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Abstract. In the ground vehicle industry it is often an important task to simulate full vehicle
models based on the wheel forces and moments, which have beenmeasured during driving over
certain roads with a prototype vehicle. The models are described by a system of differential
algebraic equations (DAE) or ordinary differential equations (ODE). The goal of the simulation
is to derive section forces at certain components for a durability assessment. In contrast to
handling simulations, which are performed including more or less complex tyre models, a driver
model, and a digital road profile, the models we use here usually do not contain the tyres or a
driver model. Instead, the measured wheel forces are used for excitation of the unconstrained
model. This can be difficult due to noise in the input data, which leads to an undesired drift of
the vehicle model in the simulation.

This paper shortly describes the source of this effect by thetheory of stochastic differential
equations and explains, that this problem cannot be fully solved by a specialised numerical
treatment of the underlying equations due to missing knowledge about the true trajectory of the
vehicle. Several ways to deal with the problem are briefly reported. Among these, an algo-
rithm for the calculation of the vehicles trajectory and orientation from additionally measured
accelerations is described. However, here we also have to deal with the drift induced by the in-
tegration procedure and thus the usage of additional measurements on the velocity or position
level (angular velocities or angles (orientation) of the vehicle body) is motivated.

Finally the theoretical considerations are exemplified using a vehicle model, which is simple
enough for a rigorous treatment of the equations of motion and at the same time rich enough to
show all the effects described before.
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1 INTRODUCTION

In the ground vehicle industry, measurements on vehicles driving over test tracks or public
roads are performed in order to derive loads for test rig or numerical verification. Often 100-
200 different quantities at different spots of the vehicle are measured, among which we have
wheel forces (measured at the hub), spring displacements, strains, or accelerations. The data
can be used either for directly setting up rig tests for certain components (for example a test of
a subframe based on measured strains) or for the excitation of multibody models of the vehicle
in order to calculate section forces.

Besides the ’internal’ excitation of the vehicle by steering, acceleration, or braking, the main
’external’ excitation is given by the forces at the contact patches between tyres and ground.
These are reaction forces, which in principle can be computed based on a digitised road profile,
a tyre model as a part of the vehicle model, and a driver model driving the vehicle. However,
this approach requires accurate tyre models as well as the digitised road. An alternative way of
exciting the full vehicle model is to virtually cut off the tyres and use measured wheel forces as
input. In the latter case, the interaction between the mechanism and the environment is via the
section forces only.

While simulating such an unconstrained system based on section forces is very important
in practice, it can be difficult due to noise in the input data.This leads to an undesired drift
of the vehicle, which can be explained by the theory of stochastic differential equations. To
circumvent such problems additional measurements are needed. Typically, measured accelera-
tions of the vehicle body exist, but these alone do not help. Instead, data on the velocity or even
displacement level are needed to deal with the drift.

In Sec. 2 the drift due to noisy input data during integrationis studied using the most basic
example of a point mass subject to a force. In Sec. 3 some investigations on how to circumvent
the drift are reported. Finally in Sec. 4 we use a model of a simple demonstration vehicle to
exemplify the theoretical considerations.

2 INTEGRATION OF NOISY DATA

In this section, we study a simple differential equation to illustrate the problems inherent in
integrating noisy data. We make use of some basic results from stochastic analysis but do not
treat them in great detail, as this is not the main focus of this paper. A brief introduction to the
theory of stochastic differential equations (SDEs) with applications can be found in [8].

As an example, we consider the one-dimensional equation of motion for a point mass:

dx = v dt , dv =
(

f

m
− ηv

)

dt , x(0) = v(0) = 0 (1)

This ODE describes the velocityv(t) and positionx(t) of an object with massm > 0 subject
to the accelerating forcef(t), provided the object was at rest at timet = 0. A damping term
(friction) proportional to the velocity is also included, with damping constantη ≥ 0.

The problem now is to reconstruct the velocity and position based on measurements distorted
by unsystematic errors, which we model as independent Gaussian random variables. If we
denote the time step between observations by∆t, the forces we actually observe are

f̃(n∆t) ∼ N(f(n∆t), σ2
M) (2)

with some varianceσ2
M > 0 representing the accuracy of the measurement device. The impact

of the noise on the reconstructed velocity and position depends on the discretisation scheme we

2



Michael Speckert, Nikolaus Ruf, and Klaus Dressler

choose to solve (1). We use the explicit Euler scheme for our example, as it permits us to study
error propagation in terms of a simple SDE. To derive it, we begin with the difference equation
for the velocity, taking the time step to be equal to the rate of observations:

ṽn+1 := ṽ((n + 1)∆t) := ṽn +
(

f(n∆t)+ǫn

m
− ηṽn

)

∆t , ṽ0 := ṽ(0) := 0 (3)

The errorsǫn are i.i.d. Gaussian random variables with mean zero and varianceσ2
M . If the true

force isL2-integrable and∆t sufficiently small, a solution of the difference equation approxi-
mates a solution of the following Itô-SDE on the discrete time grid given by∆t:

dx̃ = ṽ dt , dṽ =
(

f

m
− ηṽ

)

dt + σ
m

dW (t) , x̃(0) = ṽ(0) = 0 (4)

To determine the varianceσ2 of the Brownian motion in the limiting case, we note that the
variance of the increments is

Var(ǫn∆t) = σ2
M (∆t)2 !

