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Abstract. This paper presents a new proof language for the Coq proof
assistant. This language uses the declarative style. It aims at providing
a simple, natural and robust alternative to the existing Ltac tactic lan-
guage. We give the syntax of our language, an informal description of its
commands and its operational semantics. We explain how this language
can be used to implement formal proof sketches. Finally, we present some
extra features we wish to implement in the future.

1 Introduction

1.1 Motivations

An interactive proof assistant can be described as a state machine that is guided
by the user from the ‘statement φ to be proved’ state to the ‘QED’ state. The
system ensures that the state transitions (also known as proof steps in this
context) are sound. The user’s guidance is required because automated theorem
proving in any reasonable logics is undecidable in theory and difficult in practice.
This guidance can be provided either through some kind of text input or using
a graphical interface and a pointing device. In this paper, we will concentrate
on on the former method.

The ML language developed for the LCF theorem prover [GMW79] was a
seminal work in this domain. The ML language was a fully-blown programming
language with specific functions called tactics to modify the proof state. The
tool itself consisted of an interpreter for the ML language. Thus a formal proof
was merely a computer program. With this in mind, think of a person reading
somebody else’s formal proof, or even one of his/her own proofs but after a couple
of months. Similarly to what happens with source code, this person will have a
lot of trouble understanding what is going on with the proof unless he/she has
a very good memory or the proof is thoroughly documented. Of course, running
the proof through the prover and looking at the output might help a little.

This example illustrates a big inconvenience which still affects man popular
proof languages used nowadays: they lack readability. Most proofs written are
� This work was partially funded by NWO Bricks/Focus Project 642.000.501



actually write-only or rather write- and execute-only, since what the user is
interested when re-running the proof in is not really the input, but rather the
output of the proof assistant, i.e. The sequence of proof states from stating the
theorem to ’QED’.

The idea behind declarative style proofs is to actually base the proof language
on this sequence of proof states. This is indeed the very feature that makes
the distinction between procedural proof languages (like ML tactics in LCF)
and declarative proof languages. On one hand, procedural languages emphasize
proof methods (application of theorems, rewriting, proof by induction. . . ), at
the expense of a loss of precision on intermediate proof states: the intermediate
states depend on the implementation on tactics instead of a formal semantics.
On the other hand, declarative languages emphasize proof states but are less
precise about the logical justification of the gap between one state and the next
one.

1.2 Related work

The first proof assistant to implement a declarative style proof language was the
Mizar system, whose modern versions date back to the early 1990’s. The Mizar
system is a batch style proof assistant: it compiles whole files and writes error
messages in the body of the input text, so it is not exactly interactive, but its
proof language has been an inspiration for all later designs [WW02].

Another important source in this subject is Lamport’s How to write a proof
[Lam95] which takes the angle of the mathematician and provides a very sim-
ple system for proof notations, aimed at making proof verification as simple as
possible.

The first interactive theorem prover to actually provide a declarative proof
language has been Isabelle [Law94], with the Isar (Intelligible Semi-Automated
Reasoning) language [Wen99], designed by Markus Wenzel. This language has
been widely adopted by Isabelle users since.

John Harrison has also developed a declarative proof language for the HOL88
theorem prover [Har96]. Freek Wiedijk also developed a light declarative solution
[Wie01] for John Harrison’s own prover HOL Light [Har06].

For the Coq proof assistant [Coq07], Mariusz Giero and Freek Wiedijk have
built a set of tactics called the MMode [GW04] to provide an experimental
mathematical mode which give a declarative flavor to Coq.

Recently, Claudio Sacerdoti-Coen added a declarative language to the Matita
proof assistant [Coe06].

1.3 A new language for the Coq proof assistant

The Coq proof assistant is a Type Theory-based interactive proof assistant de-
veloped at INRIA. It has a strong user base both in the field of software and
hardware verification and in the field of formalized mathematics. It also has the
reputation of being a tool whose procedural proof language Ltac has a very steep
learning curve both at the beginner and advanced level.



Coq has been evolving quite extensively during the last decade, and the
evolution has made it necessary to regularly update existing proofs to maintain
compatibility with most recent versions of the tool.

Coq also has a documentation generation tool to do hyper-linked rendering
of files containing proofs, but most proofs are written in a style that makes them
hard to understand (even with colored keywords) unless you can actually run
them, as was said earlier for other procedural proof languages.

