
Co-inductive Proofs for Streams in PVS�

Hanne Gottliebsen1

Department of Computer Science, Queen Mary, University of London
hago@dcs.qmul.ac.uk

Abstract. We present an implementation in the theorem prover PVS
of co-inductive stream calculus. Stream calculus can be used to model
signal flow graphs, and thus provides a nice mathematical foundation for
reasoning about properties of signal flow graphs, which are again used
to model a variety of systems such as digital signal processing. We show
how proofs by co-induction are used to prove equality of streams, and
present a strategy to do this automatically.

1 Introduction

How do we reason in an abstract way about signals and circuits? Classical mathe-
matical techniques require analysis relying on numerical methods. An alternative
approach is to take a more abstract view, for example using signal flow graphs
[4]. This allows for a much more precise model of the circuits, and thus provides
a better basis for analysis.

The work we present here is part of the Logical Structures for Control project,
which is concerned with reasoning about dynamical systems. The projects has
two main strands. One strand is building a Hoare logic for dynamical systems in
general [3, 1], which can then be applied to various models of dynamical systems,
such as block diagrams or signal flow graphs. The other strand is constructing
a practical implementation for reasoning about models of dynamical systems. It
is within this second strand that the work presented here falls.

It turns out that for several practical research areas, signal flow graphs pro-
vide an elegant, modular and scalable notation for modelling. Signal flow graphs
were originally introduced by Mason [4] in 1953 for modelling linear networks.
Since then, they have been used for a variety of systems, for example modelling
circuit transposition for circuits [11], test generation for mixed-signal devices [8]
and for digital filters [10]. Thus they are generally used as a modelling tool.

Stream calculus was introduced by Escardó and Pavlović [7]. Their main idea
is to interpret the stream elements as factors in approximation for functions, thus
establishing the connection between stream calculus and classical calculus. The
basic operations of stream calculus are conceptually very simple, for instance
differentiation corresponds to taking the tail of a stream, and so stream calculus
provides a way to work on problems such as differential equations.

� This work is supported in part by The Nuffield Foundation.

Rutten [9] showed how signal flow graphs can be modelled very nicely using
stream calculus. This gives us a precise mathematical notion of what a signal
flow graph represents, and allows us to perform mathematical analysis of signal
flow graphs in a precise way. Based on this idea of stream calculus as a model
for signal flow graphs, we did an implementation in the theorem prover PVS of
stream calculus, as we wanted to investigate formal reasoning about signal flow
graphs.

PVS (Prototype Verification System) [6] is an interactive theorem prover.
The specification language is powerful and allows the use of predicate subtyping
as well as higher-order classical logic. Although PVS is an interactive theorem
prover, a good level of automation is provided and PVS also facilitates the addi-
tion of user-defined automation. Of particular importance to our implementation
is the existing support in PVS for co-inductive datatypes. Our implementation
of stream calculus in PVS allows us to reason in the most rigorous sense about
properties streams and functions over streams.

The implementation is based on co-inductive streams, that is streams are de-
fined as infinite lists rather than as functions from the natural numbers to their
element types. We have found that many definitions and also proofs are more
intuitive using this technique, although of course conceptually (if not in imple-
mentation) the two basic ideas would model the same streams. Using stream
calculus allows a very simple way to solve differential equations, and we use this
in some of our examples. Many proofs in the implementation relies on the co-
induction principle, which in turns requires a bisimulation between two streams
to be given. Just like working out an induction hypothesis for a regular proof
by induction can be difficult, so can choosing the “right” bisimulation. However,
we show how one can systematically “guess” a bisimulation from the proof goal.
This is important, as it makes the proofs a lot simpler. We have implemented
this as a strategy in PVS and present here for the first time this strategy and
some applications of it.

The current implementation is the first step in providing a platform for formal
reasoning about signal flow graphs using stream calculus. It is evident that such
a platform would be useful for many different topics.

1.1 Structure

In Sect. 2 we explain in some detail the basic concepts of stream calculus. Section
3 outlines the implementation of stream calculus in PVS, with the use of a
co-inductive datatype. Section 4 explains how we may automate proofs by co-
induction, thus making the current implementation much easier to use. Finally,
Sect. 5 contains some conclusions and directions for further work.

2 Stream Calculus

The notion of stream calculus was introduced by Escardó and Pavlović [7] as
a means to do symbolic computation (in for example computer algebra and
theorem proving) using co-induction.