= σ2∆t ⇐⇒ σ2 = σ2
M∆t (5)

We have seen that if we solve the ODE (1) with perturbed forcesusing the explicit Euler scheme,
what we actually do is construct a path of the solution of the SDE (4). Its usefulness for the
purpose of simulation depends on how far it deviates from theactual values. As the individual
errors have bounded variance, we might hope thatṽ andx̃ share this property. Unfortunately,
this is only true for the velocity, and only if the damping constantη is positive:

The unique solution of (1) is

x(t) =
∫ t

0
v(s) ds , v(t) = 1

m

∫ t

0
eη(s−t)f(s) ds (6)

For the SDE (4), we distinguish two cases:

(1) No damping: If η = 0, the solution is

x̃(t) = x(t) + σ
m

∫ t

0
W (s) ds , ṽ(t) = v(t) + σ

m
W (t) (7)

The integrated Brownian motion has mean zero and variancet3

3
, meaning that the expec-

tation and variance of the solutions are

E(x̃(t)) = x(t) Var(x̃(t)) =
σ2t3

3m2
(8)

E(ṽ(t)) = v(t) Var(ṽ(t)) =
σ2t

m2

While the stochastic process is centered around the true solution, its variance grows to
infinity as time progresses. As a measure of error growth, we use the standard deviation,
since it is proportional to the width of the confidence interval for a Gaussian process
around its mean:

Std(ṽ(t)) = O(t
1

2 ) Std(x̃(t)) = O(t
3

2 ) (9)

(2) Damping: Forη > 0, we obtain

x̃(t) = x(t) +
σ

ηm

(

W (t)−
∫ t

0

eη(s−t)dW (s)

)

(10)

ṽ(t) = v(t) +
σ

m

∫ t

0

eη(s−t)dW (s)
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In this case, the velocity consists of a deterministic trendand an Ornstein-Uhlenbeck
(mean reversal) process with mean 0. As the latter has bounded variance, the reconstruc-
tion ofv is merely a question of how accurate the initial measurements are. Unfortunately,
the variance of the position is once again unbounded, although it grows more slowly than
in the undampened case:

E(x̃(t)) = x(t) Var(x̃(t)) =
σ2

η2m2

(

t +
1− e−2ηt

2η
− 2(1− e−ηt)

η

)

(11)

E(ṽ(t)) = v(t) Var(ṽ(t)) =
σ2

2ηm2
(1− e−2ηt)

Here, we have used the Itô-isometry to calculate

Var

(
∫ t

0

eη(s−t)dW (s)

)

= E

(

(
∫ t

0

eη(s−t)dW (s)

)2
)

=
1− e−2ηt

2η
(12)

To evaluate the variance ofx̃(t), we also need

Cov

(

W (t),

∫ t

0

eη(s−t)dW (s)

)

= E

(

W (t)

∫ t

0

eη(s−t)dW (s)

)

=
1− e−ηt

η
(13)

where we use the product rule of Itô-calculus to evaluate theproduct, dropping all stochas-
tic terms as they have mean zero.

In the presence of damping, the standard deviations grow with time as

Std(ṽ(t)) = O(1) Std(x̃(t)) = O(t
1

2 ) (14)

We have seen that even for the simple model (1), a stable (bounded variance) solution exists only
if we integrate but once and include a correction term in the equations. Integrating twice will
always lead to errors that grow progressively larger over time. The situation can only get worse
for a problem involving several bodies, as their relative position and orientation is progressively
distorted. This leads to spurious interaction forces and gravity acting in the wrong direction.

It should be noted that the problems caused by noise integration are of principal nature,
as there is no way to reconstruct the true forces from the measurements. Preprocessing (e.g.
smoothing the data) or more sophisticated integration schemes can reduce the varianceσ2, but
this only serves to rescale the error, not bound it.

3 DRIFT CORRECTION

In this section we describe some possible solutions to the drift problem. We consider the case of
a full vehicle simulation, which is needed to derive sectionforces for certain components. The
model is unconstrained and excited by measured wheel forces, which are always noisy to some
extent. Thus, we have to be aware of a drift of the vehicle bodydue to the ’Brownian motion
effect’ described above. Another reason for observing a drift is the fact, that the numerical
model is only an approximation of the real vehicle. If, for example, the total mass of the model
is too small, then it will lift off during simulation. While the measured wheel forces (up to
measurement noise) are ’in equilibrium’ with the real vehicle and its motion, this fact need not
be true for the numerical model.
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First we perform the simulation while ignoring a possible drift and subsequently check the
motion of the model. If the observed drift is such that the section forces can be regarded as
sufficiently accurate we are done. This is the case if we have adrift in the translational degrees
of freedom only. If the drift of the pitch angle (rotation about the lateral axis) and the roll angle
(rotation about the longitudinal axis) is too large, we haveto assume, that the simulation results
are falsified and reject them. We consider the following approaches to deal with the drift:

1. Artificially constraining the model: For a vehicle driving over a (possibly rough) hor-
izontal road, we can assume, that the pitch and roll angles are small. Thus, we apply
a correction to the simulation as soon as the angles become too large. Sometimes this
is accomplished by attaching a rotational spring between the vehicle body and ground,
which always tries to keep the angles near zero. While this isa simple workaround, the
disadvantages are, that it is not clear how to choose the spring parameters and that unde-
sired reaction torques are induced. The size of these reaction torques can be taken as a
measure of validity of this approach: the larger the torques, the more doubtful the results.

