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Abstract. Isabelle/HOL is integrated with Specware in order to dis-
charge proof obligations arising during Specware’s specification and re-
finement process. Specware’s proof obligations arise from use of pred-
icate subtypes, termination conditions, and correctness of refinements
as well as any explicit theorems. Specware specifications are structured
into units called specs which correspond to Isabelle/HOL theories. Re-
finement is specified using spec morphisms and spec substitutions, a
particular kind of colimit. We provide a system based on translating
a Specware specification and its refinement into Isabelle/HOL theories,
such that if Isabelle accepts all the translated theories, then the refine-
ment is correct. Isabelle scripts for proving obligation theorems are em-
bedded in Specware spec files so that proofs can be reused. The paper
describes this translation and the issues that arise.

1 Introduction

Specware is a software specification and refinement system developed at Kestrel
Institute based on higher-order logic and theory morphisms [1]. During Specware
specification development and refinement to an implementation, many proof
obligations are generated. Simple obligations can be discharged by Specware
itself, but more complicated obligation theorems require an external theorem
prover to discharge them. Previously, the main external theorem prover sup-
ported has been SNARK, an automatic first-order theorem prover [2]. This cur-
rent work gives the user the alternative of proving Specware obligations using
Isabelle/HOL, an interactive theorem prover for higher-order logic [3].

When SNARK succeeds in proving an obligation, everything is fine. However,
often SNARK will fail to prove an obligation at first, either because the theorem
is not true or the proof is too difficult for SNARK to find without further assis-
tance. The first case, where the obligation theorem is not true, is common during
the process of specification development, either because of incompleteness in the
specification or because of mistakes made by the specifier. Finding the reasons
for a failed proof can be an important part of the specification development
process. Understanding proof failure has been difficult with SNARK, mainly be-
cause of the distance of the language of SNARK’s (partial) proofs from that of
Specware. This distance is because SNARK is a resolution-based prover using
clausal form, whereas Specware uses higher-order logic with polymorphism.

Both Specware and Isabelle/HOL are based on higher-order logic with poly-
morphism, so Isabelle/HOL is a natural target for Specware. Specware declara-
tions, definitions, axioms and theorems can be translated naturally to the cor-



responding Isabelle versions. The main additional feature of Specware’s logic is
predicate sub-typing where a type may be restricted by an arbitrary predicate.1

Predicate subtyping can be used to restrict the domain of a function to legal in-
puts, and to give information about the the range of a a function. These translate
to Isabelle/HOL as extra axioms on definitions involving subtypes and theorems
for applications of the function. The axioms typically state that for all inputs
satisfying the predicate on the input type, the function applied to the inputs
satisfies the predicate of the output type. The subtype theorems state that the
arguments of the function satisfy the subtype predicate assuming information
extracted from the context.

Specware and Isabelle/HOL share essentially identical import mechanisms.
Specware specifications are composed of specs which import other specs, whereas
Isabelle/HOL has theories which import other theories. In addition Specware has
the notion of spec morphisms [5] which Isabelle/HOL does not, although there
is recent work to add them in an extended version of Isabelle/HOL [6]. A spec
morphism is a mapping of op identifiers to op identifiers and type identifiers
to type identifiers from a source spec to a target spec such that axioms in the
source spec are theorems in the target spec. The target spec is a refinement
of the source spec in that there is a target spec model for every source spec
model, but not necessarily vice versa. Specware includes the colimit operation
to provide a very general way of combining specs. We do not attempt to translate
general colimits in this work, just spec substitutions which are a special case of
colimit that cover most cases. A spec substitution takes a complex spec and a
spec morphism where the source of the morphism is an import of the complex
spec, and produces a copy of the complex spec with the source spec replaced
by the target spec of the morphism. In this way, a spec substitution produces a
refinement of a complex spec from a refinement of one of its components.

2 Embedding Proof Scripts in Specware

Simple extensions are made to the Specware syntax to allow Isabelle proof scripts
to be embedded in Specware specs, and to allow the user to specify translation
of Specware ops and types to existing Isabelle constants and types. The rest of
the Specware system treats these as comments.

