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Introduction

Continuous stochastic control theory has found many applications in optimal investment.
However, it lacks some reality, as it is based on the assumption that interventions are
costless, which yields optimal strategies where the controller has to intervene at every time
instant. This thesis consists of the examination of two types of more realistic control meth-
ods with possible applications.

In the first chapter, we study the stochastic impulse control of a diffusion process. We
suppose that the controller minimizes expected discounted costs accumulating as running
and controlling cost, respectively. Each control action causes costs which are bounded from
below by some positive constant. This makes a continuous control impossible as it would
lead to an immediate ruin of the controller. In comparison to continuous control, apart
from the pioneering work by Bensoussan and Lions [3] and [2], Menaldi [19], Richard [25],
and Harrison, Selke and A. Taylor [11], there is only very few literature on this problem.
The objective of the first part of Chapter 1 is to give a rigorous development of the rele-
vant theory, where our guideline is to establish verification and convergence results under
minimal assumptions, without focusing on the existence of solutions to the corresponding
(quasi-)variational inequalities. If the impulse control problem can be characterized or
approximated by (quasi-)variational inequalities, it remains to solve these equations. For
many problems; such as applications in portfolio selection for stock markets, an impulse
control approach is the appropriate model. However, it is very difficult to obtain explicit an-
alytic solutions. Papers dealing with applications of stochastic impulse control to financial
market models include Buckley and Korn [5], Eastham and Hastings [8], Jeanblanc-Picqué
[14], Korn [16], and Morton and Pliska [23]. In Section 1.2, we solve the stochastic im-
pulse control problem for a one-dimensional diffusion process with constant coefficients
and convex running costs. Further, in Section 1.3, we solve a particular multi-dimensional
example, where the uncontrolled process is given by an at least two-dimensional Brownian
motion and the cost functions are rotationally symmetric. By symmetry, this problem
can be reduced to a one-dimensional problem. In the last section of the first chapter, we
suggest a new impulse control problem, where the controller is in addition allowed to invest
his initial capital into a market consisting of a money market account and a risky asset.
Trading in this market involves transaction costs. The costs which arise upon controlling
the diffusion process and upon trading in this market have to be paid out of the controller’s
bond holdings. The aim of the controller is to minimize the running costs, caused by the
abstract diffusion process, without getting ruined. This combines the general theory of
stochastic impulse control with the particular case of optimal investment in a market with
transaction costs. The linkage arises by the restriction of the set of admissible strategies.

As opposed to papers dealing with the extension of the standard market model by including
transaction costs, there is another strand of literature extending the standard market model
by taking liquidity constraints into account. For instance, Longstaff [20] considers the
portfolio problem of an investor who can only implement portfolio strategies with finite



variation. Schwartz and Tebaldi [27] assume that an investor cannot trade a risky asset at
all, i.e. the trading interruption is permanent. Rogers [26] analyzes the portfolio decision
of an investor who is constrained to change his strategy at discrete points in time only,
although trading takes place continuously. Kahl, Liu and Longstaff [15], and Longstaff [21]
consider an investment problem where the advent of a trading interruption is known. These
papers are related to the second main aspect of this thesis presented in the second chapter.
There, we suggest a new model for illiquidity. This chapter is based on a paper which is
joint work with Holger Kraft and Frank Seifried [7]. We analyze the portfolio decision of an
investor trading in a market where the economy switches randomly between two possible
states, a normal state where trading takes place continuously, and an illiquidity state where
trading is not allowed at all. We allow for jumps in the market prices at the beginning
and at the end of a trading interruption. Section 2.1 provides an explicit representation of
the investor’s portfolio dynamics in the illiquidity state in an abstract market consisting
of two assets. In Section 2.2 we specify this market model and assume that the investor
maximizes expected utility from terminal wealth. We establish convergence results, if the
maximal number of liquidity breakdowns goes to infinity. In the Markovian framework of
Section 2.3, we provide the corresponding Hamilton-Jacobi-Bellman equations and prove a
verification result. We apply these results to study the portfolio problem for a logarithmic
investor and an investor with a power utility function, respectively. Further, we extend
this model to an economy with three regimes. For instance, the third state could model
an additional financial crisis where trading is still possible, but the excess return is lower
and the volatility is higher than in the normal state.



Contents

1 Stochastic impulse control
1.1 Optimal stochastic impulse control . . . . . . . ... ... ... ... ...
1.2 The one-dimensional stochastic impulse control problem . . . . . ... ..
1.3 A multi-dimensional example . . . . .. ... ...
1.4 Self-financing stochastic impulse control . . . . . .. ... ... ... ...

2 Asset allocation with liquidity breakdowns
2.1 Continuous-time portfolio dynamics with illiquidity . . . . . . .. ... ..
2.2 Portfolio problem with illiquidity and convergence . . . . . . ... ... ..
2.3 HJB equations and verification theorem . . . . . . . . ... ... ... ...

2.4 Logarithmic utility . .

2.4.1 Infinitely many liquidity breakdowns . . . . . . .. ... ... ...
2.4.2  Finitely many liquidity breakdowns . . . . . . . . .. .. ... ...
2.4.3 Alternative proof of the convergence of the value functions . . . . .
2.4.4  Generalization with three regimes . . . . . . . . . ... .. ... ..

2.5 Power utility . . . . ..

2.6 Numerical illustrations

References

40
54
64

71
71
76
82
86
86
97
99
104
112
117

123






1 Stochastic impulse control

In stochastic control one considers a diffusion which depending on its state causes costs,
the so-called running costs. Whenever the process is controlled additional costs occur. The
aim of the controller is to find a control strategy that minimizes the expected discounted
costs accumulating as running and controlling cost, respectively. In impulse control one
assumes that each control action causes costs which are bounded from below by some
positive constant, i.e. one embeds an additional fixed cost component such as transaction
costs. This fixed component makes a continuous control impossible as it would lead to an
immediate ruin of the controller. Consequently, the controller does not only have to choose
the control actions, but also some non accumulating intervention times, which justifies the
terminology tmpulse control.

In this chapter, we study the stochastic impulse control problem with an infinite time hori-
zon. The uncontrolled process is given by a time-homogeneous diffusion process. Section
1.1 provides the corresponding theory. In particular, Theorem 1.25 allows us to approxi-
mate the impulse control problem by impulse control problems where only finitely many
interventions are possible. Our guideline is to establish verification and convergence re-
sults under minimal assumptions, without focusing on the existence of solutions to the
corresponding (quasi-)variational inequalities. If the impulse control problem can be char-
acterized or approximated by (quasi-)variational inequalities, it remains to solve these
equations. For instance this is done in Sections 1.2 and 1.3. In Section 1.2 we suppose
that the uncontrolled process is given by a one-dimensional diffusion process with constant
coefficients, and that the running costs are convex. We solve the corresponding impulse
control problem by applying the results of the previous section, and present some exam-
ples illustrating the shape of the value functions and the corresponding optimal strategies.
In Section 1.3 we consider a particular multi-dimensional example. We assume that the
uncontrolled process is given by an at least two-dimensional Brownian motion and that
the cost functions are rotationally symmetric. Thus we may reduce this problem to a one-
dimensional setting. Again, applying the results of Section 1.1 we solve the corresponding
impulse control problem. We illustrate the dependance of the value functions and their
optimal strategies on fixed costs, proportional costs and different running cost functions,
respectively. In the last section of this chapter, we suggest an impulse control problem,
where the controller is in addition allowed to invest his initial capital into a market con-
sisting of a money market account and a risky asset. Trading in this market also involves
transaction costs. The costs which arise upon controlling the abstract diffusion process
and upon trading in this market have to be paid out of the controller’s bond holdings. His
aim is to minimize the running costs, caused by the abstract diffusion process, without
getting ruined. In particular, this time, his optimal strategy will depend on his current
wealth.



1.1 Optimal stochastic impulse control

Let W™ be the Wiener space C°(Ry,R™) = {f : Rf — R™, f continuous} topologized
by uniform convergence on compact intervals and endowed with the corresponding Borel
o-field. We will denote the coordinate mappings by m; : CO(R$, R™) — R™, ¢ s m;(p) =
o(t), t > 0. The underlying complete probability space will be denoted by (2, F, P).
Let (Bi)i>0 be a m-dimensional standard Brownian motion with state space W™. The
completed natural filtration of the Brownian motion B will be denoted by (F;)i>0. We
assume that 0 € N, and |.| denotes the Euclidean norm.

Definition 1.1. An impulse control strategy S = (7,,0,)nen 1S a sequence such that
for alln € N

o l0=1<n<---<7,<--- almost surely
o Ty 1 2 — [0,00] is a stopping time w.r.t (Fi)i>o “intervention times”
o 8, : Q — R? is measurable w.r.t. the o-algebra of T,-past F, “control actions”

An impulse control strateqy (T, 0n)nen will be called admissible if we have

o lim 7, = o0 almost surely

n—oo

The set of all admissible impulse control strategies will be denoted by A.

We interpret 7, as the n-th time at which a controller enforces a jump in the state of the
system, with 9,, being the size of the jump enforced. As mentioned above, the admissibility
condition takes care that the intervention times do not accumulate and will allow us to
introduce fixed costs.

Remark 1.2. Let 19,...,7, :  — [0,00] be (Fi)io-stopping times such that 0 = 75 <
71 < -+ <7, almost surely and let 6 : Q — R? be F,, -measurable for all 0 < k < n. Then
we will identify the vector

((70,00)5 - - -5 (T, 0n))

with an admissible impulse control strategy by setting , = oo and 6, =0 for all l > n.

Let us now state the definition of the controlled process corresponding to an impulse control
strategy.

Definition 1.3. Let S = (7,,, 0 )nen be an impulse control strategy, let x € RY and let
b:RY— R o:R? — RV

be Borel measurable and locally bounded. A stochastic process X = (X)i>0 adapted to the
filtration (F)e>o is called a controlled diffusion process corresponding to the strategy
S if it solves the following stochastic integral equation

t t

Xo—u+ / b(X,_)ds + / (X, )dB, + 3 1gr<6)

0 0 j=1



with infinitesimal drift b and infinitesimal covariance a = oot. Writing out the coordinates
we have

¢ m

t o0
X0 =20 4 / bi(Xo_)ds + ) / 0ij(Xe)dBY +3 "1 <pot, 1<i<d
j=1

0 J=17y

wzth X = (X(l), e ,X(d))t, xr = (.I'(l), e ,Jf(d))t, b = (b17 P bd)t, g = (0'1'7]‘)1§z‘§d7 1<5<m,,
B = (BW ... .B™)t and § = (6W, ..., 8D, We will also use the notation

dX, = b(X,)dt + o(X,)dBy + Y 1gr—pdj, Xo- ==

j=1
and refer to x as the starting point of the process X .

When there is a risk of ambiguity, we will write X rather then X for a controlled diffusion
process corresponding to a strategy S. As we will only consider diffusion processes, for
sake of brevity we will prefer the notion controlled process to controlled diffusion process.
Note that a controlled process is in general not Markovian, since the control may depend
on the past. However as we shall see in the following theorem, X is strong Markovian on
each stochastic interval given by two successive intervention times.

Theorem 1.4. Let S = (7,,,0n)nen be an admissible impulse control strategy and suppose
that b and o are Lipschitz. Then there exists a unique cadlag, (Fi)i>o0-adapted strong
solution of the stochastic integral equation

t t

Xt :I‘+/b(X3_)dS+/U(XS_)dBS+21{Tj<t}5j.

Jj=1

Further, the controlled process X is a strong (Fi)i>o-Markov process on each stochastic
interval [Ty, Tgy1), .€. for each k € N we have

E(|F:) = E(Y|X7)

for every finite (Fy)>o-stopping time T with 7, <7 < Tpy1 and every bounded o(X (74 ypr,.,)-
measurable functional 1.

In Theorem 1.25 we will give a sharper version of the strong Markov property stated above
and therefore omit a proof of Theorem 1.4 here. Regarding existence of a solution we state
the following remark.

Remark 1.5. For the construction of a controlled process X corresponding to an impulse
control strateqy S = (Tn, On)nen, we first solve the following set of equations with random

3



matial conditions

t

X0 = 26 4 / bi(X?) ds+2/% )dBY), >0
_7:1

0

t
XPW = xE1O 450 4 / bi(XE)ds +> / 0, ;(X"dBY), t> 7,
=1

k

where 1 <1 <d and k > 1. Then, forn € N we set

Xt = XZ‘L, \V/ t & [Tn,Tn+1).

.
>

X>(w), w@ fixed

M “’

T (w)=0 T ‘(oo) Tz(w);13(oo)

Figure 1: Construction of the process X.

From now on we always assume that b and o are Lipschitz.
If S = (7, On)nen is admissible then at most finitely many impulses may occur within each

finite time interval. Thus () 1< 0;)¢>0 is locally of finite variation and X is a cadlag
j=1

semimartingale with X, = X, _ 4 > 1(7,—;10; and
=1

t t

Xe=z+ / b(X,_)ds + /U(Xs)st + 3" 1y

0 0 j=1



Note also, that in this setting, X being a cadlag semimartingale is equivalent to the jump
process AX defined by AX; = X; — X;_ being locally of finite variation.

Remark 1.6. Since (2, F, (Fi)i>0, P) is the filtered probability space of a BM B, where
(Ft)e>0 is the completed natural filtration of B, each cadlag semimartingale X on this space
verifies

Z |AX | < 0o almost surely, for all t > 0.

0<s<t

Indeed, if X = M + A is a decomposition of the cadlag semimartingale X with M a
local martingale and A locally of finite variation, then M is continuous. Thus, the jump
processes AX and AA are equal and therefore

Z |IAX| = Z |AA| < oo almost surely, for all t > 0,

0<s<t 0<s<t
since A s locally of finite variation.

In the following, (P,),cre denotes a family of probability measures such that under P,
the process X starts in x. Furthermore, let E, be the expectation operator associated
with P,. The action of the controller consists of the choice of the parameters 7, and 9,
which causes costs. His control problem includes intervention cost C' and running cost f,
where we assume that the former consist of a fixed positive component K and a variable
component c.

Definition 1.7. Let K > 0 and ¢ : R* — R{ such that
o ¢ is continuous and c¢(0) =0
o c(y) — o0 as |y| — oo
o c is subadditive: c(yy + o) < c(y1) +c(ya) V1,92 € RY

Then C : R — [K,00), C(y) = K + c(y) is called controlling cost with fized costs K
and variable cost c.

The impulse control problem consists of minimizing the expected discounted cost over the
set of admissible impulse control strategies

o0

(@)= if By / e (XS)ds + 3 L coope ™ C(52) 1)

S:(Tn,én)neNe.A
0

where f : RY — R{ is Borel measurable and o > 0. With the interpretation of f as the
running cost and « as a discount factor, the function v is called the value function of



l Cly)=K+yl ™
y?

K

Y

Figure 2: Example for a controlling cost function.

our impulse control problem. An admissible strategy S such that the infimum is attained
will be called optimal. Further, for S = (7,,, 0, )nen € A let us write

[e.o]

J5(2) = By / e F(X5)ds + 3 1 conye ™™ C(82).

0 n=1

In words, the subadditivity of the variable cost ¢ means that it is not more expensive to
control by x + y at once, rather than first to control by x and afterwards to control by y.
This assumption copes with the degression of the indirect costs and takes care that the
intervention times of an optimal impulse control strategy, respectively those of the qvi-
control, are strictly increasing (see the following remark as well as Lemma 1.13 (i) below),
which in turn allows us to avoid some “counting” in the proof of Theorem 1.14. However,
this assumption is by no means necessary and for a proof of Theorem 1.14 which does not
use the subadditivity of the cost function ¢ compare to the proof of Theorem 1.34.

Remark 1.8. Due to the subadditivity of ¢, a controlling cost C' = K + ¢ is strictly
subadditive and therefore, an optimal impulse control strategy S = (Tp, On)nen has to satisfy
Tn < Tpe1 whenever 7, < oo, for alln > 1.

We might consider — f e f(X5)ds + Z Lir <ocye”*™C(0,)) as the profit which can
be realized by starting in a: and applying the control S. Then

o0

—v(x) = sup —Ex(/ e f(X5)ds + Z Lir <oy “C(0,))

S=(Tn,0n)nenE€A n=1

corresponds to the profit from the disposition of the state . Thus, according to the law
of supply and demand, the revenue corresponding to having an additional unit of each of
the components, —d,v, represents the market price when the quantity available is x.



In order to construct an optimal strategy it will be interesting to consider

inf (v(z +vy) +C(y)), zeR?

yeRY

which represents the value of the strategy that consists of doing the best immediate action
when starting in z and behaving optimally afterwards. More generally let us define a
minimum operator M as follows

Definition 1.9. Let C be a controlling cost and let u : R — R be bounded from below.
Then we set
Mu(x) = inf (u(zr +y) + C(y)), =€R%
yeR
By our assumption on u and the properties of C', the minimum operator M is well defined.
The following lemma summarizes some important properties of M. It is an extension of
Baccarin and Sanfelici [1, Theorem 2].

Lemma 1.10 (Properties of the minimum operator). Assume that C = K + ¢ is a
controlling cost and let v : R — R be bounded from below. Then M satisfies the following
properties:

(i) MO = K, Mu is bounded from below and for z : R — R with u < z we have
Mu< Mz.

(ii) If u is continuous then there exists a Borel measurable function o, : R? — R® such
that

Mu(z) = u(z + @, (z)) + Clpu(z)) VzeR™
(11) If w is continuous then Mu is continuous.

(iv) Let u, : RY — R continuous for allm € N with ug < uy < -+ <y, < -+ < u, let ug
be bounded from below and let u be continuous.

- Let x € R? and set r = || +sup |y, (z)]. If sup |u,(2) —u(z)] — 0, as n — oo,
neN |z|<r
then Mu,(x) — Mu(x), as n — co.

- On each compact subset of R, (Muy)nen converges pointwise if and only if
(Muy,)nen converges uniformly.

In particular, if sup |u,(z) —u(z)| — 0, asn — oo for allr > 0, then sup |Mu,(z)—
|z|<r || <r

Mu(z)| — 0, as n — oo for all r > 0.

Proof. (i) By definition of M, u < z implies Mu < Mz and we have M0 = C(0) =
K + ¢(0) = K since ¢ > 0 and ¢(0) = 0. Moreover, Mu is bounded from below since u is
bounded from below and C' > K.



(ii) Let g, : RT x RT - R, (z,y) — gu(z,y) = u(z +y) + C(y) and let p, : R? — P(R?)
be a set-valued function defined by

v @) = {v € BT gu(a,0) = inf gu(a,9)}

Note that g, is continuous since u and ¢ are continuous and that |1|im gu(z,y) = oo for
y|—o0

all x € R?, since u is bounded from below and ‘ llim c(y) = oo. Thus, for all z € R? there
y|—o0

exists a compact set K, (z) such that u,(x) C K,(z) and g,(z,-) achieves its infimum.
Let us observe that pu, is upper semicontinuous. Let x € R? let (z,).en be a sequence
such that lim z, = x, let v, € p,(x,) each n € N and suppose that lim v, = v for some

n—oo n—o0

v. Note that by the above we have v € R?. Assume that v ¢ p,(z). Then there exists
some ¥ € R? and some € > 0 such that

Gu(2,70) = gu(z,v) — €.

Thus, by continuity of g, there exists some n; € N such that
Gu(Tn, 0) < gul(z,v) — ; for all n > n;.

On the other hand, the continuity of g, implies the existence of some ny € N such that
Gu(Tny V) > gulz,v) — g, for all n > no.

Hence, for N = n; V ny we have

9 -
gu(xNa’UN) > gu(:v,v) - 5 > gu($N7U)a

which is a contradiction to vy being an element of i, (xy). This implies that v € p,(x)
and we have shown that p, is upper semicontinuous.
Thus, by Hildenbrand [13, Part I Sec. D Lemma 1] there exists a Borel measurable mapping
@0y : R — R? such that

©u(7) € pu(r), = €RL

Let us present an alternative illustrative proof for the existence of a Borel measurable
function ¢, such that the above holds true in dimension one. Let d = 1 and note that for
each x € R, p,(x) is compact in R, since p, () is a closed subset of K, (z). Set ¢, : R — R;
x — @y (x) = inf p,(z). By the upper semicontinuity of u, we will now establish that ¢,
is lower semicontinuous. Assume that ¢, is not lower semicontinuous. Then there exist
z € R, e > 0 and a sequence (z,)nen such that |z, — x| < £ but

u(n) < @u(z) —€

for all n € N. For each n € N, we have ¢,(z,) € pyu(x,). Thus, since pu, is upper
semicontinuous, for v given by
liminf ¢, (z,) = v

n—oo



Figure 3: Definition of ¢, in dimension one.

we have v € u,(z) and therefore
wu(x) < w.

But on the other hand, since ¢, (x,) < @, (z) — ¢ for all n € N, we have

v < pu() — & < pu(T).

Hence the function ¢, is lower semicontinuous. Thus, ¢, is a Borel measurable function
such that

Mu(z) = u(z + @u(2)) + C(pu(r))
for all = € R

(iii) Let x € R? and (x,)nen be a sequence in R? such that x, — x as n — oco. For y € R?
we have
Mu(zy) < u(zn +y) + C(y)

and from the continuity of u it follows that

lim sup Mu(x,,) < limsup u(z, +y) + C(y)

= lim u(z, +y) + C(y)
=u(x +y)+Cy).

Since y € R? is arbitrary, we obtain

lim sup Mu(x,) < Mu(z).

n—oo

From (i¢) it holds that
Mu(zn) = u(wn + pu(zn)) + Cpu(en)).

9



By continuity of u, for r > 0 there exists some N(r) such that
Mu(z,) <u(z,) + C(0) <u(x)+C0)+r ¥Yn>N(r),

which yields that (Mu(x,))nen is bounded. Thus (¢, (2,))nen is bounded, since otherwise
there would be a subsequence (ny)gen in N such that |p,(x,, )| — oo as k& — oo which
would imply Mu(z,,) — oo as k — oo since ¢(py(x,,)) — 0o when k — oo and since w is
bounded from below.

Let (ng)ren be a subsequence in N such that (Mu(z,, ))ken converges. Since (¢ (Zn,))ken
is bounded, by Bolzano-Weierstrass there exists a subsequence (ng, );en of (nx)reny and some
y € R? such that gpu(xnkl) — y as [ — oco. Thus, by our assumption on (ny)gen and the
continuity of u and ¢ we get

lim Mu(z,,) = lim Mu(z,, )

k—o0 l—o00

= lliI(I)lo u(xn,w + (Pu(xnkl )) + C(QOU(xnkl))

=u(z+y)+Cy)
> Mu(x).

Hence for all subsequences (ny,)ken such that (Mu(z,, ))ren converges we have lim Mu(z,, ) >

k—o0
Mu(z), yielding that
liminf Mu(z,) > Mu(z).

(iv) Let x € R?. Since u,(x) < u(x), by (i) we get that (Mu,(x))nen is bounded.
Thus (¢u, (7))nen is bounded as ug is bounded from below and ¢(y) — oo as |y| — oo.
This implies that

sup |y, ()] < co.
neN

By using (i) and setting r = |z| 4 sup |¢u, ()| we obtain
neN

Mu(z) = Muy(2) = un(x + ¢u, (2)) + C(pu, (1))
> u( + pu, (7)) + Clpu, (2)) = sup [un(2) — u(2)|

|2|<r

> Mu(x) — sup |un(z) — u(z)]

|2|<r

and therefore, since by assumption sup |u,(z) — u(z)| — 0 as n — oo, we have
|z|<r

lim Mu,(x) = Mu(zx).

n—oo

Finally, let A C R? be compact and assume that Mu, — Mu pointwise on A as n — oo.
Note that by (iii), Mu, — Mu is continuous for all n € N. Moreover, by (i) we have
Mu — Mu,, > 0 and therefore, by Dini’s theorem we obtain

lim sup |Mu(z) — Mu,(x)| =0.

=00 zeA

The last assertion is an immediate consequence of these results. O

10



When for all x € R?, y,,(z) consists of a single element, the definition of upper semiconti-
nuity is equivalent to the definition of continuity for a function. Thus, in this case, if u is
continuous then ¢, = p, is continuous.

Let us now give a heuristic derivation of the so called quasi-variational inequalities for prob-
lem (1) in order to get an intuitive understanding of these relations. They are the analogue
of the Hamilton-Jacobi-Bellman equations in instantaneous stochastic control. Let C' be
a controlling cost, f a running cost and « a discount factor. Let v be the corresponding
value function and note that

Muv(z) = inf (v(z +y) + C(y)), =€ R

yeRd

is well defined since v > 0 and C' > K. As mentioned above, Mv(z) represents the value
of the strategy that consists of doing the best immediate action when starting in = and
behaving optimally afterwards. An immediate action does not need to be optimal which
yields that

v < Mo,

where equality holds in case that an immediate action is indeed optimal. Let z € R?,
assume that there exists an optimal impulse control strategy S = (7, 0, )nen, let X be
the associated controlled process and assume that the following variant of the Bellman
principle holds

t

v(x) = Ew(/ e f(X)ds + Y Lnene "TO6) + e (X)),
i=1

0

for all ¢ > 0. If an immediate impulse is not given, the system is left to evolve freely in
some small interval of length § > 0, i.e. 7 > §. Suppose that v is sufficiently smooth to
apply It6’s formula to obtain that

5
Suppose that E, [ e=**9,v(X;)o(X;)dBs = 0 and subtract v(z) on both sides of the equa-
0
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tion above to get

é
0=J%</e“%ﬂXQ—aMXJM8

Jj=1

+) / oo {axiv(Xs)bi(Xs) + % > axi,xjv(xgai,j(xs)} ds> .

Now, dividing by 9, letting § | 0, interchanging the order of taking this limit and taking
the expectation and applying the mean value theorem, formally leads to

0= Lo(z) + f(2),

where L is defined by

Lv(z) = —av(z) + Z Oy, v(x)bi(2) + % Z Or;,2,0(T) s 5(T). (2)

By applying a variant of Itd’s formula for cadlag semimartingales, we can also derive the
equality above without assuming that 7 > § but under the weaker assumption that 7, > 0
(replace T by ¢ in the proof of Theorem 1.14). However, if an immediate impulse is optimal,
then for S = (7, 0n)nen € A such that 7, > 6 we have

5
v(z) < EJC(/ e_o‘sf(Xf)ds + e_o“sv(ng))

0

and therefore
Lv(z) + f(z) > 0.

Furthermore, note that we either exercise an immediate impulse or we leave the system to
evolve freely, which implies that

(v(z) = Mu(z))(Lo(z) + f(z)) = 0.