Of course, this approach does not help at all, if the assumption "horizontal road" is not
guaranteed, i.e. if we need to simulate curvy, hilly, or evenoff-road driving. However we
will not go into more details.

2. Additional acceleration sensors:We use sensors to measure the accelerations at differ-
ent spots of the vehicle body. This is rather cheap and convenient. These accelerations are
used to estimate the motion of the body prior to the simulation. Again we only need to es-
timate the orientation (rotational degrees of freedom). The approach is described in more
detail in Sec. 3.1 below. As we will see, it does not fully solve the drift problem (since
two integration steps are needed here too) such that we have to think about additionally
measuring quantities at the velocity or even position level.

3. Additional measurements on the velocity or position levels: Since both approaches
above are not fully satisfying, we have to introduce additional measurements of either
(angular) velocities or angles. If the angles of the vehiclebody can be measured, we
can guide it during the simulation to prevent the drift. If only angular velocities can be
measured, we still have to perform one integration to get theangles such that we have to
expect small drifts. Sec. 3.2 gives some details of that approach.

3.1 Calculating the rigid body motion from measured accelerations

It is relatively cheap and convenient to measure accelerations at various spots of the vehicle.
Here, we investigate how to calculate the body motion of a vehicle from measured accelerations.
We assume, that there arem + 1 sensors at different positions on the body. We introduce the
following notation:

xC , xi : Positions of a reference pointC and of the sensorsi of
the body given in a fixed reference (global frame).

S : The transformation from local to global frame.
This is the body’s orientation in the global frame.

ω, ωl : The angular velocity in the global and local frame.
ri, i = 1, . . . , m + 1 : The positions of the sensors in the local frame.
ai, i = 1, . . . , m + 1 : The measured accelerations at positionxi.
ãi, i = 1, . . . , m + 1 : The accelerations at positionxi in the local frame.
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A = [a1 − am+1| . . . |am − am+1] : Matrix of the local relative accelerations.
R = [r1 − rm+1| . . . |rm − rm+1] : Matrix of the local relative coordinates.

With these notations we have

xi = xC + S · ri, i = 1, . . . , m + 1. (15)

This relation is true only if the body is rigid. Otherwise, wewould have to add the deformations.
Differentiation and transformation into the local frame gives

ãi = ST · ẍi = ST · ẍC + ST · S̈ · ri, i = 1, . . . , m + 1. (16)

By calculating the relative accelerations we eliminate thetranslational motion and get̃ai −
ãm+1 = ST · S̈ · (ri − rm+1), i = 1, . . . , m. Usually, the sensors are performing a correction
with respect to gravity. Since the orientation of the sensors during measurement is unknown,
the result of the correction is

ai = ãi + ge3 − ST · ge3, i = 1, . . . , m, (17)

whereg denotes the gravitational constant ande3 denotes the direction of gravity (globalz-
coordinate). For the relative accelerationsai − am+1 this correction term cancels and we get
A = ST · S̈ · R. The matricesR resp. A contain the relative positions resp. accelerations
of the firstm sensors with respect to the last one. Since the unknown transformation matrixS
contains only three degrees of freedom (to be described for instance by Euler or Cardan angles),
this matrix equation is an overdetermined set of equations (if m is large enough) for the three
parameters. The number of equations depends on the number ofsensors. By multiplication
with the pseudo inverse (Moore-Penrose inverse)R+ from the right we get

ST · S̈ = A · R+. (18)

This operation partly removes the redundant accelerations. The remaining equation still con-
tains the inherent consistency condition induced by the fact that the body is non-deformable.

Calculation of the transformation matrix and the angles
By differentiating the identityI3 = ST · S we get

ST · Ṡ = ω̃l =





0 −ωl,3 ωl,2

ωl,3 0 −ωl,1

−ωl,2 ωl,1 0



 , (19)

whereωl denotes the vector of the local angular velocity andω̃l is the corresponding skew
symmetric matrix. Another differentiation leads to

ST · S̈ = ˙̃ωl − ω̃l · ω̃T
l = ˙̃ωl + ω̃l · ω̃l.

and together with (18) we get

˙̃ωl + ω̃l · ω̃l = ST · S̈ = A · R+ =: M.

Since ˙̃ωl is skew symmetric and the productω̃l · ω̃l is symmetric, we have a decomposition of the
left-hand side of this equation into a symmetric and a skew symmetric part. Thus, if we define

M− = 1
2
(AR+ − (AR+)T ) , M+ = 1

2
(AR+ + (AR+)T ),
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we have
˙̃ωl = M− , ω̃l · ω̃l = M+. (20)

The first of these relations is a simple set of three uncoupledequations for the local angular
velocities and the second one is the consistency condition mentioned above. The transition
from A andR+ to M− can be interpreted as a projection onto the rigid body motion. Due to
possible measurement errors and the deviation from the rigid body motion, we have to take into
account large uncertainties inM−.

In principle, we can use (20) to calculateωl by a simple integration. Of course, during inte-
gration we have to deal with the accumulation of random errors leading to a drift.