An embedded Isabelle proof script in a Specware spec consists of an intro-
ductory line beginning with proof Isa, the actual Isabelle script on subsequent
lines terminated by the string end−proof. For example, the simple proof script
apply(auto) done can be embedded as follows:

proof Isa
apply(auto)

end−proof

1 PVS also has predicate subtyping, but lacks polymorphism [4].



If the last command before end−proof is not done, qed or sorry, the
command done is inserted.

The proof script should occur immediately after the theorem or definition
that it applies to. If the script applies to a proof obligation that is not explicit
in the spec, then the name of the obligation should appear after proof Isa, on
the same line.

If the user does not supply a proof script for a theorem then the translator
will supply the script apply(auto) which is all that is required to prove many
simple proof obligations.

3 Translation of Specware to Isabelle/HOL

Isabelle/HOL has types, constants and variables which correspond to Specware
types, ops and variables.

3.1 Identifiers

All Specware variables are explicitly bound, whereas in Isabelle/HOL top-level
variables are implicitly bound. This means that the translator needs to be con-
cerned with renaming to avoid capture of implicitly bound variables such as
comp and o by Isabelle/HOL constants of the same name.

Both systems have namespaces to avoid name confusion with a dot-notation
for full names, but the namespace concepts are different, so the translator does
not try to use the Isabelle dot-notation. Instead, an identifier such as a.b is
translated to a b. This scheme could possibly lead to name confusion if the user
uses names containing double underbars.

Specware allows some non-alphabetic characters in the identifiers of ops and
types that Isabelle/HOL does not, so these must be translated. For example,
equal? is translated to equal p.

3.2 Types

Most Specware types have directly corresponding Isabelle/HOL types:

Boolean → bool
functions → functions
products → pairs and tuples
coproducts → constructor types (datatypes)
type variables → type variables
Char → char
List → list
String → string

There is a slight mis-match with products and tuples in that in Specware
products may be of arbitrary length whereas in Isabelle/HOL a tuple of more



than length 2 is really a structure of nested pairs. For construction this is trans-
parent, but not for dereferences. For example, in Specware x.2 translates to snd x
if x is a product of length 2, but it translates fo fst(snd x) if x is a product of
greater than length 2.

Coproducts are the same as constructor types except that a constructor with
multiple arguments must be curried in Isabelle/HOL and uncurried in Specware.
For example,2

type boolex =
| And (boolex × boolex)
| Const Boolean
| Neg boolex
| Var Nat

translates to

datatype boolex =
And boolex boolex

| Const bool
| Neg boolex
| Var nat

Isabelle/HOL does not have predicate subtypes, so these are generally mapped
to the supertype. The exception is that Specware types may be explicitly mapped
to existing Isabelle/HOL types as described below, and this mapping allows a
supertype to be mapped to a different type from the subtype with coercions
functions to map between the two types. For example, in Specware, the type
Nat is a sub-type of Integer, but these are mapped to the separate Isabelle/HOL
types nat and integer. Mapping nat to integer would be correct but would make
many proofs harder.

3.3 Terms

Isabelle/HOL and Specware share many of the same kinds of term, including
case statements, lambda expressions, let expressions, if-then-else expressions,
universal and existential quantifications, and function applications both in prefix
form or infix. There are examples throughout the paper. In some cases the syntax
is slightly different, but they are close enough that the meaning is obvious, so I
will not describe the details. Specware has a letrec expression which is described
below in the subsection on local definitions.

2 This example and some of the following are drawn from section 2.4.6 of the Is-
abelle/HOL tutorial [3].



3.4 Op Declarations and Definitions

A Specware definition may translate into one of three different kinds of Isabelle
definitions: defs, recdefs and primrecs (primitive recursions). Simple recursion on
coproduct constructors translates to primrec, but if the function has multiple
arguments, only if the function is curried. Other recursion translates to recdefs
which, in general, require a user-supplied measure function to prove termination.
Non-recursive functions are translated to defs, except in some cases they are
translated to recdefs which allow more pattern matching.

