
A Code Generator Framework for Isabelle/HOL

Florian Haftmann� and Tobias Nipkow

Institut für Informatik, Technische Universität München
http://www.in.tum.de/{∼haftmann,∼nipkow}

Abstract. We present a code generator framework for Isabelle/HOL. It
formalizes the intermediate stages between the purely logical description
in terms of equational theorems and a programming language. Correct-
ness of the translation is established by giving the intermediate languages
(a subset of Haskell) an equational semantics and relating it back to the
logical level. To allow code generation for SML, we present and prove cor-
rect a (dictionary-based) translation eliminating type classes. The design
of our framework covers different functional target languages.

1 Introduction and related work

Executing formal specifications is a well-established topic and many theorem
provers support this activity by generating code in a standard programming
language from a logical description, typically by translating an internal func-
tional language to an external one:

– Coq [15] can generate OCaml both from constructive proofs and explicitly
defined recursive functions.

– Both Isabelle/HOL [1] and HOL4 generate SML code. In the case of Isabelle
this code is also used for counter example search [2].

– The language of the theorem prover ACL2 is a subset of Common Lisp.
– PVS allows evaluation of ground terms by translation to Common Lisp [4].

Though code generation forms an increasingly vital part of many theorem provers,
its functionality is often not formalized and must be trusted. In the case of ACL2
this is justified because its logic is a subset of Common Lisp, but the addition
of single-threaded objects [3], which allow destructive updates, breaks this di-
rect correspondence. The treatment of destructive updates in the Common Lisp
code generated by PVS has been proved correct [14], although PVS code gen-
eration in general appears to have not been formalized. Code generation for
Coq is studied in great detail, e.g. [7]. One of the key differences to our work is
that Coq is already closer to a programming language than HOL, for example
because it has inductive types built in. Code generation for Isabelle/HOL is de-
scribed by Berghofer and Nipkow [1], who consider in particular the generation
of Prolog-like code from inductive definitions, which we ignore, but who ignore

� Supported by DFG project NI 491/10-1

the correctness question, dismiss the purely functional part as straightforward,
and do not cover type classes at all.

The key contributions of our paper can be summarized as follows:

– A framework that formalizes the intermediate stages between the purely
logical description in terms of equational theorems and a programming lan-
guage. Giving the intermediate languages (fragments of Haskell and SML)
an equational semantics has two advantages:
• Correctness of the translation is established in a purely proof theoretic

way by relating equational theories.
• Instead of a fixed programming language we cover all functional lan-

guages where reduction of pure terms (no side effects, no exceptions,
etc) can be viewed as equational deduction: Given a pure program P
and a pure term t, we assume that if t reduces to a value u, then t and
u are equivalent modulo the equations of P . This requirement is met
by languages like SML, OCaml and Haskell, and we only generate pure
programs.

– A first treatment of code generation for type classes. Although we follow
Haskell’s dictionary passing style, the key difference is that in Haskell, type
classes are defined by translation, whereas our starting point is a language
with type classes which already has a meaning. Thus we need to show that
the translation is correct.

– A constructive proof how to transform a set of equations conforming to some
implementability restrictions into a program.

Note that throughout this paper type classes refer to their classical formulation
(see, for example, [6]). Note further that we can lump Haskell and SML together
because we will only guarantee partial correctness of the generated code.

Somewhat related but quite different is the work by Meyer and Wolff [9].
They translate between shallow embeddings of functional programs in HOL by
means of tactics, whereas we justify the translation once and for all, but do this
outside HOL. There are many further differences, like our thorough treatment
of type classes.

After a sketch of the system architecture (§2), we introduce Isabelle’s lan-
guage of terms and types (§3), accompanied by an abstract Haskell-like program-
ming language and its equational semantics (§4). Type classes are eliminated in
favor of dictionaries and this translation into an SML-like sublanguage is proved
correct (§5). We characterize implementable equation systems and give a correct
translation (via a constructive proof) into the Haskell-like language (§6). A note
on handling equality (§7) concludes our presentation.

2 System architecture

Conceptually, the process of code generation is split up in distinct steps:

Isabelle/HOL
Isar theory

selection

SML

...

Haskell

preprocessing defining equations

serialization

translation

intermediate language

Fig. 1. code generation overview

1. Out of the vast collection of the-
orems proven in a formal theory,
a reasonable subset modeling an
equation system is selected.

2. The selected theorems are sub-
jected to a deductive preprocess-
ing step resulting in a structured
collection of defining equations.

3. These are translated into a Haskell-
like intermediate language.

4. From the intermediate language
the final code in the target lan-
guage is serialized.

Only the two last steps are carried out outside the logic; by making this layer as
thin as possible, the amount of code to trust is kept minimal.

3 The Isabelle framework

The logic Isabelle/HOL [10] is an extension of Isabelle’s meta logic, a minimal
higher-order logic of simply typed lambda terms [12]. Propositions are terms
of a distinguished type prop. Theorems are propositions constructed via some
basic inference rules. Isabelle provides equality ≡ :: α → α → prop and identifies
terms up to αβη conversion. Isabelle’s term language is an order-sorted [13]
typed λ-calculus with schematic polymorphism1:

sorts s ::= c1 ∩ . . . ∩ cn

types τ ::= κ τm | τ1 → τ2 | α :: s — 2

terms t ::= f [τn] | x :: τ | λx :: τ. t | t1 t2

The notation un denotes the tuple or sequence u1, . . . , un; writing u means the
length is irrelevant. The atomic symbols are classes c, type constructors κ, type
variables α, constants f , and variables x. Classes classify types. Sorts are in-
tersections of finitely many classes. Type variables are qualified by sorts, which
restrict possible type instantiations. The System F-like notation f [τn] is ex-
plained below.

