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Abstract We present an extensible encoding of object-oriented data
models into higher-order logic (HOL). Our encoding is supported by a
datatype package that enables the use of the shallow embedding tech-
nique to object-oriented specification and programming languages. The
package incrementally compiles an object-oriented data model, i.e., a
class system, to a theory containing object-universes, constructors, and
accessor functions, coercions (casts) between dynamic and static types,
characteristic sets, their relations reflecting inheritance, and co-inductive
class invariants. The package is conservative, i.e., all properties are de-
rived entirely from constant definitions. As an application, we show con-
straints over object structures.

1 Introduction

While object-oriented (00) programming is a widely accepted programming
paradigm, theorem proving over object-oriented programs or object-oriented
specifications is far from being a mature technology. Classes, inheritance, sub-
typing, objects and references are deeply intertwined and complex concepts that
are quite remote from the platonic world of first-order logic or higher-order
logic (HOL). For this reason, there is a tangible conceptual gap between the veri-
fication of functional programs on the one hand and object-oriented programs on
the other. This is mirrored in the increasing limitations of proof environments.

The existing proof environments dealing with subtyping and references can
be categorized as: 1) verification condition generators reducing a Hoare-style
proof into a proof in a standard logic, and 2) deep embeddings into a meta-
logic. Verification condition generators, for example, are Boogie for Spec# [2,12],
Krakatoa [13] and several similar tools based on the Java Modeling Language
(JML). The underlying idea is to compile object-oriented programs into standard
imperative ones and to apply a verification condition generator on the latter.
While technically sometimes very advanced, the foundation of these tools is
quite problematic: The generators usually supporting a large language fragment
are not verified, and it is not clear if the generated conditions are sound and
complete with respect to the (usually complex) operational semantics.

Among the tools based on deep embeddings, there is a sizable body of lit-
erature on formal models of Java-like languages (e.g., [9,10,19,23]). In a deep



embedding of a language semantics, syntax and types are represented by free
datatypes. As a consequence, derived calculi inherit a heavy syntactic bias in
form of side-conditions over binding and typing issues. This is unavoidable if
one is interested in meta-theoretic properties such as type-safety; however, when
reasoning over applications and not over language tweaks, this advantage turns
into a major obstacle for efficient deduction. Thus, while various proofs for type-
safety, soundness of Hoare calculi and even soundness of verification condition
generators are done, none of the mentioned deep embeddings has been used for
substantial proof work in applications.

In contrast, the shallow embedding technique has been used for semantic rep-
resentations such as HOL itself (in Isabelle/Pure), for HOLCF (in Isabelle/HOL)
allowing reasoning over Haskell-like programs [16] or for HOL-Z [6,3].

The essence of an effective shallow embedding is to find an injective mapping
of the pair of an object language expression E and its type T to a pair F :: T of the
meta-language HOL. “Injective mapping” means, that well-typedness is preserved
in both ways. Thus, type-related side-conditions in derived object-language cal-
culi can be left implicit. Since such implicit side-conditions are “implemented” by
a built-in mechanism of the meta-logic, they can be checked orders of magnitude
faster compared to an explicit treatment involving tactic proof.

At first sight, it seems impossible to apply the injective shallow embedding
technique to object-oriented languages: Their characteristic features like sub-
typing and inheritance are not present in the typed )-calculi underlying HOL
systems. However, an injective mapping does mean a simple one-to-one conver-
sion; rather, the translation might use a pre-processing making, for example,
implicit casts between subtypes and supertypes explicit. Still, this requires a
data model that respects semantic properties like no loss of information in casts.

Beyond the semantical requirements, there is an important technical one:
object-oriented data models must be extensible, i. e., it must be possible to add to
an existing class system a new class without reproving everything. The problem
becomes apparent when considering the underlying state of an object-oriented
program called object structure. Objects are abstract representations of pieces
of memory that are linked via references (object identifiers, oid) to each other.
Objects are tuples of “class attributes,” i.e., elementary values like Integers or
Strings or references to other objects. The type of these tuples is viewed as the
type of the class they are belonging to. Object structures (or: states) are maps of
type oid = % relating references to objects living in a universe % of all objects.

