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Abstract. We present a novel software architecture for graphical in-
terfaces to interactive theorem provers. It provides click’n prove func-
tionality at the interface level without requiring support from the un-
derlying theorem prover and enables users to extend that functionality
through light-weight plugins. Building on established architectural and
design patterns for interactive and extensible systems, the architecture
also clarifies the relationship between the special application of theorem
proving and conventional designs.

1 Introduction

Click’n prove [1], or prove-by-pointing [7], user interfaces for interactive theo-
rem provers enable experts to edit proof scripts more efficiently and make the
theorem prover more accessible to beginners. They visualize the proof state [28,
17] and interpret mouse gestures as commands that exhibit specific subterms of
a goal [7, 9], perform context-sensitive rule applications [1, 6], or manipulate the
proof script in a structure-oriented manner [9, 6]. Similar techniques have proven
successful in software verification systems [17, 1, 22].

In previous designs, the click’n prove interface requires substantial support
from the theorem prover: to interpret a mouse click as term selection, they
assume that the prover augments its output with markups of the term structure
[30, 8, 9, 21, 28, 3, 5]. Alternatively, the responsibility for pretty-printing terms is
transferred to the interface entirely, and the prover delivers an encoding of its
internal data structures [28, 30, 9, 6]. Some proposals [21, 3] extend the prover
itself to handle click’n prove actions. While these approaches thus reuse the
functionality available in the prover, they also require the prover to be modified
for each specific interface and the invested effort cannot be transferred easily to
other interfaces or provers.

In this paper, we propose an architecture for click’n prove interfaces in which
the prover does not have to be aware of the interface and in particular does
not have to be modified. The approach thus rests on a fundamental design rule
for interactive applications [11, §2.4]: business (or application) logic and pre-
sentation logic should be strictly separated. While the business logic, i.e. the
prover, remains stable over many releases, the user interface is subject to fre-
quent changes that accommodate the needs of different user groups or allow the
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Fig. 1. System Architecture

system to run on different platforms. We use a general context-free, incremental
parsing algorithm at the interface level to expose the subterm structure without
breaking this design rule.

Our main objective is extensibility: previous designs required programming
at the prover level to accommodate new click’n prove actions [8, 21] or were
restricted to configuring a generic mechanism [29, 9, 3]. Instead, we propose that
users should provide the functionality necessary for their daily work through
light-weight plugins. The construction of these plugins must not require any
knowledge about the theorem prover’s implementation, and only modest insights
into the architecture of the graphical interface. The general approach imitates
the Eclipse plugin model [15], but reduces its complexity by retaining only those
aspects that are immediately necessary.

The current implementation of the architecture realizes the given objectives
for the Isabelle [25] theorem prover. The example plugins presented in Section 4
show how similar functionality can be provided for different provers within the
established framework.

Structure of the Paper Section 2 motivates and describes the proposed architec-
ture. Section 3 treats our parsing algorithm in more detail. Section 4 gives exam-
ple plugins that provide click’n prove support for Isabelle/HOL [24]. Section 5
compares the proposal with related work. Section 6 outlines future directions
and discusses design decisions. Section 7 concludes.

2 Architecture

To define our architecture, we first enumerate the essential design forces. We pro-
ceed with the division of responsibilities between the interface and the prover,
and describe the extensibility mechanism. Finally, we discuss the steps necessary



to apply the architecture to specific theorem provers. The presentation stresses
the standard architectural and design patterns for graphical user interfaces and
extensible systems (e.g. [11, 26]) underlying our solution. In this way we hope
to offer a new perspective on the commonalities and differences in software de-
sign between graphical interfaces for theorem provers and more conventional
applications.

2.1 Design forces

The following considerations govern the decisions taken in the architecture.

Changing requirements User interfaces must often be changed to add new
functionality for different user groups. In particular, users of theorem provers
profit most from click’n prove support that addresses the situations they
encounter most frequently. We thus envision that theories and corresponding
support will be developed in parallel [29, 1].