Note that our terms and types have type and sort information attached to
each occurrence of a variable. This simplifies the context in the well-formedness
judgments to come but means that we tacitly assume that these attachments
are consistent within a term or type. The empty intersection represents the
universal sort which every type belongs to. Constants have generic types of the
form ∀α :: sk. τ , where {α1 . . . αk} is the set of all type variables in τ .3 If all si

are empty, we write ∀αk. τ instead.
1 Hindley-Milner let-polymorphism without a local let
2 The function arrow → is just a binary type constructor: ‘ → ‘ τ1 τ2
3 Whenever a type scheme is given, this restriction is implicit.

A context Γ is a four-tuple (TYP ,SUP , Σ,Ω) of (partial) functions: TYP κ =
k means that type constructor κ has arity k, SUP c = cq that {c1, . . . , cq} is ex-
actly the set of direct superclasses of class c, and Ω f = ∀α :: sk. τ that constant
f has generic type ∀α :: sk. τ . The behavior of type constructors w.r.t. classes is
expressed by Σ: Σ(κ, c) = sk is called an instance and means that κ τk is of class
c if each τi is of sort si. Contexts must not contain SUP -cycles. Notation: Every
Γ is implicitly of the form (TYP ,SUP , Σ,Ω); we have the following judgments:

– Well-formed sorts: Γ � s means that s = c1 ∩ . . . ∩ cn is well-formed, i.e.
SUP ci is defined for all i.

– Subsort relation: Γ � s ⊆ s′ means that s = c1 ∩ . . . ∩ cn is a subsort of
s′ = c′1 ∩ . . . ∩ c′m, i.e. for all i there is a j such that c′i is a (not necessarily
direct) superclass (w.r.t. SUP) of cj .

– Well-formed types: Γ � τ means that all type constructors κ in τ are applied
to the required number of arguments TYP κ.

– Well-sorted types Γ � τ :: s and well-typed terms Γ � t :: τ .

Precise definitions can be found elsewhere [11]. The definition of Γ � t :: τ is
standard except for constants: If Ω f = ∀α :: sk. τ and Γ � τi :: si for all i
then Γ � f [τk] :: τ [τk/αk]. Each occurrence of a constant in a term carries the
instantiation of its generic type to resolve ambiguities due to polymorphism and
overloading (for brevity we will leave them out whenever they are obvious).

To guarantee principal types, Isabelle enforces coregularity of contexts:

Definition 1 Γ is coregular if
Σ(κ, c) = sk implies ∀d ∈ SUP c. ∃s′k. Σ(κ, d) = s′k ∧ ∀1 ≤ i ≤ k. Γ � si ⊆ s′i
It will turn out that coregularity is also essential for dictionary construction (§5).

4 From logic to programs

On the surface level, Isabelle/HOL offers all the constructs one finds in functional
programming: data types, recursive functions, classes, and instances. But in
the logical kernel, all we have are contexts and theorems. Clearly, equational
theorems can represent programs. For example, a suitable context with natural
numbers, pairs, class c and a constant f :: ∀α :: c. α → α, and two equations

f [nat] (n :: nat) ≡ n + 1
f [α :: c × β :: c] (x :: α, y :: β) ≡ (f [α] x, f [β] y)

have a straightforward interpretation as a Haskell program. But not every set of
equations corresponds to a program, even if they superficially look like one:

f [bool × bool] (x :: bool, y :: bool) ≡ (¬x,¬y)
f [nat × nat] (x :: nat, y :: nat) ≡ (y, x)

is also definable in Isabelle, but realization of this overloaded system would
demand a sophisticated type class system beyond Haskell 1.0. There are many
further restrictions on what is executable. A major part of our task is to establish
a precise link between a subset of our logic and an executable language.

Definition 2 An equation of the form f [τk] tm ≡ t is a defining equation for
f with type arguments [τk], arguments tm and right hand side t iff

1. all variables of t occur in tm,
2. all type variables of t occur in [τk],
3. no variable occurs more than once in tm (left-linearity),
4. all tm are pattern terms, where a pattern term is either a variable or a

constant applied to a list of pattern terms.

Due to these syntactic restrictions, defining equations resemble the kind of equa-
tions admissible in function definitions in functional programming languages; we
will use defining equations as an abstract “executable” view on the logic:

Definition 3 An equation system is a pair (Γ,E) where E is a set of defining
equations which are well-typed in the context Γ . We write (Γ,E) � s ≡ t iff
s ≡ t follows by equational logic and βη-conversion.

Note that Γ is necessary to restrict derivations to well-typed terms.