Instead of constructing such a universe globally for all data-models (which
is either single-typed and therefore not an injective type representation, or “too
large” for the type system of HOL), one could think of generating an object
universe only for each given class system. Ignoring subtyping and inheritance for
a moment, this would result in a universe ° = A + B for some class system
with the classes A and B. Unfortunately, such a construction is not extensible:
If we add a new class to an existing class system, say D, then the “obvious”
construction ' = A+ B+ D results in a type different from % °, making their
object structures logically incomparable. Properties, that have been proven over



% ° will not hold over % '. Thus, such a naive approach rules out an incremental
construction of class systems, which makes it unfeasible in practice.

As contributions of this paper, we present a novel universe construction which
represents subtyping within parametric polymorphism in an injective, type-safe
manner and which is extensible. This construction is implemented in a datatype-
package for Isabelle/HOL, i.e., a kind of logic compiler that generates for each
class system and its extensions conservative definitions. This includes the defini-
tion of constructors and accessors, casts between types, tests, characteristic sets
of objects. On this basis, properties reflecting subtyping and proof principles like
class invariants are automatically derived.

2 Formal and Technical Background

Isabelle [18] is a generic, LCF-style theorem prover implemented in SML. For
our object-oriented datatype package, we use the possibility to build SML pro-
grams performing symbolic computations over formulae in a logically safe way.
Isabelle/HOL offers support for checks for conservatism of definitions, datatypes,
primitive and well-founded recursion, and powerful generic proof engines based
on rewriting and tableau provers.

Higher-order logic (HOL) [1] is a classical logic with equality enriched by total
polymorphic higher-order functions. The type constructor for the function space
is written infix: o = (; multiple applications like 71 = (... = (7, = Tht1)...)
are also written as [71,...,7,] = Tp4+1. HOL is centered around the extensional
logical equality = _ with type [a, a] = bool, where bool is the fundamental
logical type.

We assume a type class « :: bot for all types a that provide an exceptional
element | ; for each type in this class a test for defindness is available via def z =
(r # L). The HOL type constructor 7 assigns to each type 7 a type lifted by
L. Thus, each type o is member of the class bot. The function _,:a = o]
denotes the injection, the function " ": o = a its inverse for defined values.
Partial functions a« — 3 are just functions a = Goption.

3 Level 0: Typed Object Universes

In this section, we introduce our families % ¢ of object universes. Each % com-
prises all value types and an extensible class type representation induced by a
class hierarchy. To each class, a class type is associated which represents the set
of object instances or objects. The extensibility of a universe type is reflected by
“holes” (polymorphic variables), that can be filled when “adding” extensions to
a class. Our construction ensures that %! is just a type instance of ¢ (where
2 (+1) is constructed by adding new classes to % #). Thus, properties proven
over object systems “living” in %* remain valid in *+!.



3.1 A Formal Framework of Object Structure Encoding

We will present the framework of our object encoding together with a small
example: assume a class Node with an attribute i of type integer and two at-
tributes left and right of type Node, and a derived class Cnode (thus, Cnode
is a subtype of Node) with an attribute color of type Boolean.

In the following we define several type sets which all are subsets of the types
of the HOL type system. This set, although denoted in usual set-notation, is a
meta-theoretic construct, i.e., it cannot be formalized in HOL .

Definition 1 (Attribute Types). The set of attribute types 2 is defined
inductively as follows:

1. {Boolean, Integer,Real, String, oid} C 2, and

2. {aSet,a Sequence,aBag} C AU for all a € A.