Building on previous experience from Mariusz Giero, we have built a stable
mainstream declarative proof language for Coq. This language was built to have
the following characteristics:

readable The designed language should use clear English words to make proof
reading a feasible exercise.

natural We want the language to use a structure similar to the ones used in
textbook mathematics (e.g. for case analysis), not a bare sequence of mean-
ingless commands.

maintainable The new language should make it easy to upgrade the prover
itself: errors in the proof should not propagate.

stand-alone The proof script should contain enough explicit information to be
able to retrace the proof path without running Coq.

The Mizar language has been an important source of inspiration in this work
but additional considerations had to be taken into account because the Calculus
of Inductive Constructions (CIC) is mush richer than Mizar’s (essentially) first-
order Set Theory.

One of the main issue is that of proof genericity: Coq proofs use a lot of
inductive objects for lots of different applications (logical connectives, records,
natural numbers, algebraic data-types, inductive relations. . . ). Rather than en-
forcing the use of the most common inductive definitions, we want to be as
generic as possible in the support we give for reasoning with these objects.

Finally, we want to give an extended support for proofs by induction by
allowing multi-level induction proofs, using a very natural syntax to specify the
different cases in the proof. The implementation was part of the official release
8.1 version of Coq.

1.4 Outline

We first describe some core features of our language, such as forward and back-
ward steps, justifications, and partial conclusions. Then we give a formal syntax
and a quick reference of the commands of our language, as well as an operational
semantics. We go on by explaining how our language is indeed an implementa-
tion of the formal proof sketches [Wie03] concept, and we define the notion of
well-formed proof. We finally give some perspective for future work.



2 Informal description

2.1 An introductory example

To give a sample of the declarative language, we provide here the proof of a simple
lemma about Peano numbers: the double function is defined by doublex = x+x
and the div2 functions by:

⎧⎪⎨
⎪⎩

div2 0 = 0
div2 1 = 0
div2 (S (S x)) = S (div2 x)

The natural numbers are defined by means of an inductive type nat with
two constructors 0 and S (successor function. The lemma states that div2 is the
left inverse of double. We first give a proof of the lemma using the usual tactic
language:

Lemma double_div2: forall n, div2 (double n) = n.
intro n.
induction n.
reflexivity.
unfold double in *|-*.
simpl.
rewrite <- plus_n_Sm.
rewrite IHn.
reflexivity.
Qed.

Now, we give the same proof using the new declarative language:

Lemma double_div2: forall n, div2 (double n) = n.
proof.
let n:nat.
per induction on n.
suppose it is 0.
reconsider thesis as (0=0).
thus thesis.
suppose it is (S m) and Hrec:thesis for m.
have (div2 (double (S m))

= div2 (S (S (double m)))).
~= (S (div2 (double m))).

thus ~= (S m) by Hrec.
end induction.

end proof.
Qed.



The proof consists of a simple induction on the natural number n. The first
case is done by conversion (computation) to 0 = 0 and the second case by
computation and by rewriting the induction hypothesis. Of course, you could
have guessed that by simply reading the declarative proof.

2.2 Forward and backward proofs

The notions of declarative and procedural proofs are often confused with the
notions of forward and backward proof. We believe those two notions are mostly
orthogonal: the distinction between declarative and procedural is that declarative
proofs mention explicitly the intermediate proof steps, while procedural proofs
explain what method is used to go to the next state without mentioning it,
whereas the distinction between forward and backward proof is merely a notion
of whether the proof is build bottom-up by putting together smaller proofs, or
top-down by cutting a big proof obligation into smaller ones.

A possible reason for the confusion between declarative style and backwards
proofs is that most declarative languages rely on the core command

have h : φ justification

which introduces a new hypothesis h that asserts φ, after having proved it using
justification. This kind of command is the essence of forward proofs: it builds a
new object — a proof of φ — from objects that already exists and are somehow
mentioned in the justification.

In order to show that you can also use backwards steps in a declarative script,
our language contains a command

suffices H1 and . . . and Hn to show G justification

which acts as the dual of the have construction: it allows to replace the cur-
rent statement to prove by sufficient conditions with stronger statements (as
explained by the justification). For example, you can use this command to gen-
eralize your thesis before stating a proof by induction.

2.3 Justifications

When using a command to deduce a new statement from existing ones, or to
prove that some statements suffice to prove a part of the conclusion, you need
the proof assistant to fill in the gap. The justification is a hint to tell the proof
assistant which proof objects are to be used in the process, and how they shall
be used.

