is isomorphic to M \ Ey, we obtain the map

X\ Ex — M \ E,; given by the formulas above. But the same formulas define a morphism
X — M. L

Lemma 3.7. Let G be the group from 3.1.3 acting on X. Then 7 : )~(~—> M is G invariant
and the set of the orbits coincides with the set of the fibres v=(§), £ € M.

Proof. First of all let us show that the points from the same orbit are mapped to the same
point. Consider A x (t3,t,) and gAh x {(t3,t4)g"), where

_ Aoy + a1 + a2 Q1 _ (0% ﬁ B — Az
boxo + bllL’l + bQZL’Q q2 ’ g Yy o)’ 0 2 '
Assume dy # 0 (other two cases are absolutely analogous). Then the linear forms of gAh are

Maag + Bbo)xo + M aay + Bby)xy + Maas + Bbs)xs,
and

A(yag + 0bg)xo + A(yay + dby)xy + N(yag + dbg)xs
The image of A x (t3,t4) under v is

(et 4, (o) < (e (00 )

1 a2



107

The image of gAh x ((t3,t4)g") is

({det gAR), (p(gAR))) x ((ts, ta)g" (;?;jljljﬁi?; }?QZZTAZ?)

We know that ({det A), (p(A))) = ({det gAR), (p(gAh))). Since
(e i) = (5 3 6 %) G ) =
G560 D))= (G )
(s, 1) <—abl —b2)> (s )" <—A(7a1 +6b1) —M(yay + 5b2))>‘

1 as )\(OJCLO + ﬁbo) )\(CYCLQ + ﬁbg)

Now let us assume that A x (ts,t4) and A’ x (t},t}) are mapped to the same point. Since
X — M is a geometrical quotient, we obtain immediately that A" = gAh for some g and h.
We assume again A € X(dp). Let again

A = agTo + 121 + a2 Q1 _ (07 ﬂ B = Az
bol’o + bll'l + le’Q q2 9 Y 0/’ 0 )% '
Then the equality of the images A x (t3,t4) and A’ x (t},t}) under v means

st (0 N =1sa (3 ) (5 DG

(ts,th) = ((ts, ta)g ™).
Therefore, A x (t3,t4) and A’ x (t},t}) lie in the same orbit of G. O

we obtain

This implies

Lemma 3.8. Let A x (t3,t,) be a point in X, let € = (A x (t3,t4)) be its image under U.

Then there exists an open neighbourhood U of E and a morphism sy : U — X such that
vosy =iy and sU(E) = A X (t3, 1), where iy : U — X is the inclusion map of U in X. In
other words there is a local section of v through every point in X.

Proof. First of all note that since X < M is a geometrical quotient there is a local section
of v through every point of X. This means there exists an open neighbourhood V' C M of
¢ :=v(A) and a morphism ¢y : V — X such that v o ¢y =iy and ¢y (§) = A, where iy is the
inclusion map of V in M. Let V = Blyrag (V) be the blowing up of Mg NV in V. We may
consider V as an open subvariety in M using the cartesian diagram

7

|,

V—— M.

As ¢,'(Xg) = Mg NV, by universal property of blowing up there is a unique lifting by of
oy 1V — X that makes the diagram
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commutative. As v o ¢y = iy by universal property of blow up we conclude that v o 5‘/ = iy.
Clearly V is an open neighbourhood of £. Since it holds

(07 (€)) = € = (A x (t5, 1)),

by Lemma 3.7 we conclude that A x (t3,t4) and ¢y (§) lie in the same orbit of G. As both

A x (t3,t4) and qﬁ‘;(g) lie over A € X, we conclude that they are equal. Hence ¢y is a local
section of 7 through the point A x (t3,t4). This proves the statement of the lemma. O

Recall that a principal bundle with the (algebraic)group & is a fibre bundle P 2, B with
the fibre & such that the transition functions are given by the right action of & on itself. Let
us explain this. There exists an open covering {U;} of B and the isomorphisms ¢; : p~(U;) —
U; x & such that for all U;; = U; N U; the transition function ¢; o gbj_l Uiy x G — Uj; x G is
given by the rule (b, g) — (b, g - g;;(b)) for some morphism g;; : U;; — &. It is known that a
principle bundle P may be always realized as a left free action of the group & on P.

Proposition 3.9. X isa principal vector bundle over M with fibre PG. In particular v : X —
M is a geometrical quotient.

Proof. Let § be an arbitrary point in M. Then by Lemma 3.8/ there exists an open neighbour-
hood U of X and a local section sy : U — X of v. Then the morphism

UxPG— v '(U), (&9) g(su(§))

is a bijection. By Zariski main theorem (cf. [8], 6.1.14 and [9], 4.4.3) it is also an isomorphism.
Thus X is a principal vector bundle over M with fibre PG. O
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3.2 Construction of a family over X

We are going to construct here a variety Y over X and a sheaf ¢ on Y such that the fibres of
U over s € X are either non- singular 3m + 1 sheaves on Py or R-bundles on IF’Q

3.2.1 Space over X.

Let g : U — X be an embedding of an open set of k in X along a normal direction B € k'8
such that 0 € U is the only point in U with the image in Xy (cf. page 12).

Claim. [g uniquely factorizes through X4 X , 1. e., there exists the commutative diagram

X

i N J
o

U2 X

Proof. Follows from the universal property of blow-ups. n

Let us consider the commutative diagram

U % ]P)2 Ipxid )Z' y ]P’Z axid X x PQ

|, |

U X X.

On X x Py we have the universal 3m + 1 sheaf U (cf. [5], 6.1). By pulling back we obtain the
family U := (o x id)*U of 3m + 1 sheaves over X. On U x P, we obtain a sheaf £ = (I5 x id)*U
of the type (1.15). Let Sg = Singl be the closed subvariety of X x Py where U is not locally
free, i. e.,

Sg = {21 =zn=[f3=f1= 0}~
Lemma 3.10. Sy is isomorphic to Xg. In particular Sg is smooth.

Proof. The restriction of X x P, % X to Sg gives us a morphism Sy = Xs. It is enough

to construct the inverse morphism. Consider the morphism Xg — Sg given by the rule A +—
(A,p(A)), where p(A) = (do(A),d1(A), d2(A)), i. e., the point deﬁned by the linear forms of A
(cf. (1.7)). This morphism is obviously the inverse to the Sg 2% Xg. O

We obtain that Sg := (a x id)™*(Ss) is the set of points in X x P, where the sheaf If is not
locally free.

Lemma 3.11. §8 18 1.somorphic to the exceptional divisor )Zs = a~Y(Xg) of the blow-up X X,
in particular Sy s smooth.

Proof. There is the morphism §8 EUEN )~(8 (restriction of the projection X x Py — )?) The
inverse morphism is given by

Xs — Ss, (A, (t5,t2)) — (A, (t3,t4)) X p(A).

This proves the lemma. O]
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Note that the preimage of Ss in U x P, is just the point (0,p) € U x Py, where p := {z(A) =

2(A) = 0}.

Let

7 X x Py, — X x P,
be the blowing up of X x P, along Ss. Then we get the cartesian diagram

——~—

UX]P24>)?X]P)2

I I

Ipxid ~
UxP,—2"5 X x P,

where ¢ is the blow-up of U x Py at the point (0, p) and the horizontal arrows are embeddings.

Let us denote Y := X x Py. Let D1 denote the exceptional divisor of Y — X. Let DO be
the proper transform of Xg X IP’Q It is isomorphic to the blow up of Xg x Py along Sg

As in Chapter [1llet Z = U x Py, let Dy be the exceptional divisor of o : Z — U x Py, and
let Dy be the proper transform of {0} x P,.

Remark 3.12. Note that Dy N Z = Dy and Dy N Z = D;.

Let us describe the space Y. First of all note that there is the covering

X x Py, = U X(tz) X Py(zp),
ki::()?:’l%

where X(t;) = X N (X x Py(t;)). Then the blow up of X(t;) x Py(z) is a subvariety in
X (t;) x Py(zg) x Py given by the minors of the matrix

(Uo U UQ)
z oz
fo 22

The gluing maps of Blg, ()z(t]) x Py(7)) and Blg, (X (t;) x Py(zy)) are

Thus Y is embedded in the P>-bundle over X x P, given by the cocycle

t

£
grg=10 25 0

0 0 %

Ty

This is a cocycle of the vector bundle
O%p, (0, 1) ©20%,4,(1,0)

and also
P(O%,p,(0,-1) ® 205 4,(1,0)),
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where

OXXH%(O, —1) = 0)}(—1) & OPQ and OXXPQ(l’O) = O)} @ OIPQ(l)
Let
Py = ]P)<O)~(><IP>2(0> _1) ©® QO)N(XPQ(L 0))7

then there is the commutative diagram

Yr—— Py— X X P(Op,xp, (0, —1) & 20p, xp,(1,0))

N l

)?X]Pf —— X X Py x Ps.

We proved the following proposition.

Proposition 3.13. Y is a closed subvariety in a Py-bundle Py over X x Py. In particular the
exceptional divisor D of the blow up T is isomorphic to the restriction of Py to Ss.

There is also another possibility to describe the embedding Y C Py.

Since Sg is a locally complete intersection, we have Y = P(Zg ), where Zz_is the ideal sheaf
of §8-

First of all note that the ideal sheaf Zg, of Ss C X x P, is given by the surjective homo-
morphism

2OX><]P’2(_1) @ QOXX]}DQ — IS'g — O
Lifting this to X x P, yields the surjection

QOXX]PQ(_]‘) EB 20)?><]P’2 -

where Igg is the ideal sheaf of §8 - X x P,.

Recall that X is a subvariety in X x Py given by the equation t3f; — t4f5 = 0 (cf. 3.1.2).
Lifting Euler exact sequence

t3
0— Op (~1) L2, 00, (), Op, (1) — 0

from P; to X x P; and then to X and to X x P, one obtains the exact sequence

()

(ta —t3)
O)N(XI%(O’ _1) — QOXXIPQ - O)?xIPQ(O: 1) — 0,

where we use the notation Oz (a,0) := O5(b)XOp,(a). Astzfi—tsfs =0on X, one obtains
I3
(ta —t: (f4>

that the composition O 5, (0,—1) L ), 20%,p, — ZIg, is zero. Therefore, by universal

property of cokernel we obtain there is a unique factorization through O );X]PQ(O, 1):
(ts —t3) (ig)
_t. s
Ozyp,(0,—1) ———=20%,p, — O3,p,(0,1) — 0.
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From this commutative diagram we obtain the commutative diagram

QOXXIP’Q(_L O) D O)N(X%(O, —1) - QOXxPQ(_lv 0) D 2@;0@2 — 20)?><IP’2(_1’ 0) D O)?sz(o, 1).