Attributes with class types, e. g., the attribute left of class Node, are encoded
using the abstract type oid. These object identifiers (i.e., references) will be
resolved by accessor functions like A . left™ for a given state; an access failure
will be reported by L.

In principle, a class is a Cartesian products of its attribute types extended
by an abstract type ensuring uniqueness.

Definition 2 (Tag Types). For each class C a tag type t € T is associated.
The set X is called the set of tag types.

Tag types are one of the reasons why we can built a strongly typed universe
(with regard to the object-oriented type system), e.g., for class Node we assign
an abstract datatype Node; with the only element Nodey.,. Further, for each
class we introduce a base class type:

Definition 3 (Base Class Types). The set of base class types 9B is defined
as follows:
1. classes without attributes are represented by (t x unit) € B, where t € T and
unit is a special HOL type denoting the empty product.
2. ift € X is a tag type and a; € A fori € {0,...,n} then (txXagx---xa,) € B.

Thus, the base object type of class Node is Node; x Integer x oid x oid and of
class Cnode is Cnode; X Boolean.

Without loss of generality, we assume in our object model a common super-
type of all objects. For example, for OCL (Object Constraint Language), this is
OclAny, for Java this is Object.

Definition 4 (Object). Let Object, € ¥ be the tag of the common super-
type Object and oid the type of the object identifiers we define o Object :=
((Object, x oid) x a ).

Object generator functions can be defined such that freshly generated object-
identifiers to an object are also stored in the object itself; thus, the construction
of reference types and of referential equality is fairly easy (see the discussion on
state invariants in Section 7.4). Now we have all the foundations for defining the
type of our family of universes formally:



Definition 5 (Universe Types). The set of all universe types thyer resp. ey
(abbreviated ;) is inductively defined by:

1. U0 € U, is the initial universe type with one type variable (hole) c.

2. if Uao,....cn 81, ) € Uy nym €N, i € {0,...,n} and c € B then

Yigrcir et 0= (€5 (@) )+ Brusr) | € s
This definition covers the introduction of “direct object extensions” by in-
stantiating a-variables.

8. if Uao,....an Brr ) € Yoy nym €N, i € {0,...,m}, and c € B then

%(aOa“wanaﬂlanwﬁrn) |:B'L = ((C X (an+1)L) +ﬂm+1):| S uz
This definition covers the introduction of “alternative object extensions” by
instantiating B-variables.

The initial universe % represents mainly the common supertype (i.e., Object)
of all classes, i. e., a simple definition would be % = o Object. However, we will
need the ability to store Values = Real+Integer+Boolean+String. Therefore,
we define the initial universe type by . = o Object + Values. Extending the
initial universe 02/(%), in parallel, with the classes Node and Cnode leads to the
following universe type:

%(LQBC’@N) = ((Nodet x Integer X oid x oid)
x ((Cnode; x Boolean) x (ac)| +fc), + ﬂN> Object + Values.

We pick up the idea of a universe representation without values for a class with
all its extensions (subtypes). We construct for each class a type that describes a
class and all its subtypes. They can be seen as “paths” in the tree-like structure
of universe types, collecting all attributes in Cartesian products and pruning the
type sums and (-alternatives.

Definition 6 (Class Type). The set of class types € is defined as follows: Let
U be the universe covering, among others, class Cy,, and let Cy, . ..,Cy,_1 be the
supertypes of C, i.e, C; is inherited from C;_1. The class type of C is defined
as:

1. C; eB,i€{0,...,n} then

0_ ..
%0 = (co x (C1x (Cax -+ x (Co x aL)L)L)l)L ee,
2. g D €, where g is the set of universe types with %> = 2.

Thus in our example we construct for the class type of class Node the type

(ac,Bc) Node =

((Nodet x Integer x oid x 0id) x ((Cnode; X Boolean) x (ac)| +BC)J_) Object.

Here, a¢ allows for extension with new classes by inheriting from Cnode while
B¢ allows for direct inheritance from Node.