Streams in general can be defined over any kind of element type, however
since we intend to model signal flow graphs, we will restrict our element type
to the set IR of real numbers. Following the definitions of Rutten [9], we view a
stream as a function from IN to IR, and let the set of streams over the reals be
denoted by IRω:

IRω = {σ|σ : IN → IR}

Following the tradition of Escardó and Pavlović [7] we use the following termi-
nology: we call σ(0) the initial value of the stream σ, and the derivative σ′ of
the stream σ is given by

σ′(n) = σ(n + 1)

These are more commonly known as head and tail in computer science, however
having this notion of a derivative allows the development of a calculus of streams
[7] which is fairly close to that of classical functional analysis. We may use :: to
denote appending elements to streams, for example

σ = a0 :: a1 :: ρ

where σ and ρ are streams and a0 and a1 are stream elements.
We can now define addition and multiplication of streams as follows. The

sum, σ + τ of streams σ and τ is element-wise, that is

∀n ∈ IN : (σ + τ)(n) = σ(n) + τ(n)

The convolution product, σ × τ of streams σ and τ is given by

∀n ∈ IN : (σ × τ)(n) =

n∑

k=0

σ(k) · τ(n − k)

We can embed the real numbers into the streams by defining the following
stream. Let r ∈ IR. Then [r] is defined as follows:

[r] = (r, 0, 0, 0, . . .)

This essentially allows us to add and multiply real numbers and streams:

[r] + σ = (r + σ(0), σ(1), σ(2), . . .)

[r] × σ = (r · σ(0), r · σ(1), r · σ(2), . . .)

Often we will simply use r to denote the stream [r], it will be clear from the
context if r is a real number or the stream related to the number.

Finally, we can define a constant stream of particular interest, X :

X = (0, 1, 0, 0, . . .)

The effect of multiplying a stream by X is a delay of 1, that is:

X × σ = (0, σ(0), σ(1), σ(2), . . .)

We see that multiplication by X is essentially an antiderivative, in the sense that
if we multiply a stream by X and then differentiate, we get the original stream
back:

(X × σ)′ = σ

However, the reverse is only true if the initial value of σ is 0. This corresponds
to the constant of integration in analysis being 0.

With the above definitions of differentiation, addition and multiplication, we
can obtain the following facts about differentiation of sums and products by
applying the basic operations:

(σ + τ)′ = σ′ + τ ′

(σ × τ)′ = ([σ(0)] × τ ′) + (σ′ × τ)

We see that the sum behaves exactly as in classical calculus, however multipli-
cation does not.

3 Stream Calculus in PVS

PVS has an extensive set of libraries, and provides easy ways for users to de-
fine new datatypes and related operations. In particular, defining a co-inductive
datatype is simple with PVS automatically providing the basic operations and
properties of the datatype based on the definition. With PVS being strongly
typed and supporting predicate subtyping, we can use types to fully define cer-
tain functions, something which we use extensively in this implementation.

We have a basic implementation of stream calculus in PVS. The implemen-
tation covers all the operations described in the previous section.

3.1 Basic Notion of Streams

We are using the co-inductive datatype constructor in PVS to implement the
streams:

stream : CODATATYPE

BEGIN

str(car: real, cdr:stream):str?

END stream

This gives us a datatype stream which works essentially like infinite lists, with
car and cdr denoting initial value and derivative, respectively. With the co-
inductive datatype we get (for free, from the implementation of CODATATYPE in
PVS) various theorems, most importantly for us the definition of co-induction:

coinduction: AXIOM

FORALL (B: (bisimulation?), x: stream, y: stream):

B(x, y) => x = y;

In PVS, there is a built-in polymorphic type for sequences, modelled as a
function from the natural number to the element type – thus much closer to
the definition of streams given in Sect. 2. This of course could also be used to
model streams. Indeed, when we first started this work, that is the approach we
took [2]. Normally, one would argue in favour of using the co-inductive datatype
mainly if one wants to model finite streams alongside the infinite streams. At
the moment we are not doing this, although we are considering it. However, we
chose to use the co-inductive datatype regardless, since many of the existing
proofs (in papers) of properties of stream calculus uses co-induction. In fact, we
have basic implementations of stream calculus in both notations, and we found
that many proofs are simpler using the co-inductive datatype. We also wanted
to investigate closer how the co-inductive datatype works in PVS, and hope that
this implementation can serve as an example for PVS users in general. Another
reason for choosing to use the co-inductive datatype, is that, with a little work,
it allows us to give definitions very close in style to those with self-reference
corresponding to

A = a0 :: a1 :: A

This is not in general simple in PVS, where items must be declared before they
can be used.