An abstract programming language

Our aim is to implement a given equation system as a program in a functional
programming language. Therefore we introduce a Haskell-like intermediate lan-
guage which captures the essence of target languages and give it a semantics
as an equation system (equational reasoning is a common device in the Haskell
community [5]). The language forms a bridge between logical and operational
world. Its four statements are fun, data, class and inst. The semantics of state-
ments is given by rules 〈Γ, stmt〉 −→ 〈Γ ′, E〉 where Γ denotes an initial context,
Γ ′ the resulting context (an extension of Γ) and E the set of defining equations.

The reading of the semantics can also be reversed. Then it describes what are
the required equational theorems needed as witnesses to generate some statement
(see §6). An example program is shown in the left column of Table 2.

Before we go into details we need to discuss the correctness issue. In the
end, we want to ensure that if we translate an Isabelle/HOL theory via our
intermediate language into SML or Haskell, and the compiler accepts it and some
input term t, and reduces t to v, then t ≡ v should be provable in Isabelle/HOL.
This is partial correctness. Hence we only need to ensure that any equation used
during reduction is contained in the semantics E we give to each statement. This
is not hard to check by inspecting our semantics.

The semantics is expressed as a relation because it is partial due to context
conditions. These context conditions are more liberal than in SML; this may
lead to untypeable SML programs, for example due to polymorphic recursion,
but is not a soundness problem.

Extending the various components of Γ is written Γ [x := y] where the com-
ponent in question is determined by the type of x and y. For example, Γ [κ := k]
extends the TYP -component. The extension Γ [x := y] is not permitted if x is
already defined in the corresponding component of Γ .

Function definitions Function definitions have the syntax

fun f :: ∀α :: sk. τ where f [α :: sk] t1 = t1 | . . . | f [α :: sk] tn = tn

where each equation f ti = ti must conform to the restrictions of Definition 2.
The semantics is the obvious one:

Γ ′ = Γ [f := ∀α :: sk. τ] ∀1 ≤ i ≤ n. Γ ′ � f [α :: sk] ti ≡ ti :: prop

〈Γ, fun . . .〉 −→ 〈Γ ′, {f [α :: sk] t1 ≡ t1, . . .}〉
Note that we allow polymorphic recursion.

Data types Recursive data types introduce a type constructor κ and term
constructors fi:

data κ αk = f1 of τ1 | . . . | fn of τn

The αk must be distinct and no other type variable may occur in the τi:

Γ ′ = Γ [κ := k][f1 := ∀αk. τ1 → κ αk, . . .] ∀1 ≤ i ≤ n. Γ ′ � τi → κ αk

〈Γ, data . . .〉 −→ 〈Γ ′, {}〉
Note that our actual implementation allows fun to define mutually recursive

functions and data mutually recursive data types. The corresponding modifica-
tions of our presentation are straightforward but tedious.

Type classes Overloading is covered by Haskell-style class and instance decla-
rations [6]:

class c ⊆ c1 ∩ . . . ∩ cm where f1 :: ∀α. τ1, . . . , fn :: ∀α. τn

inst κ sk :: c where f1 = t1, . . . , fn = tn

Class declarations merely extend the context, provided they are well-formed:

Γ � c1 ∩ . . . ∩ cm ∀1 ≤ i ≤ n. Γ � τi

〈Γ, class . . .〉 −→ 〈Γ [c := cm][f1 := ∀α :: c. τ1, . . .], {}〉
Γ ′ = Γ [(κ, c) := sk] ∀1 ≤ i ≤ n. ∃τ. Ω fi = ∀α :: c. τ ∧ Γ ′ � ti :: τ [κ α :: sk/α]

〈Γ, inst . . .〉 −→ 〈Γ ′, {f1 [κ α :: sk] ≡ t1, . . .}〉
where Γ ′ must be coregular. Note that functions in a single inst may be mutually
recursive.

Programs Now we lift −→ to lists of statements:

〈Γ, []〉 =⇒ 〈Γ, {}〉
〈Γ, stmt〉 −→ 〈Γ ′, E〉 〈Γ ′, stmts〉 =⇒ 〈Γ ′′, E′〉

〈Γ, (stmt; stmts)〉 =⇒ 〈Γ ′′, E ∪ E′〉
Statements are processed incrementally in an SML-like manner.

Definition 4 A program S is a list of statements with a well-defined semantics,
i.e. there exists a transition 〈Γ0, S〉 =⇒ 〈Γ,E〉 where Γ0 is the initial context
containing only the type prop with polymorphic equality ≡ of result type prop.
We then write S � (Γ,E).

Note that if S � (Γ,E), each equation in E is well-typed with respect to Γ due
to monotonicity of context extensions and the construction of the rules for −→.
Context conditions imposed on inst statements ensure that Γ is coregular.

In §6 we show how to distill a program from a set of equations still involving
classes. This requires some type class technicalities presented in §5 where we
show how to replace classes by dictionaries.

5 Dictionary construction

We have given inst statements a semantics in terms of overloaded defining equa-
tions. In classical Haskell their semantics is given by a dictionary construc-
tion [16]. To justify this link, we formalize dictionary construction as a trans-
formation of a program S within the intermediate language to a program in the
same language but without any class or inst statements. To generate code for
target languages lacking type classes (e.g. SML), this construction is carried out
on the intermediate language (i.e. outside the logic).