D

Applying the functor P to the right commutative triangle we obtain the commutative diagram
of closed inclusions

P(QO)N(XIP’< 1,0) @QOXXP ) — P( 2OX><IP’2 @OXXPQ(O,U).
Y =P I~

Note that P(QO)?XPQ(_17 0) D O)?XIPQ(O’ 1)) = P(QO)?XIPQ(L 0) D O)’ZXIPQ(O’ —1)) =Pb.
Lemma 3.14. 1) The fibres Y,, x© € X, of the morphism
Y l) )Z: X PQ p—1> X

are 1somorphic to Py if x does not lie in Xg
2) If x belongs to Xs, then Y, is isomorphic to P, (see Definition 1.11)).

Proof. Note that the morphisms we consider are over X, i. e., we have the commutative diagram

Y<XIP7)?
X

The first part of the lemma holds true because 7 is an isomorphism over X \ Xg.
Let now = € Xs. For an open set U C k, 0 € U, there exists an embedding Ip:U— X
transversal to Xg such that [ B(O) = x. The required statement follows from the commutative

(cartesian) diagram
L —Y
UxP ><

lB xid (32)
U S X
and from Lemma [1.10 because in this case Y, & Z, = I@’g. O

Proposition 3.15. The morphism

15 flat.

Proof. By Lemma 3.14, dim(Y,) = 2 for all z € X. AsdimY = 20 and dim X = 18, we obtain
dimY, =2 =dimY — dim X. Since both Y and X are regular, by Theorem A.2 we conclude
that p; o 7 is flat. O]
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3.2.2 Construction of a sheaf.

The universal sheaf & on X x P, is given by the resolution

0 — 20X><]P’2(_2H) 3) OXxIP’z(_H) ED OXxIP’g i Ll — O

Pulling back this sequence, we obtain

O_>2OX><]P’( QH)EO)?X]P@( )EBOXX]P’ Z/{—>O

After applying 7* one gets the sequence

0 — 20y (—2H) /N Oy(—H)® Oy — 7*(U) — 0,

which remains exact because the sheaf Oy (—2H) is locally free and, therefore, has no torsion.
Let D be the exceptional divisor of the blowing up 7. Let s be the canonical section of

Oy (D) from the sequence
0— Oy(—D) i> OY i OD — 0.

Then by Lemma [1.15 7%(®) factorizes through s and we obtain the following commutative
diagram.

— QN+—O

0
l ™(®)
0——20y (- QH)—>OY H)Ye Oz —— 4 =0,
e J
l |
C 0
0

C=0p®0y(—2H + D)= 0Op @ Oy(D) ® Oy(—2H) = Op(—1) @ Oy(—2H).

Remark 3.16. Note that the restriction of U to Z (via Lg as in diagram (3.2)) is isomorphic
to the 1-parameter new family £ constructed at Ig(0) along B (see1.2.1).
In particular among the fibres of U we obtain all the equivalence classes of R-bundles on Ps.

Proposition 3.17. 7,(U) >~ U.
Proof. By projection formula and by Lemma A.4/ we have

RP1(C) = RP1.(Op(—1) ® Oy(—2H)) = RP1.(Op(—1)) ® Oz, p,(—2H) =0
for all p > 0. Therefore, after applying 7, to the exact sequence

O—>C—>T*Z;{—>ﬂ—>0,

we obtain 7, (7*U) = 7.(U). Since by Lemma A8 7,(7*U) = U, one obtains 7, (U) = U. O

Proposition 3.18. The sheafﬁ is flat over X.
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Proof. Since the sheaf U is just a 3m + 1 family over X \ a7!(Xy), it is enough to prove the
flatness over the points from a~1(Xg). For each such a point x consider diagram (3.2).
Consider the sequence

0 - QOXXPQ( ) _) OXX]P?2( )®OXXP2 _)Z/_{ — O

After applying 7" one gets the following sequence on Y:

0 — 7°(20%, 5, (<2H)) =2 7%(Og . (~H) @ O ,) — 7U — 0.

The sheaf U is by definition a cokernel of the factorization ® as in the diagram
T*<20)~(><IF’ ( 2H)) 4>T (O)?XIPQ(_H) D O)N(XIP@) *)T*Z/_{ —0.
L
ls 3' 3
7' (205%,p,(—2H)) © Oy (D)

Therefore, the restriction L (1) of U to Z is a cokernel of L (®). Applying L% to the diagram
above gives us the diagram

Ly ® T . e
‘L’]‘gs ”
L5d
Lp(7"(20% ., (—2H)) ® Oy (D))
Note that pulling back to Z the canonical section s of the exceptional divisor D of the blow
up 7 gives the canonical section sz of the exceptional divisor Dz = D N Z of o. Therefore,
applying the isomorphism Li7* = o*(Ig x id)* to the previous diagram we will obtain the
diagram defining € (note that €& = (Ip x id)*U):
o* (QOUXIPQ (—QH)) R — O'*(OUX]}D2 (—H) () OUx]p2) >0 —0.
‘sz /
0" (20uxp,(—2H)) ® Oz(Dz))
This means that the restriction of the resolution of I/
0— 20y(—2H + D) 2 Oy (~H) & Oy — U — 0
to the fibre Y, is isomorphic to the restriction of the resolution of £
0= 20,(—2H + D) 25 O4(—H) & 0y — € — 0

to the fibre Zy. Thus we conclude that ®|y, is injective (because A,|z is) and therefore
For®Y (U, 0y,) = 0, i. e., U is flat over X. O
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Remark 3.19. In the proof of Proposition|3.18 we have shown in particular that the fibres of
the sheaf U are either non-singular 3m + 1 sheaves or R-bundles on Ps.

Proposition 3.20. The sheafl/? 18 locally free on its support.

Proof. Since by Proposition 3.18 the sheaf U is flat over )Z, by Lemma 2.1.7 from [13] it is
enough to show that the fibres of U over the points from X are locally free on their support.
But the fibres are either non-singular 3m + 1 sheaves on P, or R-bundles. This completes the
proof. n

We obtained a family over X which has as its fibres all the non-singular 3m + 1 sheaves (up
to isomorphisms) and all R-bundles on [P, (up to equivalence).
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3.3 New families over an arbitrary S

In this section we present the construction of a family over X. This construction allows us to
construct all R-bundles on Py simultaneously.

3.3.1 Construction of a functor.
Definition.

Definition 3.21. A (new) family over S consists of the following data.

o A flat morphism 7 : Z — S such that for a point s € S the fibre Z := w~'(s) is either
isomorphic to Py or to Py (see Definition[1.11).

A morphism (contraction) Z Z» S x Py over S such that over each point s € S the
festrigfion Z, =5 Py is either an isomorphism Py — Py or the contraction of Py in
Py =Py UPy to some point in Psy.

e An invertible sheaf L on Z with the following properties.

— The restrictions L" ¢ to the fibres Zs are isomorphic to Oz (0,1) (¢f. Remark |1.406);

— The sheaf L = L @ L", where L' = 0*(Os X Op, (1)), is a very ample invertible sheaf
on Z relative to S (we use here Definition 4.4.2 from [8] of a relative very ample
sheaf).

o A coherent sheaf £ on Z that is flat over S and such that the restrictions £ of € to
the fibres Zs are either non-singular 3m + 1 sheaves if Zs = Py (cf. Definition 1.3) or
R-bundles on Py if Z; = Psy.

o A3m—+1 family F on S x Py and a surjective morphism o*F = & such that for s € S
the kernel of (0*F)s = &, is zero in the case Zy = Py and is isomorphic to 20p, (—L) if
Zy = Py.

o Let Sing F be the closed subvariety in S x Py where F is not free. We require that the
restriction of o to o= (S x Py \ Sing F)

(S x Py \ Sing F) = S x Py \ Sing F
s an isomorphism of open subvarieties.
We denote Oz(1,0) := L', 07(0,1) := L", and analogously Oz(a,b) := L'®* @ L"=P.

Example 3.22. 1) R-bundles described in1.3.2 are families over one point.

2) The one parameter families constructed in!1.2.1 are families over open sets in k.

3) The family over X that was constructed in'3.2 is a family over X in the sense of Defi-
nition |3.21.

Proof. Since the statements 1) and 2) are trivial, it remains to prove 3).

First of all we need the a sheaf £” on Y such that £7 = Oy.(0,1) for every s € X.
Consider the exceptional divisor D1 of the blow up ¥ — X x P,. Then by Remark [3.12/ and by
Lemma 1.20  one concludes Oy (Dy)]y, = Oy, (1,—1). Putting £” := Oy(—D;) ® L we obtain
L7 = Oy, (0,1).
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It remains to prove that £ = £’ ® L" is a very ample sheaf relative to X. Note that the
sheaf L is isomorphic to Oy, (1, 1) for every s € X. Therefore, one concludes that L is very
ample relative to {s} as a restriction of the sheaf Op,«p,(1,1) to Yy C Py x Py. Let 7 be the
projection Y — X. Then we have a closed embedding Yy — P(m,.Ly).

Consider the canonical morphism 7*7,L — L. By Proposition 1.32 we obtain

HY(Z,, L) 2 H (Z,,02,(1,1),)=0 and H°(Z,, L) 2 H(Z,,02,(1,1),) 2 K°.

Therefore, by the base change theorem we conclude that the canonical map ¢°(s) : m.L(s) —
H°(Z,, L,) is an isomorphism for every s € S. Since £, = Oz (1,1) is generated by its global
sections, we conclude that the evaluation map Oy, @, H°(Y;, L) = L. is surjective for every
seS.