The outermost | reflect the fact that class objects may also be undefined,
in particular after projecting them from some term in the universe or failing type
casts. Thus, also the arguments of constructor may be undefined.

3.2 Handling Instances

We provide for each class injections and projects. In the case of Object these
definitions are quite easy, e. g., using the constructors Inl and Inr for type sums
we can easily insert an Object object into the initial universe via

mkg)gject self = Inl self with type o Object = 02/09

and the inverse function for constructing an Object object out of an universe
can be defined as follows:

(0) k if u=1Inlk . 0 .
etor. . U= with type %, = o Object.
EtObject {6 k.true ifu=Inrk YPE Za J

In the general case, the definitions of the injections and projections is a little
bit more complex, but follows the same schema: for the injections we have to
find the “right” position in the type sum and insert the given object into that
position. Further, we define in a similar way projectors for all class attributes.
For example, we define the projector for accessing the left attribute of the class
Node:

self .1eft® = (fst o snd o snd o fst) base self’

with type (a1,83) Node = oid and where base is a variant of snd over lifted
tuples:

base x = {b if 2= (a,b),
1 else
For attributes with object types we return an oid. In Section 5, we show how
these projectors can be used for defining a type-safe variant.
In a next step, we define type test functions; for universe types we need to
test if an element of the universe belongs to a specific type, i.e., we need to test
which corresponding extensions are defined. For Object we define:

t if u=1Inlk
e 1 e=n with type % = bool.
false if u=1Inrk

isUnivng))ject U = {
For class types we define two type tests, an exact one that tests if an object is
exactly of the given dynamic type and a more liberal one that tests if an object
is of the given type or a subtype thereof. Testing the latter one, which is called



kind in the OCL standard, is quite easy. We only have to test that the base type
of the object is defined, e. g., not equal to L:

isKindg)l))ject self = def self with type o Object = bool.

An object is exactly of a specific dynamic type, if it is of the given kind and the
extension is undefined, e. g.:
isTypng]?)ject self = isKind(OOg)ject A= ((def obase) self)  of type a Object = bool.
The type tests for user defined classes are defined in a similar way by testing the
corresponding extensions for definedness.

Finally, we define casts, i.e., ways to convert classes along their subtype
hierarchy. Thus we define for each class a cast to its direct subtype and to its
direct supertype. We need no conversion on the universe types where the subtype

relations are handled by polymorphism. Therefore we can define the type casts
as simple compositions of projections and injections, e. g.:

Nodefg)bject] = getg)gject o mkl(\?gde of type (a1, ) Node = (ay, 1) Object,
Objectfg)ode] = getl(\?gde Omk(OOt))ject of type (a1, B1) Object = (a1, B1) Node.

These type-casts are changing the static type of an object, while the dynamic
type remains unchanged.

Note, for a universe construction without values, e.g., Z° = a Object, the
universe type and the class type for the common supertype are the same. In
that case there is a particularly strong relation between class types and universe
types on the one hand and on the other there is a strong relation between the
conversion functions and the injections and projections function. In more detail,
one can understand the projections as a cast from the universe type to the given
class type and the injections are inverse.

Now, if we build a theorem over class invariants (based finally on these pro-
jections, injections, casts, characteristic sets, etc.), it will remain valid even if we
extend the universe via o and ( instantiations. Therefore, we have solved the
problem of structured extensibility for object-oriented languages.

This constructions establishes a subtype relation via inheritance. Therefore,
a set of Nodes (with type ((c1,3) Node) Set) can also contain objects of type
Cnode. For resolving operation overloading, i. e., late-binding, the packages gen-
erates operation tables user-defined operations; see [7,5] for details.

4 Properties of the Object Encoding

Based on the presented definitions, our object-oriented datatype package proves
that our encoding of object-structures is a faithful representation of object-
oriented (e.g., in the sense of language like Java or Smalltalk or the UML stan-
dard [20]). These theorems are proven for each model, e.g., during loading a



specific class system. This is similar to other datatype packages in interactive
theorem provers. Further, these theorems are also a prerequisite for successful
reasoning over object structures.