User-level extension We expect that users will implement the support they
require directly, rather than wait for the system developers to provide it.

Disjoint developer groups The theorem proving system consists of three,
largely independent parts: the theorem prover, a core framework for the
graphical user interface, and theory-specific click’n prove actions. We as-
sume that these parts will be developed and maintained by three, largely
disjoint groups of programmers who are familiar with their own code only.

Independent extension We expect that contributions to click’n prove func-
tionality are most useful if they can be combined into a consistent environ-
ment in a flexible manner.

Complementary requirements The data structures of provers are optimized
for the operations occurring in proof search and proof checking, but do not
necessarily offer the operations required by interactive interfaces. Two ex-
amples for this are the navigation through a tree structure from nodes to
their parents, and error recovery in parsing.

2.2 Separation of Application Logic and Presentation

Figure 1 exhibits the main components of our architecture and the connections
between them. We now describe the left part of the figure, leaving the plugin
management to Section 2.3. The system is divided into three layers: the prover
layer, the model layer and the display layer.

The prover layer encapsulates the basic communication with the theorem
prover. We assume that the prover provides a read-eval-print loop, which reads
one textual command at a time from standard input, executes it and sends some
textual result to the standard output. To accommodate differences in protocol,
such as the prompt of the loop or the terminator for commands, a prover-specific
configuration component is invoked in every communication. The prover layer
provides a service to execute a single command and notifies the higher levels by
callbacks when the answer has been received.



The model layer manages the data structures that are eventually displayed on
the screen as dictated by the Model-View-Controller (MVC) pattern [11,
§2.4]. The components proof script and proof state store the textual representa-
tion of the current script and state as sent to and received from the prover. The
management of the proof script is standard [9, 5, 2]. Incremental chart parsers
(see Section 3) are registered as Observers [16] with both the script and the
state. They maintain parse trees (or parse DAGs, in case of ambiguities) of the
content. The interactions between the proof script, the prover component, and
the user interface are complex. For example, when a command is sent, it must
be contributed to the locked region of the script; if it fails or is undone later,
the lock must be removed. This situation suggests a Mediator [16] (see also
[4]), which is responsible for managing the collaboration between the connected
components.

The display layer is divided broadly into view and controller components,
as suggested by the MVC pattern. The view components may, however, incor-
porate some controller functionality for entering the proof script by keyboard,
and therefore implement the Document-View variant [11]. Besides the tex-
tual representation of their model data, they also access the chart for syntax
highlighting, for instance to distinguish free and bound identifiers.

Gesture recognition is the central component for click’n prove functional-
ity: it registers for mouse events, including drag&drop events, on all views and
transforms them into click-and-prove events that it forwards, through the dis-
patcher component, to registered click’n prove actions. With these responsibili-
ties, gesture recognition is a typical controller [11, §2.4]: It receives raw, system-
dependent events and interprets them as high-level, application-specific events.
Gesture recognition also implements term selection: when the user clicks to one
of the views, it uses the selected character to ask the chart for the selected token.
To accommodate ambiguous grammars, it then identifies a selected path as the
longest path through the parse tree(s) upwards from the selected token. Finally,
the selected tree is the smallest, i.e. the lowest, tree on the selected path. This
protocol allows the user to select a specific tree by pointing to a token that is
contained in none of its subtrees, for instance by pointing to the operator symbol
of an expression.

2.3 Extensibility

We use the Interceptor pattern [26, §2] to achieve extensibility. In that pat-
tern, a framework defines interception points for which extensions, or intercep-
tors, can register to provide new services. The framework’s behavior is specified
by a finite automaton. Each of its transitions as an associated interception point,
and when the automaton takes a particular transition, a descriptive event is sent
to the registered interceptors via a dispatcher component. The interceptors are
then given the opportunity to query the framework’s state and modify its future
behavior through a context object. The context object, as a Facade object [16],
accesses all of the components in the model layer, which is indicated by dashed



arrows in Figure 1. The concrete events of our architecture will be defined in
Section 2.4.