Note that (7*m.L)s = Oy, Qk (m.L)(s). Under this identification the restriction of the
canonical homomorphism 7*7, L — L to the fibre Y; coincides with the composition

Oy, @ (mL)(s) 2229, o) @, HOY,, £4) < L.,

Since ¢°(s) is a n isomorphism and since ev is surjective, we conclude that (7*m. L), — L, is
surjective for all s € X and hence 71, L — L is surjective.

Therefore, the surjection 7*m, L — L induces a morphism Y — P(7,.L£). We will show that
this morphism is a closed embedding. Since P(m.Ls) = P(m.L)s and since Y; — P(m.Ly) is
injective, we conclude that Y — P(m,.L) is injective as well. Consider the commutative diagram

Yy —P(m.L

\/

Note that 7 is a proper morphism. Note also that P(7.L) — X is separated as a projective
morphism. Then by Corollary 4.8 e), II from [12] we conclude that the morphism Y — P(7m.L)
is proper. In particular it is closed. As we already proved that this morphism is injective, this
implies that Y — P(7.L) is a closed embedding, i. e., £ is a very ample sheaf relative to X. [

Remark 3.23. Let F be a non-singular 3m + 1 family over S. Put

Z=8xPy, wm=p:SxPy— S o=idexp,, L' =0sXK0Op(1), E=F

and let T be the canonical isomorphism egyp,(F) : idg,p, F = F. Then Z = S x P, is embedded
into

P(3OSXP2) = (S X IP)Q) X IP)Q

by the diagonal map (s, {(x)) — (s, {(x)) x (x). We obtained a family from Definition|3.21. We
constructed a map that sends a non-singular 3m + 1 family over S to a family from Defini-
tion |3.21.

We have now a correspondence
S +— set of the families over S.

We would like to have a functor. We need “pull-backs”.
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Pull-backs of the families.

For an arbitrary family over S and for an arbitrary morphism 7" — S we will construct a family

over T
Let (w: Z — S,0,L",E,F,7) be a family over S and let T 1 Sbea morphism. Let

le f lw

T——S

be the pull-back diagram. Note that Z; is flat over T', the sheaf F*E is flat over T as well
(cf. [12], III, Proposition 9.2, (b)). Since

TXPQ%SXPQ

lpl lpl

is also a pull-back diagram, by universal property of pull-back there exists a unique arrow
or : Zp — T x Py that makes the following diagram commutative.

TxPy— 5« P,

3! or .- /

Iy ———

J/pl J 1

Note that over each point of T, the morphism o is either an isomorphism Py = P, or a
contraction Py — P, as described in Definition 13.21.

Applying F* to the morphism ¢*F = £ we obtain a surjective morphism F*o*F T e
Since the diagram

ZT#Z

ok
fxid

TX]P’Q*)SX]P)Q

is commutative we obtain that F*c*F = o5(f x id)*F and in this way we get a surjective
morphism o%(f x id)*F — F*E. By abuse of notation we will call this morphism f*7. Note
that (f x id)*F is a 3m + 1 family as a pull-back of a 3m + 1 family.

Consider the invertible sheaf F*L£”. Note that

U;(OT X OPQ) = F*O'*<OS X Opz)).
Therefore, the invertible sheaf
or(Or K Op,) @ F*L" = F*6*(Os X Op,)) @ F*L" = F*(0"(Os X Op,)) @ L")

is very ample relative to T" as a pull back of the sheaf o*(Og X Op,)) ® L”, which is very ample
relative to S by Definition 3.21. So we obtain a family

f*(ﬂ', g, £1/7 57 F, T) = <7TT> oT, F*£//> F*gv (f X id)*fa f*T) (33)
over T'. We will call this family over T" the pull-back of the family (7, o, L", €, F,T) along f.
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Equivalence of families.

Definition 3.24. Let (w1, 01, LY, &1, F1,71) and (7o, 09, LY, Es, Fa, T2) be two families over S, i.
€., 01: 21— S xXPyand oy : Zg — S X Py. Then they are called equivalent if the following
statements hold true.

o There exists an isomorphism & : Zy — Zy such that o1 = 090 & and such that £* L5 = L].
= S x P
/T X 1o
I ——— Uy —

V2

e There are isomorphisms e : &, — & and ¢ : Fy — Fo such that the diagram

Qg oo (F oy
O'Tfl (7& 2( v f*O;fl 4)5 29) 5*05}"2 (34)

o

[+
El— &
18 commutative.

Here o o, : £*05 — 05 is the canonical isomorphism of functors.

Remark 3.25. For the canonical isomorphisms of functors we use here the notations from [30]
(see Definition 3.10, page 47).

Lemma 3.26. The relation from Definition 3.2 is an equivalence relation.

Proof. 1) Reflexivity. Consider an arbitrary family (7 : Z — S,0,L",E,F,7) over S. Put
€ = idg, then &L = L". Let e : £ — id} € be the inverse of €z(€) : id, € — &, where
€z 1 idz — idgn(z) is the canonical isomorphism of functors %h(Z) — “oh(Z), put also
6 — idr.

Then the commutativity of

Qid 5,0 (F) idigx 7

ot F— 2 idy o' F =2==id} 0" F
\N A} T2
£E—FC——idy €

is the same as the commutativity of

ez(0*F) .
o F+————idy, o*F

TJ lid} T
ez(E)

g9 qre

because qid, ,(F) = €z(c*F). But the commutativity of the last diagram follows because € is
a natural transformation of functors. We proved the reflexivity axiom.
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2) Symmetry. Suppose that (m

: Zl - Sualu

1,6, F1,m) is “equivalent” to (s :

Zg—>

S, 09, LY, E, Fa, 72). The latter means that there exist £, ¢ and e as in Definition [3.21 and the

commutative diagram

Uikfl

N

ag oo (F1)

sF B e,

%7'2

& ———— &

g*

Denote & = ¢! and apply £* to this diagram. We obtain then the commutative diagram

5/* *f'

AN

Sl*g*

Otg g2

gl*f* *fl 5/*5* *fg
5/*51 L TN 5/*&*52

One can extend this diagram to the commutative diagram

¢t F

él*af,oz (]:1)

é-/*o_i/f & ae, ”2 5/*5*
él*‘rl
5/*51 e
For ¢/ =

diagram

7 oo (F1)

o3 Fs <a§7;1
N

= (L) =

(7T2

122y — S,0q, LY, &1, F1, 7). This proves the symmetry of the

Since we also have &*(LY)

is “equivalent” to the family (7
relation.

3) Transitivity. Let (m
(72

of the first equivalence, and let &,

commutative diagrams

Qg oy (]-—

O'Tfl =

N

& ———— &

: Zl — S,
D Zy — S,00,L5,E,F2,T2) ~ (3

* % 5*0*((]5) * %

{/*o.is(qs) , ag/’al(./ﬁ'2)
ot Fy ——— 035,
&g o (F2) Qid g, 02
6’* *o5(9) (035F2) | €z, (05F2)

=S o) LS idy, 037> Y2

&€ o id"Z2 T T2
s ¢(€2) . €z, (&2)
5/*5*52 ld*Zg 82 52'

gty L), §o1(¢)

é-/* *f
5/*

e 1% "
E——E"E

[a)

5, this means that the family

: ZQ — S, 02,£/2/7827f2772)

"

17017817f17T1) ~ <7T2
. "

. Z3 - Sa0-37£37537f3a7—3)'

2ZQ—>S,

o' and for ¢ = (e,(£) 0 age(E) 0 &%(e))™" we obtain finally the commutative

"
09, L5, &, F2,T) and

Let &, e, ¢ be the data

e/, ¢’ be the data of the second equivalence. We have the

O'ng fl*

e %

/

é—l* *

/
5,*

&3

52 —_ 5/*53
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Applying £* to the second diagram, attaching the obtained commutative diagram to the first
diagram and extending the resulting diagram we obtain the commutative diagram

agre o5 (F1) (€& o5 (F1) &) o5 (¢'9)
(é'é)*aé‘(}—lﬁ
o £ aer oo (F1) kel gk T 1€V o F.
171 e 0y (F1) /’ﬁfg 03771 €% o3 (¢ 9) (&) o3 Fs.
\ . a§,§/(0§f3)
ET3F1 go306) FTW@
S s S0 i)

T1 6*0';‘/,:.2 5*5/*0.;‘/{'2 A £*§I*0§F3 (5/5)*7—3
J . g€
£

8]_ e
*e! ag ¢r(E3) e\
e g, S (e,

For " = ¢'&, " =Y/ and €’ = age(E3) 0 £*€¢’ 0 e we obtain the commutative diagram

Qg o (F1) 1Y% g% (I
01 Fp &l oz () —ELEED e

T1
\ M 3
"

& Z £ Es

Since L] = L) = &Ll = ¢ LY, we conclude (my : Z1 — S, 01, LY, &1, Fi, 1) ~ (73 1 Z3 —
S, 03, LY, E3, F3,73). This proves the transitivity. In 1), 2), and 3) we proved that the relation
from Definition 3.24/ is in fact an equivalence relation. ]

Lemma 3.27. 1) Consider the map described in Remark|3.25. Then isomorphic 3m+1 families
are mapped to equivalent families.

2) This gives us a map from the set of all classes of isomorphism of non-singular 3m + 1
families over S to the set of the equivalence classes of new families over S.

3) This map is injective. Therefore, the set of all classes of isomorphism of non-singular
3m + 1 famulies can be considered as a subset in the set of the equivalence classes of families
described in Definition |3.21.

Proof. 1) Let F; and F, be two isomorphic non-singular 3m + 1 families over S. And let
¢ : F1 — F» be the corresponding isomorphism. Define e by the condition that the diagram

aidSXPQ idg x Py (‘7:1) idgx[P’Q idgx[P’Q (¢)

1d5><]P>2 F1 lde]P’g 1dS><IP’2 F1 1de]P>2 1d5><]P>2 F2

idg, p, €5xPy (F2
esxpy (F1
[

Fi idg,p, F2

commutes (note that all the arrows in this diagram are isomorphisms). Then & = idg«p,, €,
and ¢ are data that describe an equivalence of the families that correspond to the sheaves F;
and Fs.

2) Follows from 1).