Declaring co-inductive streams in PVS, as well as the main result about do-
ing proofs using co-induction, we also get various functions used in constructing
co-inductive streams, for example inj str and coreduce, most of which are
somewhat cumbersome to work with in part due to being automatically gener-
ated. In order to simplify the notation compared to the automatically generated
notation, we introduce our own notation, inspired by Miner [5]:

f, g : VAR [real -> real]

a : VAR real

corec(f,g)(a) : stream =

coreduce(lambda (b: real): inj_str(f(b), g(b)))(a)

The meaning of this is that given two functions over the reals f and g and a real
number a, corec(f, g)(a) returns the following stream:

corec(f, g)(a) = f(a) :: f(g(a)) :: f(g(g(a))) :: . . .

That is, element n in the stream is defined by successively applying g and then
finally applying f once. In fact, we defined corec and its associated operations
and properties in a polymorphic way, as this was useful for implementing certain
stream operators, such as addition, Sect. 3.2.

Now, if we want to be able to define a constant stream such as a :: a :: a :: . . . ,
it can be done as follows:

const(a) : stream = corec[real](id,id)(a)

where a is a real number and id is the identity function on the real numbers. We
can then use co-induction to prove the following lemma, confirming that const

does indeed give us the constant stream.

const_fact : LEMMA const(a) = str(a,const(a))

There are many functions which can be defined quite nicely using corecursion,
for example map and iter (short for iterate):

map(f,s) : stream = corec[stream](lambda t1 : f(car(t1)),

lambda t1 : cdr(t1))(s)

iter(f,a) : stream = corec[real](id, f)(a)

where f : IR → real, a : IR and s is a stream. Then map(f, s) returns the
stream of f applied element-wise to s, and iter(f, a) returns the stream where
f is applied to a n times for element n. Thus

map(f, s) = f(s0) :: f(s1) :: f(s2) :: . . .

iter(f, a) = a :: f(a) :: f(f(a)) :: . . .

3.2 Calculating with Streams

We now define the basic operations on streams:

initial(sigma) : real = car(sigma)

derivative(sigma) : stream = cdr(sigma)

% Adding two streams

+(s1,s2) : stream = corec(lambda t1,t2 : car(t1) + car(t2),

lambda t1,t2 : (cdr(t1),cdr(t2)))(s1,s2)

% Scalar multiplication

m(a,s) : stream = map(lambda x : a * x, s)

% Register/Delay

R(s) : stream = str(0,s)

% Some fact to show that the definitions work as expected

add_fact : LEMMA

+(s1,s2) = str(car(s1) + car(s2), +(cdr(s1),cdr(s2)))

m_fact : LEMMA m(a,s) = str(a*car(s), m(a,cdr(s)))

R_inv_deriv : LEMMA derivative(R(s)) = s

One operator which is made slightly more complicated because we are using
the co-inductive datatype rather than streams as functions over the natural
numbers, is the convolution product. This really highlights another difference
between the two notations. In order to calculate the convolution product, we

need history, in the sense that for each element of the resulting stream, we need
to know all preceding elements of each of the two input streams. There is no
way to avoid this. In our implementation we get around this by essentially going
back to considering element number n, something which is a bit unnatural in
the co-inductive definition, but nonetheless works.

3.3 Differential Equations

One of the interesting questions about a given signal flow graph is whether it
implements a solution to a certain differential equation or not. Thus, we might
consider the following first-order stream differential equation, and ask what s

should be:

s(0) = a ∧ s′ = s (1)

Just by looking at the stream and remembering the definition of the derivative
of a stream, we get

s = a :: s

= a :: a :: s

= a :: a :: a :: s

So we see that s is the constant stream over a. Then if our signal flow graph
outputs this stream, it gives a solution to the differential equation.