The main benefit of the Interceptor approach to extensibility is that ex-
tensions are light-weight objects, which have to implement only a restricted
interface to receive events from the framework. Their developers need to be fa-
miliar only with the framework’s specification as a finite automaton and with
the context object; the internal realization remains hidden. The experience with
the example plugins (Section 4) suggests that users who are moderately familiar
with the Java programming language will be able to contribute extensions to
suit their particular needs.

Our architecture complements this setup with a loader component, which
scans a plugins directory on startup and registers all found extensions (see
[13, 15]). We implement lazy evaluation [15]: the plugin declares interceptors in
an XML document plugin.xml, which contains sufficient information to provide
the user interface representation. The implementing classes are loaded only when
the user triggers an action.

2.4 Events

Currently, the framework defines two events: the TreeSelectEvent occurs
when the user selects a subterm with the mouse and requests a menu with
the applicable actions. The TreeDefaultSelectEvent occurs when the user
double-clicks on a subterm. Both events are characterized by a location, and the
selected token, tree, and path as defined in Section 2.2. The location designates
the view in which the event occurred, and is currently either script or state.

Dispatching of tree events proceeds in two steps: first, all actions registered for
the event are queried whether they are enabled for the particular event. That con-
dition is given by a boolean predicate on the event’s parameters (see Section 4).
Second, one action to be invoked is selected. In the case of a TreeSelectEvent
event, the user chooses from a popup menu. For the TreeDefaultSelect-
Event event, the dispatcher checks whether there is exactly one enabled action
and if so, it invokes that action.

2.5 Specialization for a Theorem Prover

The framework can be applied to a given theorem prover by providing the config-
uration component for the communication protocol, grammars for the prover’s
input language and the proof state display, and plugins that react to gesture
events. Since the plugins will necessarily refer to specific non-terminals and
node labels in the syntax trees and will furthermore generate prover-specific
commands, they cannot be reused for different provers.

In the case of Isabelle, the required grammars can be obtained in a straight-
forward fashion: Isabelle supports several logics, which build, however, on a
meta-logic Pure, whose syntax for types, terms, and propositions is given on
a single page in [25]. The remaining productions are declared explicitly in the
theories defining the various logics, and can be extract using only the Pure



grammar. The syntax for commands, however, is given by (backtracking) pars-
ing functions, such that its grammar cannot be extracted from theories but must
be provided by hand. Since full context-free parsing is available, the grammars
can be extracted directly from the reference manuals. For the proof state display,
the output functions have been inspected.

3 Parsing the Proof Script and State

The interpretation of mouse gestures requires a suitable internal representation
of the material displayed on the screen. Since the proof state and the proof script
are given as text documents, a straightforward solution is to construct a parse
tree (or a parse DAG, in case of ambiguities). To support the Isar notion of proof
scripts as self-contained documents [23], click’n prove actions must be applicable
to the script as well as the proof state. Parsing at the interface level is a major
requirement of the proposed architecture, and we describe our algorithm in some
detail to demonstrate that the approach is viable. The Isar input language and
the proof state display of Isabelle pose three major challenges:

1. They contain nested languages, with an outer syntax that describes the
overall structure and an inner syntax for terms and propositions.

2. Both languages are extensible by declarations in theories and require full
context-free grammars.

3. The proper handling of the proof script requires incremental parsing.

Before giving our solution, we review briefly why existing, mainstream approaches
to parsing fail to meet these challenges.