In our language, justifications are of the form

by π1, . . . , πn using t

the πk are proof objects which can be hypotheses names (variables) but also
more complex terms like application of a general result H : (∀x : nat, P x) to a



specific object n : nat to get a proof (H n) : P n. The expression t is an optional
tactic expression that will be used to prove the validity of the step.

The meaning of the πk objects is that only they and their dependencies — if
H is specified and H has type P x then x is also implicitly added — will be in
the local context in which the new statement is to be proved. If they are omitted
then the new statement should be either a tautology or provable without any
local hypothesis by the means of the provided tactic. If the user types by *,
all local hypotheses can be used. The use of by * should be transient because
it makes the proof more brittle: the justification depends too much on what
happened before.

If specified, the tactic t will then be applied to the modified context and if
necessary, the remaining subgoals will be treated with the assumption tactic,
which looks for a hypothesis convertible with the conclusion. If using t is omitted
then a default automation tactic is used. This tactic is a combination of auto,
congruencecongruence and firstorder [Cor03].

When writing a sequence of deduction steps, it often happens that a state-
ment is only used in the next step. In that case the statement might be anony-
mous. By using the then keyword instead of have, this anonymous statement
will be added to the list of proof objects to be used in that particular justification.

If a justification fails, the proof assistant issues a warning

Warning: insufficient justification.

rather than an error. This allows the user to write proofs from the outside in by
filling the gaps, rather than linearly from start to end. In the CoqIDE interface,
this warning is emphasized by coloring the corresponding command with an
orange background. This way, a user reading a proof script will immediately
identify where work still needs to be done.

2.4 Partial conclusion, split thesis

The idea of partial conclusions is that within a deduction chain, some steps are
actually sub-formulae of the current conclusion , so they can be used to remove
that sub-formula from that conclusion. For example, A is a partial conclusion
for A ∧ B, it is also a partial conclusion for A ∨ B. In the latter case, choosing
to prove A implies a choice in the proof we want to make, by proving A rather
than B. In our language, the user can type the command

thus G justification

to provide a partial conclusion G whose validity is proved using justification. If
G is not proved, the usual warning is issued, but if G is not a sub-formula of the
conclusion then an error occurs: the user is trying to prove the wrong formula.

More precisely, the notion of partial conclusion is a consequence of the defini-
tion of logical connectives by inductive types. We will look for partial conclusions
in the possible sub-terms of proof terms based on inductive type constructors.



thesis partial conclusion remaining conclusions

A ∧ B A ?1 : B
A ∧ B B ?1 : A

A ∧ (B ∧ C) A ?1 : B ∧ C
(A ∧ B) ∧ C A ?1 : B, ?2 : C

A ∨ B A -
A ∨ B B -

(A ∧ B) ∨ (C ∧ D) C ?1 : D
∃x : nat, P x 2 : nat ?1 : P 2
∃x : nat, P x P 2 -

∃x : nat, ∃y : nat, (P y ∧ R x y) P 2 ?1 : nat, ?2 : R ?1 2

Fig. 1. the partial conclusion mechanism

In the case of the conjunction A ∧ B, if we have a proof π of A, using the
pairing constructor conj we can build a proof conjπ ?1, where ?1 is a place-
holder for the remaining item to be proved (i.e. B). This way, we can introduce
the notion of remaining conclusions (see Fig. 1) . The plural here is because,
unfortunately, it might be possible that partial conclusions cause the thesis to
split (i.e. several place-holders are needed in the partial proof). It might even
happen that a part of the split thesis depends on another: keep in mind that the
existential quantifier is represented by a dependent pair. Finally, when using P2
as a partial conclusion for ∃x : nat, Px, even though a placeholder for nat should
remain, this placeholder has to be filled by 2 because of typing constraints.

Using this mechanism, we can allow the user to build the proof piece by piece,
by providing partial conclusions, and at each step replacing the part of the thesis
by the remaining parts to be proved. Parts of the thesis are given numbers and
their type can be referred to by using thesis[n] for the type of placeholder ?n.
The keyword thesis alone refers to the type of the unique placeholder when
there is only one. When there are more than one place-holders, the thesis is said
to be split.

A split thesis will induce some constraints on what the user can do, e.g. the
user cannot perform a proof by cases or introduce a hypothesis. Therefore in
some cases is is preferable to avoid those situation by proving all the conclusion
at once.