The next step is to calculate the transformation matrixS from the local angular velocitiesωl.
To this end, we writeS using quaternions in the form

S = S(q) =





q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) q2

1 − q2
2 + q2

3 − q2
4 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) q2
1 − q2

2 − q2
3 + q2

4



 , (21)

whereq = (q1, q2, q3, q4)
T and||q||2 = q2

1 + q2
2 + q2

3 + q2
4 = 1. Using (19) we arrive at the linear

system of equations

q̇ = 1
2
· Ωl · q , Ωl =









0 −ωl,1 −ωl,2 −ωl,3

ωl,1 0 ωl,3 −ωl,2

ωl,2 −ωl,3 0 ωl,1

ωl,3 ωl,2 −ωl,1 0









=

(

0 −ωl

ωl −ω̃l

)

. (22)

for the quaternionsq. SinceΩl is skew symmetric, the normalisation||q||2 = 1 is preserved
during integration. In contrast to other representations of the transformation matrix (Euler or
Cardan angles), (22) does not contain singularities and canbe integrated over the desired period.

Calculation of the body position
Once the anglesα resp. the transformation matrixS are known, we can calculate the body
positionxC . Combining (16) and (17), we get

ẍC = S · ãi − S̈ · ri = S · (ai − ge3) + ge3 − S̈ · ri, i = 1, . . . , m + 1.

To minimise errors due to the measurement or the deformability, we calculate the mean accel-
eration

¨̄xC =
1

m + 1

m+1
∑

i=1

(S · (ai − ge3) + ge3 − S̈ · ri). (23)

Integrating twice leads to the positionxC . Of course, we will again have a drift during the
integration of¨̄xC . The remaining positionsxi follow from (15).

Summary
The process of calculating the position and orientation of the body from the measured acceler-
ations can be summarised as follows:

1. Calculate the matrixM− = 1
2
(AR+ − (AR+)T ).
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2. Calculate the local angular velocity by integration of˙̃ωl = M−.

3. Calculate the quaternionsq by integration ofq̇ = 1
2
· Ωl · q.

4. Calculate the transformation matrixS from (21).

5. Calculatë̄xC according to (23) andxC by a twofold integration.

6. Calculate the remaining positionsxi by (15).

Besides drift problems during the integration, this algorithm completely solves the task of cal-
culating the rigid body motion of the car body from measured accelerations.

Remarks

• After the transformation matrixS has been calculated a convenient parametrisation e.g.
Euler or Cardan angles can be derived.

• The calculation of the local angular velocitiesωl by integration of ˙̃ωl = M− is the most
critical step since the right hand sideM− is disturbed by measurement errors and the fact
that the car body is not really rigid. Thus we have to expect a drift in ωl. If the real
vehicle motion during measuring is such that we can assume, that the angular velocities
as well as the angles have mean zero and no drift, we can apply ahigh pass filter toωl

prior to solvingq̇ = 1
2
· Ωl · q and again apply a high pass filter to the resulting anglesα.

However, the final results will depend on the filter parameters (cut-off frequency) and the
best choice of parameters is subjective.

• With this approach (just like the "big spring constraint")we still cannot objectively dis-
tinguish undesired angular drift from angular movement that may come from a curvy or
hilly road.

• A direct measurement of the angular velocities would be much more reliable. The same
remarks apply to the calculation of the position by a twofoldintegration of¨̄xC . Again we
can apply high pass filtering, but the parameter choice is subjective.

• Nevertheless, the algorithm establishes the relation between the vehicle body motion and
accelerations in a rigorous way and at least enables the estimation of the motion in case
no additional measurements are available.

3.2 Measurement of angular velocities or angles

We have already argued that for the purpose of calculating section forces, errors in the position
of the vehicle are negligible, while its orientation with respect to gravity must be known with
sufficient accuracy. An obvious way to improve the quality ofa simulation is thus to include
measured angles. Typically, these are determined by an inertial navigation system (INS) on
board the vehicle. Since an INS uses gyroscopes for measuring angular velocities, any angles
reported are derived via integration.

As in Sec. 2, we model the noise on the angular velocities as a Brownian motion with vari-
anceσ2 > 0. The angular velocities in the local reference frame are replaced by

ωl,j → ωl,j + σ dWj(t) (24)

8
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with independent Brownian motionsWj . Now, the quaternion representation (21) yields the
following SDE:

dq̃ = 1
2
Ωlq̃ dt + σ

2

∑3
j=1 Bj q̃ dWj(t) , q̃(0) = q(0) s.t.||q(0)|| = 1 (25)

As we are interested in the cumulative effect of measurementnoise over time, we do not in-
clude an error for the initial value. The matricesBj correspond to the imaginary units of the
quaternions expressed as a subspace ofR

4×4:

B1 =









0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0









B2 =









0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0









B3 =









0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0









(26)

The matricesΩl andBj do not commute under multiplication, so there is no simple closed form
solution for (25). To obtain a qualitative understanding ofthe error dynamics, we consider the
simpler problem

dq̃ = σ
2
Bj q̃ dWj(t) , q̃(0) = q(0) s.t.||q(0)|| = 1 (27)

with no actual rotation and a single perturbed measurement.The unique solution is

q̃ = exp

(

σ

2
BjWj(t)−

1

2

(σ

2
Bj

)2

t

)

q(0) (28)

= exp

(

σ2t

8

)

(

cos
(σ

2
Wj(t)

)

I4 + sin
(σ

2
Wj(t)

)

Bj

)

q(0)

Here, we use the fact thatBj andI4 commute, as well as the properties

B2
j = −I4 exp(λBj) = cos(λ)I4 + sin(λ)Bj (29)

Note that the norm ofq grows at an exponential rate, although the exact solution always satisfies
||q(t)|| = 1. This is a property of the Itô integral, which is replicated if we solve the SDE using
the explicit Euler scheme. As we are only interested in the angles, the result is still useful if
we normaliseq before calculating the rotation matrix. A more satisfying solution would be
to use an integration scheme that treats (27) as an SDE in the sense of Stratonovich, as the
corresponding solution omits the growth term. However, theusual situation in practice is that
neither the ODE nor the solver permit the analysis of error propagation in terms of a simple
SDE. The recommended approach in this case is a Monte-Carlo study.

