
Isabelle Theories for Machine Words

Jeremy E. Dawson12

1 Logic and Computation Program, NICTA ⋆

2 Automated Reasoning Group,
Australian National University, Canberra, ACT 0200, Australia

http://users.rsise.anu.edu.au/∼jeremy/

Abstract. We describe a collection of Isabelle theories which facilitate
reasoning about machine words. For each possible word length, the words
of that length form a type, and most of our work consists of generic the-
orems which can be applied to any such type. We develop the relation-
ships between these words and integers (signed and unsigned), lists of
booleans and functions from index to value, noting how these relation-
ships are similar to those between an abstract type and its representing
set. We discuss how we used Isabelle’s bin type, before and after it was
changed from a datatype to an abstract type, and the techniques we
used to retain, as nearly as possible, the convenience of primitive recur-
sive definitions. We describe other useful techniques, such as encoding
the word length in the type.

Keywords: machine words, twos-complement, mechanised reasoning

1 Introduction

In formally verifying machine hardware, we need to be able to deal with the
properties of machine words. These differ from ordinary numbers in that, for
example, addition and multiplication can overflow, with overflow bits being lost,
and there are bit-wise operations which are simply defined in a natural way.

Wai Wong [8] developed HOL theories in which words are represented as lists
of bits. The type is the set of all words of any length; words of a given length
form a subset. Some theorems have the word length as an explicit condition. The
theories include some bit-wise operations but not the arithmetic operations.

In [4] Fox descibes HOL theories modelling the architecture of the ARM
instruction set. There, the HOL datatype w32 = W32 of num is used, that is,
the machine word type is isomorphic to the naturals, and the expression W32 n

is to mean the word with unsigned value n mod 232. In this approach, equality
of machine words does not correspond to equality of their representations.

In [1] Akbarpour, Tahar & Dekdouk describe the formalisation in HOL of
fixed point quantities, where a single type is used, and the quantities contain

⋆ National ICT Australia is funded by the Australian Government’s Dept of Commu-
nications, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Centre of Excellence program.



fields showing how many bits appear before and after the point. Their focus is
on the approximate representation of floating point quantities.

In [5] Harrison describes the problem of encoding vectors of any dimension n

of elements of type A (e.g. reals, or bits) in the type system of HOL, the problem
being that a type cannot be parameterised over the value n. His solution is to use
the function space type N → A, where N is a type which has exactly n values.
He discusses the problem that an arbitrary type N may in fact have infinitely
many values, when infinite dimensional vectors are not wanted.

In the bitvector library [2] for PVS, which has a more powerful type system,
a bit-vector is defined as a function from {0, . . . , N − 1} to the booleans. Inter-
pretations of a bit-vector as unsigned or signed integers, with relevant theorems,
are provided in that library.

In this paper we describe theories for Isabelle/HOL [6] developed for rea-
soning about machine words for NICTA’s L4.verified project [7], which aims to
provide a mathematical, machine-checked proof of the conformance of the L4
microkernel to a high level, formal description of its expected behaviour. As in
[5], each type of words in our formalization is of a particular length. In this work
we relate our word types both to the integers modulo 2n and to lists of booleans;
thus we have access to large bodies of results about both arithmetic and logical
(bit-wise) operations. We have defined all the operations referred to in [4], and
describe several other techniques and classes of theorems.

Our theories have been modified recently due to our collaboration with the
company Galois Connections, who have developed similar, though less exten-
sive, theories. The Galois theories, though mostly intended to be used for n-bit
machine words, are based on an abstract type of integers modulo m (where,
for machine words, m = 2n). Thus, when we combined the theories recently,
we used the more general Galois definition of the abstract type α word; our
theorems apply when α belongs to an axiomatic type class for which m = 2n.

In this paper we focus on the techniques used to define the class. We defined
numerous operations on words which are not discussed here, such as concatenat-
ing, splitting, rotating and shifting words. Some of these are mentioned in the
Appendix. The Isabelle code files are available at [3].

2 Description of the word-n theories

2.1 The bin and obin types

The bin type explicitly represents bit strings, and is important because

– it is used for encoding literal numbers, and an integer entered in an Isabelle
expression is converted to a bin, thus read "3" gives
number_of (Pls BIT bit.B1 BIT bit.B1 :: bin)

(where x :: T means that x is of type T ) ;
– there is much built-in numeric simplification for numbers expressed as bins,

for example for negation, addition and multiplication, using rules which re-
flect the usual definitions of these operations for the usual twos-complement
representation of integers.

2



Isabelle changed during development of our theories. Formerly the bin type
was a datatype, with constructors

– Pls (a sequence of 0, extending infinitely leftwards)
– Min (a sequence of 1, extending infinitely leftwards) (for the integer −1)
– BIT (where (w::bin) BIT (b::bool) is w with b appended on the right)

Subsequently, in Isabelle 2005, Isabelle’s bin type changed. The new bin

type in Isabelle 2005 is an abstract type, isomorphic to the set of all integers,
with abstraction and representation functions Abs_Bin and Rep_Bin.