3 Syntax and semantics

3.1 Syntax

Figure 2 gives the complete formal syntax of the declarative language. the un-
bound non-terminals are id for identifiers, num for natural numbers, term and
type for terms and types of the Calculus of Inductive Constructions, pattern
refers to a pattern for matching against inductive objects.



instruction ::= proof

| assume statement [and statement]∗ [and (we have)-clause]?

| (let, be)-clause
| (given)-clause
| (consider)-clause from term
| [have|then|thus|hence] statement justification

| thus? [∼ =|= ∼] [id:]?term justification
| suffices statement [and statement]∗

to show statement justification
| [claim|focus on] statement
| take term

| define id [var[,var]∗]? as term

| reconsider ˆ
id

˛
˛thesis[[num]]?

˜
as type

| per [cases|induction] on term
| per cases of type justification

| suppose [id[,id]∗ and]? is is pattern
ˆ
such that statement [and statement]∗[and (we have)-clause]?

˜?

| end [proof|claim|focus|cases|induction]
| escape
| return

α, β-clause ::= α var[,var]∗ [β such that statement [and statement]∗

[and α, β-clause]?
˜?

statement ::= [id:]?type
| thesis
| thesis[num]

| thesis for id

var ::= id[:type]?

justification ::=
ˆ
by

ˆ
*

˛
˛term[,term]∗

˜˜?
[using tactic]?

Fig. 2. Syntax for the declarative language

simple with previous step opens sub-proof iterated equality

intermediate step have then claim ~=/=~
conclusive step thus hence focus on thus ~=/thus =~

Fig. 3. Synthetic classification of forward steps



3.2 Commands description

proof.
. . .
end proof. This is the outermost block of any declarative proof. If several sub-

goals existed when the proof command occurred, only the first one is proved
in the declarative proof. If the proof is not complete when encountering end
proof, then the proof is closed all the same, but with a warning, and Qed or
Defined to save the proof will fail.

have h:φ justification.
then h:φ justification. This command adds a new hypothesis h of type φ in

the context. If the justification fails, a warning is issued but the hypothesis
is still added to the context. The then variant adds the previous fact to the
list of objects used in the justification.

thus h:φ justification.
hence h:φ justification. These commands behave respectively like have and

then but the proof of φ is used as a partial conclusion. This can end the
proof or remove part of the proof obligations. These commands fail if φ is
not a sub-formula of the thesis.

claim h : φ.
. . .
end claim. This block contains a proof of φ which will be named h after end

claim. If the subproof is not complete when encountering end claim, then
the subproof is still closed, but with a warning, and Qed or Defined to save
the proof later will fail.

focus on φ.
. . .
end focus. This block is similar to the claim block, except that it leads to

a partial conclusion. In a way, focus is to claim what thus is to have. This
comes handy when the thesis is split and one of its parts is an implication or
a universal quantification: the focus block will allow to use local hypotheses.

(thus) ~= t justification.
(thus) =~ t justification. These commands can only be used if the last step

was an equality l = r. t should be a term of the same type as l and r. If
~= is used then the justification will be used to prove l = t and the new
statement will be l = t. Otherwise, the justification will be used to prove
t = r and the new statement will be t = r. When present, the thus keyword
will trigger a conclusion step.

suffices H : Φ to show Ψ justification. This command allows to replace
a part of the thesis by a sufficient condition, e.g. to strengthen it before
starting an proof by induction. In the thesis, Ψ is then replaced by Φ. The
justification should prove Ψ using Φ.

assume G:Ψ ...and we have x such that H:Φ.
let x be such that H:Φ. Those commands are two

different flavors for the introduction of hypothesis. They expect the thesis
not to be split, and of the shape Πixi : Ti.Gi. It expects the Ti to be



convertible with the provided hypotheses statements. This command is well-
formed only if the missing types can be inferred.

given x such that H:Φ.
consider x such that H:Φ from G. given is similar to let, except that

this command works up to elimination of tuples and dependent tuples such as
conjunctions and existential quantifiers. Here the thesis could be ∃x.Φ′ → Ψ
with Φ′ convertible to Φ. The consider command takes an explicit object G
to destruct instead of using an introduction rule.

define f (x : T ) as t. This command allows to defines objects locally. If pa-
rameters are given, a function (λ-abstraction) is defined.

reconsider thesis as T.
reconsider H as T. These commands allows to replace the statement

of a conclusion or a hypothesis with a convertible one, and fails if the provided
statement is not convertible.