3) If two families are equivalent, then in particular their 3m + 1 families are isomorphic by
Definition [3.24. This implies the required injectivity. [

Remark 3.28. Note that for families over one point the notion of equivalence from Defini-
tion 3.2/ coincides with the equivalence of R-bundles on Zy from Definition |2.12.
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Let us denote the set of the equivalence classes of new families over S by M (S). For a
family (7,0, L",E,F,T) we denote its equivalence class by [(7, 0, L", E, F,1)].
Lemma 3.29. Let (m,01,LY,&E,F1,m1) and (7o, 09, LY, Es, Fo,m2) be two equivalent families
over S and let T L5 S be a morphism. Then the pull backs of (my,01, L], &, F1, 1) and
(79, 09, L, E, Fa, T2) along f are equivalent families over T .

Proof. Let & : 727 — Zs, ¢ : F1 — Fo, and e : & — £*&5 be as in Definition 3.24. Consider the
commutative pull back diagram

F:
Z2T oo 2
|
fxid
¥ T x P, i
a1T
7 / / m
o 1T
pP1
™T
f
T

Applying F} to the diagram (3.4) and using the properties of the canonical isomorphisms we
obtain the commutative diagram

Ao (fXidpy)* F1) rosp(fxidp,)* (9)

orr(f x 1d)"Fy §rosp(f x id)*Fy §rosp(f X id)" T

o T /

fl — (U1F1 ~7:1 <75T U2F2 *Fi 4>5T(02F2) Fa

F*E 64*71 et \ \
1¢1
- Fi&osF) —————— (ER) o3 Fy +—— EaFy o el
! %‘a;qﬁ \ \
F1£ T2

Fi&&y+————— Fi¢0o .7:24> fFl fo5Fo—— EpFy 05T \
(EF))*E, §rF5Es

and finally the commutative diagram

e, a2T((f><ld]P2) F1) fTU2T(f><ld]p2

oip(f xidp,)* F1 705 (f x idp,)* F fTUQT(f x idp, )* Fa.

frn m

& §rFy &

Since

GFILY > Fie )= Bty
we conclude that the pull backs of (7,01, L], &, F1, 1) and (ma, 09, LY, Es, Fo, 2) along f are
equivalent families over 7. O

For an arbitrary morphism f : T — S Lemma 3.29 gives us a well-defined map

I :M(S’) — M(T), (7,0, L EF,7)] — [f*(m,0,L", E,F, 7).
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Functorial properties, construction of the functor.

Lemma 3.30. Let (m: Z — S,0,L",E,F,7) be a family over S and let T LS and U % T be
two morphisms. Then

1) the families idg(m, 0, L",E,F,7) and (7w,0,L" E,F,T) are equivalent;

2) the families (fg)*(m,0,L",E,F,T) and g* f*(w,0,L",E,F,T) are equivalent.

Proof. 1) We have the commutative diagram

s 1k
Qid 5,0 (ldS xPo

F)
o*idg,p, F id7 o* idg,p, F.
Jaa,idSX% (F) J{id*z A idgyp, (F)=idy 0" esxpy (F)

o*F —r id; o*F

Since idg 7 is by construction the composition

—1
aidZ,rr(]:) -

Yoidgxpy dyr .
s o' F ———idy 0" F 2= id} €,

o idg,p, F
we obtain the commutative diagram

Qidy o (Id5p, id7 0" esxpy (F)

o idgup, F idy 0" idg,p, F idy o* F.
idy, £ =——=1id} ¢

Therefore, ¢ = egxp,(F) : idg,p, F — F, { = idgz, e = idigy ¢ are the data that describe the
equivalence of idg(m, o, L, €, F,7) and (7,0, L",E, F,T) (note also that £*L£" = id7, L").
2) Follows from the commutative diagrams

U x P, gxid T x P, fxid S x P,
oyu ar (e
/ G // F /
Zy Zr 7

A VA

U T
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and

op(g x 1d)*(f x id)*F «—idy, o5 (g x id)*(f x id)*F —idy, of(fg x id)*F

(07G)*(f x 1d)*F e——idy, (o0G)*(f x id)*F

"op(f x id) F ——idy, Grop(f x i) Fidy, (fg x id)oy) F |
iz, (o)

G*(oF)*F ¢+—————idy, G*(oF)"F ————idy, (0 FG)*F

ez, (G*F*c*F idy, ag,r(o"F) T
G Fr o F 20 Lidy, Gt F T g (FGY ot F
C* P idy, G*Fr iy, (FG)*TL
€ G*F*¢&
G g eI gy Grpre idy, (FG)"E.

id}U ag,r(€)
Of course we have G*F*L" = id}, (FG)*L", the equivalence data are

§ =idg,,
¢ =agxid fxia(F) @ (g x 1d)*(f x id)*F — (fg x id)*F,
e =idy, ag.r(€) o (ez, (G FE)™ : GF'E — idy (FG)E.

We have proven the lemma. Il

Lemma [3.30] together with Lemma [3.29 say that M is a functor (Sch) — (Sets). We use
here the notations (Sets) and (Sch) for the category of sets and for the category of separated
schemes of finite type over k respectively.

Relation between .Mv and M.

Recall that by M we denote the functor of the 3m + 1 Simpson moduli problem on P,.

Proposition 3.31. There is a natural transformation of functors M M given by the rule

M(S) 3 [(m,0,L",E,F,7)] — [F] € M(S), S € (Sch)
Hom sers) (M(S), M(T)) 3 f* = f* € Homses)(M(S), M(T)), (T £ 5) € (Sch)

Proof. Let f: T — S be an arbitrary morphism. By Definition (3.3) the 3m + 1 sheaf of the
pull back family f*(mw, o, L",E, F, ) is the sheaf (f x idp,)*F. Therefore, the diagram

M(S) L= M) (7,0, L", &, F. 1) = [f*(r, 0, L", &, F.7)]
LU(S) JH(T) }(S) }L(T)
M(S) T M(T) 7] L [(f xids,) 7]

commutes. This proves the required statement. Il
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3.3.2 Properties of new families.
Space Z as a subvariety in a Py x P,-bundle over S.

Let us consider a family (7 : Z — S,0,L",E,F,7) over S. Consider the invertible sheaf
L' =0"(0s K Op,(1)) = 0™ (piOs ® p30p,(1)) = 0" p;0p, (1)
on Z. Let us calculate its direct image G; = m, L.

Lemma 3.32. 7,L' = 30s and the canonical morphism w*n L' — L' is surjective.

Proof. Since H'(Py, Op,(1)) = 0, using Proposition 1.32 and the definition of £’ from Defini-
tion 3.21) we conclude that

Hl(Zsa['/5> = Hl(ZS> OZS<1’O)5) = 0.

Therefore, by the base change theorem the canonical map ¢°(s) : m.L'(s) — H(Z,, L) is an
isomorphism for every s € S. Since by Proposition 1.32 H(Z,, L',) = k®, applying the base
change theorem using the surjectivity of ¢ ~!(s) (by definition) we obtain that G; = 7,L" is a
locally free sheaf of rank 3 on S.
Note also that
T L' = w0 P30, (1) = p1,p5Or, (1).

Therefore, for an open set U in S we have using the Kiinneth formula
P1.030p, (1)(U) = p30p, (1) (U x P3) = Og(U) @ I'(P2, O, (1)).

Hence p1,p50p, (1) = Os @ T'(Py, Op, (1)) = 30s.
Note that (7*m.L')s = Oz, Rk (m.L)(s), where

(m L) (s) = m L fmg s - m L.

Under this identification the restriction of the canonical homomorphism 7*7, L — L’ to the
fibre Z, coincides with the composition

id ®¢0(s
— 5

Oz, ®x (mL')(s) L 0, @ H(Z,,LL) <5 L,

where ev is the evaluation morphism and ¢°(s) is the homomorphism from the base change
theorem. We have just shown that ¢°(s) is an isomorphism. Since £, = O~ (1,0) and since
Op, (1) is generated by the global sections, we conclude also that the sheaf £ is generated by
its global sections as well, hence ev is surjective and we conclude that (7*m.L')s — (L')s is
surjective for every s € S. Therefore, 7*m, L' — L' is surjective. This proves the statement of
the lemma. O

Consider now the sheaf £” and its direct image 7, L".

Lemma 3.33. The sheaf Go = w,L" is a locally free sheaf of rank 3 on S and the canonical
morphism 7*Gy = w*m, L — L" is surjective.

Proof. Since H'(IPy, Op,(1)) = 0, using Proposition 1.32 and the properties of £” from Defini-
tion 3.21 we conclude that

H1<ZS7£”S) = H1<ZS7 Ozs(o’ 1)S> =0.
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Therefore, by the base change theorem the canonical map ©°(s) : m.L"(s) — H°(Z,, L") is an
isomorphism for every s € S. Since by Proposition 1.32 H°(Z,, L") = k3, applying the base
change theorem using the surjectivity of ¢ !(s) (by definition) we obtain that G, = m,L" is a
locally free sheaf of rank 3 on S.

Using the same arguments as in the proof of Lemma 3.32 we conclude that £ is generated
by its global sections as the pull back from Py of the globally generated sheaf Op,(1). There-
fore, (m*m.L"); — L is surjective for every s € S and one finally obtains that the canonical
homomorphism 7*Gy, = 7*m,L"” — L” is surjective. This completes the proof. m

Lemma 3.34. For L= L' ® L" the sheaf G = 7L is a locally free sheaf of rank 6 on S. The
canonical homomorphism G = n*n, L — L is surjective.