In the following, we assume a model with the classes A and B where B is a
subclass of A. We start by proving this subtype relation for both our class type
and universe type representation:

isUnin) U (1.a) isType]go) self (1.b)
iSUnivg)) U isKind(AO) self

We also show that our conversion between universe representations and ob-
ject representation is satisfy the no loss of information in casts-principle and
that both type systems are isomorphic:

isUnivg)) U (2.2) isTypef) self (2.b)
mkg)) (getg)) u) =u getg))(mkg)) self) = self
isTypeg)) self (3.2) isUniVSS) U (3.b)
isUnivES) (mkg)) self) iSTYPe,(A?) (get,(A‘O) u)

Moreover, that we can “re-cast” an objects safely, i.e., the dynamic (class)
type of an object can be casted to a supertype and back:

isTypeg)) self
4)
. 0 0)4(0)y (0) (
isTypeyy” (((self ()(E) )

The datatype package also shows similar properties for the injections and
projections into attributes.

5 Level 1: A Type-safe Object Store

based on the concept of object universes, we define the store as a partial map:
a St :=o0id — %, .

Since all operations over our object store will be parametrized by « St, we intro-
duced the following type synonym:

Vo(T) i=aSt= 7.

Thus we can define type-safe accessor functions, i.e., object identifiers (refer-
ences) are completely encapsulated:

self leftV) o = getl(\lo(zde u if o((self o) .1eft(?) = Some u
' L else



The object language type .left : Node -> Node is now represented by our
construction with type V(ac,gc)((acuﬁc) Node) = V(ac,gc)((acuﬁc) Node).
Thus, the representation map is injective on types; subtyping is represented by
type-instantiation on the HOL-level. However, due to our universe construction,
the theory on accessors, casts, etc. is also extensible.

All other operations like casting, type- or kind-check are lifted analogously;
here we present only the case of the cast:

self&)] o = (self O')Eg)]

Moreover, the properties of the previous section were reformulated for this level.

With accessors and cast operations, we have now a path-language to access
specific values in object structures. On top of this path language, we add a small
assertion language to express properties: We write o E d z for def(x o), and
o E@ x for the contrary. With this predicate we can specify that the access to a
value along a path succeeds in a given state.

Moreover, for arbitrary binary HOL operations op such as = _, <= _
C ., AN, — _,...,wewritecF P op Qfor "Po'op Q c'. Note that
™ 7is underspecified for L, thus for illegal access into the state. An alternative
semantic choice for the assertion language consists in a three-valued logic (cf.[7]).

6 Level 2: Co-inductive Properties in Object Structures

A main contribution of our work is the encoding of co-inductive properties object
structures, including the support for class invariants.

Recall our previous example, where the class Node describes a potentially infi-
nite recursive object structure. Assume that we want to constrain the attribute i
of class Node to values greater than 5. This is expressed by the following function
approximating the set of possible instances of the class Node and its subclasses:

NodeKindF :: %(}XCWBC,ﬁN) St = %(}chﬂcﬁN) St = (ae, Be) Node set
= %(;C:ﬁC;ﬁN) St = (O‘Ca ﬁC) Node set

NodeKindF = \o. A X. {self | o F 9 self i) Ao E self i) > 5
A o E Oself . left™ Ao (self . left(l)) eX
A ok 9 self .right™D Aok (self . rightV) € X}

In a setting with subtyping, we need two characteristic type sets, a sloppy

one, the characteristic kind set, and a fussy one, the characteristic type set. By

adding the conjunct o F isTypel(\Ilc))dc self, we can construct another approxima-

tion function (which has obviously the same type as NodeKindF):

NodeTypeF = Ao. A X. {self | (self € (NodeKindF o X))
NoE isTypel(\Ilc))dC self}
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Thus, the characteristic kind set for the class Node can be defined as the greatest
fixed-point over the function NodeKindF:

NodeKindSet :: %(}34075015N) St = %(lac,ﬁcﬁN) St = (a¢, Bc) Node set
NodeKindSet = ) 0. (gfp(NodeKindF o)) .