take t. This command allows to do a partial conclusion using an explicit proof
object. This is especially useful when proving an existential statement: it
allows to specify the existential witness.

per cases on t.
— of F justification.
suppose x : H.
. . .
suppose x′ : H ′.
. . .
end cases. This introduces a proof per cases on a disjunctive

proof object t or a proof of the statement F derived from justification.
The per cases command must immediately be followed by a suppose com-
mand which will introduce the first case. Further suppose commands or end
cases can be typed even if the previous case is not complete. In that case a
warning is issued. This block of commands cannot be used when the thesis
is split. If t occurs in the thesis, you should use suppose it is instead of
suppose.

per induction on t.
— cases —
suppose it is patt and x : H.
. . .
suppose it is patt′ and x′ : H ′.
. . .
end cases. This introduces a proof per dependent cases

or by induction. When doing the proof, t is substituted with patt in the
thesis. patt must be a pattern for a value of the same type as t. It may
contain arbitrary sub-patterns and as statements to bind names to sub-
patterns. Those name aliases are necessary to apply the induction hypothesis
at multiple levels. If you are doing a proof by induction, you may use the
thesisfor construction in the suppose it is command to refer to induction
hypothesis. You may also write induction hypotheses explicitly.



escape.
. . .
return. This block allows to escape the declarative mode back to the tactic

mode. If the thesis is split, then several subgoals are provided, or the com-
mand fails if some parts depend on others.

3.3 Operational semantics

The purpose of this section is to give precise details about what happens to the
proof state when you type a proof command. The proof state consists of a stack
S that contains open proofs and markers to count open sub-proofs, and each sub-
proof is a judgement Γ � ∆, where Γ and ∆ are lists of types (or propositions)
indexed by names for Γ and integers for ∆. The intuition is that we are looking
for a proof of the conjunction of the types in ∆ from the hypotheses in Γ . When
∆ is empty, the sub-proof is complete and the user has to close the block. If at
some point ∆ is supposed to be empty and is not, then the command issues a
warning.

A proof script S consists of the concatenation of instructions The rules are
given as big-step semantics S ⇒T S means that when proving theorem T, we
reach state S when executing the script S. This means that any script allowing
to reach the empty stack [] is a complete proof of the theorem T.

The j	Γ � G expression means that the justification j is sufficient to solve the
problem Γ � G. If it is not, the command issues a warning. The ≡ relation is the
conversion (βδιζ-equivalence) relation of the Calculus of Inductive Constructions
(see [Coq07]).

We write L 	 R whenever the L context can be obtained by decomposing tu-
ples in the R context. The − operator computes the remaining parts of the thesis
when a sub-formula is already proved. The details of the − are too technical to
be written here. We use the traditional λ notation for abstractions and Π for
dependent products (either implication or universal quantification, depending
on the context).

The distinction between casesd and casesnd is used to prevent the mixing of
suppose with suppose it is. The coverage condition for case analysis has been
omitted for simplicity, as have been the semantics for escape and return.

T = {Γ � G}
proof. ⇒T (Γ �?1 : G); []

S ⇒T (Γ � ∅); []
S end proof. ⇒T []

S ⇒T (Γ � ∆);S j 	 Γ � T ∆ �= ∅
S have (x : T ) j. ⇒T (Γ ; x : T � ∆);S

S ⇒T (Γ ; l : T ′ � ∆);S j, l 	 Γ � T ∆ �= ∅
S then (x : T ) j. ⇒T (Γ ; l : T ′; x : T � ∆);S

S ⇒T (Γ � ∆);S j 	 Γ � T ∆ �= ∅
S thus (x : T ) j. ⇒T (Γ ; x : T � ∆ − (x : T ));S



S ⇒T (Γ ; l : T ′ � ∆);S j, l 	 Γ � T ∆ �= ∅
S hence (x : T ) j. ⇒T (Γ ; l : T ′; x : T � ∆ − (x : T ));S

S ⇒T (Γ � ∆);S j 	 Γ � r = u ∆ �= ∅
S ~= u j. ⇒T (Γ ; e : l = u � ∆);S

S ⇒T (Γ � ∆);S j 	 Γ � u = l ∆ �= ∅
S =~ u j. ⇒T (Γ ; e : u = r � ∆);S

S ⇒T (Γ � ∆);S j 	 Γ � r = u ∆ �= ∅
S thus ~= u j. ⇒T (Γ ; e : l = u � ∆ − (l = u));S

