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Abstract

Emerging architectures such as partially reconfigurable FPGAs provide a huge potential for adaptivity in
the area of embedded systems. Since many system functions are only executed at particular points of
time they can share an adaptive component with other system functions, which can significantly reduce the
design costs. However, adaptivity adds another dimension of complexity into system design since the system
behaviour changes during the course of adaptation. This imposes additional requirements on the design
process, in particular system verification. In this paper we illustrate how adaptivity is treated as first-class
citizen inside the ForSyDe design framework. ForSyDe is a transformational system design methodology,
where an initial abstract system model is refined by the application of semantic-preserving and non-semantic
preserving design transformations into a detailed model that can be mapped to an implementation. Since
ForSyDe is based on the functional paradigm we can model adaptivity by using functions as signal values,
which we use as the base for our concept of adaptive processes. Depending on the level of adaptivity we
categorise four classes of adaptive process, spanning from parameter adaptive to interface adaptive process.
We illustrate our concepts by two typical examples for adaptivity, where we also show the application of
design transformations.
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1 Introduction

The complexity of high-end embedded systems is rapidly increasing. Broy et al.

point out that today the user of a premium car interacts with about 270 func-

tions, which are deployed over about 70 embedded platforms. The total amount

of software in such a car is about 100 MB of binary code, but already in about

five years upper class cars are expected to run 1 GB of software [7]. Since embed-

ded systems interact with the physical environment and are inherently parallel and

heterogeneous, their implementation consists of different domains: software, analog

hardware, static digital hardware and dynamically reconfigurable digital hardware.

Especially the latter is gaining in importance due to its combination of flexibility

and efficiency. Today there are FPGAs 4 on the market supporting partial recon-
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figuration. That is, one part of the circuit can be reconfigured, while its remainder

is not affected and can continue its operation [9]. Since many functions are only

executed at particular points of time, dynamic adaptation to the current situation

can significantly reduce the cost of embedded systems. Although the integration of

adaptivity into embedded system design offers a huge potential for lower costs and

more efficient implementations, it also significantly increases the complexity of the

design process. The design process must ensure that the system works correctly

not only before adaptation and after adaptation, but also during adaption. The de-

sign process of heterogeneous embedded systems is further complicated, since each

implementation domain requires its own model of computation. Current design

methodologies treat each domain independently with an own design flow and thus

the integration of the different domains is a major obstacle. We are convinced that

in order to cope with the complexity of adaptive embedded systems, the design

process cannot rely on ad hoc approaches, but must be put on a solid formal basis.

ForSyDe 5 [20] is a transformational design methodology that targets heteroge-

neous embedded systems [12]. The system is modelled at an abstract level using

a formal semantics and is stepwise refined by well-defined design transformations.

The formal base of ForSyDe is ideally suited for the design of adaptive system.

Since ForSyDe is based on the functional paradigm, functions can be used as signal

values, which is the base for our concept of adaptive processes.

The rest of the paper is structured as follows. After the discussion of the related

work in Section 2, the modelling concepts of ForSyDe are presented in Section

3. The core of the paper is Section 4. Here the concept of adaptive process is

introduced and the modelling of adaptive systems is illustrated by two examples.

Further we give examples for the application of design transformations. Finally

Section 5 concludes the paper and gives also an overview of future work.

2 Related Work

The interest for adaptive computing systems has significantly increased due to a

number of techniques that have become available in recent years. The March issue

of IEEE Computer devotes a special section to reconfigurable computing [8]. There

is a large interest on adaptive systems in several research communities, such as

high-performance reconfigurable computing, autonomous systems and embedded

systems. The occurrence of partially reconfigurable FPGAs has been a driver for

this development, since now adaptivity cannot only be implemented in software,

but even in more efficient hardware [3]. A good overview about reconfigurable

architectures and related software tools can be found in [9].

Schneider and Schuele point out that the explicit modelling and analysis of dy-

namic adaptation in embedded systems is a young research area [22]. They stress

that the adaptation behaviour of an embedded system does not only help to reduce

costs, but also significantly complicates the design process. They use a model based

on quality descriptions that models the adaptivity behaviour at an abstract level.