We found that each of these ways of formulating the bin type has certain
advantages. We proceed to discuss these, and how we overcame the disadvantages
of the new way of defining bins. So we first describe how we used the datatype-
based definition.

Since at one stage in the course of adapting to this change we were using
both the old and new definition of bins and associated theorems, we used new
names for the old definition, with ‘o’ or ‘O’ prepended: thus we had the contruc-
tors oPls, oMin, OBIT, for the datatype obin. (We also kept the old function
number_of, renaming it onum_of). So in describing our use of bins as formerly
defined, we use these names. 3

2.2 Definitions using the obin datatype

As these definitions have since been removed, this section is not relevant for using
these theories currently. But we give this description to indicate the advantages
and disadvantages of the obin type, i.e., the former, datatype-based definition
of the bin type. In fact for some time we continued to use the obin type because
it is defined as a datatype: only a datatype permits the primitive and general
recursive definitions described below.

Using the obin datatype allows us to define functions in the most natural way
in terms of their action on bits. For example, to define bit-wise complementation,
we just used the following primitive recursive definitions:

primrec

obin_not_Pls : "obin_not oPls = oMin"

obin_not_Min : "obin_not oMin = oPls"

obin_not_OBIT : "obin_not (w OBIT x) = obin_not w OBIT Not x"

We mention that, apart from the obvious benefit of using a simple definition, it
is easier to be sure that it accurately represents the action of hardware that we
intend to describe: this is important in theories to be used in formal verification.

Defining bit-wise conjunction using primitive recursion on either of two ar-
guments is conceptually similar, though the expression is not so simple. 4

3 More recently, the bin type changed again, in development versions of Isabelle dur-
ing 2006, to be identical to the integers rather than an isomorphic type. Now our
references to the type bin indicate an integer expressed using Pls, Min and BIT.

4 In Isabelle a set of primitive recursive definitions must be based on the cases of
exactly one curried argument. It can be easier to use Isabelle’s recdef package.

3



We also made considerable use of functions obin_last and obin_rest, which
give the last bit and the remainder, respectively. Again, we defined these func-
tions by primitive recursion using the fact that obin is a datatype (the rules
correspond to the simplifications proved for bin_last and bin_rest, see §2.3).

In working with the obin type, we needed to define the concept of a normal-
ized obin, where the combination oPls OBIT False does not appear, since it de-
notes the same sequence of bits, and so the same integer, as oPls. So we normalise
an obin by changing oPls OBIT False to oPls, and likewise oMin OBIT True

to oMin. Thus the set of normalised obins is isomorphic to the set of integers, via
the usual twos-complement representation (see theorems td_int_obin in §2.5,
and td_ext_int_obin in §2.6).

mk_norm_obin :: "obin => obin"

is_norm_obin :: "obin => bool"

While use of the obin type has the advantage over the bin type of being a
datatype, the need to prove a large number of lemmas concerning normalisation
of obins was a significant disadvantage.

2.3 Definitions involving the bin type

Our initial development developed words of length n from the set of obins. So,
for example, we defined the bit-wise complement of a word using obin_not,
described above, and the addition of two words using addition of obins, based
on functions to do numerical arithmetic from the Isabelle source files.

However we found the need to deal with words entered literally: 6 :: ’a word

is read as number_of (Pls BIT bit.B1 BIT bit.B1 BIT bit.B0). To simplify
6 && 5 :: ’a word (where && is our notation for bit-wise conjunction), we
found it convenient to use simplifications based on the bin type: that is, we
wanted to use a function bin_and, for bit-wise conjunction of bins, rather than
obin_and. Similarly, dealing with words of length 3, say, we wanted to simplify
11 :: ’a word to 3 using a function which truncates bins, not obins.

Since bin is not a datatype, we could not define functions on bins in the
same way we did on obins. So, originally, we defined such functions on bins
by reference to the corresponding functions on obins. To do this we used the
functions onum_of and int_to_obin, which relate the int (isormorphic to bin)
and obin types.

bin_and_def : "bin_and v w ==

onum_of (obin_and (int_to_obin v, int_to_obin w))"

We had obtained a large number of simplification theorems involving obins.
Using this approach, we then had to do some rather complex programming to
transfer all these simplification theorems, en masse, from obins to bins, so as to
avoid proving them all again individually. In this way the parallel use of obins
and bins produced significant extra complexity.

In short, we found that, although the fact of obin being a datatype permits
simple recursive definitions, the machinery needed to take these definitions and

4



resulting theorems on obins and produce definitions and theorems for corre-
sponding functions involving bins was unpleasantly cumbersome.

Therefore we examined alternative ways of defining functions in terms of the
bit-representation of a bin. First we considered what properties of the bin type
resemble the properties of a datatype. The properties of a datatype are:

(a) Different constructors give distinct values
(b) Each constructor is injective (in each of its arguments)
(c) All values of the type are obtained using the constructors

Now we can consider the bin type with “pseudo-constructors” Pls, Min and
Bit (where Bit w b is printed and may be entered as w BIT b).