For convenience let us make the agreement that from now on, whenever we write C, f,
a, M or L we implicitly assume that these are controlling cost, running cost, a discount
factor, the minimum operator from Definition 1.9, the operator defined by (2), respectively.
Starting directly to exploit this convention we give the following definition.

Definition 1.11. Let v* : RY — RY. The following three relations are called the quasi-
variational inequalities (abbreviated qui) for the impulse control problem (1)

o Lv*+f>0

12



o vt < Mv*
o (vf = Mv*)(Lv* 4+ f) =0

A function v* : RY — R which satisfies these quasi-variational inequalities is said to be a
solution of the qui for problem (1).

Instead of specifying the smoothness assumption on v* directly in Definition 1.11, we will
preferably mention it explicitly whenever dealing with solutions of the above qvi. The
advantage being that we do not have to repeat this definition when considering different
types of differentiability. As a minimal assumption on v*, we will always assume that it is
continuous.

The dependence of the right hand side of the inequality v* < Mv* upon the solution v*
justifies the terminology quasi-variational inequality. Note that the assumption v* > 0
in the definition above implies that Mv* is welldefined and corresponds to the property
v > 0 of the value function v. Recall that in this setting both, the running cost f and
the controlling cost C' are nonnegative. Let us define a special impulse control strategy,
constructed with the help of a solution of the qvi.

Definition 1.12. Let v* be a solution of the quasi-variational inequalities, let (1y,d0) =
(0,0) and forn > 1 set

Sp—1 = ((70,00), - (Tn_1,0n-1))
= Wt > 7y 0 (X5 = M (X5)

5 — gpv*(Xf:—l) if T, < 00
" 0 if T = 0.

We then call S = (T, 0n)nen @ qui-control.

According to our interpretation of the minimum operator M, for v = v* this definition
merely states that when following a qvi-control we intervene whenever our process hits a
state where it is indeed optimal to intervene and we then control by a best possible jump
size. Thus, we are locally behaving in an optimal way and therefore, given some growth
assumptions on v*, we will expect a qvi-control to be (globally) optimal. Even more, it
will turn out that given the existence of a smooth solution v* of the qvi, we have v = v*.

Let D denote the set of all states, where we intervene when following a qvi-strategy, i.e.

set
D = {r € R : v*(x) = Mv*(2)}.

Note that this intervention region D is a closed subset of R?, since by the continuity of
v* and Mv*, its complement D¢ is open in R?.

13
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Figure 4: Example for a qvi-control.
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The following lemma summarizes some basic properties of qvi-controls, which are immedi-
ate consequences of Lemma 1.10. Note that for the proof of this lemma we only need that
v* is a continuous function which is bounded from below.

Lemma 1.13. Let v* be a solution of the quasi-variational inequalities and let S =
(Tny On)nen be the corresponding qui-control. Then

(i) S is an impulse control strategy.
(ii) For n > 1 we have 7, < T,41 whenever 1, < 0.

Proof. (i) Let n > 1. By the continuity of X®"-! on [7,_1,00), the continuity of v* and
Lemma 1.10 we get that v*(X®-1) and Mv*(X®"1) are continuous on [7,_1,00), which
implies that 7, is a (F;)¢>o stopping time. Furthermore, Lemma 1.10 implies the existence
of F,, -measurable 6,,.

(ii) This is a consequence of Lemma 1.10 as well as the subadditivity of ¢. Let n > 1 and
suppose that 7, < co. By the definition of .S,,, 9,, and by Lemma 1.10, we have

V(XEM) 4+ C(6,) = v* (X +6,) 4+ C(0)
v*(an”‘l + Por (Xin_l)) + C(pypr (ann_l))
= Muv* (X7 1).

14



Thus, for each y € R? we have

V(XS = Mot (X51) - €
<N (X2 4 6, 4 y) + C (60 +y) — C(6)
<o (X2 +y)+Cly) — K.

Taking the infimum over y € R? yields
vH(XEM) < Mut(XEr) — K < Mv*(X2)

and the assertion follows by the definition of 7,,,1.

[

The following theorem is a justification for considering qvi and qvi-controls. It states that
given the assumptions (3) and (4) as well as the existence of a smooth solution of the qvi,
the value function is characterized by this solution. Moreover, in this setting it verifies
that the qvi-control is optimal, in particular admissible, for our underlying impulse control
problem.

Theorem 1.14 (Verification theorem). Assume that there exists a solution v* € C? of the
quasi-variational inequalities for the impulse control problem (1) such that

T
By / e=90,0* (XS)o (X5)2ds) < 00 VT >0 (3)
0
lim inf £, (e~ 0" (X7)) =0 (4)

for all S € A. Then, the qui-control to v* is an optimal impulse control strateqy and
v(x) = v*(z).

¢
Assumption (3) yields that the stochastic integral ([ e **9,v* (X2 )o(XZ? )dBs)iso is a
0

continuous martingale. Intuitively, the transversality condition (4) rules out those impulse
control strategies which involve accumulating debt. More precisely the remaining costs at
time T" have to grow slower than « such that their current value is pushed to zero.

We will prove this theorem in three steps. At first we show that v*(z) < v(z). Then, under
the assumption that the qvi-control to v* is admissible, we derive that it is optimal and
v*(x) = v(z). Finally we prove that the qvi-control is indeed admissible. In step one it
is advantageous to apply a suitable version of It6’s formula (see P. Protter [24, Sec. I1.7.])
directly to the controlled processes X° instead of first applying It6’s formula repeatedly
to the restrictions X7, 5, ,) for k smaller than some natural number n, adding the jumps
and afterwards taking the limit in n.

15



Proof. Let S = (7, 0n)nen € A be an admissible impulse control strategy such that 7, <
Tnt1 Whenever 7, is finite and n > 1 (see Remark 1.8). By It6’s formula applied to the
C*? function (¢, z) — e *w*(x) and the cadlag semimartingale X, for T > 0 we obtain

TV (XE) — 0 () — 3 e (XF) — vt (XE))

0<s<T

Hence, by the definition of L, we have

e T (XF) =0 (X5) = D e (W (XD) — ot (XE) (5)
0<s<T
T T
— / e 0 v (X5 Yo (X? )dB, + / e Lo* (X5 )ds.
0 0

Note that since 7, < 7,41 for 7, < 0o and n > 1, the sum on the left hand side of equation
(5) is given by

Liper<rye ™ (V" (X)) — 0" (X5 ) +21{T<T}e T (vt (XT) — vt (XD ).

Therefore as
—0*(X§) + Lio=ry (0¥ (XF) — 0" (X())) = =0 (X7)),

by equation (5) we have

_aT *(XS —U XS Zl{T<T}€ Ozﬂ (Xf;) —U*<Xg_))

T T
_ / e 90" (X5 )o (X5 )dB, + / e Lo* (XS )ds.
0

0

Since v* is a solution of the qvi it holds that
—Lv' < f
as well as

VH(XE) < Mut(XED) ot (XD 4+ 8) + O(6) = v*(XE) + C(6),

16



whenever 7, < oo and ¢ > 1, where we again use that the stopping times are strictly
increasing. Consequently we have

T

V) - e T () < [ O+ Y Lnene T C6) (0)
0 i=1

T
— / e 0,v" (X5 o (XT )dB,.
0

Now, by assumption (3), taking expectations in (6) yields
T o0
(@) = Bule M0 (X5)) < Bul [ € FX)ds + 3 1neme mC),
9 i=1

Finally, by monotone convergence and assumption (4) we have
v (x) < B / e f(XS)ds + ) Lirconye " C(67)).
9 i=1
Thus we have
v (z) < v(z).

Moreover, if the qvi-control S to v* is admissible, then by Lemma 1.13 and since v* is a
solution of the qvi equality holds in (6), which yields that v*(z) = v(x) and S is optimal.
It remains to show that the qvi-control S = (7, §, )nen to v* is admissible. Let n > 1 and
define an admissible impulse control strategy by

Sn = ((70,00), -+ (Tny 0n))-

Let T' > 0 and set 7,, = 7, AT. An application of It0’s formula to the cadlag semimartingale
X% yields

TN (XS — 0 (XG) = D e (T (X — vt (X))

0<s<Tn
_ / e~ 9,0 (X5 (X 5)dB, + / e Lo* (X 5)ds.
0 0

By Lemma 1.13, for ¢ > 1 we have 7; < 7,51 whenever 7; < oo and therefore

D e WX = vt (X5) = Lgan<rye T (01(XZ) — v (X))

0<S§7ﬁn

+ 3 gy @ (N(XE) — vt (XE)).
=2
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Thus we have

e—a%ny*(Xin> — U*(X(‘]gf) — Z 1{7_1'§T}6_a7-i (U*(Xin) . U*<X7‘_S;"_)>
i=1

:/e—asazv*(Xfln)J(XSSf)st+/6_QSLU*(Xff)dS.
0 0

By the definition of S,, we have
vH(XEm) = vt (X5 + O(6))
whenever 7; < oo and 1 < ¢ < n. Thus, since v* is a solution of the quasi-variational

inequalities and 7,, < 7, we get

U(XE) — et (XS = / e F(XE5)ds + 3 nerye " C(5) (7)
0 =1

— / e O (X))o (X5 dB,.

=]

tAT
By assumption (3), the stopped process ( [ e **0,v*(X2")o(X5")dBy)i>0 is uniformly
0

integrable. Thus taking expectations in (7) yields

Tn

V() = Byle v (X50) + / e (X ds + Y Lnerye *mC(5)).
0 =1

Now since v*, f and C' are nonnegative, by monotone convergence and the finiteness of
v*(z) we obtain

Ex(z Lircooye” “"C(0;)) < 00
i=1

and therefore
o0 o
KZ Lircoye @7 < Z Lir<ocye “"C(0;) <00 aus.
i=1 i=1
Hence the qvi-control is admissible. [
As mentioned above, we may circumvent the assumption that the function ¢ is subadditive.
However, the price to pay is the loss of the strict monotonicity of the intervention times

of an optimal respectively qvi-control. The proof above can of course be generalized to
this situation by merely thinning out the sequence of stopping times to make them strictly
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increasing, again. This will be exhibited in detail in the proof of Theorem 1.34, where we
do not have strictly increasing optimal respectively qvi intervention times even though we
are still tacitly assuming that c is subadditive.

In particular, under the assumptions of Theorem 1.14, we have proved a variant of the
Bellman principle, which we used in the heuristic derivation of the qvi. More generally, we
have

Corollary 1.15 (Bellman principle). Assume that the value function v € C? is a solution
of the quasi-variational inequalities. Let the qui-control S = (T,, dn)nen to v be admissible
and assume that

t
B / =90, 0(X, ) (X,) [2ds) < oo,
0

where X denotes the corresponding controlled process and t > 0. Then

t

o) = Bl | 000 + 3 1ncge™mOB) + X))

0

Proof. This is an immediate consequence of the proof of Theorem 1.14, since equality holds
in (6), where v(z) is equal to v*(x). O

Summarizing the assumptions of Theorem 1.14 that were used to establish the admissibility
of the qvi-control, we state

Corollary 1.16. Let v* € C? be a solution of the quasi-variational inequalities and let S =
(Tny On)nen be the corresponding qui-control. For each n € N set S, = ((70,90), - - -, (T, 0n))
and suppose that

Ex(/ le 00" (X))o (X 5)|?)ds < 0.
0

Then S is admissible.
Proof. Again, this follows from the proof of Theorem 1.14. O

Remark 1.17 (Generalized It6 formula and verification theorem). Let Z be a continuous
semimartingale and let h : R — R be a function whose derivative is absolutely continuous.

Let hy(z) = h(0)+ 2l (0)+ [y [ (h"(2))Tdzdy and let ho(z) =[5 [ (h"(2))"dzdy. These
functions are convexr and we have h = hy — ho. By the Meyer-Tanaka formula we obtain
the Ito formula

t t

1

W(Z) — h(Zo) = / W(Z)Zs + / W(Z)d(Z)s.
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Thus for d = 1 we may weaken the assumption v* € C? of Theorem 1.14 by only requiring
that the first derivative of v* is absolutely continuous. In particular, for d = 1 we may
replace the assumption v* € C? by v* € C' and v* twice continuously differentiable up to
a finite number of points.

For latter reference, we state a simple generalization of It6’s formula for a d-dimensional
continuous semimartingale Z and a function x — h(|z|), where h is a function such that
its first derivative is absolutely continuous. As we concatenate h with = — |z|, the process
becomes one-dimensional and we may apply the above remark. The following proposition
makes this precise.

Proposition 1.18. Let Z = (ZW ... ZWD) be a continuous semimartingale such that 0
is nonattainable, i.e. P(Z; =0 for somet > 0) =0. Let h: Ry — R be a function whose
derivative is absolutely continuous and suppose that g : R — R is given by g(x) = h(|z|).
Then we have

t

d t
% 1 i .
9(Z) — 9(Zo) = Z/@xig(Zs)dZ§)+§ > /axi’xjg(zs)dg(>7Z<J>>s'

=1 1<ij<d

Proof. Since 0 is nonattainable, an application of It6’s formula for x +— |z| and the con-
tinuous semimartingale Z yields.

d U t
| , ‘
12| = | Zo| = Z/axi|Zs|dZ§Z) + 5 Z /axi,xj’Zs‘d<Z(Z),Z(j)>s.
=17 1<ij<d

By Remark 1.17 we may apply It6’s formula for ~ and the continuous semimartingale |Z|

t t

W(1Z0) = Wizl = [K(ZDdiz+ 5 [ K0z z).

0

M- -

t
[ #1200, 24dz
0

i=1

t

5 Y WZ)0a | Za| + W' (1 Z])0s,| 2l Oy | 2ol d( 29, Z90)

1<i,j<d

DO | =

t t

. 1 . .
_ () 4 = @ 7
— /arig(Zs)dZs + 5 E VAT VACV AL
0

i=1 1<ij<d
[l

The following lemma states a sufficient condition on ¢ such that 0 is nonattainable for the
uncontrolled process X“°. Note that b and o are Lipschitz.
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Lemma 1.19. Suppose that rank(a(0)) > 2. Then, by Friedman [9, Theorem 4.1] the
uncontrolled process satisfies

P,(X2 =0 for somet>0)=0 for anyz # 0.

By Proposition 1.18 and Lemma 1.19 we obtain the following generalization of the verifi-
cation theorem for radial symmetric functions.

Remark 1.20 (Generalized verification theorem). Let h : Ry — R be a function whose
derivative is absolutely continuous and suppose that the solution of the quasi-variational
inequalities is given by v*(x) = h(|z|). If rank(a(0)) > 2 then the assertion of Theorem
(1.14) holds true. In particular, the radial symmetric function v* does not need to be twice
differentiable on a finite number of balls centered at the origin.

Next, we will consider two impulse control problems, where we are only allowed to intervene
for at most n times. In both cases, the corresponding value functions can be obtained by
iteratively solving variational inequalities. Under some natural restrictions we will establish
convergence of the associated sequences of value functions for the problems with at most
n interventions to the value function v of our original impulse control problem.

Let n € N and consider the impulse control problem (1), with the restriction that this time
we are only allowed to intervene for at most n times:

= i —as S —aTy
v(@) s:(mgiﬁtikqeﬂﬂ/ D 2 e OB (@)
/ -

The function v, is called the value function for the impulse control problem above.
A strategy S, = (T]En)75](€n))()§kgn € A such that the infimum is attained will be called
optimal.

Remark 1.21. Due to the strict subadditivity of a contmllmg cost C', an optzmal impulse
control strategy S,, = (Tk (5(n Jo<k<n has to satisfy Tk < Tk whenever T, ) < 00, for all
E>1.

As before, let us give a brief motivation for the following definition of the variational
inequalities for the impulse control problem (8). For n > 1 let v, be the value function
when we are allowed to intervene for at most n times. Note that Mwv,_; represents the
value of the strategy that consists of doing the best immediate action when we are allowed
to intervene for at most n times and behaving optimally afterwards when at most n — 1
interventions are possible. Thus, in general we have

Un S MUn,1

where equality holds in case that an immediate intervention is optimal. Now let n > 0,
let + € R?, assume that there exists an optimal strategy S, = (Té”),él(j’)ogkgn and let
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X be the correspondingly controlled process. If the first optimal intervention time 7 is
bounded from below by some positive §, we suppose that

)

on(z) = By / =05 F(X,)ds + e~ (X5))

(n)
1

and It6’s formula yields that

Lv,(z) + f(z) =0.
If an immediate impulse is optimal, then for S = (7%, 6k )o<k<n € A such that 7 > ¢ we
expect that

s
vn(z) < Egc(/ e f(X5)ds + e_a‘svn(X(;S))

and therefore
Lv,(x) + f(z) > 0.

Finally note that vy is the cost of the nonintervention strategy Sy = (0,0) and therefore,
by the above, we have
L’UO + f =0.

Definition 1.22. Let 1 < n € N and let v} : R? — RS. We may say that v} solves the
variational inequalities (abbreviated viy) corresponding to the impulse control problem
(8), if we have v} < v _, and

o Lui+ f>0

o vy < My,

n—1

o (v = Muy_)(Lv; + f) =0,

n—1
where v}, solves vi, 1 and v} : RY — Ry solves Lvj + f =0 (for short: v} solves vig).

Observe that the right hand side of the inequality v} < Mwv;_, is explicitly known at step
n of the iteration and therefore we only have to deal with variational inequalities. The
assumptions v > 0 and v < v)_; in the definition above correspond to the properties
v, > 0 and v, < v,_; of the value function v,, where the former implies that Muv; is
welldefined. The following definition gives rise to an optimal impulse control strategy for
problem (8), constructed with the help of solutions of the vig.

Definition 1.23. Let n € N and set (7y™,6") = (0,0). Let v} be a solution of the
variational inequalities vig, for each 0 < k < n. Then, for 1 <k <n set

SM = ((r$ 65y, (M, 6))

(n) (n)
i = inf{t = 7" () = Mo (X))
SN e ()
s — SD’U:L—k<XTI§”) ) if T < oo
)
0 if T,En) = 0.
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We then call S,, = (T,gn), 5’(€n))0§kgn a vi,-control.

For [ > 1 let D; denote the set of all points, where it is optimal to intervene for the first
time when we are allowed to intervene for at most [ times, i.e. set

Dy ={z € R*: vf(2) = Mv; ,(2)}.

These intervention regions D, are closed subsets of R?, since by the continuity of v; and
Muv;_,, their complements Df are open in R?. By Lemma 1.10 and the monotonicity of

A

S i
X () w@ fixed

, [ Mﬂr\
= ‘n LWl n‘ Y
0=Té () T(l () W T(z )%{D) WWN W

Figure 5: Example for a vi,-strategy.

the sequence (v} )en we get

Lemma 1.24. Let n € N and for each 0 < k < n let v; be a solution of the variational
inequalities viy,. Let S, = (T,in), 5,(;‘))099 be the associated vi,,-control, then

(i) S, is an impulse control strategy.
i) For 1 <k <n—1 we have 1" < 7™ whenever " < oo.
k k1 k

Proof. (i) As before, this is an immediate consequence of Lemma 1.10.

(ii) Let 1 <k <n —1 and suppose that T,E") < 00. By the definition of the wvi,-control .S,
5,(:) and by Lemma 1.10, we have

* st n * S(n,) n n
Gir(X )+ CO) = vl (X 6" +67) + C (")
(x5 P N
= vy _( () +90v;_k( 7 ) + (@v;ﬁ_k( 7m )
5

- MU:L—k<XT£n) ).
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Thus, for each y € R? we have

* s % S(Ti) n
Uin(X ) = Mo_(X 651 = C(6”)

(n )
SU:;_k(X‘l) +0 4 )+ 6 +y) — C(60)

N S(”)
< v, k(X6 +y) +Cy) -
k

where the last inequality is due to the subadditivity of c¢. Now, taking the infimum over
y € R? and using the monotonicity of the sequence (v});, we obtain

v, k(X ) < Mwv,_ k(XTIgZ) )— K

n—

< Mvnf(kJrl)(XTgt) )— K.

Thus, by the definition of T]ii)l we have

<o

]

Before verifying the optimality of the vi-control, we will strengthen the strong Markov
property stated in Theorem 1.4. The following theorem states that after the last interven-
tion time we may not only disregard the information on the past life of a finite controlled
process except for its present state, but also are allowed to shift the process back to starting
time zero. Recall that we are always assuming that b and o are Lipschitz.

Theorem 1.25 (Strong Markov property involving time shift). Let x € R%, let S, =
(T, Ok Jo<k<n e a finite impulse control strategy and let X°~ denote the corresponding con-
trolled process with starting point x. Let h : W% — R be bounded and measurable. Then
we have

E(h(XZ )\ Fr) = E(R(X5)]|,_ysn  a.s. on {7, < oo}
where X509 denotes the uncontrolled process X0 with X5° =y and we set X5 = 0.

Note that since {7, < oo} € F,, the assertion is equivalent to
E(h(Xi”+_)1{Tn<oo}|an) = E(h<XSO’y))|y:X§,? ]-{Tn<oo}
and consequently does not depend on our convention for X3,

Proof. ' Let W be the canonical m-dimensional Brownian motion on the Wiener space
W™ ie. let
Wi =m: (W™, (Gt)=0,v) = R™, t>0

!Thanks to Frank Seifried for pointing out the relevance of this result and for the main idea of its proof.
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where v is the Wiener measure on W™ and (G;)¢>o denotes the standard extension of the
natural filtration (o(Ws, s < t));>0. By Hackenbroch-Thalmaier [10, Satz 6.25] there exists
a measurable function

¢ R x W — we
which is continuous in z € R% and solves

t t

W%NﬂZZ+/MMAM@M&ﬁ/dM%M$MW;

0 0

For t > 0 let .7}15 = F. 4t and note that (.7:})1520 is again a standard filtration. Set Bt =

n

B, — B,, with the convention B,, = 0. The time shifted process X°,  is the (F)eso0-
adapted solution of

t t

X5n, = X5 4 / b(X2r, ,)ds + / o(X5 )dD,

on {7, < co}. Therefore, by a result of Blagovescensky-Freidlin (see Hackenbroch-Thalmaier
[10, Satz 6.26], we have

Xin+.1{7n<oo} = ¢(X7§;:L7 B)l{‘rn<oo}'
Thus, since {7, < oo} € F,, we find
E(h(Xin+-)‘FTn)1{Tn<OO} - E(h(qb(XTi”, B))|fm)1{m<00}
= E(h(¢(y, B)))|y:X§g Lir,<o0}

- / Wy, w))v(dw)l,— xsn1{ru<oc)
Wm
= E(h(¢(y, B))|,—x5n Liru<oc}

where the second equality follows by a monotone class argument as an" is F,, -measurable
and since B is independent of F,, . Again, by Blagovescensky-Freidlin we have

oy, B) = X0
and therefore, we end up with
B(R(X5 )| Fs,) = E((XO)] s
almost surely on {7, < co}. O

Clearly, by monotone convergence the above assertion holds also true for nonnegative
measurable functions h.
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Corollary 1.26. Under the assumptions of the theorem above we have

[e.9]

E( / e~ f(XI")ds) = E(Lr,<oope” ™ vo(XEM)).

Tn

Proof. Since 7, is F,, -measurable, an application of Theorem 1.25 yields

E( / e F(X5)ds) = B(1 gy, conye "™ E / e F(X5r, )ds|F))
g 0

= E(1{7n<oo}e_“7"E(/ e‘“sf(Xfo’y)ds)\y:Xfﬁ)
0
= E(1{7n<oo}€_aTnU0<Xi")).

Let us now verify the optimality of the vi-control.

Theorem 1.27 (Verification theorem). Let n € N and assume that for 0 < k < n there

exist solutions vi € C* of the variational inequalities viy for the impulse control problem
(8) such that

T
Xy / =9 9,0! (XS)o (X5)2ds) < 00 YT >0 ()
0
lim inf E.(e™Tui(X3) =0 (10)
for all S = (71, Ox)o<k<n € A. Then, the vi,-control to v is optimal and v,(z) = v}(x).

We will first consider the case where n = 0 and show that vj(z) = vo(z). Then we will

prove that for n > 1 we have v} (z) < v,(x). Finally we derive that the vi,-control is
optimal and v} (z) = v,(x).

Proof. Let Sy be the nonintervention strategy and apply Itd’s formula to the C? function
(t,x) — e ¥ (x) and the continuous semimartingale X0, For 7' > 0 we obtain

T

T
e Ty (X50) — w3 (X5°) = /e‘asﬁxva‘(Xfo)a(Xf())st + /e_aSLva‘(Xfo)ds.
0 0

Thus, since v solves viy we get

T T
TR o) = [ DX (XaB, ~ [ e p(x)ds
0 0
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and by assumption (9), taking expectations yields

0g() — Eolem T (X5)) = Ey( / e F(XS0)ds).

Finally, by monotone convergence and assumption (10) we have

o0

vi() = Byl / e F(X5)ds) = volx).

0

Now, let n > 1 and let S = (7%, 0 )o<k<n € A such that 7, < 741 whenever 7y is finite and
k>1. Let T>0and for 0 <k <mset 7, =7, AT. For 0 <k <n—1, an application of
[to’s formula to the C1? function (¢,x) +— e~%'v*_, (x) and the cadlag semimartingale X*
yields

efaﬂ”lv:;fk(XAS ) — efafkv;ifk(ka) - Z efas(vsz(xf) - U:Lfk(Xff))

Tk+1
7A'k<8§7ﬁk+1
Tht1 41
= [ 0 )0 aB 4 [ L (X s
7A'k /f—k

Thus, since
—0n(X5) + Ljomr (0n(X5) — 0n(X51)) = —vp(X5L)

for £ = 0 we have

e Mur(X2) — o (X5) — Lmerye * ™ (0 (X5) — 0p (X2 )

7 !
_ / e~ 0,0% (X5 Vo (X5 )dB, + / e Lv* (X5 )ds
0 0

whereas for £ > 1 we obtain

e (X5 ,) = e o (X2 = L emye ™ (0n k(X)) — onn(X5, )

Th+1 Tht1 B Tht1™
Tht1 Th+1
= /e_asawvfl_k(Xf_)a(Xf_)st-|—/e_aSLUZ_k(X;g_)dS'
7A'k 7A—k

Since v} _, is a solution of the vi,_j it holds that
_L'U;i_k </f
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as well as

(Xf,m ) < MU:L—(k—i-l)(XiH—) <w,_ (k+1)(XTk+1_ + 0r41) + C(0r11)
Uy, (k+1)(X7i+1) + C(Or+1),

whenever 7541 < oo. Thus, for k£ = 0 we have

71 7y

V(XS ) — e (X5) < / e F(X5)ds — / 0,05 (XS )o (X5 )dB,
0

+ Lnerye ™ (0n 1 (X7) — un(X7) + C(6))

and for £ > 1 we get

) = (X
Trt1 Tht1
< /e_asf(Xf)ds—/e_asaxvfl_k(Xf_)a(Xf_)st
1 1

+ L <mye T (0n gy (X2 ) = vp f (X2 )+ C(6k11))-
Let us rewrite the left hand sides of the inequalities above as

vn(X5) = e Mun(X32) = vi(XE) = Ynerye M on(X7) = Limsrye” v (X7)

respectively
—af % S —adf S
ey 1 (X5) — Ly <er+1>
= 1{Tk§T}@ Mkvn—k(ka) — 17 <y ) (kaﬂ)

- 1{TkST<Tk+1}e aT . (XS)

Now, summing up over 0 < k < n — 1, by assumption (9) and optional stopping we have

un (@) = Bp(Lgr,<rye o5 (X2) Zl{m R Ca I 0. ¢ (11)

S E;v(/ e_o‘sf(Xf)ds + Z ]_{TkST}@_aTkC((Sk)).