Proof. As above we get
H'(Z,, L) = H'(Z,02,(1,1)) =0 and  H'(Z, L) = H'(Z,, 07,(1,1),) 2 K"

Applying the base change theorem we obtain that G is a locally free sheaf of rank 6.
Since L is very ample relative to S we conclude that 7*m,. L — L is surjective (see also [§],
4.4 and 3.4.7). This completes the proof. O

We have already shown that the canonical homomorphisms
m™30s) 2 r'm L — L', 76 =r'mL" - L" 7G=rrnL—>L
are surjective. They correspond to some morphisms
Z —-PBOs)=SxPy, Z—-P(G), Z—PG)

over S. The first map coincides with o. Since we assumed L relative very ample, the last
morphism is a closed embedding.
For every s € S the canonical homomorphism

H(Zs, L) @ H*(Zs, L") — H(Zs, Ls)
is surjective. Therefore, one concludes that the canonical map
GG =mLeomnl"—-r1L=G
is surjective as well. Therefore, the corresponding morphism
P(G) — P(Gi®G,)

is a closed embedding and we obtain the commutative diagram

7 ——P(G1) xs P(G2) = (S x Py) x5 P(Gy),

| |

P(G)——P(G1 ® Go)

where ¢ : P(G;) x5 P(Gy) — P(G; ® Gs) is the Segre embedding (cf. [8], 4.3). From the
commutativity of the diagram we obtain that the morphism

Z — (S xPy) xg P(G2) =Py x P(Gy)
is a closed embedding. We have shown that Z is a closed subvariety in some Py x Py-bundle
over S (compare with Proposition 3.13).

Proposition 3.35. 7 is a closed subvariety in Py x P(Gs), where Go = m,.L" is a locally free
sheaf of rank 3 on S.

In particular this means that for every point s € S there is an open neighbourhood U of s
such that Zy is a closed subvariety in U x Py X P5.
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Local existence of resolutions.

Let (m : Z — S,0,L",E,F,7) be a family over S. Then F is a 3m + 1 family over S. Let
p1: S xXPy — S and py : S x Py — Py be the canonical projections. Then there exists a relative
Beilinson resolution (cf. [24])

0 = pjAs ® PO, (—2) = (pjA1 @ P3O, (1)) ® (pjAg @ P3Os,) — F — 0, (3.5)

where Ay = R'py, (F @ p5Q2,(2)), A1 = R'p1(F @ psQp, (1)), and Ay = Rpy(F) are locally
free sheaves on S of rank 2, 1, and 1 respectively.
Let us apply ¢* to this resolution. Then

a*(p1 Ao ® p50p,) = 0"pi Ay @ 0" p50p, = 1 Ay ® Oy,
0" (p1A1 @ p30p, (—1)) = 7" A1 @ Oz(-1,0),
0" (p1 Az @ p3O0p, (—2)) = 1Ay ® Oz(-2,0).

We obtain the commutative diagram with exact rows and columns

0 0
| l
c C
| l
0—C — 71 Ay ® Oz(=2,0) L5 (1* Ay @ Oy(— (m*Ag @ Oy) %arﬁo
OHK%( *.A1®Oz( *A0®Oz)*>g*>0
| J
C 0
|
0

Lemma 3.36. The sheaf B := w,K(1,1) is a locally free sheaf of rank 2.

Proof. Since by assumption & is flat over S and since the sheaf
(7" A1 ® Oz(—1,0)) & (7" Ay ® Oy)

is flat as a locally free sheaf on Z (recall that Z = S is flat), we conclude that the sheaf K is
flat over S as well.

By Proposition [1.66 we know that Ky = 20, (—1,-1) if Z, = P,. If Z, = Py, then Ky =
20p,(—2,0) = 20p,(—1,—1) (cf. Remark [1.46). Thus one concludes that Ky = 204 (-1, —1)
for all s € S. The sheaf IC(1,1) := K ® Oz(1,1) is also flat. We have K(1,1); = 20;..

One has H'(Z;,K(1,1);) = H'(Z,202,) = 0 for every s € S. Therefore, by the base
change theorem the canonical homomorphism

OOs) : T (1,1)(s) — HY(Z,, K(1,1),) = H*(Z,,204,) 2 Kk?

is an isomorphism for every s € S. Again by the base change theorem using the surjectivity of
¢~ 1(s) (by definition) we obtain that 7,/(1,1) is a locally free sheaf of rank 2. O

Proposition 3.37. K = 1B ® Oz(—1,—1), in particular K is a locally free sheaf of rank 2.
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Proof. Consider the canonical homomorphism 7*B = 7*m,/K(1,1) 2 K(1,1) and its restrictions
(1, 1) 25 K(1,1), to the fibres Z,, s € S.
Note that 7*m/C(1,1)s = Oy, ®k (m/(1,1))(s), where

(mJC(1,1))(s) = mC(1,1) /mg s - mSC(1,1).
There is the following commutative diagram

Oz, @i (mL(1,1))(s)
id®go0(s)l
OZS ®]k HO(Zsa K:(]-a 1)8) L IC(L 1)8’

Ns

where ev is the evaluation morphism and ¢°(s) is the morphism from the base change theorem.
In the proof of Lemma 13.36 we have already shown that ¢°(s) is an isomorphism for every
s. Since K(1,1); = Oy, we conclude that the map ev is an isomorphism and hence n;, =
evo(id ®¢"(s)) is an isomorphism as well. The latter implies that the canonical homomorphism
B =r"1./(1,1) — K(1,1) is an isomorphism. This gives K = 7m*B® Oz(—1, —1). Since the
sheaf B = 7, /KC(1,1) is locally free of rank 2, we obtain that (1, 1) is also a locally free sheaf
of rank 2. This completes the proof. O

We obtain finally the commutative diagram with exact rows and columns

0 0

l l

/~c' C

/Ai |
OHC’H?T*AQ(X)Oz(—Q, ) ( A1®OZ ﬁAo@Oz)HO’*f%O

| |
OHW*B®02(—1,—1) ( *A1®OZ *A0®Oz)*>54>0

|

0

O4— QN<—

Lemma 3.38. For every point s € S there exists an open neighbourhood U of s such that the
sheaves Ay and B are both isomorphic to 20y. For an appropriate choice of isomorphisms the
restriction of v to Zy = w~Y(U) is then of the form

(6e)

204, (—2,0) ~25 20, (—1,—1)

for some e € I'(Z,04(1,—-1)).

Proof. Since both sheaves Ay and B are locally free of rank 2 on S, one concludes that for
every point s € S there exists an open neighbourhood U of s such that both A, and B and
are isomorphic to 20y and hence their pull backs along 7 are free sheaves of rank 2 on Z.
Therefore, the restriction of v to Zy is given by a matrix

ab
QOZU( 2 0) ( ) QOZU( ,—1), a,b,C,dEF(OZU,OZU(l,—l)).
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It holds I'(Zy, Oy, (1,—1)) = I'(U, 7.0, (1,—1)). Using Proposition [1.32, for every s € S we
obtain H(Zy, Oz, (1,—1)) = 0 for i # 0 and H°(Z,, Oz, (1,—1)) = k. Therefore, by the base
change theorem we conclude that m.Oz(1,—1) is a locally free sheaf of rank 1 on S. Thus
making U small enough we may assume that 7,0y, (1, —1) is isomorphic to Op. Therefore, we
obtain the following isomorphism of Oy (U) modules:

I'(Zy,0z,(1,-1)) = I(U,m.0g,(1, -1)) = I'(U, Oy).
Note that the canonical homomorphism
Oy(U) = (m.0z,)(U) = Oz, (Zv)

equips I'(Zy, Oy, (1, —1)) with a structure of an Oy (U) module. As above, using the base
change theorem, we conclude that the sheaf 7,0 is an invertible sheaf on S and shrinking U
we obtain 7,0y, = Opy. Therefore, we obtain an isomorphism of k-algebras

Oz, (Zy) = (1.0g,)(U) = Oy (U)

and may identify the sections from Oy, (Zy) and Oy (U).

Let ', V', ¢, d be the elements of I'(U,Opy) = I'(Zy,Og,) corresponding to a, b, ¢, d
respectively. Let e € I'(Zy,Og,(1,—1)) be the section that corresponds to 1 € I'(U, Opy) =
Oy (U). Then

and we obtain the commutative diagram

(¢a)

204, (~2,0) — 520, (~1,1).
c d\/ /
207, (~

To prove the required statement it is enough to show that the matrix (‘;f gﬁ) is invertible.
Since
o 1(S x Py \ Sing F) = S x Py \ Sing F

is an isomorphism, we conclude that 7 is an isomorphism over W = ¢~ 1(S x P\ Sing F). Then
(¢ %) is an isomorphism over the intersection of Zy with W. Hence both (% %) and (§9) must
be isomorphisms over this set.

Note that there exists locally a section of the morphism W C Z 5 S. Therefore, the
morphism

a' v
20y (U) M 20y (U)
is an isomorphism and the same holds for the matrix (gf Z;) considered as a morphism 20, —
20z,. This completes the proof. O

As the sheaves B, Ay, A;, and Ay are locally free sheaves on S of rank 2, 1, 1 and 2
respectively, the latter means that for every point s € S there exists an open neighbourhood U
of s such that for Zy = 771(U) we have the resolution

0 — 200, (—2) = Opyp,(—1) ® Opyp, — Fiy — 0 (3.6)
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and the commutative diagram with exact rows and columns

|
C
*\Il l
0—C" —202,(-2,0) 7= 0gz,(~1,0) ©® Oz, —— (¢*F)y — 0
(5 37

—~ SN—
o+— O+ %A%Q%O
<;
\]

0——20z,(-1,-1) —2= 04, (—1,0) ® O,

o+ O

Maps to X and M.

Lemma 3.39. Let (m : Z — S, L",0,E,F,7) be a family over S. Then there is an open
covering S = |J S; and morphisms y; : S; — X such that v o Xi|SmSj =rvo Xj|SmSj for every 1

7

and j. This defines a morphism S — M.

Proof. First of all note that there is an open covering of S = [JS; and morphisms S; — X

induced by the 3m+1 family F. All that morphisms composed with the quotient map X = M

agree with each other on the intersections S; N S; and give rise to a unique morphism S — M

such that the sheaf F is the pull back of the universal 3m + 1 family on M with under that

morphism (recall that M is a fine moduli space for the 3m + 1 moduli problem on P,).
Consider the diagram (3.7). From resolution (3.6) we obtain the morphism

v:U—-X, s—U,eX.

For every s € U consider the restriction of (3.7) to the fibre Z,. We obtain the commutative
square

207,(-2,0) o, Oz,(-1,0) ® O,

(52)| (58)
20,.(—1,—-1) —25 0, (~1,0)® O..

Note that H(Z,, 05 (1,—1)) = k. Indeed by Proposition 1.32 this holds for Z, = P,.