Within our framework of order-sorted algebra, dictionary construction is de-
scribed as a translation (relative to some Γ) of order-sorted types into dictionary
terms [17], lifted to terms and statements:

– (|τ :: c|) maps a well-sortedness judgment to a corresponding dictionary,
– (|t|) introduces dictionaries into a term t,
– (|S|) transforms a program to its typeclass-free counterpart.

Dictionaries D are built from (global) dictionary constants cκ and (local)
dictionary variables αn with explicit projections πd→c by the following interpre-
tation of rules for well-sortedness judgments. Dictionary construction relies on
a unique representation of sorts. When writing c1 ∩ . . . ∩ cm we assume a total
order of classes and that c1 ∩ . . . ∩ cm is minimal, i.e. no ci is a subclass of any
other cj .

(|τ :: c1|) = D1 . . . (|τ :: cq|) = Dq

(|τ :: c1 ∩ . . . ∩ cq|) = Dq

(sortD)

(|τ1 :: s1|) = D1 . . . (|τn :: sn|) = Dn Σ (κ, c) = sn

(|κ τ1 . . . τn :: c|) = cκ Dn

(constructorD)

(|(α :: c1 ∩ . . . ∩ cn ∩ . . . ∩ cq) :: cn|) = αn
(variableD)

(|(α :: s) :: d|) = D c ∈ SUP d

(|(α :: s) :: c|) = πd→c D
(classrelD)

Rule classrelD only works on judgments of the form (α :: s) :: c, thus prohibiting
pointless constructions followed by projections as in πd→c (dκ . . .). There remains
an ambiguity: there might be different paths c1 ∈ SUP c2, c2 ∈ SUP c3, . . . , cn−1 ∈
SUP cn in the class hierarchy from a subclass cn to a superclass c1. To make
the system deterministic we assume a canonical path is chosen. The correctness
proof below (implicitly) shows that the exact choice is immaterial.

The (|t|) function (relative to a context Γ) only affects type applications:

(|f [τ1 . . . τn]|) = f (|τ1 :: s1|) . . . (|τn :: sn|) where Ω f = ∀α :: sn. τ

(|x :: τ |) = x :: τ

(|λx :: τ. t|) = λx :: τ. (|t|)
(|t1 t2|) = (|t1|) (|t2|)

Note that (|t|) is injective, i.e. (|t1|) = (|t2|) implies t1 = t2. For succinctness we
introduce two more abbreviations (where δc is a dictionary type corresponding
to class c):

{|α :: c1 ∩ . . . ∩ cn|} = (δc1α) . . . (δcnα)
(|cκ [τk]|) = cκ (|τ1 :: s1|) . . . (|τk :: sk|) where Σ(κ, c) = sk

(|S|) is the concatenation of the transformation shown in Table 1 applied
to each statement in S. Transformed statements stemming from class and inst
statements introduce dictionary constants cκ along with projections πd→c for
subclass relations and f for constants associated with classes (class operations).
See Table 2 for an example.

The transformation of inst reveals the role of coregularity for dictionary con-
struction: each (|diκ [α :: sk]|) on the right hand side requires that the corre-

statement transformed statement(s)

fun f :: ∀α :: sk. τ where
f [α :: sk] t1 = t1

| . . .
| f [α :: sk] tn = tn

fun f :: ∀αk. {|α :: s|}k → τ where
(|f [α :: sk] t1|) = (|t1|)

| . . .
| (|f [α :: sk] tn|) = (|tn|)

data κ αk =
f1 of τ1 | . . . | fn of τn

data κ αk =
f1 of τ1 | . . . | fn of τn

class c ⊆ c1 ∩ . . . ∩ cm where
f1 :: ∀α.τ1, . . . , fn :: ∀α.τn

data δc α = ∆c of {|α :: c1 ∩ . . . ∩ cm|} τn

fun πc→ci :: ∀α. δc α → δci α where
πc→ci (∆c c1 . . . ci . . . cm g1 . . .) = ci, 1 ≤ i ≤ m

fun fi :: ∀α. δc α → τi where
fi (∆c c1 . . . g1 . . . gi . . . gn) = gi, 1 ≤ i ≤ n

inst κ sk :: c where
f1 = t1, . . . , fn = tn

fun cκ :: ∀αk. {|α :: s|}k → δc (κ sk) where

(|cκ [α :: sk]|) = ∆c (|d1κ [α :: sk]|) . . . (|dmκ [α :: sk]|) (|t|)n

where SUP c = d1 . . . dm

Table 1. Dictionary construction for statements.

sponding sort constraints stemming from the inst statement that gave rise to the
definition of diκ are as least as general as the α :: sk.

We assume distinct name spaces to embed dictionary constant names cκ and
dictionary variable names αn into the name space of constants and term variables
respectively. Each dictionary term constructors ∆c constructs a tuple containing
the dictionaries of the direct superclasses of c together with the class operations
declared in c.