In terms of these “pseudo-constructors” the properties (b) and (c) above
hold: in fact property (c) holds using the “pseudo-constructor” Bit alone.

Thus we have these theorems; bin_exhaust enables us to express any bin

appearing in a proof as w BIT b. Here !! is Isabelle notation for the universal
quantification provided in the meta-logic.

BIT_eq = "u BIT b = v BIT c ==> u = v & b = c"

bin_exhaust = "(!!x b. bin = x BIT b ==> Q) ==> Q"

Then we can define functions bin_rl, and thence bin_last and bin_rest:

defs

bin_rl_def : "bin_rl w == SOME (r, l). w = r BIT l"

bin_rest_def : "bin_rest w == fst (bin_rl w)"

bin_last_def : "bin_last w == snd (bin_rl w)"

The meaning of the SOME function is that if there is a unique choice of r and
l to satisfy w = r BIT l, then bin rl (r BIT l) = (r, l). In fact property
(b) gives this uniqueness, and so we can prove the expected simplification rules
bin_last_simps and bin rest simps’. We then proved, as bin_last_mod and
bin_rest_div, numerical characterisations of these functions.

bin_last_simps = "bin_last Pls = bit.B0 &

bin_last Min = bit.B1 & bin_last (w BIT b) = b"

bin_rest_simps’ = "bin_rest Pls = Pls &

bin_rest Min = Min & bin_rest (w BIT b) = w"

bin_last_mod = "bin_last w == if w mod 2 = 0 then bit.B0 else bit.B1"

bin_rest_div = "bin_rest w == w div 2"

We also derived a theorem for proofs by induction involving bins. While the
premises of bin_induct contain some redundancy, this is unlikely to make a
proof using bin_induct more difficult than it need be.

bin_induct = "[| P Pls; P Min;

!!bin bit. P bin ==> P (bin BIT bit) |] ==> P bin"

5



Both bin_exhaust and bin_induct were frequently used in proofs, and they
usually made proofs for bins just as easy as the corresponding proofs for obins.
Often the theorems and proofs were simpler for bins, e.g.

bin_add_not = "x + bin_not x = Min"

obin_add_not = "mk_norm_obin (obin_add x (obin_not x)) = oMin"

However obtaining a near-equivalent, for bins, of primitive recursive def-
initions in obins, was a little more intricate. We have already described the
definition of bin_last and bin_rest, and the derivation of simplification rules
corresponding to the definitions of obin_last and obin_rest.

Typically a function f defined by primitive recursion would, if bin were
a datatype with its three constructors, be defined by giving values vp and
vn for f Pls and f Min, and a function fr, where f (w BIT b) is given by
fr w b (f w). (The form of the recursion function returned by define_type in
the HOL theorem prover makes this explicit).

So we defined a function bin_rec which, given vp, vn and fr returns a
function f satisfying the three equalities shown, but the last only where w BIT b

does not equal Pls or Min.

bin_rec :: "’a => ’a => (int => bit => ’a => ’a) => int => ’a"

f Pls = vp

f Min = vn

f (w BIT b) = fr w b (f w)

In the usual case, we can then prove that this last equation in fact holds for
all w and b, as we want for a convenient simplification rule. See examples in [3,
BinGeneral.thy]. Here are bin_not and bin_and defined in this way:

defs

bin_not_def : "bin_not == bin_rec Min Pls

(%w b s. s BIT bit_not b)"

bin_and_def : "bin_and == bin_rec (%x. Pls) (%y. y)

(%w b s y. s (bin_rest y) BIT (bit_and b (bin_last y)))"

After making these definitions, the simplification rules in the desired form (such
as those shown below) need to be proved.

bin_not_simps = [... ,

"bin_not (w BIT b) = bin_not w BIT bit_not b" ]

bin_and_Bits = "bin_and (x BIT b) (y BIT c) =

bin_and x y BIT bit_and b c"

Proving these was virtually automatic for bin_not (with one argument), and
not difficult, but a little tedious, for bin_and (with two arguments): see exam-
ples in [3, BinGeneral.thy]. However this turned out to be much easier than
maintaining collections of corresponding theorems for the separate types bin

and obin.