For the characteristic type set we proceed analogously. We infer a class invariant
theorem:

o E self € NodeKindSet = ¢ F 0 self . i Ag E self . iV >5
A o E O self deft™ Ao E (self . left(l)) € NodeKindSet
A o E O self .right™ Ao E (self . right")) € NodeKindSet

and prove automatically by monotonicity of the approximation functions and
their point-wise inclusion:

NodeTypeSet C NodeKindSet

This kind of theorems remains valid if we add further classes in a class system.

Now we relate class invariants of subtypes to class invariants of supertypes.

(1)
[Node]
for the object self converted to the type Node of its superclass. The trick is done

by defining a new approximation for an inherited class Cnode on the basis of
the approximation function of the superclass:

Here, we use cast functions described in the previous section; we write self

CnodeF = )\o. )\ X.
{self | self (\),40) € (NodeKindF o (\obj. objix)4) " X)) A+ }

where the ... stand for the constraints specific to the subclass and * denotes the
pointwise application.

Similar to [4] or [21] we can handle mutual-recursive datatype definitions by
encoding them into a type sum. However, we already have a suitable type sum
together with the needed injections and projections, namely our universe type
with the make and get methods for each class. The only requirement is, that
a set of mutual recursive classes must be introduced “in parallel,” i.e, as one
extension of an existing universe.

These type sets have the usual properties that one associates with object-
oriented type systems. Let €x (Rx) be the characteristic type set (characteristic
kind set) of a class N and let €5 and Ry be the corresponding type sets of a direct
subclass of N, then our encoding process proves formally that the characteristic
type set is a subset of the kind set, i.e.:

ocEself e Cny — o E self € Ay .

And also, that the kind set of the subclass is (after type cast) a subset of the
type set (and thus also of the kind set) of the superclass:

ocFEself cRg — 0 F self&)ode] ety .
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These proofs are based on co-inductions and involve a kind of bi-simulation of
(potentially) infinite object structures. Further, these proofs depend on theorems
that are already proven over the pre-defined types, e.g., Object. These proofs
where done in the context of the initial universe /° and can be instantiated
directly in the new universe without replaying the proof scripts; this is our main
motivation for an eztensible construction.

7 A Modular Proof-Methodology for OO Modeling

In the previous sections, we discussed a technique to build extensible object-
oriented data models. Now we turn to the wider goal of an modular proof
methodology for object-oriented systems and explore achievements and limits
of our approach with respect to this goal. Two aspects of modular proofs over
object-oriented models have to be distinguished:

1. the modular construction of theories over object-data models, and

2. amodular way to represent dynamic type information or storage assumptions

underlying object-oriented programs.

With respect to the former, the question boils down to what degree extensions
of class systems and theories built over them can be merged. With respect to the
latter, we will show how co-inductive properties over the store help to achieve
this goal.
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7.1 Non-overlapping Merges

The positive answer to the modularity question is that object-oriented data-
model theories can be merged provided that the extensions to the underlying
object-data models are non-overlapping. Two extensions are non-overlapping, if
their set of classes including their direct parent classes are disjoint (see Fig-
ure la). In these cases, there exists a most general type instance of the merged
object universe %2 (the type unifier of both extended universes % 2* and % 2%);
thus, all theorems built over the extended universes are still valid over the merged
universe (see Figure 1a). We argue that the non-overlapping case is the pragmat-
ically more important one; for example, all libraries of the HOL-OCL system [7]
were linked to the examples in its substantial example suite this way. Without
extensibility, the datatype package would have to require the recompilation of
the libraries, which takes in the case of the HOL-OCL system about 20 minutes.