Correctness

Given a program S with S � (Γ,E) and its transformed counterpart (|S|) with
(|S|) � (ΓD, ED), we show how E and ED are related. The main problem is
that derivations in ED contain symbols not present in E. Thus intermediate
terms in an ED-derivation cannot always be viewed as Γ -terms. Hence we work
with normal forms modulo certain projection rules, the rules stemming from
class statements. For this fine-grained reasoning we move from equational logic
to term rewriting. Instead of arbitrary equational proofs (ΓD, ED) � t1 ≡ t2 we
consider rewrite proofs t1

∗→ED
t2, see [8]. This models the evaluation of t1. More

precisely, we start with some (|s|), reduce it to some t′, and if t′ is of the form

program transformed program

data Nat = Zero | Suc of Nat data Nat = Zero | Suc of Nat

data List α = Nil | Cons of α (List α) data List α = Nil | Cons of α (List α)

class Pls where
pls :: ∀α. α → α → α

data δPls α = ∆Pls of α → α → α
fun pls :: ∀α. δPls α → α → α → α where

pls (∆Pls pls′) = pls′

class Neutr ⊆ Pls where
neutr :: ∀α. α

data δNeutr α = ∆Neutr of (δPls α) α
fun πNeutr → Pls :: ∀α. δNeutr α → δPls α where

πNeutr → Pls (∆Neutr Pls neutr′) = Pls
fun neutr :: ∀α. δNeutr α → α where

neutr (∆Neutr Pls neutr′) = neutr′

fun add :: Nat → Nat → Nat where
add Zero m = m

| add (Suc n) m = Suc (add n m)

fun add :: Nat → Nat → Nat where
add Zero m = m

| add (Suc n) m = Suc (add n m)

inst Nat :: Pls where
pls = add

fun PlsNat :: δPls Nat where
PlsNat = ∆Pls add

inst Nat :: Neutr where
neutr = Zero

fun NeutrNat :: δNeutr Nat where
NeutrNat = ∆Neutr PlsNat Zero

fun sum :: ∀α :: Neutr. List α → α where
sum [α] Nil = neutr [α]

| sum [α] (Cons x xs) = pls [α] x (sum [α] xs)

fun sum :: ∀α. δNeutr α → List α → α where
sum α1 Nil = neutr α1

| sum α1 (Cons x xs) =
pls (πNeutr → Pls α1) x (sum α1 xs)

fun val :: Nat where
val = sum [Nat] (Cons (Suc Zero) Nil)

fun val :: Nat where
val = sum NeutrNat (Cons (Suc Zero) Nil)

Table 2. Dictionary construction applied to example program.

(|s′|), we want to conclude s →E s′. The remainder of this section is dedicated
to that proof.

Observe that (by definition of (|S|)) ED can be partitioned as ED = EF �
EI � EE where

EF denotes all equations stemming from transformed fun statements.
EI denotes all equations stemming from transformed inst statements that intro-

duce a particular ∆c: cκ α ≡ ∆c t.
EE denotes all equations stemming from transformed class statements that elim-

inate a particular ∆c: p(∆c x) ≡ xi where p is either a projection πc→d or a
class operation f .

Given an arbitrary reduction sequence t1
∗→ED

t2 where t1 and t2 are ∆-
free, we can assume w.l.o.g. that no reduction takes place underneath a ∆ —
such reductions can always be postponed. This is because all arguments of ∆ on
the left-hand side of any equation in ED are (distinct) variables. Similarly, we
can postpone all EI steps up to the point where they are needed, i.e. in front
of a corresponding EE step. This allows to view derivations in a normal form
where each EI step occurs immediately before a corresponding EE step. Now
we collapse these EI / EE pairs into single EIE steps defined as follows:

EIE = {p(cκ α) ≡ ti | 〈cκ α ≡ ∆c t〉 ∈ EI ∧ 〈p(∆c x) ≡ xi〉 ∈ EE}
Clearly, the equations in EIE are consequences of those in EI and EE . Neither
EF steps nor EIE steps introduce ∆s, so any intermediate term is ∆-free; hence
no EE steps remain. Thus we have transformed t1

∗→ED
t2 into t1

∗→EF �EIE
t2.

Again we partition our rule set: EIE = Eop � Eπ where

Eop contains equations for class operations: f (cκ x) ≡ . . ., and
Eπ contains equations for superclass projections: πc→d (cκ x) ≡ dκ

This establishes a one-to-one correspondence between equations in E and equa-
tions in EF � Eop such that 〈t1 ≡ t2〉 ∈ E implies 〈(|t1|) ≡ (|t2|)〉 ∈ EF � Eop.
For fun statements this holds by definition, for inst statements it holds by con-
struction of Eop. Finally we transform our EF � EIE reduction sequence such
that after each EF � Eop step we normalize w.r.t. Eπ. This transformation is
accomplished by the following theorem:

Theorem 5 Let R and P be two sets of defining equations in a context free of
classes such that the left-hand sides of R and P do not overlap, P is confluent,
terminating and right-linear, and the right-hand sides of P preserve β-normal
forms (i.e. if a right-hand side of P is instantiated by β-normal forms, the result
is in β-normal form.). Then the following commutation property holds:

t1 ←P t →R t2 implies ∃u. t1
=→R u

∗←P t2

The proof is by a careful case distinction on the relative position of redexes.
By induction we obtain:

Corrolary 6 If the assumptions of Theorem 5 hold, then t
∗→R∪P t′ implies

t↓P (→R ◦ !→P)∗ t′↓P , where x
!→ y means x

∗→ y and y is in normal form.