6



2.4 The type of fixed-length words of given length

As a preliminary step, we define functions which create n-bit quantities. We
called these “truncation” functions, although they also lengthen shorter quan-
tities. Both functions will cut down a longer quantity to the desired length, by
deleting high-order bits. For an argument shorter than desired, unsigned trun-
cation extends it to the left with zeroes, whereas signed truncation extends it
with its most significant bit. Thus bintrunc n w gives Pls followed by n bits,
whereas sbintrunc (n-1) w (used for fixed-length words of length n) gives Pls
or Min followed by n − 1 bits (so here the Pls or Min, is treated as a sign bit,
as one of the n bits). We defined bintrunc by primitive recursion on the first
argument (the number of bits required) and auxiliary functions bin_last and
bin_rest, and sbintrunc similarly.

bintrunc, sbintrunc :: "nat => bin => bin"

primrec

Z : "bintrunc 0 bin = Pls"

Suc : "bintrunc (Suc n) bin =

bintrunc n (bin_rest bin) BIT (bin_last bin)"

Now we need to set up a type in which the length of words is implicit. The
type system of Isabelle is similar to that of HOL in that dependent types are
not allowed, so we cannot directly set up a type which consists of (for example)
lists of length n. Our solution was that the type of words of length n is α word

parametrised over the type α where the word length can be deduced from the
type α. As noted, Harrison did this by letting the word length be the number of
values of the type α.

We use len of TYPE(α) for the word length. TYPE(α) is a polymorphic value,
of type α itself, whose purpose is essentially to encapsulate a type as a term.
In the output of TYPE(α) the type α is printed, which was useful. The func-
tion len of is declared, with polymorphic type (α, printed as ’a, being a type
variable) in the library files as shown below. The library files provide the axiom
word_size which gives the general formula for the length of a word, but the user
must define the value of len of TYPE(α) for each specific choice of α. 5

len_of :: "’a :: len0 itself => nat"

word_size : "size (w :: ’a :: len0 word) == len_of TYPE (’a)"

A type of fixed-length words is ’a :: len0 word, where len0 is a type class
whose only relevance is that it admits a function len of, and the word length of
any w :: ’a :: len0 word is given by the axiom word_size. For each desired
word length, the user declares a type (say a), in the class len0, and defines the

5 Originally we used len of (arbitrary :: α) for the word length, but Isabelle doesn’t
print the type of a constant such as arbitrary, which was a difficulty in doing proofs
involving different word lengths.

7



value len_of TYPE (a) to be the chosen word length. This provides a type of
words of that given length.

(Isabelle notation may be confusing here: in w :: ’a :: len0 word, w is a
term, ’a is a type variable, len0 is the type class to which ’a belongs, and word is
a type constructor. Thus the implicit bracketing is w :: ((’a :: len0) word).)

An Isabelle type definition defines a new type whose set of values is isomor-
phic to a given set. To define each word type we used the definition:

typedef ’a word = "uword_len (len_of TYPE (’a))"

"uword_len len == range (bintrunc len)"

where uword_len (len_of TYPE (’a)) is the set of integers, truncated to length
n using the function bintrunc described earlier. 6

The type class len is a subclass of len0, defined by the additional requirement
that the word length n is non-zero.

len_gt_0 = "0 < len_of TYPE(’a::len)"

Results involving a signed interpretation of words are limited to this case (nat-
urally, as the word needs to contain a sign bit). 7

Thus the fixed-length word type is abstract, representing a sequence of bits,
but such words can be interpreted as unsigned or signed integers. Although the
abstract type is defined to be isormorphic to range (bintrunc n), it can be
viewed as isomorphic to several different sets. So the set of words of length n is
isomorphic to each of the following, with the relevant “type definition theorems”
(explained later) given in brackets:

– the set of integers in the range 0 . . . 2n − 1 (td_uint)

– the set of integers in the range −2n−1 . . . 2n−1 − 1 (td_sint)

– the set of naturals up to 2n − 1 (td_unat)

– the set of lists of booleans of length n (td_bl)

– the set of functions f of type nat -> bool satisfying the requirement that
for i > n, f i = False (td_nth)

That the type of a word implies its length had some curious consequences.
For functions such as ucast, which casts a word from one length to another,
or word_rsplit, which splits a word into a list of words of some given (usually
shorter) length, the length of the resulting words is implicit in the result type
of the function, not given as an argument. Therefore we get theorems such as
"ucast w = w" and "word_rsplit w = [w]", where the repeated use of the
variable w implies that the result word(s) are of the same length as the argument.

6 This is the definition we used before combinining our theories with those of Galois
Connections, see §1.

7 Note that some other results are limited to n > 0 because their proof uses theorems
from the Isabelle library which apply only in a type class where 0 and 1 are distinct.

8



2.5 Pseudo type definition theorems

In Isabelle, defining a new type α from a set S : ρ set causes the creation of an
abstraction function Abs : ρ → α and a representation function Rep : α → ρ, such
that Abs and Rep are mutually inverse bijections between S and the set of all val-
ues of type α. Note that the domain of Abs is the type ρ, but that nothing is said
about the values it takes outside S. The predicate type_definition expresses
these properties, and a theorem, type_definition_α, stating type_definition
Rep Abs S, is created for the new type α.

