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Abstract. In this paper we revisit the formalization of Communicating
Sequential Processes (CSP) [2] in Isabelle/HOL. We offer a simple alter-
native embedding of this specification language for distributed processes
that makes use of as many standard features of the underlying Higher
Order Logic of Isabelle, like datatypes and the formalization of fixpoints
due to Tarski.

1 Introduction

The specification language CSP for Communicating Sequential Processes is a
classical tool for specifying and reasoning about parallel communicating pro-
cesses.

Although there exists the FDR tool for the analysis of CSP specifications
there has always been a considerable amount of parallel activities to mechanize
the CSP language in HOL systems. The first formalization of this theory in
Isabelle/HOL [4] dates back to the early nineties [1]. Later the work by Tej
and Wolff contributed a fully fledged support tool. Yet there has been ongoing
research on formalizing CSP in Isabelle/HOL [3].

The reason to offer yet another formalization is twofold. Firstly, the earlier
formalization by Wolff has been frozen in with Isabelle version 98 because the
formalization was quite closely intertwined with the Isabelle source code. Thus
it became more and more difficult for the developers to adjust their CSP tool
repeatedly to newer Isabelle versions. We believe that it must have been for
this particular reason that more recently a new project was initiated where the
authors reformalized the CSP calculus. However, contemplating this more recent
formalization we found that it uses sometimes contrived implementations for the
definition of recursive processes relying implicitly on Tarski’s fixpoint theory.
However, they do not use this theory although it is available in Isabelle/HOL
(theory Fixedpoint.thy). There might be pragmatic reasons not to build on it
but we find that this unnecessarily endangers consistency. As we also use CSP
in teaching, we have a particular interest to show the concepts of CSP in a
transparent light while offering students a tool environment.

For these reasons we construct CSP again in Isabelle/HOL while keeping the
formalization as lightweight and practical as possible. Therefore we aimed at us-
ing where possible the powerful datatype package in combination with primitice
recursive definitions of the operators and reusing as much as psooible existing
predefined theories like the fixpoint theory provided in Isabelle/HOL.



In this paper we present first the definition of the CSP syntax using a simple
datatype definition in Section 2. Then we define the semantics of CSP in Section
3. In this section we also briefly summarize the two extensions of the simple trace
semantics to failures and divergences. For the semantics of recursive processes
we use the existing theory of fixpoints in Isabelle/HOL. In Section 4 we consider
the notion of process refinement that is central to CSP for stepwise development
of specifications. Finally, in Section 5 we compare our approach in particular to
the earlier formalization by Wolff and draw some general conclusions.

2 The Syntax of CSP Processes

The first most decisive design decision in any CSP specification is the definition
of the possible communication events Σ. A process in CSP is then completely
defined by the events it can communicate. There is one basic process called STOP
that does not communicate anything. It represents the deadlock process. Other
processes may be constructed from existing processes and events. To build a
process that communicates sequentially the prefixing operator → is used. Given
an event a ∈ Σ and a process P the constructed process a → P communicates
first the event a and after that it behaves like process P . Given two processes
P and Q we can construct the deterministic choice P�Q and the nondetermin-
istic choice P � Q between the two processes. Parallel composition of processes
is also possible. There are four possibilities for parallel composition. The inter-
leave operator combines two processes P and Q in such a way that the resulting
process P‖|Q enables all possible interleavings of the events communicated by
either of the two. By contrast, in the parallel composition P ‖ Q the resulting
process communicate only events that can be communicated by either of the two
processes simultaneously. That is in the interleaving there is no synchronization
between the communciation of P and Q. For a more precise control over inde-
pendence of communication on the one side and synchronization on the other
side there are the operators generalized and alphabetized parallel (here genpar
and alphpar). In the generalized parallel operator the set A of events over which
the processes P and Q must agree is parameterized. That is in genpar P A Q the
processes P and Q must synchronize over all events in A but can communicate
independently all other events outside A. The hiding operator finally enables to
hide selected events from the visible part of a communication.