For example, the Specware declaration and definition:

op bvalue: boolex → (Nat → Boolean) → Boolean
def bvalue be env =
case be of
| Const b → b
| Var x → env x
| Neg b → ¬ (bvalue b env)
| And(b,c) → bvalue b env ∧ bvalue c env

translate to

consts bvalue :: ˝boolex ⇒ (nat ⇒ bool) ⇒ bool˝
primrec

˝bvalue (Const b) env = b˝
˝bvalue (Var x) env = env x˝
˝bvalue (Neg b) env = (¬ (bvalue b env))˝
˝bvalue (And b c) env = (bvalue b env ∧ bvalue c env)˝

Recursive functions that are translated to recdefs can have a measure func-
tion specified on the proof Isa line, by including it between double-quotes. For
example:

proof Isa ˝measure (λ(wrd,sym). length wrd)˝ end−proof

There are examples of different kinds of definition below.

3.5 Axioms and Theorems

Specware axioms and theorems are translated naturally to Isabelle/HOL axioms
and theorems. For example,

theorem valif is
∀(b,env) valif (bool2if b) env = bvalue b env
proof Isa

apply(induct tac b)



apply(auto)
end−proof

translates to

theorem valif:
˝valif (bool2if b) env = bvalue b env˝
apply(induct tac b)
apply(auto)
done

Annotations for theorems may be included on the proof Isa line. For exam-
ple,

theorem Simplify valif normif is
∀(b,env,t,e) valif (normif b t e) env = valif (IF(b, t, e)) env
proof Isa [simp]

apply(induct tac b)
apply(auto)

end−proof

translates to

theorem Simplify valif normif [simp]:
˝valif (normif b t e) env = valif (IF b t e) env˝

apply(induct tac b)
apply(auto)

done

In this example we see that universal quantification in Specware becomes, by
default, implicit quantification in Isabelle. This is normally what the user wants,
but not always. The user may specify the variables that should be explicitly
quantified by adding a clause like ∀t e. to the proof Isa line. For example,

theorem Simplify valif normif is
∀(b,env,t,e) valif (normif b t e) env = valif (IF(b, t, e)) env
proof Isa [simp] ∀t e.

apply(induct tac b)
apply(auto)

end−proof

translates to

theorem Simplify valif normif [simp]:



˝∀(t::ifex) (e::ifex). valif (normif b t e) env = valif (IF b t e) env˝
apply(induct tac b)
apply(auto)

done

It is sometimes necessary to add explicit type annotations to allow the Is-
abelle type-checker to resolve overloading.

3.6 Subtype Axioms and Obligations

If the result of an op is a subtype then an axiom is produced to that effect. For
example:

op n: {i: Nat | i > 0}
op f(x: Nat): {i: Nat | i > 0}

translates to

consts n :: ˝nat˝
axioms n subtype constr:

˝n > 0˝
consts f :: ˝nat ⇒ nat˝
axioms f subtype constr:

˝f i > 0˝

For references to functions with take a subtype as an argument, a subtype
obligation is generated for each application of the function to ensure that the
subtype predicate holds.

For example, the declaration of the nth function is as follows:

op nth: [a] {(l,i) : List a × Nat | i < length l} → a

Note that, to express this subtype restriction the nth cannot be a curried func-
tion because Specware does not have dependent types. However, we do translate
nth to the corresponding Isabelle function ! which is curried.

For example, from

op L: List Nat = [1,2,3]
proof Isa [simp] end−proof
op L2: Nat = nth(L,2)

we get

consts L :: ˝nat list˝



defs L def [simp]: ˝L ≡ [1,2,3]˝
consts L2 :: ˝nat˝
theorem L2 Obligation subsort:

˝2 < length L˝
apply(auto)
done

defs L2 def: ˝L2 ≡ L ! 2˝

3.7 Local Recursive Functions

Local recursive functions are allowed in Specware but not in Isabelle/HOL.
Therefore these functions are lifted to the top level using the technique of
lambda-lifting [7] which converts free variables to extra parameters.