7.2 Handling Overlapping Merges

Unfortunately, there is a pragmatically important case in object-oriented mod-
eling that will by considered as an overlap in our package. Consider the case
illustrated in Figure 1b. Here, the parent class A is in the class set of both ex-
tensions (including parent classes). The technical reason for the conflict is that
the order of insertions of “son”-classes into a parent class is relevant since the
type sum « + 3 is not a commutative type constructor.

In our encoding scheme of object-oriented data models, this scenario of ex-
tensions represents an overlap that the user is forced to resolve. One pragmatic
possibility is to arrange an order of the extensions by changing the import hi-
erarchy of theories producing overlapping extensions. This worst-case results in
re-running the proof scripts of either B or C—usually a matter of a minute. An-
other option is to introduce an empty class B’ and inherit B from there. A further
option consists in adding a mechanism into our package allowing to specify for
a child-class the position in the insertion-order.

7.3 Modularity in an Open-world: Dynamic Typing

Our notion of extensible class systems generalizes the distinction “open-world
assumption” vs. “closed-world assumption” widely used in object-oriented mod-
eling. Our universe construction is strictly “open-world” by default; the case of
a “closed-world” results from instantiating all «,3-“holes” in the universe by the
unit type. Since such an instantiation can also be partial, there is a spectrum
between both extremes. Furthermore, one can distinguish «a-finalizations, i. e., in-
stantiation of an a- variable in the universe by the unit type, and 3-finalizations.
The former close a class hierarchy with respect to subtyping, the latter prevent
that a parent class may have further direct children (which makes the automatic
derivation of an exhaustion lemma for this parent class possible).

Since methods can be overloaded, method invocations like in object-oriented
languages require an overloading resolution mechanism such as late binding as
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used in Java. Late binding uses the dynamic type isTypeg) self of self. The
late-binding method invocation is notorious for its difficulties for modular proof.
Consider the case of an operation:

method Node::m()::Bool
pre: P
post: Q

Furthermore assume that the implementation of m invokes itself recursively, e. g.,
by self.left.m(). Based on an open-world assumption, the postcondition Q
cannot be established in general since it is unknown which concrete implemen-
tation is called at the invocation.

Based on our universe construction, there are two ways to cope with this
underspecification. First, finalizations of all child classes of Node results in a
partial closed-world assumption allowing to treat the method invocation as case
switch over dynamic types and direct calls of method implementations. Second,
similarly to the co-inductive invariant example in Section 6 which ensures that a
specific de-referentiation is in fact defined, it is possible to specify that a specific
de-referentiation self . left™™ has a given dynamic type. An analogous invariant
Invier (self ) can be defined co-inductively. From this invariant, we can directly in-
fer facts like isTypel(\Ilgde (self . lef‘c(l))7 and isType&lgde (self . left!) .left(l)), i.e.,
in an object graph satisfying this invariant, the left “spine” must consist of nodes
of dynamic type Node. Strengthening the precondition P by Invies (self) conse-
quently allows to establish postcondition @—in a modular manner, since only
the method implementation above has to be considered in the proof. Invoking
the method on an object graph that does not satisfy this invariant can therefore
be considered as a breach of the contract.

7.4 Modularity in an Open-world: Storage Assumptions

Similarly to co-inductive invariants, it is possible via co-recursive functions to
map an object to the set of objects that can be reached along a particular path
set. The definition must be co-recursive, since object structures may represent a
graph. However, the presentation of this function may be based on a primitive-
recursive approximation function depending on a factor k :: nat that computes
this object set only up to the length k of the paths in the path set.

ObjSetA g 0 self o = {}
ObjSetA, 4 k self o = if o |= 0 self then{}

clse {self} U ObjSetA,y, (k — 1) (self .1eftM) o) o
The function ObjSet, s, self o can then be defined as limit

U neNat ObjSetA . n self o.