If the fibre Z; is isomorphic to Py, using Op,(1,—1) = Op, (cf. Remark [1.46) we obtain

HO(Py, 0. (1,—1)) 2 k as well. So e, is unique up to multiplication by a non-zero constant.
We obtain the injective morphism ®, € Hom(20,,(—2,0),204,(—1,1)),

_ ll C_71 o ll(S) 61(8> (s (s
s = (12 ~) (s) = <12(5) al(s)) v lils) €125, 02,(0,1)), - ai(s) € T(Zs, Oz,(1,1)).

Denote pt, := (I;1(s) A la(s)). We obtain the morphism

by U — P, s+ (qi(s)(pty), ¢2(s)(pty))-
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Therefore, one gets the morphism
(ay,by) : U — X x Py, s+ (ay(s),by(s)).
Then from the commutative square (3.8) we conclude (cf. (1.9)) that

@1(s)(pty) - fa(Ws) = @2(s)(pty) - f3(¥s) =0

By (3.1) this means that the image of the morphism (ay,by) : U — X x Py lies in X.

We obtained a morphism yy = (ay,by) : U — X. We can construct such a morphism in
a neighbourhood of every point s € S. Suppose we have two morphisms yy : U — X and
xu U — X for two open sets U and U’ in S.

Consider a point s € U N U’. We obtain two commutative squares

(o*W)s

20, (=2,0) ——50, (-1,0) B 05 20 (-2,0) Oz (-1L,0)® 0z (3.9

(52)] CH I

QOZS( 1 _1)L0Z 1 0 EBOZ, QOZS(—l,—l)*S>OZ 1 0 @Ozg

(o*9')s

Since we have already noticed that H°(Z,, Oz, (1,—1)) =k, we obtain that e, = A\e/, for some
A€ k*.
The sheaf &, has the resolutions

020z (-1,-1) 25 0, (1,008 Oy, — & — 0
and ,

0= 204 (~1,-1) 25 0y (=1,0)® Oy, — & — 0.
Then (cf. Section 2.1) there is (f, h) € G such that the diagram

D,

2(92( )4)02( 1,0)@025

o| | Jr

207,(—1,—1) — 0, (=1,0) & Og,.

commutes, i. e., ®; = g - @, - h~1. In particular this implies that by (s) = by (s) - gT.

Using (3.9) we obtain the commutative diagram

207,(~2,0) T 0,4,(-1,0) 8 Oy,
)\gl lh
(o* W),
2025(—2, 0) e OZS(_L O) ) OZS‘

and therefore Uy = \g - ¥/ - h~! and hence ay(s) = A\g - ap(s) - h™t.

We obtained that xy(s) = (ay(s),by(s)) and xup/(s) = (ap/(s),by(s)) lie in the same orbit
of the action of G on X. Therefore, by Lemma 3.7/ 7 o xy/(s) = Dxy+(s). This proves that the
restrictions of 7 o yiy and v o xyr to U N U’ coincide. B

We proved that one can cover S by open sets S; such that there are morphisms y; : S; — X.
Moreover the morphisms voy; : S; — M agree on the intersections. We obtain then a morphism
S — M. This completes the proof. m



132

Note that two equivalent families over S define the same morphism S — M. This gives us
a map

M(S) — Hom(S, M).

Consider a morphism T’ 7. S and a family (7 : Z — S, L",0,E,F,7) over S with the induced

morphism S 2, M. From the considerations in the proof of Lemma 3.39 it follows that the
morphism induced by the pull back of (7 : Z — S, L",0,E,F,7) along f coincides with the
composition ¢ o f. We obtained the following proposition.

Proposition 3.40. There is a natural transformation of functors

M—>H0m(_ , M)

and the commutative diagram



Open questions

There are still questions to be answered.

—~

o It is not clear whether the natural transformation of functors M — Hom(__ , M) we
obtained is an isomorphism (equivalence of functors), i. e., whether the space M is a fine
moduli space of the moduli problem we defined in this thesis. This question is connected
with the existence or non-existence of a descent of the sheaf U over X to a sheaf over M.

e Another question is whether M — Hom(__ M ) is universal in the following sense:

for every natural transformations of functors M — Hom(__ , W) there exists a unique
arrow Hom(__ , M) — Hom(__ ,W) (in other words a morphism M — W) that makes
the diagram

—~

M—>Hom(_ , M)

1

Hom(__ , W)

commute.

e It was mentioned in [4] that there is an isomorphism Mz, 1(P2) = My, 9(P2). The
description of the parameter space for Ms,, 1(Ps) and M3, 2(IPy) are almost the same.
Therefore, the techniques presented in the dissertation may be applied almost without
changes to the moduli space Mj,,1o(P2). It is however not clear whether the ideas from
this thesis may be reasonably modified to work for a bigger class of Simpson’s moduli
spaces. We guess it may be needed a sequence of steps similar to the construction de-
scribed in the dissertation to replace the singular sheaves of a moduli space Mp(IPy) for
a general polynomial P(m).
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Appendix A

General statements

This chapter contains some auxiliary statements that are used in the dissertation. Some of
them may be easily found in the literature and are provided with references. The statements
for which the author have not found the references are provided with proofs.

A.1 Flatness and base change
The following statements are often used in the dissertation.

Theorem A.1 (Base change). Let X LY bea projective morphism. Let F be a coherent
sheaf on X which is flat over Y. Let y € Y be a point in Y. Then the natural map

P’(y) - R'(F) @ k(y) — HP (X, Fy)

1s an isomorphism if and only if it is surjective. In this case it remains isomorphism in a
neighbourhood of y and the following two conditions are equivalent:
1) the natural map

" Hy) RP(F) @ k(y) — H (X, F,)

18 surjective;

2) RPf.(F) is locally free in a neighbourhood of y.
Proof. See [12], 111, Theorem 12.11. O

Theorem A.2. Let f: X — Y be a morphism of varieties over k, let Y be reqular and X be
Cohen-Macaulay. Assume that each fibre of X has dimension dim X — dim Y. Then f is flat.
In particular this holds true if both X and 'Y are reqular.

Proof. See [11], 6.1.5, or [12], III, Ex. 10.9. O
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A.2 Some properties of blow ups

We collect here some facts about blow ups. The statements we refer to are provided either with
references or proofs.

A.2.1 Definition and basic properties.

Let us recall the definition and some basic properties of blow ups. For details see also [6], IV,
and [12], 11, §7.

Let S C Y be a closed embedding and let Zg = Z be the ideal sheaf of S. Then the blow
up BlgY of Y along S is by definition the scheme

BlgY :=Proj (P I
d>0
together with the canonical (structure) morphism
Proj ((P1) &Y
d>0

and with the canonical invertible sheaf Op vy (1) on Blg Y.
The subscheme D = ¢7!(S) is called the exceptional divisor of the blow up o. It is
canonically isomorphic to the scheme

Proj (Hz/7*"
d=0
and the embedding D C BlgY is induced by the canonical surjective homomorphism
@Id s @Id/zd-‘rl.
d=0 £>0

D is a Cartier divisor on Blg Y with the corresponding ideal sheaf
T-Opizy = Opigy(—D) = Opizv(1).

For every morphism f : Z — Y such that f~!(S) is a Cartier divisor, i. e., such that f~'7 - Oy
is an invertible sheaf, *' there exists a unique morphism g : Z — BlgY with f = 0 o g. This
property is called the universal property of blow up.

There is the commutative diagram of the canonical projections

Psiz @ SYZ/T?)

d}Ol d>0 l

@ Id @ Id/_'[d"'l,

d>0 d>0
Note that if S is a locally complete intersection, then the vertical arrows of the above
diagram are isomorphisms (cf. [6], IV, Corollary 2.4, and [12], II, Theorem 8.21A). In particular
this induces the isomorphisms

BlsY = Proj DI = Proj @HS'T =P(7)

d>0 d>0

Recall that f~1Z-Oy = IOy is the image of f*(Z) in Oz under the canonical map f*(Z) — f*Oy = Oy,
see also [12], page 163, Caution 7.12.2.
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and
D = Proj @ 1%/1"" = Proj @ SUI/T°) =P(I/T?).
d>0 d>0
Recall that the sheaf €5y = Z/Z? is called the conormal sheaf to S in Y. It is a coherent
sheaf on S. If S is a locally complete intersection, then Z/Z? is a locally free sheaf on S (cf. [6],
§4, Proposition 3.2).

A.2.2 Some useful statements.

Let Y be smooth and let S C Y be a locally complete intersection of codimension codim S =
N+12>2 Let 0: X — Y be the blow up of the ideal Zg = Z of S. Let D be the exceptional
divisor of this blow up. We obtain then a commutative diagram

D——X

S——Y.

Since S is a locally complete intersection we have that the sheaf Z/Z? is locally free, X = P(Z),
and D = P(Z/Z?). The embedding D — X is induced by the projection Z — Z/Z2.
The ideal sheaf of D is

Ox(—=D) =1 -0x = Ox(1) = Opp)(1),

where 7 - Oy is the image of 0*(Z) in Ox under canonical map ¢*(Z) — ¢*Oy = Ox.
Since Op(1) is just a restriction of Ox (1) to D, ie., Opz/2)(1) = Op)(1)|pz/72), We
conclude that

Op(1) =0x(1)|p = Ox(1) ® Op = Ox(—D) ® Op,
and therefore Ox (D) ® Op = Op(—1). We proved the following simple lemma.
Lemma A.3. Ox(D) ® Op = Op(—1).

Lemma A.4. 1) RP0,(Op(—1)) =0 forp > 0.
2) RPo,.(Op(n)) =0 forp>0,n=>0.

Proof. 1) Note that for any coherent Op-module F we have RPo.(F) = RPop.(F). This is
true because for each open set U C Y we have

H?(c"YU),F) = H?(c " (U)N D, F) = H’(c (U N S), F),

i. e., the pre-sheaves defining RPo,(F) and RPop.(F) are equal.

Note that D 22 S is a projective bundle over S and therefore is flat. Thus Op(—1) is flat
over S as a locally free sheaf on D. Therefore, we can apply base change.

For each point s € S consider the fibre Dy over s.

D.~—— D

T

{sfj—s.