In general, a first-order stream differential equation is of this form:

t(0) = a ∧ t = s (2)

where a is some real number and s and t are streams of real numbers. This leads
us to the following definition in PVS of the solution to a first-order differential
equation as in (2):

fode(s,a) : stream = { t | car(t) = a and cdr(t) = s }

This means that that the function fode takes arguments s and a and returns
a single stream with initial value a and derivative s. That is, fode(s, a) is the
solution to (2). So we immediately have the following result:

fode_fact : LEMMA

fode(s,a) = str(a,s)

We can now prove the result of our example (1) above:

example_1_3 : LEMMA

s = fode(s,a) IMPLIES s = const(a)

We have implemented second-order differential equations in essentially the
same manner:

sode(s,a,b) : stream =

{ t | car(t) = a and car(cdr(t)) = b and cdr(cdr(t)) = s }

sode_fact : LEMMA

sode(s,a,b) = str(a,str(b,s))

As an example, consider the following second-order stream differential equation:

s(0) = a

s(1) = b

s′′ = s

Again, by looking at the stream, we can find s:

s = a :: b :: s

= a :: b :: a :: b :: s

We see that this corresponds to the constant streams over a and b respectively
zipped, in PVS:

example_1_4 : LEMMA

s1 = sode(s1,a,b) IMPLIES s1 = zip(const(a),const(b))

where zip(s, t) = s0 :: t0 :: s1 :: t1 ::
To summarise, we can define streams and functions over streams. We can

also do basic interactive proofs in PVS, but in the next section we will discuss
new automation for proofs by co-induction, making most of the proofs of general
lemmas about streams and functions over streams much easier.

4 Automation of Co-inductive Proofs

In this section we will discuss co-induction in general, and see how we can au-
tomate proofs by co-induction in PVS. The strategy presented here is set up
specifically to work with the implementation of stream calculus, but we see no
reason why it cannot be generalised to co-inductive datatypes in general.

Following Rutten [9] we first introduce formally the notion of bisimulation on
streams and the co-induction principle for streams. A bisimulation is a relation,
defined as follows:

Definition 1 (Bisimulation). Let R be a binary relation on streams. Then R

is a bisimulation if for all streams s and t the following holds:
sRt ⇒ car(s) = car(t) ∧ cdr(s)Rcdr(t)

We see that equality is an obvious bisimulation. However, not all bisimulations
are equivalent to equality, for example the relation

R(s, t) = (s = const(1) ∧ t = const(1))

is a bisimulation, but the stream (1,0,0,. . .) is not related to itself under this
bisimulation, although it is obviously equal to itself. In PVS the above definition
is generated automatically when declaring a co-inductive datatype, such as our
streams.

Let us remind ourselves about the co-induction principle as seen in Sect. 3.1:

Theorem 1 (Co-induction).
Let two streams, s and t, and a bisimulation on streams, ≡, be given. Then,

if s ≡ t then s = t.

Again, this theorem is generated automatically by PVS for any co-inductive
datatype, obviously with the appropriate types used.

Every time we want to do a proof by co-induction, we need to “invent” a
bisimulation which fits the statement we are trying to prove. This is not neces-
sarily a simple task, and as usual with theorem proving, having better support
for automation makes proving so much easier. Let us look at an example:

Example 1 (Proof by Co-induction – map iter).
We want to prove that for the functions map and iter (Sect. 3.1), a function

f : IR → IR and a real number x, we have the following:

map(f, iter(f, x)) = iter(f, f(x))

Since both map and iter return streams, this is an equality between streams.
Now consider the relation R, where

R(s, t) = ∃g : IR → IR, y : real : s = map(g, iter(g, y)) ∧ t = iter(g, g(y)) (3)

It is clear that R(map(f, iter(f, x)), iter(f, f(x))) since we can choose f for
g and x for y. So, assuming that R is indeed a bisimulation, we can use Theorem
1 to prove equality of the two stream.

Thus we need to prove that R is indeed a bisimulation, that is sRt ⇒ car(s) =
car(t)∧cdr(s)Rcdr(t) for all streams s and t. This can be easily done by unfolding
the definitions of map and iter.

In the above example, we see that given an appropriate relation, in this case
R as in (3), the rest of the proof is relatively simple, if tedious. So it seems
that the step, when doing proof by co-induction, which requires “invention” is
determining which relation to use. However, it is possible to do this in a very
mechanistic way for many cases of stream equality. Looking again at the above
example, we see that the r suggested can be obtained simply by considering the
structure of the equality, we want to prove. One may wonder why we need to
introduce new, existentially quantified variables g and y in the definition of the
relation. The reason for this is to ensure that the relation is indeed a bisimulation,
for which we need the cdr’s of two related streams to also be related.