We can use the predicate type_definition to express the isormophisms
between the set of n-bit words and the other sets mentioned above; we have
proved the following “type definition theorems”.

td_int_obin = "type_definition int_to_obin onum_of

(range mk_norm_obin)"

td_uint = "type_definition uint word_of_int (uints (len_of TYPE(’a)))"

td_sint = "type_definition sint word_of_int (sints (len_of TYPE(’a)))"

td_unat = "type_definition unat of_nat (unats (len_of TYPE(’a)))"

td_bl = "type_definition to_bl of_bl

{bl::bool list. length bl = len_of TYPE(’a)}"

td_nth = "type_definition word_nth of_nth

{f::nat => bool. ALL i::nat. f i --> i < len_of TYPE(’a)}"

These use the following functions between the various types (of_nat and onum_of

have more general types, but are used with these types in these theorems):

int_to_obin :: "int => obin"

onum_of :: "obin => int"

word_of_int :: "int => ’a :: len0 word"

uint :: "’a :: len0 word => int"

sint :: "’a :: len word => int"

of_nat :: "nat => ’a :: len0 word"

unat :: "’a :: len0 word => nat"

of_bl :: "bool list => ’a word"

to_bl :: "’a word => bool list"

of_nth :: "(nat => bool) => ’a word"

word_nth :: "’a word => nat => bool"

The following define the representing sets referred to above, or were subsequently
proved about them:

"uints n == range (bintrunc n)"

"sints n == range (sbintrunc (n - 1))"

"unats n == {i. i < 2 ^ n}"

"uints n == {i. 0 <= i & i < 2 ^ n}"

"sints n == {i. - (2 ^ (n - 1)) <= i & i < 2 ^ (n - 1)}"

9



2.6 Extended type definition theorems

As noted, however, these type definition theorems do not say anything about
the action of Abs outside the set S. But in fact we have defined the abstraction
functions to behave “sensibly” outside S, and it is useful to do so. For example,
word_of_int, which turns an integer in the range 0 . . . 2n − 1 into a word, is
defined so that it also behaves “sensibly” on other integers — it takes i and i′

to the same word iff i ≡ i′ (mod 2n). This allows us to use the same abstraction
function word_of_int in both theorems td_uint and td_sint.

"word_of_int (b mod 2 ^ len_of TYPE(’a)) = word_of_int b"

The “sensible” definition of word_of_int has other convenient consequences.
For example, when we define addition of words by word_add_wi, where u and v

are words of the same length (and this definition does not involve the addition
of bins which are not representatives of words), we also can prove the result
wi_hom_add where a and b can be any integers, whether or not they are values
which represent words.

word_add_wi : "u + v == word_of_int (uint u + uint v)"

wi_hom_add = "word_of_int a + word_of_int b = word_of_int (a + b)"

The following theorems, of the form Rep(Abs x) = f x, describe the behaviour
of Abs outside the representing set S. (It follows that range f = S).

obin_int_obin = "int_to_obin (onum_of n) = mk_norm_obin n"

int_word_uint = "uint (word_of_int a) = a mod 2 ^ len_of TYPE(’a)"

unat_of_nat = "unat (of_nat (n::nat)) = n mod 2 ^ len_of TYPE(’a)"

We therefore defined an extended type definition predicate, as follows:

"td_ext Rep Abs A norm ==

type_definition Rep Abs A & (ALL y. Rep (Abs y) = norm y)"

and we have extended type definition theorems including the following:

td_ext_int_obin = "td_ext int_to_obin onum_of

(Collect is_norm_obin) mk_norm_obin"

td_ext_ubin = "td_ext uint word_of_int (uints (len_of TYPE(’a)))

(bintrunc (len_of TYPE(’a)))"

td_ext_sbin = "td_ext sint word_of_int (sints (len_of TYPE(’a)))

(sbintrunc (len_of TYPE(’a) - 1))"

td_ext_uint = "td_ext uint word_of_int (uints (len_of TYPE(’a)))

(%i. i mod 2 ^ len_of TYPE(’a))"

td_ext_unat = "td_ext unat of_nat (unats (len_of TYPE(’a)))

(%i. i mod 2 ^ len_of TYPE(’a))"

Since Abs(Rep x) = x it follows that norm ◦ norm = norm, so we call it a
normalisation function; we say x is normal if x = norm y for some y, equivalently
if x = norm x. We also have norm ◦ Rep = Rep, and Abs ◦ norm = Abs.

10



As we frequently had to transfer results about a function on one type to
a corresponding function on another type we formalised some general relevant
results. Consider a function f : ρ → ρ, where ρ is the representing type in a
type definition theorem with normalisation function norm. We say x and y are
norm-equiv[alent] to mean norm x = norm y. Then some or all of the following
identities may hold:

norm ◦ f ◦ norm = norm ◦ f f takes norm-equiv arguments to norm-equiv results
norm ◦ f ◦ norm = f ◦ norm f takes normal arguments to normal results
norm ◦ f = f ◦ norm both of the above
f ◦ norm = f f takes norm-equiv arguments to the same result
norm ◦ f = f f takes every argument to a normal result

Consider functions f : ρ → ρ and function h : α → α, where ρ and α are
the representing and abstract types in a type definition theorem. These can be
related in any of the following ways.

h = Abs ◦ f ◦ Rep (1)