On the other hand, we can add an state invariant on our concept of state
per type definition a St = {0 :: 0id = Z*.Inv o}. Here, we require for inv that
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each oid points to an object that contains itself:
Void € dom o. OidOf(the(o oid)) = oid

As a consequence, there exists a “one-to-one”-correspondence between objects
and their oid in a state. Thus, sets of objects can be viewed as sets of references,
too, which paves the way to interpret these reference sets in different states and
specify that an object did not change during a system transition or that there
are no references from one object-structure into some critical part of another
object structure.

8 Conclusion

We presented an extensible universe construction supporting object-oriented fea-
tures such as subtyping and (single) inheritance. The underlying mapping from
object-language types to types in the HOL representation is injective, which im-
plies type-safety. We introduce co-inductive properties on object systems via
characteristic sets defined by greatest fixed-points; these sets also give a seman-
tics for class invariants. In our package, constructors and update-operations were
handled too, but not discussed due to space limitations.

The universe-construction is supported by a package (developed as part of the
HOL-OCL project [7]). Generated theories on object systems can be applied for
object-oriented specification languages as OCL as well as programming language
embeddings using the type-safe shallow technique.

In the context of HOL-OCL, we gained some experimental data that shows
the feasibility of the technique: Table 1 describes the size of each of the above

Invoice eBank Company Royals and Loyals

number of classes 3 8 7 13
size of OCL specification (lines) 149 114 210 520
generated theorems 647 1444 1312 2516
time needed for import (in seconds) 12 42 49 136

Table 1. Importing Different UML/OCL Specifications.

mentioned models together with the number of generated theorems and the time
needed for importing them into HOL-OCL. The number of generated theorems
depends linearly on the number of classes, attributes, associations, operations
and OCL constraints. For generalizations, a quadratic number (with respect to
the number of classes in the model) of casting definitions have to be generated
and also a quadratic number of theorems have to be proven. The time for en-
coding the models depends on the number of theorems generated and also on
the complexity on their complexity.
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8.1 Related Work

Datatype packages have been considered mostly in the context of HOL or func-
tional programming languages. Systems like [14,4] build over a S-expression
like term universe (co)-inductive sets which are abstracted to (freely generated)
datatypes. Paulsons inductive package [21] also uses subsets of the ZF set uni-
verse <.

Work on object-oriented semantics based on deep embeddings has been dis-
cussed earlier. For shallow embeddings, to the best of our knowledge, there is
only [22]. In this approach, however, emphasis is put on a universal type for the
method table of a class. This results in local “universes” for input and output
types of methods and the need for reasoning on class isomorphisms. subtyping
on objects must be expressed implicitly via refinement. With respect to exten-
sibility of data-structures, the idea of using parametric polymorphism is partly
folklore in HOL research communities; for example, extensible records and their
application for some form of subtyping has been described in HOOL [17]. Since
only a-extensions are used, this results in a restricted form of class types with
no cast mechanism to « Object.

The underlying encoding used by the loop tool [11] and Jive [15] shares same
basic ideas with respect to the object model. However, the overall construction
based on a closed-world assumption and thus, not extensible. The support for
class invariants is either fully by hand or axiomatic.

8.2 Future Work

We see the following lines of future research:

— Towards a Generic Package. The supported type language as well as the
syntax for the co-induction schemes is fixed in our package so far. More
generic support for the semantic infrastructure of of other target languages
is required to make our package more widely applicable.

— Support of built-in Co-recursion. Co-recursion can be used to define e.g.,
deep object equalities.

— Deriving VCG. Similar to the IMP-theory in the Isabelle library, Hoare-calculi
for object-oriented-programs can be derived (as presented in [8]). On this
basis, verification condition generators can be proven sound and to a cer-
tain extent, complete. This leads to effective program verification techniques
based entirely on derived rules.
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