3.1 Existing Approaches

Parsing with nested languages has been studied extensively. The accepted so-
lution is to incorporate the lexical analysis into the context-free grammar. The
ASF+SDF tool [32] handles full context-free grammars using GLR parsing [31],
but adding the lexical analysis results in extremely large LR-automata that pre-
clude on-the-fly generation for extensible grammars. The Harmonia framework
[18] also uses GLR parsing. Its proposed solution to nested languages is to asso-
ciate scanners with non-terminals, but this extension has not been implemented
so far. It is also unclear how extensible grammars could be supported. PackRat
(or PEG) parsing [14] uses a backtracking recursive descent parser with memo-
ization and integrates lexical and syntactical analysis. Since parser generation is
a simple process, extensible grammars could be implemented. However, PackRat
parsing only works for deterministic grammars without left-recursion.

Approaches based on structured editing (e.g. [10]), which have been used
for theorem provers before [30, 9], seem to deviate too much from the usage
of modern IDEs: users expect parsing to proceed in the background without
restricting the possible edits, and to finish shortly after they have produced
syntactically correct input.



The ProofGeneral project [5] and CtCoq [6] assign the responsibility for pars-
ing commands to the theorem prover. Unfortunately, Isabelle currently does not
produce parse trees for commands, but represents commands as transitions,
which are (ML) functions from states to states. It thus appears that to obtain
more detailed information, the parser for the Isar outer syntax would have to be
rewritten almost entirely.

3.2 Incremental Chart Parsing

Chart parsing [20] works with general context-free grammars and can handle
incremental parsing [33, 27]. Since it does not require a generation phase, it is
a light-weight solution to extensible languages. Perhaps the best-known chart
parser is Earley’s algorithm [12], which Isabelle uses for its inner syntax.

To define chart parsing, let G = (N,T, P, S) be a grammar with non-ter-
minals N , terminals (or tokens) T , productions P , and a start symbol S. We as-
sume that the right-hand side of a production either contains only non-terminals
or consists of a single terminal symbol, in which case it is called a pre-terminal
production. Let s be an input string that lexical analysis has split into tokens
t1 . . . tn. The chart is a directed graph (V,E) where the vertices V = {0, . . . n}
mark the positions between the tokens, before the first, and after the last token.
The edges E are triples (v, v′, A → α ·α′) of two vertices v, v′ and an item, such
that A → αα′ is a production in P . The dot indicates the current position in
the parsing process. An edge is active if α′ �= ε, and inactive otherwise.

The chart is initialized by adding a pre-terminal edge ei = (i − 1, i, Ti → ti)
for each token ti and an edge (0, 0, S → ·α) for each production S → α ∈ P .
Then, the following steps are applied until no new edges are produced:

predict For each edge (v, v′, A → α · Bα′) in the chart and each production
B → β ∈ P , add an edge (v′, v′, B → ·β).

combine For each active edge (v, v′, A → α·Bα′) and inactive edge (v′, v′′, B →
β·) in the chart, add an edge (v, v′′, A → αB · α′)

There are only finitely many possible edges and the process terminates with a
chart that contains an edge (v, v′, A → α·) iff there is a derivation A ⇒ α ⇒∗

tv+1 . . . tv′ . To enumerate all parse trees, it is sufficient to mark edges with a
unique identifiers, and to modify the combine step to record in the result the
identifier of the referenced, inactive edge. An edge e depends on an edge e′

[33] iff e references e′, or e depends on some edge e′′ that depends on e′. It is
straightforward to extend the framework to priority grammars [25, §7.1], such
that associativity and precedence of operators can be encoded.

Wirén’s algorithm for incremental parsing [33] takes a chart and a single
modification that consists in the addition, deletion, or replacement of some to-
ken t. Multiple changes are processed in order. The algorithm splits the chart at
the point of modification by removing all edges spanning the modification and
renumbering the vertices to accommodate the insertion or deletion of t. After
adding the pre-terminal edge for a newly inserted token, the normal parsing
algorithm is run to complete the chart for the modified input.