This adaptive behaviour can then be verified using temporal logic and model check-

5 Formal System Design
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ing. Zhang and Cheng [24] use a formal state-machine representation for adaptive

processes and verify temporal logic specifications by model checking. This adapta-

tion semantics has been integrated by Brown et al. into the KAOS methodology,

which also provides a graphical view of the semantics [6]. Naji et al. [17] extend

the multi-agent paradigm that is prevalent in distributed reactive software systems

to adaptable embedded systems by implementing agents in reconfigurable hard-

ware. Two approaches to implement adaptation for software systems are discussed

in [16]. Parameter adaptation modifies program variables that determine behaviour.

In contrast compositional adaptation exchanges system components with others, so

that new functions can be integrated into the system during runtime. Our research

targets both parameter adaptation, which is the dominating technique for analog

hardware, and compositional adaptation, which is restricted to reconfigurable hard-

ware and software.

The preceding approaches target different areas of adaptive systems and offer

interesting ideas, but none of them targets adaptivity in a heterogeneous environ-

ment. Ptolemy [10] is the most prominent approach that targets the modelling of

heterogeneous systems. They support models of computation spanning from con-

tinuous time to discrete time. Ptolemy uses an actor-oriented approach, where

the composition semantics is based on interface automata. Although Ptolemy does

not explicitly target reconfigurable systems, Neuendorffer and Lee [18] have pro-

posed a model of parametrisation and reconfiguration for hierarchical data-flow

models based on an abstract semantics. Instead ForSyDe uses the concept of pro-

cess constructors to model processes in different models of computation. A process

is composed by a process constructor belonging to a certain computational model

and defining the interface together with functions and values, serving as process

constructor arguments. ForSyDe is developed as design methodology for embedded

systems, wheras Ptolemy is mainly a modelling environment. A ForSyDe process

constructor establishes a separation of communication and computation, which al-

lows a polymorphic application of design transformations [20]. Process constructors

give also a structure to the model, which can be exploited in later design phases

as indicated by mapping rules for synchronous ForSyDe models to hardware and

software [15]. ForSyDe allows a smooth integration of different models of computa-

tion, since all models are based on the same concept of process constructors. Since

ForSyDe is based on the functional paradigm, processes and functions have no side

effect, which facilitates the application of formal methods. Heterogeneous ForSyDe

models can be simulated in the functional language Haskell [14] using the ForSyDe

library [2].

3 ForSyDe Modelling Framework

ForSyDe is a transformational system design methodology targeting heterogeneous

embedded systems. In ForSyDe an initial abstract system model is refined by the

application of semantic-preserving and non-semantic preserving design transforma-

tions into a detailed model that can be mapped to an implementation in hardware

or software. This section presents the modelling concepts of ForSyDe. Design trans-

formations are discussed in the context of adaptive systems in Section 4.3. A more
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detailed description of the ForSyDe methodology, in particular design transforma-

tions, is given in [20].

In ForSyDe a system is modelled as a hierarchical concurrent process network.

Processes communicate with each other via signals. ForSyDe supports several mod-

els of computation (MoCs) and allows processes belonging to different models of

computation to communicate via domain interfaces as illustrated in Figure 1.
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Fig. 1. A ForSyDe model is a hierarchical concurrent process network. Processes of different models of
computation can communicate with each other via domain interfaces.

We start the description of the ForSyDe model with the general aspects of the

modelling elements, in particular signals (Section 3.1) and processes (Section 3.2).

At present ForSyDe provides a synchronous MoC, an untimed MoC and a discrete

time MoC [13]. However, we will only discuss the synchronous MoC in Section 3.3,

since we illustrate our concepts of adaptivity in Section 4 with that model. The

concepts of adaptivity can be easily applied to other MoCs.

3.1 Signals

Processes communicate with each other by writing to and reading from signals. A

signal is a sequence of events, where each event has a tag and a value. Tags can

be used to model physical time, the order of events and other key properties of the

computational model. In the ForSyDe modelling framework we model a signal as a

list of events, where the tag of the event is implicitly given by the event’s position

in the list. The interpretation of tags is defined by the model of computation, e.g.

an identical tag of two events in different signals does not necessarily imply that

these events happen at the same time. All events in a signal must have values of

the same type. Thus we write signals as 〈e0, e1, e2, . . . 〉, where ei denotes the value

of the i-th event of the signal. In general signals can be finite or infinite sequences

of events and S is the set of all signals. The type of a signal where all values are of

type D is denoted S(D).
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3.2 Processes

Processes are defined as functions on signals

p : S × S × · · · × S
︸ ︷︷ ︸

m

→ (S × S × · · · × S
︸ ︷︷ ︸

n

).