In Ex. 1 the proof of the relation being a bisimulation is quite simple, using
only rewriting and simplification, but in some cases this step requires real insight
and relies on using other lemmas about properties of the functions and streams
involved. For this reason, this step has not yet been automated.

The simple pattern matching of the actual formula being proven illustrated
above is not in general enough. Often, in a proof, we have various assumptions
which may also be used in the proof, and the very basic relation above does
not capture those. Therefore the relation may not be a bisimulation, although a
bisimulation may indeed exist. One such example is (1). So, as well as looking
at the actually equality we want to prove, we also need to consider the rest of
the current proof goal.

4.1 The PVS strategy

The basic structure of the PVS strategy bisim is as follows:

Collect Variables In order to determine which variables, and their types, to
have existentially quantified in the relation, we construct a list of the original
variables, their types and new variables, which will be of the same type.

Assumptions We need to decide which assumption needs to be added to the
relation. This is done based on the occurrence of any of the variables found
above. That is, if an assumption contains any of the variables collected, then
a version of this assumption, with suitable substitutions, should be included
in the relation.

Build Relation We use the original formulae, but substitute with our new
variables to build the string used to instantiate the Theorem of Co-induction.

Instantiate Theorem of Co-induction We then instantiate the theorem, us-
ing the relation just built and the original streams also.

Prove the Assumption Since the theorem says R(s, t) ⇒ s = t, we need to
prove that the relation holds on the two original streams. However, since the
relation is built based on pattern matching with the original streams, this is
easily done using the “obvious” instantiation.

Prove that Relation is a Bisimulation Finally, we need to prove that the
relation is a bisimulation. This is done by proving each of the statements on
the car’s being equal and the cdr’s being related.

We see that most of the work of this strategy goes into setting up terms to be used
in the instantiation of the theorem. In fact, the actual PVS proof does only the
following: skolemize, introduce the theorem, instantiation (both the theorem,
as explained above, and automatic instantiation provided by PVS), replacing
terms and simplifying. Other than the instantiation of the theorem, none of
these requires any particular insight, and indeed this part of the automation is
very simple.

Example 2 (PVS proof of map iter).
Consider again the statement

map(f, iter(f, x)) = iter(f, f(x))

where f : IR → IR and x : IR.
In PVS, we can prove this by using our strategy bisim:

map_iter :

{1} FORALL (f: [real -> real], x: real):

map(f, iter(f, x)) = iter(f, f(x))

Remember that bisim leaves us to prove only the two criteria for the relation
being a bisimulation. So the two subgoals produced here correspond to the two
parts of the definition of a bisimulation.

The first subgoal is then

map_iter.1 :

{1} car(map(g, iter(g, y))) = car(iter(g, g(y)))

This is then completed by expanding map and iter to their definitions in terms
of corec and then using rewrites about car and corec.

The second subgoal is

map_iter.2 :

{1} EXISTS (g1: [real -> real], y1: real):

cdr(map(g, iter(g, y))) = map(g1, iter(g1, y1))

AND cdr(iter(g, g(y))) = iter(g1, g1(y1))

Again, we expand map and iter and use rewrites about cdr and corec. After this
PVS is able to automatically guess the correct instantiation of g1 = g and y1 =
g(y) to complete the proof. If we attempt to instantiate before the expansion,
PVS will guess the wrong instantiation in this case, thus the expansion should
take place first.

This completes the proof.
In both subgoals, new variables generated by the strategy are used. For the

sake of readability we have substituted simpler names above.

4.2 Applicability of Strategy

It is clear that the strategy is quite basic, however it works quite well on typical
examples of equalities which occur in for example Rutten [9]. There are some
areas where the strategy does not perform so well:

Foundational Statements For some foundational statements, which are part
of the basic definitions and properties for streams, it turns out that the gen-
erated relation is not a bisimulation. In these cases we often need a relation
which is stronger than that provided by the strategy.

Streams as Sequences For streams or functions viewed as sequences (func-
tions over the natural numbers), it is often more appropriate to use element-
wise equality as the bisimulation, however this is not produced by the strat-
egy.

Complicated Bisimulations In some cases, the relation is such that the proof
that it is a bisimulation relies on other lemmas. In many cases, it is possible
by systematic rewriting and simplification to present the goal to PVS in
a form where PVS can make the correct instantiation, however this is not
always possible. If instantiation by the user is needed, we then have a problem
with the automatically generated variable names, since for a rerun of the
proof, these will be different. Thus a proof constructed this way will not
work if rerun.