9 k=1
Note that for 1 < k < n by assumption (10) and the monotonicity of (v]); we have

liminf F, (14, <r<nye” @ U:L_(k_n(X;)) =0

T—o00
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hence, by monotone convergence we establish

vn () = By (L, <ccpe™ ™05 (X))

Tn

< By / e F(X5)ds + 3 1 gnanye ™ C(61))
k=1

0

and the strong Markov property (see Corollary 1.26 and recall that we have already shown
that v§ = vg) implies that

o0

o) < Eal [ € (X5 + Y Loe ™ C(6)
k=1

0

Thus taking the infimum over all S = (7%, dx)o<k<n € A we have
v () < ().

Finally consider the vi,-control S, (recall Lemma 1.24). In this case, equality holds in
(11) since v _, solves the vi,_ for 0 < k < n — 1 and therefore v} (x) = v,(z) and S, is
optimal. ]

As before, notice that we may circumvent the subadditivity assumption on ¢ which results
in the loss of the strict monotonicity of the optimal intervention times and the v, stopping
times, respectively, by modifying the proof above according to the one of Theorem 1.34.

In particular, we have proved the following variant of the Bellman principle.

Corollary 1.28 (Bellman principle). Let n € N and assume that for 0 < k < n the value
functions vy are C? solutions of the variational inequalities vi,. Let S, = (7,5”), (5,&”))093”
be the vi,-control and assume that

t
By / =0, (X2)o (X.)[2ds) < o
0

each 0 < k < n, where X denotes the corresponding controlled process and t > 0. Then

M At

u ™ n
vn(x) = By / e f(Xs)ds + Z 1{T;in)ﬁt}6_mk 0(512 ))
0 k=1

n
(n)
§ —a(ry ' AL)
+ 1{Tlin>§t<7']ii)1}e Un_k<XTT(Ln)/\t>>'
k=0

Proof. This follows from the proof of Theorem 1.27, since under the assumptions above
equality holds in (11). ]
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Next, we provide two convergence results which show that the impulse control problem with
possibly infinitely many interventions can be approximated by impulse control problems
where only finitely many impulses are allowed.

Lemma 1.29 (Convergence from above). If the nonintervention cost vy is bounded, then

for each 1 < n € N we have

||U0||§up

lew = olloup < 2.

Proof. Let z € RY and let 1 <n € N. Let S = (74, 0 )ren € A such that J¥(z) < vg(z)
and set S, = (T, O Jo<k<n. By Corollary 1.26 we have

o0

Ph(a) = (@) < B [ e FOX)
== Ez<1{7n<oo}eiaTnU0(Xin>>
S ’ ”UO ’ ’supE:L‘(l{Tn<oo}€_aTn)-

Note that since J¥(x) < vg(x) we have

nKEw(l{Tn<oo}e_aTn> < Ez(z 1{Tk<oo}e_a7kc(5k))
k=1
< J%(x) < wo(@) < [Jvollsup-

Thus we have

2

[|vol|
JS" o JS' < sup
() = JS(w) < oz
and hence ) ,
[|vol I3 [|vol I3
() — J5(2) < v, (x) — J5n sup - sup
n(e) = T5(0) < ) = T () + o < 0
Taking the infimum over all admissible strategies yields
||UO||§up

0 <wvp(x) —ov(r) < K

]

The above lemma is also a hint to the fact that the cost reduction by using control actions
decreases with growing fixed control costs. Even more, this decrease is inversely propor-
tional to the fixed cost component. Given the existence of an optimal strategy, we may
rewrite the previous lemma as follows.
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Lemma 1.30 (Convergence from above). Let k be a compact subset of R and suppose that
for each x € Kk there exists an optimal strategy S = (g, Ok )ren corresponding to problem
(1) such that (X2 )g=1 C k. Then we have

an—vHsup(,{) S—K, V1SHEN

190/ 2up(e)
n

Proof. Let © € k and let S = (7x, 0k )ren be an admissible impulse control strategy such
that v(z) = J%(x) and (X7 )r>1 C k. Let 1 <n € N and set S, = (7k, 0k Jo<k<n- As before,
by Corollary 1.26 we have

T (@) = v(@) < [0l lsup(e) Be (L, <oy ™ ™).

Thus, since
nKEI<1{Tn<OO}eiaTn) < HUOHSW(H)?

we have 5

o]
T () — () < 0N lsup(e)
() - () < —

and therefore

2 2

[lvoll [lvoll
0 < v.(2) — v(2) < v, () — J5 sup() 11901 lsup()
< wp(x) —v(z) < vy(x) () + = =%

]

Under the combined assumptions of Theorem 1.27 and Lemma 1.29 or Lemma 1.30 we
are now able to approximate the value function v, by solutions of variational inequalities.
More importantly, for each ¢ > 0 we may choose n sufficiently large, such that the wvi,-
strategy S, becomes e-optimal for the impulse control problem (1) where infinitely many
interventions are allowed, i.e

175 = ol < &

Let us now consider the impulse control problem (8) where we are only charging running
costs until the last intervention has been made i.e. for n € N set

™

()= if B / e F(XS)ds + 3 T pnemye O, (12)

S=(14,0 .
(Tk:0kJo<k<n €A / 1

As before, we call v, the value function for the impulse control problem above. An
impulse control strategy with at most n interventions such that the infimum is attained
will be called optimal for problem (12). Further, for S = (7, 0n)o<k<n € A let us write

Tn

J5(2) = By / e F(X5)ds + 3 1 conye ™ C(61).

0 k=1
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This time, the stopping times of an optimal strategy do not have to be strictly increasing.
Indeed, it might be optimal to intervene immediately for n times, pay the fixed costs nK
and back out. More generally whenever two optimal intervention times before the last
intervention time 7, coincide, then from this time onwards all intervention times are equal
to 7, and the corresponding control actions are equal to zero. In other words whenever we
intervene repeatedly at the same time, we are intending to quit the game by sufficiently
often paying the fixed costs K.

Lemma 1.31 (Backing out). Let n € N be fizred and assume that there exists an optimal
strategqy S = (7j,0;)o<j<n for problem (12). Then for almost all w € S there exists some
0<i:<nsuchthaty<---<7T,=- =T,

Proof. Let n € N, assume that S = (75, 0;)o<;j<n is optimal for (12) and set
k=inf{j e N:7; =711 <7,}.

We have to show that P(N) = 0, where N = {x < co}. Let us define a new strategy S;
by setting

Sl - ((TOa 60)7 ey (TH—17 65—1); (Tfm 5/6 _l_ 5/€+1)7 (Tn—i-l; O)? (TI€+27 5.‘64—2)7 ceey (Tn7 571))

on N and S; =S on N¢ In words, if K < oo we modify S such that at time 7, we control
by 6. + d.41 and then by 0 instead of first controlling by ¢, and then by d,.,,. Note that
S is an impulse control strategy. Due to the subadditivity of the function ¢ we have

C(0k + 0y1) + K < C(6x) + C(0k41)

and therefore

T (z) < J5(x) = v(x).

Let us now modify S; on {k < 0o} by shifting the jump of size zero to the last intervention
time 7,, i.e set

SQ = ((7'0, (50), “eey (Tﬁ_h (55_1), (Tm (SH + 5/4—&—1)7 (T,.H_Q, (5,.;4.2), ceey (Tn, 571)7 (7'7“ 0))

on N and set Sy = S; = S on N° Again, note that Sy is an impulse control strategy.
Suppose that P(N) > 0. Then due to the discounting with o > 0 we have

J%2 () < J%(2)
which is a contradiction to S being optimal. Thus we have P(N) = 0. O

Note that the sequence (0,(7))neny is monotonously increasing. Furthermore, we have
Un(2) < wv(x) and as already mentioned v,, < nk, each n € N.

For n > 1, the variational inequalities for problem (12) (and their derivation) are the same
as in case of problem (8). However, here we do not start the iteration with the costs of the
nonintervention strategy but with 09 = 0.
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Definition 1.32. Let 1 < n € N. A function 0} : R — R{ is called a solution of the

variational inequalities (for short: viy,) for the impulse control problem (12), if we have
vy >0y 4 and

o Loy +f>0
o vp < Mvh_
o (8 — Mo;_) Loy + f) = 0
where 0%_, is a solution of vi,_; and vy = 0 (for short: v solves ’l;’io).
Again, the following definition gives rise to an optimal impulse control strategy.

Definition 1.33. Let n € N, let (Tén), (5(()n)) = (0,0) and for 0 < k <n let 0} be a solution
of the variational inequalities vi,. For 1 < k < n set

SM = (s, 65y, (M, 6))

(n) (n)
) =it > 7 ol (X)) = Mol (X))
Sl(cri)l .r _(n)
5 — (’D”ka(Xr,g”) ) ifT T < oo
=
0 if T,En) = 00.

We then call S,, = (T,E"), 5,2”))09@ a vi,-control.
Having settled the definition of vi-controls let us now verify their optimality.

Theorem 1.34 (Verification theorem). Let n € N and assume that for 1 < k < n there
exist solutions 0F € C? of the variational inequalities viy for the impulse control problem

(12) such that

T
Em(/ lem 0,05 (X ) o (X)) Pds) <00 VT >0 (13)
0
lim inf £, (=" 0 (X7)) = 0 (14)

for all S = (14, 0 )o<k<n € A. Then, the vi,-control to ¥’ is optimal and 0, (x) = 0% (x).

As opposed to the proof of Theorem 1.27, here we do not need the strong Markov property,
since as there are no running costs beyond the last intervention time, we do not have to deal
with the tails of our controlled processes. For n = 0 the assertion now follows immediately
from the definition of ¢0j. Though having established the lemma above, in the proof of
this theorem for the case where n > 1 we will not use the subadditivity of c¢. With regard
to this the following proof will be more general, yet also more technical, than the ones of
Theorem 1.27 and Theorem 1.14 respectively.
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Proof. For n = 0 there is nothing to prove. Let n > 1 and let S = (7%, 0k Jo<k<n € A. Set
mg =0, m; = 1 and for ¢ > 2 define m; : 2 — N by

m; =inf{jeN:7; >, tAn+1

Note that m; is mei l—measurable and 7,,,, is a (F})¢>o-stopping time. Furthermore, define
a F-measurable function [ : Q@ — N by

l=inf{k e N:7,, =7,}.
Finally, for 7' > 0 and k € N set

T = Ty, N7
Let 0 < k <1 —1 and note that by definition of m we have 0 = 7,,,,) < 7ppp, < -+ < Tppp,, <
Tmy,, Whenever 7, is finite. The remaining part of the proof is analogous to the one of
A (w) n=10  §

= Tk, M Jozk<1o .4 w = 1 fxed

' i
§ ‘LMW;J 4\W d
ol (| X £
\JVV]WM\ | =4 \ drfw) 0= (Sgl_-_.,_l =gl
Wﬁ%‘n” f M Al [mﬂml
Aifw) \\ Bl J JqL H/\‘Lk‘w
. \ M Ael i) W
a W el Ll
Vi i I
i ,g\ N | \ i |
HJ,' \\P‘ | M W
‘\ Jw ‘”J\‘('H
Y
UJ) M
t } >
l=miw)=7i{w) =mlw) Talw) =Tilw) Telw) Telw) =Trlwl =mlw miwl =molw) X =Tiwl=Telel =
mglw) =0 mylw) =1 malw) =3 malw) =5 mylw =6 mgiw =19 nt 1 =mglw)=ms(w) =
l{w)=5

Figure 6: Some notation.

Theorem 1.27. Applying Itd’s formula to the cadlag semimartingale X yields
—QTm ~x S — QT &% S
e k+lvn—(mk+1—1)(X'ka+1) —€ kvn—(mk_;,_l—l)(Xf'mk)
Y. e ) (X)

~x S
n—(mg+1—1 - Un—(karl—l) (Xs—))
Py <5<y 41

Tmp 1 Ty
= / e_asax?};kl—(mk_'.l—l) (Xf—)J(Xf—)st + e_asL@:L—(mk+1—1) (XSS—)dS
Tmy, Ty,
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Let us rewrite the equation above by replacing the sum of the jumps of f);‘;f(mkﬂfl) (X9).

Taking into account that 7 might be equal to zero, for £ = 0 this yields
e M (X2) = 0p(XgL) = Lineme (U (X7) — 0n(X5 1))

T1 T1

— / e~ 0,05 (X5 Vo (X5 )dB, + / e Lo (X2 )ds.
0 0
whereas for £ > 1 we have

S ) _ e—oﬁ-mk o (XS )

—oﬁmk+1 A~k £ £
€ Un—(mk+1—l) (Xka+1 n—(mpp1 =)\,

—QTm ok S s
- 1{ka+1 <rie k1 (,Unf(karlfl) (Xka+1) - Unf(m;wrlfl) (X‘rkarlf))

Tmyy g Tmpqq
= / €00 1) (X2 ) (X7 )dB, + / € L0}y, 1y (XD )ds.
Tmy, Tmy,

Since @j’f is a solution of the 1;2']- for each 1 < j < n we have

_Lﬁ:;*(mlwrl*l) <f

as well as
% S ok S
Unf(mk+171) (XkaJrl*) < Unf(kargfl) (Xka+1, + 5mk+1 ..ot 6mk+2*1)

+ C<5mk+1) +.+ C(6Wk+2—1)
5 ) + C(5Wk+1) +.oo+ O<5mk+2_1>

n—(mk+2—1) (Xka+1

%

whenever 7, is finite. Accordingly for k = 0 we have

O (X5L) — e M on(X3)

Ty 71

< / e f(X5)ds — / e 0,05(X5 Vo (X5 )dB,
0 0
+ Lin<rpe (0 (y—1)(X5) = 05(X2) + C(61) + ... + C(0my-1))
and for k& > 1 obtain
e_a%mk @:L—(mk+1—1) (Xfmk) - e_a%mk+1 @;kz—(mk+1—1) (Xfmk+l )
7A—7nlc+1 f-mk+1
< [ emeas [ om0, (X )0(XS B,
Py Py
—aTm ~ % S Ak S
+ 1{ka+1 ST}@ ket (Un—(mk+2—1) (Xka+1 ) - U?’L—(mk+1—1) (Xka+1)

+ C((Smk+1) +...+ C(akarg—l))‘
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A distinction of the cases where 7, is less or greater than T', respectively, on the left hand
sides of the inequalities above yields

05 (X5-) = Lirerye “0R(XE) — Limsrpe 05 (X7)

< / e f(X5)ds — / e 0,05(X5 Vo (X5 )dB,
0 0

+ 1 <rye o™ (@:2_<m2_1)(X51 ) — (X2 )+C(61) + ...+ C(6my1))

and in case where k£ > 1 we have

aTm S . —QTm ~ S
]'{kaST}e kvn—(karl 1) (Xka) 1{ka+1 ST}@ kel Un—(mk+1—1) (Xka+1)

—aT % S
- ]‘{ka ST<ka+1}e vn—(mk+1—1) (XT)

Tmp 1 M1
< / e F(X5)ds — / e 0,0 o1y (XS )o(XS )dB,
fmk f'mk

—QTm A~k S S
+ 1{ka+1 <T}€ k“ (Un*(mk+2*1) (XkaH) 7 Un—(msa-1) (Xka+1)

+ C((Smk-u) +.ooF C(émk+2—1))'

Adding up these inequalities over 0 < k <[ — 1 yields

1—

—_

@;:(Xﬁg—) - 1{‘rmk§T<ka+1}e_aT@:—(mkH—l)(Xg)
k=0
Tn - mk+1
< [eeresas Z [ €00 s (X )05 B
0 N Amk
-1
+) Vg <1y 48 (C Oy y) + - 4 COmypn 1))
k=0
equivalently we have
n—1
@;(Xés—)_ 1{Tk§T<Tk+1}e aTA* (XT)
k=0
n _1 TR n
< [ Z [ ot (X)X B+ 3 1 e TG
2 k=0 : k=1

Tk

Next, by assumption (13) and optional stopping we have
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n—1

0n(@) = Bo(Y Ynosranye 05 _p(X7)) (15)
k=0

< B / e f(X5)ds + Y Lperye "™ O(8))-
0 k=1

By assumption (14) and the monotonicity of (¢7); we have

liminf B, (1 <ren,ye 058 1 (X7)) < hmlnfE (e™T5r(X2)) =0

T—o0

each 0 < k < n — 1. Thus, by monotone convergence we obtain

Tn

ia(0) < Bl [ 0 FEds + 37 1 cope )

0 k=1

Hence we have

05 () < On ().

Eventually consider the vi,-strategy S, = ( ,5 n) 5,2 ))nggn. Then equality holds in (15),

thus we have

ok —as —oa'r(n> n -
vn(x):Ex(/ X5 ds+Zl g CEM)) = 8, (2)
0

and therefore S, is optimal. ]

As an immediate consequence of the proof of the theorem above we get the following variant
of the Bellman principle.

Corollary 1.35 (Bellman principle). Let n € N and assume that the value functions vy are
C? solutions of the variational inequalities ﬁzk foralll <k <mn. Let S, = (T]gn), 5l(€n))0§k§n
be the vi,,-control to v,,. Fixt > 0 and assume that

t
X / =90, 0 (X, ) (X,) Pds) < o
0

each 1 < k < n, where X denotes the corresponding controlled process. Then we have

7'7(1”) Nt

~ —Qas (n) n
Un(:C)ZEx(/ FX ds+Zl e ()

0

n—1
—at ~
k=0
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Proof. Under the assumptions above equality holds in (15). O
Regarding convergence of (0, ),en towards v, we state the following lemma.

Lemma 1.36 (Convergence from below). Let 1 < n € N and suppose that the noninter-
vention cost vy 1s bounded. Then we have

[
o= Bl sy < 2.

Proof. Let € > 0, let € R* and let S, = (7, 0k Jo<k<n € A such that J5 () — 0, () < e.
Then, by Corollary 1.26 we have

0 < v(x) — tp(z) < v(x) — J(2) + ¢

o0

< I (z) = S (@) + e = B / e=05 F(X50)ds) + &

Thus, since
nKEy (1, <oy ™) < B () Lin<oope “™C(01))
k=1
< I (@) < On() +& < wp(x) + ¢
we obtain ol 2
0 < v(x) —d,(z) < ;szp + (HU;;L'{SUP + 1)e.
Letting ¢ tend to zero, the desired conclusion follows. [

As a consequence of this lemma, given the assumption of Theorem 1.34 and the bounded-
ness of the nonintervention cost vy, we have

A ol
R

where S, denotes the vi,-control. Thus, as before, we are able to construct s-optimal
impulse control strategies. Further, as an immediate consequence of Lemma 1.29 and
Lemma 1.36 we get

Corollary 1.37. Let 1 <n € N and assume that vy 1s bounded. Then we have

||Un—'l}n||sup < || 0||sup
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Note that in general, without any explicit assumption on vy, since v, < v < v,, we have
the following remark.

Remark 1.38. Let v € R? and let ¢ > 0. If there exists some n € N such that v,(z) —
Un(z) < € then vy(z) —v(z) < € and v(x) — 0,(x) < e. Thus, given the assumptions of
the verification theorems for v, and 0y, and if n is such that v} (z) — 0} (z) < €, then the
Vi -control and the vi,-control are both e-optimal for the impulse control problem (1).

Given the existence of optimal strategies, we may reformulate the previous lemma in the
following way.

Lemma 1.39 (Convergence from below). Let 1 < n € N and let k be a compact subset
of RY. Suppose that for each x € k there exists an optimal strateqy S, = (Tk, Ok )o<k<n
corresponding to problem (12) such that X2» € k. Then we have

A o] 2
0= Ballaupiny < = 2

Proof. Let 1 < n € N and let x € k. By assumption, there exists an optimal strategy
Sn = (Tk, Ok Jo<k<n for (12) such that Xi” € k. By Corollary 1.26 we have

0 < v(z) — bp(x) = v(z) — J¥(x) < J¥(2) — J5(x)

= Ez(/ e~ f(XIM)ds) = Eo(1ir, <oope” " 00(X77)).

Tn

Thus, since

nKEy(1{r, <oy ™) < Eo()  Lncooye *™C () < J5 () = 0 (2) < vo(z)
k=1
we obtain ,
||U0||sup(,.@)

0 <wv(z)—10,(z) < e
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1.2 The one-dimensional stochastic impulse control problem

In this section, we apply the convergence result, Lemma 1.30, in order to derive the solution
to the impulse control problem (1) for convex running costs and a one-dimensional diffusion
process with constant coefficients. That is, we assume that m = d = 1 and the infinitesimal
drift b and the infinitesimal variance o are constant with ¢ # 0. The running costs
f: R — R{ are supposed to be convex and such that condition (10) is satisfied. Further,
we assume that the controlling costs consist of fixed and proportional costs C' : R — [K, 00),
C(y) = K + k|y|, where k € R}. Then, the value functions corresponding to (1) with the
restriction that at most n € N interventions are allowed are given by

o0

o(@) = inf B / e F(XS)ds + 3 T pmamye (K + KI6]),  (16)
k=1

S=(Tk,0k)o<k<n €A
0

X7 =w+bt+0B+ Y 1<
k=1

The following verification result states a sufficient condition for optimality. The inter-
vention regions will be denoted by D,, = (¢, ¢,)¢. For simplicity of notation we will set
¢y = —00 and ¢ = oo with the convention that (—oo,¢y] = [¢o,00) = 0. Further, in the
following, w!(¢,) will denote a left-sided derivative and w!(c,) will denote a right-sided
derivative, respectively.

Lemma 1.40. Let1 < N € N and let wy = vg. Suppose that there exists a sequence of func-
tions (Wn)1<n<n, Wy : R — RS with w, < w,_1 and two pairs of sequences (¢,,Cn)1<n<N
and (l_)n, bn)1§n§N+1 with

b1 <oy by ZCyy G <6, <0, <bp < <& Y1<n<N,

=n

such that for all 1 <n < N we have

() wn € C¥(en, ) and Luwn(z) + f(z) =0 Ya € [c,, &)
(ii) wy () = wp(6,) + k(z —¢,) Ya>e,
wy () = wa(c,) + ke, —z) Ya<e,

w(r) =k <= v € {byy1}U[c,,0) and wj(z)=k < =05
r)=—k <= ze{b, 1 }U(-00,c,] and wj(r)=—-k <= z=10
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(v) w!_((x) >0 Vaelb,b, and wi(z)>0 Ve {by,y,bnvi}

n—1

, —akx + f(z) > —aké, + f(é,) Va>é,
) akz + f(z) = ake, + f(c,) Vo <g,

wy(x) < wn_l(Bn) + K+ k(x — Bn) Vaoe [Z_)n, l_)nH), if b, < l_)n+1

8 (@) < W) + K+ by =) V€ (bl i buy <,

Then, w, is in C' N C*(R\ {¢,, ¢,}) and it coincides with the value function v,, that is
Un () = wy(2),

foreachxz € R and1 < n < N. Further, the optimal strategy, when at most n interventions
are allowed, is to shift X to b, if it is greater or equal than &, and to shift X to b, if it
is less or equal than c,, respectively. As long as X stays in (c,,C,) it is optimal to do
nothing.

Proof. Let 1 < n < N. By the assumptions (¢), (i7) and since w, (¢,) = k as well as
w! (c,) = —k, we have w, € C'NC*R\ {¢,, ¢,}). If w, solves the variational inequalities

n\=

corresponding to (16), then by Remark 1.17 and Theorem 1.27 it coincides with the value
function v, and the optimal strategy is given by the corresponding vi,-control.

First we show that Lw, + f > 0. By (i) we only have to show this on (¢, ¢,)°. Let x > ¢,.

Lwn(z) + f(2) € —a(w, (@) + k(z — &) + bk + f()

D (e~ ) + F(2) ~ F(E) — 50°ull(E) + bk — ) (@)

(iv) —ak(x —é,) + f(z) — f(én) — %‘72“’;{(5")'

By the assumption (iv) and (v) we have w(¢,) < 0 and therefore, by (vi) we get
Lw,(z)+ f(xz) > 0.

Now, let z < ¢,,.

Lw,(2) + f(2) 2 —a(wa(c,) + k(c, — 7)) — bk + f()

9 (e, 1) + F@) ~ e) — 5oPulle,) — bk + i c,)

W 1
& —ak(e, - ) + () - fle,) - 5owi(e,)
As before, by the assumptions (iv) and (v) we have w//(c,) < 0. Thus, by (vi) we obtain

Lwn(z) + f(x) = 0.
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Next, we show that w, < Mw,_; within five steps.
1. Let > ¢,,. We have

wy () W wn(Cn) + k(x — &) @ 1(by) + K + k(x —by,).

By assumptions (iv) and (v), w,_; is monotonously increasing on [b,, c0). Further, w,_;
is affine linear on [¢,_1,00) (recall the convention that ¢y = 0o) and therefore, we have

Muw,_1(z) = inf (w,_1(x+y)+ K — ky).

ySO/\Enfl_Jf
Since b, < A Go1, w),_4(bn) = k and w],_;(b,) > 0, a local minimum of y — w,_1(z +
y) + K — ky on (—00,0 A ¢,_; — ] is attained at y = b, — x. By assumption (iv), (v) and
(17), it is the global minimum, i.e we have

Muw, (1) = w,_1(bp) + K + k(z —b,).

Thus, for all x > ¢, we have
wy(x) = Mw,_1(x).

2. Let # < ¢,. Similar to 1. we have

wa(@) © wa(c,) + ke, — ) @ w1 (b,) + K + k(b, — ).