Setting R = EF � Eop and P = Eπ we obtain: if (|s|) ∗→EF �Eop�Eπ
(|s′|) then

(|s|) (→EF �Eop ◦ !→Eπ)∗ (|s′|). Due to the form of the rules they satisfy the re-
quirements of Theorem 5. In particular, EF �Eop and Eπ are orthogonal because
no π occurs in any left-hand side of EF or Eop. Also note that (|s|)↓Eπ

= (|s|)
because (|s|) contains no π-redexes.

Since each term t in a derivation (|s|) (→EF �Eop
◦ !→Eπ

)∗ (|s′|) is ∆-free and
Eπ-normalized, it is the image of an s′′ such that (|s′′|) = t. Thus each EF �Eop

step using an equation (|s1|) ≡ (|s2|) followed by Eπ-normalization corresponds to
an E-step using s1 ≡ s2. Normalization with Eπ is necessary because substituting
dictionaries into a translated term yields Eπ redexes to access dictionaries of
superclasses. In the original system E this is implicit due to subclassing.

Overall, we have now obtained the desired result:

Lemma 7 If (|s|) ∗→ED
(|s′|) then s

∗→E s′.

6 Implementable systems

We will now discuss the step from a logical theory (Γ,E) to a program. It can
be seen as the inverse of =⇒. More precisely:

Definition 8 A program S implements an equation system (Γ,E) iff S �

(Γ ′, E) such that Γ ′ is compatible with Γ :

– TYP′ ⊆ TYP
– SUP′ ⊆ SUP
– Σ′(κ, c) = s′k implies ∃sk. Σ(κ, c) = sk ∧ ∀1 ≤ i ≤ k. Γ � s′i ⊆ si

– Ω′ c = ∀α :: s′k. τ implies ∃sk. Ω c = ∀α :: sk. τ ∧ ∀1 ≤ i ≤ k. Γ � s′i ⊆ si

Compatibility means that any expression which is valid with respect to Γ ′ is
also valid with respect to Γ . Permitting more restrictive sort constraints may be
necessary for implementation reasons. For example, equality (=) is free of any
class constraints in HOL but its implementation requires an equality class (§7).

Isabelle provides definition mechanisms (the details are immaterial) corre-
sponding to our programming language statements data, fun, class and inst. Sys-
tems (Γ,E) defined purely in this manner are implementable. But there are
other, more primitive ways to define functions in Isabelle which may not be di-
rectly implementable (see e.g. §4). To construct a program from (Γ,E) we need
certain extra-logical information not directly contained in (Γ,E) anymore, e.g.
what are the term constructors and the class operations. We will now isolate
what is required and will then show that it enables us to assemble a program
from a system (Γ,E). We do not explicitly discuss the preprocessor which selects
and transforms an initial set of equations into the required form (if possible).

Term constructors determine which constants must be introduced by data
statements:

Definition 9 C is a set of term constructors for (Γ,E) iff for each constant
f occurring in the arguments of a defining equation f ∈ C holds, there are no
defining equations in E for any f ∈ C, and for each f ∈ C its generic type Ω f
is of the form ∀α. τn → κ α, and each occurrence of f in the arguments of a
defining equation is fully applied with n arguments.

Class and overloading discipline Defining equations may contain arbitrary
type arguments whereas our programming language enforces a certain discipline.
This is captured by an explicit association of constants to classes (corresponding
to class statements):

Definition 10 An n-to-1 relation ∈ between constant symbols and class symbols
is a class membership relation w.r.t. Γ iff for each f ∈ c its generic type Ω f is
of the form ∀α :: c. τ , i.e. is generic in only one type argument of class c. All
constant symbols in the domain of ∈ are named class operations.

Given a set of defining equations E, 〈f [τk] . . . ≡ . . .〉 ∈ E is called

non-overloaded if τm is of the form [α :: sm] and all equations for f in E have
the same type arguments.

overloaded if m = 1 and τm is of the form κ α :: sk, and there is no other
〈f [κ . . .] . . . ≡ . . .〉 ∈ E

Non-overloaded definitions can be implemented by fun statements, overloaded
definitions by inst statements. We now lift the definition of coregularity from con-
texts to systems of equations E in order to satisfy the coregularity requirement
of the inst statement. E is coregular iff

〈f [κ α :: s′m] . . . ≡ . . .〉 ∈ E, f ∈ c implies ∀d, Γ � c ⊆ d, g ∈ d.
∃〈g [κ α :: s′′m] . . . ≡ . . .〉 ∈ E. ∀1 ≤ n ≤ m. Γ � s′n ⊆ s′′n

In case c = d, coregularity ensures that for a specific instance (κ, c) all class
operations are instantiated and occur with the same sort constraints.

Definition 11 A system (Γ,E) obeys class discipline w.r.t. a class membership
relation ∈ iff all defining equations in E are either overloaded or non-overloaded,
and if for each 〈f [κ α :: s′k] . . . ≡ . . .〉 ∈ E there are c and sk such that f ∈ c,
Σ(κ, c) = sk, and Γ � s′i ⊆ si for 1 ≤ i ≤ k. Furthermore E must be coregular.