The following datatype definition defines the syntax of CSP processes.

datatype α process =

STOP

| prefix α (α process) (infixl "→" 50)

| dchoice (α process) (α process) (infixl "�" 50)

| nchoice (α process) (α process) (infixl "�" 50)

| parallel (α process) (α process) (infixl "‖" 50)

| interleave (α process)(α process) (infixl "‖|" 50)

| genpar (α process) (α set) (α process)

| hiding (α process) (α set) (infixl "\" 50)



3 Semantics

The first semantical model of CSP is the trace model. There are also the failures
and the failures and divergences model that are refined models for CSP processes,
but all build on the traces model.

3.1 Trace Model

For an alphabet Σ the set Σ∗ denotes the set of all finite concatenations of
elements of Σ including the empty element. A word in Σ∗ is a concatenation
〈a1, a2, . . . 〉 for elements a1, a2, . . . ∈ Σ. The most natural presentation of traces
in Isabelle/HOL is given by the list datatype, a well supported theory of Is-
abelle/HOL.

types α trace = α list

In order to define the first simple trace semantics of processes we use that classical
filter operator on traces annotated as �.

consts

filter :: [α trace, α set] ⇒ α trace (infixl "�" 50)

Given a trace s and a set of events A it returns the trace that is obtained from
s by deleting all events that are not in A. This semantics can be given by the
following two primitive recursive definitions. Note, that we reuse here the empty
list [] to represent the empty trace: the above types definition of traces keeps
the underlying list syntax available for traces. Similarly, we reuse #, the list
constructor, as concatenation for traces.1

primrec

filter_nil : "[] � A = []"

filter_cons: "(a # l) � A = (if a: A then a # (l � A) else (l � A))"

Next we declare the following constant tor the trace semantics of CSP processes.

traces :: α process ⇒ (α trace) set ("[[ _ ]]" [21] 20)

The idea of this first coarse semantics of CSP is to assign to each process the set
of traces that record the possible behaviour of this process at each moment in
time. That is, the empty trace is always an element of the traces of any process
as it represents the moment when nothing yet has been communicated. It is also
implied that the traces of any process are prefixed-closed: if a trace t is in the
set of traces(P ), then all prefixes of t must be contained in traces(P ).

The traces of a process are now defined by underlying each of the possible
constructors with a semantics. It is worth noting at this point that we can
formulate these semantical rules again by primitive recursion. In the following
we explain the pieces of a whole primrec section line by line at the same time
1 We may easily introduce syntactic sugar to cover the original list notions with the

CSP specific synax.



sheding some light on the trace semantics. The STOP process’ semantics is that
it does never communicate anything: yet only the empty trace describes this
behaviour.

primrec

traces_STOP : "[[ STOP ]] = { [] }"

The traces for prefixing a process P by a are built by juxtaposing the a in front
of all traces of P ; the empty trace has to be inserted afterwards again as it is
lost in this procedure.

traces_prefix:

"[[ a → P ]] = { [] } ∪ { t | ∃ t’. t = a # t’ ∧ t’ ∈ [[ P ]] }"

The deterministic choice between two processes P and Q opens up two branches
in the behaviour of the process: hence the traces of the two individual processes
are unified.

traces_dchoice: "[[ P � Q ]] = [[ P ]] ∪ [[ Q ]]"

The nondeterministic choice is meant to be a choice which is not influenced by
the environment, but is internally taken (by the system). However, considering
the traces, which build nothing more than a transcript of possible behaviours,
the way thechoice has been taken at a certain point is lost: the traces for the
nondeterministic choice are identical to the traces of the determninsitic choce.

traces_nchoice: "[[ P � Q ]] = [[ P ]] ∪ [[ Q ]]"

This shortcoming of the trace semantics leads to the extension of the semantical
model by failures (see below).