Since w,_1 is monotonously decreasing on (—o0, b,] and affine linear on (—oo, ¢,,_;] (with
the convention that ¢, = —o00), we may write

Muw,_1(z) = inf (w,—1(z+y)+ K + ky).

y>0ve, |—x

Since b, > x V¢, 1, w,_4(b,) = —k and w!_,(b,,) > 0, a local minimum of y — w,_1(z +
y)+ K+ kyon [0V, | —x,00)is attained at y = b, — x. By assumption (iv), (v) and

n—1
(17), it is the global minimum, i.e we have

Mw,_1(z) = w,—1(b,) + K + k(b, — z).

Thus, for all z < ¢, we have
wp () = Mw,_1(x).

3. Let b, < x < ¢,. As in case 1. we have

Muwn—y(2) = inf(wnr(z +y) + K — ky) = Wo-1(bp) + K + k(z — by,).

Further, by (iv) ) we have w/ (z) > k for all z € (b,41,¢,) and therefore, since

v) and (v
wn(€n) = wy_1(bp) + K + k(é, — b,) we have
wn(2) < wu_1(by) + K + k(2 —b,) V2 € [by1,Cn).
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Thus, if b, > b1, then € [b,,1,¢,) and we have w,(z) < Mw,_1(x). If b, < b,11, then
by assumption (vii) we have

Wy (2) < wp_1(by) + K + k(2 —b,) V2 € [by, Cy)
which implies that w,(x) < Mw,_1(z). Thus, for all b, < 2 < ¢, we obtain
wy(x) < Mw,_1(x).
4. Let ¢, < x <b,. This case is similar to 3.

Muw,_(z) = inf(w,_1(z +y) + K + ky) = w,—1(b,) + K + k(b,, — z).

y=>0
Since w!,(z) < —k for all z € (¢,,b,,.,) and w,(c,) = w,_1(b,) + K + k(b,, — ¢,,) we have
n n’ =n+ n n n n
Wn(2) < Wwn-1(by) + K + kb, — 2) Yz € (¢, byaa]-

Thus, if b, ., > b, we get wy,(v) < Mwy_1(x). If b, < b,, then by assumption (vii) we
have
W (2) < wy—1(b,) + K+ k(b, —2) Vz € (¢, b,]-

=n’ Zn

and consequently w,(z) < Mw,_1(x). Thus, for all ¢, <z < b, we obtain
wy(z) < Mw,—1(x).

5. Let b, < < b,. By assumption (v), wy,_1 is strictly convex on [b,, b,]. Further, we

have w;,_,(b,) = —k and w;,_,(b,) = k. Thus, there exists a unique minimizer of w,_, on

[b,,, bn], which we denote by x¢. By definition of xy, we have

Muw,_1(z) = inf(w,—1(x +y) + K —ky), if z>xg

y<0
Muw,_1(z) = }Jr;%(wn_l(x +y)+ K +ky), if z<ux.

Due to assumption (iv), these infima are attained at y = 0, i.e. Mw, 1(z) = wp1(z) + K.
Thus, since w,, < w,_1, for all b, < x < b, we obtain

wy(x) < Mw,_1(x).
Finally, (w,, — Mw,_1)(Lw, + f) = 0 follows immediately from 1. and assumption (i). O
Note that if there exists a solution to (i) — (vii) then it is unique, since it coincides with the

value function. The following remark states a sufficient condition for (vi) and an explicit
representation of vg in case of quadratic running costs.
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bn_ — ].i £ i bn_

©u,_1(T) = 0 ith, <z <b,
b, —x itz <bh,

Figure 7: Argmin ¢, , of Mwv,_;.

Remark 1.41. In case of quadratic running costs, a sufficient condition for (vi) is given

by
< ak PR ak
C —_— an C —_—.
=N=T N="9

Further, in this case, the nonintervention costs are given by

! 1 1 2h?
vo(z) = E(/ e f(r+bs+ oBy)ds) = — (:c2 + — <2xb +o?+ —)) .
a a a

0
In view of Lemma 1.40 and Lemma 1.30, it remains to find the solution to the conditions
(1) — (vii). We will construct the solution to the conditions (i), (¢i7) and (iv) on the inter-
vals [¢,, G,]. The extension to R is then given by (i7). Finally, we will have to verify the
remaining assumptions (v) — (vii).

The following proposition states the solution to the differential equation in condition (7).
Proposition 1.42. The general solution to the linear second order ordinary differential
equation
2b 2 2
u//(x) + _u/ Q —

s given by

_ Az Aoz Ao (x—t A (x—t
u(z) = pe™® 4+ ve™?® 4+ m/(e (@=t) _ gl ))f(t)dt



where p, v, c € R and

b 1 /b
Aipg=—— -/ 5 +2a
o oV o

Proof. The solution to the homogeneous equation
2b 2c0
u// (:E) + _ul
is given by
un(z) = peM® v,

where 1, v € R and A2 as in the assertion. By means of the method of variation of
constants, a particular solution to the inhomogeneous differential equation is given by

2 / flyeMt .2 / fyet .
wie) = 2 [ et - 2 | Segy e

where ¢ € R and the Wronskian determinant W is given by W (t) = (Ay — Ap)eM1A2)t,
Note that since o > 0 we have A\; > 0, Ay < 0 and therefore W < 0. Thus, the general
solution to the inhomogeneous differential equation is given by

u(x) = up(x) + upy(z).

Let 1 <n < N € N. By the proposition above, the general solution to (i) is given by

Wy () = pne™® + v,e’" 4

m /(6)\2(38—75) _ eh(m_t))f(t)dt, (17)

where f1,,, v, € R and A5 as in the assertion of the proposition above. Note that wy is
given by the nonintervention costs

oo
wo(x) = E(/ e~ f(x + bs + 0By)ds).
0
Next, given w,_;, we will determine p,,, vy, ¢,,, Cn, b,, and b, such that the conditions (iii)
and (iv) are satisfied. We will tacitly assume that there exist solutions to the equations

(18) and (21) — (22). Later on, we will provide some examples where these equations are
solved numerically.
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First, we choose b, and b, such that we have

w, (b)) =—k and w, ,(b,) =k. (18)

n—1

Next, we determine p,, and v, as functions of ¢,. The equation (17) together with the
condition

Wy (€n) = Wn_1(by) + K + k(&, — by)
implies that

M 4 1,2 = w1 (by) + K + k(€ — by).
Further, the condition w!,(¢,) = k implies that

k — v, et2tn
Pn = A\jericn

The previous two equations yield v, as a function of ¢,

YD

VUn

[wn_l(l_)n) + K + k(¢, — by) — )\ﬁl} e~ 2en (19)

and accordingly, we also obtain p,, in dependance of ¢,

k A2 - - k.l _az
n=|—— n—1(bn) + K + k(¢, — b,) — — Len 20
o= [ = 52 0 ) + K ke =) — )| (20)
Next, we will determine ¢,, and ¢,. The condition w/,(¢c,) = —k together with (17) implies
2 i
A1 €10 + Ao et2en —/ Aoe2Cnt) _ N M) F(t)dt = —k. (21
1R €™ =" + Aglp€ +02()\2—/\1) (Aze 1€ )f(t) (21)

Cn

Further, by (17) and

we have

2 T’
:une)\lgn + Vne)‘an + 0’2(>\2 - >\1) /<€/\2(Cnt) - e)\l(gnit))f(t)dt = wnfl(bn) + K + k(l_)n - Qn)

(22)
Using (19) and (20) in the equations (21) and (22), we obtain two equations for ¢, and é,.

Finally, having determined ¢, and ¢,, we get u,, and v, by (19) and (20). The function w,,
is then given by (17).
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As a particular example, we consider a situation where the running costs are quadratic, i.e.
f(x) = 2?. Further, we assume that the infinitesimal drift and the infinitesimal variance of
the uncontrolled process are given by b = 0 = 1 and that K =2, k= 0.5 and a = 0.3. It is
sufficient to choose N = 10 as for greater values of n, the optimal strategies and the value
functions are virtually identical. First, we determine a sequence of functions (wy)o<n<io
and two pairs of sequences (c,,, &,)1<n<10 and (b,,, b, )1<n<11 as described above. Then, for
each 1 < n < 10, we extend the function w, to the whole real line, according to (ii). Thus,
the conditions (i) — (i7i) as well as the “<” implication in condition (iv) are satisfied.
Condition (vi) can easily be verified by applying Remark 1.41. Figure 9 depicts the first
derivative of the function w, for 1 < n < 9, as well as the condition w, < Mw,_; for
1 <n < 10. It indicates that the remaining assumptions of Lemma 1.40 hold true. Hence
the function w,, coincides with the value function v,, for each 0 < n < 10, which in turn
approximate the value function v of problem (1) uniformly on compact sets. The value
functions as well as the corresponding optimal strategies are depicted in Figure 8. Note
that the sequence (b,,), is increasing, which is due to the drift b = 1. It can be seen that the
distances ¢, — b,, and b, —c, become smaller as n gets greater. This is due to the fact that if
the controller is allowed to intervene more often, then his interventions will become smaller
in order to pay less proportional costs. As prescribed in the assumptions of Lemma 1.40
the sequence (¢,), is decreasing and the sequence (c, ), is increasing, respectively. This
reflects that a controller who is allowed to intervene more often, will intervene earlier in
order to pay less running costs. Further, Figure 8 suggests that the convergence of the
value functions and the optimal strategies is very fast. Indeed, as mentioned above, it is
sufficient to choose N = 10.

Figure 10 depicts the value functions and the optimal strategies for f(x) = z* and b = 0.
The remaining parameters are chosen as in the previous example. Since the running
costs are symmetric and the infinitesimal drift b vanishes, the value functions v,, are also
symmetric and we have ¢, = —¢, as well as b, = —b,,.
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A (@?2-(517) ) 1<n<<10

Figure 8: Value functions v,, and the corresponding optimal strategies.
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Figure 9: First derivatives of the value functions v, and the conditions v, < Mwv,,_.
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Figure 10: Value functions v, and the corresponding optimal strategies.
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Next, we consider a situation as in the first example, however, this time we assume that
there are no proportional costs. Thatisweset k=0, K =2, b=0=1, f(z) = 2% a=0.3
and N = 10. Figure 11 depicts the value functions v, as well as the value functions 2,
corresponding to problem (12). The latter can be determined similar to the value func-
tions v,. Figure 12 depicts the optimal strategies. On top we have the optimal strategies
corresponding to the value functions v,, whereas the optimal strategies corresponding to
0, are illustrated below. As there are no proportional costs, in both cases we have b, = b,
except for the optimal control corresponding to the value function ©;. In this case we have
¢ = b, and ¢, = b, as upon intervention, the controller backs out of the game and thus
chooses the cheapest control action, which consists in shifting the underlying process by 0.
Further, the values of ¢, and b, corresponding to v, are smaller than those corresponding
to the first example where k& = 0.5. This is because a controller who, in addition, has to
pay proportional costs upon each intervention, has to pay strictly more for each non trivial
intervention. Thus he intervenes later and also by a smaller amount, than a controller who
only has to pay fixed costs.

Figure 13 depicts the optimal strategies for b = 0. The remaining parameters are chosen
as in the previous example. Here, except for 07, the optimal intervention is to shift the
paths to the origin, which is the minimum of the running cost function.

A

20

(vn(x)) 2<n<10

12

10}

al

© \/—

4%
e— "

2} (0p () )2§n§ 10

Figure 11: Value functions v,, and v,.

51



Figure 12: Optimal strategies.
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Figure 13: Optimal strategies.
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1.3 A multi-dimensional example

In this section, we study a particular multi-dimensional example and apply the impulse
control techniques introduced in Section 1.1. We assume that the uncontrolled process is
a d-dimensional Brownian motion B with d > 2, i.e. m = d > 2, the infinitesimal drift b
vanishes, and the infinitesimal variance o is given by the identity matrix E¢. Further, we
assume that the controlling costs consist of fixed and proportional costs C': R? — [K, 00),
C(y) = K+k|y|, where k € R{. In addition, we assume that the running costs f : R? — R
are given by f(y) = g(|y|), where g : Ry — R{ is a continuous nondecreasing function. As
before, |.| denotes the Euclidean norm. The value function v is given by
(e}

o(@)=  inf .EA/Q-“guxﬂﬁu+-§jlh<wﬁrMWA¢+m&D» (23)

S=(74,05)
(T] J)JENEA J =1

where

o0
Xf =x+ Bt + Z 1{Tj§t}5j-
j=1
Since the running costs and the controlling costs only depend on the Euclidean norm of the
controlled process and since the uncontrolled process is a Brownian motion, we conjecture
that v is rotationally symmetric. An application of Itd’s formula to the d-dimensional
Bessel process |x + B| yields

t
2 +B d—1
(z) -
v+ By = |x|+z/ . +/2,x+35|d87
0

where the first term on the right-hand side is a one-dimensional Brownian motion W by
Lévy’s theorem. We introduce the following one-dimensional impulse control problem.

v(r) = inf ET(/ e’asg(xf)ds + g Lz <ore” “7 (K + k!§j|)), (24)
S:(Tj76j)j€NEA j=1
, -

where
t

d—1 .
5
X :T+Wt+/ 2XS d8+21{7j§t}(5]‘

0 y j=1
and 9; is such that x2. > 0 for each j € N. Let @ : Ry — Ry be a continuous function. The
infinitesimal generator and the minimum operator corresponding to this one-dimensional
problem are given by

1

Aw(r) = —am(r) + 5 (d; Lo + w”(r))

pew(r) = inf (w(r +1) + K + k1],

>—r

where the derivatives have to exist in some reasonable sense.
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Proposition 1.43. Let @ be a solution to the quasi-variational inequalities corresponding
to (24) given above and set

w:RY =Ry, w() =wo(|z]).

Then w solves the quasi-variational inequalities corresponding to the original problem (23)

on R4\ {0}.
We show that Lw(x) = Aw(|z|) as well as Mw(z) = pw(|z|), for each z € R\ {0}.

Proof. Let @ be a solution to the quasi-variational inequalities corresponding to (24). For
r € R1\ {0} and 1 <i < d we have

1" IB? p 1 x?
aﬁtivxiw(l) =w <|$|)W +w™ (|:)3|) <— — W)

and therefore

— —aw(ol) + 5 (T el) + 5" (1a) ) = Ao,

]

which implies that
Lw(z) + f(z) = Aw(|z]) + g(|z[) = 0.

Further, we have
w(w) = wa]) < peo(fal) = inf (@ (jo] +1) + K + ki)
— inf ((la +yl) + K + ky)) = inf (w(z+ )+ K+ Kly)
= Muw(x).
By the above
(w(z) — Mw(x))(Lw(z) + f(x)) = (@(|z]) — pe(|z]))(Aw(|2]) + g(|2]) = 0.
and the assertion follows. [
As a sufficient condition for optimality, we give the following verification result.

Lemma 1.44. If there exists a nondecreasing function w : Ry — RY and a pair (by, 7o)
with 0 < by < 1o such that we have

(i) @ € C*((0,70]) and Aw(r) + g(r) =0 for all v € (0, 7]

(i1) w(r) =w(rg) + k(r —ro) for all r > 1o
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(111) ww(rg) = w(by) + K + k(ro — bo)
(v) @'(r) =k <= r € {by} Ulrg,o0) and @'(0) =0
(v) @"(by) >0

(d— 1)k

(vi) —akr + +g(r) > —akrg + ) + g(ro) for all > rg

then w is in C' N C*RY\ {ro}) and the value functions (23) and (24) are given by
v(@) = v(|z]) = = (|z]),

for each v € R4\ {0}. Further, the optimal strategy for problem (24) is to shift x to by if
it 18 greater or equal than rq, and to do nothing as long as x s less than ro. The optimal
strategy for (23) is to do nothing a long as |X| < ro. If |X| = ro, one has to shift X
towards i—OX, which is the nearest point (w.r.t. the Fuclidean norm) of the circle centered
at zero with radius bg.

Proof. By the assumptions (i), (i7) and since @’(rg) = k we have @ € C'NC?*(R*\ {ro}).
If w solves the quasi-variational inequalities corresponding to (24), then by Remark 1.17
it coincides with the value function v and the qvi-control is optimal. Further, by Proposi-
tion 1.43 the function w(| - |) solves the quasi-variational inequalities for problem (23) and
therefore, since d > 2 by Remark 1.20 it coincides with the value function v. Again, the
optimal strategy is given by the corresponding qvi-control. Thus, we only have to show
that w is a solution to the quasi-variational inequalities corresponding to (24).

First, we show that Aw + g > 0. By construction of @w we only have to show this for
r > ro. Therefore, let r > rg.

Aao(r) + g(r) E —al(w(re) + k(r — o)) + W +g(r)
9 ke —ro) + L gy (d; Lo/ (ro) + w"(m) ~g(ro)

2 —abtr )+ P (L 1) ) —olom) — 5"

By the assumptions (iv) and (v) we have w”(ry) < 0 and thus, by (vi) we have
Aw(r) +g(r) = 0.
Next, we show that @w < Mw in three steps. Note that since w is nondecreasing, we have

pw(r) = inf (w(r —1) + K + k).
1€[0,r]
1. Let r > rg. We have
w(r) & @(ro) + k(r = 10) = @(bo) + K + k(r — bo).
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Due to the affine linear form of @ on [rg, 00), we have

pww(r)= inf (w(r—1)+ K+ kl).

le[r—ro,r]

Since by € [0,7¢], @’(by) = k and w”(by) > 0, a local minimum of | +— w(r —1)+ K + kl on
[r — 19, 7] is attained at | = r — by. By assumption (iv) and (v), it is the global minimum,
i.e we have

pw(r) = w(by) + K + k(r — by).
Thus, for all r > rq we have
w(r) = pw(r).
2. Let by < r < rg. As in the previous case, by (iv) and (v) we have

pe(r) = w(bo) + K + k(r — bo).

Further, by (iv) and (v) we have w'(l) > k for all [ € (r,ry) and therefore, since w(ry) =
w(by) + K + k(ro — bo) it follows that

w(r) < w(by) + K+ k(r —b).

3. Let 0 < r < by. By assumption (iv), the minimum of the function | — w(r —1)+ K + ki
on [0,7] is attained at the boundary. By (iv) and (v) we have @w'(l) < k for all [ € [0,r].
Thus we have w(r) + K < @w(0) + K + kr and therefore

powo(r) =w(r)+ K > w(r).
Finally, (w — uw)(Lw + g) = 0 on R* follows immediately from 1. and (i). O

The following remark states a sufficient condition for (vi) in case of quadratic running
costs.

Remark 1.45. If k = 0 then (vi) is satisfied since g is nondecreasing. For general k and

g(r) = r* we have

(d— 1k
2r

(d— 1)k

—akr + o
0

+ g(r) = —akrg + +9(ro) <= re{ror,r}

where

rio = (ak — 1) —\/Sk; — D)o + (2akrg — 2r3)2.

Further, we have lim —akr + (d 1)"“'

r—00

15 given by rg > 11V ryg =ry.

+1? = oo and therefore, a sufficient condition for (vi)

Regarding existence of a function w satisfying (7), (i44) and (iv), we state the following
lemma (e.g. see H. Heuser [12, Satz 21.3]).
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Figure 14: Optimal strategy for v with d = 2 and g(r) = r2.

Lemma 1.46. Let 1y, by and wy, in R{. There exists a unique solution @ : (0,79] — R
of the constraint ordinary differential equation

Ao+g=0, w(rg) = +K+k(rg—10), @ (ro)=Ek.

It is given by

w(r) =wp, + K+ k(r —by) + /(s — )V (s)ds,

r

where V€ C((0,1¢]) is the solution of the Volterra integral equation

with h(r) = —2g(r) — 25 1 o0y, + K + k(r — by)) and k(r, s) = —=1_2a(s—1).

r
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An explicit representation of V is given by

V(r) = h(r) — / > " rkk(r, s)h(s)ds,

where k1 = K and kg(r,s) = — [ K1(r,w)kp—1(u, s)du for k > 2.

Now, for a numerical analysis of the value function, the remaining task is to construct
the solution w as in the lemma above and to choose wy,, 79 and by such that @’(0) = 0,
w'(by) = k and w(by) = wy,, i.e we have to solve three fixed point problems. Afterwards,
we expand w such that w(r) = w(rg) + k(r — rg) for all r > ry. Finally, we have to check
the conditions (v), (vi) and with regards to (iv), we must check whether @’(s) # k for all
s € (0,79) \ {bo}. If w is also nondecreasing, then by Lemma 1.44 it coincides with the
value function v and the optimal strategy is characterized by (by, 79).

In order to illustrate the form and the slope of the value function v, we plot them in Figure
15 for the choice of d = 2, g(r) = r*, a = 0.3, K = 2 and k = 0.2. The dependance of
ro and by on proportional and fixed costs is illustrated in Figure 16. If the proportional
or fixed costs increase, then the optimal intervention radius ro becomes greater. Further,
a rise in the proportional costs also leads to a greater optimal target radius by, since the
optimal intervention ry — by becomes smaller and ry becomes greater. On the other hand, a
rise in the fixed costs yields a smaller value for by, since it becomes better to intervene less
often, although one has to pay some additional proportional costs. For k = 0, the optimal
strategy is to shift y to the point with smallest possible running costs and therefore by, = 0.

Figure 17 depicts the value function v in dependance of proportional and fixed costs, re-
spectively. The optimal strategies are illustrated by vertical lines, corresponding to rq and
by. Clearly, if the controlling costs increase, then also the corresponding value functions
increase.

Eventually, Figure 18 depicts the value function v and its first derivative v/ for several
running cost functions g. Note that the optimal intervention radius rg corresponding to
the running cost function g(r) = €” is between those corresponding to the running cost
functions g(r) = r? and g(r) = r?. This is reasonable, since on this interval we have
r? < e" < r*. Here, the optimal target radii by are almost the same, since the proportional
costs are very small in comparison to the running costs.
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Figure 15: Value function v.
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Figure 16: Optimal strategy in dependance of proportional and fixed costs.
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Figure 17: Value function in dependance of proportional and fixed costs.
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Figure 18: Value function in dependance of running costs.
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1.4 Self-financing stochastic impulse control

In this section, we consider the impulse control problem (1) where the controller minimizes
the expected discounted running costs of a diffusion process X. However, this time, we
additionally assume that the controller is allowed to invest his initial capital into a market
consisting of two assets. The first one being riskfree and paying a constant interest r > 0
(“bond”), the second one being risky (“stock”) with drift 5 > r and volatility £ > 0.
Controlling costs upon shifting the paths of the process X have to be paid out of the bond
holdings. Further, whenever the controller changes his portfolio by selling or buying shares
of the stock, he also faces costs including a positive fixed cost component. For sake of
simplicity we assume that X is one-dimensional and that the fixed cost component does
not depend on whether the investor controls the process X or whether he rebalances his
portfolio. In order to exclude arbitrage strategies we assume that the wealth invested in
the bond as well as the wealth invested in the stock remain nonnegative. We assume that
B is a two-dimensional Brownian motion.

This time, the action of the controller is modeled as follows.

Definition 1.47. An impulse control strategy S = (Tn,(n, On)nen 1S a sequence such
that for alln € N

o 0=1<1<--- <7, <---  almost surely

o Ty 1 Q —[0,00] is a stopping time w.r.t (F;)i>o “intervention times”

o (2 — R is measurable w.r.t. the o-algebra of T,-past F., “transactions”

o 0 1  — R is measurable w.r.t. the o-algebra of 1,-past F., “control actions”

We interpret 7,, as the n-th time at which the controller intervenes. At each intervention,
he controls the process X by shifting its path by §,, or he changes his portfolio by investing
(,, of his money from the bond into the stock.

Remark 1.48. Let 1p,...,7, :  — [0,00] be (Fi)i>0-stopping times such that 0 = 175 <
7 < - <1, almost surely and let (, 0 : Q@ — R be F,, -measurable for all 0 < k < n.
Then we will identify the vector

((7_07 CO) 50)7 trt (Tn7 Cna 5n))

with an impulse control strategy by setting 7, = 0o, (¢ = 0 and 6, = 0 for all | > n (see
Definition 1.51).

Let P and P! denote the wealth invested in the bond and in the stock, respectively. Their
dynamics are given by
dP) = rPPdt “bond holdings”
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dP! = P}(Bdt + ¢dBY)  “stock holdings”

Each intervention causes costs, consisting of a positive fixed component K as well as costs
¢ which depend on the size of the control and the size of the stock transaction.

Definition 1.49. Let K > 0 and let ¢ : R* — R{ such that
o ¢ is continuous and c¢(0) =0
o c(y) — o0 as |y| — oo
o ¢ is subadditive

Then C : R? — [K, ), C(y) = K + c(y) is called intervention cost with fized costs K
and variable cost c.

Definition 1.50. Let S = (7, Cu, On)nen be an impulse control strategy and let
b:R—R c:R—R

be Borel measurable and locally bounded. A stochastic process (PP, P}, X;)i>o adapted to
the filtration (Fi)i>o0 is called a controlled process corresponding to the strategy S if it
solves the following stochastic differential equations

dP) =Pl dt = 1 -n(G+C(G,6;), P =po

J=1

dP! = P (Bdt + €dB) + Y 149G, P =p

J=1

dX, = b(X, )dt + o(X,)dBY + Y 198, Xo- =a
j=1
where x € R and py, p1 € Re. We refer to (po, p1, ) as the starting point of the process
(P°, P! X).

Let S = (7, Cu, On)nen be an impulse control strategy such that lim 7,, = co almost surely.

n—oo
If b and o are Lipschitz then there exists a unique cadlag, (F;):>o-adapted strong solution of
the stochastic differential equations above. From now on we always assume that b and o are
Lipschitz. As before, when there is a risk of ambiguity, we will also write (P%S, P15 X*9)
for a controlled process corresponding to a strategy S.

Definition 1.51. Let S = (7,,, Cu, 0n )nen be an impulse control strategy and let (P°, P, X)
denote the corresponding controlled process. S will be called admissible if we have

o lim 7, =00 almost surely

n—oo
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o PTOiZO, PT1 >0 for eachi € N.
The set of all admissible impulse control strategies will be denoted by A(po,p1).

Let f : R — R} be Borel measurable and let o > 0. We interpret f as the running
cost and a as a discount factor. We consider the following impulse control problem of
minimizing the expected discounted running costs of X over the set of admissible impulse
control strategies. The controller has to pay the primary costs, that is his expenses resulting
from controlling X and buying or selling shares of the stock, immediately out of the bond.
Upon minimizing the running costs of X, he has to take care that his wealth invested in
the bond and in the stock remains nonnegative. However, he does not necessarily have to
maximize P° or P!
[ee]
v(po, p1,x) = inf Ex(/ e f(X5)ds) (25)

S=(Tn:Cn+0n ) nenE€A(PO,P1)
0

The function v is called the value function corresponding to this impulse control problem.
An admissible strategy S such that the infimum is attained will be called optimal. In
particular, note that an optimal control for X will depend on the performance of the risky
asset Pl. Given the existence of an optimal strategy S, similar as in the proof of Lemma
1.31, by the subadditivity of C', we can construct an admissible strategy S = (o, Cay On ) men
such that 7, < 7,11 whenever 7,, < oo, which yields the same running costs as S. From
now on we always assume that the intervention times of an optimal strategy are strictly
increasing whenever they are finite. Note that since the components of C' are even strictly
increasing, following the strategy S yields a higher wealth in the bond.