After we normalise the solution of the quaternion equation,its position on the unit sphere is
still perturbed by the measurement noise. To see what this means in terms of the rotation matrix
S, we first consider the case thatj = 1 andq(0) is equal to the first unit vector. Equation (21)
now yields the following result forθ(t) := σ

2
W1(t):

q(t) =









cos(θ(t))
sin(θ(t))

0
0









⇒ S =





1 0 0
0 cos(2θ(t)) − sin(2θ(t))
0 sin(2θ(t)) cos(2θ(t))



 (30)

This is a rotation around thex-axis, where the angle behaves like a Brownian motion, so its
standard deviation isO(t

1

2 ), which we might expect for a single integration step. Analogous

9



Michael Speckert, Nikolaus Ruf, and Klaus Dressler

0 200 400

−30

−20

−10

0

10

20

Roll angle

Time [s]

A
ng

le
 [d

eg
]

 

 

True value
Reconstruction

0 200 400
−30

−25

−20

−15

−10

−5

0

5

10

Pitch angle

Time [s]

A
ng

le
 [d

eg
]

0 200 400

0

200

400

600

800

Yaw angle

Time [s]

A
ng

le
 [d

eg
]

Figure 1: True and reconstructed angles
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Figure 2: Reconstruction error for angles

calculations for other values ofj andi show that distorting (only)ωl,1 always results in a spu-
rious rotation around thex-axis, whileωl,2 affects they-axis, andωl,3 the z-axis. We cannot
provide an exact solution in the case of three noise terms andnon-zero excitation, but the best
we may expect are errors growing at the same rate. Thus, including an INS in the process does
not solve the problem of noisy data in general. However, short simulations can be stabilised
using angular velocities measurements that are sufficiently accurate.

In practice, the accuracy of an INS is affected by other factors besides random noise. For
short-term stability, manufacturers often express standard deviation as being linear in operation
time (a more detailed analysis may distinguish bias instability of O(t) and angle random walk
of O(t

1

2 )). The magnitude of these effects can range from below 0.001°per hour for high-
performance INS used in aeronautics to over 10° per hour for the cheapest units [12]. To
choose the right measuring equipment for a task, one has to know the length of the individual
measurements, as well as the sensitivity of the vehicle model to deviations from the true angle.
Even an error of 10° per hour can be acceptable for simulatinga 5 minute drive.

As a final example, we consider a 10 minute segment of INS data recorded at a frequency
of 1000 Hz (∆t = 0.001s) on board a moving vehicle. Angular velocities were reconstructed
by smoothing with a low-pass filter and taking central differences. For the purpose of demon-
stration, these will be treated as the ’true’ values. The angles were reconstructed by solving the
quaternion equation (21) with added noise using the DOPRI(4,5) scheme [4]. For the errors, we
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used independent Gaussian random variables with mean zero and standard deviationσM = 0.1
radians per second. Taking (5) as a simple approximation, weexpect that the angles behave
similar to Brownian motion with standard deviationσ = 180◦

π
σM

√
∆t = 0.18 ◦√

s
. As the plots

in Figures (1) and (2) show, the errors are indeed of comparable magnitude.

3.3 Stabilising the force-based simulation

In the preceding two sections we have presented how to use additional measurements in order
to approximately derive the true trajectory of a certain reference point of the vehicle body. Now,
the vehicle motion in the force-based simulation can be stabilised by additionally prescribing
the measured motion at the reference point. However, the enforced motion induces reaction
forces given by the corresponding Lagrange multipliers. Inan ideal situation, where we have
nearly no noise in the measured data and a "perfect" model, these reaction forces should be
zero.

There is a certain similarity to the Gear-Gupta-Leimkuhlerstabilisation for the index reduced
formulations of multibody equations (see [6]). The idea of index reduction is to use constraints
on the velocity or acceleration level in order to reduce the index of the DAE. But this leads
to the well known drift effect of the integration of the pure index 2 or index 1 formulations.
This drift can be corrected either by projecting onto the known constraints on position level
or by using constraints both on the position as well as on the velocity or acceleration level. To
compensate the additional constraints in the latter case, Gear, Gupta, and Leimkuhler introduced
corresponding Lagrange multipliersη in the kinematic equatioṅx = v − GT (x)η. In contrast
to our case, no additional forces are introduced by that approach.

Since we are transferring data measured on a real vehicle to anumerical model, the reaction
forces observed at the point of the prescribed motion are notonly due to the noise in the wheel
forces but also due to the fact, that the numerical model is only an approximation of the real
vehicle. While for the real vehicle the measured prescribedmotion is ’in equilibrium’ with
the measured wheel forces (up to measurement noise), this need not be true for the numerical
model. If, for example, the weight of the vehicle model is toosmall, then the vertical reaction
force will show an offset which is needed to prevent the vehicle model from lifting off during
simulation.