Rep ◦ h = f ◦ Rep (2)

h ◦ Abs = Abs ◦ f (3)

Rep ◦ h ◦ Abs = f (4)

Of these, (1) would be the typical way to define h in terms of f , and (4) provides
the most useful properties, as it implies all the rest; they all imply (1). As for
the inverse implications, we obtained a number of general results showing when
they are available, depending on which of the properties about norm and f

above are satisfied (see [3, TdThs.thy]). For example, where norm is bintrunc n,
truncation of a bin to n bits, and f is addition (with two arguments), then f

takes norm-equiv arguments to norm-equiv results. This is the key to obtaining
the result wi_hom_add shown earlier, which is of the form of (3) above, from
the definition word_add_wi, of the form of (1). A similar situation applied in
deriving word_no_log_defs (see §2.7).

Each type definition theorem is used by the functor TdThms or TdExtThms to
generate a number of consequences, found in structures such as:

structure word =

TdThms (struct val td_thm = type_definition_word ... end) ;

structure int_obin =

TdExtThms (struct val td_ext_thm = td_ext_int_obin ... end) ;

We note in particular word_nth.Rep_eqD and word_eqI, derived from it;
word_nth selects the nth bit of a word, and is written infix as !!.

word_nth.Rep_eqD = "word_nth x = word_nth y ==> x = y"

word_eqI = "(!!n. n < size u ==> u !! n = v !! n) ==> u = v"

The latter was frequently useful in deriving equalities of words. For example, our
function word_cat concatenates words. We had proved a theorem word_nth_cat

11



which gives an expression for word_cat a b !! n. Using results like these we
could prove two words equal by starting with word_eqI, and simplifying. This
approach was often useful for proving identities involving concatenating, split-
ting, rotating or shifting words.

In the same way, the theorem bin_nth_lem was useful for proving equality
of bins, where bin nth x n is bit n of x, using theorems such as nth_bintr.

bin_nth_lem = "bin_nth x = bin_nth y ==> x = y"

nth_bintr = "bin_nth (bintrunc m w) n = (n < m & bin_nth w n)"

2.7 Simplifications, number of, literal numbers

As noted ealier, the type bin is used in connexion with the function number of

:: bin => ’a::number to express literal numbers. When a number (say 5) is
entered, it is syntax-translated to number_of (Pls BIT B1 BIT B0 BIT B1).
The function number_of is defined variously for various types and classes, e.g.:

int_number_of_alt = "number_of (w::int) :: int == w"

word_number_of_def =

"number_of (w::bin) :: ’a::len0 word == word_of_int w"

Simplifications for arithmetic expressions Certain arithmetic equalities,
such as associativity and commutativity of addition and multiplication, and dis-
tributivity of multiplication over addition, hold for words. We wrote an func-
tion int2lenw in Standard ML to generate a number of results for words,
in word_arith_eqs, from the corresponding results about integers. See the
file [3, WordArith.thy] for details. From these and other results, we showed
that the word type is in many of Isabelle’s arithmetical type classes (see [3,
WordClasses.thy]). Therefore many automatic simplifications for these type
classes are available for the word type. Thus, for example
a + b + c = (b + d :: ’a :: len0 word) is simplified to a + c = d.

Isabelle is set up to simplify arithmetic expressions involving literal numbers
as bins very effectively, using simplification rules which in effect do binary arith-
metic, provided that the type of the numbers is in the class number_ring. This is
the case for words of positive length; unfortunately this does not work for zero-
length words, since Isabelle’s number_ring class requires 0 6= 1. Thus an expres-
sion such as (6 + 5 :: ’a :: len word) gets simplified to 11 automatically,
regardless of the word length, which need not be known. Another standard sim-
plification involves the predicate iszero, so (6 + 5 :: ’a :: len word) = 7

gets simplified to iszero (4 :: ’a :: len word).
Further simplification of such expressions, i.e., from (11 :: word2) to 3

(where word2 is a type of words of length 2) and from iszero (4 :: word2) to
True depend on the specific word length. We would want to use a theorem like
num_of_bintr, but we cannot reverse it to use it as a simplification rule because
it would loop. Instead we can simplify using num_abs_bintr (which is derived
from num_of_bintr and word_number_of_def).

12



num_of_bintr =

"number_of (bintrunc (len_of TYPE(’a)) (b::bin)) = number_of b"

num_abs_bintr =

"number_of (b::bin) = word_of_int (len_of TYPE(’a)) b"

We then need to simplify the word length definition, using the theorem giving
len_of TYPE(’a) for the specific type, then simplify using bintrunc_pred_simps,
which simplifies an expression like bintrunc (number of bin) (w BIT b), and
finally apply word_number_of_def in the opposite direction.