Definition 1.52. Let C' be an intervention cost function and let u : (R7)? x R — R be
bounded from below. Then we set

M ) ) = inf - _C 76 9 + ) +6 )
u(po, p1, ) (g,g)elél(po,m)“(po (—C(¢6),p1 +( z+0)

where ©(po,p1) = {(¢.0) € R* : (+ C((,6) < po, ¢ > —p1}-

Note the difference between the definition of © and the admissibility conditions Pg > 0,
PTli > 0. However, they coincide for strategies which are such that their intervention times
are strictly increasing. Muv(po, p1,x) represents the value of the strategy that consists of
doing the best immediate control of the process X or doing the best immediate stock
investment, when starting in (pg, p1, ) and behaving optimally afterwards.

Definition 1.53. Let v* : (RF)? x R — R be twice continuously differentiable and for
(po,p1,7) € (Ry)? x R set

LU*(p(bpla l’) - - Oé’U*<p07p1, I) + apov*(po?ph x)rpo + ap1v*<p07p17 x>ﬂp1

1 * * 1 *
+ 58101710127 (pOaplv w)gzp% + axv (p07p1a :L‘)b(,ﬁlj‘) + §az,xv (p07p1a l‘)UQ(I).
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If G is the generator of the process (s, P?, P!, X,),>0 when there are no interventions,
then we have e=**Lv*(po, p1, ) = G(e~“v*)(s, po, p1, ). The quasi-variational inequalities
corresponding to (25) are the same as in Definition 1.11. Note that generalized 1t6 for-
mulas involving local time may not be applied in this setting as we are dealing with a (at
least) three-dimensional problem. The following definition introduces our best guess for
an optimal intervention strategy.

Definition 1.54. Let v* be a solution to the quasi-variational inequalities, let (1o, (o, 0p) =
0 and forn > 1 set

Snfl = ((T(b CO; 50)7 vy (Tnfh Cnflu 5n71>)
Tn — lnf{t Z Tn_l : U*(PtO,Sn—l’ Pthn_l,XtS"_l) — MU*(PtO,Sn_l’ Ptl,sn_l’ XtSn_l)}
(Cor6,) = arg MU*(P%S"—I,P};Sn—l,Xi"—l) if T, < 00
el (0,0) if T, = 00.
We then call S = (T, (o, On)nen @ qui-control.

Next, we state a sufficient condition for optimality of the qvi-control.

Theorem 1.55 (Verification theorem). Assume that there exists a solution v* € C? to the
quasi-variational inequalities for the impulse control problem (25) such that

T

Epo . / (€70 0" (P}, P15, XT)EPI)2ds) < 00 VT >0 (26)
0
T

By . / (700" (PYS, P, XF)o(X[))ds) < oo ¥ T >0 (27)
0

lim inf B,y o (e~ (Pp, Py, X7)) = 0 (28)

for all S € A(po,p1). Then we have v*(po, p1, ) < v(po,p1,x). Further, if the qui-control
to v* is an admissible impulse control strategy then it is optimal and we have v(py, p1, ) =

'U*<p0,p1, I’)

Without the admissibility assumption of nonnegative wealth, the transversality condition
(28) would not be satisfied.

Proof. Let S = (Tn, Cn, On)nen € A(po, p1) be an admissible impulse control strategy such
that we have 7, < 7,41, whenever 7, is finite and n > 1. Further, let (P°, P!, X) be
the corresponding controlled process and let 7' > 0. By Itd’s formula applied to the C1?
function (s, po, p1,z) — e “v*(po,p1,z) and the cadlag semimartingale (P°, P! X) we
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obtain

e v (P), Pp, Xr) = v (po,proa) — Y e (0" (P, P X,) — v (P), Pl X,))
0<s<T
T T
/ —ae” ** PO P1 Xs)ds+/e_asapov*(Pf,Psl,XS)TPSOds
0
T
+ / e~ 0, v* (P, P!, X,)BPds + / e=9,,v* (P, P} X, )¢Pr B
0 0
T T
+ / e~ 0,v*(P°, P!, X,)b(X,)ds + / e~ (P° P! X, )o(X,_)dB®
0 0
T T
1 1
+§/e°‘58p1,p1v*(P§),P1 OE(PH2ds + 2/ 50, 0% (PY, P} X ,)o? (X,)ds.
0 0

Thus, by the definition of L, we have

U*(pmpb f) - e_aTU*(qu, quw XT)

e 9, v*(P° , P X, )¢P! aBM

e 00" (P° P! X, )o(X,_)dB®

/
f

/ e~ Lv*(P?, P}, X,)ds

- Z 1{Ti§T}€_aTi(U*(PBp P71i7 XT ) (Pq(—)—v P-rl—’ Xﬁ'—))'
i=1
Since v* is a solution to the qvi, it holds that
—Lv* < f
as well as
v (P)_ Pl X, )< Mu (Pf_,PTl_,Xﬁ_)
<V (P)_ =G —C(Gi0:), PL_ + Gy X+ 6:)
=0t P X,
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whenever 7; < oo and ¢ > 1. The second inequality is due to the fact that since the stopping
times of S are strictly increasing and S € A(po,p1), we have ((;,0;) € O(P2_, P! _).
Consequently, the assumptions (26) and (27) yield

T
U (Po, 1, @) = Epo gy, (€T 0" (Pp, Pp, Xr)) < Eu / e f(Xs)ds). (29)
0
Finally, by monotone convergence and assumption (28) we have
v*(po, p1, ) < Ex(/ e f(Xs)ds).
0
Thus we have
v (po, p1, ) < v(po, 1, ).

Let S = (Tn, G, On)nen be the qvi-control, assume that S € A(pg, p1) and let (P°, P, X)
be the correspondingly controlled process. Let | = inf{k € N : 7, = oo0}. Set my = 0,
mq = 1 and for 7 > 2 set

m; =inf{j e N:7; > 71, [} AL
Note that 7,,,, < Ty, < -+ < Ty, for all @ € N such that 7,,,, , < co. For T" > 0 we have

v*(po, p1, ) — e v (PP, Pr, Xr)
T

= - / e~ v*(P°_, P} | X, )¢P! dBW

S

0
T

— / e~ (PY P! X, )o(X,_)dB®

e Lv* (P2, P}, X,)ds

—~—=°

ir, <mpe ™ (0" (P P} X, Y—v*(P) _ P, X, _)).

L) ) Tm.,;
Tm; g 7

M-

=1

Since v* is a solution to the qvi and by the definition of S we get

(P, Py X )
:U*(Pgmif - sz - C(sz, 5mz) - Cmi+1—1 - C(Cm¢+1—17 6mi+1—1>7

Pq}mi— + sz +eet Cmi+1—17 XTml-
=" (P} P! X, ).

I Tmi

-+ 5mz +ooet 6mi+1—1)
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Thus, again since v* solves the qvi and since S is the qvi control, we have

v*(p07p17 I’) - 6_aTU*(P7Qa le“a XT)

= — [ e 9, v (P° P X, )¢P! dBWY

_|_

T
0/
T
— / e 0" (P° , P! X, )o(X,_)dB¥
0
T
/e_o‘sf(Xs)ds.
0

By monotone convergence and by the assumptions (26), (27) and (28), we obtain

v*(po, p1, ) = Em(/ e~ f(X,)ds). (30)
0
Thus we have v*(pg, p1, ) = v(po, p1,x) and the qvi-control S is optimal. ]
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2 Asset allocation with liquidity breakdowns

In this chapter, we analyze the portfolio decision of an investor facing the threat of illig-
uidity, where illiquidity is understood as a state of the economy in which the investor is
not able to trade at all. Some of the results of this chapter are accepted for publication in
Finance and Stochastics [7].

In Section 2.1, we introduce an abstract model of a financial market consisting of two
assets, and provide an explicit solution to the stochastic differential equation describing
the investor’s portfolio process in the illiquidity state. In Section 2.2 we specify our market
model and introduce the investor’s portfolio problem. We show that the value function of
a model in which only finitely many liquidity breakdowns can occur converges uniformly
to the value function of a model with infinitely many breakdowns if the number of possible
breakdowns goes to infinity. Furthermore, we show how the optimal security demands of
the model with finitely many breakdowns can be used to approximate the optimal solution
of the model with infinitely many breakdowns. In the Markovian framework of Section 2.3,
the Hamilton-Jacobi-Bellman equations are provided and a verification result is proved.
We apply this result in Section 2.4 in order to derive the optimal investment strategy, as
well as the value function of an investor with a logarithmic utility function. In particular,
we show that in this case, the optimal strategy does not depend on the maximal number
of illiquidity regimes. Further, we give an alternative proof of the convergence of the value
functions, this time by considering the corresponding Hamilton-Jacobi-Bellman equations.
Eventually we generalize our model to an economy with three regimes. For instance, the
third state could model an additional financial crisis where trading is still possible, but
the excess return is lower and the volatility is higher than in the normal state. In Section
2.5 we derive the optimal strategy and the value function of an investor with a power
utility function. In this case, in addition to our convergence results for general utility
functions, we may show that the optimal strategies converge pointwise if the maximal
number of liquidity breakdowns goes to infinity. The last section illustrates our results by
a numerical analysis.

2.1 Continuous-time portfolio dynamics with illiquidity

Let (0, F, (Fi)iepo,r, P) be a filtered probability space satisfying the usual conditions,
where 7" > 0 is a finite time horizon. In the following, all random variables and stochastic
processes will be defined on this stochastic basis. In this section we provide an abstract
model of a financial market with two assets if liquidity breakdowns can occur. One asset is
given as an RT-valued stochastic process M with continuous paths of locally finite variation.
The second asset is given by an RT-valued cadlag semimartingale which we denote by S.
We think of M as the price of a bond, whereas S models the price of a risky asset. The
economy is supposed to be in one of two possible states which we denote as state 0 and
state 1, respectively. We assume that regime shifts from state ¢ to state 1 — ¢ are possible
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as long as a maximal number ky € N U {oo} of illiquidity regimes is not exceeded. Asset
prices may depend on the current state of the market.

Definition 2.1. Let N%!', N0 be counting processes and assume that they are non-
explosive, i.e. there are finitely many jumps in [0,T] a.s. The {0, 1}-valued cadlag process
I given by

d_[ — 1{1_:07 K_<k;0}dN071 — 1{1_:17 K_<kjo}dN1707
dK = 1{[7:1}dN1’0

with I, = 0 and K, = 0 s called the current state of the market. The process K
counts the number of jumps into the liquidity state since initial time to € [0,7T].

The solutions to these stochastic differential equations will be denoted by I*o*0 and K'to-*o
and we omit the superscripts if there is no ambiguity. We interpret state 0 as the normal
state of the market, in which trading takes place continuously, whereas state 1 represents
an illiquidity state, in which trading is not possible. Let 710’0 =tpand for 1 < k € N set

7'(];1 = inf{t € (Tﬁal,T] : I, =1} and 7'1’“70 = inf{t € (T(’)fl,T] . I, = 0}.

These stopping times are marking the regime shifts from one state into the other and we
have
tO - 7—{)70 < TO171 < T1170 < TOZ’I < T12’0 < ...

whenever they are finite. We may rewrite / in the following way

ko
to,ko __ E
I - 1[7'5,17716,0)'
k=1

We consider an investor who is restricted to choose self-financing strategies such that his
wealth dynamics

dM
dX = gO_dS + (X_ — (,O_S_)V, Xto =z >0,

have a unique solution X with X; > 0 for all ¢ € [ty, T] a.s. The cadlag process ¢ denotes
the number of stocks in the investor’s portfolio. It is given by

ko
Y= ‘pl = {90? }tE[tO:T] with 901 - Z 1[75,177'{6,0) (’Ook

o1~
k=1

In the normal state of the economy, state 0, the investor can choose his portfolio strategy
" according to the above restrictions. However, in the illiquidity regime, state 1, trading
is not allowed and the investor is forced to hold the number of assets ¢! which he has
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chosen before the liquidity breakdown. The investor’s portfolio process 7 corresponding to
© is given by

%

'S

T=nl = {W{t}te[toﬂ with 7t = for 1=0,1.

Note that the process 7! is exogenously determined by the market. We may rewrite the

wealth dynamics in the following way

dX =X_ (W_g—s +(1- _)L—M) , Xy =x0>0.
To avoid bankruptcy shortselling is not allowed, hence the class of admissible portfolio
strategies consists of all cadlag processes ¥ which take values in [0, 1]. As for the processes
I and K, when there is a risk of ambiguity, we will write X m%.to.20:k0 ingtead of X. The fol-
lowing lemma derives a stochastic differential equation for the dynamics of 7! and provides
an explicit solution.

Lemma 2.2 (Portfolio dynamics in illiquidity). For every k € N with 1 < k < ko, the
dynamics of the portfolio process m on the stochastic interval [Té“l,ﬁko) are given by

)2
as dM
dr=7n_(1—7_ ————7'['_ m_d
( )<5_ M_ ZI—I—W_S_)
with
AS
7T7.k _ (1 —+ Wo’l)
_ 70,1
ok, rc—
L+ 7TTk1_ Sk _
0
This stochastic differential equation admits the closed-form solution m = HLZ, where Z is
given by
(4s
as —dM (52) 1
aZz =7Z_ | —— +d Zr = -1
(-2 B B 2 -t
. . SOTk 7STk .
Proof. By the definition of 7, we have w1 = —%—="since o = ¢!, =¢% =@ _.
0,1 T(])C,l 0,1 7—0‘1 7_0,1_ 0,1
Therefore,
STk X L. S,T.k _+ ASTIC XTk _
e = 0,1 — 0,1 0,1 0,1 )
70,1 7S XTk 01T Sk XTk _+AX x
0,1 0,1 0,1 0,1 0,1

Due to the wealth equation we have AX = p AS =7_ X_ and thus we obtain

14+ 7 &
- To,17 Sk
0,1



Upon applying [t0’s formula we obtain

1 ds dM\ 1, d(S) 11
e [ T A+ —AX
dX X ( i )M)JFX?T‘ s T2 A%t
and therefore, since
AX 2 o A8y
Aty Iaxo bt 1 axo & 5)
X X2 X +AX X Xx? X +AX X (1+n_£%)
we have
1 ds dM )
Sl S
dX X (WS_ (=m)qr *52 dZH )
By the product rule, we have d% =S d% + LdS + d(S, &) with
AS AS
1 1 d( ) 1 d(S) m2(52)°
d(S, —) = ——x i (VAT D Y
<S7X> X_ S Zl+7T_AS X_ ( S +S Zl+7T_AS

and since T = o' = ¢’ on [7§, ) it follows that

AS)

dﬁ:d(%%) N th)_(_dézw_X_d%er‘g_? - 52 dz 17:;As
:—ng—?jtﬂ_g—?—w_(l—ﬂ_)%%-ﬂi%?c— 2 S2 dz 1_:;_1;“)
(BB ) e g D

on the stochastic interval [, 7{), making use of the fact that

, (AS\? TSP+ 50 , (AS)? T (1+5%)
- + =—7" | — l— —=
TS 1—|—7T_% S 1+7T_§S

(5°)?

AS -
1 +7m_5=

=712 (1—7m)

This proves that 7 satisfies the stochastic differential equation stated in the assertion.

Next, writing

ds dM
=8 4 &) *dzpm_ﬁs
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we have dr =7_(1 —7_)dV and Ar = 7_(1 — 7_)AV with

AS\2 AS
A == ==
AV = SS - (S)AS = = AS
— 1+7T_S—_ 1+7T_S—_
as well as (A )2
1 1 = 1—7_)%(AV)?
Alyla, o G aepave
T 72 T +Ar 7 (1+(1—7_)AV)

1

™

Therefore, an application of It6’s formula to the process Z =
1 1 1, . 11
dZ = d— = = —zdm + —d(m)" + dZA% + —An
(1= )(AV)?
1+ (1—m)AV

ds dM  d(S)e (52) (S)e

:Z_{_E—i_M_ + m_ 5’3 +7T_dZW+<1—7T_)d S%

1 yields

_1—7r,

_ (—dv+ (1—m)d(V)*+d )

T

on 1§, 7f,). Since

AS\2
(52

)

AS\2
(52

) S
=71_d e —— | - =d -
@ Zl‘f‘ﬂ'_éf + Z(1+7T_A:S’)<1_’_§S) Zl_'_AS’

it follows that

B ds dM  d(S)° (52)°
dZ_Z_<—S—+M+ @ +dY —x5 |-

Note that the jumps of the associated driving processes for 7 and Z satisfy

CO N =
S. 14w 4 147 88
as well as
As B
S_ o 1+48 1+ 45

Thus, we obtain the following remark.
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Remark 2.3. The lemma shows in particular that w takes values in [0, 1] only, since Z is
a stochastic exponential and

since AS > —S_ as S is positive. Further, if > |AS| < co a.s. for each t € [0,T], then
[0,¢]
the dynamics of m and Z simplify to

AS
dsc dM d{S)¢ S
dW:”—“—W—)(s_ T +d2m)

AS
. dsc dM  d{S)* e
dZ_Z_<_S_+,7”_+ 2 —dE —)

ds __ dse AS
because =%+ d -

2.2 Portfolio problem with illiquidity and convergence

From now on, we specify our two-asset securities market in the following way. We assume
that the bond dynamics are given by

dM = M_r; dt

for constant riskless interest rates 7o, r1 > 0 and that the dynamics of the risky asset S
are given by

ds = S—KTI_ + CY[_)dt + o7 dB — LI_dNL — 1{[(_<k0}L1_71_1_dNL’1_L]

on [ty,T) with Sp = (1 — 1{1T:1}€) St_. Here, ap, a; € R are excess returns, og, o7 > 0
are volatilities, Ly, L1, Lo 1, L1, ¢ € [0,1) are loss rates, B is a standard Brownian motion,
and N° N! are Poisson processes with constant intensities \g, Ay > 0. The constant ¢
models liquidation costs if at the investment horizon 7' the economy is in the illiquidity
state. The wealth dynamics can then be rewritten more explicitly, as

dX =X_ [(7"1_ +7_ap )dt +m_o; dB —n_L; dN'- — 1{K_<k0}7r,L1_7171_dNI—vl—f—}

on [to, T) with X, = 29 > 0 and X = (1 — 1{1T:1}7TT,€) Xp_. Further rewriting the
previous lemma, we get the following result for the investor’s portfolio process in the
illiquidity state.

Corollary 2.4. For every k € N with 1 < k < kg, the dynamics of the portfolio process m
on the stochastic interval [75,,7¢,) are given by

L
dr =m_(1—m_) ((a1 —71_0})dt + 01dB — 1_—;_leN1>
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with

o ok, (1= Loa)
o 1 _WrglfLO,l ’
This stochastic differential equation has the closed-form solution m = HLZ where
1 1
dZ = 7Z_ | (0? — ay)dt — 01dB + dN ok = -1
1-— Ll 0,1 T‘-Técl
AS
Proof. This follows immediately from Remark 2.3 and - = por e e 7 dN?' as well as
o N
e 1 1

Note that Z is a geometric Brownian motion if L; = 0.

For an admissible strategy 7°, the solution to the wealth equation is explicitly given by

t t

1
Xt’ro’to’gﬁo’k0 = eXP(/ rr oo — §7T o7 ds+ /WUI_dB)
to to
H(l — W,LL)ANL (1-— 1{K,<k0}7LLL,1—L)ANLJ?L

[to,t]
for all ¢ € [to,T). This implies the following lemma.

Lemma 2.5 (Moments of the wealth process). If E(ﬁN%H) < oo for each € (0,00)
and i = 0,1, then for any k > 0 there exists C,, € (0,00) such that for all ty € [0,T] and
xo € (0,00) we have

1 : 1\"
sup B sup |14+ X7 ook 4 - <c. (1 et _) |
w0, koeNU{oo} telto,T) Xt »£0,20,K0 To

Proof. For k € R, we set

t t

1
M, = sup E( sup exp{/ﬁ/rlto,ko + Tk — —2 0% ke ds + K)/ﬂ'O’ItO,kOdB}).
70, koeNU{oo}  t€[to,T] ; - - 2 It ; -z

0 0

If Kk >0, ty € [0,T], 29 € (0,00), kg € NU {oo}, and 7° is an admissible strategy, then the
above explicit solution yields

E( sup (Xfo’to’xo’ko)“) < x§ M.

te(to,T]
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Further, by Cauchy’s inequality and since (1— 1{ItTO,k0:L t:T}WTJ)_’* < (1—4)~", we obtain

E( sup (X[ tomoko)=rmy < gon(1 — 0) " M2

—2K
te[to,T}
TN Copan! Oy
E[ sup (1 - tho,ko) (1 - th()w’fo 1_It07k0) ]2’
te[tO,T] [toﬂf} - — ’ —
where
arean’" aranT 000k
—2zK - —ZK. -
S[up } (1 — LIto,ko) (1 - tho,ko 1_It0,k0)
telto, T [ - -7 -

t07t]
arant " 2kAN
_ 9%k - —2kK -
= H (1— tho,ko) (1-— LItO,kO’l_ItO,kO)
[to,T]

< (1= Lo) N8 (1= Ly) 2N (1= Loy) 2N (1 — Ly )2V,

the quantity on the right is integrable due to our assumption on N%'~¢  The desired
conclusion will thus follow from the fact that M, < oo for all kK € R. To show this, note
that

t

1 1
M, = sup E| sup exp /41/7‘ toko + T— QU gk — _7T30-2t0,k0 + —/€7T302t0,k0ds
70, koeNU{oo}  Lt€[to,T] ; I 11 R 9 I
0
t 1 t
+/<a/7ralt0,k0dB— 552/7r302t0,k0d3)}
to to
t
1
<er~T  sup E[ sup exp (/‘i/’ﬂ'O’Ito,kOdB - —/12/77302%,%(13)},
70, kgeNU{oo}  Lt€[to,T] - 2 -

to to

. 1.2 2
since the process /Q‘Tjio,ko + Moo — 3T 0 tg.kg

+ %mrza?to,m is bounded by a constant
Poo € (0,00) that is independent of 7°, ¢y, and ky. Recall that Titoko 18 [0, 1]-valued

by Remark 2.3. Next, let 7° be an arbitrary admissible strategy, and let ¢, € [0,7],
ko € NU{oo}. Writing ¢ = Km_0 1.k, it follows that ¢ is bounded by 0o € (0,00), a con-

stant independent of 7°, o, and ky. Therefore, by the Novikov condition, the exponential
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exp([ 0dB — 5 [ 0*ds) is a martingale and consequently
to to

t t t t
1 1 2
E{ sup exp(/gdB——/fds)] < <E[ sup exp{/gdB——/g2ds} })
telto,T) 2 telto,T) 2

0 to to

t to
_ T T 1
2
§4(E exp{?/QdB—/des}])
B to to
i T X T T 1
< 4<E exp{/QQdB — 5/(2@)2d5}exp{2/92d8}]) < 4e%T < 0

to to to

I

by Doob’s L2-inequality. This gives the desired result. ]

Note that the integrability condition of the previous lemma would be satisfied, if the
counting processes N“!'~% were Poisson processes.

We assume that our investor, trading in the market described above, maximizes expected
utility from terminal wealth with respect to a concave non-decreasing utility function

U: (0,00) — R. The corresponding value function (syn. indirect utility) is given
by

Vi [0,7] % (0,00) x NU{oo} = R, V(to, mo, ko) = sup E[U(XE fosokoy] — (31)

By considering the strategy 7% = 0, i.e. a pure bond investment, and applying the previous
lemma together with Jensen’s inequality, we obtain the following lower and upper bounds:

Ul(zo) < V(to, 0, ko) < U (cl (1 + o+ i)) .

Lo
In particular, the value function is finite. The following theorem states that the value
functions corresponding to problems, in which only finitely many liquidity breakdowns can
occur, converge uniformly to the value function with ky = oo, if the number of possible
breakdowns goes to infinity. This is due to the fact that even if ky = oo, almost surly there

are only finitely many breakdowns before time T', since the processes N%'~¢ which trigger
the regime shifts are non-explosive.

Theorem 2.6 (Convergence of the value functions). Suppose that E(ﬁN%H) < oo for all
B € (0,00) and i = 0,1, and that the investor’s utility function U is polynomially bounded
at 0, i.e. that there exist Kk > 0, p > 0 and d > 0 such that

U()] < p (1+é)n e (0,0)
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Then the value function of the investor’s portfolio problem satisfies

lim sup |V(t0,$0,k0) - V(to,l’o,OON =0
ko—o0 to€[0,T], zo€C

for any compact subset C' of (0, 00).

Proof. For any utility function U, we have the concavity estimate U(z) < 6(x —1) for some
0 € R, ie 0=U'(1)if U is differentiable, so by our assumption on U

1 K
|U(x)|§g(1+x+;) Ve (0,00),

for suitably chosen x > 1 and p > 0. Thus, due to Lemma 2.5, compactness of C' and our
assumption on N®'~% the family

{U(X;O’to’mo’ko)}ﬂo,toe[o’T]meC’ koeNU{oo} 15 uniformly integrable.
Moreover, it is clear that

sup |U(X§:O’t°’z°’°°) — U(X;O’to’xo’koﬂ — 0 in probability as kg — o0
w0, to€[0,T],zo€C

since

P(X;O’to’g"o’OO + X;O’to’zo’ko for some admissible 7, to € [0,T], ¢ € C)
gP(Ké?’xo’ko = ko for some ty € [0,7T], o € C) < P(N%’O > ko) — 0 as ky— 0.