For example, the tabulate function:

op [a] tabulate(n: Nat, f: Nat → a): List a =
let def tabulateAux (i : Nat, l : List a) : List a =

if i = 0 then l
else tabulateAux(i−1,Cons(f(i−1),l)) in

tabulateAux(n,[])
proof Isa tabulate tabulateAux ˝measure (λ(i,l,f). i)˝ end−proof

is translated to

recdef tabulate tabulateAux ˝measure (λ(i,l,f). i)˝
˝tabulate tabulateAux(0,l,f) = l˝
˝tabulate tabulateAux(Suc i,l,f)

= tabulate tabulateAux(i,Cons (f i) l,f)˝
consts tabulate :: ˝nat × (nat ⇒ ’a) ⇒ ’a list˝
recdef tabulate ˝{}˝

˝tabulate(n,f) = tabulate tabulateAux(n,[],f)˝

Note the translation of the if i = 0 then ... else ... into cases on 0 and Suc i.
Specware does not allow a case split on successor because naturals are defined
as a subtype of integers and not constructed from zero and successor.

3.8 Logic Morphisms

We wish to exploit existing Isabelle/HOL libraries, so we provide a mechanism
for mapping Specware op and type identifiers to Isabelle/HOL constant and type
identifiers. Any definitions in Specware for these ops must be theorems in the
Isabelle/HOL theory for this mapping to be correct.

A translation table for Specware types and ops is introduced by a line
beginning proof Isa Thy Morphism followed optionally by an Isabelle theory



(which will be imported into the translated spec), and terminated by the string
end−proof. Each line gives the translation of a type or op. For example, for
the Specware Option theory we have:

proof Isa Thy Morphism
type Option.Option → option
Option.mapOption → option map
end−proof

A type translation begins with the word type followed by the fully-qualified
Specware identifier, → and the Isabelle identifier. If the Specware type is a sub-
type, you can specify coercion functions to and from the super-type in paren-
theses separated by commas. Note that by default, sub-types are represented by
their super-type, so you would only specify a translation if you wanted them to
be different, in which case coercion functions are necessary. Following the coer-
cions functions can appear a list of overloaded functions within square brackets.
These are used to minimize coercions back and forth between the two types.

An op translation begins with the fully-qualified Specware identifier, followed
by → and the Isabelle constant identifier. If the Isabelle constant is an infix
operator, then it should be followed by Left or Right depending on whether it
is left or right associative and a precedence number. Note that the precedence
number is relative to Specware’s precedence ranking, not Isabelle’s. Also, an
uncurried Specware op can be mapped to a curried Isabelle constant by putting
curried after the Isabelle identifier, and a binary op can be mapped with the
arguments reversed by appending reversed to the line.

For Specware’s Integer spec we have the logic morphism

proof Isa Thy Morphism Presburger
type Integer.Integer → int
type Nat.Nat → nat (int,nat) [+,×,div,rem,≤,<,≥,>,abs,min,max]
Integer.+ → + Left 25
Integer.− → − Left 25
IntegerAux.− → −
Integer.× → × Left 27
Integer.div → div Left 26
Integer.rem → mod Left 26
Integer.≤ → \<le> Left 20
Integer.< → < Left 20
Integer.≥ → \<ge> Left 20
Integer.> → > Left 20
Integer.min → min curried
Integer.max → max curried
end−proof

Note that the list of overloaded functions does not include − (minus) because



Isabelle’s definition of − on naturals is not the same as Specware’s if the second
argument is larger than the first: for Isabelle the value is 0 whereas for Specware
it is a negative integer. However, if the consumer of the subtraction is expecting
a natural then we know there is a proof obligation that ensures this, so in this
case we do translate Specware’s − to Isabelle’s.

3.9 Spec Morphisms and Spec Substitutions

The obligations theory in Isabelle/HOL of a spec morphism is simply a theory
that imports the translation of the target spec of the morphism and includes
the axioms of the source spec translated along the morphism as theorems to be
proven. Named proof scripts for the theorems follow the morphism.