S ⇒T (Γ � ∆);S j 	 Γ � u = l ∆ �= ∅
S thus =~ u j. ⇒T (Γ ; e : u = r � ∆ − (u = r));S

S ⇒T (Γ � ∆);S ∆ �= ∅
S claim (x : T ). ⇒T (Γ �?1 : T ); claim; (Γ ; x : T � ∆);S

S ⇒T (Γ ′ � ∅); claim; (Γ � ∆);S
S end claim. ⇒T (Γ � ∆);S

S ⇒T (Γ � ∆);S ∆ �= ∅
S focus on (x : T ). ⇒T (Γ �?1 : T ); focus; (Γ ; x : T � ∆ − (x : T ));S

S ⇒T (Γ ′ � ∅); focus; (Γ � ∆);S
S end focus. ⇒T (Γ � ∆);S

S ⇒T (Γ � ∆);S Γ � t : T ∆ �= ∅
S take t. ⇒T (Γ � ∆ − (t : T ));S

S ⇒T (Γ � ∆);S Γ ; x1 : T1, . . . , xn : Tn � t : T ∆ �= ∅
S define f (x1 : T1) . . . (xn : Tn) as t. ⇒T

(Γ ; f := λx1 : T1 . . . λxn : Tn.t � ∆);S
S ⇒T (Γ �?p : Πx1 : T ′

1 . . . Πxn : T ′
n.G);S (T1 . . . Tn) ≡ (T ′

1 . . . T ′
n)

S assume/let (x1 : T1) . . . (xn : Tn). ⇒T (Γ ; x1 : T1; . . . ; xn : Tn �?1 : G);S
S ⇒T (Γ �?p : Πx1 : T ′

1 . . . Πxn : T ′
n.G);S (T1 . . . Tm) 	 (T ′

1 . . . T ′
n)

S given (x1 : T1) . . . (xm : Tm). ⇒T (Γ ; x1 : T1; . . . ; xm : Tm �?1 : G);S
S ⇒T (Γ � ∆);S Γ � t : T (T1 . . . Tn) 	 (T ) ∆ �= ∅

S consider (x1 : T1) . . . (xn : Tn) from t. ⇒T

(Γ ; x1 : T1; . . . ; xn : Tn � ∆);S
S ⇒T (Γ ; x : T ′ � ∆);S T ≡ T ′ ∆ �= ∅

S reconsider x as T. ⇒T (Γ ; x : T � ∆);S



S ⇒T (Γ � ∆; ?p : T ′);S T ≡ T ′ ∆ �= ∅
S reconsider thesis[p] as T. ⇒T (Γ � ∆; ?p : T );S
S ⇒T (Γ � ∆);S j 	 Γ ; x1 : T1; . . . ; xn : Tn � T ∆ �= ∅
S suffices (x1 : T1) . . . (xn : Tn) to show T j. ⇒T

(Γ � (∆ − T ) � {T1; . . . ; Tn});S
S ⇒T (Γ �?p : G);S j 	 Γ � t : T

S per cases of T j. ⇒T casesnd(t : T ); (Γ ; x : T �?p : G);S
S ⇒T (Γ �?p : G);S Γ � t : T

S per cases on t. ⇒T cases(t : T ); (Γ ; x : T �?p : G);S
S ⇒T cases(t : T ); (Γ �?p : G);S

S suppose (x1 : T1) . . . (xn : Tn). ⇒T

(Γ ; x1 : T1; . . . ; xn : Tn �?p : G); casesnd(t : T ); (Γ �?p : G);S
S ⇒T (Γ ′ � ∅); casesnd(t : T ); (Γ �?p : G);S

S suppose (x1 : T1) . . . (xn : Tn). ⇒T

(Γ ; x1 : T1; . . . ; xn : Tn �?p : G); casesnd(t : T ); (Γ �?p : G);S
S ⇒T cases(t : T ); (Γ �?p : G);S

S suppose it is p and (x1 : T1) . . . (xn : Tn). ⇒T

(Γ ; x1 : T1; . . . ; xn : Tn �?p : G[p/t]); casesd(t : T ); (Γ �?p : G);S
S ⇒T (Γ ′ � ∅); casesd(t : T ); (Γ �?p : G);S