The four different forms of parallel operators are defined as follows. In general
the processes have to agree on each event they communicate: their traces must
be shared, i.e. the traces of the resulting parallel composition is the intersection
of the traces of each individual process.

traces_parallel : "[[ P ‖ Q ]] = [[ P ]] ∩ [[ Q ]]"

In the other extreme, the interleaving of two processes that are not synchronized
at all, each of the combined processes has its own contribution to a trace of the
combination. Technically we collect those combined traces s as restrictions to
individual sets of events traces for each of the constituent processes such that
these individual sets unify to the set of all traces that occur in s.

traces_inter : "[[ P ‖| Q ]] =

{ s | ∃ X Y . s � X ∈ [[ P ]] ∧ s � Y ∈ [[ Q ]] ∧ set s = X ∪ Y }"

The intermediate solution between the two – some portion A of events needs to
be synchronized – is expressed in a similar manner. The restriction set of events
of each of the processes P and Q includes here the set A thus enforcing that the
events of A are communicated by both.



traces_genpar : "[[ genpar P A Q ]] =

{ s . ∃ X Y. s � (A ∪ X) ∈ [[ P ]] ∧ s � (A ∪ Y) ∈ [[ Q ]]
∧ set s = X ∪ A ∪ Y }"

Hiding a set of events A in a process P simply means that in all traces of the
original process P each event that is in A has to be eliminated. This can be
encoded in the language of Isabelle/HOL by mapping a function that filters the
complement of A with respect to Σ out of any trace s over the set of all traces of
P . Here - is the symmetric set difference and ‘ the operator building the image
of a function applied to a set.

traces_hide: "[[ P \ A ]] = (λ s. s � (Σ - A))‘([[ P ]])"

3.2 Recursion

To construct non-trivial processes the use of recursion is enabled. Users of CSP
may casually write recursive eqation for the definition of processes, like the
following process communicating sequences of a’s of arbitrary length.

P = a → P

Semantically such a recursive equation is resolved in the classical way as the
the fixpoint of a corresponding functorial. For the example, the fixpoint of the
functorial λs.a→s is chosen. Now, as we have defined the semantics of our CSP
processes as sets (of traces) we have to consider functorials over such sets. As
powersets with the subset relation form complete partially ordered sets we can
use the theory of fixpoints in Isabelle/HOL to assign a meaning to recursive
functions.

Now an interesting problem arises. As we base our embedding on a syntactical
characterization of CSP operators by a datatype a recursive rescription is also
syntactical. However, the fixpoints are only defined in the semantics, because it
is there that we arrive at a function representing the meaning (syntactically the
recursion leads to ever longer nested calls). In order to achieve this we define the
set of all trace sets that are ever reached by any process over an alphabet Σ.

constdefs

Traces :: ((α trace) set) set

"Traces == {A :: (’a trace) set. ∃ P. traces P = A}"

We define a higher order function that transforms a functorial over syntactic
processes over a functiorial over traces, i.e. in the semantics. We need to recon-
struct the syntactical process that has a certain semantics in order to define
the latter semantical factorial. To this end, we use the Hilbert operator, which
enables the selection of some syntactical process that is mapped to a given trace
set y.

recursion_prep :: (α process ⇒ α process) ⇒ ((α trace)set ⇒ (α trace)set)

"recursion_prep f == (λ y :: (α trace)set . if y ∈ Traces then

[[ f (SOME z. traces z = y)]] else {})"



To reassure ourselves that this transformation function works we prove the fol-
lowing lemma.

y ∈ Traces =⇒ ∃ z. traces z = y

CSP uses the notation µ for the least fixed point operator. Given the trans-
formation function recursion prep we can use the predefined least fixed point
operator to assign a semantics to recursive process definitions.

constdefs

µ :: "(α process ⇒ α process) ⇒ (α trace) set"

"µ f == lfp (recursion_prep f)"

3.3 Divergences

Through hiding in combination with recursion arises another problem in the
behavioural specification of processes. Consider the following recursive process.

P = (a → P) \ a

Process P does not communicate anything visible, as the only event a that it com-
municates is hidden. This process behaves like the process STOP when considering
just its traces.2 However, in difference to STOP which does not communicate at
all P has an endless invisible activity of communcation going on.

The behaviour expressed by process P is considered as a divergence in CSP. A
process that may behave at a certain point like the above process is considered
as nonterminating. To differentiate this behaviour from a process like STOP that
does not do anything, divergences are explicitly introduced as the third layer of
semantics in CSP.

3.4 Failures and Divergences

As we have seen in the previous sections there are two phenomena not expressible
in the simple trace model of CSP.

– deterministic and nondeterministic choice are not distinguishable
– deadlock and livelock are not distinguishable.