For example, the morphism AB M from spec A to spec B in the following:

A = spec
op f: Nat → Nat
axiom f pos is ∀(x) f x > 0

endspec

B = spec
op g(i: Nat): Nat = i + 2

endspec

AB M = morphism A → B {f �→ g}
proof Isa f pos
apply(auto simp add: g def)
end−proof

has the obligation theory:

theory AB M
imports B
begin
theorem f pos:

˝g x > 0˝
apply(auto simp add: g def)
done

end

The syntax of a spec substitution is a spec term followed by a morphism in
square brackets. For example, the spec D is defined as the substitution of mor-
phism AB M applied to the spec C in the continuation of the current example:

C = spec
import A



op f2(i: Nat): Nat = f(f i)
endspec

D = C[AB M]

The translation of spec D is just spec C with A replaced by B and performing
the renaming of the morphism AB M giving the theory:

theory D
imports B
begin
consts f2 :: ˝nat ⇒ nat˝
defs f2 def: ˝f2 i ≡ g (g i)˝
end

Note that if the spec to be replaced is deeply embedded in the import struc-
ture, then it is necessary to make copies of all the imported specs that import
this spec, and translate them to Isabelle/HOL theories. For a large specification
and refinement there may be many substitutions applied in sequence to the top
level spec, implicitly using many intermediate specs. It is desirable to generate
the specs required by the final refinement and their corresponding Isabelle/HOL
theories without generating all the intermediates.

4 Current Restrictions and Future Work

This initial translator has a number of limitations. It should translate all Specware
specs but not all translated definitions and constructs will be accepted by Is-
abelle/HOL. In particular, only case expressions that involve a single level of
pattern-matching on constructors are accepted. An exception, is that some nest-
ing is allowed in top-level case expressions that are converted into definition
cases. Mutual recursion is not currently supported. The translator currently tar-
gets the 2006 release version of Isabelle. The next version of Isabelle includes a
new function package that should allow more Specware definitions to be trans-
lated. Also, it allows termination to be proved for a subdomain which is a natural
match for a Specware function whose domain is a predicate subtype.

Bortin, Johnsen and Lüth have developed an extension of Isabelle that in-
cludes theory morphisms [6]. This would provide a natural target for a transla-
tion of Specware’s spec morphisms. Morphism obligations are proved, but there
is a meta-theorem about morphisms that all theorems in the source spec of the
morphism, are theorems in the target spec when translated by the renaming of
the morphism. We do not currently exploit this powerful property, unlike this
Isabelle extension which realizes these theorems by translating proofs along the
morphism. By targeting this extension we would gain this property. A concern
is that the price of this extension is that low-level proofs must be stored, which



could be expensive, especially for a large specification with many spec substitu-
tions.

In the future we wish to allow results from Isabelle inference to be returned
to Specware. Witness-finding can be used in a number of ways during algorithm
synthesis, for example, to instantiate a function in a program schema [8]. If we
find a witness for an existential during a proof in Isabelle, we need to translate it
back into a Specware term, so it can be used to give a definition in a refined spec.
This back-translation is straightforward, as the term language for Specware and
Isabelle are very similar. The only significant issue is the different name-space
rules of the two systems. In particular, translation of Specware’s qualified names
needs to be invertible.

5 Conclusions

Initial experience with using Isabelle/HOL to discharge proof obligations has
been positive. The Isabelle/HOL translation of a Specware spec is very readable
with direct correspondence between many elements. The translation includes
extra theorems, mainly for sub-type obligations, but their names and location
make them easy to connect to their origin. The main concern with using Is-
abelle/HOL compared to using SNARK was that the user would have to be
concerned with giving proofs for many simple obligations. In our limited expe-
rience, the auto tactic is able to discharge most of the obligations that SNARK
was able to discharge automatically. By making this the default tactic, we have
avoided cluttering Specware specs with trivial proof scripts. In addition, the
means of controlling the proof process in Isabelle/HOL are more intuitive than
with SNARK, and the reasons for failure of a proof are more apparent, and it
is easier to control a more complicated proof. Termination proofs, in particu-
lar, have been much easier in Isabelle/HOL, with the user typically providing a
simple measure function.

We have used the Specware to Isabelle/HOL integration with tutorial ex-
amples and Specware’s libraries. This has revealed several subtle bugs in the
specifications. We plan to use this system to prove the correctness of more sig-
nificant refinements, and to help in automatically generating correct refinements.
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