The set of all processes is P .

Processes are functions in the sense that for a given set of input signals we always

get the same set of output signals. Thus s = s′ ⇒ p(s) = p(s′) is valid for a process

with one input signal and one output signal. Note, that this still allows processes

to have an internal state. Thus, a process does not necessarily react identical to

the same event applied at different times. But it will produce the same, possibly

infinite, output signal when confronted with identical, possibly infinite, input signals

provided it starts with the same initial state.

For processes with arbitrary number of input and output signals the notation

can become cumbersome to read. Hence for the sake of simplicity we deal sometimes

with processes with one input and one output only, which is not a lack of generality

since it is straight forward to introduce ”zip” and ”unzip” processes which merge

two input signals into one and split one output signal into two output signals,

respectively [13]. These processes together with appropriate process composition

allows us to express arbitrary behaviour.
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Fig. 2. A process is constructed by means of a process constructor that takes functions and values as
argument.

Figure 2 illustrates the concept of process constructor, which is a key element

in ForSyDe. ForSyDe defines a set of well-defined process constructors, which are

used to create processes. A process constructor pc takes zero or more functions

f1, f2, . . . , fn and zero or more values v1, v2, . . . , vn as arguments and returns a

process p ∈ P .

p = pc(f1, f2, . . . , fn, v1, v2, . . . , vn)

The functions represent the process behaviour and have no notion of concurrency.

They simply take arguments and produce results. The values model configuration

parameters or the initial state of a process. The process constructor is responsible for

establishing communication with other processes. It defines the time representation,

the communication and synchronisation semantics. This separation of concerns

leads to an elegant mathematical formalism that facilitates design analysis and

transformation.
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A set of process constructors determines a particular model of computation.

This leads to a systematic and clean separation of computation and communica-

tion. A function, that defines the computation of a process, can in principle be used

to instantiate processes in different computational models. However, a computa-

tional model may put constraints on functions. For instance, the synchronous MoC

requires a function to take exactly one event on each input and produce exactly one

event for each output. The untimed MoC does not have a similar requirement.
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pn(s1, s6) = s5 where

pn ∈ P

(s2, s3) = p1(s1)

s5 = p2(s2, s4)

s4 = p3(s3, s6)

Fig. 3. A process network can be expressed by a set of equations.

New processes can be created by composition of other processes. Figure 3 shows

a process network and the corresponding set of equations. The process network is

in itself a process.

3.3 Synchronous Model of Computation

The family of synchronous languages [4] [5] is based on the synchronous model

of computation, which uses the perfect synchrony assumption. Among others the

languages Esterel, Lustre, Signal and StateCharts are all based on the synchronous

model of computation.

Perfect synchrony hypothesis: Neither computation nor communication takes

time.

Timing is entirely determined by the arriving of input events because the system

processes input samples in zero time and then waits until the next input arrives.

If the implementation of the system is fast enough to process all input before the

next sample arrives, it will behave exactly as the specification in the synchronous

language.

Synchronous processes are defined by the following specific characteristic. All

synchronous processes consume and produce exactly one event on each input or

output in each evaluation cycle, which implies a total order of all events in any

signal inside a synchronous MoC. Events with the same tag appear at the same

time instance. The set of synchronous processes is PSY ⊂ P .

To model asynchronous or sporadic events like a reset signal, there is the special

value ⊥ to model the absence of an event. A value set V that is extended with

the absent value ⊥ is denoted V⊥ = V ∪ {⊥}. It is often practical to abstract a

non-absent value with the value ⊤. For convenience we call an event with an absent

value an absent event and an event with a non-absent value a present event.
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In the following we give a set of basic process constructors, which are needed

to model a system in the synchronous model of computation. In other models of

computations, the set of basic process constructors is similar. Process constructors

in the synchronous domain have the suffix ”SY ”. Together with process composition

the set of combinational process constructors combSY n
6 and the delay process

constructor delaySY are sufficient to model a system inside the synchronous MoC.