(a) (b)

Fig. 2. Invoking Actions by Mouse Gestures

Our algorithm improves on Wirén’s in that edges reference equivalence classes
of edges, where two edges are equivalent if they have the same start and end
vertices and their items have the same left-hand side. With this definition, the
algorithm generates a packed representation of the parse forest that results from
ambiguous grammars. This packed representation also allows for more efficient
incremental parsing by lazy edge removal: when some edge e becomes invalid
due to a modification, we run the chart parser locally to produce a new edge e′

that is equivalent to e. If such an edge is found, the dependent edges of e do not
have to be processed at all, and parsing finishes.

To accommodate nested languages, we introduce lexer switching. A switch
to lexer l is marked by ↑l in the right-hand side of productions. The chart
structure is generalized such that a token t can be surrounded be arbitrary
vertices v, v′, which are not necessarily numbered consecutively. When the chart
parser encounters an edge (v, v′, A → α· ↑l α′), it searches for a token t that
is located in the input string at the end of token v′ and has been produced by
lexer l. If v′′ is the vertex immediately before t, the algorithm creates an edge
(v, v′′, A → α ↑l ·α′), such that parsing proceeds with the pre-terminal edge of t.
For efficiency, tokens are generated lazily when some production requests them.

4 Plugins

This section demonstrates how plugins can implement click’n prove functionality
based on the framework proposed in Sections 2 and 3. The framework itself is
developed in Java using the SWT and JFace libraries [13] for the user interface.
The examples are chosen to illustrate the services available from the framework,
but do not provide a comprehensive click’n prove interface for Isabelle. Since
the framework API is still under development, we cannot yet present a complete
specification. We include the actual code of the plugins to substantiate the claim
that only modest experience is necessary to produce them.



4.1 Simplification

Isabelle’s simplifier is used in tactic-style proofs to rewrite the first goal of the
current state with a set of equality theorems declared as simplifier rules. In the
click’n prove interface it should therefore be available in the context menu when
the user points to the first goal of the proof state.

Figure 2(a) shows a screenshot: the left-hand side panel contains the proof
script in which the locked region is marked by a red background. The right-hand
side is split between the proof state on top and a panel for error messages below.
By pointing the mouse to the --> operator, the user has selected the goal term
as indicated by the highlight. The term is also shown in prefix notation in the
status line. A click on the right mouse button has brought up the action menu,
where the simplifier action is available.

When the user selects the menu entry, the dispatcher component invokes the
run() method of the following class, which implements the interface associated
with the TreeSelectEvent (Section 2.4). The run() method uses the context
object to insert a new command into the proof script.

public class S imp l i f y implements TreeSe l ec tAct ionDe legate {
public void run ( ClickProveContext ctx , TreeSe lectEvent ev ) {

ctx . insertAndSubmitGeneratedCommand ( ”apply ( simp ) ” ) ;
}

}
To make the simplifier action appear in the context menu, the following XML
element is included in the plugin descriptor (Section 2.3). It specifies the internal
identifier of the action, the label for the menu entry and the class containing the
implementation. Furthermore, the element declares the enable condition for the
action: the location of the tree select event must be the proof state and the se-
lected path must include a subgoal node, which is directly below a subgoals node
representing the list of all subgoals, which again is directly below the ps_goals
node, which captures the lower part of Isabelle’s proof state. Paths are read from
the bottom to the top, paralleling the nesting of parse trees. The XML fragment
thus expresses the condition that the user has selected some term within in the
first goal of the proof state.
<tree-event

id="tactic.simplify"

label="simplify"

class="tactic.Simplify">

<enable>

<and>

<location id="state"/>

<path><node nt="ps_goals"/>

<node nt="subgoals" label="cons"/>

<node nt="subgoal"/>

<any/>

</path>

</and>

</enable>

</tree-event>



The conditions on the selected path expressible in XML are modeled after
regular expressions: node requires a node with a specific label and/or a non-
terminal; the attribute pos="i" indicates that the node must be the i th child
of the next node on the selected path. The condition any matches an arbitrary
sequence of nodes; alt,maybe,repeat, and seq represent the regular operators
for alternative, option, Kleene star, and sequence.