Others There are some statements which are just not on the right form for this
strategy to work. One example is the following:

double_zip : LEMMA double(s) = zip(s,s)

where double(s) duplicates each element in s, that is double(s) = s0 :: s0 ::
s1 :: s1 ::
In this case, the relation needs to look two elements ahead rather than only
one, something not accounted for in the strategy.

There are various ways we can try to alleviate the above problems. For example,
the problem of the naming and renaming of fresh variables might be handled
differently, allowing us to fix the names locally within each proof, and so prevent
this particular problem of not being able to rerun proofs automatically. In fact,
with the current version it is possible to get around this by using the glass box
version of the bisim strategy. This stores as the proof the individual proof steps
and thus keeps a record of the instantiation involving the variable names, keeping
them the same for any subsequent reruns of the proof. For statements where a
straight forward proof by co-induction is not feasible, we can set up other, related
proof strategies. It turns out that the lemma double zip is can be proven using
what we might call even-odd co-induction: Essentially, if we have a bisimulation
between the even elements of two streams and a bisimulation between the odd
elements, then the two streams are equal. We have proven this principle in PVS
and used it to prove double zip in a manner very similar to that of using
bisim. However, bisim does not at this time handle such proofs. Based on our
study of Rutten’s examples [9] it seems that it may be beneficial to support
automatic proof using element-wise equality as the bisimulation. In many cases
using this would overly complicate the proof, essentially converting to a sequence
notation for the streams, however in some cases it works well, particularly where
the stream (or any functions) involved are defined by considering streams as
sequences.

We will be using the first-order differential equation from (1) as an example,
and want to prove that s = const(a), when s = fode(s, a). In any given proof,
we may have not only the actual equality that we are trying to prove, but also
other equalities for the streams, which we may use as assumptions in our proof.
If we have assumptions of the form s = s1(x0, . . . , xn) (and similarly for t), we
take as the general bisimulation the following function:

λs2, t2 : ∃x, y, s1, t1 : s2 = s ∧ s = s1(x) ∧ t2 = t ∧ t = t1(y)

For our example, this becomes

λs2, t2 : ∃a, s1 : s2 = s1 ∧ s1 = fode(s1, a) ∧ t2 = const(a)

as there are no extra assumption on const(a). In this particular case, it looks
like the term s2 = s1 is not necessary, however this method is for the general
case where s1 is a compound term, in which case this extra term is needed.

After having found the “correct” relation to use, the co-induction theorem
gives us the equality between the streams. However, we still need to prove that
the relation is indeed a bisimulation. Of course, any bisimulation would work,
but for the sake of completing the proof as painlessly as possible, it makes sense
to choose one which is not too difficult to handle. The method outlined above
for finding a bisimulation does not necessarily lead to the smartest, simplest or
indeed the most intuitive bisimulation, but so far it has proven to work quite
well.

Let us consider a more complex example using PVS. In this case, we are
looking at the second-order differential stream equation from Sect. 3.3. After
some initial steps, we have the following proof goal to work on:

{-1} FORALL (B: (bisimulation?), x: stream, y: stream):

B(x, y) => x = y

[-2] s1!1 = sode(s1!1, a!1, b!1)

|-------

[1] s1!1 = zip(const(a!1), const(b!1))

We need to prove that formulae -1 and -2 implies formula 1.
We can now instantiate formula -1 according to the rules set out above:

(inst -1 "lambda (s2,t2) : exists (s1,a,b) :

s2 = s1 and s1 = sode(s1,a,b) and

t2 = zip(const(a),const(b))"

"s1!1" "zip(const(a!1),const(b!1))")

This gives us the following goal:

{-1} (EXISTS (s1, a, b):

s1!1 = s1 AND

s1 = sode(s1, a, b) AND

zip(const(a!1), const(b!1)) = zip(const(a), const(b)))

=> s1!1 = zip(const(a!1), const(b!1))

[-2] s1!1 = sode(s1!1, a!1, b!1)

|-------

[1] s1!1 = zip(const(a!1), const(b!1))

where formula -1 has as a consequent exactly the thing we are trying to prove
in formula 1, and the assumption in formula -1 is trivially true if we choose
the obvious instantiations for s1, a and b, something which PVS will do for us
automatically.