A combinational process constructors combSY n takes a function f : D1 × · · · ×

Dn → E as argument and returns a process p : S(D1) × · · · × S(Dn) → S(E) with

no internal state. Figure 4 shows the combinational process constructor combSY n,

which takes a function f as argument and constructs a combinational process with

n input signals.

i
1

i

o

n

n
combSY

(f)

p = combSY n(f) ∈ PSY

where

o = p(i1, . . . , in)

o[k] = f(i1[k], i2[k], . . . , in[k])

Fig. 4. A process constructor combSYn creates a combinational synchronous process.

The delay process constructor delaySY takes only one value s0 : D as argument

and produces a process p : S(D) → S(D) that delays the input signal one cycle.

The supplied value is the initial value of the output signal. Figure 5 shows the

process constructor delaySY that creates a process, which delays the input signal

one cycle.

odelaySY
(s  )

0

i

p = delaySY (s0) ∈ PSY

where

o = p(i)

o[k] =







s0 k = 0

i[k − 1] k > 0

Fig. 5. The process constructor delaySY creates a synchronous process that delays the input signal one
cycle.

Other process constructors can be defined for convenience, such as the state

machine constructor stateSY n, which is used to model a state machine. Though all

state machines can be composed by a net-list of combinational and delay processes,

state machine process constructors prove to be very useful as designers are used to

the concept of state machines.

6 Previous ForSyDe versions defined the process constructors mapSY and zipWithSY n instead of the
process constructor combSY n. Only the naming has changed, there has not been a change in the formal
definition. mapSY corresponds to combSY 1 and zipWithSY n to combSY n (for n > 1).
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p = stateSY n(f, s0) ∈ PSY

where

o = p(i1, i2, . . . , in)

o = (delaySY (s0))(s)

s = (combSY n+1(f))(i1, . . . , in, o)

Fig. 6. The process constructor stateSY n creates a synchronous process that models a state machine
without output decoder.

Figure 6 shows the process constructor stateSY n that takes a function f : D1 ×

· · · × Dn × E → E and an initial value s0 : E and returns a synchronous process

p : S(D1) × · · · × S(Dn) → S(E) that models a state machine without output

decoder. Other state machines process constructors, e.g. for Moore and Mealy

machines, can be based on this process constructor.

4 Modelling of Adaptivity

We extend the ForSyDe framework to model adaptivity on several levels of abstrac-

tion. Here the key concept is to use functions in the same way as variables of normal

data types, in particular we introduce signals that carry functions. Thus we can

define the following signal

sf = 〈(+), (−), (+), . . . 〉

where the signal values are functions on numbers.

4.1 Adaptive Processes

We introduce the concept of adaptive process, which can be used to model adaptivity

in different ways. Adaptivity is achieved by an additional signal that is used to

change the behaviour of the adaptive process. We divide adaptive processes into

the following categories that are illustrated in Figure 7.

Parameter Adaptivity In Figure 7a the functionality of the process ppa : S(D1)×

· · · × S(Dn) → S(E) → S(F ) is changed by the input signal spa : S(E), which

supplies current parameters to change the functionality of a system. A typical

example is the parameterisation of an analog circuit that executes a transfer

function, such as H(s) = 1
(s+k1)(s+k2)

. Here the signal spa is used to adapt the

function H(s) by supplying new values for the parameters k1 and k2.

Mode Adaptivity In Figure 7b the functionality of the process pm : S(D1) ×

· · · × S(Dn) → S(E) → S(F ) is changed by the input signal sm : S(E), which

determines the current mode of the system. The adaptive process must contain

the different functionalities corresponding to each possible mode. If a new mode

is demanded indicated by the value of the signal sm, the adaptive process has

to adapt by selection of the corresponding function. Mode adaptivity is current
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Fig. 7. Four classes of adaptive processes.

design practice and is implemented by means of a multiplexer in hardware or an

if/case statement in software.

Function Adaptivity Figure 7c uses a signal sf : S(D1 × · · · × Dn → E), where

the values of the signal are functions. The adaptive process pf : S(D1) × · · · ×

S(Dn) × S(D1 × · · · × Dn → E) → S(E) executes always the current value,

i.e. a function, of the signal sf . This means that the adaptive process does not

need to store functions, since they are supplied from the outside. The concept of

figure 7c can be extended in such a way that the signal sf does not only carry

functions, but also state information. Function adaptivity can be implemented

by reconfigurable hardware or software, where the new functions can be loaded

into a reconfigurable area, such as an FPGA or memory block, during operation.