4.2 Rule application

Our second example is an action that searches for the rules applicable to the
conclusion of the first goal. It demonstrates that with more collaboration from
the prover, more sophisticated click’n prove actions become possible. Isabelle
provides a command find_theorems, which searches the current proof context
for theorems fulfilling a given condition. The condition intro finds rules that
are applicable to the first goal. Figure 2(b) shows the resulting screenshot: the
user has pointed to the first goal and selected from the context menu the action
apply rule, which has queried the theorem database and opened the dialog.

The enable condition for the new action is similar to that for simplification.
The following code sequence is taken from the implementation of rule application.
It demonstrates how commands that do not belong to the proof script can be
sent to the prover and how the resulting output can be retrieved by a callback
method.

TheoremSelectDialog s e l
= new TheoremSelectDialog ( ctx . g e t Sh e l l ( ) ) ;

Command c = new TextCommand( ” f ind theorems i n t r o ” ) ;
ActiveCommand cmd = ctx . submitSilentCommand ( c ) ) ;
cmd . addLis tener (new ReportFound ( ctx , s e l ) ) ;
i f ( s e l . open ( ) == Window .OK) {

St r ing thm = s e l . getSelectedTheorem ( ) ;
i f (thm != null ) {
ctx . insertAndSubmitGeneratedCommand ( ”apply ( r u l e ”+thm+” ) ” ) ;

}
}

The call to submitSilentCommand sends the given find_theorems command
to the prover for execution, and returns immediately with an ActiveCommand
object that represents the command to be executed.1 The ActiveCommand ob-
ject notifies registered Observers [16] when the prover completes processing.
In the example, a ReportFound object scans the output and inserts the found
theorems into the open TheoremSelectDialog. When the user selects one of
those theorems, it is applied to the current state.

1 This behavior is essential because the run() method is invoked within the GUI
event-thread and no new events are accepted before it returns – the user interface
is “frozen”. The call to sel.open() does not return immediately either, because the
dialog is modal, but this situation is handled internally by the SWT library.



4.3 Quick Introduction and Elimination

The search for applicable rules using the action from Section 4.2 may take a few
seconds, which is unacceptable when the desired rule is “obviously” the standard
introduction or elimination rule. The QuickIntro and QuickElim classes there-
fore hold an extensible mapping from non-terminal/label pairs to the standard
rules. For the Isabelle/HOL logic, for example, QuickElim maps (logic, exists)
to exE and (logic, and) to conjE. The following code fragment is registered for
the TreeDefaultSelectEvent, i.e. a double-click on one of the premises of
the first goal.

Object nt = ev . getTree ( ) . getNonTerminalID ( ) ;
S t r ing l = ev . getTree ( ) . getLabe l ( ) ;
S t r ing r l = r u l e s . get (new NTLabelPair ( nt , l ) ) ;
i f ( r l == null ) {

ctx . showErrorDialog ( ”No quick e l im ru l e f o r ”+nt+” : ”+l ) ;
} else {

ctx . insertAndSubmitGeneratedCommand ( ”apply ( e r u l e+” ”+r l+” ) ” ) ;
}
Since the QuickIntro is defined analogously, we must give a precise enable con-
dition for QuickElim to ensure mutual exclusion. QuickElim is applicable only
under the first subgoal’s top-level meta-implication, and here to any one of the
list of premises or the single premise, if there is just one.

<path>

<node nt="subgoal"/>

<maybe><node nt="logic" label="meta-all"/></maybe>

<node label="meta-implies"/>

<alt>

<seq><node pos="0"/>

<repeat><node nt="bigimp_prems"/></repeat>

<node/>

</seq>

<node pos="0"/>

</alt>

</path>

4.4 Picking a fact in Isar

The following action demonstrates the use of tree navigators to access the parse
DAG, starting from the selected tree. Bertot [6] shows that a similar access to
the syntax tree is sufficient to implement proof-by-pointing [7].