The other part of the proof is then that the relation we entered before must
be a bisimulation:

[-1] s1!1 = sode(s1!1, a!1, b!1)

|-------

{1} bisimulation?(LAMBDA (s2, t2):

EXISTS (s1, a, b):

s2 = s1 AND

s1 = sode(s1, a, b) AND

t2 = zip(const(a), const(b)))

[2] s1!1 = zip(const(a!1), const(b!1))

The proof of this is a bit longer and more tedious, however no great insight
is required, so it is now quite simple. Thus using the method of guessing a
bisimulation has helped us complete the proof.

5 Conclusions

One of the main discussion points in this project has been which underlying
datatype to use for the streams: functions over natural numbers or a co-inductive
datatype. Of course, using only infinite streams, the two datatypes are equiva-
lent, but due to the datatypes and the support for definitions and proofs, the
choice does matter. Having tried both, we have concluded that using the co-
inductive datatype leads to more natural definitions (once past the initial less
pretty automatically generated constructors) and proofs.

We have shown that with our implementation, we can define and solve stream
differential equations amongst other things. In general, stream calculus is simply,
but elegant and thus provides a very neat application for mechanised reasoning.

One of the main issues of the use of an implementation in a theorem prover
is automation, since this has a big impact on efficiency and accessibility. We
have addressed this through our implementation of the strategy bisim, which
for many equalities guess the correct bisimulation to use for a proof by co-
induction. It is clear that our strategy works well for a large class of equations
over streams, however we have also identified some classes where it fails and
given suggestions for possible solutions in these cases.

The next stage of our project is to do a case study of a signal flow graph,
for instance one modelling a filter. This would show the strength of the imple-
mentation as a tool for formal analysis of a very practical application of signal
flow graphs. PVS already has extensive libraries for classical functional analysis,
and we intend to also connect the notion of streams as representations of Taylor
series expansions to the existing analysis libraries in PVS.

6 Acknowledgements

We would like to thank César Muñoz for his assistance with the initial version of
the strategy bisim, Sam Owre for help in understanding how the co-inductive
datatypes in PVS work. Thanks also to Paul Miner for his insight on using
co-induction in general and on the usefulness of the function corec in particular.

References

1. Boulton, R., Gottliebsen, H., Hardy, R., Kelsey, T., Martin, U.: Design verification
for control engineering. In Eerke Boiten, J.D..G.S., ed.: Integrated Formal Meth-
ods, 4th International Conference, IFM 2004, Canterbury, UK, April 4-7, 2004,
Proceedings. Volume 2999 of Lecture Notes in Computer Science., Springer-Verlag
(2004) 21–35

2. Gottliebsen, H.: A PVS implementation of stream calculus for signal flow graphs.
In: Theorem Proving in Higher Order Logics: Emerging Trends Proceedings. (2005)

3. Martin, U., Mathiesen, E.A., Oliva, P.: Hoare logic in the abstract. In Ésik, Z.,
ed.: Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25–29, 2006, Proceedings.
Volume 4207 of Lecture Notes in Computer Science., Springer-Verlag (2006) 501–
515

4. Mason, S.J.: Feedback theory – some properties of signal flow graphs. In: Proceed-
ings of the I.R.E. Volume 41., IEEE (1953) 1144–1156

5. Miner, P.S.: Hardware verification using coinductive assertions. PhD thesis, Indi-
ana University (1998)

6. Owre, S., Rushby, J.M., , Shankar, N.: PVS: A prototype verification system. In
Kapur, D., ed.: 11th International Conference on Automated Deduction (CADE).
Volume 607 of Lecture Notes in Artificial Intelligence., Saratoga, NY, Springer-
Verlag (June 1992) 748–752

7. Pavlovic, D., Escardo, M.H.: Calculus in coinductive form. In: Proceedings of the
13th Annual IEEE Symposium on Logic in Computer Science. (1998) 408–417

8. Ramadoss, R., Bushnell, M.L.: Test generation for mixed-signal devices using
signal flow graphs. In: Proceedings of the 9th International Conference on VLSI
Design, IEEE Computer Society (1996) 242–248

9. Rutten, J.: An application of coinductive stream calculus to signal flow graphs
(2003)

10. Samadi, S., Nishihara, A., Iwakura, H.: Filter-generating systems. IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Processing 47(3)
(March 2000) 214–221

11. Schmid, H.: Circuit transposition using signal flow graphs. In: IEEE International
Symposium on Circuits and Systems, ISCAS 2002. Volume 2., IEEE Computer
Society (2002) 25–28