Then Dy = Py (recall that codim S = N + 1) and Op(—1)

p. = Op,(—1). Since for all p > 0

H?(Dy, Op,(=1)) = H*(Py, Opy(-1)) = 0,
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applying Theorem [A.1 we obtain RPop,(F) = 0. As we showed that RPo,(F) = RPop.(F), we
conclude that RPo,(F) = 0 for p > 0. This proves the first part of the lemma.

2) Analogously, using that H?(Py, Op, (n)) = 0 for p > 0, n > 0, we obtain RPo,(Op(n)) =
0 forp>0,n=0. O]

Lemma A.5. 0,(Ox) = 0.(Ox(D)).
Proof. Let us consider the exact sequence
0—Ox — Ox(D)— Ox(D)® Op — 0.
Since by Lemma A.3/ Ox(D) ® Op = Op(—1) we obtain the long exact sequence

0 — 0,0x — 0.(0x(D)) — 0.(0p(—1)) = R'o,(Ox) — ...
.. — RP0,(Ox) — RPo.(Ox(D)) — RPo,(Op(—1)) — ... .

From Lemma |A.4/ we get RPo,.(Op(—1)) = 0 for p > 0. Therefore, 0,(Ox) = 0.(Ox (D)),
which proves the lemma. O]

Lemma A.6. 1) 0.(Ox) = Oy;
2) RPo,(Ox) =0, p> 0.

Proof. 1) First of all note, that o : X \ D — Y \ S is an isomorphism. Therefore, for each open
set U C Y we have Oy (U \ S) 2 Ox(oc~}(U)\ D). Since the codimension of S in Y is > 2, the
restriction map Oy (U) — Oy (U \ S) is an isomorphism.

Consider the commutative diagram

Oy (U) ———0x(07'(U)) = 0.0x(U)

F L

Oy(U\ S) = Ox(07'(U) \ D),

where the vertical lines are the canonical restrictions and the horizontal correspond to the
canonical homomorphism Oy — 0,0x. Since Ox is torsion free, the right vertical arrow
is injective. It follows also from the commutativity of the diagram that it is also surjective.
Therefore, the restriction map

Ox(c™!(U)) = Ox(c7 (U)\ D)

is an isomorphism and thus we get that Oy (U) — Ox(o~(U)) is an isomorphism, which means
that 0.(Ox) = Oy.

2) Let Zp = Ox(—D) be the ideal sheaf of D. Then for each n > 0 we have the exact
sequence

0— Ip/ITE — Ox/IHT — Ox /T — 0.
We have
ID/I]% =7p®(0Ox/Ip) = Ox(—D)® Op = Op(1)
and
Ip/Tp = (Ip/Ip)"" = Op(n).

Therefore, by Lemma A.4 RPo, (I3 /T5™) = RPo.(Op(n)) = 0, p > 0. From the long exact
sequence

.. = RPo,(T0/T5) — RPo,(Ox /T — RPo,(Ox /T) — RP o, (T0 /T — ...
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we conclude that RPo,(Ox /It & RPo,(Ox/I}) = ... = RPo,(Ox/Ip) = RPo.(Op), be-
cause Ox/Ip = Op. By Lemma A.4 RPo,(Op) = 0, which implies that
RPo.(Ox/I}) =0, n>0, p>0. (A1)
Grothendieck’s comparison theorem (cf. [9], 4.1.5) states that
lim R0, (F) /T2 R0, (F) = lim RPo, (F /T, F)

n n

for a coherent Ox-module F. Taking F = Ox an using (A.1) we get
lim R70,(Ox)/Te R0 (Ox) = lim R0 (Ox /Tp) = 0.

By Krull’s intersection theorem this implies RPo,(Ox) = 0. O
Lemma A.7. Let £ be a locally free sheaf on'Y. Then

e fs
Proof. Using the projection formula we obtain
RPo, (0"E) = RPo, (076 ® Ox) =2 £ ® R0, (Ox).
By Lemma A.6 we obtain the required statement. [
Lemma A.8. Let F be a coherent sheaf given by a locally free resolution
0—-& — & — F — 0.
Assume that after applying o* the resulting sequence

0—c"(&) — d"(&) — " (F)—0

remains exact. Then
F, p=0,

RPo.(0"F) = {O p>0

Proof. From the exact sequence
0—oc"(&) = d"(&) = " (F)—0
we obtain the long exact sequence

0— 0.(0%(&1)) = 0u(0%(E)) — ou(a™(F)) — ...
.. — RPo. (0" (&) = RPo.(0"(&)) — RPo (0" (F)) — ... .

Since by Lemma [A.7 RP0,(&) = RPo.(&€) = 0, p > 0, one immediately obtains RPo,(F) = 0,
p > 0. Since we also have the commutative diagram with exact rows

UHU*(?(&)) HU*(U*T(f‘fo» H0*(?(7:)) —0
0 & &o F
we conclude that o,(c*(F)) = F. O

0,
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A.3 Conics in Py and 2m + 2 sheaves on P,

We discuss here conics in Py and their connection to 2m + 2 sheaves on Ps.

Lemma A.9. Let C' = {f(up,ur,uz) = 0} be a conic. Let Q) be the corresponding symmetric
matriz, i. e., f(uo,ur, uz) = (o, ur, uz)Q(ug, u1,us)*. Then

1) C is irreducible if and only if the determinant of @) is not zero;

2) smooth conics are exactly those that are irreducible;

3) C is a union of two different lines if and only if the rank of the matriz Q) equals 2;

4) C is a double line if and only if the rank of the matriz Q equals 1.

Proof. 1) After an appropriate linear coordinate change we can bring the conic to the canonical
X 0 0

form Agug + A\ju? + Azu3 that corresponds to the diagonal matrix @ = ( 80 M0 > One easily
2

sees that A\guZ + \ju? + Azu? is irreducible if and only if all ); are different from zero, which is
equivalent to det ) # 0.

2) C is singular if and only if (%, 8%’ g—é) vanishes at some point. Since f(uo,u1,u2) =
(ug, w1, u2)Q(ug, uy, uz)T, we obtain

of @ 0
(a—fo o a—fz) = 2(ug, ur, us) - Q,
therefore, C' is singular if and only if there is a non-trivial solution of the linear equation

(u07u17u2) : Q = 0.

The latter is equivalent to det () = 0.

3) and 4) If one of \; equals zero, then this conic is decomposable into linear factors:
g + A, = (ew, — uy)(eu, +euy), € = X, € = —X,. These factors are equal if and only
if two of \; equal zero. But the number of the coefficients \; different from zero is exactly the
rank of the matrix ). This proves the statements 3) and 4). O]

Let &€ be a sheaf on Py with Hilbert polynomial 2m + 2 given by the resolution

21 22
0 — 20p,(—1) G2, 20p, — £ — 0, (A.2)
where 21, 29, 23, 24 are sections of Op,(1) and the determinant z;z4 — 2923 € I'(Py, Op,(2)) is
non-zero. We will call such sheaves 2m + 2 sheaves. The sheaf £ is supported on the conic

C = {det ((2’ zi )) = Z1R4 — Z9R3 = 0} g ]PQ.
The sheaf & is locally free on its support if and only if the matrix (3 72 ) does not vanish, i. e.,
if there are no common zeros of the sections z1, 29, 23,24 € I'(P2, Op,(1)). Equivalently, this
means dimy Span(zy, 29, 23, 24) = 3.

Lemma A.10. 2m + 2 sheaves on Py with irreducible support are locally free on their support.

Proof. 1f a 2m+ 2 sheaf is not locally free on its support, then dimy Span(zy, 29, 23, 24) < 2, 1. €.,
the determinant z;z4 — 2923 is a homogeneous polynomial of degree 2 in at most 2 variables.
Such a polynomial clearly decomposes into 2 linear factors. This proves the statement of the
lemma. O
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Let us clarify when a 2m + 2 sheaf with a non-smooth (reducible) support are locally free
on their support.

Note that an isomorphism of 2m + 2 sheaves extends uniquely to an isomorphism of the
resolutions of the type (A.2). This means that isomorphism classes of 2m + 2 sheaves are
in bijection with the isomorphism classes of sequences of the type (A.2). But the set of the
equivalence classes of these sequences is clearly the set of the orbits of the group action of
GLa(k) x GLa(k) on the set of matrices {(Z 2) | 2124 — 2223 # 0} C k'? given by the rule

21 22\ 21 22 -1
(9, h) <23 Z4> =y <23 24) h
This means that two matrices define the same isomorphism class of 2m + 2 sheaves if and only

if they can be transformed into each other by Gauf} algorithm applied to columns and rows.

Lemma A.11. The determinant of the matriz A = (2 32) is decomposable into linear factors
if and only if one can transform this matriz by Gauf$ algorithm (applied both to the rows and

to the columns) to the form (2 2’;)’ 21, 25, 2y € T'(Pa, Op,(1)).

Proof. 1If z; and z, are linear dependent, then the statement of the lemma follows immediately.
So let us assume z; and zy to be linear independent. After a change of coordinates we may
assume

T i)
A= )
(aa:o + By +yre axg+ bry + ca:g)

Since there is an equivalence

€1 1) x1 )
axg+ Pry +yre axg+ bry + cxo azrg+ yxre axg+bry+ (¢ — B)ra )’

we may assume

T T2
A= .
<am0 +vxe axg+ bry + cxg)

The determinant of this matrix is the quadratic form
arory + bx% + cr1T9 — AToTy — w:g.

By Lemma A.9 this decomposes into linear factors if and only if the determinant of the matrix

|
1S

o Sl
[SILeY

is zero. The determinant is

So, the determinant of the matrix A has a linear factor if and only if

a’y — aac — ba® = 0.
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If @ = 0 then a?y = 0. So either v =0 or a = 0. If v = 0, then

1 T T 1 axg+bry +cry 0
A - ~ ~U
0 axg+ bry + cxs axg+ bry +cry 0 T 1

and the statement of the lemma holds true. If v # 0, then ¢ = 0 and we may assume that

v =1 then
A _ X X2
To bri+cry)

The determinant of this matrix is bz? + czi19 — 3. Let € and 1 be such that
ba? + cr1my — 13 = — (29 + Ex1) (22 + 1),

Then é&n = —b and € + 1 = —c. One gets
A (= T2 S To + £x4 _ (T w2t N
Ty bri + cxo o bry+ (c+ &) xo9 bry — nry
Ty Ty +Er1 \ _ Ty Ty +&x1) (T2t nm 0
o +nx1 (b+né)r Ty + N4 0 T To+&xy )"

It remains to consider the case a # 0. If a # 0, then we may assume o = 1. We obtain this
way b= a*y — ac = a(ay — ¢) and

A= a1 X2
- \xo+yxe azo+ alay — )z + cxg

I To — AXq . T To — Ay
o +yr2 alay —c)xy + (¢ — ay)xs o +yx2 (¢ —ay)(ry — ar)

( T Ty — ax1> N (91;0 + vy — (¢ — ay)r 0 )

xo + yre — (c — ay)xy 0 1 Ty — aTy
This completes the proof of the lemma. ]
As a corollary we have the following lemma.