If the stabilised simulation is used, one has to check subsequently the magnitude of the
artificial reaction forces in order to decide, if the approach is valid (small reaction forces) or
not. Of course, in the latter case, it is in general not easy tofind out the reason for the mismatch.

4 A SIMPLE EXAMPLE

We want to illustrate the considerations above using the vehicle model shown in Fig. 3. It
is taken from Ref. [9]. Although it is simple enough such thatthe equations of motion can
be written down explicitly, it is useful for demonstrating the drift effects explained before. The
model contains three bodies (the chassis and two wheels), aswell as two spring damper systems
between the wheels and the chassis and two additional springdamper systems representing the
tyres. The connection between the springs and the chassis isvia revolute joints. The chassis
moves in vertical directionz3 (positivez oriented downward) and rotates about the angleβ (I
denotes the moment of inertia of the chassis). The degrees offreedom of the wheels arez1, z2

resp. Thus, the entire system has six degrees of freedom, namely the coordinates of the three
bodiesz1, z2, z3, β and the coordinatesζ1, ζ2 of the contact points to the ground. Details of the
model can be found in App. A.
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Figure 3: A simple vehicle model.

4.1 Excitation modes of the model

The system may be excited by prescribing either

1. the vertical forcesf1, f2 at the contact points,

2. the road profile given byζ1, ζ2, or

3. the vertical forcesf1, f2 and the pitch angleβ.

In the first case, the equations of motion may be written in theform

M · ẋ = A(x) · x + F, (31)

where the vector of unknownsx is given byx = (z1, z2, z3, β, ż1, ż2, ż3, β̇, ζ1, ζ2)
T and the mass

matrixM as well as the system matrixA(x) and the right hand sideF is given in App. A.
In the second case, the forcesf1, f2 at the contact points are reaction forces which are un-

known and have to be calculated. The dynamic equations are now given by

M̄ · ˙̄x = Ā(x̄) · x̄ + F̄ , (32)

where the vector of unknowns is given byx̄ = (z1, z2, z3, β, ż1, ż2, ż3, β̇)T , and the mass matrix
M̄ as well as the system matrix̄A(x̄) and the right hand sidēF is given in App. A.

After solving these equations for̄x, we get the contact forces by

f1 = k1(x̄1 − ζ1) + d1(x̄5 − ζ̇1)

f2 = k2(x̄2 − ζ2) + d2(x̄6 − ζ̇2).
(33)

In the third case, we stabilise the force-based simulation using the measured pitch angle.
Here the vector of unknowns iŝx = (z1, z2, z3, ż1, ż2, ż3, ζ1, ζ2)

T and the equations of motion
are

M̂ · ˙̂x = Â · x̂ + F̂ . (34)
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The mass matrixM̂ , the system matrixÂ, and the right sidêF are given in the appendix.
The prescription of the angleβ induces an enforced momentλ at the chassis center. Once the
equations of motion have been solved,λ can be calculated by

λ = Iβ̈ − cos β(bf3 − af4),

wheref3, f4 are the chassis spring forces defined in (35).

We now use the model to illustrate what may happen if wheel forces measured at a prototype
vehicle on a certain track are used for exciting a numerical model (MBS) of the vehicle. Here,
we have to replace the measurement by a first simulation of themodel based on a predefined
road profileζ1, ζ2. The following steps are performed:

1. We simulate the model based on a prescribed road profile. The corresponding equations
of motion are given by (32). As a result, we get the vertical wheel forces by (33). We
denote these forces byf (0)

1 , f
(0)
2 . This step is calledvirtual measurement.

2. We simulate the model using (31), wheref1 = f
(0)
1 andf2 = f

(0)
2 . This step is called

simulation based on undisturbed forces. In the absence of noise and calculation errors,
we should get the same vehicle motion as in the virtual measurement.

3. We pretend ameasurement errorby adding a synthetic noiseε1, ε2 to the forcesf (0)
1 , f

(0)
2 .

The noise is stationary with zero mean and varianceσ2. Then we simulate the model us-
ing (31), wheref1 = f

(0)
1 + ε1 andf2 = f

(0)
2 + ε2. This step is calledsimulation based

on noisy forces.

4. We pretend amodeling error by slightly changing the stiffness and damping parameters
k3, d3, k4, d4 of the chassis springs as well as the moment of inertiaI of the chassis. Then
we simulate the modified model using (31) with the unperturbed forcesf

(0)
1 , f

(0)
2 . This

step is calledsimulation of a perturbed model. Again we compare the corresponding
vehicle motion with the motion from the virtual measurement.

5. We assume, that we have measured the pitch angleβ and simulate the perturbed model
with the noisy forces under prescription ofβ using (34). This step is calledstabilised
simulation of a perturbed model.

4.2 Simulation results

The road profile and the wheel forces
In Fig. 4, the road profile used for the virtual measurement and the resulting wheel forces are
shown. The profile starts at level zero and ranges approximately between−2[m] and+2[m],
simulating some small hill grades. The resulting vertical wheel forces are shown below. They
are rather similar for both wheels. Their amplitudes (approximately between−10[kN ] and
+16[kN ]) are due to the road roughness, which can be seen in the detailplot of the profile.

Noisy forces and perturbed models
As a model for the measurement error of the forces we have usedGaussian white noise signals
ε1, ε2 with standard deviationσ = 0.002 · fmax, wherefmax is the maximum absolute force.
Thus we getσ ≈ 32[N ].
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Figure 4: The basic road profileζ1, ζ2 at the top and the resulting wheel forces at the bottom.