In a system with term constructors C which obeys class discipline w.r.t. ∈,
each constant symbol is either a term constructor (if f ∈ C), or a class operation
(if f ∈ c for some c), or simply a function (otherwise). With this partitioning,
E induces the more specialized context components Ω̃ and Σ̃:

Definition 12 Let (Γ,E) be a system with term constructors C obeying class
discipline w.r.t. ∈. Then Ω̃ f is identical to Ω f unless f is a function, in
which case Ω̃ f is derived from Ω f = ∀α :: s. τ and any defining equation
f [α :: s′] . . . ≡ . . . as follows: Ω̃ f = ∀α :: s′. τ . For each defining equation
f [κ α :: sk] . . . ≡ . . . with f ∈ c we define Σ̃ (κ, c) = sk.

Given a program S with S � (Γ ′, E), by construction Ω̃ and Σ̃ form the corre-
sponding components of the context Γ ′.

Definition 13 An expression f [τn] occurs in a defining equation iff f [τn] oc-
curs in either the right hand side or in any argument.

Intuitively, this models a notion of “this function uses function f”.
Because the sort constraints in Ω̃ and Σ̃ may be more restrictive than those

in Ω and Σ, it is necessary to require well-sortedness of E explicitly:

Definition 14 A system (Γ,E) with term constructors C obeying class dis-
cipline w.r.t. ∈ is well-sorted iff for any constant expression f [τn] occurring
in any defining equation, (SUP,TYP, Σ̃, Ω̃) � τi :: si for 1 ≤ i ≤ n, where
Ω̃ f = ∀α :: sn. τ .

Note that well-sortedness can be achieved by the preprocessor which propagates
the additional sort constraints through the system of equations.

Dependency closedness A requirement for programs S is that no statement
relies on ingredients which have not been introduced so far; this induces a notion
of dependencies of statements which is also reflected in the underlying system of
defining equations. We describe this in terms of dependency graphs −→E with
directed edges where each node either refers to a term constructor, a generic
class operation, a function (denoted by f) or refers to a particular instance of
a class operation (denoted by fκ). For brevity, we use the notation f∗ referring
uniformly to overloaded and non-overloaded constants, depending on which kind
of defining equation f comes from.

Definition 15 Given a well-sorted system (Γ,E) with term constructors C obey-
ing class discipline w.r.t. ∈, the dependency graph −→E is defined by the fol-
lowing rules:

〈f [τ] t ≡ t〉 ∈ E g [τ ′] occurs in 〈f [τ] t ≡ t〉
f∗ −→E g

(dep)

〈f [τ] t ≡ t〉 ∈ E g [τ ′] occurs in 〈f [τ] t ≡ t〉 Ω̃ g = ∀α :: s. τ

cκ occurs in (|τ ′ :: s|)Σ̃ h ∈ c

f∗ −→E hκ
(dict)

f ∈ c g ∈ c (κ, c) ∈ dom Σ

fκ −→E gκ
(instop)

dep models dependencies of defining equations on class, data or fun statements.
dict models dependencies of defining equations on inst statements; the notation

(|τ ′ :: s|)Σ̃ means dictionary construction w.r.t. Σ̃.
instop models that class operations which are members of the same class have to

be instantiated simultaneously (by means of a corresponding inst statement).

Definition 16 A dependency graph −→E is closed iff

1. for each edge f∗ −→E g∗, g∗ is either a term constructor in C or a generic
class operation or a node with at least one outgoing edge;

2. the nodes of each strongly connected component of −→E consist either only
of non-overloaded constants f or of all overloaded constants fκ, f ∈ c, for
some fixed κ and c.

The latter condition asserts that inst statements may not be mutually recursive,
least of all in connection with fun statements.

Theorem 17 Each well-sorted system (Γ,E) with term constructors C obeying
class discipline w.r.t. ∈, where −→E is closed, is implementable.

Proof sketch Let (Γ,E) have the required properties; a proof that (Γ,E) is
implementable consists of the following parts:

– Show that C and ∈ can be realized by data and class statements.
– Show that the defining equations E are mappable to fun and inst statements,

i.e. that there exists a partitioning of E where each partition corresponds to
a statement whose semantics is the original set of defining equations.

– Show that there exists an order of the above statements such that the cor-
responding list is a program.

The first is trivial by construction. For the second observe that class discipline
yields partitions of non-overloaded defining equations corresponding to fun state-
ments and overloaded defining equations corresponding to inst statements. The
type and sort information needed for class, inst and fun statements comes from Ω̃
and Σ̃. Well-sortedness of (Γ,E) in the sense of Definition 14 guarantees that the
resulting statements are typeable. The third requires some thought how to find
out an appropriate order for a given list of statements. Essentially, any symbol
(c, κ or f) must be introduced before it occurs in a statement. Furthermore all
inst statements must occur before they are required for typing type applications
f [τ]. The following order guarantees this:

– data statements only depend on the existence of particular type constructors
κ; so, data statements may be placed before any other kind of statements.
data statements themselves are ordered such that any data statement de-
pending on type constructor κ is preceeded by a data statement introducing
κ; mutual dependencies result in mutual recursive data statements.

– class statements depend on the existence of type constructors κ and super-
classes c; since all κ can be introduced by preceeding data statements, only
the classes have to be considered. Ordering class statements in topological
order with respect to the subclass relation (starting with the top classes)
results in an order where all superclasses of a class statement are introduced
by preceeding class statements.