The grammar for Isar proof scripts [23] includes named assumptions and
intermediate facts of the form id: "proposition". To use a fact in a proof, it must
be “picked” with the command from. The following simple action, registered for
TreeDefaultSelectEvent, enables the user to generate the command by
double-clicking anywhere within the named fact.



s e l = ev . getTree ( ) . nav igate ( )
. up ( ”props ” , null )
. c h i l d ( 0 ) . check ( ” thmdecl opt ” , ”some” ) . c h i l d ( 0 ) . s i n g l e ( ) ;

Token t = s e l . getToken ( 0 ) ;
ctx . insertGeneratedCommand ( ” from ”+t . getText ( ) ) ;

A TreeNavigator object represents a set of positions reached in the current nav-
igation. The navigate() method of a tree node returns the tree node itself. The
navigator’s up() method searches the ancestor nodes for a non-terminal/label
combination and returns a navigator for these. The next steps in the example
navigate down to the first child, check that a name is present (it is optional in
the grammar), and finally access the name. Since grammars can be ambiguous,
tree navigation in general yields several results and the TreeNavigator class
encapsulates the backtracking search. The user can retrieve the results by the
statement for (TreeNode p: navigator). Alternatively, the method single()
returns a single result if it exists or throws an exception.

The proof script is parsed incrementally, such that more sophisticated ver-
sions of the Pick action could examine – through the context object – the pre-
ceding commands to determine the exact command to be generated: after a from
command, the prover is in chain mode and does not accept a second from. In-
stead, the first from must be augmented with a new and clause. After a goal
statement, i.e. in show mode, a using command should be issued.

5 Related Work

User interfaces for theorem provers have attracted the attention of numerous re-
searchers. In the following, we therefore focus on the main points of comparison:
the collaboration with the prover that enables click’n prove functionality, and
the mechanisms for extensibility. The existing solutions for parsing the proof
script have been discussed in Section 3.1.

Bertot, Théry, and Kahn [30, 7, 9, 6] have introduced and developed the proof-
by-pointing paradigm. They expect the prover to send output as trees, which
they render on the screen using the PPML formalism of CENTAUR [10]. The
translation of mouse gestures to proof commands takes place at the interface
level [6]; the editor for the proof script is structure-oriented, requiring the user
to manipulate abstract syntax trees, but also providing extensive editing support.

A similar implementation strategy is used in [8, 21, 3], where the prover marks
each subterm in the output with its path p in the overall syntax tree. Bertot et al.
[8] interpret a mouse click by sending a command pbp p (for proof-by-pointing)
to the prover, which generates a command, executes it, and sends it back to
the interface for inclusion in the proof script. Aspinall and Lüth [3] generate
commands from templates at the interface level.

The Jape editor for proof documents [29] includes a theorem prover that
appears to share its data structures with the interface, such that mouse gestures
can be readily interpreted. In the KIV [17] and Jive [22] verification systems, the
graphical front-end is likewise coupled tightly to the built-in prover. The interface



for the distributed system Ωmega [28] expects the prover to transmit its internal
data structures, which enables elaborate and fine-grained visualization.

Extensibility has been achieved by two means: generic algorithms that can
be configured for specific application domains, and broker architectures that
provide a common infrastructure to which provers and front-ends can attach to
exchange messages.

Bertot and Théry [9] generalize the proof-by-pointing algorithm to accom-
modate new connectives. The implementation in [8] likewise uses an extensible
repository of functions that handle specific connectives, but they must be pro-
grammed at the prover level.

The Jape [29] editor can be configured by the inference rules of concrete
logics. The declaration of a rule also includes the gesture that is to invoke the
rule. The set of available gestures is large, but fixed, such that, for example,
specific dialogs cannot be programmed.