To prove convergence, we fix some € > 0 and choose t, € [0,7], &y € C such that

~ ~ 15
sup ‘V(t()?an kO) - V<t07 Ty, OO)‘ < |V(t07$07 ko) - V(t07 Lo, OO)l + 5
toE[O,T],zoEC

For the moment, assume that V (¢y, #, ko) — V (fo, #0, 00) > 0. Then let #° be an admissible
strategy such that
V (fo, o, ko) — B[U(XF 4] <

DO ™

Thus we have

~ N A E
sup |V (to, 0, ko) — V (to, z0,00)| < V(to, 2o, ko) — V(to, Zo, 00) + 3
toe[ovT]vaEC
<E[U(X3050k0) ] — V(do, 29, 00) + & < E[U(XE 050k — BIU(XS 0702 4 ¢

<E| sup \U(X;O’to’xo’ko) — U(X;:O’to’zo’oo)\] +e.

w0, to€[0,T], z0€C
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Applying an analogous argument in the case when V (%, 2o, ko) — V (o, &0, 00) < 0, we see
that the latter inequality continues to hold. Since € > 0 is arbitrary, we obtain

sup |V (to, zo, ko) — V (o, xo, 00)|
toG[O,T],aZoGC

<E[  sup  |U(XEtomokoy (x|

w0, to€[0,T),z0€C

so that
sup |V (to, xo, ko) — V (to, 0, 00)| — 0 as ky — oo
to€[0,T], zoeC
by the observations made at the beginning of the proof. O

The previous result shows that the investor’s portfolio problem with possibly infinitely
many liquidity breakdowns can be suitably approximated by an investment problem with
finitely many jumps. Moreover, due to the uniformity of convergence, the optimal strategies
of problems with sufficiently many breakdowns perform arbitrarily well in the case with
infinitely many breakdowns.

Corollary 2.7 (Approximately optimal strategies). Suppose that the assumptions of The-
orem 2.6 are satisfied. For fived € > 0 and for any to € [0, T} and xg € (0,00) there exists
a ko € N such that Jor any admussible 5-optimal strategy 7% for V(to, xo, ko) we have

|E[U(XE02020)] _ Y (#y, 20, 00)| < e.

Besides, if the investor’s utility function U is of the form U(zx) = %x”, then it follows that

the initial wealth ), required to achieve the given indirect utility V (to, o, 00) in the model
with at most k liquidity breakdowns satisfies

V(t()v o, OO) k
rp=|—r—7--] —x ask— oo.
T\ Vit L,k ’
Proof. Given some ¢ > 0, for any to € [0,7] and z, € (0,00) we can choose ky € N such
that . X .
sup | E[U(X7 ") — E[U(XT )] <

0

Wl ™

and )
|V (to, xo, ko) =V (to, 20, 00)| <

Wl M

Further, we can choose an admissible strategy #° with
|BIU XG0k = V(to, w0, ko)| <

Then it follows that N
|E[U(X7 )] = V(to, 79, 00)| < .
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Next, if the investor’s utility function U is of the form U(z) = %aﬂ, then from

V (to, w0, ko) = sup E[UCXE 05040)] = o sup E[U(X3 0140)

70 70

= JlgV(to, 1, ko)

it follows that the initial wealth x) such that we have V' (to, zx, k) = V (to, zo, 00) satisfies

Tp = <V(t0a Zo, OO)

! k .
V(to,l,k)> o AT o0

Remark 2.8. We wish to stress that, without additional assumptions, the optimal strategies
do not have to converge. However, for logarithmic utility and power utility convergence can
be proved. Indeed, for logarithmic utility, the optimal strategies do not depend on ko (see
Corollaries 2.19 and 2.35).

2.3 HJB equations and verification theorem

In this section, we investigate the optimal portfolio problem (31) applying dynamic pro-
gramming techniques. In order to obtain Markovian dynamics, from now on we assume
that the regime shift process N~ is a Poisson process with intensity \; ; ; > 0 fori = 0, 1.
In particular, the integrability condition of Lemma 2.5 and Theorem 2.6 is thus satisfied.
Let ky € NU {00}, then a collection

{Jo’k07Jl’k(),JO’kO_l’Jl’kO_l’,__’JO’1,J1’17J0’0}’

where J%* is a C'?-function on [0,7] x (0,00) and J** is a C'*2-function on [0,7] x
(0,00) x [0, 1], is said to be a solution to the Hamilton-Jacobi-Bellman equations of the
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portfolio problem (31) if the following partial differential equations are satisfied

1
0= sup {atJO’O(t,x) + 2(ro + agm) 0, JOO (¢, 7) + 2x 2050, .0, )
7e[0,1]

+ Ao [J0(t, (1 — L)) — JO°(t, x)}}

1
0= s%pl]{ﬁtJo’k(t, x) + 2(ro + aom) 0, JOF (L, ) + 5962#2038%35(]0"“(15, )
well,

+ Xo [J¥F(t,2(1 — wLo)) — JOF(t, 2)]
+ Aot {J”ﬂ (t, z(1 —7Loy), M) — JOk(, x)} }

1— 7I'L071
1
0 =0, (t, 2, m) + x(ry + aym) 0, JF (t, 2, ) + 2x 12030, JVF (2, 7)
+ 2m2(1 = 71)020, p JVF(t, 2, m) + 7(1 — 7) (o — 0°m) O JVF (¢, 3, )

1
+ §7r2(1 — 12020, IV (¢, T)

1- L))
1,k 1 — 7L 7T( 1 7Lk
+ X\ {J (t,x( T 1)’—1—7TL1 JE(t,x,m)

+ Ao [Jo’k_l(t,x(l —mlyp)) — JUE(t, 7'[')}
subject to the boundary conditions J*(T,z) = U(x), JY¥(T,xz,7) = U(z(1 — nf)) for
all z € (0,00) and 7 € [0,1]. If ky = oo, then a solution to the HJB equations simply
consists of a pair {J%*, J»*°} and the above system reduces to a pair of equations with
JOoe—l — JO0ee “etc. Note that this system can be solved iteratively if kg < oo, whereas

it does not decouple when ky = oo. Given a solution of the HJB equations, to simplify
notation, we set

HO%(t,2,7) = 0.0 (t,) + (1 + 00m)0sJ0(0,3) + 32030, ., 2)
+ o [J0t, (1 — L)) — JO(t, 2)]
HY(t,x, ) = JOk( x) + x(rg + apm)O JOk(t,x)—l— 212080, (L, 7)
Xo [JOF(t, (1 — wLg)) — JOF (¢, 2)]
+ o1 [Jl’k t,x(l—mLoy), M) _ Jo’k(t,x)}

1 —7TLO’1
HY (t,2,7) =0

for t € [0,T], z € (0,00), and 7 € [0,1]. The following theorem shows that J%* corre-

sponds to the value function of the optimal investment problem with k illiquidity regimes
outstanding.
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Figure 19: Economy with at most two illiquidity regimes ky = 2, and possibly infinitely
many liquidity breakdowns ky = oo, respectively.

Theorem 2.9 (Verification theorem). Let {J%ko jlko joko=1  jlko=1" """ jo1 ji.1" jo.0}
be a solution of the Hamilton-Jacobi-Bellman equations associated to the optimal invest-
ment problem (31) with at most ky € NU{oo} illiquidity regimes and assume that for each
i €{0,1} and k € {1,...,ko} the functions J*, 0,J% 0. J%% and J*°, 8,J%°, 0,J%° are
polynomially bounded at 0 and oo uniformly with respect to t € [0,T] and m € [0,1]. Then

V(to, Xo, ko) S Jo’ko (to, :1:0)

for all ty € [0,T] and zo € (0,00). Moreover, if there are continuous functions vy :
[0, 7] x (0,00) — [0, 1] such that

Yi(t,x) € arg max H* (t, z, )
wel0,1]

for each k € {0,... ko}, then the value function is given by
V(t()a o, ko) = ‘]OJCO (t()? CC())

for allty € [0, T] and z¢ € (0,00), and the optimally controlled process X* and the optimal
strategy 7" satisfy 7 = Y,k (-, X¥).

Proof. Given an admissible strategy 7, t5 € [0,7T], and xq € (0, 00), consider the process
Jt = JIt’kO_Kt (t7 Xt7 7rt)

for all t € [ty, T], where the upper indices 7°, o, zo, ko are omitted for notational conve-
nience and, by ignoring the third coordinate, J%* is interpreted as a function defined on
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[0,7] x (0,00) x [0,1]. Applying It6’s formula and using Corollary 2.4, we obtain
dy = QpJ TR (L X wo)dt + 9, R (LX) X [(rr. + ap_m_)dt + op_m_dB]

1
+ iamvaI*’kO_K*(.,X_,W_)Xzaiwzdt
+ 1{1_:1}{8WJ1"€0_K(., X_,m)n_(1—7_) [(aq — oim_)dt + 01dB]
1
+ 5(‘9@”{]1’%7}(‘ (X, )2 (1 — 7 )2otdt

+ Oy J OB (X )X _ 0?72 (1 — n)dt
, 1

m_(1—L;)

gl ko—K_ X T dNI,
1_7T_L[7 ) J (7 77T >:|

- [Jf”fo—K ( (1—m_L; )X_,

_(1—-L
+ 1{1_:0,K_<k0} |:J1’kO_K <'> (1 - W—LO,l)X—a 7T1 ( LO,l)) - JD7kO_K('7X—):| dN071
— TT—Lo

+ 1y [JORTE TN (L = Ly o) X) — TP (X )] AN

on [tg,T). Let N°, N1, N%! and N denote the compensated Poisson processes associated
with N°, N1, N%! and N*°. Then, rewriting the previous equation, we obtain

dy = H'=F~ K= X_ 7 )dt + 0, =" (,X_, 7 )X _o; 7_dB
+ 1y oy O SV E (LX) (1 — 7_)01dB

(1-1L N
+ {JIJ“O_K ( (1—-7m_L; )X_, M) - JI’kO_K(.,X_,W_)] dN"-
— Ly

1 — ﬂ-fLO,l
+ 1oy [JORTE T (1 = mo L) X)) — TV R (X )] AN

-(1-L -
+ 1{I,:O,K,<k0} [Jl’kOK_ ('7 (1 - 7T,L071)X,, d ( 0’1)) - JO,kOK_('aX):| dNOJ

on [tg,T). Due to our polynomial growth assumption and Lemma 2.5, the stochastic
differentials of the local martingales in the above identity are, in fact, stochastic differentials
of martingales. Therefore, by taking expectations and using the boundary conditions of
the HJB equations, we arrive at

T
E[U(XE om0k — B(yp_) = JO% (45, 20) + E| / HY=kom R X,y )dt].

T
to

Since 70, to, and xo are arbitrary, we conclude that
V(to, zo, ko) < J¥™(to, o)

for all ty € [0, 7] and xy € (0, 00).
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Now, if ¢y, : [0,T] x (0,00) — [0, 1] is a continuous function such that

Ui(t,z) € arg max HO*(t,z, )
wel0,1]

for each k € {0,...,ko}, then the family {¢y}o<r<k, defines an optimal strategy in the
sense that the stochastic differential equation

dX = X_ [(7’]7 + d)ko—K,(',X—)O‘If) dt + wko—K,(',X_)O'jidB
— i (- X )Ly AN =i cpoytbmg-r (4 X_) = Ly g dN™=11]

on [to, T) with Xy, = zg and X7 = (1 — L=y ¥ke—xr (T, X7-)€) Xr_, admits a solution
X¥towoko and the strategy

0 _ I (_’Xw,to,xo,ko)
is admissible and optimal for the investor’s portfolio problem. Further, in this case we have
E[U(XG R = V(to, 2o, ko) = T4 (to, 20).
O

Remark 2.10. Given that J**(t,x,7) = fo*(t, m)U(z) or J**(t,z,7) = fo*(t,7) + U(x),
the polynomial growth assumption is satisfied if U and U’ are polynomially bounded at 0
and f** and 0, f*F are bounded. This is for instance the case for power or log utility.

2.4 Logarithmic utility

Throughout this section, we consider an investor with a logarithmic risk preference U(x) =
In(x). First, we study the portfolio problem (31) with infinitely many liquidity breakdowns,
i.e. ky = oo and provide an explicit representation for the corresponding value function.
Then, we consider the case with ky € N and show that for a logarithmic utility function,
the optimal strategy does not depend on ky. Further, we give an alternative proof for
the convergence of the value functions when the number of liquidity breakdowns goes to
infinity, this time, by considering the corresponding HJB equations. Finally, we briefly
state a generalization of our model with three regimes.

2.4.1 Infinitely many liquidity breakdowns

First, we consider the case with infinitely many regime shifts between state 0 and state 1.
Let kg = co. We set J° = J%° and J! = J%*°. In order to apply the above verification
theorem, we conjecture

JO(t,x) = In(x) + fO(t)
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as well as

JHt, z,7) = In(z) + f1(t, )
for a Cl'-function f° on [0,7] with f%(T) = 0 and a C"*-function f' on [0,7] x [0, 1]
satisfying f1(T,7) = In(1 — /) for all 7 € [0,1]. Furthermore, we set H® = H"* and
H' = H%*®. Then the HIB equations read

0= sup {070+ an(m) 4 2w |1 (T2 ) = o]} (3)

re[0,1] 1 —7Loy

0= 0f (6 7) — Mofi () + (1 — 7)1 — 2m)0. f1(E, ) + ;n (1= 72020, f(t,7)

m(l—L
|7 (6 TR = )|+ )+ w0 (33)
— 7TL1
where g; is given by g;(m) = r; + aym — 37207 + \jIn(1 — wL;) + Aj1—;In(l — wL;1_;) on
[0,1], for j =0, 1. The HJB equation (32) leads to the first-order condition
Lo Lo

0=ap— 702 — A —A
ao "% 0]_ — 7TLO 071]_ —7TLO’1

7'('(]_ — L()’l) ]_ — L(),l
l—nLoy ) (1—mLo1)?

(34)

+ )\0,187rf1 <t7

for the optimal stock proportion in state 0. Note that if it exists, the solution of the
first-order condition is a deterministic function of time.

For ¢ € [0,T] and 7 € [0,1], let & be given by &, = 7", for all s € [t,T], with

+(1

L
dZ = Z_ |(6? — ay)ds — 01dB + - 1L dN'|, Z, =1.
1

We will also write 7™ for the process 7 subject to the initial condition 7; = 7. Note that
Z is explicitly given by

1
(1 — Ll)Nsl_Ntl ’

Z, = e( of—a1)(s—t)—01(Bs—Bt)
for all s € [t,T].

Proposition 2.11 (Indirect utility in illiquidity). For a C'-function f° : [0,T] — R,
consider the function f': [0,T] x [0,1] — R defined via the stochastic representation

T
/ (AofO(s) + Elgi (74™)])e 210670 ds + Eln(1 — 747 ¢)]e o0,
t
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(i) Then f' is of class CY* on [0,T] x [0, 1] with
T

14
87rf1(t,77') _ /E [&ﬂrt”gi( tﬂ')j| e—)q,o(s—t)ds _E |:a7r7~r§:7r — :| €—>\1,0(T—t)7
1 —mp e
t
T

O (t,7) = / B |00 x77 g1 (77) + (0o727)" gl (7L7)] e 0t s

t

¢ (2
_E |:a7T ﬂ_ﬁ_;ﬂ'— (&ﬁtTﬂ)Q ~t7r_:| e*Al,O(Tft%
s (1 —77"0)?
2. ~tn o Zs(1—=Zs)
where O, 7r m and amr”i = 2(7r+(1—7r) BEN

(ii) f* solves the HJB equation (33).

In particular, O, f1 does not depend on f°, and thus the first-order condition (34) provides
an algebraic equation for the optimal stock proportion in state 0.

Proof. (i) The explicit representation given in Remark 2.12 implies that f! is continuously
differentiable with respect to t. Let t € [0,7], m [0 1] and let s € [t,T]. We have
195 (m)] < lau| + 07 + M T2 + ATt 7o and O ™ < /\1)2 and therefore, by Remark 2.3,
we obtain

Zs(w)
(Zs(w) A 1)?

|0:77 (w) g1 (77 ()] <

Ly Ly
(|a1|+01+)\1 L +)\101_L10) (35)

for all s € [t,T] and w € Q. Furthermore, we have

14 ZT((.U> 14

Oy (w )1 _ﬁtT’f(wV’ T (Zr(w)A1)21 -4

(36)

for all w € Q. Therefore, the discounted left-hand sides of (35) and (36) are uniformly
bounded in 7 by integrable functions and we may thus interchange differentiating and
integrating. This yields

T

O fi(t,m) = /E [&ﬂf”gi( ”)} e Mol tgs — B [&rfr;’ﬁ—%m ] e Mo(T=1),
1 —mp e
t
Again, by Remark 2.3, we have
|0x [027757 (W) g1 (7L (W))] | = 1057 T (W) g (7T (W) + (D™ (w)) 207 (7™ (w))]
Zs(w) Z(w)?

SCIWH_ZS(W)H_CQW (37)
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for all s € [t,T] and w € €2, as well as

V4 I4 Iz
aﬂ' a”~t77r T tnms ~Ng = a7r7r~t77r —_— + 87r~t’7r 2
o7 g || = e O + OO
Zp(w) s Zr(w)?
< 2eq——>———— |1 — 7 38
S N I Ty~ mys TG
for all w € Q, where ¢; = <|oz1|~|—01+>\11L1 + Ao L10>’ cy = 0} + /\1% +

MO Lo )2, and ¢; = ;5. Thus, the discounted left-hand sides of (37) and (38) are

unlformly bounded in 7 by integrable functions. As before, we may thus interchange
differentiating and integrating. We obtain

T

mﬂ%mﬂ:/EWMHwﬁ ™)+ (0n7T)? g (7YT)] et ds

t

1 2
— B |Opnfiy —— + (0n7" ) s | e 0T,
{ R Ty (0:77") (1 —7hre)?
(ii) The assertion follows by the Feynman-Kac formula. O

Conditioning on the number of jumps within state 1, we have the following remark.

Remark 2.12. For f' defined as in the previous proposition we have

T [e%e]
fitm =3 / 0 1,) o f6) [ on(Ealt ) — )l
n=0 — 00

et an L) /ln (1= Fon(t, 7, T, ) (T — 4, w)du,

O fl(t,m) = Z/e_h’“(s_t)pn(t, s) / O (t, 7, 8,u) gy (Tn (8, 7, 8,u) )0 (s — t,u)duds
n=0 _

oo

- 14
— o0 t,T Fot,m, T T —t,u)d
TS 0T [ Ot T T~
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where pp, VY, T, O, and z, are given by

7)\1(8 t) —t n
pn(t7 S) — P(N;,t = n) — € ()\'1(3 )) 7
n:
1 o2
w(ra u) - efﬁ’

2rr

&‘

~?’L t? Y Y = )
Full, 5, u) T+ (1 —m)z,(t, s, u)

zn(t, s, u)
(m 4+ (1 — )z, (¢, 8,u))?

6(%0%—o¢1)(s—t)—a1u

(1—Ly)"

OpTin(t,m, 8,u) =

zn(t, s,u) =

The volatility of the price of the risky asset can be related to the amount of trading in
that asset. Thus, since trading is interrupted in state 1, it seems reasonable to set o7 = 0.
Besides, we think of state 1 as a regime where the economy is hit by an extreme event
such as a war or a political turmoil. Consequently, it may also be plausible to assume
that a; < 0. As the following proposition shows, these assumptions together with (39)
are sufficient to ensure the existence of a unique smooth solution of the investor’s portfolio
problem (31).

Proposition 2.13 (Optimal portfolio choice). Assume that a; < 0 and o1 = 0.

(i) The function f' defined above is decreasing and concave, i.e. the derivatives O, f!
and &rmfl are non-positive.

(ii) If for each t € [0,T] there exists a 7 (t) € [0,1] such that 7*(t) is a solution to the
first-order condition (34), then 7* : [0,T] — [0,1] is uniquely determined and of

class Ct. Moreover, 7*(t) = arg max HO(t,7) for all t € [0,T).
me|0,

(11i) A solution in (ii) exists if for all t € [0,T]

ag — NoLo — XoaLoa + No10x f1(,0)(1 — Loy) >0, (39)
Lg Loy 1
— A A Ao.10, t,1 <0.
Qg 00 Ol—Lo 011_L01+ 0,1 f( )1—L0,1_

90



Remark 2.14. Condition (39) can be rewritten more explicitly as

1
0 < ap—MoLo— NoiLor — Xoa(1 — Lo )LE (Z ) e Ao(T—t)
T

T
1
+ )\0,1(1 — L071)(061 — >\1L1 — >‘1,0L1,0) / E <7) €—>\1,o(s—t)d87

S

t
Lo Los 1 o
0>ag—o02 — A Ni—r— = M1————FE(Z Lo(T=t)
= 0 T, MMT L, T 1ol Ar)e
L, L r
A ( —A P WL E. ) / E(Z,)eMol=0) g,
+ 017 Tox . I LT Lio (Zs)e 5

Proof. (i) and (ii). Let t € [0,7], let 7 € [0,1] and let s € [t,T]. We have ¢|(7) =
a1 — All—llTlLl )\1 0# 0 and (97|-7Tt7T = WO%W > 0. ThUS, by Remark 2.3 and
Proposition 2.11 (i), we find O-f1 < 0. Since o; = 0, we have

e—oq(s—t)
TR T

which implies that

. Zs(1 = Z,)
Op n 0™ = —2—2 - 0.
Furthermore,
L3 Li,
Y(m) ==\ ! A 0
gl(ﬂ-) 1(1—7TL1)2 10(1—71'[/10) -

and consequently
0Tt gL(RST) + (0,727 g (727) < 0
l
1 — 780 -
Thus, by Proposition 2.11 (i), we have

~t,m
O T

Opnf (2, ) < 0.

Taking the derivative with respect to 7 of the right hand side of the first-order condition
(34), we get

Lg A L5 o0 f1 (¢
m_ 0,1m+ 0,1 7T,7rf )

1—L ) LOl(l_LOI)
20,0, 1 (1, L= Loa)) Lo L
+ 0.1 f < ’ 1 —7TL071 (1 — 7TL0,1)3

02—03—)\0

m(l - Lo,l)) (1 — Lo,)?
(

1-— 7TLO,1 1-— 7TL0’1)4
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Thus, the solution of the first-order condition (34) is unique. Furthermore, by the implicit
function theorem, we conclude that for a solution 7* as detailed in (ii), the mapping 7* is
continuously differentiable and maximizes the HJB equation (32).

(iii) Under our assumptions, the right hand side of the first-order condition (34) is con-
tinuous and decreasing in w. Therefore, by the intermediate value theorem, the claim
follows. O

Note that the requirements oy < 0 and o7 = 0 are not necessary for the claim in the
previous proposition to hold. They however imply that 9, f! and 0, ,f' are non-positive,
which is sufficient to prove the claim. Besides, we remark that (39) is satisfied for reasonable
choices of ay. However, if o is “too large” or “too small”, then it can happen that this
condition is not satisfied. For instance, if ay < 0, i.e. an investment in stocks is strictly
dominated by an investment in bonds, then the optimal number of stocks is zero. This
is a corner solution and (39) excludes these kinds of degenerated cases. The following
proposition provides a representation of the value function in state 0.

Proposition 2.15 (Indirect utility in liquidity). Suppose that there exists a continuous
function 7* : [0, T] — [0,1] such that 7*(t) € arg m[z(a)u)ﬁ HO(t,m) for allt € [0,T]. Consider
wel0,

the function f°: [0,T] — R given by

T T
A A
0 _ 0,1 (>\0,1+>\1,0)t/ —Xo0,18 1,0 / >\1,08
t) = e F(s)e ds + ————— [ F(s ds,
F) Ao+ Ao (s) Ao+ Ao

t

t

T
F(t) = go(m*(£))e ™" + Aoa / E[gy (77 ®))e™10%ds + Mo, E[ln(1 — 75" e)Je o7

t

and 7o(t) = % Then f° is of class C* and solves the HJB equation (32).

Proof. The function F is continuous and therefore f° is continuously differentiable. Recall
that the Hamilton-Jacob-Bellman equation (32) is given by

0= 0.f(t) + go(m*(£)) + Xo f' (£, 7o (t)) — Ao fO(2).
For f! defined as in Proposition 2.11, we have

T T

fHt, 7o(t)) = Al,o/fo(s)e’\1’0(3t)ds—l—/E[gl(ﬁi’ﬁO(t))]e/\I’O(St)ds

t t
+ Elln(1 — 70 )| o=,
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which yields the following integro-differential equation for f°

T
0= 8 fO(t)e 10" + go(m*(£))e 1" + Ao Ao / FO(s)e™0%ds — Moy fO(t)e Mot

t

T
o / Elgy(770)]e ™ 19%ds + Xy Elln(1 — 70 ¢)]e 7.
t

Substituting

into the equation above, we get

0=—H"(t) = (A0 — Aoa) H'(t) + Aoa Ao H (1) + go(m* (t))e "

T
+ 201 / Egy(72700)]e= 0% ds + Ay Blln(1 — 770 e)Je0T.
t

Eventually, setting

T
F(t) = go(m*(t))e 0" + Aoy / E[gy(7570W) e 10505 4 Aoy E[In(1 — 7570 p)]eAoT

t
leads to the following second-order linear inhomogeneous differential equation
H(8) + (Ao — Ao ) H'(t) = Ao Mo H (1) = F(t) (40)
subject to the constraints H(T) = 0 and H'(T') = 0. The characteristic equation
12+ (Mo — A1)t — AogAio =0

has the two roots, p; = A1 and pe = —Ajo. Thus, the exponential conjecture yields
the pair uy(t) = et and uy(t) = e 1! of fundamental solutions for the homogeneous
differential equation. By the method of variation of constants, a particular solution of (40)
is given by

w(t) = cr(t)ur(t) + ca(t)ua(t),

where ¢; and ¢y are such that
¢y ()ur (t) + 5 (t)ua(t) = 0.
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Setting w into the inhomogeneous equation (40) yields

F(t) = ci()uy(t) + ca(t)us(t) + e () [uf () + (Mo — Aop)ui (B) — AopAroua (7))
+ ca(t)us(t) + (A0 — Aop)us(t) — Aoa A oua(t)]
= ¢y (t)uy (t) + c5(t)us(t).