– The issue of fun and inst statements is more complicated because a fun
statement may depend on an inst statement and also vice versa. But depen-
dency closedness implies that the strongly connected components of −→E

correspond exactly to (possibly mutually recursive) fun statements or inst
statements; their order is determined by the graph. ��

7 Executable equality

The constant denoting HOL equality (=) :: α → α → bool is a purely logical
construct. Its axiomatization is not in the form of defining equations. However,
by providing an appropriate framework setup, we can derive defining equations
for types which have an operational notion of equality (e.g. there is no operational
equality on function types). Operational equality serves as example how the logic
may be utilized to widen the possibilities for code generation without any need
to extend the trusted code base of the framework.

When modeling operational equality we follow the Haskell approach: each
equality type belongs to a type class eq : (=) ∈ eq . Isabelle/HOL proves for each
recursive datatype a set of defining equations for equality on that type, similar
to Haskell’s “deriving Eq”:

– Check whether all existing type constructors κ′ which κ depends on are
instances of eq (κ′ eq :: eq); if not, abort the whole procedure — then κ does
not support operational equality.

– Declare κ an instance of eq , provided its type arguments are also instances
of eq : κ eq :: eq .

– Define a new constant eqκ [α :: eq] ≡ (=) [κ α :: eq].
– From this primitive definition prove injectiveness and distinctness equations

as defining equations for eqκ:

eqκ (fi xm) (fi ym) ≡ (=)x1 y1 ∧ . . . ∧ (=)xm ym

eqκ (fi . . .) (fj . . .) ≡ False, for i �= j

where empty conjunctions collapse to True and recursive calls of equality
(=) [κ α :: eq] are replaced by eqκ.

– Use the symmetric definition (=) [κ α :: eq] ≡ eqκ as defining equation for
(=) [κ α :: eq].

On code generation, the preprocessor (§2) propagates eq sort constraints
through the system of defining equations, e.g. a defining equation (�=) [α] x y ≡
¬((=) [α] x y) is constrained to (�=) [α :: eq] x y ≡ ¬((=) [α :: eq] x y). Because
this is a purely logical inference, the translation process is completely unchanged.
Thus, operational equality is treated inside the logic. In particular, this approach
is completely independent from any target-language specific notion of equality
(e.g. SML’s polymorphic (op =)).

8 Conclusion

We have presented the design of Isabelle/HOL’s latest code generator (available

in the development snapshot) which is, for the first time, able to deal with type
classes. The correctness of code generation, in particular the relationship between
type classes and dictionaries, is established by proof theoretic means. The trusted
code base is minimized by working with a conceptually simple programming
language with a straightforward equational semantics.

References

[1] S. Berghofer and T. Nipkow. Executing higher-order logic. In P. Callaghan,
Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs and Programs
(TYPES 2000), volume 2277 of LNCS, pages 24–40. Springer, 2002.

[2] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In J. Cuellar and
Z. Liu, editors, Software Engineering and Formal Methods (SEFM 2004), pages
230–239. IEEE Computer Society, 2004.

[3] R. S. Boyer and J. S. Moore. Single-threaded objects in ACL2. In PADL ’02: Pro-
ceedings of the 4th International Symposium on Practical Aspects of Declarative
Languages, pages 9–27, London, UK, 2002. Springer-Verlag.

[4] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluating,
testing, and animating PVS specifications. Technical report, Computer Science
Laboratory, SRI International, Menlo Park, CA, Mar. 2001.

[5] N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and loose reasoning
is morally correct. SIGPLAN Not., 41:206–217, Jan. 2006.

[6] C. Hall, K. Hammond, S. Peyton Jones, and P. Wadler. Type classes in Haskell.
ACM Transactions on Programming Languages and Systems, 18(2), 1996.

[7] P. Letouzey. A New Extraction for Coq. In H. Geuvers and F. Wiedijk, editors,
Types for Proofs and Programs, volume 2646 of LNCS. Springer, 2003.

[8] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192:3–29, 1998.

[9] T. Meyer and B. Wolff. Correct code-generation in a generic framework. In
M. Aargaard, J. Harrison, and T. Schubert, editors, TPHOLs 2000: Supplemental
Proceedings, OGI Technical Report CSE 00-009, pages 213–230. Oregon Graduate
Institute, Portland, USA, July 2000.

[10] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer, 2002.

[11] T. Nipkow and C. Prehofer. Type checking type classes. In POPL ’93: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 409–418, New York, NY, USA, 1993. ACM Press.

[12] L. C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science. Academic Press, 1990.

[13] M. Schmidt-Schauß. Computational Aspects of an Order-Sorted Logic With Term
Declarations, volume 395 of LNCS. Springer, 1989.

[14] N. Shankar. Static analysis for safe destructive updates in a functional lan-
guage. In A. Pettorossi, editor, Logic Based Program Synthesis and Transfor-
mation (LOPSTR 2001), volume 2372 of LNCS, pages 1–24, 2001.

[15] The Coq Development Team. The Coq Proof Assistant Reference Manual – Ver-
sion 8.1, July 2006.

[16] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In ACM
Symposium Principles of Programming Languages, pages 60–76. ACM Press, 1989.

[17] M. Wenzel and F. Haftmann. Constructive type classes in Isabelle. To appear in
proceedings of TYPES 2006.