Lemma A.12. A 2m + 2 sheaf supported on two lines if locally free on its support if and only
if the linear forms 21, 25, 2} as in the lemma above are linear independent, i. e., constitute a

basis of T'(Pq, Op,(1)).
Lemma A.13. Let ug,uq,us be a basis of I'(IPy, Op,(1)).

0 . .
d (u2 ) are not isomorphic.

1) Then the sheaves given by the matrices (ul O) and (-
0 Uy

Uy Uz
Uy 0

g + Buy + Yy uz ) a # 0 is isomorphic to the sheaf

2) The sheaf given by the matrix (

given by the matriz (42 .2).

Proof. 1) Suppose that the sheaves defined by the given matrices are isomorphic. This means
there exist two matrices (2%) and (2%) from GLy(k) such that

(a)Con) = o)

Q,| [yl



142

After multiplying one obtains

au; +bug bug\ als B lfmgi

cup +dug duy)  \auy+cuy; bug+duy )
Since ug, u1, and us form a basis of linear forms on Py, this implies in particular a = b = a,
which contradicts the invertibility of (¢%). Therefore, the matrices (4.2 ) and (42 .2 ) define

ug U ug Ul
non-isomorphic sheaves.
2) Follows from the following equivalences

Uy 0 u; 0 Uy 0 u; O
aug + Buy + yuy U auy U uy o tugy uy us )

Proposition A.14. (1) On the union of two different lines uy = 0 and us = 0 in Py there are
exactly two isomorphism classes of 2m + 2 sheaves that are locally free on their support, this
two classes are given by the matrices (4 0 ) and (122 ), where ug is any complementary to uy
and uy linear form.

]

(2) All 2m + 2 sheaves supported on a smooth conic are locally free on their support.

(8) All 2m+2 sheaves on Py that are locally free on their support are described in the statements
(1) and (2) of this proposition.

Proof. Follows from the considerations above. O]
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A.4 Gluing of locally free sheaves

We consider here the so called gluing of locally free sheaves.

Let X be a reduced algebraic variety and let X = X; U X5 be the decomposition into
irreducible components. We denote Y = X; N X,. Let £ be a locally free sheaf on X. We are
going to show that &£ is uniquely defined by its restrictions to X; and Xa, i. e., the restrictions
of £ can be “glued” together to the sheaf £.

Let us consider the commutative diagram of closed embeddings

/\
Zl\/

Let us consider the following commutative diagram of the restrictions

17€E —— 377

* *k ek
158 —— J315

We denote Ex, = i€, Ex, = i3E, and &y = (i171)*E. Consider the restrictions r, : € — Ex,
and ry : € — Ex,.

(r1,r2)

Lemma A.15. The map & ——= Ex, @ Ex, s injective.

Proof. The map is an isomorphism on X; \ Y and on X, \ Y. Therefore, its kernel can be

only supported on Y. But the sheaf £ is torsion free as a locally free sheaf. Hence the map is

injective. O
(L)

As p; and p, are surjective, it follows that the map Ex, @ Ex, ~P2 8y s surjective as

well. Since p; oy = py 0 py = r19, we conclude that the image of (r1,79) lies in the kernel of

(%)

Lemma A.16. Let X be reduced, then the sequence

p1
OHE (ri,2) gXl@ng (_02) gy—>0

18 exact.

Proof. 1t remains to prove the exactness in the middle term, i. e., Im(ry,r9) = ker ( £5,). We
can consider the question locally, i. e., in affine charts. So we may assume X, X; and X5 to
be affine. We may also take the open charts small enough, so we also assume 8 to be trivial,
i. e., isomorphic to the direct sum of the copies of Ox. It is also enough to prove the required
statement for invertible sheaves. Let A be a coordinate ring of X, let p; and po be the ideals
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in A of X; and X, respectively. Since X is reduced and since X = X; U Xy, the intersection
p1 N po is zero. Then the map (r1,79) corresponds to the injective homomorphism of rings

LZAHA/pl@A/pQ, ar—>(a+p1,a—|—p2).

The ideal I(Y) of Y = X; N X5 is equal to p; + po. Then the map (£),) corresponds to the
surjective ring homomorphism

T A/pL @ A/pr — A/(p1+p2), (a+p1,b+p2) —a—Db+ (p1+p2)

It is clear that the image of ¢ lies in the kernel of 7. Assume (a +p1,b+ps) — a— b+ (p1 + pa).
Then a —b = ¢y — co, ¢1 € P1, ¢3 € Po, and we obtain a —c; = b — ¢y =: ¢. Since c+p; = a+p;
and ¢ + py = b+ po, we conclude that ¢(¢) = (a + p1,b+ p2). We proved the exactness of the
sequence

This is equivalent to the exactness of the sequence of sheaves. We proved the lemma. Il

Let & and &; be locally free sheaves on X; and X, respectively. Assume that there is an
isomorphism & |y = &ly. Let us choose some locally free on Y sheaf £y that is isomorphic
to &1y = &ly. Let us also fix some restrictions p; : & — Ey and py : & — &y and let us
consider the surjective map

(%)

E @ E ——E&y.

Let us denote by € the kernel of (7},), i. e., let us consider the exact sequence

P1
0o &) e ape, —>( ) Ey — 0. (A.3)

Let r be the rank of the sheaf £&-. Then it is also the rank of the sheaves £ and &,.

Let us consider the situation locally. Assume that £ and &, are locally free, assume also
that X is affine, let A be the coordinate ring of X. Let p; and p, be the ideals of X; and X,
respectively, i. e., A/p; is the coordinate ring of X; and A/p, is the coordinate ring of X,.
Then Y = X; N X, has the ideal p; 4+ po and the coordinate ring A/(p; + p2). The sheaf &
corresponds to the module (A/p;)" and the sheaf & corresponds to the module (A/p2)".

Then the morphism ( £}, ) corresponds to

(A/p1)" & (A)ps)" — (A)(p1 +p2))", (@y,....a) & (by,....b) — (ay —b1,...,ar —by).

One easily sees that the kernel of this homomorphism coincides with the morphism

(A/(p1Np2))" — (A/p1)" © (A/p2)",  (a1,...,a,) = (Q1,...,4) D (G, ..., a).

If p; Npo = 0, which is the case if X is reduced, then the kernel is just A" and this means that
£ is a locally free sheaf.

Let us show that the restrictions of £ to X; and to X5 are isomorphic to & and &, respec-
tively. Let us restrict (4A.3) to X;. We obtain the exact sequence

P1
SXI —>51@(€2|X1 Mé’y — 0.

morphism (g, ap) is an isomorphism outside of Y, we conclude that its restriction to X; is an
isomorphism on X; \ 'Y as well. As &|x, is supported on Y, we conclude that aq|x, : Ex, — &
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is an isomorphism on X; \ Y, hence its kernel may be only supported on Y. Since €y, has
no torsion as a locally free sheaf, it follows that the restriction of |y, is injective. Thus one
obtains the exact sequence

p1
(_P2|X1 )

0—>€X1—>51@52|X1 gy—>0.

Note that ps|x, : Elx, — &y is an isomorphism. This gives us a splitting of the short exact
sequence above and we obtain that ai|x, : £|x, — & is an isomorphism. Analogously one
shows that as|x, : £|x, — & is an isomorphism. This proves the following lemma.

Lemma A.17 (Gluing). Let X = X; U X be as above, let X be reduced, and let £ and & be
two locally free sheaves on X1 and Xy respectively such that their restrictions to' Y = X7 N X,
are isomorphic. Then the exact sequence (A.3) defines uniquely a locally free sheaf & on X such
that the restrictions of € to X; coincide with & for i1 =1,2.
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Index

2m + 2 sheaves, 139
3m + 1 sheaves, 2

Base change, 134
Beilinson resolution
on P, 36
of a 3m + 1 sheaf on Py, 45
relative, of 3m + 1 families, 127
Blow up, 135

Cohomology groups R
of invertible sheaves on Py, 25
Conormal sheaf, 136

Equivalence of families, 119
Exceptional divisor, 135

of M — M, 98

of X — X, 100
Family

new, 116

one parameter, 19, 116
over X, 115, 116

of 3m + 1 sheaves, 3
one parameter, 12
over X, 109

Gluing
of R-bundles, 49, 50
of locally free sheaves, 143, 145
of resolutions, 49

Hilbert polynomial
of R-bundles, 38 _
of an invertible sheaf on Py, 23
of an invertible sheaf on Py, 24

Kiinneth formula, 25

Locally complete intersection, 135, 136

New sheaves on Zj, 35

Picard group of P,, 22
Pull backs

of new families, 118
R-bundles on Z, 35

Universal property of blow up, 135



Symbols

Cs)v, 136
Co, 44
C,, 44

Dy, 13
Do, 110
Dy, 13
Dy, 110

Ear, 98, 100
Ex, 100

F;, 22
G, 4, 61
H;, 22

Ts,, 111
Ts, 111

g’

L, 13
£, 116
£ 116
I5, 109
Ip, 12, 109
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Ny, 67
v:X — M, 4
v:X — M, 106
NXg/Xa 100

Oy(a,b), 116

I/E/)% 13
Py, 13

Ss, 109

Ss, 109
(Sch), ix, 124
(Sets), 124

X, 3
X, 61
X, 100
Xs, 6
Xs, 109

Y, 63
Y’, 63

Zo, 13
Z,, 13
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