We will exemplify function adaptivity in Section 4.2.1.

Interface Adaptivity Figure 7d uses a signal spr : S(S(D1) × · · · × S(Dn) →

S(E)), where the values of the signal are processes. The adaptive process ppr :

S(D1)× · · · ×S(Dn)×S(S(D1)× · · · ×S(Dn) → S(E)) → S(E) executes always

the current value, i.e. a process, of the process signal spr. This extends the

concept of Figure 7c, since processes do not only include the function, but also

the process constructor. It is therefore possible to not only change functionality,

but also the complete interface given by the process constructor. The adaptive

process can thus change from a process p1 of a particular computational model

A to another process p2 of another computational model B. Interface adaptivity

can be realised with the same implementation techniques as function adaptivity,

but is considerably more complex, since the process interface is changing. We

exemplify interface adaptivity in Section 4.2.2.

Using the classification introduced by McKinley in [16] parameter and mode

adaptive processes belong to their category of parameter adaptation, while function

and interface adaptive processes belong to compositional adaptation. We could even

refine our classification further. Especially the class of interface adaptive processes
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could be divided into several subcategories, since there is a big difference, if only the

number of input or output signals is changed, or if there is a change of the model

of computation.

All four concepts of adaptivity can be modelled with existing ForSyDe process

constructors combXX n or stateXX n, where ”XX ” is replaced by the suffix for the

computational model of the process.
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i
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i
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n

p
sa

p
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p
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o

s

Fig. 8. A self-adaptive process is modelled as a process network of an adaptive process and an additional
process. The signal s can either carry modes, functions or entire processes as illustrated in Figure 7.

A special case is the self-adaptive process shown in Figure 8, where the executed

function of the process is triggered by the change of the values of the input or output

signals. The self-adaptive process psa is constructed as a process network consisting

of an adaptive process pa and another process pc that controls the functionality of the

adaptive process pa. The process pa can be of any of the four forms given in Figure

7. At the highest level of abstraction we assume adaptation to be instantaneous.

Thus the change of functionality indicated by a new value of the signal s occurs at

the same time instant as the input or output values that trigger the change of the

functionality of the adaptive process.

In order to show that adaptivity can be treated as a first-class citizen in ForSyDe,

we illustrate how the existing synchronous ForSyDe process constructor combSY n

can be used to model a synchronous function adaptive process. First we define the

adaptive process applyfSY n which models a synchronous version of the function

adaptive process pf as shown in Figure 7c. The definition of the adaptive process

applyfSY n is given in Figure 9.

i
1

i

o

n

applyfSY
n

s
f

pf = applyfSY n

where

o = pf (sf , (i1, . . . , in))

o[k] = sf [k](i1[k], i2[k], . . . , in[k])

Fig. 9. The process applyfSY n models an adaptive process, where adaptivity is controlled by an input
signal carrying functions.

Figure 10 shows how the process constructor applyfSY n can be created be means

of the process constructor combSY n+1. The argument to the process constructor

combSY n+1 is a higher-order function f that takes in each event cycle the current
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value of the signal sf , the function sf [k], and applies it to the input values of the

other input signals.

i
1

i

o

n

s
f

(f)
combSY

n+1

pf = combSY n+1(f)

where

o = pf (sf , (i1, . . . , in))

o[k] = f(sf [k], i1[k], i2[k], . . . , in[k])

f(sf [k], i1[k], i2[k], . . . , in[k])

= sf [k](i1[k], i2[k], . . . , in[k])

Fig. 10. The process applyfSY n can be created be means of the process constructor combSY n+1.