Thus, by the previous equation and the constraint for ¢; and cq, we find

w(t) = ul@)/%ds _ uﬂt)/%ds

where the Wronskian determinant W is given by

_(/\0,1 + )\1,0)6()‘0’1_)‘1,0)5'

Rewriting w we have

T

T
/ eMols=t) gg /L‘S)eko,l(st)ds_
o1 + /\1 0 Ao+ AL

t t

Note that we have w(T) = 0 and w'(T) = 0. Thus, the unique solution of the constraint
differential equation (40) is given by the particular solution w, i.e

T T

F(s) _ F(s) .\ (o
Hi(t :/—e/\w(s t)ds—/—e Aoa(s=t) g
(®) / Ao+ Ao / Ao+ Ao

Differentiating H we obtain

[ F(s)u(s) [ Flshns)
H'(t) = u (t) / e / e

T
F(s) Y 6 / F(s) eMo(s—
Y Y . 0,1(s— Y 1,0(s t)ds'
o1 / Ao+ Ao 1o Ao+ Ao

Further, by the definition of H, we have H'(t) = —fO(t)e=*10! and thus f° is given by

T T
F(s) (- F(s)
o)y =\ e’\lvot/ e M0 gg 4 ) / M5 (s,
S ! / o1+ Aro o t o1+ Avo
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There is a special case where the integrals in the above representation of f° can be calcu-
lated explicitly. Namely, if 01 = a3 = Ly = Ly = Lo = 0, the first-order condition (34)
simplifies into

L l
0=ap— o2m + Aoy | (e A0T=0 1)% - e*)‘lvO(T*t)m :
— 7L, _

If, in addition, ¢ = L, o, we get

Ly

_ 41
e (41)

0= (o7)) —0'(2)71'—/\071

and the function f° is given by

Aot o1+ A10)t Aot 1 Qo1 4A0)t  —(oa AT
fo t) = —ve( 0,1+A1,0) [<g ) + g T > e (Mo, 1+A1,0)t e (Mo,1+A1,0)
(®) Ao,1 + Ao o(™) ALo 1) Ao,1 + )\1,0( )
1
+ <1n(1 — 1" Ly1g) — /\—gl(ﬂ*)>e*)‘1’°T(e*)‘°’1t — e*’\o’lT)}
1,0
A10 Ao1 ol b e
[t A1 In(1 — 7L _ *) 1,04~ 1,00 _ 1,0t
el IGL DR wellie) EabwiCh

A
+ <go(7r*) + %gﬂw*)) (T — t)} :
1,0
where go(m) = 19 + aom — im%03 and gi(m) = 1 + AioIn(l — 7L1p), and 7 solves the
first-order condition (41). The following theorem summarizes our results in this section.

Theorem 2.16 (Solution of the portfolio problem). Suppose that there exists a continuous
function 7 : [0, T] — [0,1] such that 7*(t) € arg m[ax] HO(t,m) for all t € [0,T]. Then,
m€|0,1

for kg = 00, the value function is given by
V (to, 9, 00) = In(xo) + f°(to)
fortg € [0,T], xy € (0,00) and the optimal strateqy is given by 7*.

Proof. Since |In(z)| < * for € (0,1), the assertion follows immediately from the Verifi-
cation Theorem 2.9 and Propositions 2.11 and 2.15. O]

Since we wish to quantify the utility loss incurred by an investor due to the presence of
illiquidity, we take a brief look at the optimal investment problem when trading is allowed
in both states. In this case, a verification theorem analogous to Theorem 2.9 holds true,
and the optimal portfolio strategy can be characterized by the following coupled system of
Hamilton-Jacobi-Bellman equations

0= sup {0.f'(t) + gi(m:) + NiaalF77(t) — F1 (]}, (42)

m;€[0,1]
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with terminal conditions f(T) = 0, with i € {0,1}. The associated first-order conditions

then read

L; Ly

=N,
T - L

(43)

0=q;—mo; = \j——
o — 0 [

for i € {0,1}.
Proposition 2.17 (Optimal solution without illiquidity). Suppose that 7} € [0,1] is a
solution to the first-order condition (43) fori € {0,1} and f°: [0,T] — R is given by

T T

A
(/\1,0+/\0,1)t/F *Ao,lsd 1,0 /F 1,08
e s)e s+ — s)e%ds,
[ e [P
t

Ao,1

0
t) =201
J() Ao+ AL

where

A
F(t) = go(my)e ! + T20gy () (e 0" — 70T,
1,0

gi(m) =1 + oy — %WZUZ-Q + XN In(1 —7Ly) + N In(1 — 7Ly ).
Then the value function when trading is allowed in both states, is given by
V(to, 9) = In(o) + f°(to)
forty € [0,T] and xy € (0,00).
Proof. A solution of the Hamilton-Jacobi-Bellman equation (42) for state 1 is given by

T
fl(t) _ 91/\(71) (1- e—/\l,o(T—t)) + /\LO/fo(S)exl,O(st)d&
1,0
t

Substituting this representation of f! into the Hamilton-Jacobi-Bellman equation (42) for
state 0, and setting

T
H(t):/fo(s)e_)‘l’osds

we obtain the following second-order ordinary differential equation

H"(t) + (Mo — Xoa1)H'(t) — M oH(t) = F(t),
with H(T) = 0 and H'(T) = 0. Note that up to the definition of F', this equation is
identical to (40). Thus, as in the proof of Proposition 2.15, we have

T T

A
(>\1,o+>\o,1)t/F —Xo18 g 1,0 /F A108 ]
e S)e S + S)e S.
/ ( ) )\071 + )\1’0 / ( )

Ao,1

0
1) = — 1
S Ao,1 + Ao
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2.4.2 Finitely many liquidity breakdowns

Now, we assume that ky < oo, hence the corresponding system of HJB equations can be
solved iteratively. Note that J%° is given by

J°(t, ) = In(x) + f0°(t) = (:1:)+(r0+ozo7r*—%(ﬂ*)Qag—l—)\oln(l—w*LO))(T—t),

where
Ly

1-— F*LO'

As in the previous section, for 1 < kg € N, we conjecture

JH(t,x) = In(x) + f47(t)

O:Oéo—Ug’N*—AO

and
JUR(t ) = In(x) + fUR(t, )

for a Cl-function f%* on [0, T] with f%*(T') = 0 and a C?-function f* on [0,7] x [0, 1]
with f1k0 (T, 7) = In(1—n¢) for all 7 € [0, 1]. The corresponding Hamilton-Jacobi-Bellman
equations read

0= s {ouow + ) + 200 |0 (1T ) = | by

w€[0,1 1—mLoa
0=0,f () — oflko(t ) +7(l —7)(ay — om)0, f1Ro(t, ) (45)
+ %79(1 — 2020, ROt ) + N [fl’ko (t, (1;[/1)) — fhRo(t, 7T):|

1-— 7TL1
+ g1(7) + Ao fOR (),

with gy and ¢; as before. Equation (44) leads to the following first-order condition for the
optimal stock proportion in state 0

Lo Lo1 m(1—Loy) 1 — Lo,
(PP W7 B W R W € ’ g

Note that the solution of the first-order condition is a deterministic function of time given
such a solution exists.

Proposition 2.18 (Indirect utility in illiquidity). Let 1 < ko € N and let © as in Propo-
sition 2.11. Given a C*-function fO%=1 . [0,T] — R, consider the function f1* .
[0,T] x [0,1] — R defined via the stochastic representation

T
flko t :/ fOko 1 +E[g1( ):|)€ A1,0(s— tdS—FE[lH( ~t7r€):| —A1,0(T— t)
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(i) Then fh*o is of class CY% on [0,T] x [0, 1] with

T
l
O flro(t, m) = /E [&ﬂr”gi( t”)} e Mol=tgs — B [67r7~rrfp’7r—~tﬂ } e Mo(T=t)
1 — 7wl
t
(ii) fh*o solves the HJIB equation (45).
Proof. Analogously to the proof of Proposition 2.11. ]

Corollary 2.19 (kg-invariance). Let 1 < kg € N and let f1*0 as in the previous proposition.
The first-order condition for the optimal stock proportion in state O coincides with the first-
order condition (34) when infinitely many liquidity breakdowns are possible.

Proof. The function 9, f"*¢ does not depend on the maximal number of illiquidity regimes
ko, and we have 0, f1*0 = 0, f' where O, f! is given in Proposition 2.11. O

It is well known that, in general, a logarithmic investor makes his investment decisions
myopically if continuous-time trading is possible. If liquidity breakdowns are possible, then
he adjusts his portfolio decision to take the threat of illiquidity into account, however, by
the previous corollary, he remains myopic in the sense that he disregards the number of
possible breakdowns. His optimal stock demand does not depend on the maximal number
of illiquidity regimes k.

Proposition 2.20 (Indirect utility in liquidity). Let 1 < kg € N and let 71y as in Propo-

sition 2.15. Suppose that there exists a continuous function 7 : [0,T] — [0,1] such that

m*(t) € arg m[ax] HO%o(t ) for allt € [0,T]. Given a CY?-function f4*0 :[0,T] x [0,1] —
m€l0,1

R, consider the function fO* :[0,T] — R defined via

T
fOko(¢ /)\0 LfPR (s, 70(8)) 4 go(m(5))] e o5t gg.

Then fO% s of class C' on [0,T], and fo% solves the HJB equation (44).

Proof. Tt is clear that f%* is of class C' on [0, T], and the second claim follows by differ-
entiating f%* with respect to t. O

Collecting the above results and applying the Verification Theorem 2.9 yields

Theorem 2.21 (Solution of the portfolio problem) Let ko € N. Assume that there exists
some w5 € [0,1] such that 0 = ag — 02Ty — A2 o’ and suppose that there exists a

continuous function = : [0,T] — [0,1] such that 7*(t) € arg 7{161[%7)%] HOY*(t, ) for all t €
[0,T] and 1 < k < kg. Then, the value function is given by

V (to, o, ko) = In(mo) + fO*(t0)
forty € [0,T], o € (0,00) and the optimal strategy is given by T 1 <oy + T Lix_ —ko}-
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2.4.3 Alternative proof of the convergence of the value functions

Next, we provide an alternative proof of the convergence of the value functions when
the maximal number of illiquidity regimes goes to infinity. This time, we consider the
corresponding HJB equations and apply Weissinger’s refinement of the Banach fixed point
theorem.

Recall Corollary 2.19 and suppose that the investor’s optimal portfolio strategy is given
by 7 : [0,7] — [0, 1]. Following the notation, introduced before, we define two auxiliary
functions hgy and hy. For ¢t € [0,7T] and s € [t,T], we set

ho(t) = go(m™(t)) + Ao E[In(1 — ﬁ;ﬁo(t)f)]e—/\m(T—t)

as well as )
hi(s,t) = E[gi(7L7M)],

~ * —L
whone () = 528k

yields

. Substituting the representation of f¥ into the one of f0o

() =

Tt~

T
[Ao,l{/(Al,ofo’k(’l(u) + E[gl(7}277}0(8))])ef)q,o(ufs)du
-+ E[ln(l _ ﬁ.;,fro(S)g)]ef)\l,o(Tfs)} + 9 (W*(S))]ef)‘ovl(sft)ds

ho(s)e 2015 s

Tt~

T T

-+ //[)\071)\1,0]!‘07160—1(“) + Ao,lhl(u, S)]6_/\1’0(u_8)_)\0’1(s_t)dudS,
t s

for 1 < ko € N. Thus, the operator which maps f%*0~1 to f%* is given by

T

T T
Alf](t) = /ho(s)e_/\o’l(s_t)ds + //P‘O,l/\l,of(u) +)\0,1h1(u73)]6_/\1’0@_8)_%’1(S_t)alu ds.
t s

t

Lemma 2.22. Let f and g be in C°([0,T],R). For each n € N we have

2n

n n TLT
[[A™[f] = A™[g]l|sup(o,r1) < (Mo A10) 7||f — 9 lsup(0,17)-

Proof. By induction we show that

A1) = A*[g](D)] < (Ao Ar0)"

(T —t)>
—|||f - g||sup([O,T])a
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for each t € [0, 7] and n € N. The statement is trivial for n = 0. Let ¢ € [0, 7] and assume
that the assertion holds true for some n € N. Then we have

T T
[A™HHf() — A g)()] = | / / Ao do(A"[f](u) — AP[g)(u))e Aot =201(=0) gy |
t s
T T (T )2
—Uu n
< ()\0,1)\1,0)n+1“f_gHsup([O,T])//Tduds
T

S ()\071)\170)714-1“]5 _gHsup([O,T] —t max/

s€[t,T]

(T _ t)Z(n—i—l)

< ()\0,1)\1,0)n+jL 1)

1f = gllsupio,))-

Next, we show that f° is a fixed point of A.
Lemma 2.23. The function f° is a fived point of the operator A, i.e. A[f°] = f°.

Proof. Note that we may rewrite the representation of f°, given in Proposition 2.15, in the
following way

T

1
/[)\0,16(/\0’1“1’0”)‘0’18 + A1) F(s)ds

0
= — —
F®) Ao+ Ao /

T

1
_ [)\0 16(/\0,1+>\1,o)t—>\o,1s + N 06/\1,08]
Ao1+ A / ' '
0,1 1,0 /

T
(o (50 4 Doy [ Blga(F e -+ do, Elln(1 - 750 T}

T

1
/ho(s)()\0716—0\0,14-)\1,0)(5—15) + Al,O)dS

:)\0,1‘1—/\1,0
T T

h —A1,0(u—s d )\ ()\0 1+A1,0)(s—1) o1\ n)ds.

)\01—1-)\10// 1w, s)e u B
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By the definition of A, we have

T T T
Ao 1A
_ /hO( —)\01 (s— tdS—l—// _0,111,0 /h (U)()\0’16—(/\0,1+/\1,0)(v—u) —|—>\170)d2}
t

)\01+)\10

T T
A1
oA / / hi(w, ) e~ AMo(w=0) 1, ()\3 1€—(>\o,1+)\1,0)(v—u) + Xo1A10)dv
)\0 1+ Ao ? o

+ Xo1hi(u, s) e o(u=s)=Ro.1(s=t) 1y, s,

Thus, setting

T T

T
Ao
Aho[fo]()_)\O?:_I)\?O/ds/dU/dUho )\0 e )‘01+)‘10”u)+)\10) —A1,0(u—s)—Xo,1(s—1)

+ / ho(s)e 20157 s

t

as well as

T T T T
Ao A
Ahl[fo](t) — Z0170 /ds/du/dv/dwh1 w,v) )\(2] e~ Po1tA10)(v= “)+)\01>\10)
¢

e—)\l,o(w—v)—)q,o(u—s)—)\o,l(s—t _{_//)\071}“ u,S>€_)‘1’0(u_8)_)\0’1(S_t)dudS

yields
A[fO)(t) = Ano[£O)(t) + An, [£°1(2).
Now, to prove A[f°] = f°, we will show that

T
1
Ahg[f0]<t> — m/h0(5>()\0,16(/\0’1+/\1’0)(8t)+)\1,0)d8 (46)
’ T
and

T T

A lf)t) = A01+A10 [ [ o) (0 e o e ). (4)
t s
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In order to establish (46) we consider the first term in the definition of A, [f°](t). We have

T T T
/ds/du/dv ho(v) (Ao, 1e” o TALo)E=w) Ly, ) emAolums) Ao (s 1)
t s u

T v u
= /[//()\0716_()‘0’1—’—)‘1’0)(”_“) + )\1,0)€_>\1’0(U_S)_>\0’1(S_t)ds du]ho(v)dv
t t

T v u

= /[/(/\0,16_(A°'1+’\1'°)(v_“) + )\1,0)/6()‘1’0_)‘0’1)S_)‘l’°“+’\°*1tds du]ho(v)dv

t t t
T v

/[/()\0,16()‘0’1+)‘1’0)(Uu) 4 )\1’0)<€)\0,1(t—u) . eAl’O(tiu))d’U/}ho(’U)d'U

t t
T v

/[/ o 167/\1,0(v7u)*/\0,1(v—t) — )Xo 167)\0,1(11711)7)\1,0(@7,5)

t ot

+ )\1,06/\0’1(75_”) — )\1706)‘1’0(t_u)du] ho ("U)dv

T
1 / (/\01 )\10) Y _ )\01 _ — )\10
_ L ) e 0,1(v—t) +(1—-—""2"e (Mo,1tA1,0)(v—1) + —= — 1| ho(v)dv.
)\1,0 - )\0,1 [ /\1,0 )\0,1 )\1,0 )‘0,1 0< )

t

- 1
Ao — Aot

B 1
Ao — Aot

Thus, by the definition of A, [f°](t) we obtain

T
1 PYED) A A
AnoLf7)(t) —/ho(v)()\o,l +)\1,0)€7’\°’1(v7t) + o710 01 210 =dou(v—t)
f Ao — Aoa Ao Aoa

+ (1 _ @) e~ (Ao,1+A1,0)(v—1) + M _ 1:| ho(v)dv
Ao
T

1

B m / ho(v)[()\()’l + )‘Lo)e_)\o’l(v_t) - ()\0,1 + )\1,0)6_)‘0’1(”_'5)

t

+ )\0716—0\0,1-&-)\1,0)(@—'5) + Al,O]dU
T

/ho(U)()\0716_(/\0’1+/\1’0)(v_t) + )\170)dU.

t

B 1
Ao,1 + A1

It remains to prove equation (47). As before, we start with rewriting the first term in the
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definition of Ay, [f°](t).

T

T T
/ds/d /dv/dwhl(w ’U) —A1,0(w— U)[)\g —(Xo,1+A1,0)(v— u)+/\01)\1 0] —A1,0(u—s)—Xo,1(s—t)

t v

v v

T T
:/dv/d / /duhl(w U>e—>\1,0(w—v)[)\3 16—)\071(v—&—s—u—t)—)\l,o(v—s)
t

+ Ao1A1 067)‘1’0(“*3)*&,1(3%)]

v

dw hy(w, v)e_)‘l’O(“’_”) /ds [— o Le o= =Ano(v=s) 4 A 16_)\0’1(S_t)]

t

dw by (w, v)e 0t ) {1 L 201 Oortano) -t _ 201 A0 a0
/\1 ,0 )\1,0

Hence, by the definition of Ay, [f°](t) we have

T T
1
A0 = 5 [ 0 [ w050 D+ e

+ Ao,1A1,0 (1 + @6_(>\0’1+)\1’0)(U_t) — —)\1’0 + Ao 6ﬂ\071(v_t)>}
Ao Ao

T
d d h —A1,0(w—v) /\2 —(Xo,1+A1,0)(v—t) Ao\ .
)\01+)\1o/ U/ whiw,v)e Daae FAardio)

Recall, the following generalization of the contraction principle.

Theorem 2.24 (Weissinger fixed point theorem). Let C' be a nonempty closed subset of a
Banach space (X, |.||). Suppose that K : C — C satisfies

|K"(2) = K"(y)|] < Onllz —yll Va,yeC

with > 0, < 0o. Then K has a unique fized point T such that

n=1
K7 (z) — z|| < Ze WK (z)—z|| Vel

Thus, an application of the previous theorem yields
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Theorem 2.25 (Convergence of the value functions). The sequence (f%*0)y cn converges
uniformly towards f° and we have

o

nTQn
1775 = £ llsup(orry < (Z%Mw) W) 17 =

n=ko

sup([0,77) -

Proof. The assertion follows from Lemma 2.22, Lemma 2.23 and Theorem 2.24, since we
have Z ()\071)\1’0)nTn_2!" < 00. ]
n=1

2.4.4 Generalization with three regimes

As a generalization of the model presented before, we now consider an economy with three
regimes and possibly infinitely many regime shifts. We think of state 0 as the normal state
of the market, state 1 corresponds to an illiquidity state in which trading is not possible
at all. In addition, we introduce a third regime which we call state 2. For instance, state
2 can model an economic crisis where trading is possible, but the excess return is lower
and the volatility is higher than in the normal state.

As before, in each state, the stock follows a jump-diffusion process where «; denotes the
excess return and o; denotes the volatility, ¢ € {0,1,2}. The size of a relative stock price
jump within state ¢ is denoted by L; and its intensity is denoted by A;. Further, A; ; stands
for the intensity of a regime shift from state i into state j # 7, and the corresponding loss
rate is denoted by L, ;. The value function is given by

V(to, Zo, OO) = sup E[ID(X;OJZ,}EO,IQ,OO)]'

70 72

Similar to Theorem 2.9 one can show that for i € {0,2}, the Hamilton-Jacobi-Bellman
equations corresponding to an economy with three different states are given by

4 : 1
0= sup {atjz(t,x) + x(r; + may) 0, J (t, ) + 2x 77070, . (t, 7)
mi€[0,1]

+ )\Z[Jl(t,fﬁ(]_ - 7TZLZ>) - J%t,l‘)] + )\Z‘yg_i[JQ_i(t, Jf(l — ﬂiLi,Q—i)) - Jz(twl‘)}

+ i1 [Jl(t,x(l —miLiq), ”1(%21)) J(t, )} }

1
0=0,J"(t,z,7) + z(ry + w10, J ' (t,z,7) + 2:6 2030, . (t, 2, )
+ 27 (1 = m)03 0y n I (t, 2, 7) + (1 — ) (e — o3m) 0 I (¢, 2, 70)
1 — L
+ = (1 = 1)2020, - (t, z,70) + My [Nt 2(1 — wLy), (1 )
2 ’ 1-— 7TL1
+ Mol S0t 2(1 — wLig)) — JH(t 2, )] + Mo 2 (¢, 2(1 — wLy o)) — JH(t, 2, 7)),

——) — J(t,z,7)
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subject to the boundary conditions J*(T,z) = In(z) and JY(T,z,7) = In(z(1 — 7¢)) for
all z € (0,00) and 7 € [0,1], where J° = J%>® Jl = jbo J2 = J2> and ¢ again models
liquidation costs. For i € {0,2}, we conjecture

ky = o gl

][ ), 00

Ao C 0

]2 ,00

Figure 20: Economy with three regimes and possibly infinitely many liquidity breakdowns.

J'(t, ) = In(x) + £ (1)
as well as
JH(t, @, m) = In(z) + f(t,7),
for C!-functions f* on [0,7] with fY(T) = 0, and a C"*-function f! on [0,7] x [0, 1] such
that f1(T,7) = In(1 — 7f) for all 7 € [0,1]. Then the Hamilton-Jacobi-Bellman equations
read

0= sup {@fi(t) + gi(m) + Xia {fl <t7

m;€[0,1]

7Tl(1 — Li,l)
1— 7TiLi,1

) - f"(t)} s [P0 - £ }
0= 0" (07) + (1 = ) — G3m)O, £ (t,7) + 2221 = w2030, (0.7) + ga ()

e [ (82— )]+ dalr 0 = 7w+ sl 0 — 7

for i € {0,2} and where g; is given by

1
g;(m) =r;+a;m — §7r20j2~ +AjIn(1 —7L;) + Z Njgln(l —=wLjy), je{0,1,2}.
J#ke{0,1,2}
This leads to the following first-order conditions for the investor’s optimal portfolio strate-
gies mF in states 7 € {0, 2}

L, L, Lio;
0= P 27,—)\1 _>\i . _)\z —i—7
@ o7 1— 7riLi a 1-— 7TZ'L7;,1 2 11— 7riLi,2—i
7TZ(1—L11) 1—L11
>\i aﬂ' ! ta : , :
+ 1 f < 1 — 7T7;Li71 (1 — 7TZ'L7;71)2

As before, 7§ and 7 are deterministic functions of time which only depend on 9, f1.
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Proposition 2.26 (Indirect utility in illiquidity). Given C' functions f°, f>: [0,T] — R
consider the function f': [0,T] x [0,1] — R defined via the stochastic representation

T
/ )\1 of )+ M 2f (s)+ E [91(77'?”)}) o~ (AroFAL2)(5—1) 7
t

+ E [In(1 — 7570)] e~ Protrn2) (=)

Y

where 7 1s given as in Proposition 2.11.
(i) Then f' is of class C? on [0,T] x [0, 1] with

T

&Tfl(t, 7T) = / E[aﬂ_ﬂ't u gi( )]6—(>\1,0+>\1,2)(s—t)d8

t

14
—F {aﬂﬁ%ﬂl——frmé} 6*()\1,0+)\1,2)(T7t).

(ii) f* solves the Hamilton-Jacobi-Bellman equation for state 1.

In particular, 0, f* does not depend on f° or f? and thus, as before, the first-order condi-
tions provide algebraic equations for the optimal stock proportions.

Proof. Analogously to the proof of Proposition 2.11. ]

This time, substituting f! defined as in the previous proposition, into the Hamilton-Jacobi-
Bellman equations for states 0 and 2 yields a linear system of two second-order differential
equations. As opposed to the setting with only two different states, by reduction to first-
order, we now end up with a four-dimensional system of first-order ordinary differential
equations. We are able to explicitly determine the roots of the corresponding characteristic
polynomial of order four and thus may derive a representation of f° by applying the
variation of constants method and Cramer’s rule. The following proposition provides such
an explicit representation of the investor’s indirect utility function in the normal regime,
if A\oq = A21. We think of state 1 as being triggered by a catastrophic event leading
to a closure of the stock exchange, whereas state 2 corresponds to an economic crisis
during which the investor can still trade. Thus, the assumption A\g; = A2 means that the
occurrence of a catastrophic event does not depend on whether the economy is currently
in crisis or not.

Proposition 2.27 (Indirect utility in normal regime). Suppose that there exist continuous

functions 7 : [0,T] — [0,1] such that 7} (t) mazimizes the Hamilton-Jacobi-Bellman
equation corresponding to state i, for all t € [0,T] and ¢ € {0,2}. Assume that \g1 = A1
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and let \j. = Y A\, denote the aggregate intensity of leaving state j. Consider the function
ki
2 [0,7T] — R given by

T
fo(t> _ eAl"t{Cl /e()\o,er)\z,.AL.)(ts)(FO(S) . FQ(S))dS

t
T

+ Co / 6)\2’1(15_8)[()\170 — )\270)F[)(S) + ()\172 — Aoyz)Fg(S)]dS

t
T

+ c3 / €_A1"(t_s)[()\1,2/\2,0 + A10A2 ) Fo(s) + (AogA1. + A 2Ae1) Fa(s)]ds},

t

where ¢; for j € {1,2,3} are constants given by (51) (see below) and

(2

T
Fi(t) = gi(n} (t))e_’\l"t + Nin / E[gl(ﬁ?ﬁi(t))]e_’\lfsds + N Eln(1 — ﬁ;ﬁi(t)é)]e_’\l"T
¢

o T () — Lig)
= L,

fort € [0,T] and i € {0,2}. Then f° is of class C', and f° solves the Hamilton-Jacobi-
Bellman equation for state 0.

Proof. Let f! be given as in Proposition 2.26. Then, for i € {0,2} we have

T
it 7)) = / (Mof*(s) + Miaf?(s) + B [ga (RLTO)]) e 700 ds
t
o [ln(l _ ﬁ;ﬁi(t)f)} e M (T=1),
Thus, by the Hamilton-Jacobi-Bellman equations for state 0 and state 2
0= 0uf'(t) + gi(m} (1) + N Lf (£, 7:(1)) — /(O] + NiailF77 (1) = F1(B)],

we obtain the following integro-differential equations
T
0= f (e ™" + Xis /(Al,ifi(s) + Ao f2i(s))e M 0ds
t

+ Niosi f2TH et = N Fi e M Fy(t),
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for i € {0,2}. Substituting
T
H;(t) = /fi(s)e_)‘l"sds,
t

where i € {0,2} into these equations, we obtain a linear inhomogeneous system of two
second-order constant-coefficient differential equations

Hy(t) + (A1, — Ao ) Ho(t) — AoiAnoHo(t) — Mg (t) + Ao Hy(t) = Fo(t)  (48)
Hy(t) + (A1, — Ao ) Hy(t) — A A 2Ha(t) — Ao AoHo(t) + Ao oH()(t) = Fa(t),
with terminal conditions Hy(7T") = 0, H)(T) = 0, Ho(T') = 0, H5(T') = 0. By definition of
H,, the function f° is given by
FO(8) = — Hy(t)e .