For the former reason CSP considers a second extension of its semantical model
by sets of events that may be refused at each moment during a process. These
so-called refusal sets combined with a trace representing the particular moment
when this refusal is possible form so-called failures. The latter reason gives rise
to the extension of the semantical model by a third component: the divergences.
These are sets of traces after which a process can behave like the above in that
it produces an infinite invisible activity.

2 and also failures as we will see later



Formally, we define first divergences because failures may be defined reusing
divergences. The divergences of a process are a set of traces that record the traces
leading up to a divergence point and thereafter admit arbitrary behaviour.3

consts

D :: α process ⇒ (α trace) set

The divergences of STOP can now exhibit that this process is really a livelock,
i.e. does not diverge. The case of the prefixing operator shows the basic idea of
divergences: divergences record the behaviour of the preocess up to the point of
divergence, thereafter any behaviour is possible in case of divergence. Similarly
for the two choice operators alike a possible divergence of one of the combined
processes renders the choice divergent. For the parallel operators we give only
the more general parallel operator, as the others may be expressed in terms of
this.

primrec

Divergences_STOP : "D(STOP) = {}"

Divergences_prefix: "D (a → P) = { s | ∃ t. s = a # t ∧ t ∈ D(P) }"

Divergences_dchoice: "D(P � Q) = (D P) ∪ (D Q)"

Divergences_nchoice: "D(P � Q ) = (D P) ∪ (D Q)"

Divergences_genpar : "D (genpar P A Q) =

{s | ∃ X Y. (s � (A ∪ X) ∈ [[ P ]] ∧ s ∈ D(Q)) ∨
(s � (A ∪ Y) ∈ [[ Q ]] ∧ s ∈ D(P)) }"

Divergences_hide : "D(P \ A) = {s | ∃ t. t ∈ D(P) ∧ s = t � (Σ - A)}"

Failures are pairs of traces and sets of events – the refusals – that a process can
refuse to communicate at the point described by the trace.

F :: α process ⇒ (α trace × α set) set

The failures of STOP reflect that at the empty trace this process can refuse
any set of possible events. The failures of a process P prefixed by event a are
characterized as follows: any event other than a amy be refused initially – at the
empty trace – afterwards anything that may be refused by P . The failures of
the nondeterministic choice are now just the union of the failures of each f the
combined processes. This definition reflects that an internal choice may refuse a
behaviour even if it is for choice. By contrast the deterministic – or external –
choice is now differing in the failures model: initially it may only refuse if both
processes may refuse, but all further refusals of both processes are then possible.
In addition it may refuse anything if it can initially already diverge. For hiding
the failures are derived by refering to the failures of the original process adding
the hidden events in the refusals and in case of divergence again any failure.

primrec

Failures_STOP : "F (STOP) = { (s,X) | s = [] ∧ X ⊆ Σ }"

3 In CSP the view is taken that a process that may diverge at some point does not
convey any sensible behaviour. Therefore it is assigned any possible behaviour from
that point onwards.



Failures_prefix: "F (a → P) = { (s,X) | s = [] ∧ a /∈ X } ∪
{ (s, X) | ∃ s’. s = a # s’ ∧ (s’,X) ∈ F(P)}"

Failures_dchoice: "F(P � Q ) = (F P) ∪ (F Q)"

Failures_nchoice: "F(P � Q) = {(s,X) | s = [] ∧ (s,X) ∈ (F P)∩(F Q)}

∪ {(s,X) | s �= [] ∧ (s,X) ∈ (F P) ∪ (F Q)}

∪ (s,X) | s = [] ∧ [] ∈ D(P) ∪ D(Q) }"

Failures_hide: "F(P \ A) =

{(s,X) | ∃ t. s = t � (Σ - A) ∧ (t, X ∪ A) ∈ F(P) } ∪
{(s,X) | s ∈ D(P \ A)"

4 Refinement

Refinement of processes is defined on all three levels of the semantical model of
CSP. In the earlier papers [1, 5] the authors use the so-called process ordering
which is coarser than the classical ordering given by subset relations on the deno-
tations. Tej and Wolff argue that in their mechanization they need this ordering
as they need to cope with unbounded nondeterminism. For our principal investi-
gation of the reformalization of CSP using datatype and primitive recursion we
stick to the simpler classical refinement ordering.