4.2 Case Studies

4.2.1 Function Adaptivity

Figure 11 shows a tutorial example for function adaptivity using a synchronous

system model with two function adaptive processes. A signal is encoded with an

encoding function and later the encoded signal is decoded with a decoding func-

tion. The signal Key is an input to both the generateEncoder and generateDecoder

processes. The processes Encoder and Decoder are examples for function adaptive

processes and have signals carrying functions as inputs. Figure 11 models adaptiv-

ity at a very abstract level, where the adaptation of the adaptive process is assumed

to be instantaneous and does not consume any time.

generate
Encoder

Encoder Decoder

generate
Decoder

N)S(N N)S(N

Key

Encoding
Function

Decoding
Function

S(N)

S(N)
Signal

S(N)
Encoded Signal Decoded Signal

S(N)

<1,2,...>

<f(x) = x−1, f(x) = x−2, ...><f(x) = x+1, f(x) = x+2, ...>

<2,4,...> <2,4,...><3,6,...>

Fig. 11. The Encoder/Decoder is a typical example for function adaptivity. The processes Encoder and
Decoder are both function adaptive processes and are fed with signals carrying functions. The types of all
signals are shown in the figure.

During design refinement the ideal property of an instantaneous adaptation pro-

cess will be replaced by an adaptation process with a finite adaptation time. Figure

12 shows a refined model of Figure 11, where the adaptation time is expressed as

a number of cycles in the synchronous model of computation. Since this example

shall only illustrate how a non-instantaneous adaptation affects the system model,
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a very simple model is used. Here it is assumed that the adaptation process takes

a fixed amount of time independent of the function that is loaded. In reality these

times may vary or even be unknown, which requires a more elaborate modelling

approach.

generate
Encoder

config
Encoder

S(N  )

generate
Decoder

config
Decoder

S(N  )

N)  )S((N

N)  )S((N

S(N  )

N)  )S((N

N)  )S((N

S(N  )

S(N  ) S(N  )

Encoding
Function

applyfSYBuffer

S(R  )

Key

Decoding
Function

applyfSYBuffer

S(R  )

Signal Decoded SignalEnc
Signal

Encoder Decoder

Fig. 12. The refined model of the Encoder/Decoder example takes adaptation time into account. Buffers
are introduced and signal types are extended to contain the absent value, since the adaptive process cannot
process any data during adaptation. The types of all signals are shown in the figure.

During adaptation it is assumed that the adaptive process cannot produce any

meaningful result, which is modelled with the absent value ⊥. The occurrence of

absent events requires the introduction of a buffer that stores the values of the input

signal during adaptation. The processes configEncoder and configDecoder control the

adaptation process and request new values from the buffers only when the adaptive

process applyfSY ⊥
7 is fed with a valid function.

4.2.2 Interface Adaptivity

The example of Figure 13 shows how processes with different interfaces can be

implemented within the same adaptive process. In this case the adaptive process

acts as a shared resource.

Figure 13a shows two combinational processes combSY 2(f1⊥) and

combSY1 (f2⊥). The processes are independent of each other and do not

have valid data at all time instances as indicated by the absent symbol ⊥ used as

index for the functions f1⊥ and f2⊥ . If we further assume that the ”executions”

of f1⊥ and f2⊥ do not overlap, we can introduce an interface adaptive process as

shared resource. This is illustrated in Figure 13b, where the adaptive process uses

interface adaptivity. Thus the signal spr carries the processes combSY 2(f1⊥) and

combSY1 (f2⊥) as signal values and the adaptive process ppr will always perform

the functionality of the current process value given by the signal spr .

7 The process applyfSY ⊥ is a variant of the adaptive process applyfSY that can deal with absent values.
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Fig. 13. Figure 13 illustrates the use of an interfaces adaptive process for resource sharing. The processes
combSY 2(f1⊥

) and combSY1 (f2⊥
) shall use the adaptive process as shared resource (Figure 13a). Figure

13b shows an interface adaptive process that is configured by a signal carrying processes as signal values.
Figure 13c shows a refined model using a function adaptive process, buffer processes, scheduler, multiplexer
and demultiplexer processes.

Figure 13c illustrates the next step in design refinement, where the interface

adaptive process ppr is replaced by a function adaptive process pf = applyfSY ⊥ and

additional components such as multiplexer, demultiplexer and scheduler. Buffers

have to be introduced, if adaptation time is non-instantaneous. In this solution the

signal s1 has to be able to carry values of both data type D1⊥ × D2⊥ and D3⊥ at

different time instants depending on the functionality of the adaptive process. Thus

s1 has the type S((D1⊥ × D2⊥) + D3⊥). The signal s2 has the type S(E1⊥ + E2⊥).