Lüth and Wolff [21] introduce the notepad metaphor. The user manipulates
objects displayed on the notepad by drag&drop gestures, which are interpreted
uniformly as function application. The system can thus be used for any appli-
cation that provides concrete representation types for objects and applicable
operations. Aspinall and Lüth [3] implement a generic interface that can be
configured with the command templates to be filled out for drag&drop gestures.

The LOUI interface [28] for Ωmega represents rules and tactics introduced
by theories by new menu entries. If a tactic requires parameters such as the
instantiations for a variable, a generic dialog is opened for the user to enter the
missing data.

Broker [11] architectures allow loosely coupled, possibly distributed compo-
nents to interact by message passing. The Ωmega prover [28] and current ver-
sions of the ProofGeneral [5, 4] provide an infrastructure for prover and display
components to communicate. The XML-based PGIP protocol [5] abstracts over
specific provers and defines a communication standard. The message passing in-
terface in broker architectures requires the individual components to maintain
internal state, such that programming extensions, especially with click’n prove
functionality, involves a substantial effort.

6 Future Work and Discussion

We are currently developing the implementation of the architecture and a click’n
prove interface for Isabelle. The example plugins in Section 4 show the current
state and exhibit further immediate requirements: proof script management for
multiple documents [9, 5], a View Handler [11] for switching between visual-
izations, and context-sensitive syntax highlighting. An open strategic question is
whether our architecture should build on the Eclipse platform [13, 15] (following
[4]) to import the available view management and plugin mechanisms. There
are mainly three considerations: a user contributing click’n prove actions should
not have to know the Eclipse plugin model in detail, the graphical front-end is



to remain light-weight, and special plugins for single theories may need to be
loaded after startup and from locations outside of the installation directory.

A major direction is the integration of new views. Apart from visualizing the
goal structure (see for example [19]), we intend to provide the notepad metaphor
[21] for offline-calculations, which would be performed by silent prover commands
(Section 4.2). This extension introduces a DragAndDropEvent with selected
source and selected destination objects as parameters. We expect that the editing
of Isar proof scripts [23] will be simplified if intermediate results in calculational
reasoning and auxiliary facts can be generated by forward reasoning on the
notepad.

The second major goal is the definition of a stable API for plugins and a more
comprehensive set of events. Useful extensions can be found in the motivation
of the Interceptor pattern [26]. For instance, mathematical notation can be
encoded and decoded by a plugin if the framework provides interceptable events
Load and Save for proof scripts, Send for commands, and Receive for answers.

A question that can be answered only with more experience is whether the
access to syntax trees is sufficient to implement all desirable click’n prove actions.
Bertot [6] provides a partial answer: once a grammar for the term structure is
completed, proof-by-pointing can be implemented. However, the Isabelle pars-
ing model [25, §8] defines four steps to obtain the internal tree representation:
generation of parse trees, application of parse translations and macro expansion,
and finally type inference. We contend that it will be sufficient that parse trees
are available, because users necessarily manipulate this externally visible form,
thus expecting support only at this level. The lack of type information implies,
however, that no disambiguation of parse DAGs can take place and the available
actions cannot depend on types.

7 Conclusion

We have presented an architecture for click’n prove interfaces to interactive the-
orem provers that differs from previous proposals in two aspects: it requires no
support from the prover beyond a textual interface with a read-eval-print loop,
and it is extensible by light-weight plugins that register to be notified for defined
events. Our architecture is based entirely on established patterns for interactive
and extensible systems, thus linking the special application of interfaces for the-
orem provers to more widespread software designs.

We use a parser accepting general context-free grammars to analyze both the
proof state and the proof script. Since the parser works incrementally, users can
select subterms from the script during editing, but they are not constrained to
manipulating only well-formed syntax trees.

The experience with the current implementation suggests that users mod-
erately familiar with the framework will be able to provide new click’n prove
functionality with little effort. Actions may analyze the structure of the proof
state and proof script in detail to decide which commands to generate, they may
invoke the prover for more sophisticated queries, and may use arbitrary services
of the GUI toolkit for specialized communication with the user.
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