When comparing simulation results with the virtual measurement, we only show the vertical
chassis motionz3 and the pitch angleβ. The latter is the most sensitive variable. The differences
in z1 andz2 are smaller in most cases. The virtual measurement is compared to the simulation
with undisturbed forces, to the simulation with noisy forces, and to the simulation with the
perturbed model. Fig. 5 shows the results for the vertical chassis motion (left) as well as for the
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Figure 5: Vertical chassis motionz3 and pitch angleβ during different simulations.

pitch angle (right). There is nearly no drift inz3 with the exception of the noisy force excitation,
where a relatively small drift can be observed. For the pitchangle, even for the simulation with
undisturbed forces we observe a drift beyond20[s]. As can be expected, the drift-off occurs
much earlier (at10[s] approximately) in case of noisy forces or a perturbed model.

In Fig. 6 and Fig. 7 the results for different noise samples and different perturbed models
resp. are shown.

While the behaviour of the different noisy force results is pretty similar with respect to the
"drift-off" time, the specific trajectories differ a lot. This is in accordance with what can be
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Figure 7: Vertical displacement (left) and pitch angleβ (right) of the chassis during force-based excitation for
several perturbed models. The perturbation is a random factor between 0.9 and 1.1 (at most 10%) on the stiffness
and damping parameters of the chassis springs and on the moment of inertia of the chassis.

observed for multiple paths of the simple point mass examplein Sec. 2. In case of the perturbed
model we observe nearly no drift in the vertical chassis displacement and different types of
drifts for the pitch angle, depending on the specific way, theperturbed model parameters are
affecting the physical behaviour.

Prescription of pitch angle
Next we study the effect of prescription of the pitch angleβ (stabilisation). When simulating
the original model with the prescription ofβ and undisturbed forces, we get a small enforced
moment (not shown) due to small numerical integration errors. In that case its magnitude ap-
proximately is70[Nm]. If we do the same for the perturbed model and the noisy forces, we have
to expect a larger moment. In Fig. 8, the results from the stabilised simulation of the perturbed
model excited by the noisy forces are shown. The plot shows the enforced moment (right) and
compares it to the inertia termI ·β (left). The enforced moment approximately ranges between
(−800[Nm], 800[Nm]), which is considerably larger than in the case without modeland force
error. However, if we compare the magnitude of the enforced moment with the magnitude of
the inertia termI · β, which approximately is15[kNm], we find that it is relatively small.

The magnitude of the moment can be regarded as a measure of inconsistency between the
applied forces, the model, and the enforced motionβ. Thus, it should be as small as possible.
Of course, in practice it is not known, whether the enforced moment is mainly due to erroneous
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Figure 8: The inertia termIβ (left) and the moment enforced by the prescription of the pitch angle (right).

forces, model errors or an erroneous prescribed motion.
Remark
For the calculations above the equations of motion given in the appendix have been implemented
in MATLAB and solved with different integration schemes (ode45: a Runge-Kutta method by
Dormand and Prince, see [4], ode113: a variable order Adams-Bashforth-Moulton method, see
[10], ode15s: a variable order solver based on numerical differentiation formulas (NDFs), see
[11]) and different error tolerances (tolrel ∈ {10−4, 10−8}, tolabs ∈ {10−6, 10−10}). It turned out
that the presence of the observed drift is essentially independent of the solver and the accuracy
of the integration.

5 Conclusions

Starting with some basic observations from the theory of stochastic differential equations, we
have argued that the drift effect, observed when simulatingunconstrained models based on
forces or accelerations, cannot be eliminated by suitable integration schemes. It is a conse-
quence of noise in the excitation data.

The presence of the drift effect even in case of excitation with undisturbed forces is due to
small numerical integration errors. Although the magnitude of these errors are under control
by setting error tolerances, they may accumulate as has beendescribed in Sec. 2. This can be
compared to the well known drift-off, which is observed if DAEs are integrated using the for-
mulation of constraints based on velocity or acceleration levels (hidden constraints). However,
in those cases, we can apply stabilisation techniques (e.g.Baumgarte stabilisation, see [2]),
since we know the constraints at the position level as well. See [1], [3], or [5] for details on
ODE and DAE solving.

As we do not know the true trajectory in our situation, such techniques do not help. The
only way around that problem is to stabilise the simulation (Sec. 3.3) making use of data on
the position level. Since a pure translational drift would not affect the section forces within
the vehicle, we could even do without controlling the translational degrees of freedom and
concentrate on the orientation.

As we have seen in Sec. 3.1, we can in principle calculate the orientation from measured
accelerations, but during that twofold integration process we again have the same drift problem.
Using suitable measurement equipment we can get the angularvelocities such that we have to
perform only one integration leading to a much smaller drift. It is now a matter of the quality
of the measurement equipment to keep the errors sufficientlysmall. Some of the measurement
devices internally perform that integration step and deliver the orientation angles directly. For
more details see Sec. 3.2 and the references therein.
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Finally in Sec. 4, a simple example has been used to illustrate the considerations.
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APPENDIX

A The equations of motion of the vehicle model

In the following, the equations of motion of the system are derived. See Fig. 3 for the meaning
of the different quantities. We start with the spring forcesgiven by Hook’s law and a viscous
damping term and the force equilibrium (Newton/Euler equations).