The process Scheduler controls the processes Multiplexer and Demultiplexer and the

buffers and schedules when the functions f1⊥ and f2⊥ are executed on the adaptive

process.

4.3 Transformation of Adaptive Processes

Although the example of Figure 13 was idealised in the sense that we stayed in the

same model of computation and that the execution of functions was assumed to be

non-overlapping, it already indicated the possible complexity of adaptive systems.

Thus to exploit the full potential of adaptivity, the design process has to support

the designer with methods that ensure design correctness.

In the ForSyDe methodology the designer refines a system by the stepwise ap-

plication of design transformations. The formal concepts developed in ForSyDe for

design transformation [20] can also be used for adaptive systems. ForSyDe defines

not only semantic-preserving transformations, which do not change the semantics of
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the model, but also non-semantic transformations, which change the meaning of a

model. While semantic preserving transformations have the nice property that they

are correct-by-construction, they are not sufficient to yield an efficient implemen-

tation of a system model. Non-semantic preserving transformations are needed to

increase the efficiency of the model, e.g. to introduce shared resources or to constrain

the size of a buffer. In order to ensure design correctness the ForSyDe project pro-

poses also a verification method for non-semantic preserving transformations [19].

We have already discussed possible design refinements of adaptive system in Sec-

tion 4.2. Section 4.2.1 showed the refinement of the encoder/decoder system model,

where in the initial model adaptation was assumed to be instantaneous (Figure 11).

However, if adaptation time is taken into account, buffers have to be introduced into

the model and the semantics of the model is changed (Figure 12). The refinements

of this example and the example of Figure 13 are typical candidates for introduc-

tion into the ForSyDe library as non-semantic preserving design transformations.

Each non-semantic design transformation in ForSyDe is accompanied by a formal

description of its implication, which informs the designer of the consequences of the

transformation and helps to formulate proper verification tasks. This is in contrast

to an ad hoc refinement, which is an error-prone activity, since the consequences of

the refinement may not be fully understood by the designer.
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Fig. 14. Two adaptive processes can be merged by means of a design transformation, where
sh[i] = sg[i] ◦ sf [i].

Also semantic-preserving transformations have their place inside a design flow for

adaptive systems. Figure 14 shows an example for a semantic-preserving transfor-

mation that merges two function adaptive processes into a single function adaptive

process, which can lead to lower design costs. Semantic preserving design transfor-

mations are not accompanied by implications since they are correct by construction.

In this article we have only indicated potential design transformations for adap-

tive systems. In order to further develop the design refinements of Section 4.2 the

formal framework in form of implications and possible verification techniques has to

be developed. For more information about these activities we refer to [20] and [19].

5 Conclusion

Since adaptivity adds another dimension of complexity to the design process, design

methodologies have to give the designer additional support to ensure the correct of

the system during the course of adaptation. We have presented how adaptivity can

be treated as first-class citizen in the transformational system design methodology

ForSyDe. A main concept is the adaptive process, which is based on the use of func-

tions as signal values and allows to model different classes of adaptive processes.

Since adaptivity is fully embedded into the ForSyDe framework, the formal concepts
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that have been developed for ForSyDe can also be used for adaptive systems. Espe-

cially important is the possibility to define semantic and non-semantic preserving

design transformations for adaptive systems.

We have focused our work on systems with a static number of processes. Sys-

tems where processes are created and deleted dynamically have been so far beyond

the scope of our research. Future work will analyse the course of adaptation in

more detail and develop design transformations for typical patterns in the design

of adaptive systems. In order to be able to verify the system during the course of

adaptation, a transformation should not only cover the initial and the transformed

process network, but also visualise the intermediate steps of a transformation. Par-

ticularly challenging is the development of transformations for the class of interface

adaptive processes, since it is not obvious how to design a correctly working sys-

tem during complex cases of interface adaptation, like a change of the model of

computation.

We will continue our work on adaptive systems inside the European project

ANDRES [1], where we are extending the ForSyDe modelling framework with a

continuous time model of computation and where ForSyDe is used to provide a

formal base for the design of adaptive systems in SystemC-based methodologies like

SystemC-AMS [23], HetSC [11] and OSSS+R [21].
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