Process refinement is firstly an important tool for a stepwise development of
specifications in CSP: it guarantees that a process that is a refinement behaves
inside the behavioural specification of the more abstract process. On the other
hand it is also used to abstractly express the behaviour of processes thereby
motivating the role of specification versus implementation.

The basic idea is simple. A more abstract process is a more general description
of the allowed behaviour. Thus, for the most intuitive, the trace model, it is clear
that the semantics of an abstract process contains more possible behaviour than
its refinement. To put it the other way round: an implementation (or refinement)
of a specification may pick out some of the behaviour that is granted as allowed
behaviour by its specification. Hence, the refinement �T on the trace semantics
of processes is simply given by the subset relation on the semantical denotations
of two processes. The reading of P�T Q is however somewhat unnaturally defined
as P is refined by Q thereby inversing the direction of the ⊆.

constdefs

T :: [α process, α process] ⇒ bool (infixl 50)

"P T Q == [[ Q ]] ⊆ [[ P ]]"

For failures, a similar idea applies. Failures contain the traces of the trace model
in their first component. Hence it is clear that here the same subsumption re-
lation should hold. With respect to the refusals possible at each point the sub-
sumption does in fact hold in the same sense: if the abstract process may at
some point – after a possible trace – refuse certain sets of events, then its im-
plementation may chose to refuse a subset of these possible refusal sets. This
concept realizes the idea that the abstract process is also more general in the
must behaviour. The implementation can only be less chosy. Hence, the fail-
ures refinement is also simply given by subsumption of the failures of the two
processes.



constdefs

F :: [α process, α process] ⇒ bool" (infixl 50)

"P F Q == F Q ⊆ F P"

Finally, for the divergences the reasoning is more intricate. Divergence is seen
as indeterminate behaviour. If a process may diverge at a certain point this is
interpreted in the CSP world as undefined or unspecified behaviour. Therefore it
turns out nicely here that in the divergence model processes have been assigned
all possible behaviours up from possible points of divergence. Hence a process
that may diverge at a point given by trace t is always more abstract than a
process that has identical behaviour up to that point t but does not diverge then,
i.e. has just a subset of all combinatorically possible trace continuations. Again
the divergence refinement is the subset relation of the divergences subsuming
the failures refinement.

FD :: [α process, α process] ⇒ bool" (infixl 50)

"P FD Q == F Q ⊆ F P ∧ D Q ⊆ D P"

5 Discussion

We first discuss the differences to the earlier formalization [5] of CSP in Is-
abelle/HOL before we draw some general conclusions.

5.1 Comparison

In brief, our formalization works the other way round than the formalization of
Tej and Wolff. They use the wellformedness rules of CSP as a big conjunction to
define a type of processes in a type definition. Then they define the properties
of the operators using the abstraction and representation functions given by
the type definition. This is a rather technical process of transfering properties
from one domain to another. In our formalization using the datatype definition,
we just go the latter step. We use the datatype feature of Isabelle and the list
database to build up a wellformed process definition. Then we can use the same
definitions they use inside the abstraction functions to define the semantical
annotations as functions over the datatype of process. Our approach saves some
work by using the now well established features of Isabelle/HOL.

We also use the predefined fixedpoint theory of isabelle/HOL to define the
semantics of recursive processes. Although there we have to twist our model in
a slightly unnatural way, we arrive at reusing the given fixedpoint constructor
because our semantical model is based on sets whereas Tej and Wolff use a self
defined type as their semantics. Therefore they have to recreate the entire Tarski
fixpoint theory using axiomatic type classes in order to build an instantiation to
their process type.



5.2 Conclusions

Compared to the very well elaborated theory of CSP given by Tej and Wolff
our formalization is just a first experimental sketch to test feasibility of this
approach. We believe it is important to keep a formalization lightweight and as
simple as possible. The historical development shows that it is well worth trying
to keep things simple. Although initially Isabelle/HOL has been intended to be
a tool for such deep integrated instantiations as the HOL-CSP tool by Tej and
Wolff, it seems nowadays that the applications must not be dependent too much
on the inner workings of the implementations. Otherwise, decisive changes in
the development of Isabelle/HOL make it impossible to keep such instantiations
up to date.
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