Given an expression such as iszero (4 :: word2), we can use the theorem
iszero_word_no as a simplification rule, and it doesn’t loop because the type of
number_of ... (the argument of iszero ( )) is a word on the left-hand side
but is an int on the right-hand side. We would then simplify using the rule
giving the word length and bintrunc_pred_simps.

iszero_word_no = "iszero (number_of (bin::bin)) =

iszero (number_of (bintrunc (len_of TYPE(’a)) bin))"

A further approach to simplifying a literal word is to simplify an express-
sion such as uint (11 :: word2), which means converting (11 :: word2) to
the integer in the range uints 2, i.e. 0 . . . 2n − 1. We would simplify using
uint_bintrunc, the rule giving the word length and bintrunc_pred_simps.

uint_bintrunc = "uint (number_of (bin::bin)) =

number_of (bintrunc (len_of TYPE(’a)) bin)"

Note that in uint_bintrunc the two instances of number_of have result types
word and int respectively. Corresponding theorems are available for the signed
interpretation of a word, and to simplify unat of a literal.

Simplifications for logical expressions These are more difficult because we
do not have a built-in type class. The definition of the bit-wise operations, and
how from the definitions we obtained simplifications such as bin_not_simps and
bin_and_Bits, is described in §2.3.

A literal expression such as 22 && 11 can be simplified first using the (de-
rived) rules word_no_log_defs (the actual definitions being word_log_defs)

word_log_defs = ["u && v ==

number_of (bin_and (uint u) (uint v))", ...]

word_no_log_defs = ["number_of a && number_of b ==

number_of (bin_and a b)", ...]

and then using the simplifications such as bin_and_Bits (word_no_log_defs
and many rules for bit-wise logical operations on bins are in the default simpset).

We derived counterparts for bins of commonplace logical identities such as
associativity and commutativity of conjunction and disjunction, and others such
as (x ∧ y) ∨ x = x. We wrote Standard ML code to use these to generate coun-
terparts of these for words, so that one function, bin2lenw, sufficed to generate
all the corresponding results, found in word_bw_simps, about logical bit-wise
operations on words. See the file [3, WordBitwise.thy] for details.

13



Simplifications for literals We wanted to have automatic simplifications for
literal expressions in the default simpset. But to avoid using these where they
were not wanted, we often had to install only a special case of a theorem (gen-
erally, where some (sub-)expression is of the form number of x) as a default
simplification rule. In other cases we needed to use simplification procedures,
which may apply a simplification rule or not, depending on the form of a term.

Special-purpose simplification tactics Consider the result (for words)
"(x < x - z) = (x < z)": each inequality holds iff calculating x−z causes un-
derflow. Several results required about words, such as this one, could be proved
by translating into goals involving sums or differences of integers, together with
case analyses as to whether overflow or underflow occurred or not. So we devel-
oped tactics for these: uint_pm_tac does the following

– unfolds definitions of ≤, using word_le_def (similarly for <)
– unfolds occurrences of uint (a + b) using uint_plus_if’

(similarly for uint (a - b))
– for every occurrence of uint w in the goal, inserts uint_range’
– solves using arith_tac, an Isabelle tactic for solving linear arithmetic

word_le_def = "a <= b == uint a <= uint b"

uint_plus_if’ = "uint (a + b) =

(if uint a + uint b < 2 ^ len_of TYPE(’a) then uint a + uint b

else uint a + uint b - 2 ^ len_of TYPE(’a))"

uint_range’ = "0 <= uint w & uint w < 2 ^ len_of TYPE(’a)"

This proved effective for a reasonable number of goals that arose in practice; it
relies on the fact that arith_tac is very effective for goals involving <, <=, +
and − for integers. Details of the code are in [3, WordArith.thy].

A similar method was used to solve a problem posed by a referee: to prove
that, in signed n-bit arithmetic, adding x+ y overflows, ie, sint x + sint y 6=
sint (x + y), iff (((x+y)^x) & ((x+y)^y)) >> (n - 1) (in C) is non-zero.

2.8 Types containing information about word length

We have defined types which contain information about the length of words. For
example, len_of TYPE(tb t1 t0 t1 t1 t1) = 23 because t1 t0 t1 t1 t1

translates to the binary number 10111, that is, 23. The relevant simplification
rules (which are axioms, and so in the default simpset) are

len_tb : "len_of TYPE (tb) = 0"

len_t0 : "len_of TYPE (’a :: len t0) = 2 * len_of TYPE (’a)"

len_t1 : "len_of TYPE (’a :: len0 t1) = 2 * len_of TYPE (’a) + 1"

and so len_of TYPE(tb t1 t0 t1 t1 t1) is simplified to 23 automatically.
We use the type class mechanism to prevent use of the type tb t0 (cor-

responding to a binary number with a redundant leading zero); the class len

is used for words whose length is non-zero and we used the arity declarations
shown, although the instance declarations shown are then deducible.

14



arities tb :: len0

arities t0 :: (len) len0 instance t0 :: (len) len

arities t1 :: (len0) len0 instance t1 :: (len0) len

By the arities declaration for t0, we can make use of a type α t0 only where
α is in the class len (indicating a non-zero word length), which prevents using
tb as α. The deduced instance results mean that any type α t1 is of class len,
and likewise for α t0, when α is of class len.