fi = ki · (zi − ζi) + di · (żi − ζ̇i), i = 1, 2

f3 = k3 · (z3 − z1 − b · sin β) + d3 · (ż3 − ż1 − b · β̇ cos β)

f4 = k4 · (z3 − z2 + a · sin β) + d4 · (ż3 − ż2 + a · β̇ cos β)

(35)

m1 · z̈1 = m1 · g + f3 − f1 , m2 · z̈2 = m2 · g + f4 − f2

m3 · z̈3 = m3 · g − f3 − f4 , I · β̈ = cos β · (b · f3 − a · f4).
(36)
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Force excitation
Introducingx = (z1, z2, z3, β, ż1, ż2, ż3, β̇, ζ1, ζ2)

T , combining the formulas (35),(36), and re-
arranging terms results in the following first order system of differential equations:

Mẋ = A(x) · x + F, M = diag(1, 1, 1, 1, m1, m2, m3, I, d1, d2),

F = (0, 0, 0, 0, m1g − f1, m2g − f2, m3g, 0,−f1,−f2)
T ,

A =





0 I4 0
A21 A22 0
A31 A32 A33



 ,

A21 =









−k3 0 k3 −bk3
sinx4

x4

0 −k4 k4 ak4
sinx4

x4

k3 k4 −k3 − k4 (bk3 − ak4)
sin x4

x4

−bk3 cos x4 ak4 cos x4 (bk3 − ak4) cos x4 (−b2k3 − a2k4) cos x4
sinx4

x4









,

A22 =









−d3 0 d3 −bd3 cos x4

0 −d4 d4 ad4 cos x4

d3 d4 −d3 − d4 (bd3 − ad4) cos x4

−bd3 cos x4 ad4 cos x4 (bd3 − ad4) cos x4 (−b2d3 − a2d4) cos2 x4









,

A31 =

(

k1 0 0 0
0 k2 0 0

)

, A32 =

(

d1 0 0 0
0 d2 0 0

)

, A33 =

(

−k1 0
0 −k2

)

.

(37)

Eq. (37) describes the system excited by the forcesf1, f2 at the contact points to the ground.
The system matrixA(x) depends on the pitch angle only (A(x) = A(x4) = A(β)). For small
anglesβ we havecos β ≈ 1 and sinβ

β
≈ 1, such that the vehicle can be described by a linear

systemM · ẋ = A(0) · x + F .

Excitation by a road profile
If the system is excited by a given road profileζ1, ζ2 , then the forcesf1, f2 at the contact points
are reaction forces which are unknown prior to simulation. In that case the dynamic equations
are given by

M̄ ˙̄x = Ā(x̄) · x̄ + F̄ , M̄ = diag(1, 1, 1, 1, m1, m2, m3, I),

F̄ = (0, 0, 0, 0, m1g + k1ζ1 + d1ζ̇1, m2g + k2ζ2 + d2ζ̇2, m3g, 0)T ,

Ā =

(

0 I4

Ā21 Ā22

)

, Ā21 = A21 −









k1 0 0 0
0 k2 0 0
0 0 0 0
0 0 0 0









, Ā22 = A22 −









d1 0 0 0
0 d2 0 0
0 0 0 0
0 0 0 0









.

(38)

where the vector of unknowns̄x is given byx̄ = (z1, z2, z3, β, ż1, ż2, ż3, β̇)T .

A.1 Force excitation with prescribed pitch angle

If we prescribe the pitch angleβ during force excitationf1, f2 , we get an enforced moment
λ at the center of mass of body 3. Sinceβ is no longer an unknown, we introduce the new
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variable vector̂x = (z1, z2, z3, ż1, ż2, ż3, ζ1, ζ2)
T . Skipping theβ-rows of matrixA(x) in (37)

and putting theβ-columns into the new force vector̂F leads to

M̂ ˙̂x = Â · x̂ + F̂ , M̂ = diag(1, 1, 1, m1, m2, m3, d1, d2),

F̂ =

























0
0
0

m1g − f1 − k3b sin β − d3bβ̇ cos β

m2g − f2 + k4a sin β + d4aβ̇ cos β

m3g + (k3b− k4a) sin β + (d3b− d4a)β̇ cos β
−f1

−f2

























,

Â =

























0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
−k3 0 k3 −d3 0 d3 0 0
0 −k4 k4 0 −d4 d4 0 0
k3 k4 −k3 − k4 d3 d4 −d3 − d4 0 0
k1 0 0 d1 0 0 −k1 0
0 k2 0 0 d2 0 0 −k2

























.

(39)

The system matrix̂A does no longer depend on the unknown statesx̂. Thus, the vehicle excited
by the contact forces and guided by the prescription ofβ is represented by a linear model.

B Model parameters

The following parameters are used:

geometry inertia stiffness[N/m] damping[Ns/m]
a = 1[m] m1 = 15[kg] k1 = 2 · 105 d1 = 2 · 102

b = 1[m] m2 = 15[kg] k2 = 2 · 105 d2 = 2 · 102

m3 = 750[kg] k3 = 1 · 105 d3 = 1 · 104

I = 500[kgm2] k4 = 1 · 105 d4 = 1 · 104

For the perturbed model, the stiffness and damping of the chassis springs as well as the moment
of inertia of the chassis have been changed according to

k3 ← k3 · 1.05, k4 ← k4 · 0.95, d3 ← d3 · 0.95, d4 ← d4 · 1.05, I ← I · 0.95.
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