S suppose it is p and (x1 : T1) . . . (xn : Tn). ⇒T

(Γ ; x1 : T1; . . . ; xn : Tn �?p : G[p/t]); casesd(t : T ); (Γ �?p : G);S
S ⇒T (Γ ′ � ∅); casesd/nd(t : T ); (Γ �?p : G);S

S end cases. ⇒T (Γ � ∅);S
S ⇒T (Γ �?p : G);S Γ � t : T

S per induction on t. ⇒T induction(t : T ); (Γ ; x : T �?p : G);S
S ⇒T induction(t : T ); (Γ �?p : G);S

S suppose it is p and (x1 : T1) . . . (xn : Tn). ⇒T

(Γ ; x1 : T1; . . . ; xn : Tn �?p : G[p/t]); induction(t : T ); (Γ �?p : G);S
S ⇒T (Γ ′ � ∅); induction(t : T ); (Γ �?p : G);S

S suppose it is p and (x1 : T1) . . . (xn : Tn). ⇒T

(Γ ; x1 : T1; . . . ; xn : Tn �?p : G[p/t]); induction(t : T ); (Γ �?p : G);S
S ⇒T (Γ ′ � ∅); induction(t : T ); (Γ �?p : G);S

S end induction. ⇒T (Γ � ∅);S



4 Proof editing

4.1 Well-formedness

If we drop the justification (j 	 . . . ) and completeness (∆ = ∅) conditions in our
formal semantics, we get a notion of well-formed proofs. Those proofs when run
in Coq, are accepted with warnings but cannot be saved since the proof tree
contains gaps.

This does not prevent the user from going further with the proof since the
user is still able to use the result from the previous step. The smallest well formed
proof is: proof. end proof.

Introduction steps such as assume have additional well-formedness require-
ments: the introduced hypotheses must match the available ones. The given
construction allows a looser correspondence. The reconsider statements have
to give a convertible type.

For proofs by induction, well-formedness requires the patterns to be of the
correct type, and induction hypotheses to be build from the correct sub-objects
in the pattern.

4.2 Formal proof sketches

We claim that well-formed but incomplete proofs in our language play the role
of formal proof sketches: they ensure that hypotheses correspond to the current
statement and that objects referred to exist and have a correct type. When
avoiding the by * construction, justifications are preserved when adding extra
commands inside the proof. In this sense our language supports incremental
proof development.

The only thing that the user might have trouble doing when turning a text-
book proof into a proof sketch in our language is ensuring that first-order objects
are introduced before a statement refers to them. Once this is done, The user
will be able to add new lines within blocks (mostly forward steps).

5 Conclusion

5.1 Further work

Arbitrary relation composition The first extension that is needed for our language
is the support for iterated relations other than equality. This is possible as soon
as a generalized transitivity lemma of the form ∀xyz, x R1 y → y R2 z → x R3 z
is available.

Better automation There is a need for a more precise and powerful automation
for the default justification method, to be able to give better predictions of
when a deduction step will be accepted. A specific need would be an extension
of equality reasoning to arbitrary equivalence relations (setoids, PERs . . . ).



Multiple induction The support for induction is already quite powerful (sup-
port for deep patterns with multiple as bindings), but more can be done if we
start considering multiple induction. It might be feasible to detect the induction
scheme used (double induction, lexicographic induction ...) to build the corre-
sponding proof on-the-fly.

Translation of procedural proofs The declarative language offers a stable format
for the preservation of old proofs over time. Since many Coq proofs in procedural
style already exist, it will be necessary to translate them to this new format. The
translation can be done in two ways: by generating a declarative proof either from
the proof tree, or from the proof term. The latter will be more fine grain but
might miss some aspects of the original procedural proof. The former looks more
difficult to implement.

5.2 Conclusion

The new declarative language is now widely distributed, though not yet widely
used, and we hope that this paper will help new users to discover our language.
The implementation is quite stable and the automation, although not very pre-
dictable, offers a reasonable compromise between speed and power.

We really hope that this language will be a useful medium to make proof as-
sistant more popular, especially in the mathematicians community and among
undergraduate students. We believe that our language provides a helpful imple-
mentation of the formal proof sketch concept; this means it could be a language
of choice for turning textbook proofs into formal proofs. It could also become a
tool of choice for education.

In the context of collaborative proof repositories (using the Wiki paradigm),
our language, together with other declarative languages, will fill the gap be-
tween the narrow proof assistant community and the general public: we aim at
presenting big formal proofs to the public.
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