It is also possible to specify the word length rather than the type, and have the
type generated automatically. For example, for a goal with a variable type, e.g.
"len_of TYPE(?’a :: len0) = 23", repeated use of certain introduction rules
(len_no_intros) will instantiate the variable type ?’a to tb t1 t0 t1 t1 t1.

See [3, Autotypes.thy] for details, and for further relevant theorems. Brian
Huffman of Galois Connections has developed types in a similar way, and syntax
translation so that the length can be entered or printed out as part of the type.

2.9 Length-dependent exhaust theorems

Consider the goal "((x :: word6) >> 2) || (y >> 2) = (x || y) >> 2"

where x >> 2 means x, with bits shifted two places to the left, and x || y is
bit-wise disjunction. While this is an example of a general theorem which might
well have been provided in the development of the theories, there would be a
large number of such theorems, not all of which have been provided.

We could prove such a theorem by expanding x by

x = Pls BIT xa BIT xb BIT xc BIT xd BIT xe BIT xf

(similarly y) and calculating both sides by simplification. To enable this we
generate a theorem for each word length; the one for word length 6 is shown.

"[| !!b ba bb bc bd be. w = number_of

(Pls BIT b BIT ba BIT bb BIT bc BIT bd BIT be) ==> P;

size w = 6 |] ==> P"

We also generated theorems to express a word as a list of bits; for example,
for x of length 6, expressing to_bl x as [xf, xe, xd, xc, xb, xa].

Such a theorem can then be instantiated; for example, for the goal above,
one would use the theorem for word length 6 twice, instantiating it with x and
y respectively. An example is in [3, Word32.ML].

We are also developing techniques for translating a goal into a format suitable
for handing over to a SAT solver. This involves expressing a word of length n as
a sequence of n bits, and we have used these theorems for this purpose also.

3 Conclusion

The theories we describe have been used extensively in the NICTA’s L4.verified
project, which requires reasoning about the properties of machine words and

15



their operations. We have discussed how we defined types of words of various
lengths, with theorems which apply to words of any length. We have shown how
to make definitions about bins by a procedure sufficiently resembling primitive
recursion to be practical and useful. We have taken advantage of the fact that
the set of words is isomorphic to several different sets and used “pseudo” type
definition theorems to use these and derive relevant results in an efficient and
uniform way. Finally we described other useful techniques, such as how to cre-
ate types which automatically imply the word length, using type constructors
corresponding to binary digits.

In these theories, where a single type of words has a definite length, definitions
and theorems relating to concatenating or splitting words were difficult. In this
aspect, the use of PVS, with its more powerful type system, and its bit-vector
library [2], might be easier.

A noteworthy feature of the work was the value of Standard ML as the user
interface language. As described in §2.6 we used its structures and functors,
which were very convenient for generating a large number of theorems of the
same pattern without repeating code. We used its capabilities as a programming
language to write a number of functions for generating theorems en masse, such
as the SML function int2lenw and bin2lenw which were used to generate re-
spectively 15 and 31 theorems about words from corresponding theorems about
ints and bins. Coding in SML was also indispensible for the simplification pro-
cedures used to provide automatic simplification of literal expressions, for tactics
such as uint_pm_tac, for generating the theorems of §2.9 for arbitrary n, and
for HOL-style conversions, which were occasionally used in the proofs. Of course,
more mundane uses of its capabilities, such as applying a transformation to a
list of theorems, was commonplace in our work.

Acknowledgements I thank Gerwin Klein and anonymous referees for helpful
suggestions, and John Matthews for the contribution of Galois Connections.

References

1. Behzad Akbarpour, Sofiène Tahar & Abdelkader Dekdouk. Formalization of Fixed-
Point Arithmetic in HOL. Formal Methods in System Design 27, 173–200, 2005.

2. Ricky W Butler, Paul S Miner, Mandayam K Srivas, Dave A Greve, Steven P Miller.
A New Bitvectors Library For PVS. NASA, Langley, USA, 1997.

3. Jeremy Dawson. Isabelle word theory files. NICTA. http://users.rsise.anu.edu.
au/∼jeremy/isabelle/l4/

4. Anthony Fox. A HOL Specification of the ARM Instruction Set Architecture. Com-
puter Laboratory, University of Cambridge, 2001.

5. John Harrison. A HOL Theory of Euclidean Space. In Theorem Proving in Higher
Order Logics, (TPHOLs 2005). Lecture Notes in Computer Science 3603, 114-129.

6. L C Paulson, T Nipkow. Isabelle. http://isabelle.in.tum.de/
7. L4.verified project, NICTA. http://ertos.nicta.com.au/research/l4.verified/
8. Wai Wong. Modelling Bit Vectors in HOL: the word library. In Higher Order Logic

Theorem Proving and its Applications (HUG ’93), Lecture Notes in Computer Sci-
ence 780, 371-384.

16