Substituting (ug,u1) = (Ho, H})) and (vg,v1) = (Ha, H}), the system (48) can be trans-
formed into the following system of first-order ordinary differential equations

ug U 0
Ull . Ui F[)
vy | 4 Vo o | (49)
vy U1 Fy
where A is given by
0 1 0 0
A= AoaALo Ao — A1 AopAiz —Aoe
0 0 0 1

A2,1A1,0 -2, A2iA12 Ag. — Aq,

The characteristic polynomial of the corresponding homogenous system reads

xa(p) = p(p+ 2,) (0 + pp + q),
where
P = /\17. — )\0’. — )\2’,
and
g =X01(A2. — A1) + A21(Ao2 — A12).

Thus, the eigenvalues of A are explicitly given by py = 0, us = —A;. and pzq = —p/2 £

vV (p?/4 —¢q). Note that in case of A\g; = Ao, we obtain us = Ay as well as uy =
Ao — A1+ A20. Due to the terminal constraint (ug, u, vo, v1)*(7") = 0, the general solution
to the homogeneous system vanishes. Thus, the general solution to (49) is given by a
particular solution and therefore, by the variation of constants method, we have

(o, w1, vo, v1)'(t) = ij(t)yj(t),
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where (y;)1<j<4 is a fundamental system of the corresponding homogenous system, i.e.

Y1,---,¥ya are linearly independent and satisfy y; = Ay; for each j € {1,...

(wj)1§j§4 are such that
4
> wi(ty;(t) = (0, Fo, 0, ) (¢).
j=1

By Cramer’s rule we obtain

(UO, U1, Vo, Ul Zyj / ( ) d87

det y17 Y2, Y3, y4)< )

,4}, and

(50)

where D; denotes the determinant of the matrix (y1,y2,ys,ys) where the j-th column is
replaced by (0, Fy, 0, F»)!, for each 5 € {1,...,4}. Note that in case of four pairwise
different real eigenvalues, the exponential ansatz yields that a fundamental system is given
by y; = vjets, where v; denotes the eigenvector corresponding to ;. Eventually, rewriting

(50) for A\o1 = Ag1 we get
T
HY(t) = - / (Poatha 29 (Fy(5) — Fy(s))ds

A1 (A g = Ao 0) Fols) + (A2 — Ao2) Fa(s))ds

et [()\1 9A20 + A0, ) Fo(s) + (Ao2A1,. + A1 2A21) Fa(s)]ds,

where
. ()\(2),2 — A2d21 + Ao2(Aa. — A1) (Ao2A20 — Aroda,. + Aao(Ae. — A1 2)) (51)
' (Ao2 = A1+ A20)(Ao2 + A2 ) (Mo2A20 — A1 pAe,. + Ao (Ao — A1 2))
o = A21
(A1 — Aoz — A20) (A1 4+ A21)
P 1
T O ) o A
O

Note that (50) also provides a representation for f°if A\g; # Ag1. The function f? possesses

a similar representation as f°.
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Given the assumptions of the previous proposition, set A\go = A2 = 0. Then we have
Fy = F, with F' given as in Proposition 2.15. Further, the constants (¢;)1<i<s simplify to

cT = 0
Ao,1
Cy =
(Ao — A20) (A0 + o)
1
C g
K ()\1,0 + )\0,1))\2,~

and therefore

T
@) = eM’Ot{L /e’\o’l(tS)F(s)ds + &e’\l’O(ts)F(s)ds}

Ao + Ao / Ao+ Aot
A ’ A ’
S UL S (>\0,1+>\1,0)t/F —Xo,184 1,0 / A1,08
= e se s+ F(s)e ds.
Ao+ Ao / (s) Ao+ Ao / (s)

Thus, if the third state cannot be reached, i.e. Ao2 = A2 = 0, then the value function
coincides with the one when there are only two possible regimes, given in Proposition 2.15.

In Section 2.6 we wish to determine the initial capital which an investor who cannot trade
in state 1 would be willing to give up if he were able to trade in all states. Therefore, we
also derive the value function when trading is allowed in all states. A verification result
analogous to Theorem 2.9 holds true and the corresponding HJB equations are given by

0= sup {OF(t) +g5(m)+ Y Aulf (&) = PO} (52)

m;€[0,1] J#ke{0,1,2}

subject to the terminal constraints f/(7) = 0, and where g; is given as before, for j €
{0,1,2}. This leads to the following first-order conditions

L, Ly
O=q, —m02 —\im 2 _ E N ——F 53
R jl_ﬂij j#ke{0,1,2} J7k1_7erj’k =
] 1

for the optimal stock proportions in states j € {0, 1,2}.

Proposition 2.28 (Optimal solution without illiquidity). Assume that Ag1 = Aa1 and let
Aj. = > Aji for j €{0,1,2}. Suppose that 7} € [0, 1] solves the first-order condition (53)
=
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for j € {0,1,2} and let f°: [0,T] — R be given by

T

O(t) = e ey /e(AO’Q“Q"_’\l*‘)(t_S)(Fo(s) — Fy(s))ds

t
T

+ ¢y / €>\2’1(t_8)[()\1,0 — )\270)F0(S) + (/\172 - )\072)F2<S)]d5

t
T

+ c3 / €_M“(t—s)[(>\1,2/\2,0 + A o2 ) Fo(s) + (Mo2A1. + A12Ae1) Fa(s)]ds},

¢
where ¢; for j € {1,2,3} are given by (51) and

i
AL

Fy(t) = gi(m)e vt 4 Zolg () (e Mt — e T,

fort € [0,T] and i € {0,2}. Then, the value function when trading is allowed in each
state, 1s given by

V(to, ZE()) = ln(l‘g) + fo(to)
forty € [0,T] and xy € (0,00).

Proof. A solution to the HJB equation (52) for state 1 is given by

_1(1 . e—)\LA(T—t)).

T T
1
1) = i / fO>s)e D ds 4 A / F2(s)e 6 Dds + gy (n7) X
t t

Setting the above representation of f! into the HJB equations (52) for states i € {0, 2}

0= 0uf"(t) + g:(m}) + Aia[f1(8) = F1 (O] + Xia—i[F*7 (1) = F1(1)];

we obtain

T

T
0= f* (t)e ™" + Xirdio / fOs)e™>ds + /\i,l/\l,Q/f2(8)6_>\l"sd8
¢ t

o )\Llfi(t)e—)\l,,t + )\i,Q—ifZ_i(t)e_Al’At o )\i,Z—ifi (t)e_Al"t + E(t)

Substituting
T

H(t) = [ Fits)e s

t
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into the previous equation, we get
Hy(t) + ()\17. — )\Z7>H{(t) — Ai,lAl,iHi(t) — /\i,1>\172_iH2_2‘(t) + )\i,2—iHéfi<t> = Fz(t)

for i € {0,2}. This system of two second-order differential equations coincides with (48).
Thus, as in the proof of Proposition 2.27 we obtain

T

) = ey [ eorsdn ) ()

t

T
+ Co / 6>\2’1(t_s)[(>\1’0 — )\gyo)Fo(S) + ()\1,2 - /\072)F2(8)]d8
t

+ C3 67)\1"(1‘/78)[()\1,2)\2,0 + )\170)\2,.)F0(8) + ()\0,2)\1’. + )\172)\2,1)F2(8)]d8}.

Tt~

2.5 Power utility

In this section, we study the investor’s portfolio problem (31) when only finitely many
regime shifts between state 0 and state 1 are possible and where U(z) = % with v # 0.
This problem can be solved iteratively. In addition to Theorem 2.6 and Corollary 2.7 we
prove that the optimal strategies when only finitely many liquidity breakdowns can occur,
converge pointwise to the optimal strategy with possibly infinitely many regime shifts.
Throughout this section we assume that Ly = Ly = Ly; = 0 and that oy = 0. Note that

J%0 is given by

02
JO,O(t’ x) — m_’ny,O(t) _ ff_'yev(ro—i-% (17'}%0(2))(T_t)
v gl

and the optimal stock proportion is given by

(&%)
(1—7)ag

T =

For 1 < kg € N we conjecture

as well as



for a C'-function fO* on [0, 7] with f*(T) =1 and a C"*function f'* on [0,7] x [0, 1]
satisfying fU* (T, ) = (1 — wf)Y for all 7 € [0,1]. The corresponding HJB equations read
1
0= sup {2 (3% (0) ~ do) 80 + Do P00, |
ref0,1] LY
0 =0 f o (t, ) — dy(m) fr (b, ) + m(1 — )y O f1F0(t, ) + Aio(1 — 7Ly o) foR7H(2),

where do(m) = Aoy — Y(ro + mw) + 37(1 — y)7%03 and di(7) = Ao — y(r1 + aym) for
7w € [0,1]. The Hamilton-Jacobi-Bellman equation for state 0 leads to the following first-
order condition for the optimal stock proportion in state 0

0 = 7o f** () = y(1 = )mog f () + Aoadr fHH(E, 7). (54)

As before, the solution to the first-order condition is a deterministic function of time given
such a solution exists.

Proposition 2.29 (Indirect utility in illiquidity). Let 1 < kg € N and let f%*=1:[0,T] —
R be a given function which is of class C* on [0,T]. Consider the function f1* :[0,T] x
[0,1] — R defined via

T
fl,ko (t; W) _ )\1’0 / e(vnf}q,o)(sft)[l + 7T<6a1(sft)(1 _ Ll,o) _ 1)]7f0’k°*1(5)d5

t
+ eOm=AL)T=D] 4 (e T (1 — ¢) — 1)].

Then f1*o is of class CY% on [0,T] x [0,1] and f1* solves the HJB equation for state 1.

Proof. Since f%*0~1 is continuously differentiable, it follows that f%* is of class C*2. The

second assertion follows by differentiation with respect to ¢ and . ]

Proposition 2.30 (Indirect utility in liquidity). Let 1 < ko € N and suppose that there
exists a continuous function m; : [0,T] — [0,1] such that 7 (t) € arg m[ax] HO%o (¢ 77)
wel0,1

for all t € [0,T]. Given a CY2-function f4* :[0,T] x [0,1] — R, consider the function
fORo [0, T] — R defined via

T

R

t

R
do(j;, (u))du — do(my, (w)du

fl’k()(U,?T;:O(U))dU + e ¢

Then fO% s of class C' on [0,T], and fO% solves the HJB equation for state 0.
Proof. Analogously to the proof of Proposition 2.20. ]

Collecting the above results, by the Verification Theorem 2.9, we obtain
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Theorem 2.31 (Solution of the portfolio problem). Let ky € N and assume that for

each k < ko there exists a continuous function w} : [0,T] — [0,1] such that 7i(t) €
arg m[ax} HYF(t,7r) for allt € [0, T). Then the value function is given by
m€|0,1

xg 0,k
V(to, zo, ko) = 7f )

for to €[0,T], zo € (0,00) and the optimal portfolio strategy is given by my _x .

Now, we derive a convergence result for the optimal strategies. We set J° = J%>< J! =
Jhee HO = HO [l = H%°° and conjecture

T

0(4 :_V 0
T ey =)
and o
J (taxaﬂ-)ZVf (t77T>

for a C'-function f° on [0, 7] with f%(7T) =1 and a C*?-function f! on [0,7] x [0, 1] such
that f1(T,7) = (1 — nf)? for all # € [0,1]. Then, the corresponding Hamilton-Jacobi-
Bellman equations read

0= sup {2(2£°0) = () + Yos1'0.7) | (59
0= 00 (0,7) — b ()71 7) + 70— np (4 m) + Ao~ 7L L), (56)

where dy and d; are as before. Equation (55) yields the following first-order condition for
the optimal stock proportion in state 0

0= yaof*(t) = ¥(1 =) mog fO(t) + Ao f1(t, 7). (57)
Proposition 2.32 (Indirect utility in illiquidity). Let f°:[0,7] — R be a given function
which is of class C' on [0,T]. Consider the function f':[0,T] x [0,1] — R defined via

T
it m) = Alvo/e(m”l—)\l,o)(s_t)[l + 7T(ecxl(s—t)(l — Lig) — D] fO(s)ds
t

+ =200 (e T=0 (1 — 1) — 1)].
Then f' is of class C*? on [0,T] x [0,1] and f' is a solution to the equation (56).
Proof. Analogously to the proof of Proposition 2.29. ]

The following proposition states that 0, f1¥ converges uniformly towards 9, f! on [0, T] x
0, 1], if the maximal number of liquidity breakdowns goes to infinity.
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Proposition 2.33. Suppose that for each kg € NU{oo} there exists a continuous function
T, o 0,T] — [0,1] such that m; (t) € arg m[%>1<] HO%o(t ) for all t € [0,T]. For each
mell,

ko € N, let fY* be defined as in Proposition 2.29 and suppose that there exists a C'-
function f° on [0,T] which satisfies (55), with f' as in Proposition 2.32. Then, we have

sup 0, f1F0(t, 1) — O fL(t, )| — 0 as kg — oo.
(t,m)€[0,7]x[0,1]

Proof. Let 1 < ky € N. Since we may interchange differentiating and integrating in the
representations of 9, f1*0 and 9, f!, we have

sup \&rfl’ko (t,m) — &rfl(t, )|

(t,m)€[0,7]x[0,1]

T
_ /\1’0 sup |7/6(7r1—>\1,o)(8—t)[1 + ﬂ.(em(s—t)(l _ Ll,o) _ 1)]7—1
(t,m)€[0,T]x[0,1]
(e (1 = Lyg) — 1)(f¥%7 (s) — f(s))ds |

<o T sup [fOR71(s) — fO(s)]
s€[0,7T

sup | yelm AL E=0] (e G (1 — Ly ) — D] e G0 (1 = Lyg) — 1) .
7€[0,1], 5,t€[0,T]

The second supremum is finite, since by assumption we have L;y < 1. By Theorem 2.9 we

have V (to, g, 00) = %fo(to) for all ¢y € [0, 7] and o € (0, 00). Thus, the assertion follows
from Theorem 2.31 and Theorem 2.6. [

Remark 2.34. Similar as in Proposition 2.13, the optimal strategies are uniquely deter-
mined by the solutions to the first-order conditions if, for instance, a; < 0.

Thus, by comparing the first-order conditions for ky € N and ky = co we obtain pointwise
convergence of the optimal strategies.

Corollary 2.35 (Convergence of the optimal strategies). Suppose that oy < 0 and that
there exists a C'-function f° on [0,T] such that (55) holds true, where f' is as in Propo-
sition 2.32. Assume that the first-order conditions (54) and (57) admit solutions my; (t) €
[0,1] for each t € [0,T) and 1 < kg € NU{oo}. Then, for each t € [0,T] we have

T (1) — T (t)  as kg — oo,

Proof. Let t € [0,T] and let (7, (t));>1 be a subsequence of (7} (t))r>1. Since 7 (t) € [0,1]
for each k& > 1, there exists a subsequence (7} (t))m>1 which converges. Theorem 2.9

implies that V (o, zo, 00) = %fo(tg) for all ¢y € [0,7] and z( € (0, 00). Thus, by Theorem
2.31, Theorem 2.6 and Proposition 2.33 we obtain

0= lim [yapf™m () = y(1 = y)my, (o5 (t) + Xoa0n fHHm (t 7y, (1))
=100 f°(t) = (1= 9) lim (005 £°() + Noade (¢, lim 7, (1)
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The solution to the previous equation is uniquely given by 7% (¢). Thus, we have shown
that each subsequence of (7} (f))reny has another subsequence which converges towards
(). O

Again, since we wish to quantify the investor’s loss of utility due to the presence of illig-
uidity, we briefly discuss the portfolio problem when trading is allowed in both states. The
corresponding HJB equations are given by

1 1
0=sup {= (A1) + [5(ro +mo0) + 57(y = Dot | 2 (1)
mo€l0,1] *

F hoalfMo () = o)) }

0= sup {Z(a ) + 0+ man) ()
+ Aol(L = L) R (1) — o))

with terminal conditions f“%(T") = 1, with i = 0, 1.

Proposition 2.36 (Optimal solution without illiquidity). Assume that oy < 0, let 1 <
ko € N and fort € [0,T) let

T 2 2
FoR(t) = Ao / fl’ko(S)G(WM%“—af%“%}%o’l)(sit)ds 4 Lrora gl denTn

t

Y

where

)

T
fl ko — )\1 0 / e ’lei/\l’o)('s*t)fo’k()il(5)d8 + e(’Y"'l*)\l,O)(T*t).
t
Then, the value function when trading is allowed in both states is given by

ffg 0,k
V(to, zo, ko) = 7f ()

forty € [0,T] and xy € (0,00).

Proof. Since we have o1 = 0 and oy < 0, the optimal stock demand 7§ € [0, 1] for state 1
is given by 77 = 0. Thus, a solution to the HJB equation for state 1 is given by

T
flJfo (t) = Alo/e(’leAl,O)(St)fO’k01(5>dS + eOri=ALo)(T—1),
t
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The solution to the first-order condition corresponding to the HJB equation for state 0 is

given by
Qo

Ty = 7
" (1—7)a3

and therefore,

T a2 (¥2
fo’ko (t) _ /\01 /kaO(8)6(7[T0+2(1_2)08}_/\0,1)(5_t)d8 + e(’Y[TO‘F%ﬁ}_)\O,l)(T_t)
t

solves the HJB equation for state 0. O

2.6 Numerical illustrations

Firstly, we wish to illustrate the convergence of the value functions and strategies in the
markets with finitely many liquidity breakdowns to the corresponding objects in the market
in which infinitely many regime shifts are possible. We choose Ay; = 0.2, i.e. we consider
a situation where on average a liquidity breakdown occurs every five years. Furthermore,
we assume that the average duration of a liquidity breakdown is one month, i.e. A\; o = 12,
and that 7o = r; = 0.03, oy = 0.08, oy = —0.03, 09 = 0.25, and L1y = ¢ = 0.3. The
other parameters are assumed to be zero. This example is similar to the situation at 9/11,
where the NYSE was closed for four days after the terrorist attacks and reopened with a
loss of 10%. However, in order to get more pronounced effects, we use higher loss rates and
a longer average duration of the liquidity breakdowns. The investor is assumed to have a
power utility function with v = —3. The percentage of initial wealth which an investor
who cannot trade in state 1 would be willing to give up if he were able to trade in both
states will be denoted by Axz. Figure 21 depicts Az in dependance of the maximal number
of liquidity breakdowns ky. It can be seen that this percentage converges if the number
of possible breakdowns increases. Figure 22 depicts the convergence of the strategies and
the non-wealth dependent parts of the value functions, f%*0. As can be seen from this
figure, the value functions converge extremely fast. Since v is negative, these functions are
increasing with respect to kg. The lowest line corresponds to f%°, the second lowest line to
%! and so on. The portfolio strategies converge to an almost straight line that intersects
the y-axis around 0.061. The upper line corresponds to the optimal strategy if at most one
liquidity breakdown can occur, the second upper line to the optimal strategy if at most
two breakdowns can occur, and so on. The investor’s optimal stock demand for ky = 0 is
given by (1_‘%% = 0.32. These figures illustrate the results of Theorem 2.6 and Corollary
2.35.
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Figure 21: Percentages by which the initial capital can be reduced to get the same utility
as in models where trading is allowed in both states.

)\0’1 )\1’0 Ll,O 14 T (0)( ) Ax (%)

0.01 03 05 05 10 66.34 (16.69) 4.72 (1.20)
0.01 03 05 05 30 66.26
001 03 05 05 50 66.26
001 03 05 0 30 66.26 (16.66) 12.48 (3.30)
0.01 03 09 09 10 52.29 (13.66) 8.27 (2.08)

(16.69)
(16.66)
(16.66)
1360
0.0l 03 09 09 30 5228 (13.65) 22.71 (6.11)
(13.65)
(17.00)
(17.00)
(17.00)
(13.84)

16.66

13.64 (3.36)
21.74 (5.99)

0.01 03 09 09 50 52.28(13.65) 34.88(9.97)
001 1 05 05 10 67.39(17.00) 4.59 (1.16)

000 1 05 05 30 67.39(17.00) 13.18 (3.42)
000 1 05 05 50 67.39(17.00) 21.43 (5.66)
002 03 05 05 30 54.98 (13.84) 22.55 (6.20)
002 03 09 09 30 3647 (9.44) 32.67 (9.34)

Table 1: Percentaged change of initial capital Az and time-0 optimal portfolio demands
7(0). The values in brackets correspond to U(z) = %
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Figure 22: Optimal portfolios and non-wealth dependent part of the value functions.
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Figure 23: Optimal portfolios and non-wealth dependent part of the value functions.
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Secondly, we wish to analyze an important example for a major trading break that hap-
pened in the aftermath of World War IT in Japan. At that time, the Tokyo Stock Exchange
was shut down for almost four years reopening with a loss of more than 90%. We calcu-
late the percentage of initial capital Az which a log investor and a power utility investor
(v = —3) would be willing to give up in order to be able to trade in both states. Due to our
results above, we can approximate the case of ¥ = —3 by a model where only finitely many
liquidity breakdowns are possible. Since \g; is small, it is sufficient to consider a model
where at most four jumps into the illiquidity state can occur, i.e. ky = 4. For ky greater
than 4, the results are virtually identical. For the log investor, we use our explicit solutions
for kg = oo. Table 1 summarizes our numerical results for different parameterizations of
the model. The variable 7*(0) denotes the time-0 optimal stock demand of an investor
who is not able to trade in state 1. We assume that

00=025,01=0,Ly=Ly =Lo1 =0, 79 =7r1 =0.03, ap = 0.05 and a; = —7y.

Thus, the stock dynamics are deterministic in state 1. When leaving state 1 the stock loses

a fraction of its value, i.e. L1y > 0. Since Ly = Lo = 0, the optimal stock proportion in

state 0, when trading is allowed in both states, is given by 2% = 80% for the log investor,
0

and U*O‘TO)U(Q) = 20% for the power utility investor, respectively. As mentioned above, since
o1 = 0 and a7 < 0, the optimal stock demand for state 1, when trading is allowed in both
states, vanishes. The parameters Ao ; and A; o are chosen in order to mimic situations such
as in Japan after World War II. For instance, the parameterization A\g; = 0.01, Ay o = 0.3,
and L;o = 0.9 implies that, on average, once in a century the illiquidity state is reached
and, on average, this state is left after three and one-third years triggering a stock price
decrease of 90%. In this particular case, a log investor with a horizon of T' = 30 years
would be willing to give up 22.71% of his initial wealth. This is due to the fact that an
investor who is able to trade can avoid the loss that is triggered by a jump from state 1
to state 0. He will sell his stocks once the economy is in state 1 and thus use the money
market account as a “safe harbor”. If the investor cannot trade, then he will not be able
to avoid this loss. For this reason, he invests considerably less of his wealth into the risky
asset. Figure 23 depicts the optimal strategies and the non-wealth dependent parts of
the value functions in this situation for the power utility investor. Again, the upper line
corresponds to the optimal strategy if at most one liquidity breakdown can occur and the
lowest line corresponds to the optimal strategy if at most ky = 4 liquidity breakdowns
are possible. As for the value functions, the lowest line corresponds to f%° and the upper
line corresponds to f%*. As Ag; is much smaller than A, it is likely that at time T the
economy is in state 0. Therefore, setting ¢ = 0 has only a small impact on the percentaged
change of initial capital, which can be seen in the fourth line of Table 1. However, if the
loss rate L increases from 50% to 90%, then the percentaged change of initial capital
increases significantly. Increasing A;o to 1 results in a small change indicating that the
effect of illiquidity is small if the investor does not suffer additional losses. The percentaged
change of the initial capital, however, strongly depends on the intensity \o; modeling the
probability that the exchange is closed.
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Next, we reconsider the previous example of the Tokyo stock exchange, including a third
regime which models an additional economic crisis, where trading is still possible. We
consider an investor with a logarithmic risk preference and suppose that infinitely many
regime shifts are possible. As before, we assume that

00=025,01=0,Ly=Ly =Ly =0, 70 =7r1 =0.03, ap = 0.05 and a; = —7y.

We consider the same situation as in the fifth line of Table 1, i.e. A\g; = 0.01, Ly = 0.9
and ¢ = 0.9. However, the condition A\ o = 0.3 is replaced by Ao+ A1 2 = 0.3 such that
the illiquidity state is, on average, still left after three and one-third years. Further, we set

)\072 = 003, )\270 = 1, L270 = 0, )\2,1 = )\071, L271 = O, L172 =0.9 and To = 0.03.

Note that if we had oo = 0y and as = «g, then state 2 would be identical to state 0.
Thus, if there were no losses except for the ones when leaving state 1, i.e. if we also had
Ly = Lyo = 0, then the investor’s indirect utility, as well as Az, would be exactly the same
as in the setting of the fifth line of Table 1 where there are only two regimes. However, here
we set 0o = 0.3 and as = 0.02, that is we assume that the risky asset in state 2 behaves
worse than in state 0. Thus, the indirect utility in this example is less than the indirect
utility in the corresponding example with only two regimes. Further, since the situation in
the liquidity states gets worse, the investor becomes more indifferent upon whether trading
is allowed in state 1 or not, and therefore Ax becomes smaller.

/\170 A 2 L072 /\2 LQ T WS(O)(%) W;(O)(%) Az (%)

L,
03 0 0 0 0 30 52.28 8.30 22.23
03 0 0 0 0 50 52.28 8.30 34.19
03 0 02 O 0 30 44.88 8.30 18.24
03 0 02 O 0 50 44.88 8.30 28.49
03 0 02 05 0.1 30 44 .88 0 18.17
03 0 02 05 01 50 44 .88 0 28.37
02 01 O 0 0 30 52.28 8.30 22.18
02 01 O 0 0 50 52.28 8.30 34.12
02 01 02 0 0 30 44.88 8.30 18.21
02 01 02 O 0 50 44 .88 8.30 28.43
02 01 02 05 01 30 44 .88 0 18.12
02 01 02 05 01 50 44.88 0 28.30

Table 2: Percentaged change of initial capital Az and time-0 optimal portfolio demands
75(0) corresponding to states i € {0, 2}.

In the first example of Table 1, the illiquidity state cannot be followed by an economic
crisis, whereas for the second example we assume that A\ = 0.2 and A\; 5 = 0.1, i.e. with
probability % the illiquidity state is followed by state 2. In both cases, we obtain the same
optimal strategy. In particular, when we also include jumps with loss rate L, = 0.1 and
intensity Ay = 0.5 within state 2, then a pure bond investment becomes optimal as long as
the economy is in the crisis state.
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